BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-3/T-2 \quad B. Arch. Examinations 2012-2013
Sub : CE 367(CE 323) (Structure IV : Steel and Timber -Structures)
Full Marks: 140
Time : 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this Section. Answer any THREE.
Use tables and charts given in annexure if required.

1. (a) Compute the axial load carrying capacity of the column shown in Fig. 1. The column is fixed at both ends and braced at mid-height against bucking about the weak axis. Use A36 steel properties. Given that,

$$
\begin{align*}
& F_{a}=\frac{F_{y}\left[1-\frac{1}{2}\left(\frac{K L / r}{C_{c}}\right)^{2}\right]}{\frac{5}{3}+\frac{3}{8}\left(\frac{K L r}{C_{c}}\right)-\frac{1}{8}\left(\frac{K L / r}{C_{c}}\right)^{3}} \quad \text { if } \frac{K L}{r} \leq C_{c} \tag{17}\\
& F_{a}=\frac{12 \pi^{2} \mathrm{E}}{23\left(\frac{K L}{r}\right)^{2}}=\frac{149000}{\left(\frac{K L}{\mathrm{I}}\right)^{2}} \quad \text { if } \frac{K L}{\mathrm{r}} \geq \mathrm{C}_{\mathrm{c}} \\
& \mathrm{C}_{\mathrm{c}}=\pi \sqrt{\frac{2 \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}
\end{align*}
$$

(b) Prove that for a rectangular beam section, maximum shear stress is $\frac{3 V}{2 A}$.
2. (a) Write a short note on different properties of wood parallel and perpendicular to grain.
(b) Write short notes on -
(i) Slenderness ratio, R_{B}
(ii) Bearing Area Factor, C_{b}
(iii) Cellular makeup of woods
(iv) Effect of moisture content and shrinkage on properties of wood
(c) Why is it important to make a beam laterally stable? How can you handle this issue if a beam is laterally unstable?
3. Two $3^{\prime \prime} \times 10^{\prime \prime}$ Visually Graded No. 1 Alaska Spruce is used together as a single beam to carry dead load only. The beam is used in wet conditions and normal temperature. Also the beam is laterally supported along its length and at each end. Total load on the beam is $700 \mathrm{lb} / \mathrm{ft}$ and the span of the beam is 12 feet.
Use Annexure 1, 2 and 3 for required data. Assume a reasonable value for any missing data.

CE 367

Contd ... Q. No. 3

(a) Assuming the beam simply supported at both ends, locate the section where maximum bending stress develops and determine the magnitude of maximum bending stress on the section.
(b) Determine the allowable bending stress, $\mathrm{F}_{\mathrm{b}}^{\prime}$ for the beam.
(c) Based on the answers from (a) and (b), determine if the beam is adequate to support the load. If not, determine the number of additional $3^{\prime \prime} \times 10^{\prime \prime}$ lumbers that are needed to reduce bending stress below allowable stress.
(d) Locate the section where the maximum value for shear force is observed for this beam. Also compute the maximum shear stress to check the adequacy of the section (after modification in (c), if any) for shear.
4. (a) For the beam in Question 3 (initial section, two $3^{\prime \prime} \times 10^{\prime \prime}$ Visually graded No. 1 Alaska Spruce), calculate the maximum deflection due to dead load. Also state if this deflection is within allowable deflection limit for dead load.

Use Annexure 1, 2 and 3 for required data. Assume a reasonable value for any missing data.
(b) The beam in 8(a) is to be supported by columns at the ends. Determine the required bearing area at the supports.
Use Annexure 1, 2 and 3 for required data. Assume a reasonable value for any missing data.
(c) Select the lightest W shape from the Table provided in Annexure 4 to support a dead load of 120 kips and a live load of 200 kips . The column is 32 feet long. Assume that it is pin supported at the top and bottom in both directions that an additional support is provided at mid-height to prevent buckling against the y-axis. Use AISC/ASD formulae and AISC Allowable axial load table.

SECTION-B

There are FOUR questions in this Section. Answer any THREE.
5. Design the following members of an industrial roof truss (shown in Fig. 2)from the load table given below:

Member	Member Force (kip)		
	Dead load (kip)	Wind (left-to- right) (kip)	Wind (right-to- left) (kip)
$\mathrm{U}_{2} \mathrm{U}_{3}$	-10	15	20
$\mathrm{U}_{2} \mathrm{~L}_{3}$	-5	19	-4
$\mathrm{U}_{1} \mathrm{~L}_{1}$	1	0	0

Assume, $\mathrm{K}=0.6, \mathrm{~F}_{\mathrm{y}}=36 \mathrm{ksi}, \mathrm{E}=29000 \mathrm{ksi}$ (Annexure 1 is attached for section properties)

CE 367(CE 323)

Contd... O. No. 5

6. (a) Draw a simple roof truss and show different components on it.
(b) Suppose, members $U_{2} U_{3}$ and $U_{2} L_{3}$ mentioned in Question 5 (refer to Fig. 2) are designed to be $\mathrm{L} 3 \frac{1}{2} \times 3 \times \frac{3}{8}$ and $\mathrm{L} 3 \times 2 \frac{1}{2} \times \frac{5}{16}$ respectively. At node U_{2} both of them are connected to a gusset plate of thickness $1 / 2$ inch. Design fillet welds for this connection. Given, $\mathrm{Fy}_{\mathrm{y}}=36 \mathrm{ksi}$. Use Annexure 1, 3.
7. Following data are given for the question below:

CGI roofing $=2.0 \mathrm{psf}$
Self-weight of purling $=1.5 \mathrm{psf}$
Spacing between adjacent trusses $=25 \mathrm{ft}$
Design Wind Pressure:
Windward Side $=-5 \mathrm{psf}$
Leeward side $=-20 \mathrm{psf}$
Trial section for Purlin (A36 steel):
(1) $\mathrm{C} 5 \times 6.7\left(\mathrm{Sxx}=3 \mathrm{in}^{3}\right.$, Syr $\left.=0.378 \mathrm{in}^{3}\right)$
(2) $\mathrm{C} 5 \times 9\left(\mathrm{Sxx}=3.56 \mathrm{in}^{3}\right.$, Syy $\left.=0.45 \mathrm{in}^{3}\right)$
(3) $\mathrm{C} 7 \times 9.8\left(\mathrm{Sxx}=6.08 \mathrm{in}^{3}, \mathrm{Syy}=0.625 \mathrm{in}^{3}\right)$

Sagrod is provided at half the distance in between trusses.
Consider X -axis in the plane of roofing and Y -axis in the perpendicular direction of the plane of roofing. Equation for moment about X -axis is $\mathrm{wL}^{2} / 8$ and moment about Y -axis is $w L^{2} / 32$.
Check the adequacy of the trial purlin sections considering both dead load and wind load for the truss shown in Fig. 2. Comment on, whether the section (1), (2), (3) are adequate or not.

CE 367 (CE 323)

8. Calculate the joint loads for dead load and wind load (show the loading diagram with loads at the joint) for the 30 ft span interior truss of an industrial building (Fig. 2). Spacing between two adjacent trusses (bay) is 25 ft . Show the loads with neat sketches.

Given:
Loads:
(a) CGI Sheet Roofing $=2.0 \mathrm{psf}$
(b) Purlins $=1.5 \mathrm{psf}$
(c) Sagrod, Bracings $=1$ psf
(d) Self-weight of Truss $=50 \mathrm{Jb} / \mathrm{ft}$ of horizontal span

Design Wind Speed $=210 \mathrm{~km} / \mathrm{h}$
Wall Height $=12 \mathrm{ft}$
$\mathrm{C}_{\mathrm{c}}=47.2 \times 10^{-6}$
$\mathrm{q}_{\mathrm{z}}=\mathrm{C}_{\mathrm{c}} \mathrm{C}_{\mathrm{l}} \mathrm{C}_{\mathrm{z}} \mathrm{V}_{\mathrm{b}}^{2}$
$\mathrm{p}_{\mathrm{z}}=C_{C} C_{p e} q_{z}$
$1 \mathrm{kN} / \mathrm{m}^{2}=20.88 \mathrm{psf}$
Other charts are enclosed with the question (Annexure 2, 4, 5).

Speries and commercip grade	Size ciassfication	Bending $7 b$	$\begin{aligned} & \text { Tensior } \\ & \text { parabel } \\ & \text { tograin } \\ & \text { ft } \\ & \hline \end{aligned}$	5\%ear partlet to grain Fv	$\begin{aligned} & \text { Compression } \\ & \text { perpenciautar } \\ & \text { to grain } \\ & \text { fot } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Compreasion } \\ & \text { parase! } \\ & \text { mogrint } \\ & \text { fc } \\ & \hline \end{aligned}$	Aodulas of Elasticity E	Minemum Mhodulus of Elarticity $E_{\text {min }}$
Alaska Cedar								
Select Structural No. 1		1250	625	165	525	1000	1400000	510000
No. 2		975	525	165	525	500	1300000	470000
No. 3	2"\& wider	800	425	163	525	750	1200000	440000
Stud		450	250	165	525	425	1800000	400000
Construction	2×8 wider	625	350	165	525	475	1100000	400000
scandare		900	500	165	325	950	1200000	430000
Utility	2-4* wide	500	275	165	525	775	1300000	400000
		250	123					
Alaske Hemlock								
seleer Structural No. 1		1300	823	185	40	1200	1700000	620000
No. 2		900	550	285	40	1100	1600000	580000
No. 3	2-8 widet	825	475	185	O50	1050	1500000	550000
Stud		475	275	185	240	600	1400000	510000
Comatruction	2" \& wider	650	375	155	480	650	2400000	510000
seandart		950	550	185	C40	1250	1800000	510000
Utility	2"-4* wide	525	300	165	440	1050	1300000	4,0000
		250	150	165	$\underline{40}$	700	1200000	+40000
Alaska Spruce								
Select Structural No. 1		1400	900	160	330	1200	1600000	580000
No. 2		950	600	160	330	1100	1500000	550000
No. 3	2"E wides	575	500	160	330	1050	1400000	510000
Sive		500	300	160	330	600	1300000	470000
Consiruction	248 wider	675	400	160	330	675	1300000	470000
samadard		1000	575	160	330	1250	1300000	470000
Utifity	2-4* wide	550	325	160	330	1050	1200000	4.40000
		275	150	160	330	700	1100000	400000
Alaska Yellow Cedar								
Selear Shructurni No. 1								
No. 2		900	525	225	510	1050	1000000	510000
No. 3	2-8 wider	800	450	225	510	1000	1300000	450000
Seud		475	250	225	5 510	575	1200000	S 40000
Construction	2゙\& wide?	625	350	225	510	625	1200000	440000
Sezndard		925	500	225	510	1250	1300000	470000
Utitity	2*-4* wide	500 250	275 125	225	510 510	1050 675	1100000 1100000	$\begin{aligned} & 400000 \\ & 400000 \end{aligned}$

Frequently Used Load Durations Factors $\mathrm{C}_{\mathrm{D}}{ }^{\mathbf{}}$		
Load Duration	C_{D}	Typical Design Loads
Permanent (>10 yrs)	0.9	Dead Load
Ten Years (Normal)	10	Occupancy Live Load
Two Months	1.15	Snow Load
Seven Days	1.25	Construction Load (Roof Included)
Ten Minutes	1.6	Wind/Earthquake Load
Impact ${ }^{2}$	2.0	Impact Load

$$
=6=
$$

ANNEXURE-2

Molsture Content Factors C_{m} mad								
Strength Property	Fb	Ft	Fe	FO+	Fv	E	Frt	Fg
Sawn Lumber Ylsual or machine Graded	0.850	1.00	0.80	0.67	0.97	0.90	-	-d
Sawn Lumber, Visual or Wet conditions of use MC $>19 \%$								
Dimension lumber (Including Southern Pine)		1.00	0.81	0.67	1.00	1.00	-	-d
$5 \mathrm{in} . \times 5 \mathrm{in}$, and larger	1.00	1.00				0.90		
Decking	0.85	-	-*	0.67	-	0.90	-	
Wet conditions If use all Species except Southern Pinet								

Notes
a) When $\left(F_{D}\right)\left(C_{F}\right)$ for dimerision lumber of all species $\leq 1150 \mathrm{psi}, \mathrm{C}_{M}=1.0$. $\quad 750$ psi, $C_{M}=1.0$; when F_{e} for visually graded Southem Pine ≤ 750 b) When ($\left.F_{e}\right)\left(C_{p}\right)$ for dimension umber of all species except Southem Pine
psi, $\mathrm{C}_{\mathbf{m}}=1.0$.
For Southern Pine, use Relerence design

SIZE FACTORS, C_{F} * for Sawn Lumber not including Southern Pine					
		$\mathbf{F}_{\boldsymbol{b}}$		F_{1}	F_{c}
Grades	Width/Depth	Thickness			
		2"83"	4"		
Select Structural. No. $1 \&$ Btr. No. 1, No. 2. No. 3	$2^{\prime \prime} .3^{\prime \prime} 84^{\prime \prime}$	1.5	1.5	1.5	1.15
	5*	1.4	1.4	1.4	1.1
	$6{ }^{\text {²}}$	4.3	1.3	1.3	1.1
	$8{ }^{7}$	1.2	1.3	1.2	1.05
	10^{*}	1.1	1.2	1.1	1.0
	12"	1.0	1.1	1.0	1.0
	44° \& Wider	0.9	1.0	0.9	0.9
Stud	$2^{s}, 3^{\prime \prime} \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{4} \& 6^{4}$	1.0	1.0	1.0	1.0
Construction \& Standard	$2^{n} .3,84^{\prime}$	1.0	1.0	1.0	1.0
Utility	$4{ }^{\prime \prime}$	1.0	1.0	1.0	1.0
	$2{ }^{*}{ }^{*}$	0.4	**	0.4	0.6

Fiat Use Factor, $C_{\text {fu }}$ for Visually and Machine Graded Sawn Lumber (including Southem Pine)		
Width (depth)	Thickness (breadth)	
	2" \% 3"	4"
$2^{\circ} 83^{\circ}$	1.0	-
$4{ }^{\prime \prime}$	1.1	1.0
5°	1.1	1.05
$6{ }^{\prime \prime}$	1.15	1.05
$8{ }^{\prime \prime}$	1.15	1.05
10" \& Wlder	1.2	1.1

$$
=7=
$$

ANNEXURE-3

TEMPERATURE FACTORS, C_{t}				
Design Values	In Service Moisture Conditions	C_{t} $T \leq 100^{\circ} F$	C_{t} $100^{\circ} \mathrm{F}<T \leq 125^{\circ} \mathrm{F}$	C_{t} $125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}$	Wet or Dry	1.0	0.9	0.9
F_{b}, F_{v}, F_{c} and $F_{c^{\perp}}$	Dry	1.0	0.8	0.7
F_{b}, F_{v}, F_{c} and $F_{c^{\perp}}$	Wet	1.0	0.7	0.5

BEARING AREA FACTOR, C_{b}							
Length of Bearing, in.	$1 / 2$	4	$11 / 2$	2	3	4	6 or more
C_{b}	1.75	1.38	1.25	1.19	1.13	1.10	1.00

Recommended Deflection Limitations		
Use:classification	Applied load only:	Applied load + dead load
Roof beams		
Industrial	//180	l/120
Commercial and institutional		
Without plaster ceiling	l/240	$l / 180$ $l / 240$
With plaster ceiling	1/360	
Floor beams		$l / 240$
Ordinary usage**	$1 / 360$	$l / 240$
Highway bridge stringers	$1 / 200$ to $1 / 300$	
Railway bridge stringers	!/300 to $1 / 400$	

[^0]| 领気合
 5
 完䓂
 您鎡 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | $\frac{2}{\overline{0}}$ |
| | | | | |
| | | | 5 | |
| O＊＊ | | | | 7π |
| | | ต\＆すぎ | | |

Ambatcan Instimite of Stees Conetruction

$$
=10=
$$

ANNEXURE-2

External Pressure Corficiente, $C_{p \text { pe }}$ for Roof ${ }^{\uparrow}$

Note: (1) These coefficterts tival be used with Metiod Sy Sectup, (a)

(5) Lnearinditholyton may

AnNexure-3

$$
\text { ANNEXVRE- } 4 \quad=11=
$$

Combined Height and Expoosure Cpefficient, C_{z}
C ${ }^{11}$

AnNEXRE- 5

- $, \mathrm{F}, \mathrm{x}$,

गv/2/2e-RRorom

Date : 06/01/2015
L-3/T-2/ARCH

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B.Arch. Examinations 2012-2013
Sub : EEE 373 (Building Services (III) : Electrical Equipment)
Full Marks: 140
Time : 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this Section. Answer any THREE.

1. (a) An RLC circuit as shown in-the Fig. 1(a), the instantaneous current, $i=I_{m} \sin \omega t$, flows through the circuit,

Find the expressions for
(i) total voltage, v applied, if V_{m} is the maximum voltage
(ii) the impedance, $\mathrm{Z}_{\mathrm{RLC}}$,
(iii) the instantaneous power, and
(iv) the real power and the reactive power.
(b) Show that the maximum amount of energy stored by a pure capacitor C is $1 / 2 \mathrm{CV}_{\mathrm{m}}{ }^{2}$, where, I_{m} is the maximum current passing through the capacitor and V_{m} is the maximum value of voltage across the capacitor.
2. (a) What are the different types of Electrical wiring Systems presently practiced in the country. Describe any 5 (five) of them with necessary diagrams.
(b) In view of Electrical Safety Measures, describe in-brief on "Safety of Men and Safety of Machine/Equipments".
3. (a) (i) What are the main reasons of, "Lightining Protection System" for very high-rise building for important installations?
(ii) Draw a Roof-Top Plan of a big high-rise building and show the detailed Lighting Protection System with earthing and down conductors involving for complete protection of the building.
(b)(i) Why is earthing so important?
(ii) With simple diagrams describe in-short the main requirements for Earthing.
(iii) With simple diagrams, describe what are the common mistakes in installation of Earth Continuity conductors in case of different sizes of (Electric) Motors.

$$
=2=
$$

LE 373

4. The same plan of a house are shown in Fig. 4(a) and Fig. 4(b),
(a) Show the "Fittings and Fixture Layout Design" in Fig. 4(b) and attach this sheet with your answer script.
(b) Show the Switch-Board Connection Diagram of the above design in your main

Answer Script.

(c) Show the Legends used in the above design, with short description.

SECTION -B

There are FOUR questions in this Section. Answer any THREE.
5. (a) Calculate the equivalent resistance R_{AB} in the circuit shown in Fig. for $\mathrm{Q} .5(\mathrm{a})$. Also calculate current I_{0}.

(b) Using Delta-wye Transformation, find the current I_{0} in Fig. for Q. No. 5(b),

6. (a) Using branch current method, find the current in each branch of the network in Fig. for Q. No. 6(a).

Fig. for Q no -6(a)

Contd
P/3

LE 373
6. (b) Calculate the loop current I_{1}, I_{2}, I_{3}, of the circuit in Fig. for Q. No. 6(b)

Fig. for $\&$ no. $-6(b)$
7. (a) A battery which gives 100 A short circuit current, supplies 2.5 A current to 3Ω resistance. What is the EMF of the battery? What is its internal resistance?
(b) Using 'Superposition Principle', find the current in each branch of the circuit in Fig. for Q. No. 7(b).

Fig. for Q no.-7(b)
8. (a) Using 'Thevenin Theorem', find the current through the galvanometer with resistance 10Ω of the circuit in Fig. for Q. No. 8(a).

Fig. for Q no. $8(a)$

(b) Using 'Norton Theorem', find the current in the branch AB of the circuit shown in Fig. for Q. No. 8(b).

Fig for $\&$ no B(b)

Fg. H(b) fr Q.No. 4

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-3/T-2 B. Arch. Examinations 2012-2013
Sub : ARCH 397 (Interior Design)
Full Marks : 140
Time: 3 Hours
The figures in the margin indicate full marks. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this Section. Answer Q. No. 4 and any TWO from the rest.

1. What are the factors to be considered for interior flooring? Briefly describe (i) Wood flooring, (ii) Resilient flooring and (iii) Floor covering.
2. (a) How different types of wall influence the degree of separation and continuity in an interior space? Illustrate with sketches.
(b) Describe any two types of wall finishes with sketches.
3. (a) Discuss the relationship between volume and ceiling based on various ceiling types and forms.
(b) How window types and their location influence natural lighting in an interior space?

Elaborate with necessary sketches.
4. Write short notes on the followings: (Any Five)
(a) Door types
(b) Non-structural wood or metal frame walls
(c) Types of window trim
(d) Concrete and metal stairs
(e) Door and space planning
(f) Electrical systems and its impact on interior space.

SECTION - B

There are FOUR questions in this Section. Answer Q. No. 5 and any TWO from the rest.
5. (a) What do you understand by the term 'Interior Design'? Discuss its purpose.
(b) Explain the interior design process based on the following aspects:
(i) Programming
(ii) Concept Development
(iii) Design decision
(iv) Implementation.

ARCH 397

6. (a) What are factors that influence our visual perception?
(b) Describe the co-relation of texture, light and pattern and their impact in interior spaces.
7. (a) Define 'Harmony'. What do you understand by unity and variety? Explain with necessary sketches.
(b) What is the relationship between proportion and scale? Discuss visual scale and human scale.
(c) Explain three types of visual balance with sketches.
8. (a) Define hue, value and intensity: Discuss colour based on the following attributes:
(i) light
(ii) pigment
(b) What do you understand by worm colour and cool colour? Elaborate the impact of adjacent colours in an interior space with reference to simultaneous contrast.

L-3/T-2/ARCH

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

 L-3/T-2 B. ARCH Examinations 2012-2013

 L-3/T-2 B. ARCH Examinations 2012-2013}

Sub : ARCH 353 (Urban Design I)
Full Marks : 140 Time : 3 Hours
The figures in the margin indicate full marks. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FIVE questions in this Section. Answer Q. No. 5 and any TRHEE from the rest.

1. (a) Define the terms 'Urban', 'Urbanization', 'Urbanism', 'Urban Planning' and 'Urban Design'.
(b) Enumerate historical endeavours for responsive settlement design.
2. (a) 'Greek Agora and Roman Republican Forum laid the foundation of urban design' discuss the statement with illustrate examples.
(b) Compare 'Chauk and Agora'.
3. (a) Discuss the context and spatial transformation that took place during $19^{\text {th }}$ and $20^{\text {th }}$. Century Urban design. Provide appropriate illustrations where necessary.
(b) Discuss with examples the 'linear' and 'Concentric' forms that evolved from the $19^{\text {th }}$ and $20^{\text {th }}$ century developmental context.
4. (a) List the elements that are considered in an urban design endeavour.
(b) Elaborate on 'circulation and parking' including pedesterian ways.
5. Write short notes on:
(a) Quality of Environmental as the domain of Urban Design.
(b) Travel Demand Analysis.

SECTION - B

There are FIVE questions in this Section. Answer Q. No. 10 and any THREE from the rest.
6. (a) Explain the 12 (Twelve) principles of a sustainable Urban Design.
(b) Discuss Principles of Urban Design in terms of 'Scale'.
7. Urban Design's are to work at various Levels; List and discuss 'Basics' and 'Attributes' of Urban Design at each level.

$$
=2=
$$

ARCH 353

8. Elaborate on the domains of Urban Deign with which a professional Urban Designer deal with. Illustrate where necessary
9. (a) Discuss Non-measurable criterion in Urban Design.
(b) Compare 'San Francisco Urban Design Plan', Urban System Research and Engineering and Kevin Lynch's Concept.
10. Write Short Notes (Any Two):
$(91 / 2 \times 2=19)$
(a) External Form and Image
(b) Measurable natural Criteria in Urban Design.
(c) Elaborate Sequential phase relationship in Urban Design.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-3/T-2 B. Arch. Examinations 2012-2013
Sub : ARCH 377 (Urban Anthropology)
Full Marks : 140
Time: 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FIVE questions in this Section. Answer any FOUR.

1. Define anthropology. Briefly discuss the sub-field of anthropology.
2. Discuss the relationship between a theory of urbanism and sociological research.
3. "The focus and practices of anthropological research developed in differential -ways" Explain.
4. Briefly describe the different research approaches of urban community study.
5. Write short notes on any TWO of the following:
(a) Urban Microethnography.
(b) Urban macroethnography.
(c) Anthropological field work in cities.

SECTION - B

There are FIVE questions in this Section. Answer any FOUR.
6. "The ultimate goal of architectural research is to provide a general inter-subjectivity acceptable knowledge about basic relation between architecture and man" - Explain this statement.
7. What do you understand by anthropological research? Write the more common types of anthropological research methods.
8. "Anthropologists try to appreciate all peoples and their culture and to discourage judgments of cultural superiority or inferiority" - Explain.
9. What is meant by cultural pluralism? Write the different features of cultural pluralism.
10. Write short notes on any two of the following:
(a) Ethnology, Ethnography and Ethnomethodology
(b) Architectural Anthropology and Habitat Research
(c) Interview Technique

[^0]: * The ordinary usage classification is for floors intended for construction in which walking comfort and minimized plaster cracking are the main considerations. These recommended deflection limits may not eliminate all objections to vibrations such as in long epans approaching the maximum limits or for some office and finstitutional applications where increased floor stiffness is desired. For these usages the deflection limitations in the following table have been found to provide additional atiffness.

