L-2/T-2/URP

Date : 22/07/2013

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2011-2012

Sub : PLAN 215 (Urban Planning Technique)

Full Marks: 210

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1.	(a) Write down the purpose of Structure Plan. Why the conventional method of master	
	planning is insufficient for guiding the development control of fast growing cities. (10+5	=15)
	(b) Describe about the barriers for realizing betterment fees from beneficiaries in	
•	Bangladesh.	(8)
	(c) What is "replotting" and "contribution" in land readjustment projects?	(6)
	(d) List the traffic related factors that are necessary for making the proposal of an urban	
	renewal plan.	(6)
2.	(a) How does the site and service scheme method increase the private investments in	
	housing? Describe with necessary examples.	(7)
	(b) What is zoning? Do you prefer complete segregation of different land uses in	
	different zones on a mixed land use zoning system? Justify your answer with necessary	
	examples. (2+8	=10)
	(c) How can you delineate the catchment area of an urban center in preparation of a	
	master plan?	(10)
	(d) Write about the importance of planning standards in land use planning process.	(8)
3.	(a) Write about the interventions that are necessary for upgrading low income settlement	
	areas. "Different case studies of urban upgradation process suggest that the direct	
	recovery of infrastructure investment from beneficiaries is not feasible in this method"	
	- explain the statement. How can such method recover their cost of investments from	
	infrastructures? (6+5+12	=23)
	(b) Which problems generally necessiate for having an urban renewal process in detail	
	area planning?	(12)
4.	Write short notes: (7×5	=35)
•	(a) Classification of local plans,	
	(b) Working procedure for Land Readjustments,	
	(c) Application of density zoning,	
	(d) Meaning of development,	
	(e) Demerits of site and service scheme method.	
	Contd P/2	

18

<u>PLAN 215</u>

<u>SECTION – B</u>

= 2 =

There are FOUR questions in this section. Answer any THREE.

5.	(a) Four perspectives are considered for land use information-briefly discuss these perspectives.	(23)
	(b) In land use design process, which order would you follow to design each category of	
	land uses?	(12)
6.	(a) The tasks for designing residential areas includes a number of steps- give a brief	۰.
	description of the process.	(24)
	(b) Which residential design concept focuses on interaction between land use and transit	
	system? Discuss the key features of this concept.	(11)
7.	(a) What do you understand by the term "imaqeability" of a city?	(4)
	(b) In case of Dhaka city, which elements of city image are more vivid compare to other	
	- elaborate your answer with relevant examples.	(17)
	(c) The compact city is an urban planning concept which promotes relatively high	
	residential density with mixed land use. Do you think Dhaka satisfies all the	
	characteristics of compact development? Explain with necessary example.	(14)
8.	(a) Define the terms "Ecological footprint" and "Ecological Overshoot".	(8)
	(b) How the ecological footprint measure can guide the policy makers while planning	
	for a city?	(8)
	(c) Explain why the land use design and the development management plan should be	
	mutually supportive?	(8)
	(d) It is very difficult to conserve flood flow zones and agricultural land of Dhaka.	
	Which strategies can be adopted to benefit and encourage owners of flood flow zones	
	and agricultural land?	(11)
	· · · · · · · · · · · · · · · · · · ·	

L-2/T-2/URP

Date : 05/10/2013

Bagge 05-10.2013

(10)

(25)

(5+5+5=15)

(15)

(20)

(15)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2011-2012

Sub : HUM 221 (Public Finance)

Full Marks: 210

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

<u>SECTION – A</u>

There are FOUR questions in this section. Answer any THREE.

1. (a) Explain the difference between the public good and public provision of a private good?

(b) Consider a public good "a dam designed to control flooding". Assume that only three people Mr. 'A', Mrs. 'B' and Mr. 'C' benefit from the dam. Their demand equations (marginal benefit equations) and the marginal cost are given:

 $P = 100-3 Q_A$ $P = 180-5 Q_B$ $P = 240-6 Q_C$ MC = TK.500

Find out the efficient level of output (height of the dam).

taxes. Write short notes on "tax structure of Bangladesh".

2.	(a) Explain 'benefit' and 'ability to pay' approaches to taxation.	(10)
	(b) What are the desirable characteristics of a tax system?	(10)
	(c) Define 'direct tax' and 'indirect tax' with examples. Explain different types of direct	

3. (a) What do you mean by externality? Explain different types of externalities with examples.

(b) Explain graphically that there is under production and over production of any commodity in the presence of positive externality and negative externality respectively. How can the efficient output be achieved in the presence of externalities in a competitive market?

4. (a) How can you measure graphically and mathematically the welfare cost of tax imposition in case of constant cost industry and increasing cost industry?
(b) "When an excise tax is levied on a producer, the more inelastic the supply curve, the more tax burden on the producer and less burden on the consumers", do you agree with the statement? Why or why not, explain.

Contd P/2

(20)

<u>HUM 221</u>

<u>SECTION – B</u>

= 2 =

There are FOUR questions in this section. Answer any THREE.

5.	(a) What is deficit financing? How are income and employment increased with the help	
	of deficit financing in a developing country like Bangladesh?	(15)
	(b) Explain the factors determining the safe limit of deficit financing.	(20)
6.	Suppose you are one of the planners of Bangladesh government. You are asked to recommend some policies for the national budget of the fiscal year 2013-2014 with a	
	view to developing Dhaka city. What will be the implications of your policies?	(35)
7.	(a) What do you mean by fiscal policy?	(5)
	(b) Explain the objectives of fiscal policy.	(20)
	(c) Explain the role of public borrowing in economic development of a developing	
	country like Bangladesh.	(10)
8.	(a) What are the main sources of government revenue? What new sources do you	
	suggest for raising more revenue for government?	(20)
	(b) Explain the efficient provision of private goods.	(15)

Nusrat John 21.9.13

Date : 21/09/2013

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2011-2012

Sub : PLAN 261 (GIS and Remote Sensing)

Full Marks: 210

L-2/T-2/URP

Time : 3 Hours

The figures in the margin indicate full marks. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

(10)1. (a) Describe the techniques applied for contrast manipulation. (b) State the issues to be considered for choosing remotely sensed image for change detection. Describe the techniques used for detecting change between two remote sensing (5+15=20) images of the same area. (5) (c) Differentiate between sun synchronous satellite and geo-stationary satellite. 2. (a) What are the advantages of using SPOT-4 data over LANDSAT-7 data? In which (10)cases is it be better to use LANDSAT-7 instead of SPOT-4 data? (b) Differentiate between push broom scanner and whisk broom scanner. (8) (c) An agricultural land classification has been performed where three categories of land have been identified, namely, potato, wheat and sugar beet. Subsequently, the classification result is being evaluated by means of a field survey. All categories of land comprised 1,00,000 pixels in total, of which 15,000 pixels were correctly classified as potato. The training set data offered 8,750 pixels of sugar beet and 6,000 pixels of potato which should have been classified as potato and sugar beet respectively. The classifier provided 45,000 pixels of wheat and 30,000 pixels of sugar beet in total whereas the training set data provided 50,000 pixels of wheat in total. Producer's accuracy of potato and user's accuracy of wheat were found to be 60% and 90% respectively. Find out the missing values of the error matrix and calculate (i) producer's accuracy and user's accuracy for rest of the categories (ii) overall accuracy. (12) (d) Briefly state the significance of producer's accuracy and user's accuracy in land classification process. (5) (20)3. (a) Briefly describe the ways of how electro-magnetic energy interacts with the atmosphere. (b) Differentiate between active sensor and passive sensor. Describe the two most widely (5+10=15)used active sensor systems.

(5×7=35)

<u>PLAN 261</u>

- 4. Write short notes on the following (any five):
 - (i) Radiometric resolution
 - (ii) Temporal resolution
 - (iii) Unsupervised classification
 - (iv) Spectral ratioing
 - (v) Spatial filtering
 - (vi) Criteria of choosing remote sensing image

<u>SECTION – B</u>

There are FOUR questions in this section. Answer any THREE.

5.	(a) Discuss the two structures to store, analyze and represent real-world data in GIS with	
,	neat sketch.	(14)
	(b) Discuss with an example the raster overlay technique to derive suitable land for a	
	development purpose. Draw a schematic diagram to explain it.	(14)
	(c) What do you mean by 'accuracy' and 'resolution'?	(7)
		~
6.	(a) Write down the differences between 'identity' and 'intersect' overlay operations of GIS.	(15)
	(b) What do you mean by interpolation techniques? List the types of interpolation techniques.	(10)
	(c) Explain with an example the buffer analysis performed in GIS.	(10)
7.	(a) What is meant by 'perforated polygon' and 'fragmented polygon'?	(10)
	(b) What is Euler function? Explain the types of analysis can be performed using Euler	
	function.	(15)
	(c) Illustrate the different types of network analysis performed in GIS.	(10)
8.	Write short notes on the followings:	5×7=35)
	(a) Sliver poly	·
	(b) Tessellation	
	(c) Sinuosity	
	(d) Spatial arrangement	
	(e) Elongation ratio	

ntra

L-2/T-2/URP

Date : 28/09/2013

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2011-2012

Sub : PLAN 293 (Statistics for Planners II)

Full Marks: 210

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

Terms and abbreviations have their standard meanings.

<u>SECTION – A</u>

There are FOUR questions in this section. Answer any THREE.

(a) What do you mean by 'Area Ration' Method' of population projection?
 (b) A transport planner in Dhaka city is exploring the relationship between travel length and associated delay while travelling by bus in arterial roads. A random sample of 10 travel routes is selected and the data are given below:

Travel length (in km)	10	9.5	12	25.2	15	7.8	18	6.6	20	24.5
Delay (in min)	34	25	40	65	44	20	53	10	54	62

- (i) Determine the value of regression co-efficient 'a' and 'b'.
- (ii) Calculate the value of 'co-efficient of correlation' and 'co-efficient of determination' and interpret the value of 'co-efficient of determination'.
- (iii) Faisal have travelled 17 km long route by bus from his home to his university.
 Predict the delay for his travel and construct a 95% prediction interval of your estimate.
- 2. (a) What are the assumptions of linear regression model?

(b) Samples of ten male applicants and eight female applicants are randomly selected to determine if there is a difference between the two groups in total score obtained in admission test of a renowned public university in the year 2012. Each applicant is evaluated out of 100 marks. Test the hypothesis with 10% level of significance.

	Applicants		Total Scores								
٠	Male	68	72	78	83	84	85	86	90	96	99 ·
	Female	71	74	79	80	82	85	86	88		

Contd P/2

(8)

(5)

28-09.1

(14)

(8)

(10)

(25)

<u>PLAN 293</u>

3. Following table shows population data of a small union of Noakhali district according to gender and age cohort. Assume there is no migration, survival rate of new born children is 95% and 45% of the total birth are female.

= 2 =

		Male	('000)	Female	Birth ('000)	
Cohort	Age	Population (2001)	Death (2001-2011)	Population (2001)	Death (2001-2011)	(2001-2011)
1	0–9	1200	90	1000	100	0
2	10–19	850	50	900	80	200
3	20–29	900	60	810	50	450
4	30–39	710	100	750	90	280
5	4049	600	85	590	70	90
6	50–59	500	70	520	65	0
7	60+	700	250	670	290	0

In this union, government has undertaken a program to dispense free academic books to the people belong to age group 10–19. Project the number of total population who will be eligible for this facility in the year 2021 if 90% of the total population of age group 10–19 meets the criteria.

4. Bangladesh Road Transport Corporation (BRTC) has gathered data on the number of passengers who have travelled in its bus services during each of the last 6 years.

•	•							
	Year	2005	2006	2007	2008	2009	2010	
	Passengers (× 10,000)	3.5	4.2	4.0	3.9	3.8	3.6	
(a)	Find the linear estimatin	g equatio	n that bes	t describe	s these da	ita.		(15)
(b)) Calculate the 'percent of trend' for these data.							(7)
(c)	Calculate the 'relative cyclical residual' for these data.							(5)
(d)	Plot the percent of trend and give a summary of the position in which BRTC finds							

SECTION – B

There are FOUR questions in this section. Answer any THREE.

5. A sample of 40 observations is selected from one population. The sample mean is 102 and the sample standard deviation is 5. A sample of 50 observations is selected from a second population. The sample mean is 99 and the sample standard deviation is 6. Conduct the following test of hypothesis using the 0.05 significance level:

 $H_0: \mu_1 = \mu_2$

itself.

 $H_a: \mu_1 \neq \mu_2$

(a) Is this a one-tailed or a two-tailed test?(05)(b) What is the decision rule?(10)(c) Compute the value of the test statistic.(15)(d) What is your decision regarding H₀.(05)

(35)

(8)

Contd P/3

PLAN 293

6. The mayor of a small town claims that his poverty reduction programs have been able to reduce the percentage of poor households in the city. When he took office about 4 years ago 80 percent of the households in the town were poor. But now it is less than 80 percent. A researcher wanted to test the mayor's claim. He took a sample of 2000 households and found that 1550 households were poor. Using the researcher's data conduct a test of hypothesis.

(a)	State the null and alternate hypothesis.	(05)
(b)	State the decision rule.	(10)
(c)	Compute the value of the test statistic.	(15)
(d)	What is your decision regarding the claim of the mayor (Use $\alpha = 0.05$)?	(05)

7. The following table shows the price of apartments (in thousands of taka) per square foot in three locations of Dhaka. At the 0.05 significance level is it possible to conclude that there is a difference in the mean price of apartments?

(a)	State the null hypothesis and alternate hypothesis.		(05)
(b)	Calculate the SST, SSE and SS _{total} .		(15)
(c)	Develop an ANOVA table.	a t 2	· (10)
(d)	Is there a difference in the mean price of apartments?		(05)

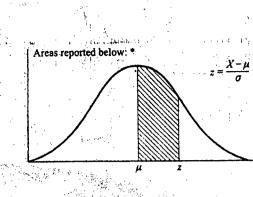
Location A	Location B	Location C
3	8	14
4	6	12
3	8	11
5	7	13

8. Two hundred men selected at random from various levels of management were interviewed regarding their concern about environmental issues. The distribution of respondents by their concerns is shown in the table below:

Level of Management	No Concern	Some Concern	Great Concern
Top Management	15	13	12
Middle Management	20	19	21 -
Supervisor	07	07	06
Group Leader	28	21	31

(a) State the null and alternate hypothesis.

(b) Calculate the test statistic.


(c) At the 0.01 level of significance is there a relationship between management level and environmental concern?

(10)

(05)

(20)

STANDARD NORMAL DISTRIBUTION

32.

r* -1

行动的运动的

H

. .

44 44

z :.	.00	.01	.02	:03	.04	.05	.06	07	.08	09
.0	0000			0120 ,	0160	.0199				
.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	,1141
.2 .3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
).4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
).5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	2389	.2422	.2454	.2486	.2518-	2549
).7	.2580	.2612	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
.0	3413	.3438	.3461	.3485		.3531	.3554	.3577	.3599	.3621
1	3643	.3665	.3686	.3708	.3729	.3749	.3770	3790	.3810	3830
.2	3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4014
.3	4032	.4049	.4066	.4082	.4099	4115	.4131	.4147	4162	.4177
4	4192	.4207	.4222	.4236		.4265	.4279	4292	.4306	.4319
.5	4332	4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
.6	4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
.7	4554	.4564	.4573	.4582	.4591	.4599	4608	.4616	.4625	.4633
.8	.4641	.4649	.4656	4664	.4671	.4678	.4686	.4693	.4699	4706
.9	4713	4719	4726	.4732	· .4738 ·	.4744	.4750	.4756	.4761	.4767
.0	4772	.4778	4783	. 4788	4793.	4798 m	T4803	4808	.4812	.4817
2.1	4821	. 4826	.4830	4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896			.4904	.4906		.4911	.4913	
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	4941	4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	4953	.4955	.4956	4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	4974	.4975	.4976	4977	.4977	.4978	.4979	.4979	.4980	.4981
.9	.4981	.4982	.4983	.4983	.4984	.4984	4985	.4985	.4986	.4986
.0	4987	, estates ;	1 1 1 A 4		1. J. C. S.	- 42	1.1 100			
	Sec. Sec. 1		1.421		1.1	a la terre				
5.5	.4997			21		1172	· · ·	1547		1
.0	.4999		- 11 Hit		·		1994) 1994	. Alth		
1. A. A. A.	19 44 S. M. 19 1	1994		1 1 4 4 4			, in a		S 1965	
	1.4	· derinita.		150		-61.0000	11171	1. SA		
zamp	ile: Fot z =	1.90, snade	d area iş 0.4	120 official ta	le total arca	or 1.0000.	165		1.1	21,154.1
		1.1.1	A. 3	the the	2000 B	41.12				
				14 A				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		sensitia în N
e Al si e pe			5	$h \in [n]^{(n)}$						
				A CONTRACT	1. In 1.					
	e e		1 T		ti se se t			414	4.2	승규는 사람이는
4,00	的复数形式		1971 - S. V. S. S. A.			46		1.000	1. 1. 1.	1

and the second

.. *(~. 1

Ext_

0.47

2. 1984 A.

and the second sec

and the second مدايدين ويور

an an the start of the second se

Student's t Distribution

Proportions of Area for the t Distributions

Areas reported below.

- Ñ

N. 16. 12 18 18 18								•	+		
	0.05	0.025	0.01	0.005		df	0.10 T	0.05	1 0.025	0.01	0.005
	6.314	12.706	31.821	63.657		18	1,330	1.734	2.101	2.552	2.878
بر بر ا	2.920	4.303	6.965	· 9.925		19	1.328	1.729	2.093	2.539	2.861
	2.353	3.182	4.541	5.841		20	1.325	1.725	2.086	2.528	2.845
	2:132	2.776	3.747	4.604	11	1 m. 4 *	· · · · · · · · · · · · · · · · · · ·				
S. T. S. S.	2.015	2.571	3.365 -	4.032		21	1.323	1.721	2.080	2.518	2.831
al a secolo	1.943	2.447	3 1 4 3	2 707		22	1.321	1.717	2.074	2.508	2.819
	1.51		3.143	3.707		23	-94 1.319 -84	1.714	2.069	2.500	2.807
S. P. S. A. M. R.	1.895	2.365	2.998	3.499		24	1.318	1.711	2.064	2.492	2.797
and the man	1.860	2.306	2.896	. 3.355		25	1.316	1.708	2.060	2.485	2.787
	1.833	2.262	2.821	3.250		26	1 216	1.704			
	1.812	2.228	2.764	3.169		26	1.315	1.706	2.056	2.479	2.779
	204	2 201		2.04		27	1.314	1.703	2.052	2.473	2.771
14-2-14-14-14-14-14-14-14-14-14-14-14-14-14-	.796	2.201	2.718	3.106		28	1.313	1.701	2.048	2.467	2.763
1	.782	2.179	2.681	3.055		29	1.311	1.699	2.045	2.462	2.756
1. A.	.771	2.160	2.650	3.012		30	1;310	1.697	2.042	2.457	2.750
the South	1.761	2.145	2.624	, ~ 2.977	\sim	40	1.303	1 694	2 021	5 a 4 a a	2 204
10.00	.753	2.131	2.602	2.947		-		1.684	2.021	2.423	2.704
	746	2.120	2.583	2 0 2 1		60	1.296	1.671	2.000	2.390	2.660
1. personal				2.921		120	1.289	1.658	1.980	2.358	2.617
OF CONTRACTOR	.740	2.110	2.567	2.898	1	<u></u>	1.282	1.645	1.960	2.326	2.576
A WAR		•.				· · ·	100 H (1 1 1 1 1 1 1 1 1				

wishaded area to represent 0.05 of the total area of 1.0, value of 1 with 10 degrees of freedom is 1.812 the III of Fisher and Yates, Statistical Tables for Biological. Agricultural and Medical Research, 6th ed., 1974, man Group Ltd., London (previously published by Oliver & Boyd, Edinburgh), by permission of the authors

.

-310

Area in the Right Tail of a Chi-square (χ^2) Distribution.⁴

- 111 . - .

ļį

11

÷., 64 d

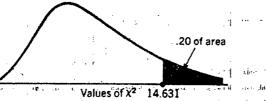
11

1

- 64

12.9

10


1

. .

i у. С

315 6

- ež 1 1000

Sector Sector

 $\mathcal{T}_{\mathcal{T}}$

a second s

10

i dia Pi-

n. H

1.1 . .

6

,, . . .

÷,

1

in top all pla

i ge

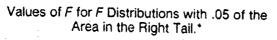
i);

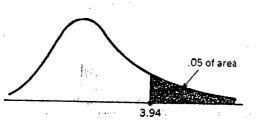
. . .

. 19. .

values of X² 14.631 **EXAMPLE:** In a chi-square distribution with 11 degrees of freedom, if we want to find the appropriate chi-square value for .20 of the area under the curve (the colored area in the right tail) we look under the ,20 column in the table and proceed down to the 11 degrees of freedom row; the appropriate chi-square value there is 14.631 a and the

Degrees of freedom	.99	.975	Area in right tail .95	.90	.800
1	.00016	.00098	.00398	.0158	.0642
; 2 ;	.0201	.0506	.103	.211	.446
3	.115	.216	.352	.584	1.005
4	.297	.484	.711-	1.064	1.649
5	.554	.831	1.145	1.610	2.343
6	.872	1.237	1.635	2.204	3.070
7.	1.239	1.690	2.167	2.833	3.822
8	. 1.646	2.180	2.733	3.490	4.594
ne seena à g our -	2.088	2.700	3.325	4.168	5.380
10	2.558	3.247	3.940	4.865	6.179
	3.053	3.816	4.575	5.578	6.989
1		4.404	5.226	6.304	7.807
13	4,107	5.009	5.892 a a a	7.042	8.634
14 ,	4.660	5.629	6.571	7.790	9.467
15	5,229	6.262	7.261	8.547	10.307
16	5.812	6,908	7.962	9.312	11.152
17.2	6.408	7.564	8.672	10.085	12.002
. 18	7.015	8.231	9.390	10.865	12.857
. 19 +	7.633	8.907	10.117	11.651	13.716
·>> 20 ;	8,260	9.591	10.851	12.443	14.578
Sec 217	8.897	10.283	11.591	13.240	15.445
1	9.542	10.982	12.338	14.041	16.314
23	10,196	11.689	13.091	14.848	17:187
24	10.856	12.401	13.848	15.658	
. 25 .	11,524	13.120	14.611	16.473	18.940
26	12.198	13.844	15.379	17.292	19.820
27	12,879	14.573	- 16.151	18.114	20.703
28	13.565	15.308	16.928	18.939	21.588
29	14.256	16.047	17.708	19.768	22.475
· · 80	14.953	16.791	18.493	20.599	23.364


Taken from Table IV of Fisher and Yates, Statistical Tables for Biological, Agricultural and **edical Research, published by Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh) and by permission of the authors and publishers. (FRIDE) 84.5


Chi-square (x2) Distribution

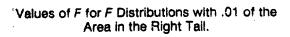
				in right tall	•	Degrees of	
	.20	.10	.05	.025	.01	freedom	
	1.642	2.706	3.841	5.024	6.635	1.9	
; rendely	3.210	~ 4,605	5.991.	7.378	9.210		
	4.642	6.251	7.815	9.348	11.345	3	
	5.989	7.779	9.488	11.143	13.277	4	
•	7.289	9.236	11.070	12.833	15.086	5	• .
	8.558	10.645	12.592	. 14.449	16.812	6	
17	9.803	12.017	14.067	16.013	18.475	7	
認識	11.030	13.362	15.507	17.535	20.090	n yang di ka 8 menukunga	North C
	12.242	14.684	18.919	19.023	21.666	9	
	13 442	15.987	18.307	20.483	23.209	10	
	14.8318 ÷	17,275	19,675	21.920	24.725	總統(4511)。[1]	
	15812	18,549	21.026	23.337	26.217	12 · · · · · · · · · · · · · · · · · · ·	
	18.985	19,812	22.362	24.736	27.688	1 3	
	18.161	21,064	, 23.685	26.119	29.141	14	
	19.311	22.307	24.996	27.488	.30.578	1 5	
	20.465	23,542	28.298	28.845	. 32.000	16	
AU	21.615	24.769	27.587	30.191	33.409	38. 4 . 17 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	
	22.760	25.989	28.869	31.526	34.805	18	
	23.900	27.204	30.144	32.852	36.191	19	
1	25.038 . The	28.412	31.410	34.170	37.568	20	
	28.171	29.615 . ·	32.671	35.479	38.932	21	
in the	27,301	30.813	33.924	36.781	40.289	22	
	28.429	82.007 ·····	35.172	38.078	41.638	23	
	29,553		36.415				
	30.678	34.382	37.652	1 A0.647	44.314	25	
2	31.795	35.563	38.885	41.923	45.642	(ma 28 //	
19. N. D	32.912	38.741	40.113	43.194	46.963	27	
	34.027	37.916	41.337	44.461	48.278	28	
1335	35,139		42.557	45.722	49.588	29	
1.1	36.250	40.256	43.773	48.979	50.892	30	÷

821

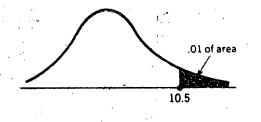
.821

EXAMPLE: For a test at a significance level of .05 where we have 15 degrees of freedom for the numerator and 6 degrees of freedom for the denominator, the appropriate F value is found by looking under the 15 degrees of freedom column and proceeding down to the 6 degrees of freedom row; there we find the appropriate F value to be 3.94.

***		Degrees of freedom for numerator																																		
		_	1		2		3		4	5	5	6		7		8		9		10		12		15	:	20	2	4	3()	40		60	1	120	x.
	1 2 3 4 5		7.7		5.94) 1	59	IR.	12	9.0	11	8.94	4 8	.89		8.8	5	8.81	į	8.79	8	9.4 .74	8	9.4	8	9.4 .66	19 8.6	5	19. 8.6	5 2	19.5 8.59		19.5 3.57	1	9.5 .55	254. 19.5 8.53 5.63 4.37
enominator	6 7 8 9 10		5.99 5.59 5.32 5.12 4.96		5.14 1.74 1.46 1.26 1.10	4. 4. 3. 3.	76 35 07 86 71	4. 4. 3. 3.	53 12 84 63 48	4.3 3.9 3.6 3.4 3.3	9 7 9 8 3	4,28 3.87 3.58 3.37 3.22	4 7 3 3 3 3 3 3 3 3 3	.21 .79 .50 .29 .14	433333	.1 .73 .44 .23		4.10 3.68 3.39 3.18 3.02	40000	4.06 3.64 3.35 3.14 2.98	43332	.00 .57 .28 .07	33332	.94 .51 .22 .01 .85	33322	87 44 15 94 77	3.8 3.4 3.1 2.9 2.7	41204	3.8 3.3 3.0 2.8 2.7	18860	3.77 3.34 3.04 2.83 2.66	000022	1.74 1.30 1.01 1.79	33222	.70 .27 .97 .75	3.67 3.23 2.93 2.71 2.54
Degrees of freedom for denominator	11 12 13 14 15		1.84 1.75 1.87 1.60	33333	.98 .89 .81 .74 .68	3 3 3 3 3 3	59 49 41 34 29	3. 3. 3. 3. 3.	36 26 18 11 06	3.2 3.1 3.0 2.9 2.9	0322	3.09 3.00 2.92 2.85 2.79	32222	01 91 83 76 71	222222	.95 .85 .77 .70	NNNNN	.90 .80 .71 .65 .59	20000	.85 .75 .67 .60	222222	79 69 60 53 48	222222	72 62 53 46 40	22222	65 54 46 39 33	2.6 2.5 2.4 2.3 2.2	1	2.5 2.4 2.38 2.31 2.25	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.53 2.43 2.34 2.27	NNNNN	.49 .38 .30 .22	222222	45 34 25 18	2,40 2.30 2,21 2.13 2.07
Degrees of fi	16 17 18 19 20	4444	.49 .45 .41 .38	3333	.63 .59 .55	3.3	24 20 16	3.0 2.9 2.9 2.9	1	2.8 2.8 2.7 2.7	2222	.74	2222	66 61 58	2222	59 55 51	2222	.54 .49 .46	2222	.49 .45 .41	2.2.2.	42 38 34	2.2.2.	35 31 27	2.2 2.2 2.1	28 23 19	2.2 2.19 2.19		2.19 2.19 2.15 2.11	2222	.15 .10 .06	222	11 05 02	2.2.1	06 01 97	2.01 1.96 1.92 1.88 1.84
	21 22 23 24 25	4444	32 30 28 26 24	333333	47 44 42 40 39	3.0 3.0 3.0 2.9)7)5)3)1 9	2.8 2.8 2.7 2.7	42086	2.68 2.66 2.64 2.62 2.60	222222	.57 .55 .53 .51 .49	2.2.2.2.2.2.2.2.	49 46 44 42 40	2222	42 40 37 36 34	222222	37 34 32 30 28	22222	32 30 27 25 24	2:2 2.2 2.1 2.1	25 23 20 8 6	2.1 2.1 2.1 2.1	18 15 13 11	2.1 2.0 2.0 2.0 2.0	0715131	2,05 2.03 2.01 1.98 1.96	1111	.01 .98 .96 .94 .92	1.1.1.1.	96 94 91 89 87	1. 1. 1. 1.	92 89 86 84 82	1.8 1.8 1.7 1.7	37 34 31 79	1.81 1.78 1.76 1.73 1.73
	120	4.4.3	17 08 00 92	3.3 3.2 3.1 3.0	32 23 15	2.9 2.8 2.7 2.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.6 2.6 2.5	92	2.53 2.45 2.37	2222	42 34 25	2.3 2.2 2.1	13 15 7	2.1	27	2. 2. 2.	21 12 04	2. 2.(16 08 99	2.0 2.0 1.9	9	2:0 1,9 1.8	12	1.9 1.8 1.7	3 1 4 1 5 1	.89 .79 .70	1 1 1	.84 .74 .65	1; 1, 1,	79 69 59	1. 1. 1.	74	1.6 1.5 1.4	68 1 68 1 7 1	:62 .51


* Source: M. Merrington and C. M. Thompson, Biometrike, vol. 33 (1943):

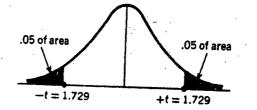
822


Ŷ,

<u>е</u>ј

: (- 1 : 1

٧ì


EXAMPLE: For a test at a significance level of .01 where we have 7 degrees of freedom for the numerator and 5 degrees of freedom for the denominator, the appropriate *F* value is found by looking under the 7 degrees of freedom column and proceeding down to the 5 degrees of freedom row; there we find the appropriate *F* value to be 10.5.

1

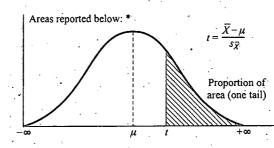
			. \ 	بر آمانی ا	* *			· · · · · ·		-	· · · · · · · ·	b**	••••••			• • • • • • • • • • • • • • • • • • •			e o e e Buorgesson
Degrees of freedom for numerator 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 🛫																			
12345	4,052	5,000	5,403	5,625	5,764	5,859	5,928	5,982	6,023	6,056	6,106	6,157	6,209	6,235	6,261	6,287	6,313	6,339	€,350
	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99,4	99.5	99.5	99.5	99.5	99.5	99.5
	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	£5.1
	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6	13.5
	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
8	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7,40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4 48	4.40	4.31
0	10.0	7.58	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
12345	9.65	7.21	6.22	5.67	5.32	8.07	4.89 <u>.</u>	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
67890	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71-	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
	8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
12345	8.02	5.79	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.53	2.45	2.36	2.27	2.17
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.60
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2:82	2.72	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00
		. ·			4 - 4 4 - 5 4 - 7	:						. •	•		•	:			•,
			• •				÷		1 1 1 1 1		• •	•		• .		•.		82	3
-		· · · ·	:	· · · · ·			tu tu tutu tutu	.'		• • •	,		• .						
						•••	1. 	- - 	- - -		<i>.</i>	· . ·						· ·	

小市に行きにす。 いねの言葉を言葉を

AN-293

EXAMPLE: To find the value of t which corresponds to an area of .10 in both tails of the distribution combined, when there are 19 degrees of freedom, look under the .10 column, and proceed down to the 19 degrees of freedom row; the appropriate t value there is 1.729.

1


Act. N. A.

Degrade of		Area in both	tails combined	
Degrees of freedom				
	.10	.05	.02	
1	6.314	12.706		
2 3 4 5 6 7 8 9	2.920	4.303	31.821	63.657
3	2.353		6.965	9,925
4	2.132	3.182	4.541	5.841
5	2.015	2.776	3.747	4.604
6	1.943	2.571	3.365	4.032
, 7	1.895	2.447	3.143	3.707
8		2.365	2.998	3.499
<u>q</u>	1.860	2.306 .	2.895	3.355
10	1.833	2.262	2.821	
11	1.812	2,228	2.764	3.250
12 -	1.796	2.201	2.718	3.169
	1.782	2.179	2.681	3.106
13	1.771	2.160		3.055
14	1.761	2.145	2.650	. 3.012
• 15	1.753	2.131	2.624	2.977
16	1.746	2.120	2.602	2.947
17	1.740		2.583	2.921
18	1.734	2.110	2.567	2.898
19	1.729	2.101	2.552	2.878
20		2.093	2.539	2.861
21	1.725	2.086	2.528	2.845
22	1:721	2.080	2.518	2.831
23	1.717	2.074	2.508	
24.	1.714	2.069	2.500	2.819
25	1.711	2.064	2.492	2.807
26	1.708	2.060	2.485	2.797
27	1.706	2.056	2.479	2.787
	1.703	2.052		2.779
28	1.701	2.048	2.473	2.771
29	1.699	2.045	2.467	2.763
30	1.697		2.462	2.756
40	1.684	2.042	2.457	2.750
60	1.671	2.021	2.423	2.704
120	1.658	2.000	2.390	2.660
Normal Distribution		1.980	2.358	2.617
	1.645	1.960	2.326	2.576

⁴ Taken from Table III of Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, published by Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh) and by permission of the authors and publishers.

APPENDIX 5 -

Student's Distribution

A.

Proportions of Area for the t Distributions

				• •				,		
ij 🚺 0 10	0.05	0.025	0.01	0.005	df	<u>0</u> .10	0.05	0.025	0.01	0
1 3.078 2	6.314	12.706	31.821	63.657	18	. 1.330	1.734	2.101	2.552	2
2 1 886	2.920	4:303	6:965	· 9.925	19	1.328	1.729	2.093	2.539	2
3 41 638	2.353	3.182	4.541	5:841	20	1.325	+ 1.725	2.086	2.528	2
4 2 1 533	2.132	2.776	3.747	4.604	21	1.323	1.721	2.080	2.518	· 2
5; 1476	2.015	2.571	3.365	4.032	22	1.321	1.717	2.074	2.508	2
6/- 2:1440	關 1.943	2.447	3.143	3.707	. 23	1.319	1 714	2.069	2.500	2
7.8 1415	翌 1.895	2.365	2.998	3.499	24	1.318	1.711	2.064	2.492	2
89:131:3972	1.860	2.306	2.896	3.355	25	1.316	1.708	2.060	2.485	2
0	AI .833	2.262	2.821	3.250	26	1:315	-1.706	2.056	2.479	.2
), , , , , 372 ;;	521.812	2.228	2.764	3.169 -	27	1.314	1.703	2.052	2.473	
a 21.363	1.796	2.201	· 2.718 ·	3.106	- 28	1.313	1.701	2.048	2.467	2
2 4 4 356 5	1.782	. 2.179	2.681	3.055	29	- 1.311	1.699	2.045	2.462	2
1350 4	5066.23	2.160	2.650	3.012	30	1.310	1.697	2.042	2.457	2
4.8-1.345	3 .761	2.145	2.624	· 2.977	40	1.303	1.684	2.021	2;423	2
5 1341 .	1.753	2.131	· 2.602	2.947	60	1.296	1.671	2.000	2.390	2
50 (s. 1-337.)	1.746	2.120	2.583	2.921	120	1.289	1.658	1.980	. 2.358	2
7 1333	1.740	2.110	2.567	2.898	∞ ·	1.282	1.645	1.960 🤇	2.326	2

Example zeFor the shaded area to represent 0.05 of the total area of 1.0, value of t with 10 degrees of freedom is 1.812 Source, From Table III of Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed., 1974, published by Elongman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh), by permission of the authors and publishers.

• 310

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA BURP Examinations, 2010-2011 L-2/T-2/ Sub : ARCH 233 (Landscape Planning and Design) Full Marks: 140 Time : 3 Hours USE SEPARATE SCRIPTS FOR EACH SECTION The figures in the margin indicate full marks.

SECTION – A There are FOUR questions in this section. Answer Q. No. 1 and any TWO from the rest.

1.	Write notes on the following (Any l	Four)			(6×4=24)
	(i) Albedo	(ii)	Exoti	ic Landscaping	(
	(iii) Courtyard Landscaping	(iv)	Top S		
	(v) Wind Tunnel.		-	• •	
2.	(a) How can landscaping be applied	for envir	onment	al control?	(9)
	(b) Describe the salient features of I				(14)
3.	(a) What do you mean by the terms	'environn	nent' and	d 'Ecology'?	(8)
	(b) Explain 'Physical Environment',	, 'Ecosyst	em' and	l 'Ecological Balance' as t	hey relate
	to landscape.			•	(15)
Λ	(a) Discuss the importance and does	with a that	and of t	unton fonturon in Iondonomi	ng (1 2)
4.	(a) Discuss the importance and desc			_	- , ,
	(b) Describe the salient features of J	apanese	Landsca	iping.	(10)
	S	ECTION	– B [–]		
Т	here are FOUR questions in this Sect			No. 5 and any TWO from	the rest.
5.	Write notes on the following (Any I	Four)			(6×4=24)
	(i) Dew Ponds	oury	(ii)	Biotic Garden	(0 1 2 1)
	(iii) Fencing		(iv)	Niche	
	(v) Green Landscape				·
6.	(a) Briefly discuss the background of	of landsca	pe plan	ning and design.	
	(b) Describe Dhaka City's present la	indscape s	scenario	and suggest improvemen	ts. (8+15=23)
7.	(a) Discuss the different types of v they are mostly used for.	regetation	with e	xamples and mention the	purposes
	(b) Draw some of the different form	s of trees	and ref	er to their aesthetic qualiti	es. (14+9=23)
				er to men neontente quant	(11) 20)
8.	(a) What are the three basic question for landscaping?	ns you ne	ed to a	sk while pursuing site inv	estigation
,	(b) Discuss in detail some of the ele	ments of s	site ana	lysis.	(6+17=23)

L-2/T-2//URP