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ABSTRACT

The energy equation has been solved in the entrance section of a tube for both

fully developed velocity profile and developing velocity profile conditions with two

different boundary conditions, e. g. constant wall temperature and constant wall

heat flux. The parabolic profile is used for fully developed velocity profile and for

developing conditions Langhaar2 velocity is used as axial component of velocity and

radial component of velocity is obtained from equation of continuity and Langhaar

velocity profile. The solution is obtained using integrator named BDFSH, which is

capable of solving systems of parabolic, hyperbolic and stiff differential equations

coupled with algebraic equations.

The governing partial differential equation is converted into a set of ordinary dif-

ferential equations by using three c1ifferent techniques e. g., orthogonal colloca-

tion method, finite difference method. and Galerkin's method .. Results show that

Galerkin's method gives somewhat better results than the orthogonal collocation

method in terms of accuracy for lower values of N. As N increases, both methods

give identical results. However. Galerkin's method is difficult to use compared to the

orthogonal collocation method. On the other hand, the finite difference method is

not capable of yielding the same accurate results as obtained by Galerkin's method

or by the orthogonal collocation method. Finite difference method requires much

more computing time compared. to other two methods because a large number of

grid points is required to ensure reasonable accuracy.

Numerical solutions have been obtained in t.he range of 10-5 < ( < .1 and show

good agreement with analytical solutions where they are avaible.

i
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CHAPTER 1

INTRODUCTION

Investigation of fluid flow in the entrance region of a pipe ora duct is of considerable

practical significance and, not surprisingly, there exist a large number of references

in the literature on this topic, especially for incompressible laminar flow. The de-

velopment of a parabolic Poiseuille profile downstream of entry into a plane channel

is one of the standard problems in laminar-flow theory. It has attracted more atten-

tion than is warranted by its intrinsic practical importance, because it exemplifies

certain general features of viscous flow. It therefore appears in textbooks, and is

continually re-examined as new phenomena are introduced.

Forced-convection heat transfer in the thermal entrance region of tubes and ducts

has been a subject of analytical study since the pioneering work of Graetz6. In most

instances consideration has been given to the entrance of the fluid into the heated

(or cooled) region of the duct. with an already fully developed velocity profile which

is unchanging along the duct length. This simplification is not realistic when the

fluid enters the heated channel directly from a reservoir or large header. In such a

situation the velocity is more nearly uniform across the entrance section, and the

velocity and thermal boundary layers develop simultaneously as the fluid moves

through the tube and if the velocity and temperature profiles develop simultane-

ously, the resulting Nusselt numbers are always higher than in the preceding case.

This is the case that is more frequently met in technical applications, but the differ-

ences are generally significant for a fluid with Prandtl number less than about 10.

Since in the case of a low Prandtl number fluid, the velocity profile is established

much more slowly along the length of the tube in comparison to the temperature
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profile, assumption of a fully developed velocity profile at the tube entrance leads

to significant error.

The solution of Graetz problem assumes constant physical properties and hence its

application is limited to small temperature difference. For physically more realistic

problem it is essential to consider property changes with temperature.

Of the physical properties, the temperature dependent viscosity plays a dominant

role in influencing the velocity and temperature distribution in flow. The qualitative

effect of viscosity is known in literature but knowledge of its quantitative effect is

not satisfactory. The difficulty in this regards lies in the nonlinear and stiff character

of the governing differential equations. In some problems the largest time step size

is governed by the largest eigenvalue and the final time step is usually governed by

the smallest. eigenvalue. So one must use a very small time step (because of large

eigenvalue) for a long time ( because of small value). This characteristic of the

system of equations causes stiffness. Very often, problems in fluid flow, heat and

mass transfer encounter with widely varying time constants which give rise to both

long term and short term effects. The resulting differential equations have widely

varying eigenvalues. Differential equations of this type are known as stiff equations.

In the entry length problem, the system is very stiff due to the development of

velocity and temperature profile in a relatively short distance particularly when the

Prandtl number is high (since in case of a high Prandtl number fluid, the velocity

profile is established much more rapidly than the temperature profile)

If non-stiff numerical methods are applied to solve stiff problem, a very small in-

tegration step must be used to ensure stability of the solution. This means large
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computation time. Stiff problem like entry length problem still becomes unstable

with very small integration step. GearH defined "stiff-stability" and developed a

program named BDF using backward differentiation to solve system of stiff ordinary

differential equations. This method uses large step size which changes to control

integration error. The variant of BDF developed by Gani et alfs, called BDFSH

which was used to solve the entry length problem in a circular tube in this work.

This method is essentially similar to BDF but several modifications have been made

(see ref. 49). The modified version has improved the performance of the original

code and provides the user with many more options during the integration phase.

These include dense or sparse matrix techniques, local error control options, the use

of Jacobian copies and restart facilities for discontinuities.

BDFSH method is implicit type linear multivalue or multistep method. This method

requires several pieces of information about the dependent variable at time, t = t,,_l
\

in order to compute the equivalent pieces of information at t = t". Often this

method uses the values of the dependent variable and its derivative. The original

system of differential equations is transformed into a system of nonlinear algebraic

equations which is solved by Newton like iteration (see ref. 49).

In recent years, many numerical methods have been applied to the solution of non-.

linear partial differential equations. Some of the technique apply for solution where

the solution does not contain stiff gradient. To determine the ability of the BDFSH

package, the Graetz problem is selected because extreme gradients are present in

the entrance region in the case of constant. wall temperature. A complete and accu-

rate analytical solution from the entrance to a length where the temperature profile

is fully developed requires the putting together the Leveque, extended Leveque and
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series solution containing large number of terms. The versatility of the package is

shown by treating heat transfer with constant wall heat flux boundary condition.

Problems also considered in this work are the simultaneous development of velocity

and temperature profile for Newtonian fluid in laminar flow in circular tube. The

axial velocity component for entrance region given by Langhaar2 and a radial com-

ponent obtained from Langhaar's profile and continuity equation, for investigating

the effect of radial velocity component on heat transfer.

Numerical solution for problems is worthwhile for problems whose analytical solu-

tion is available if such analytical solutions are in the form of multiple series and

require either the evaluation of an extremely large number of eigenvalues, espe-

cially near the location of step change, or patching up of different solution (such

as asymptotic approximation) which are valid for limited range of axial distance.

The present work uses orthogonal collocation method, Galerkin's method and finite

difference method seperately to solve the differential equations and compares the

results.
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CHAPTER 2

LITERATURE REVIEW

Historically, the first person to analyze the entrance flow through a smooth pipe was

Schiller58, who used integral analysis of a parabolic velocit.y profile in the boundary

layer. The velocity profile chosen was a modification of the Poiseuille solution in the

sense that the pipe radius was replaced by the boundary layer thickness. In other

words, when the boundary layer thickness 0 becomes equal to the pipe radius R, the

analysis predicted automatic establishment of fully developed flow. This apparently

gave rise to the idea that the attainment of a fully developed profile is synonymous

with' 0 being equal to R. Schiller's integral solution on the basis of a parabolic

profile is inherently questionable, as such a profile does not ensure attainment of

free-stream condition at the edge of the boundary layer by not permitting the sec-

ond derivative of the veloci'ty to be zero, which is an essential boundary condition

for flow with a pressure gradient.. Later studies, such as that of Schlichting3~, have

been primarily oriented towards the investigation of the development of the velocity

profile. Schlichting's procedure for a rectangular duct consists of matching a down-

stream boundary-layer solution with a velocity profile which deviates increasingly

from the Poiseuille profile in the upstream direction. This method of perturbing a

Poiseuille profile was first adopted by BOllssines,! (see Van DykeSO). The matching is

supposed to take place where the boundary-layer and the deformed-profile solutions

are valid simultaneously. This procedure of Schlichting has been re-examined by

Van Dyke and WilsonS! whose major corrections t.oSchlicht.ing's met.hod consists of

proposing second-order stream functions to account for the displacement thickness

in the boundary layer region.
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A classical example of convective heat or mass transfer is the Graetz problem -

transfer from the wall of a tube of radius R to a fluid in fully developed, laminar

flow, with an insulating wall upstream at a point z = 0 and a wall maintained at a

constant temperature or concentration downstream of the point z = O. In terms of

heat transfer, the partial differential equation is

PCpU. 0;: = 2u. [1- (~r]0;: = k [;; (r:) + ~~]
with the following boundary conditions:

At r = R, Z > 0 • : l' = 1'",

At r = R, Z < 0 : l' = Too

&I:
At r = O. Br' = 0

A3 Z --+ -00 l' --+ Too

A3 Z --+ +00 l' --+ 1'",

In terms of the following dimensionless variables

(2-1)

(2-2)

, r T-1~
r = - 1" =

R' 1'00-1'",'

the equation becomes

, Z
Z =-,

R
(=

. ,1 CiT' . 1 & ( ,01") &1"
(1- r ) o( =;:; or' r or' + oz'1

In terms of mass transfer, the partial differential equation, eq. (2-1), becomes

BC [(r)2] BC; [18 (8C) 81C]
u. OZ = 2u. 1- R OZ = D ;:-Or r Or + oz2

At r = R, Z > 0 : C = C",

At r = R. Z < 0 : C = Coo

fJCj
At r = 0, - =0or
A3 Z --+ -00 C --+ Coo

A3 Z --+ +00 C --+ C",

(2-3)

(2-4)

(2-5)
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In terms of the following dimensionless variables

the equation becomes

r
r' -- R'

c - CUI
0= c -c '

00 UI

80 1 8 ( 80) 1 &0
(1- r.

2
) 8( =;:; ar' r' ar' + Pe2 8(2

h P 2Ru.. h P I b" h b d d' .were e = -no IS t e ec et num er, Wit oun ary con ItlOns

At r' = 1, (> 0, 0=0

At r' = 1, « 0,
80
-=0
&(

At r' = 0,
&0
-=0
8r'

As ( ---+ -00, 0 ---+ 1; and

'As ( ---+ +00, 0 ---+ °

(2-6)

(2-7)

.Graetz6 treated this problem by the method of separation of variables under the

condition that the Ia.~t term in Eq. (2-6) could be neglected. This term, repre-

senting axial diffusion, will be small when the Peclet number is large, which holds

for most practical applications. In this manner Graetz obtained a series solution

involving functions of the radial distance, HI (r'), which are defined by a Stllrm-

Liouville system where the parameter is restricted to discrete eigenvalues ~l-Other

workers have refined the Graetz solution. Asymptotic forms of the eigenvalues and

coefficients have been worked out for large eigen values, notably by Lauwerier10 and

by Sellers, Tribus, and Klein24. Numerical solut.ions of the Graetz problem, with

neglect of axial diffusion, have been given by Kays9 and by Longwell15.

Near the entrance i.e., near z = 0, the transfer rate becomes infinite, and many terms

in the Graetz series are required for an reasonably accurate solution in this region. A



8

similarit.y solution is developed by Levequel3 and an extended solution is developed

by Newmanl7. The axial diffusion term, neglected in the work already mentioned,

becomes important at high Peclet numbers only in a small region near z = 0 and at

r = R, a region which becomes smaller as the Peclet number increases. With the

neglect of axial diffusion, the originally elliptic problem becomes parabolic. This

region near z = 0 is the only place where the elliptic nature of the problem persists;

thus, it is a small elliptic region embedded in an otherwise parabolic domain. Axial

diffusion has been treated by Singh26. Schenk and Dumore20 have t.reated the

effect of non-zero transfer resistance of a tube wall, which serves to eliminate the

infinite transfer rate at z = o. Problems involving a catalytic reaction at the tube

wall have been treated by Katz8 and by Solomon and Hudson27, and transfer to

non-Newtonian fluids has been treated by Schenk and Van Laar
21
.

Graetz6 included axial diffusion in his treatment of plugflow in a tube. Singh
26

did

the same thing for a parabolic velocity profile in a tube. However, both of these

authors took 0 = 1 in the cross section at the beginning of the transfer section,

without apparently recognizing the physically absurd consequences of this condition.

The boundary conditions of Eq. (2-4) or Eq. (2-0), on the otherhand, represents

a reasonable situation corresponding to an insulated wall upstream of the transfer

section. If axial diffusion is important, then the fluid must become depleted, to

some extent, upstream of the transfer section. It is only in the limit of an infinite

Peclet number that axial diffusion can be neglected and the condition 0 = 1 applied

in the cross section z = o. Furthermore, to have a surface with 0 = 1 immediately

adjoining a surface with 0 = 0, here the tube wall for z > 0, will result in an infinite

transfer rate near z = 0, a rate which cannot be integrated. In otherwords, with
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the boundary conditions used by Graetz8 and Singh~8, the total amount of material

transferred in any non-zero length z will be infinite. Bodnarescu~ treated axial

diffusion with an upstream wall maintained at one temperature and a downstream

wall at another temperature. Wilson~8 used the same b01indary conditions with plug

flow. As Drew5 has pointed out, the tot.al t.ransfer will again be infinite. Schneide~~

treated the same situation as Wilson~8, but with the addition of a transfer resistance

at the wall ( as proved later, half of Schneider's solutions without axial conduCtion

are wrong ).

Siegel and Sparrow57 analyzed laminar forced convection heat transfer in a parallel

plate channel with uniform heat flux at the walls. They assumed both the tem-

perature and velocity to be uniform at the eutrance section and used the velocity

profile obtained by Schillers8, who gives the velocity profile as

and

where

1). = u"", for II ~ Y ~ a

a = half width of the parallel plate channel,

y = transverse coordinate measured from channel wall and

fJ = velocity boundary layer thickness.

(2-8)

(2-9)

They obtained heat transfer results for Prandtl number range of 0.01 to 50. The

approximate nature of their mathematical formulation does not permit precise cal-

culations for thermal ent.ry length. Heaton and Reynolds59 analyzed the problem
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of laminar flow heat transfer in an annulus with simultaneously developing velocity

and temperature,distributions for constant wall heat flux. They used Langhaail

velocity distribution for annulus and solved the resulting equation by an integral

method similar to that used by Han 54 for the parallel plates.

Kays9 also studied the same thing for both constant wall heat flux and constant

wall temperature conditions. The numerical work that has been done so far ip this

regard, Kays work is better in comparison to any other workers. Kays obtained the

solution by finite difference technique using axial velocity distribution as obtained

by Langhaar.
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CHAPTER 3
FORMULATION OF EQUATIONS AND SOLUTION PROCEDURE

3.1.1 FORMULATION OF THE DIFFERENTIAL EQUATION FOR CONSTANT

WALL TEMPERATURE AND CONSTANT WALL HEAT FLUX

Let us consider an incompressible Newtonian fluid with constant viscosity and ther-

mal conductivity flows through a tube of radius R.

For z < 0, the wall of the tube is insulated

At r = H, for z < 0: ~:; = 0

For z > 0, the wall temperature is maintained constant at T••

At r = H, for z > 0 : T = T••

Very far upstream from the entrance to this heated section, the fluid is at a uniform

temperature Too :

As z ---> -00, for r ~ H : T = Too

We wish to determine the temperature distribution of the fluid in the heated portion

of the tube. The differential energy balance for this situation is

or [1 A. (A.T) rPT].
PCpV. Clz = k ~ Or r Or + 8z~ (3-1 )

The above differential equation is normalized by using the following normalizing

variables:

T. _ T-T",
- T••-Too'

and t'. = .!L
• u.

Then we have

(3-2)
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•

=>

Z.
Let (=-

Np•

Then we have

• err- 1 8 (. &T. ) &r.
Np.lJ -- = -- r -- +--, oz. I'. el". or. oz.2

where NP. = Peclet number based on tube radius
pCpRua

= k
pRua cpf-l

= -f-l-T
= NR. NPr

(3-3)

(3-4 )

(3-5 )

(3-6)

(3-7)

The term, ~:~;, in eq. (3-7) represents the axial conduction. For reasonably high

Peclet number, the contribution of axial conduction can be neglected. Then we get

The boundary conditions are:

At r. = I, for ( < 0: ~~: ,;, 0

At r. = 1, for ( > 0 : r. = 1

As ( ---> -00, for r. ~ 1 : r. = o.

(3-8)
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If r-component (radial component.) of t.he velocit.y , Ii, is t.aken into account, then

the above equation becomes

, or' , 81" 1 8 (, /'IT~ )
Ii. B( + Ii, 0'" = r' or' .r or'

with the same boundary conditions.

For constant wall heat flux the differential equation is as before

/'IT" 1 8 ( &1'" )
Ii; o( = ~ Or" r" or"

where

(3-9)

(3-10)

T'=T-l'o.,
qR/k '

with boundary conditions;

" rr =-,
R

"
01'"

At r = 1, for ( < 0 -=0Dr.

Atr'=I, for ( > 0
or"
-=-1
or"

At ( = 0, for r $ 1 1'" = 0

(3-11)

If r-component (radial component.) of t.he velocity, ", is taken into account, then

the above equation becomes

" 81'" , 81'" 1 fi (" 81'" )
Ii -- + Ii -- = --- r--• o( , or" ,." 8," or'

with the same boundary conditions.

(3-12a)

But when physical property variations are taken into consideration, cp, p and k can

no longer be included in dimensionless axial distance, (. Then eq. (3-8) or eq. (3-10)

is written in the follo~ing two forms (i. e. eq. (3-12b) and eq. (3-12c) ) for constant

wall temperature and for constant wall heat flux respectively:

&1"•Ii --=• oz'

(3-12b)



.ar. k(TO) [t 8 (.aro)
tI: &z. = p(T.)cp(T.)u.R ;:.- &r. r ar.

&k I ( qR ) (&1'. ) 2]
+ &1' T P(Tj) &rO

J .
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(3-12c)

The following expressions for variations of cp, k and p with temperature are used

for water:

Cp = 4.21705 - 3.07139 x 10-31' + 8.42643 x 10-51'2

- 9.31925 X 10'1'3 + 3.95487 x 10-91'\ KJ/KGoc

k = 5.63063 X 10-4 + 1.96429 x 10-61' - 8.28078 x 10-91'2, KW /moC

p = 1000.1.5 - 6.57555 x 10-31' - 42.5321 x 10-41'2, KG/m3
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3.1.2 EVALUATION OF BULK TEMPERATURE FOR CONSTANT_WALL TEM-

PERATURE AND CONSTANT WALL HEAT FLUX

Since for constant wall heat flux

T. = l' - Too
qRlk

Then
.r:. - "T& - 1'"", and l' = T. (qkR) + 01'""

6 - qRlk

Now

Hence
,. foR T. ur dr

= 16 = "'-"--R---fo urdr 0

or,
],1 T.u.r. d,.•1'6. - ~o~ _

- J01 u. r. dr-

For constant wall temperature the normalized temperature is

Or = T- TID
Too - 1'••

Using similar procedure as above, we get

(3-13)

or,

(3-14)

That is, the expression for normalized bulk temperature is same for both cases.
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3.1.3 CALCULATION OF LOCAL NUSSELT NUMBER FOR CONSTANT WALL

TEMPERATURE AND CONSTANT WALL HEAT FLUX

(3-15)(h)'oeo,(T", - T6) = -k ~ Ior ,=R

At any cross-section of the pipe one can write the energy balance equation in the

following form :

Let us normalized the above equation by substituting

T. = T - Too
qRlk

• r
and r =-

R
(3-16)

Then we have &1 qR &T.I
or ,=R = kR or. ,"=1

(3-17)

Substituting

(3-18)

8T"1ar:- ,"=1

1'." -n
8T"1qR 8," "_I

= -2- ' -
k 9.{i (1':, - Til

8T'I= _2qR ""lfr7 ,"=1

k 9.{i (T.I'"=l - Til
(3-20)

Hence

(NU)'oeol =
aT"1-2 ~ ,":)

'T.' r..r. =] - &
(3-21 )

Similarly for constant wall heat flux

'N . 2
I U )Ioeo' = T:' _ T; (3-22)

Since ~~: 1'"=1 = 1 for constant wall heat flux.
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3.1.4 CALCULATION OF AVERAGE OR.MEAN NUSSELT NUMBER FOR CON-

STANT WALL TEMPERATURE

Energy balance for a section of the pipe of length z gives:

and

Q=27rRqz or, dQ=27rRqdz

From (3-23) and (3-24)

2 iT, dT& l'R PU.Cr T _ T = 2R hdz
Too W'" 0

2 ( Tu• - 1/, ) t
-R pu.crlTi T", _ T= = 2R(h) io dz

2 I (n - 1'", ) )-R PU.Cr TI 1'0., _ T", = 2R(h z

(Nu) = _ ITlT6 h' zk
2t w ere ~ = 2R2, peru.

(3-23)

(3-24)

(3-25 )

(3-26) .

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)
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3.1.5 CALCULATION OF AVERAGE OR MEAN NUSSELT NUMBER FOR CON-

STANT WALL HEAF FLUX

In this case Eq. (3-27) cann't be integrated analytically beacuse T•• is not constant.

In this work the following technique is used:

2
=----
(T•• - n)

2(
=-----.r;(T.• - T6)d(

(3-32)
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3.1.6 FLOW DEVELOPMENT IN CIRCULAR TUBES

(3-34)

Io(3) - Io«(3rO) (3-33)
II, = [2({3)

where 10 and 12 are modified Bessel functions of order zero and two respectively, (3

is a function of x /Re, defined by

x/Re, = l'" g(f3)!,(/3)d(3

Langhaar2 obtained an approximate solution for the axial vl'locity component in

the entrance region of a circular tube by linearizing the boundary-layer equation.

The resulting solution is

where

The argument of the modified Bessel functions is ;3.

The expression for the radial velocity component II, is obtained from equation (3-33)

and the continuity equation. The continuity equation in cylindrical coordinate is

8", lA(rv,)ox +;: or = U (3-35)

Thus
1 l' 811_ 1 f) [1' ] 0[3

II, = -- r-- dr= --- rll. dr -
r 0 ax r 0(3 0 . ox (3-36)

From Eq. (3-34)
. (3-37)

From Eq.

0(3 1 [ 1 ]
ax = - Re, g(f3)J'(f3)

(3-33), (3-36) and (3-37) , the expression for radial velocity component

IS

(3-38)
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where the argument of the modified Bessel functions is {3unless otherwise indicated.

It might be noted t.hat the comput.at.ion of v, from Eq. (3-38) does not. const.itute.

a major increase in time and labor since g(fi), f'(jj), [0, [1 and /2 are all involved

in the computation of v •.
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3.2 METHOD OF SOLUTION

The method of weighted residuals (MWR) is a general method of obtaining solutions

. for equations of change. The unknown solution is expanded in a set of trial functions,

which are specified, but with adjustable constants, which are chosen to give the best

solution to the differential eguation. Usually the first approximation gives useful

qualitative answers, but higher approximations may be used (usually on a computer)

to give as precise an answer as desired. The general procedure for using MWR is

outlined below:

Let us consider a differential equation of the form:

(
fJ2y Oy)

f x,y, ox2' ox = 0

A solution may be expressed in the form:

N

Y" = Yo + L:: aiYi
1=1

(3-2-1)

(3-2-2)

where the functions Yi are specified to satisfy the homogeneous boundary conditions.

Then the trial fundion, eq. (3-2-2), satisfies the boundary conditions for all choices

of the constants ai. This trial function is. substituted inio the differential equation

to form the residual

R(ai,x,y) = f(Yo,fli,Vi) (3-2-3 )

(3-2-4)

If the trial function were exact solution the residual would be zero. In MWR the

constants ai are chosen in such a way that the residual is forced to be zero in an

average sense. For this, the weighted integrals of the residual are set to zero:

J WIR(aj,x,y)dx = 0

Finally we choose a criterion or a weighting function, WI. Each MWR is charac-

terised by a different choice of the sequence of N weighting functions WI in eq. (3-

2-4). For example, Galerkins method uses 8iJ" Yo as weighting functions whereas least.,
square method uses a:.~and collocation method chooses weighting functions to be

dirac delta (WI = 6(x -xd)
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Whatever may be the weighting fund.ionB, eq. (3-2-4) generatpB eit.hpr 1\ Bet. of 1\1-

gebraic equations or a set of ordinary differential equations which can be solved

numerically using a computer to obtain aj, which thus gives the approximate solu-

tion of the differential equation.
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3.2.1 ORTHOGONAL COLLOCATION METHOD

The orthogonal collocation method provides a mechanism for automatically pick-

ing the collocation points by making use of orthogonal polynomials. This method

chooses the trial function y(x) to be the linear combination

N+1

y(x) = L aiPi-dx)
i=l

(3-2-1a)

of a series of orthogonal polynomials Pm(x). The set of polynomials can be written

in a condensed form :

m

Pm(x) = L CmjX
j
,

j=O

m=O,l, ...,N=l (3-2-1b)

,
The coefffficients Cmj are chosen so that the polynomials obey the orthogonality

condition

61. w(x)Pl(x)Pm(x)dx = 0, k=0,1, ...,(m-1) (3-2-1c)

When Pm(x) is chosen to be the Legendre set of orthogonal polynomials, the weight-

ing function w(x) is. unity. Similarl~', when the weighting function w(x) is either

(1 - x) or, (1 - x) \-, the function po. (x) becomes either Jacobi or Chebyschef poly-
.

nomials.

A detailed discussion on orthogonal collocation technique is available in APPENDIX

and may also be found in references 29, 30 and 31.
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3.2.2 SOLUTION BY GALERKlN'S METHOD

Let us consider eq. (3-8) with T = T', r = r' and z = ( for simplicity

20T 10(OT)(l-r )- = -- r-. oz r or or

With boundary conditions:

At r - 0 aT - O. and at r - 1 T - 0-'8r-' -,-

(3-2-2a)

It is very important to choose an appropriate trial function. Let a trial function of

the following form:

Where Ti(r) is given by

N

TN(r, z) = La;(z)T;(r)
.=1

T.(r) = r'(1 - r)

(3-2-2b)

The residual RN of the equation is

2 &1'1'1 I 8 ( OTN)RN(a,r,z)=(I-r )----- r-r-oz r or or

= (1- r2) t 8a~:z) ri(l_ r) - t a;(z)(i2ri-2 - (i + 1)2ri:-Ij
~=1 ~=)

Then RN is made orthogonal on the N trial functions Ti(r):

or,

11[t oa~~Z)ri(l_r)_ tai(z)Wri-2-(i+l)2r;-lj]Ti(r)dr =0, j = 1,2,3 ...N
o 1=1 1=1

or,

11
[~(1 _ r2)ri (1 _ r) 8a~:z) ri(l- r) - ~ ai(z )ri (1 - r)[i2ri-2 - (i + 1)2ri-I)] dr = 0,

j = 1,2, 3....N
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or in vector form :
=8ai =A-=Ba82

Where

Aj; =11
(1-r2)ri(1_ r)rj(1- r)dr

Bji =11
[i2ri-2 - (i + l)2ri-1] rj(l - r)dr

After carry out the integration process we get the following results:

1 221
Aji=-i-+-J-'+-1--i+i+2+i+i+4 i+i+5

i2 (i+1?+i2 (i+1)2
Bji = i + i - 1 i + i + i+ i + 1

(3-2-2c)

At 2 = 0, all the values of a;(2 = 0) can be determined by using the follow-

ing technique: [Here T means t.he normalized temperature T. which is defined by

T" - T-T v 1 Since at 2 = 0, T = 1- Too-T", .

Where the underbracketed portion of the above equation is the chosen weighting

function. or,

or,

or,

Aao = C

Where Aji is same as before and Cj is given by

(3-2-2d)
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Ci= 11(1_r2)ri(1_r)dr
=11

(ri _ ri+1 _ ri+2 + ri+3) dr

or,
1 1 1 1

Ci = j + 1 - j + 2 - j + 3 + j +4

3.2.3 EVALUATION OF BULK TEMPERATURE

(3-2-2e)

For constant physical properties the normalized bulk temperature T6• is given by

I; Tur d7'r = ~1---
10 ur dr

Substituting the expressions for T and u we get,

(3-2-3a)

(3-2-3b)

After carry out the integration we obtain finally the expression for bulk temperature

as follows:

• N (1 1 1 1)
T6 = 4 L aj i+ 2 - i+ 4 - i+ 3 + i+ 5

.=1
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3.2.4 FINITE DIFFERENCE METHOD

The finite difference method replaces the derivatives in the differential equations

with their finite difference approximations* which is called discretization at each

point in the interval of integration, thus converting the equations to a large set of

simulteneous nonlinear algebraic equations** which can be solved using Newton's

method for simulteneous nonlinear algebraic equations. It should be emphasized,

however, that the problem of solving a large set of algebraic equations is not a trivial

task. It requires, first, a good initial guess of all the dependent variables, and it

involves the evaluation of the 2N x 2N Jacobian matrix for a system which consists

of N nonlinear algebraic equations. But if the differential equations are linear, the

resulting set of simulteneous algebraic equations will also be Jinear. In such case, the

solution can be obtained by a straightforward application of the Gauss elimination

or by the improved Gauss-Jordon procedure. But for stiff systems of differential

equations, it is wise not to use finite difference technique.

*Usually central difference approximation is used in the middle of the interval and

forward or backward difference approximation is used at the boundary.
**If the discretization is made in one direction, then the partial differential equation

is reduced to a set of ordirary differential equations. In this work, discretization is

made in radial direction.
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CHAPTER 4

RESULTS AND DISCUSSIONS

The main objective of this work was to determine the temperature profile at the

very entrance (say at ( < 10-5 for Pr > 0.7 and at ( < 10-4 for Pr.::S; 0:01

where ( = dimensionless axial distance, x/R/(Re.Pr» section of the tube since

solutions in this region is not available in literature. It is very difficult 'to obtain

solutions in these ranges. Kays9, was able to obtain solution at ( = 0.0002 (only

for Pr ~ 0.7) which gave 20-10% too high of the value. of local Nusselt number

~ompare to analytical solution obt.ained by Robert Lipkis52.

In addition to use of orthogonal collocation, the present work also uses finite differ-

ence technique to compare the accuracy and computational time between orthogonal

collocation and finite difference technique. It was found that six collocating points

is equivalent to forty grids, and nine collocating points is equivalent to eighty grids

in finite difference technique with computing times seven to ten times higher. If the

number of grid points is increased beyond 100, the accuracy does not increase and it

takes excessive computing time. This may'be because of numerical truncation error.

Actually the way which we used to formulate the solution in orthogonal collocation

technique is the method of ordinates (another way is t.he method of coefficients)

and this may be considered as a finite difference method where the grid points are

optimally spaced (see ref. 56). Hence in finite ditl."erencewith large number of grid

points requires much more arithmetic calculation than those involving 12, 15 or 18

collocating points resulting in excessive computing time and truncation error.

The present work also uses Galerkin's method to solve the Graetz problem. The

results obtained by Galerkin's method is same as that obtained by orthogonal col-
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location method. But Galerkin's method requires smaller order of trial functions,

for example, for N = 9 in Galerkin's method gives similar results with N = 12

in orthogonal collocation method and obviously requires less computing time. The

disadvantage of Galerkin's method is that it is difficult to use, specially, the choice

of a trial function (the successfulness depends on it) is very crucial. Once the trial

function is chosen successfully, the remaining task is straight forward. The most

important thing is, whatever may be the technique or method, the resulting equa-

tions should be solved with appropriate integration routine to obtain satisfactory

results.

Initially attempt was made to use Gear's routine of adaptive step size control for

explicit Runge-Kutta method and then adaptive step size control for polynomial ex-

trapolation (using Richardson's extrapolation) method but both the method failed

to give values at ( = o.nol. In both the ca~es, very small initial stepsize (h = 0.0001)

was chosen but it didn't work. Then the package BDFSH is tried and proved to be

successful. It is quite capable of giving solution at ( = 10-5 without any numerical

instability. This package is used in this work.

The dimensionless temperature profile in the range of 10-6 < ( < 10-1' are shown

in Figures 1, 2 and 3 - for constant wall temperature and constant wall heat
•

flux respectively. As have been mentioned earlier all the previous solutions in this

range of axial distance could be obtained by combination of classical Graetz solu-

tion and "Leveque approximation requiring large number of terms. The stiffness of

the gradient at low ( provides a good test of numerical techniques. For constant

wall temperature problem the local Nusselt number and mean Nusselt number are

presented in Table-1 and Table-2 respectively. The value of local Nusselt number
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at ( = 0.4 is very close to the asymptotic value of Nu,,-+oo = 3.6563. Both the

constant wall temperature profile and constant wall heat flux profile have a slope

of zero at the centre of the pipe.

For constant wall heat flux problem the local Nusselt number and mean Nusselt

number are presented in Table-3 and Table-4 respectively. The value of local

Nusselt number at ( = 0.3 is in good agreement with analytical asymptotic value

of ~~= 4.36364. Since the evaluation of flow length mean Nusselt number requires

numerical integration of local Nusselt number, the value of mean Nusselt number

is less accurate than local Nusselt number. The constant. wall heat flux boundary

condition gives smooth dimensionless t.emperature profile and has a slope of one at

the wall according to boundary condition at wall i. e., at r. = 0; ~;: = 1 for all

z. 2: O.

Table-1 also compares the value of loral nusselt. number with analytically obtained

values obtained by Robert. Lipkis52. It is quite clear from t.his table that almost

accurate results could be obtained by using 12 collocating points. If collocating

points are increased further t.he accuracy does not increase significantly but requires

more computing time. Another important feature is that Nusselt number decreases

very quickly in the entrance section and at t.he very entrance (( ~ 1O-~), the value of

Nusselt number is 4 to Ii times higher t.han that of at. ( = 0.001). (No analytically

or numerically obtained values of Nusselt number are available in literature for

( < 0.0001.)

Figure-1 shows radial temperature profile for different axial distance for constant

wall temperature and fully developed velocity profile. Temperature distribution for
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( (or z.) ::;10-5 is not shown on the Figure because plotting (or printing) machine

is not capable of distinguishing the difference at this region. But this difference

is more important. Due to this difference of stiffness at the wall, the local and

mean Nusselt number varies significantly in this region as shown in Figure-2 and

Figure-3.

The effect of number of collocating points is'shown in Figure-2 and Figure-3 for

local and mean Nusselt numbers respectively. From these two Figures it is clear

that for normalized axial distance ( ~ 0.001, the effect of higher collocating points

is insignificant i. e .. almost accurate results could be obtained using N = 3 or 6.

But for ( < 0.001, the effect of collocating points is very significant. For example,

at ( = 10-5, the value of Nusselt number for N = Ii is more than 100% higher than

that of N = :I and Nusselt number for N = 9 is more than 50% higher than that.

of N = 6. But the value of Nusselt number for N = 12 is only 1% higher than

that of N = 9 and further increase in number of collocating points, say N = 15 or

18, doesn't have any significance on the value of Nusselt number but it requires 50

minutes (for N = 15) to 120 minutes (for N = 18) longer computing time compare

to N = 12.

Figure-4 and Figure-5 show the radial temperature distribution for constant wall

heat flux and fully developed velocity profile. Actually Figure-5 shows the upper

portion of Figure-4 with an enlarged scale. Figure-6 and Figure-7 show the effect

of collocating points on local and mean Nusselt numbers. It can also be noted

from these two Figures that for normalized axial distance ( > 0.001, the value of

Nusselt number remains the same as collocating points are increased further. But for

( < 0.n01, specially at ( = 10-5 or 1O-s, the difference is very significant. Increasing
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the number of collocating points beyond 18, does not produce any significant change

in values compared to that obtained using N = 18, hence the values obtained using

18 collocating points can be considered quite accurate.

The variation of radial temperature profile for different Prandtl number are shown

in Figure-8, 9 and 10. These three Figures show that temperature gradient at wall

is higher for lower Prandtl number and the difference decreases with increase of

axial distance.

Figure-ll, 12 and 13 show the effect of collocating points on local Nusselt number

and Figure-14, 15 and 16 show the effect of collocating points on mean Nusselt

number for different Prandtl number (bot.h are for const.ant wall t.emperat.ure and

developing velocity protile). Comparison of local and mean Nusselt number for

different Prandtl number is shown in Figure-17 and 18 respectively. But these two

Figures are a little bit confusing. Apparently it seems that as Pr number increases

Nusselt number decreases for a particular axial distance which is contrary to fact.

This is because of presence of Pr number in the dimensionless axial dis~ance. If

Pr is omitted from the dimensionless axial distance, Figure-16 looks like Figure-19

which shows clearly the variation of Nu with Pr.

Figure-8 to Figure-18 is similar in nature with Figure-20 to Figure-28 but the later

are for constant wall heat flux and developing velocity profile.

Figure-31 shows the variations of local Nusselt number with dimensionless axial

distance for constant wall temperature and fully developed velocity profile but the

solution is obtained by finite difference technique i. e., eq. (3-8) is discretized in the

r direction and then the resulting set of ordinary differential equations are solved
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\

using BDFSH integrator. This Figure shows that reasonably a'ccurate results can

not be obtained in the entrance region using less than 40 grids. Figure-32 shows 15

collocating points give better results than 80 grids and requires much less computing

time.

Figure-33 compares the local Nusselt number obtained by collocation method with

. that obtained by Galerkin's methocl. This Figure shows that for same values of

N, Galerkin's method gives better results. This is because Galerkin's method is

inherently "method of coefficients" whereas the method which we used to formulate

the solution in orthogonal collocation technique is the "method of ordinates". And

the "method of coefficients" is more accurate and its convergence can be more

readily assessed by comparing the coefficients at successive values of N (see ref.

56).

Variation of temperature profile for constant and variable property of the fluid

for constant wall temperature and constant wall heat flux are shown in Figure-34

and 35 respectively. These Figures show that when physical properties vary with

temperature, temperature gradient at wall becomes higher and results higher values

of Nusselt number. This is shown in Figure-36.
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CHAPTER I)

SUGGESTIONS AND RECOMMENDATIONS

In this work parabolic profile is used for fully developed velocity profile. For de-

veloping velocity profile, Langhaa~ velocity is used as axial component of velocity

and radial component is obtained from Langhaar velocity distribution and equation

of continuity. This seems to be alright for constant physical properties and in-

compressible flow, because these assumptions allow an independent solution of the

hydrodynamic problem since the momentum and energy equations are not coupled.

But the results that had been obtained considering change in fluid properties with

temperature and at the same time using Langhaar velocity is inherently question-

able. Because, Langhaar obtained the velocity profile with linearizing the momen-

tum equation and assuming constant physical properties. And since energy equa-

tion doesn't contain the viscosity term, which remains implicitly inside the velocity

distribution, these results, in fact, ignore the most dominant physical property, vis-

cosity, variation with temperature. But since all other physical properties (heat ca-.
pacity, thermal conductivity and density) have been taken into consideration, these

results may be accepted qualitatively. For example, Figure-34 and Figure-35 show

that when the physical properties vary with temperature, the temperature profile

becomes stiffer near the wall compared to that obtained using constant physical

properties, that means temperature profile developes slowly and thereby resulting

higher values of Nusselt number.

Throughout this work, axial conduction term is dropped from the energy equation.

This is done because of two reasons : first, it is assumed that at reasonably high

Peclet number, its effect is insignificant. second, because of mathematical difficulties
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to apply orthogonal collocation technique or Galerkin's technique.

Hence, in order to get more accurate results from practical point of view, the mo-

mentum and energy equations should be solved simultaneously without negleCting

axial conduction term and giving appropriate consideration to physical property

variations with temperature. Probably it would be too much complicated to apply

orthogonal collocation or Galerkins technique but finite difference method may be

tried. In my view, finite element method would be appropriate but in that case

computing machine would be an important factor because this method would re-

quire, for this particular case, large number of matrices with huge dimension in

order to ensure reasonable accuracy. Either a mainframe computer or a PC with

a 80386 main processor and having at least 2 megabytes random access memory is

recommended.
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Table 1. Value of local Nusselt number for constant wall
temperature and fully developed velocity profile.

N = Number of collocating points.
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IIUSSEL'r HUSSELT
110. HO.AXIAL DISTAIICE

4(x/d)/(Re,Pr)
IIUSSELT

110,

II = 3

lIUSSELT
no.

II = 6

HUSSELT
no.

II = 9

HUSSELT
HO.

H = 12 Exact II = 18

22.961322 42,123402 36.131983 37,204812

0.00001

0.0001

23.254499 64.069702 76.137901 77.126701 77.105645

35.850536 .

0.0005

0,001

21.566257 20.792566 21,363516 20,751270

19.978306 16.761136 16.277412 16.293546

20.641351

16.261887

0.004 13.308535 10.499027 10.153610 10.133735 10.1200 10.121364

0,006

0,01

0.02

0.03

0,04

0.05

0,06

0,07

0,08

0,09

0.10

0.11

0,12

0,14

0.16

0.18

0,19

0.20

0.40

0.60

0,80

1.00

10,751418

8.027044

6.097226

5.561931

5.215013

4.936029

4.706024

4.516558

4.360896

4,233341

4.129037

4,043893

3,974478

3.871977

3.804246

3.759566

'3.743324

3.730148

3.674548

3.673716

3.673700

3,673699

8.933893

7.486835

6.027005

5,334010

".921389

4.6 .•3690

4,442649

4.290620

4.112406

4.078699

4.003403

3.942299

3.8923.54

3.817510

3.766437

3,731375

3.718189

3,707248

3,655097

3,653841

3.653804

3,653803

8.653757

7,477353

6.002732

5.323797

4.91581'7

4.639763

4.266959

4.171598

4.078539

4.003706

3.942936

3.893248

3,818744

3,767865

3.732973

3,719842

3.708944

3.657008

3.655758

3.655724

3.655722

6,642643

7.471196

6.001462

5.323274

4,915734

4,639909

4,440203

4.269327

4,172024

4,079005

4.004210

3,943465

3,693791

3.619320

3.768471

3,733575

3,720452

3,709560

3.657642

3,656368

3.656356

3.656353

7,4710

6.0020

4.9169

4,0050

3.7101

8.830168

7.458778

5.986662

5.310260

4.902690

4.626673

4.427210

4,276372

4.159123

4.066161

3,991410

3.930702

3,881273

3.806642

3.755834

3,720956

3.707838

3.696952

3,645070

3.643820

3.643766

3,643764



Table 2. Value of mean Nusselt number for constant wall
temperature and fully developed velocity profile.

N = Number of collocating points.
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AXIAL DISTANCE
4(x/d)/(Re.Pr)

0.00001

0.0001

0.0005

0.001

0.004

0.006

0.01

0.02

0.03

0.04

0.05

0.06

0.07

. 0.08

0.09

0.10

0.11

0.12

0.14

0.16

0.18

0.19

0.20

0.40

0.60

0.80

1.00

NUSSELT
110.

N = 3

28.986900

25.993808

23.577104

21.995979

15.629452

13.989178

11.721142

8.978708

7.783619

7.100116

6.639382

6.297752

6.029372

5.810554

5.627574

5.471765

5.337285

5.219987

5.025374

4.870856

4.745659

4.691691

4.642523

4.155223

3.989247

3.906211

3.856369

NUSSELT
110.

II = 6

55.837299

41.584987

27.837440

22.746513

15.411307

13.418580

11.265252

8.942355

7.839024

7.155239

6.678053

6.320937

6.041087

5.814559

5.626748

'5.-468144
5.332240

5.214403

5.020140

4.866711

4.742672

4.689228

4.640529

4.155626

3.989458

3.906284

3.856360

IIUSSELT
110.

II = 9

79.987602

50.499099

31.451824

24.794202

15.382027

13.395754

11.268306

8.942957

7.838410

7.155091

6.678104

6.320999

6.041118

5.814567

5.626745

5.468138

5.332235

5.214400

5.020139

4.866711

4.742672

4.689228

4.640529

4.155626

3.989459

3.906286

3.856357

NUSSELT
110.

N = 12

81. 098701

51. 475885

31. 474307

24.735303

15.382036

13.396904

11.268294

8.942951

7.838414

7.155092

6.678104

6.321000

6.041118

5.814567

5.626745

5.468138

5.332235

5.214400

5.020139

4.866711

4.742672

4.689228

4.640529

4.155626

3.989459

3.906280

3.856361



Table 3. Value of local Nusselt number for constant wall
heat flux and fully developed velocity profile.

N = Number of collocating points.
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AXIAL DISTANCE
(x/Rl/fRe.Prl

0.100D-05

0.200D-05

0.300D-05

0.4000-05

0.500D-05

0.100D-04

0.200D-04

0.300D-04

0.400D-04

0.500D-04

0.100D-03

0.200D-03

0.300D-03

0.400D-03

0.500D-03

0.100D-02

0.200D-02

0.300D-02

0.400D-02

0.500D-02

0.100D-Ol

0.200D-Ol

0.300D-Ol

0.400D-Ol

0.500D-Ol

0.100D+OO

0.200D+00

O.300n .•.oo

0.500D+Ol

NUSSELT
NO.

N = 3

29.984213

29.972958

29.961713

29.950477

29.939251

29.883260

29.771969

29.661595

29.552125

29.443549

28.913817

27.915254

26.990704

26.132256

25.333084

22.038476

17.703877

14.983941

13.122088

11.772603

8.301849

6.199059

5.441752

5.065421

4.846249

4.461757

4.369817

4.363726

4.363606

!/USSELT
NO.

N = 6

94.874551

93.874058

92.896087

91.939086

91.004737

86.623470

79.099383

72.875325

67.641740

63.180095

48.006950

26.891421

22.942211

20.402397

14.862548

12.008102

10.750033

9.939997

9.321739

7.541049

6.140063

5.545886

5.198083

4.971990

4.515830

4.376630

•. 365214

4.363606

NUSSELT
110.

N = 9

181.368877

167.717373

156.123183

146.154590

137.492737

106.992930

76.252367

60.909457

51. 767876

45.758634

31.969924

25.593243

23.100699

21.336343

20.022506

16.031447

12.53684e

10.898261

9.924705

9.257237

7.485977

6.138726

5.537103

5.190106

4.963550

4.506437

4.376211

4.3655~O

4.363606

NUSSELT
110.

N = 12

236.538502

184.902334

153.451818

132 :318394

117.176687

77.699958

54.278578

46.502705

42.726512

40.443516

34.512200

27.916442

24.381409

22.000648

20.301870

.15.773302

12.531617

10.954784

9.963073

9.273631

7.479301

6.137203

5.537559

5.190458

4.963863

4.512440

4.376199

4.364834

4.363617

NUSSELT
NO.

N = 15

147.430578

117.197735

100.484310

90.020037

65.984458

57.755922

52.264036

48.139786

44.850440

35.573785

27.813701

23.841109

21.566965

19.988927

15.783441

12.500157

10.946445

9.964668

9.274678

7.479203

6.137306

5.537604

5.189953

4.964469

4.511078

4.376553

4.365421

4.371039

NUSSELT
NO.
N = 18

195.206027

133.928711

110.826974

98.981669

91. 791717.

76.112103

61. 697413

53.521539

48.211696

44.440013

35 .096025

27.740476

24.217684

21.925603

20.293785

15.819071

12.519800

10.949168

9.966611

9.280354

7.483254

6.142754

5.542882

5.196926

4.971156

4.523398

4.393032

4.388014

4.708443



Table 4. Value of mean Nusselt number for constant wall
heat flux and fully developed velocity profile.

N = Number of collocating points.
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AXIAL DISTAHCE
(x/R)/(Re.Pr)

HUSSELT
110.

II = 3

HUSSELT
110.

H = 6

IIUSSELT
no.

II = 9

HUSSELT
HO.

11 = 12

HUSSELT
110.

H = 15

HUSSELT
HO.

H = 18

0.100D-05

0.200D-05

0.300D-05

0.400D-05

0.500D-05

0.100D-04

0.200D-04

0.300D-04

0.400D-04

0.500D-04

0.100D-03

0.200D-03

0.300D-03

0.400D-03

0.500D-03

O.100D-02

0.200D-02

0.300D-02

0.400D-02

0.500D-02

0.100D-Ol

0.200D-Ol

0.300D-Ol

0.400D-Ol

0.500D-Ol

0.100D+00

O.200D+OO
0.300D+OO

0.500D+Ol

32.13137

31.01766

31. 06947

31.04054

31.03188

30.23180

30.20966

30.10149

30.07278

30.11452

30.05563

29.87512

29.01847

28.36043

27.79123

26.87146

22.67082

20.0.1345

18.06423

.16.55277

12.45582

8.948733

7.556418

6.801204

6.326724

5.3830.11

4.839265

4.670377

4.399866

102.153655

98.108502

96.480854

95.43.1316

94.611795

92.156924

89.335865

84.338055

80.280126

76.766287

66.3456.11

49.450388

40.554297

3.1.092683

22.065.59

16,460002

14.29.1508

13.035809

12.171.109

9.929032

7,998831

7.104681

6.568913

6',204169

5.402833

4.861487
4.685471

4.398427

202.030964

187.121253

177.803520

170.236822

163.640673

144.744013

110.014688

90.963204

78.622098

69.940145

48.616919

35.396718

30.688817

27.995041

26.133940

21.271290

16.844538

14 646727

13.277350

12.322499

9.953120

7.992467

7.098509

6.561796

6.196694
5.385650

4.852046

4.679560

4.397497

293.476024 312.268946

242.968558 223.701484

211.271529 180.426917

188.305444 154.485501

170.688799 137.209027

121.742975 96.589739

82.788739 75.072985

67.778528 66.841195

59.912696 61.691099

55.031216 57.885860

44.576043 47.202321

36.433986 37.368916

32.159494 32.383577

29.298017 29.218909

27.205219 27.005032

21.578609 21.439365

16.866280 16.810381

14.679542 14.639806

13.317627 13.291701

12.359147 12.341417

9.943339 9.938667

7.988473 7.986874

7.096914 7.096071

6.560613 6.560098

6.196047 6.195745

5.384171 5.382903

4.853134 4.852667

4.680118 4.679995

4.397369 4.400984

294.739981

204.007030

165.574677

144.278265

130.724101

103.279865

81.898815

71.607816

64.897285

60.039523

47.769710

37.420751

32.520741

29.458420

27.288143

21.571637

16.866971

14.674805

13.314683

12.358850

9.943227

7.991530

7.10.1167

6.565689

6.201673

5.391002

4.864100

4.694551

4.569754
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Table 5. Value of local Nusselt number for constant wall
temperature and developing velocity profile.

Pr = 0.01

N = Number of collocating points.

AXIAL O[STANCE NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT

(xIRIIIRe.prj NO, NO, NO. NO. NO, NO.

N : 3 N : 6 N : 9 N : 12 N : 15 N : 18

0.[000-03 0.31555380+02 0,84500720+02 0,10970420+03 0.85591840102 0.16240160102 0.81489160102

0.5000-03 0.29886150+02 0,49294050+02 0,49290540+02 0.31343210102 0.31404340+02 0.31312650102

0.1000-02 0.21939070+02 0.30016880+02 0,26232130102 0.21022600+02 0.26921140+02 0.26913110+02

0,4000-02 0.19142400102 0.13986690102 0,14394810+02 0,14399440+02 0.14400560+02 0.14392220+02

0.1000-01 0.11038320102 0.99401480+01 0,99011500+01 0,98996310+01 0,98912190+01 0.98866890+01

0.2000-01 0.14651110+01 0.1696834D+OI 0.17592460+01 0.78112140+01 0,11455450+01 0.11391120+01

0,3000-01 0.60494630+01 0.63635010+01 0.62965480+01 0,63165800+01 0,63105410+01 0.62919910+01

0.4000-01 0.56814140101 0.58586160+01 0.58111040+01 0.58122620101 0.58111120+01 0.58564100+01

0.5000-01 0.54613560+01 0.55921810+01 0,55920210101 0.55932El0101 0.55932500+01 0.55183010101

0.6000-01 0.53072100+01 0,54011810+01 0,5l101070101 0.54011870101 0.54069920+01 0.53919510+01

0,1000-01 0,52016330+01 0,52809240101 0,52833830+01 0,52811910101 0,52806140+01 0.52662180+01

0.8000-01 0.51239320+01 0,51881220+01 0,51910030101 0,51918560+01 0,51909380101 0.51164490101

0.9000-01 0.50630690+01 0,51206640101 0,51221620101 0,51233590+01 0,51232800+01 0.51093190101

0,1000100 0.50138040+01 0,50615940+01 0,50693690101 0,50693160101 0,50101210101 0,50561240101

0.1100100 0.49139860+01 0,50259100101 0,50213350101 0,50266450+01 0,50259010101 0,50125110101

0.1200+00 0.19395110101 0.49908130+01 0.49920990+01 0,49910290101 0.49911250101 0.49164800101

0.1300+00 0.49100160+01 0.19591450101 0.49610850+01 0,49616070101 0.19611410101 0.49464510101

0.1400+00 0,18834630+01 0.49325500101 0,49333810+01 0.49341030+01 0.19346480101 0.49201140101

0.1500100 0,18589240101 0.19014960+01 0,19087010+01 0.49103800+01 . 0.49106890101 0.48963500101

0.1600100 0.48364360101 0.48863210+01 0,18811890101 0.48880.640101 0.18885120+01 0.48148510+01

0.1100+00 0.18151060101 0,48664600+01 0,48610860+01 0,48610110+01 0.48616420101 0.48543350101

0.1800100 0.17958510101 0,48418500+01 0,48484580101 0,48414890+01 0,48416360+01 0.48345430101

0.1900100 0.11719450101 0.48309650+01 0,18314310101 0,48291950+01 0.18301310+01 0.48158810101

0.2000100 0.11610030+01 0,18137680+01 0,48142990+01 0.48121280101 0.48132200101 0.41991800101

0.3000+00 0,16302130+01 0,46198140+01 0,46196690+01 0.16803110101 0.468018[0101 0.46669110+01

0,1000100 0.15318140101 0,15854190101 0,45818980+01 0.15819510+01 0.45851260101 0.45116680+01

0,6000+00 0.4I10112010[ 0,44508150+01 0,14486630+01 0.44501310101 0.44511460101 0.44386010+01

0,8000+00 0,43301940101 0.43551230101 0,13605100+01 0,43552430101 0.13621870101 0.43481330+01

0,1000101 0.4Z521920101 0.41907020+01 0,11967010+01 0,43113200+01 0.13036330101 0.42916180+01
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Table 6. Value of mean Nusselt number for constant wall

temperature and developing velocity profile.

Pr = 0.01

N = Number of collocating points.

AXIAL DISTANCE NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT
{x/RII(Re.PrI NO. NO. NO. NO. NO. NO.

N ' 3 N ' 6 N , 9 N , J 2 N , 15 N ' 18

0.10000-03 0.34503050103 0.11515500103 0.18285600103 0.11101960103 0.11198110103 0.11122990103

0.50000-03 0.86088680102 0.12101990102 0.11149490102 0.11897410102 0.71818930102 0.11811560102

0.10000-02 0.5323HZOI02 0.52040180102 0.51180860102 0.51877020102 0.51886110102 0.51888220102

0.10000-02 0.26191600102 0.26887880102 0.26903980102 0.26901680102 0.26901690102 0.26903870102

0.10000-01 0.11737320102 0.11726800102 0.17726000102 0.11126790102 0.1I1Z7320fDZ 0.11729550102

0.20000-01 0.13110110102 0.13142700102 0.13168320102 0.13151910102 0.13161610102 0.13173250102

0.30000-01 0.969017l0101 0.96786780101 0.97108100101 0.96953180101 0.97098130101 0.91301650101

0.10000-01 0.87081210101 0.81016150+01 0.81210980101 0.87131Z10101 0.81222860101 11\81362290101

0.50000-01 0.80181360101 0.80414510+01 0.80569910101 0.80506100101 0.80512110101 0.80681630101

0.60000-01 0.15720690101 0.15646480+01 0.15778580+01 0.75130390101 0.75781860101 0.15819250101

0.10000-01 o .m2038010 1 0.12055820+01 0.1216935n+01 0.m21m101 0.72173290101 0.72253330101

0.80000-01 0.69312460101 0.69251970+01 0,69356560+01 0.69309110101 0.69353370101 0.69123800101

0.90000-01 0.61066580101 0.61016680+01 0.61103300101 . 0.67061020101 0.61098010101 0.67160990101

0.10000100 0.65230130101 0.65180360101 0.65251640101 0.65223820101 0.65255610101 0.65312650101

0.11000100 0.63692960101 0.63648100101 0.63118440101 0.63689180101 0.63721110101 0.63711280101

0.12000100 0.62392560101 0.62352090+01 0.62416260101 0.62389900101 0.62415100101 0.62161810101

0.13000100 0.61211610101 0.61W080101 0.61301200101 0.61270170101 0.61297100101 0.61316510101

0.11000100 0.60301520101 0.60279210101 0.60334110101 0.60301600101 0.60321630101 0.60368320101

0.15000100 0.59156010101 0.59133470101 0.59484240101 0.59452360101 0.59171220101 0.59511310101

0.16000100 0.58103910101 0.58673410101 0.58120820101 0.58699630101 0.58118510101 0.58751720101

0.11000100 0.58033450101 0.51996350101 0.58011300101 0.58029980101 0.58011680101 0.58080120101

0.18000100 0.57429310101 0.57385280101 0.57426910101 0.51121320101 0.57411000101 0.51113110101

0.19000100 0.56870860101 0.56821660101 0.56861ZZ0101 0.5687ZZ1010I 0.56891680101 0.56921110101

0.20000100 0.56363010101 0.56321680101 0.56361980101 0.56361750101 0.56386010101 0.56126010101

0.30000+00 0.52911390101 0.52900180101 0.52922890101 0.52901290101 0.52901660101 0.52911280101

0.10000100 0.50819680101 0.50875220101 0.50889150101 0.50860630101 0.50889730101 0.50928160101

0.60000100 0.18238130101 0.18119120+01 0.48116310101 0.18211130101 0.18210380+01 0.18301690101

0;80000100 0.16105100101 0,16603650101 0.46579440101 0.45781160101 0.15152860101 0.15135310101

0.10000101 0.15774120101 0.49112810+01 0.49669000101 0.45159590101 0.11918110101 0.11119860101

1\
! '



Table 7. Value of local Nusselt number for constant wall
temperature and developing velocity profile.

Pr = 0.70

N = Number of collocating points.

78

AXIAL DISTANCE
(x/R)/(Re.Pr)

NUSSELT
NO.

N ' 3

NUSSELT
NO.

N ' 6

NUSSEtT
NO.
N ' 9

NUSSELT
NO.
N :: 12

NU'SELT
NO.
N = 15

0.10000-03
0.5000D-03
0.1000D-02
0.4000D-02
0.1000D-Ol
0.2000D-Ol
0.3000D-Ol
0.4000D-Ol
0.50000-01
0.6000D-Ol
0.7000D-Ol
0.8000D-Ol
0.9000D-Ol
0.10000+00
0.11000+00
0.1200D+00
0.13000+00
o .1400D+00
0.15000+00
0.16000+00

0.1700D+00
0.18000+00
0.19000.00
0.20000+00
0.3000D+00
0.4000D+00
0.60000+00
0.8000D+00
0.10000+01

0.3155321D+02 0.10070420+03 0.7523912D+02 0.73.12420+02 0.7198616D+02
0.2828381D+02 0.3219786D+02 0.29569050+02 0.3115445D+02 0.3112184D+02
0.26130210+02 0.18713200+02 0.2108453D+02 0.2132132D+02 0.21132550+02
0.1586493D+02 0.10796110+02 0.1106540D+02 0.1106857D+02 0.1106209D+02
0.7204341D+Ol 0.7634669D+Ol 0.7507104D+Ol 0.7473482D+Ol 0.7480252D+Ol
0.48978620+01 0.57273500+01 0.5733280D+01 0.5710598D+Ol 0.5729897D+Ol
0.4476783D+Ol 0.49711160+01 0.4980900D+Ol 0.4983996D+Ol 0.4982006D+Ol
0.42530120.01 0.4556568D+Ol 0.45624360.01 0.45574410+01 0.4561471D.Ol
0.4102562D+Ol 0.42962530+01 0.4296261D+Ol 0.4296226D+Ol 0.4298477D+Ol
0.40012020+01 0.41197590+01 0.4120942D+Ol 0.4120143D+Ol 0.4120886D+Ol
0.3930102D.Ol 0.39986820+01 0.39998690+01 0.39981470.01 0.39984910+01
0.38785680+01 0.39132890.01 0.3912780D+OI 0.3912155D+Ol 0.39127930+01
0.3841006D+Ol 0.38510340+01 0.3849212D+Ol 0.3850438D+Ol 0.3850905D+Ol
0.38135830+01 0.38047730+01 O.~804063D.Ol 0.38047500.01 0.38051080+01
0.37931190+01 0.37702740+01 0.37707640+01 0.3770500D+Ol 0.3770677D+Ol
0.37778880+01 0.37455530+01 0.3745740D+Ol 0.3744592D+Ol 0.3744844D+Ol
0.37663240.01 0.31266790+01 0.37270250+01 0.37261250.01 0.37263060+01
0.37572040+01 0.3712487D+Ol 0.3712171D+OI 0.3711652D+Ol 0.3711888D+Ol
0.3749996D+Ol 0.37015040+01 0.3700428D+Ol 0.3701215D+01 0.3701279D+Ol
0.37443630+01 0.36924620+01 0.36912610+01 0.36925210+01 0.3692642D+Ol
0.37401520+01 0.36854880+01 0.36848270+01 0.36858540+01 0.36857830+01
0.37369640+01 0.36796650+01 0.36798410+01 0.3680216D+Ol 0.3680227D+Ol
0.37341750+01 0.36750410+01 0.3675G610+01 0.3675659D+Ol 0.36755690+01
0.37323370+01 0.36718250+01 0.36729GOO+01 0.3671949D+Ol 0.3671923D+Ol
0.37276260+01 0.36648130+01 0.36637970+01 0.36651010+01 0.3665230D+Ol
0.3727553D.Ol 0.36629570+01 0.36636030+01 0.3663218D+Ol 0.36632080+01
0.37273540+01 0.36631140+01 0.36629990+01 0.36632700+01 0.3GG3297D+Ol
0.3727406D+Ol 0.3663058D+Ol 0.36631270+01 0.3662930D+Ol 0.3662986D+Ol
0.37273560+01 0.36630510+01 O.3G629R4nfOl O.36G318GDfOl O.J663217n+Ol



Table 8. Value of mean Nusselt number for constant wall
temperature and developing velocity profile.

Pr = 0.70
N = Number of collocating points.
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AXIAL DISTANCE
(x/R)/(Re.Pr)

NUSSELT
NO.

N " 3

NUSSELT
NO.

N " 6

HUSSELT
NO.
N " 9

NUSSELT
NO.
N " 12

NUSSELT
NO.
N " 15

0.10000-03 0.28009270.03 0.11002300.03 0.10587600.03 0.10008960.03 0.100.0830.03
0.50000-03 0.45944830.02 0.41582360.02 0.40161700.02 0.40876740+02 0.40876710+02
0.10000-02 0.22081190.02 0.26258300.02 0.25541790.02 0.25617430.02 0.25637370+02
0.40000-02 0.14301850.02 0.14504610.02 0.14490790.02 0.14492310+02 0.14490060+02
0.10000-01 0.10233710+02 0.10005910.02 0.10000390.02 0.10001770+02 0.99994810+01
0.20000-01 0.76425540.01 0.76459290.01 0.76435730.01 0.76448140+01 0.76407970+01
0.30000-01 0.6577979D+Ol 0.6600179D+Ol 0.6598847D+Ol 0.6595753D+Ol 0.6596745D+Ol
0.4000D-Ol 0.5977741D+Ol 0.5989085D+Ol O.59BA112D+Ot 0.5985763D+Ol 0.5986730D+Ol
0.50000-01 O.55R0512D+Ol 0.55817650+01 0.5583356D+01 0.5581130D+Ol 0.5581793D+Ol
0.60000-01 0.5294315D+Ol 0.5294468D+Ol 0.52935770+01 0.52921090+01 0.5292814D+Ol
0.70000-01 0.50782540+01 0.50770500+01 0.50762830+01 0.5075223D+Ol 0.50757840+01
0.80000-01 0.49099130.01 0.49081690.01 0.49078350.01 0.49065740.01 0.49070640+01
0.90000-01 0.47754420.01 0.47737310.01 0.47737150.01 0.47721950.01 0.47726710+01
0.10000+00 0.46655450+01 0.46644710+01 0.4664126D+OJ 0.4662976D+Ol 0.4663437D+Ol
0.11000.00 0.4574511D+Ol 0.45740420+01 0.45734410401 0.45726630+01 0.45731050+01
0.12000+00 0.44979890+01 0.44976980+01 0.44973340+01 0.44968320+01 0.44972090+01
0.13000.00 0.44329360.01 0.44328750.01 0.44325390.01 0.44319310.01 0.44322950+01
0.14000+00 0.4377181D+Ol 0.4377082n+Ol 0.43769650+01 0.43762930+01 0.43766060~01
0.15000+00 0.43288430+01 0.43286430+01 0.43287850+01 0.43277410+01 0.43280950+01
0.16000+00 0.42865040.01 0.42863780'01 0.42865910.01 0.42854340+01 0.42857360+01
0.17000.00 0.42488540.01 0.42489970.01 0.42489l50.01 0.42480190.01 0.42483720+01
0.18000.00 0.42152420+01 0.42158730.01 0.42154170.01 0.42148640+01 0.42IS167D+Ol
0.1900D.00 0.41854430.01 0.41862470.01 0.41855650.01 0.41852300.01 0.41855690+01
0.20000.00 0.41581410.01 0.41591320+01 0.41583360.01 0.41585590.01 0.4158856D+Ol
0.30000.00 0.39894170.01 0.39876930.01 0.39894870.01 0.39863550.01 0.3986473D+Ol
0.40000+00 0.38978240.01 0.38989980.01 0.38973860.01 0.38986930.01 0.3898691D.Ol
0.60000.00 0.37939970.01 0.37962180.01 0.3792G730.01 0.37926220+01 0.37934250.01
0.80000+00 0.37166130+01 0.31045200+01 0.37171860+01 0.37046160+01 0.3704772D+Ol
0.10000+01 0.36071410+01 0.~G47411D+Ol 0.36021370+01 0.36346150+01 0.3632492D+Ol



Table 9. Value of local Nusselt number for constant wall
temperature and developing velocity profile.

Pr = 10

N = Number of collocating points.
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AXIAL DISTANCE NUSSELT
(xtRlt(Re.Pr) NO.

N = 3

NUSSELT
NO.

N = 6

NUSSELT
NO.

N = 9

HUSSELT
NO.

N = 12

NUSSELT
NO.

N = 15

NUSSELT
NO.
N = 18

0.0001
0.0005
0.0010
0.0040
0.0100
0.0200
0.0300
0.0400
0.0500
0.0600
0.0100
0.0600
0.0900
0.1000
0.1100
0.1200
0.1300
0.1400
0.1500
0.1600
0.1100
0.1600
0.1900
0.2000
0.3000
0.4000
0.6000
0.6000
1.0000

29.66693
27.28655

24.30615
11.25305
5.04002
4.26164
4.09693
3.91339
3.69053
3.63133
3.60135
3.77G67
3.16055
3.14995
3.14265
3.13601
3.13461
3.13239
3.13124
3.13036
3.12991
3.12960
3.12921
3.12699
3.12133
3.72753

3.12131
3.12136
3.12739

73.40160
20.12060
12.61522
9.20954
6.31120
4.96422
4.41561
4.20215
4.03100
3.91612
3.83741

3.78457

3.14614
3.72385

3.10622
3.69362
3.68463
3.61914
3.67495
3.67264
3.61051
3.66924
3.66790
3.66692
3.66375
3.66337
3.66312
3.66296
3.6G308

44.62211
21. 63762
11.12442
6.66799
6.25356
5.00046
4.46615
4.20620
4.02877
3.91372
3.83692
3.78415
3.14118
3.72166
3.10481
3.69366
3.68544
3.61944
3.67525

3.61181

3.66940
3.66815
3.66732
3.66645
3.66312
3.66300
3.66298
3.66316
3.66300

40.82859

22.65393
16.12391
8.92986
6.25396
5.00204
4.48924
4.20560
4.02898
3.91450
3.63689
3.18314
3.74693
3.72238
3.70546
3.69395
3.68536
3.61899
3.61445
3.61166
3.66992
3.66672
3.66601
3.66109
3.66319
3.66336
3.66299
3.66312
3.66303

50.02529
22.22636
16.38545
8.93699
6.25102
5.00107
4.46699
4.20535
4.02963
3.91333
3.63626
3.76440
3.14641
3.12296
3.10496
3.69306
3.66472
3.61960
3.67547
3.67266
3.61031
3.66644
3.66101
3.66603
3.66461
3.66302
3.66312
3.65690
3.61165

49.23023
22.42201
16.34424
8.92611
6.24254
4.99038
4.41123
4.19384
4.01114
3.90286
3.82520
3.11153
3.13522
3.11061
3.69364
3.68234
3.61313
3.66139
3.66219
3.66020
3.65832
3.65100
3.65635
3.65541
3.65151
3.65174

3.65136
3.65150
3.65140



Table 10. Value of mean Nusselt number for constant wall
temperature and developing velocity profile.

Pr = 10

N = Number of collocating points.
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AXIAL DISTANCE NUSSELT
(x/R)/(Re.Pr) NO.

N • 3

HUSSELT
NO.

N • 6

NUSSELT
NO.

N • 9

NUSSELT
NO.

N • 12

NUSSELT
NO.

N • 15

NUSSELT
NO.

N • 18

0.0001
0.0005
{l.0010
0.0040
0.0100
0.0200
0.0300
0.0400
0.0500
0.0600
0.0700
0.0800
0.0900
0.1000
0.1100
0.1200
0.1300
0.1400
0.1500
0.1600
0.1700
0.1800
0.1900
0.2000
0.3000
0.4000
0.6000
0.8000
1.0000

48;44645
20.10004
16.30047
11.98055
8.53217
6.87507
6.16846
5.72513
5.40715
5.16642
4.98053
4.83313
4.71310
4.61397
4.53108

4.46096
4.40098
4.34914
4.30363
4.26375
4.22830
4.19674
4.16854
4.14302
3.97890
3.88872
3.78572
3.71443
3.59289

88.81291
27.95827
20.25126
11.55708
8.44873
6.92073
6.18366
5.72039
5.39693
5.15786
4.97374
4.82723
4.70833
4.61031
4.52836
4.45896
4.39950
4.34775
4.30272
4.26287
4.22776
4.19633
4.16829
4.14293
3.97677
3.88865

3.78455

3.70944
3.60159

78.93982
26.88306
20.27509
11.53318
8.44554
6.91971
6.18348
5.71958
5.39705
5.15780
4.97326
4.R2695

4.70816

4.61057
4.52848
4.45873
4.39912
4.34761
4.30260
4.26311
4.22811
4.19653
4.16819
4.14281
3.97913
3.89004
3.78776
3.70661
3.61762

60.65203
27.00028
20.23733
11.53702
8.44578
6.92071
6.18383
5.72020
5.39726
5.15790
4.97354
4.82743
4.70866
4.61057
4.52847
4.45883
4.39930
4.34785
4.30293
4.26310
4.22791
4.19642
4.16811
4.14276

3.97876
3.88875
3.78430
3.71902
3.59779

59.08677 59.12140
27.10271 27.11677
20.23241 20.23377
11.53718 11.53918
8.44620 8.44747
6.92083 6.92210
6.18402 6.18515
5.72020 5.72136
5.39714 5.39839
5.15828 5.15893
4.97365 4.97455
4.82705 4.82839
4.70832 4.70962
4.61049 4.61153
4.52865 4.52937
4.45904 4.45971
4.39943 4.40017
4.34764 4.34870
4.30262 4.30379
4.26297 4.26396
4.22792 4.22872
4.19672 4.19727
4.16868 4.16893
4.14333 4.14359
3.97659 3.97958
3.89205 3.88930
3.83948 3.78495
3.81714 3.71837
4.20596 3.59567
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APPENDIX

REVIEW OF ORTHOGONAL COLLCATION METHOD

The orthogonal collocation method has several advantages. Namely, the colloca-

tion points are picked up automat.ically, thus avoiding the arbitrary choice (and

posible poor one) by the user, and the error decreases much faster as the number of

collocating points increases. In addition, the solution can be derived not in terms

of the coefficients in the trial funrtion (method of coefficients) but in terms of the

of the value of t.he solution at. the collocat.ion point.s (method of ordinates). the

whole problem is then reduced to a set of matrix equations which can be easily*

generated and solved on the computer,

Let us examine the advantage of solving for the solution at the collocation points

rather than the coefficients. We expand the solution in the form

IV

y(x) = L aiYi(X)
;=1

(A)

where {Yi(X)} are known functions of position. Usually we express the solution by

providing the set {ail . Then we evaluate eq. (A) at a set of N points to give

IV

Y(Xj) =L aiYi(Xj)
;=1

(B)

It is important to note that for all problems the Yi(Xj) are known numbers. Thus us-

ing eq. (B) gives Y(Xj) if the coefficients {ai} are known. Consequently, rearranging

*But in nunliuear prul>lems the formulation of the equations actually becomes more

combersome than solving the equations.
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eq. (B) and solving for {aj} we obtain

(C)

This means that if the value of the solution is known at N points then the coefficients
,

{a;} are determined. Consequently, we can solve a problem using as unknowns

either the coefficients {a;} or the set of solution values at the collocation points

{Y(Xj n. To solve a differential equation that includes higher derivatives of y, we

differentiate eq. (A) once or twice, and evaluate the result at the collocation points

N

Y'(Xj) =L a;y;(xj 1
1=1
N

Y"(Xj) =L Q;y;'(Xj)
;=1

(D)

(E)

Since the coefficients {OJ} can be expres~ed inlerms of the solution values at the

collocation points {Y(Xj H, the derivatives can also. We simply substitute eq. (C)

in eq. (D) and eq. (E). Then the derivative at. a part.icular collocation point, which

is needed for the residual, is expressed in terms of the solut.ion at all the collocation

points:

Y'(Xj) =t [Y;(Xl)r1 [Y(X1l]Y;(Xj)
I,i: 1

Y"(Xj) =t [Y;(Xl)r1 [y(Xl)]Y:'(Xj)
,,1:=1

We write the results as
N

Y'(Xj 1= L AjlY(Xl)
i=1

N

Y"(Xj) =L BjlY(xl)
i=l

(F)

(G)

(H)

(I)
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Thus the derivative at any collocation point is expressed in terms of the value of

the function at the collocation points. The next improvement to be introduced into

the collocation method is to choose orthogonal polynomials for trial functions. We

define the polynomial
nl

Pm(X) = LCjXj

Jo

(J)

and we say that the polynomial has degree m and order m + 1. The coefficients

in eq. (J) are defined by requiring that PI be orthogonal to Po, P2 be orthogonal

to both Po and PI, and Pm be orthogonal to each Plo where k :5 m - 1. The

orthogonality condition can include a weighting function W(x) 2: O. Thus

61. W(X)Pl(X)Pm (:r) dx = 0 k = 0,1, 2...m - 1 (K)

The procedure specifies the polynomials to within a multiplicative constant, which

are determine by requiring the first coefficient to be one. For example, let us use

W(x) = 1, a = 0 and b = 1. The polynomials are

Po = 1 P2 = 1+ ex + dx2 (L)

The first one is already known : Po = 1. The second one is found by requiring

or,l\l+bX)dx=O (M)

which makes b = -2. The third one P2 is found from

and so forth. The results are'

Po = 1, PI = 1 - 2x, P2 = 1 - 6x + 6x2
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and

Pdx) = 0
1

at x = - and
2
1

at x = 2(1 ~ .../3/3)

The polynomial Pm (x) has m roots in the interval a t.o b, and t.hese serve as con-

venient choices of the collocation points. Thus if the expansion involves Po and Pl,

such that

(N)

(0)

We need two collocation points to evaluate two residuals to determine the two

constants al and a2, and we choose the t.wo root.s t.o P2( x) = O. We see that t.he

whole procedure is aut.omat.ic once t.he weighting function W(x) is chosen. So, one

has fewer arbitrary choices as to trial funct.ions and collocating points, although the

weight.ing function must be specified.

The equations which we developed in chapt.er 3 reqUire t.hat. t.he solution t.o be

symmetric about. r = O. Hence it. can be expanded in terms of only even powers

of r, excluding all the odd powers. In such a case it. is our prerogat.ive to include

that information in t.he choice of t.rial functions. To do this we construct orthogonal

polynomials that are functions of r2. One possible choice is
N

y(r2) = y(l) + (1 - r2) L a;P;_I(r2)
i=l

N is the number of interior collocation points. Equivalent. choices are
N

y(r2) = L b;P;_1(r2)
.=1
N

=L d;r2;-2

.:1

(P)

(Q)



k<m-1

We define the polynomial to be orthogonal with the condition

11

W(r2)Pl(r')Pm(r2)ra-1 dr = 0,
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(R)

where a = 1,2, or 3 for planar, cylindrical, or spherical geometry, respectively.

Again we take first coefficient of the polynomial as one, so that the choice of the

weighting function W(r2) completely determines the polynomial, and hence the

trial function and the collocation points.

Let us differentiate eq. (Q) and take the first dp.rivative and the laplacian of it,

where the laplacian

(
ra-! oy ).

Ora-I
(S)

for three geometris. Thus
N+l

Oy_", 23Or - L.- di(2i - 2)r ,- .
;=1

and
N+l [ ]\l2y = L di(2i - 2) (2i - 3) + a - 1 r2;-4
.=1

(T)

(U)

Now the collocating points are N interior points in the interval 0 < r; < 1 and one

boundary points rn+1 = 1. The point r = 0 is not included because the symmetry

condition requires that the first derivative be zero at r = 0 and that condition

is already built into the trial function. Now the derivatives are evaluated at the

collocation points to give
N+1

( ) '" d 2;-2y r; = L.- ir;
.=1

(V)

8y( rj )
or

N+1
_ '\' d'r2i-3
-L.J "

;=1

(V)

N+!

\l2y(rj) = L d,
i=1

(X)



And in matrix notation
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cy =-
-=Cdor

-'> --'try=Dd

Solving for d

Cj; = (2; - 2)rJ'-3

for cylindrical geometry.

f)y ===-1 =
-, =CQ =Ay
or

-2 ==-1 =
'V y=DQ y=By

(Y)

(Z)

The roots of Jacobi polynomials are used throughout this work. Legendre polyno-

mials have zeros well distributed, with some concentrations near the two ends of

the interval. Jacobi polynomials emphasize the middle of the approximation inter-

val. Although Legendre polynomials give the smallest approximation errors at both

ends, large errors may occur within the approximation inverval. On the other hand

Jacobi polynomials give minimum errors in the middle regions.
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