
SIMULATION AND OPTIMIZATION OF AMMONIA SYNTHESIS LOOP

A THESIS

SUBMITTED TO THE DEPARTMENT OF CHEMICAL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING (CHEMICAL) BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

ń

BY

MUHAMMAD ABOUL MUQEEM

DHAKA, BANGLADESH JUNE, 1988 ABD BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA DEPARTMENT OF CHEMICAL ENGINEERING

CERTIFICATION OF THESIS WORK

We, the undersigned, certify that <u>MUHAMMAD ABDUL MUQEEM</u>, candidate for the degree of <u>Master of Science in Engineering (Chemical)</u> has presented his thesis on the subject <u>"SIMULATION AND OPTIMIZATION OF AMMONIA SYNTHESIS LOOP</u>", that the thesis is acceptable in form and content, and that the student demonstrated a satisfactory knowledge of the field covered by this thesis in an oral examination held on 22nd June, 1988.

K.O

661.94

Dr. Kh. Ashraful Islam Assistant Professor Department of Chemical Engineering.

brangenan

Dr. A.K.M.A. Quader Professor and Head Department of Chemical Engineering.

Dr. Jasimuz Zaman Professor Department of Chemical Engineering.

Dr. Khalidur Rahman Professor Department of Chemical Engineering.

Wint Unizens was

Mr. Ali Afzal Khan 2215 Ho-Chief Operation Manager Urea Fertilizer Factory Ltd. Ghorasal, Narsingdi. Chairman

Member

Member

Member

External Member

ABSTRACT

Simulation model (pseudo homogeneous one-dimensional) based on Temkin-Pyzhev kinetic expression for Uhde three bed quench reactor has been developed. The present model was developed based on the configuration of an ongoing fertilizer plant in the country. Kineticparameters of the rate expression and the deactivation parameters for catalyst ageing were calculated using steady-state plant data collected over three years period at an interval of two weeks using parameter estimation techniques. Values of the kinetic parameters were comparable to those reported in the literature. The deactivation parameters showed that deactivation of the synthesis catalyst was extremely small with time, which was consistent with the plant experience. The model was simulated under different operating conditions. The operating variables considered are recycle ratio, quench temperature, H_2/N_2 ratio and inert level in the fresh feed. Simulation studies indicate that the optimum operating conditions lies in the range: H_2/N_2 ratio - 2.50 to 3.25, inerts in fresh feed - 0.001 to 0.02, recycle ratio - 3.5 to 4.0 and quench temperature - 480°K to 500°K.

Simulation studies alone cannot indicate the values of the operating variables which will result in optimum operation of the plant. Suitable models of other equipments in the ammonia synthesis loop were formulated. The whole synthesis loop was optimized by changing the above four variables one at a time i.e., using perturbation

i

type optimization technique. Finally the whole loop was optimized using complex Box method. The conditions for designing the synthesis loop based on the minimum operating cost is found to be: H_2/N_2 ratio = 2.55, inerts in fresh feed = 0.0023, recycle ratio = 3.24, quench temperature = 499.9°K.

ACKNOWLEDGEMENTS

iii

the and gratitude author acknowledges with thanks The encouraging advice and helpful co-operation he received from Dr. Assistant Professor under whose Khondaker Ashraful Islam, supervision the work has been carried out. Thanks is also due to Professor and Head of the Chemical Quader, Dr. A.K.M.A. Engineering Department for his interest in the work.

The author is thankful to the Computer Centre of Bangladesh University of Engineering and Technology, Dhaka for providing computer facilities to do all the work of the thesis project. Thanks are also due to Mr. Sanjoy Kumar Poddar and Mr. Md. Nazmul Haque, computer programmers of the Computer Centre, for their helpful suggestions and advice.

The author acknowledges with gratitude the help and cooperaion he received during his stay and collection of plant data from the authority of Zia Fertilizer Company Ltd.

The interest shown by his colleagues and friends Mr. Edmond Gomes and Mr. Gopal Chandra Paul is noted with appreciation.

. Thanks is also due to Mr. Hussain Ali for dilligently typing the thesis.

Last but not the least, thanks must go to my wife, Lutfoun Tahera Khanam, for her patience and encouraging advice throughout the thesis work.

 \bigcirc

TABLE OF CONTENTS

_		PAGE
ABSTRACT		i
ACKNOWLEDGEMENTS		iii
	•	
CHAPTER 1	INTRODUCTION	1.
CHAPTER II	LITERATURE REVIEW	3
2.1	Introduction	3
2.2	The Synthesis Reaction	3
2.3	Simulation Models	5
2.4	Parameter Estimation	6
2.5	Optimization Methods	7 [·]
2.6	Process Costing	8
CHAPTER III	PARAMETER ESTIMATION	10
CHAPTER IV	SIMULATION	10
4.1	Synthesis loop and converter	15
4.2	Simulation model	18
4.2.1	Model equation and method of solution	19
4.3.2	Algorithm	22 🖯
4.4	Results and discussions	22
4.5	Effects of different variables on reactor	
	performance	26
4.5.1	Base case	26
4.5.2	Effect of H ₂ /N ₂ ratio	26
4.5.3	Effect of Inerts	26
4.5.4	Effect of Recycle ratio	39
4.5. 5	Effect of Quench temperature	39
4.6	Limitations of the model and suggestions	
	for further work	39
CHAPTER V	OPTIMIZATION	. 42
5.1	Introduction	42
5.2	Main assumptions in this optimization	43
5.3	Ammonia Synthesis loop optimization	45

			PAGE
	5.4	Results and discussions	47
· ·	5.4.1	Part I	47
	5.4.2	Part II	54
	5.5	Limitations	57
	5.6	Suggestions for further work	58
NOMENCLA	FURE		59
BIBLIOGRA	АРНҮ		63
APPENDIX	I	Vapour-Liquid Equilibrium Relationship in	•
		Presence of Other Gases	
APPENDIX	II	Literature Survey	
APPENDIX	III	Computer Programs	
APPENDIX	IV .	Modules of Different Equipments	
APPENDIX	v	Plant Data.	

v

CHAPTER 1 INTRODUCTION

Catalytic synthesis of ammonia is a well known chemical

process having importance in Bangladesh. Of the two important types of reactors, the shell and tube type and the quench type, the latter is used in the Urea Fertilizer Factories at Ghorasal and Ashuganj. This type of reactor is being increasingly used in fertilizer industries because of their simplicity in construction and ease in operation and maintenance (Hossain, 1981).

Modelling, simulation and optimization are three interlinked activities in chemical process engineering. Based on a mathematical model for a system, the simulation will involve the behaviour of the reactor under given conditions of feed and operating conditions and optimization would involve the search for conditions of operation to minimize the operating cost of the system or maximize the return from the system.

Simulation studies, would attempt to predict the performance of a given physical system based on a mathematical model for the system. In so doing, the performance of the plant can be predicted at various operating conditions and effects of varying operating conditions can be studied. This allows better operating conditions to be adopted resulting in improved performance of the plant. Simulation studies also provide information on the control and stability of the plant.

Optimization is the collective process of finding the set of conditions required to achieve the best result from a given situation (Beveridge and Schechter, 1970). Almost any problem in the design, operation of industrial processes can be reduced in the final analysis to the problem of determining the largest or smallest value of a function of several variables i.e. to an optimization problem. There are two types of optimization: structural and parametric. Parametric optimization is performed when the plant is in operation, where certain parameters are adjusted to increase the performance of the plant. On the other hand, structural optimization, which has been done in this work, is used in the design phase when a new plant is going to be designed. In the last part of this work, the ammonia synthesis loop has been optimized using constrained Box method (Box, 1965) to minimize the annual operating cost of the loop. By this study a set of optimum operating variables has been found out. The variables considered in this study are H_2/N_2 ratio, recycle ratio, inerts in the feed and quench temperature.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

The catalytic synthesis of ammonia from nitrogen and hydrogen is one of the most successful application of chemical technology for the benefit of mankind. Thermodynamic and kinetic considerations suggest operating at a high pressure, at a high temperature and in the presence of a catalyst, in order to combine nitrogen with hydrogen under industrially economic conditions.

wealth of information exist in the literature on all aspects of ammonia synthesis reaction; much more are stored in the files of industrial research laboratories as classified documents (Vancini, 1971). Extensive literature survey has been done by Hossain (1981). This has been updated and is given in Appendix II.

2.2 The Synthesis Reaction

The synthesis of ammonia from nitrogen and hydrogen is a reversible exothermic equilibrium reaction:

 $\frac{1}{2}$ N₂(g) + 3/2 H₂(g) \implies NH₃(g) - Δ H (2.1)

Direct determination of heat of reaction and equilibrium over wide ranges of temperature and pressure is in practice time consuming, delicate and expensive. Therefore, indirect methods are used, which are based on thermodynamic data such as free energy, heat of formation, specific heat capacity, entropy, P-V-T relationship, etc. which are experimentally obtainable and values are available in the literature (Vancini, 1971 and Hossain, 1981).

Various expressions for heat of reaction is available in literature given by different workers. The expressions varied widely and as generally no specific conditions were given it was rather difficult to choose an expression to use in the present work.

The equation for specific heat capacity of nitrogen, hydrogen and ammonia are mostly given in the form $C_p = a+bT+c'T^2+dT^3$. For these three gases the values used in this work for the constants a,b,c and d were taken from Reid, Sherwood and Prausnitz (1977).

The expression for viscosity and thermal conductivities of gases varies with temperature and pressure as shown by Reid et al. (1977).

Many workers have evaluated the equilibrium constant as a function of temperature. They have expressed the expression in temperature for various temperature ranges. In the present work, the most widely used expression by the workers Dyson and Simon (1968), Gaines (1977), Rase (1977) and Shah (1967) have been used for equilibrium calculations.

Extensive studies of the catalytic synthesis of ammonia on iron suggest that nitrogen adsorption on the catalyst surface is the rate controlling step (Vancini 1971). Temkin and Pyzhev (1939) derived a rate equation for ammonia synthesis, which brought order among kinetic data and helped correlating kinetic expressions. Temkin-Pyzhev (T-P) equation is given in the following form:

$$r = k_1 P_{N_2} [P_{H_2}^3 / P_{NH_3^2}]^{\alpha} - k_2 [P_{NH_3^3}^2 / P_{H_2^3}^3]^{\beta}$$
(2.2)

There are some limitations regarding the exponents α and β . Many workers reports the value of 0.5 for α . Nielsen (1968) recommended a value of 0.75 for α in the T-P equation and he also reports that α depends on the process conditions. In this work a modified form of the T-P equation has been used using activities instead of partial pressure and α having a value of 0.5 (Rase, 1977). Many other expressions for rate equation have been given by various workers (Hossain, 1981).

Active metal used in the synthesis catalyst is Fe. Promoters are used for better catalytic action. Most common promoters used in synthesis catalyst are Al_2O_3 and K_2O . Al_2O_3 increases the surface area and prevents sintering of the surface area. K_2O neutralizes the acid character of Al_2O_3 , decreases the electron work function of iron and increases the ability to chemisorb nitrogen. Artificial magnetite is mainly used for catalyst preparation. The reduction of the catalyst can be carried out in the synthesis column, and then start producing ammonia with adjusting the pressure and spatial velocity. But the most economic, safest and practical method consists of oxidizing the catalyst surface with a nitrogen stream containing 0.1 - 0.2% O_2 at a pressure 2-5 kg/cm² and at temperature lower than $150^{\circ}C$.

2.3 <u>Simulation Models</u>

Mathematical modelling is the mathematical representation of a physical system. Its ultimate aim is to predict the process behaviour

under different sets of operating condition for working out a better strategy to control the process. Mathematical modelling costs less money and time (Hussain, 1986). Mathematical models for simulation studies have been developed by many workers. Singh and Saraf (1979) carried out simulation studies for ammonia synthesis reactors having adiabatic catalyst beds as well as autothermal reactors. They used a from Guacci (1977). They modified T-P equation and value of α obtained the temperature and ammonia concentration profile along the bed and in all cases, comparison with plant data and simulation result shows very good agreement. Gaines (1977) also developed a steady state model for a quench type ammonia converter and studied the effects of process variables. He proposed a simple method for optimum temperature control to obtain better efficiency from his results. Other workers (Baddour et al., 1965) have worked on TVA converters. Lutschutenkow et al. (1978) investigated the reactor sensitivity to changes in perturbation and control variables over a broad operating range. They also estimated and analyzed the reactor properties and showed them as a basis for structural and parametric synthesis of the control system.

The above studies clearly reveal that simulation is a useful tool to obtain informations on the performance of an ammonia synthesis reactor.

2.4 Parameter Estimation

Parameters of the kinetic expression reported in literature differ widely in their values. So, to find the different parameters

applicable to the operating conditions of the present study, parameter estimation was done. Plant data of ammonia synthesis loop from Zia Fertilizer Factory was collected twice in a week over a period of three years when the plant was operating near steadily. The data were screened by doing a mass balance around the reactor. Data points which gave more than 10% error were discarded. In this way, 47 data points were selected. The objective function was the absolute difference between the actual (plant) ammonia produced and ammonia formed using Temkin-Pyzhev rate expression. The difference of this function over 47 data points was minimized within specified domain of the constraints (parameters) using constrained complex Box (Box, 1965) method.

Initially using the constraints and random numbers, a complex was formed and the function is evaluated at each of the vertices of the complex. The point giving maximum function value is modified using the method of reflection. In this way the complex gets modified and the above process continues until the standard deviation of the function values at all complex points satisfies any specified convergence criteria. The final complex points are taken as the optimum parameter value.

2.5 Optimization Methods

Almost any problem in the design, operation of industrial process can be reduced in the final analysis to the problem of determining the largest or smallest value of a function of several varia-

bles, i.e. to an optimization problem. The optimum seeking methods are also known as mathematical programming techniques. There are various methods in mathematical programming: nonlinear programming, linear programming, geometric programming, quadratic programming, dynamic programming etc.

In the present study, complex Box (Box, 1965) method was used for optimization study. It falls in the nonlinear programming category. In the Box method, a geometric space is formed using the constraint and random numbers to find the constrained minimum point. At each of the vertices the function is evaluated and the vertex giving the largest function value is discarded. This point is improved by the process of reflection. Each time the worst point of the current complex is replaced by a new point, the complex gets modified and test for convergence is made. Convergence has attained when the standard deviation of the function value becomes sufficiently small for all the vertices of the current complex.

This method does not require derivatives of the objective function and constraints to find the minimum point, and hence it is computationally very simple.

2.6 Process Costing

Process costing of different equipments in the synthesis loop, e.g. reactor, heat exchangers, compressor, separator has been done using the methods outlined in Peter and Timmerhaus (1980).

Reactor costs has been calculated assuming it as a pressure

vessel. Using diameter and height of the actual converter, the weight of the vessel has been determined using suitable correlations from Peter and Timmerhaus (1980) and given in Appendix IV. From the weight the cost of the vessel has been calculated. Using suitable Lang factors, this cost has been transformed into installed cost of the equipment. In the same manner, installed cost of the separator has been calculated.

Process costing of the gas compressors has been done using appropriate equations from Peter and Timmerhaus (1980) and given in Appendix IV. Assuming multistage and isentropic compression, power required to compress the gas for a specific compression ratio has been calculated and from there cost of the compressor has been determined. In the same way as described above, Lang factors have been used.

For heat exchangers, heat load of the exchangers have been calculated. From the heat load and overall heat transfor co-efficient, the heat transfer surface area has been calculated. Based on this area, cost of the heat exchanger has been estimated. Again appropriate Lang factors have been used to find the installed cost of the heat exchanger.

CHAPTER - III

PARAMETER ESTIMATION

Parameters used in the rate expression reported in the literature varied widely. Moreover, no catalyst activity decay function was available. So, parameter study was done to find the different rate parameters pertinent to the present operating conditions and catalyst properties. Rate parameters for ammonia synthesis were updated using plant data from Zia Fertilizer Factory. Plant data were collected twice in a week over a period of three years when the plant was operating near steadily. After collection, the data were screened by doing a mass balance around the reactor; those points which gave more than 10% error were discarded. In this way 47 data points were selected. The objective function was expressed as a constrained optimization problem:

$$F_{op} = \sum_{j=1}^{m} Abs[r_{j} - f(t) ff_{j}(P, T_{av}, y_{i})]$$
(3.1)

where,

 r_j = measured rate for ammonia synthesis reaction m = number of data points available $ff_j(P,T_{av}, y_i)$ = rate expression

= $A*10^{15} \exp(-D*10^4/RT) [ff_j(P,T_{av}, y_i)]$

f(t) = catalyst activity decay function in bed= (1-B) + Be^{-Ct}

P = Partial pressure in bed

T_{av} = average temperatúre

y; = mole fraction of component i.

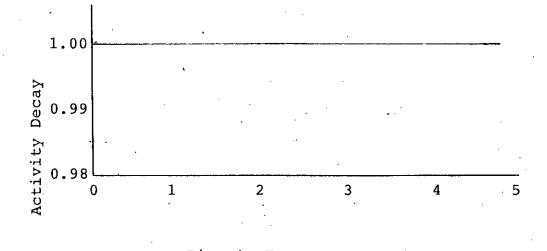
The parameters A,B,C and D in the rate expression were determined by employing an optimization technique e.g., constrained Box method (Box, 1965), by minimizing the values of the function F_{op} within specified domain over 47 data points. Three different attempts were made to determine the parameters. First, inlet conditions (of reactor) were used to find the parameters so that the plant data and model result match. But the ammonia production and inert mole fraction in the recycle gas did not match. Secondly, average conditions (inlet and outlet of reactor) were used to find a better match. The difference between actual ammonia production and estimated production using average plant values for temperature, pressure and compositions in modified Temkin-Pyzhev rate equation was minimized using Box method. A reasonably better match was found for three randomly selected plant data points. This method was finally accepted for further study. Lastly, another attempt was made by integrating the rate equation using plant data and bed inlet temperatures and finding the ammonia production. The difference between this estimated ammonia production and actual (plant) ammonia production was tried to minimize using Box method. But this method could not be used due to the shortage of computer time.

The values of A,B,C and D found are given in Table 3.1.

TABLE 3.1

	Va	lues	of	the	Parameters
--	----	------	----	-----	------------

Parameter	Estimated value	Literature value
A	0.1499977E+02	1.7698-5.162E+14 ^(43,78)
В	0.1415377E-05	-
С	0.9017344E+00	_
D	0.4216922E+05	3.9057E+04 - 4.2953E+04 ^(43,78)


Catalyst Activity Decay

The expression for catalyst activity decay function is

 $f(t) = (1 - B) + Be^{-Ct}$ (3.2)

From the value of B and C and from figure 3.1 it is evident that the decay is extremely negligible. There may be several reasons for this: firstly, the catalyst is robust and the time span which was considered was small enough to be effective in seeing the activity decay of the synthesis catalyst; secondly, the activity of the catalyst of the whole reactor was taken into account, so, although some bed or part of it may be deactivated, the overall deactivation of the reactor catalyst becomes insignificant. Thirdly, the reactor may be overdesigned. It can be mentioned, however, that under normal

operating conditions the ageing of an ammonia synthesis catalyst is rather slow. The catalyst is also well protected against poisoning, and very long lifetimes with almost constant performance can be achieved (de Lasa, 1986).

Time in Years

Fig. 3.1: Activity Decay in Bed

Better parametric estimation can be obtained if each catalyst bed is considered in separate manner. A comparison of plant data and model results is given in Table 3.2.

TABLE 3.2

Comparison of plant data and model results

(process conditions are the same as in Table 4.1 of Chapter IV)

Recycle gas composition (mole frac.)	N ₂	^H 2	NH3	сн ₄	Ar	NH ₃ produced (kmol/sec)
Plant data	0.1950	.6311	.0280	.1122	.0337	0.6262
Model result	0.2073	.6481	.0124	.1057	.0265	0.6219
Bed temperature (°K)	Bed	<u>1</u>	Bec	<u>11</u>	_ <u></u> B	ed III
	In	Out ·	In	Out	In	Out
Plant data	684	777	734	786	748	786
Model result	691	735	724	787	761	788

Temperature and pressure corrected plant data are given in Appendix V.

Better match could be achieved by modifying the objective function taking into account the absolute differences between actual and calculated temperature of each bed as has been suggested by Hussain (1986).

CHAPTER IV

SIMULATION

4.1 Synthesis Loop and Converter

A schematic diagram of the ammonia synthesis loop is shown in figure 4.1. From the ammonia recovery unit a small fraction of $H_2-N_2-NH_3$ and inert mixture is purged to limit the inert buildup in the synthesis loop. Rest of the gas mixture is recycled. This gas is total feed to the converter. This converter feed gas is split into three main fractions: one fraction is used for shell cooling and enters at the top section of the annulus, the other fraction is preheated in the exchanger and is again split into two fractions. One fraction is used as quench in the quenching zones, and the other fraction enters the bottom of the shell. The top annulus fraction and the bottom fraction mixes and rises through a central tube to the top of the catalyst bed and again mixes with a fraction of the quench gas. These three fractions together comprises the feed to first bed and flows downward through the catalyst beds.

The converter is a three-bed-quench reactor as shown in figure 4.2; the first bed is followed by two quench zones and beds, each containing a larger quantity of catalyst. The hot gases from the third bed is subsequently cooled in a converter heat exchanger, in a waste heat boiler, a process gas heat exchanger, several water coolers, a cold exchanger. After cold exchanger it

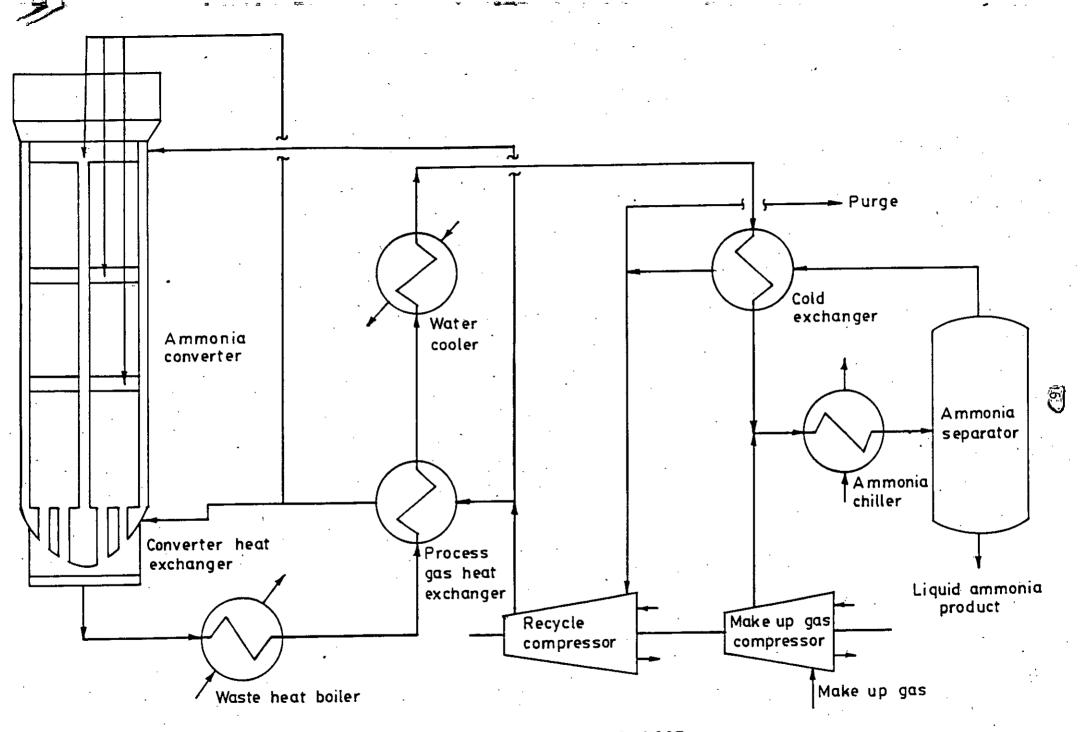


FIG. 4.1 SCHEMATIC DIAGRAM OF AMMONIA SYNTHESIS LOOP.

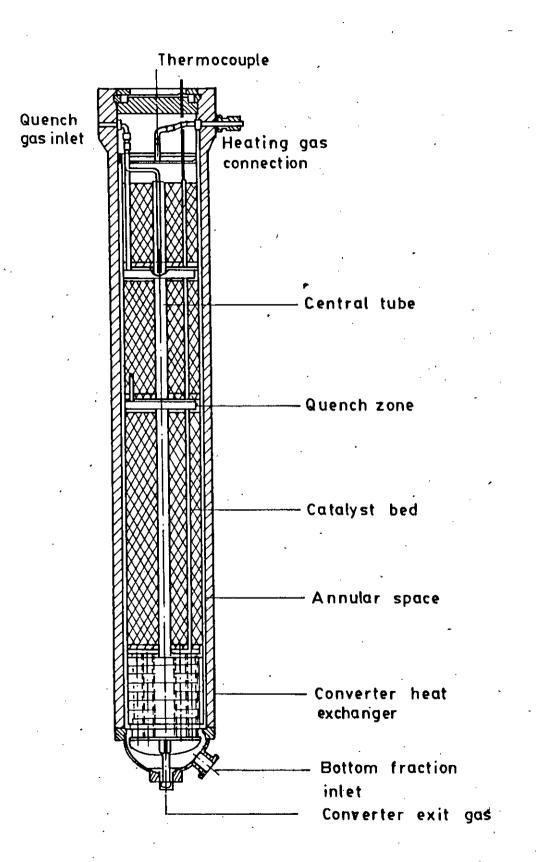


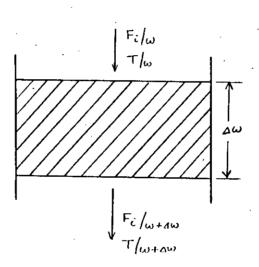
FIG. 4.2 AMMONIA CONVERTER.

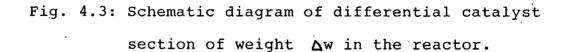
 \int

is mixed with fresh makeup gas and finally cooled in an ammonia chiller using liquid ammonia refrigerant. After condensation of ammonia it is separated in a separator and the uncondensed gas is recycled.

4.2 Simulation Model

The mathematical model for the ammonia synthesis section was developed assuming:


- 1. Steady state.
- No temperature and concentration gradient in the radial direction of the reactor i.e. temperature and concentration uniform at any cross section.


3. No axial diffusion of mass transfer.

- 4. Global rate expressions for ammonia synthesis reaction was used neglecting heat and mass transfer within the catalyst and also from bulk phase to the catalyst surface; though an effectiveness factor was used.
- 5. Momentum balance in the reactor was neglected. Pressure drop in each catalyst bed was calculated using average values of inlet and outlet conditions.
- 6. Liquid ammonia product was free from any dissolved gases.
- 7. Temperatures of the annular and central tube gas mixture was assumed constant.

4.2.1 Model Equation and Method of Solution

The various physical and chemical processes taking place in the reactor can be described mathematically by performing mass balance for NH_3 and also an overall energy balance over a differential section of catalyst, Δw (Bird et al., 1960), shown in figure 4.3.

Mass balance:

$$\frac{dF_{\rm NH}}{dW} = r_1$$

where, dW = differential amount of catalyst in bed, kg $dF_{\rm NH_3} = differential$ molar flow of ammonia in bed, kmole/s

(4.1)

$$r_1 = rate of formation of ammonia,$$

kmole ammonia/(kg cat.-s)

$$r_{1} = f(t)(\eta)(2k)(\Psi)(\kappa^{2} - \frac{a_{N_{2}}^{a_{H_{2}}^{a_{H_{2}}^{a_{H_{2}}^{a_{H_{2}}^{a_{H_{2}}^{a_{H_{2}}^{a_{H_{3}}$$

f(t) = Catalyst activity decay function in bed

$$= (1 - B) + Be^{-Ct}$$
 (4.2a)

$$2k = A^{*10^{15}} \exp(-D^{*10^{4}}/RT)$$
(4.3)

$$\Psi = \frac{\text{area of } 6-10 \text{ mm catalyst particle}}{\text{area of } 3-6 \text{ mm catalyst particle}}$$
(on which original data was based)

 $= 7.5 \text{ m}^2/\text{gm}/8.6 \text{ m}^2/\text{gm} = 0.87 \tag{4.4}$

$$\eta = b_0 + b_1 T + b_2 X + b_3 T^2 + b_4 X^2 + b_5 T^3 + b_6 X^3$$
(4.5)

 $X = molar flow of NH_3 / (molar flow of NH_3)$

+
$$2 \times \text{molar flow of } N_2$$
 (4.6)

$$a_{j} = f_{j} = y_{j} v_{j} P$$
 (4.7)

t = time, year

 $\rm N_2$ and $\rm H_2$ consumed in producing $\rm NH_3$ is related by

$$n_{\rm NH_3} = -3/2 \ \Delta n_{\rm H_2} = -\frac{1}{2} \ \Delta n_{\rm N_2}$$

(4.8)

.

The outlet gas from one bed is quenched to give inlet value for the next bed. Energy balance:

$$\frac{dT}{dw} = \frac{r_1(-\Delta H)}{\Sigma F_i C_{pi}} - \frac{U_1 D_{cntb}(T - T_{cntb})}{(0/25 D_b^2 P_{cat} \Sigma F_i C_{pi})} - \frac{U_2 D_{anuls}(T - T_{anuls})}{0.25 D_b^2 P_{cat} \Sigma F_i C_{pi}}$$

These two coupled first order non-linear differential equations were solved by a variable step-size fourth order Runge-Kutta-Gill method (Carnahan et al., 1969) with initial conditions at

(4.9)

w = 0 (at top of the bed), $F_i = F_{i0}$ and $T = T_0$

The flow of other components were determined from stoichiometry of the reactions involved for each Δw . At the end of each bed, a fraction of the reactant gases (cold shot) was added, then the composition and temperature of the gas mixture were calculated from an overall mass and heat balance in the quenching zone; the above steps were repeated for each subsequent bed.

4.3 <u>Algorithm for Simulation of a 3-Bed Quench Cooling</u> Ammonia Reactor

4.3.1 Input data

1. Composition of the fresh makeup feed gas.

2. Fresh makeup feed rate, recycle ratio.

____21

- 3. Initial estimate of recycle compositions, separator
 - operating pressure and temperature, approximate crude product compositions to determine initial recycle compositions.
- 4. Ammonia production rate and its specifications.
- 5. Average operating pressure of the reactor.

<u>_____</u>

- 6. Amount of catalyst used in different beds.
- Fractions of total feed used in different beds as feed/ cold shot.

£.

- 8. Catalyst properties.
- 9. Parameters used for Wegestein convergence accelerating technique.

4.3.2 Algorithm

- The flow and compositions of reactor total feed were determined from flow and compositions of fresh feed and recycle.
- 2. The amount of feed used in the first bed was calculated.
- 3. For first bed at point w of the bed:
 - (a) Rate of ammonia synthesis was calculated.
 - (b) Differential equations (4.1), (4.9) were solved by a variable step-size fourth order Runge-Kutta-Gill method.
 - (c) Molal flow rates of other components over ∆w, were calculated from reaction stoichiometry.
 - (d) The above steps are repeated until the first bed was completed.

- 4. The quench at the inlet of the bed II was added and the composition of the mixed feed was determined and from the heat balance the temperatuere of the gas mixture at the inlet of bed II was also determined.
- 5. Steps 3 and 4 were continued through bed II and bed III.
- 6. At the outlet of the last bed the fraction of ammonia in the product was calculated and the mole fraction of ammonia and other gases in the recycle were also estimated.
- 7. The amount of crude ammonia to be condensed and its compositions were calculated.
- The amount of recycle and its composition, and the purge rate were calculated.
- 9. Assumed and calculated recycle compositions were compared and the sum of absolute difference for each component in the recycle was calculated.
- 10. Convergence criteria was checked.
- 11. If the convergence criteria was not satisfied, multiple Wegestein accelerating technique was applied to the individual component of recycle and the new recycle composition was calculated and then returned to step 1.

4.4 Results and Discussions

In order to study the effect of process variables upon ammonia production, concentration profile and catalyst bed temperature profile, a large volume of work has to be done. The study is most conveniently done by selecting a set of operating conditions typical to the operating conditions of an Ammonia plant and it will be referred to as base case simulation. The effect of process variables are studied by varying the operating condition from the base case. The operating variables considered in this investigation are inert content in feed, H_2/N_2 ratio in feed, recycle ratio, quench temperature. The model was used to simulate an operating ammonia reactor producing around 1000 tonne ammonia/ day. Operating data are given in Table 4.1.

TABLE 4.1

Data for base case simulation

,	
Makeup feed gas rate	: 1.391 kmol/s
Makeup gas composition(mole fraction):	
N ₂	: 0.2460
H ₂	: 0.7401
NH ₃	: 0.0
CH ₄	. : 0.0113
Ar	: 0.0026
Catalyst : Haldor-Topsoe iron based	· · · · · · · · · · · · · · · · · · ·
Size : KM - 16; 6-10 mm (28.	72 m³)
AM 1-3: 8-12 mm (0.8	4 m ³).
KM 1-16:16-23 mm (0.8	4 m ³)
Equivalent diameter	: 0.008 m
Bed porosity	: 0.293
Catalyst bulk density	: 2700 kg/m ³

Cata	lyst	used	in	different	beds (m^3) :
Bed	(1)				: 4.4
Bed	(2)				: 8.8
Beđ	(3)				:17.2
				,	

Reactor : Uhde 3-bed quench reactor

:	15.5 m
:	2 m
• :	0.203 m
•	:

Recycle ratio (recycle/makeup feed, mole/mole): 4.0 Cold shot temperature : 463 K

Distribution of mixed feed/cold shot in beds :

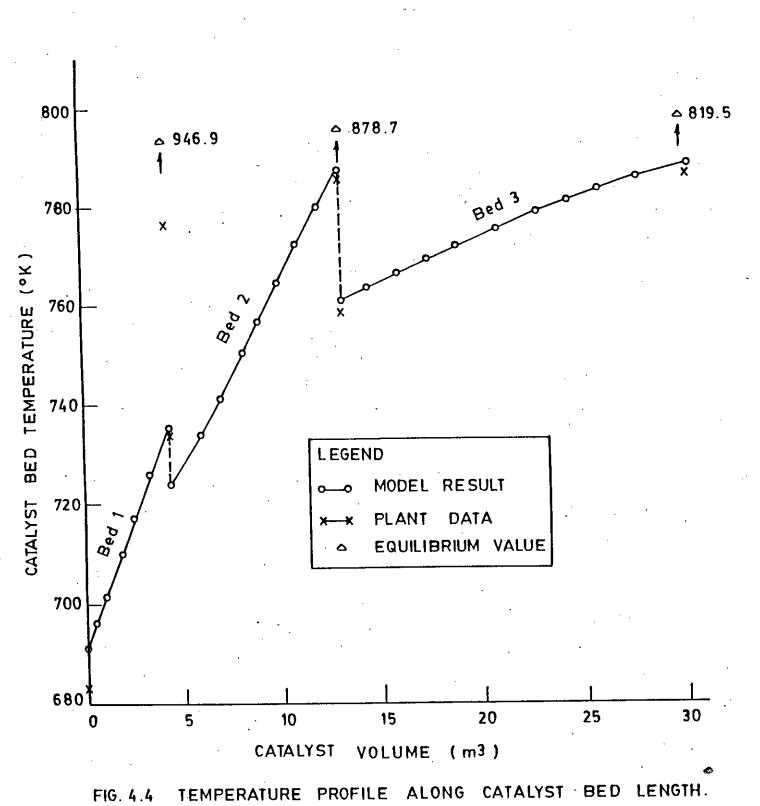
Bed (1)	: 0.2
Bed (2)	: 0.25
Bed (3)	: 0.55

Separator operating pressure: 28161 kPaSeparator operating temperature: 268 K

4.5 Effects Of Different Variables On Reactor Performance

The model was used to examine the effects of some important variables e.g., recycle ratio, H_2/N_2 ratio, inerts (CH₄+Ar) in makeup feed, quench temperature on reactor performance.

4.5.1 Base Case


Figures 4.4 to 4.6 give the results of base case simulation with a comparison with plant data. Figure 4.4 and 4.5 show the concentration and temperature profile in the reactor. Figure 4.6 shows how the bed temperature changes with conversion. The dip in temperature is due to the introduction of quench gas which also results in a decrease in ammonia concentration.

4.5.2 Effect of H₂/N₂ ratio

Usually in an ammonia synthesis reactor, stoichiometric ratio of nitrogen and hydrogen is used. Calculations have been carried out at two other ratios 2.5 and 3.5 and the results are shown in figure 4.7 and 4.8. There is some reduction in performance of the reactor as the H_2/N_2 ratio is raised from 2.5 to 3.5. The optimum ratio is around 2.5 which agrees with Nielsen (1968) and Gaines (1977) for a quench type converter.

4.5.3 Effect of Inerts

Figures 4.9 and 4.10 shows the effect of inerts on the performance of the reactor. The effect is quite pronounced. The

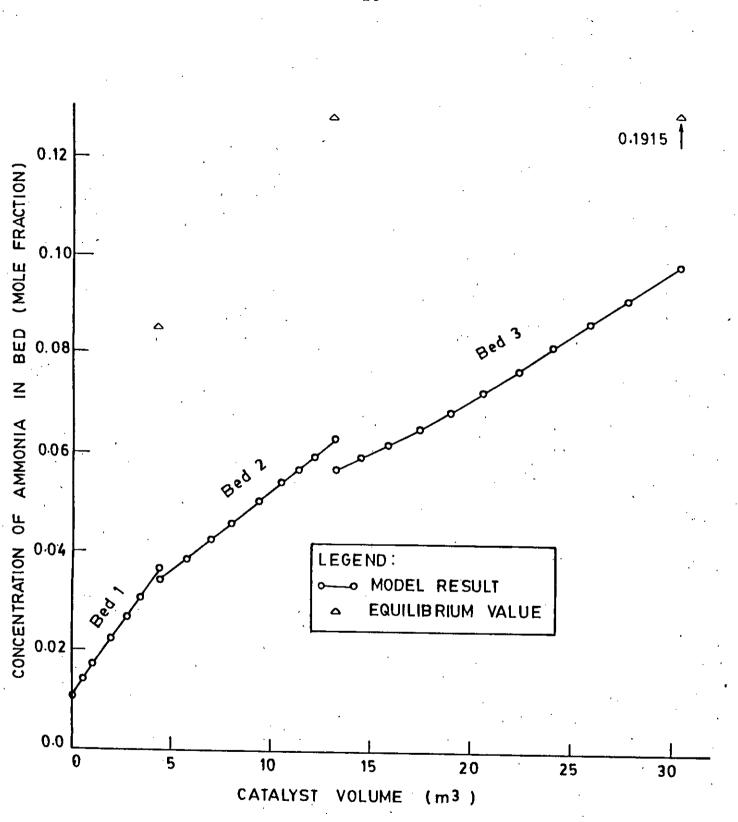
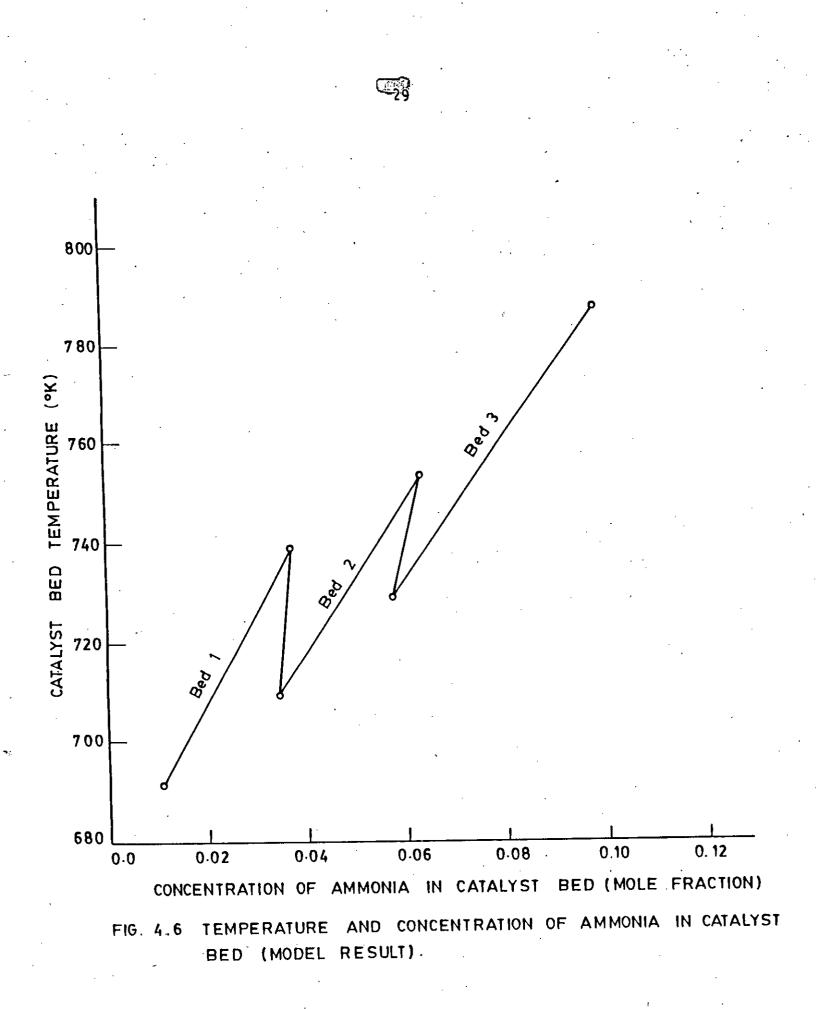
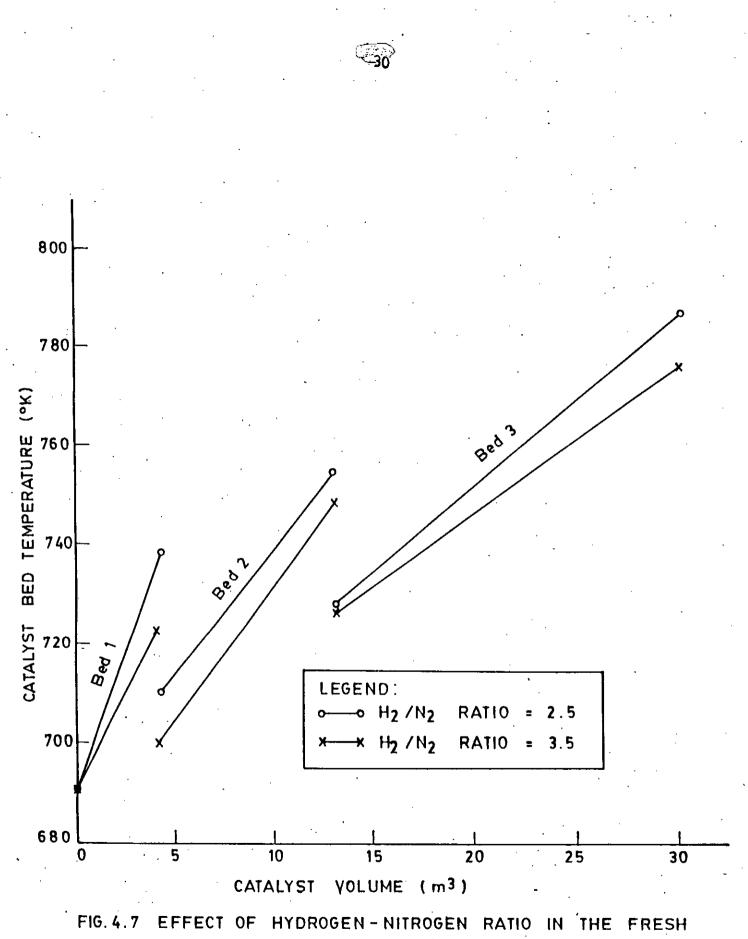




FIG. 4.5 CONCENTRATION PROFILE OF AMMONIA ALONG CATALYST BED LENGTH.

FEED ON THE CATALYST BED TEMPERATURE PROFILE.

 $\langle \cdot \rangle$

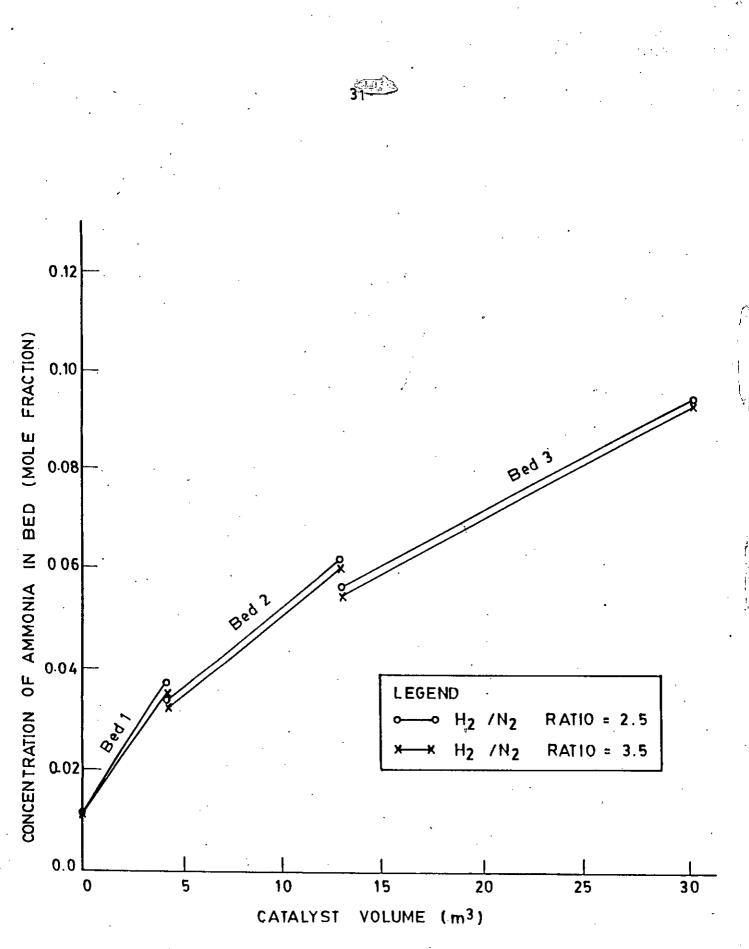
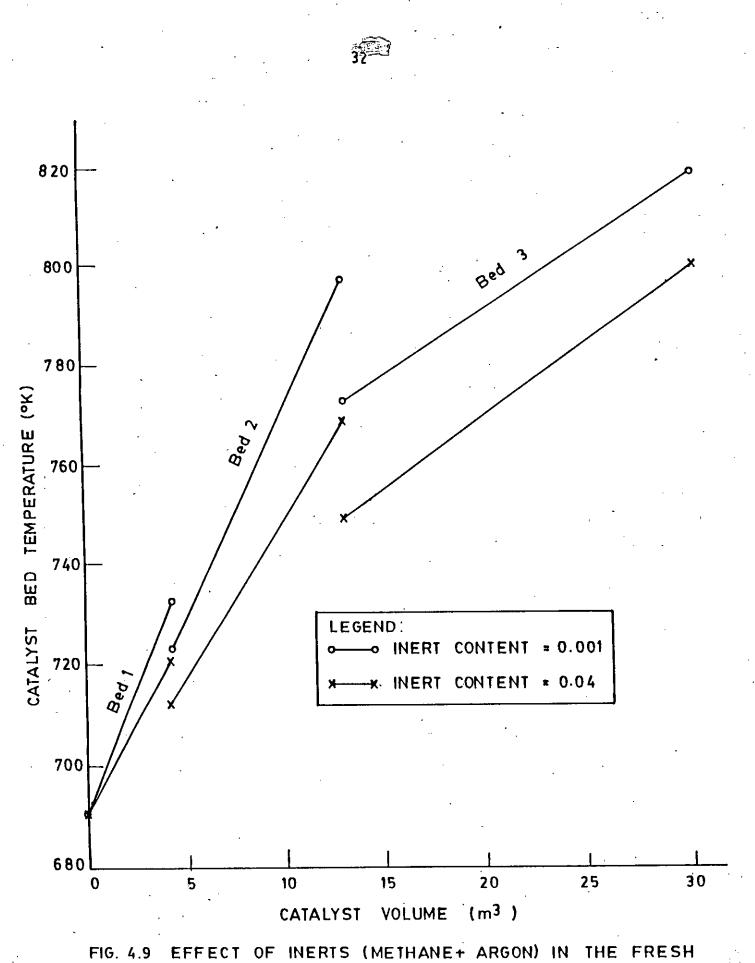



FIG. 4.8 EFFECT OF HYDROGEN-NITROGEN RATIO IN THE FRESH FEED ON THE AMMONIA CONCENTRATION PROFILE IN THE REACTOR.

FEED ON THE CATALYST BED TEMPERATURE PROFILE.

.

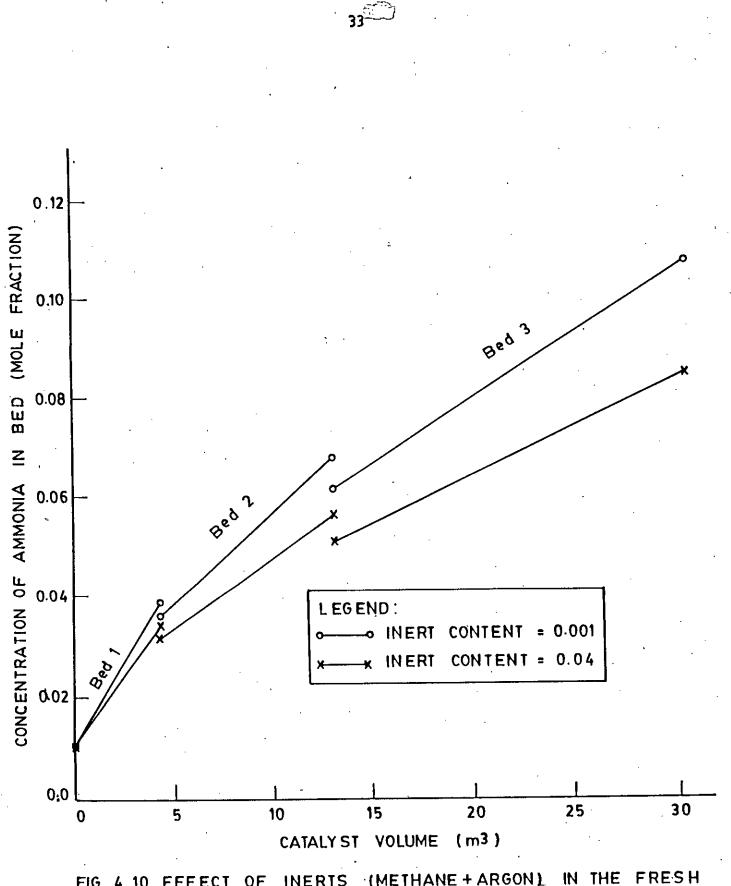
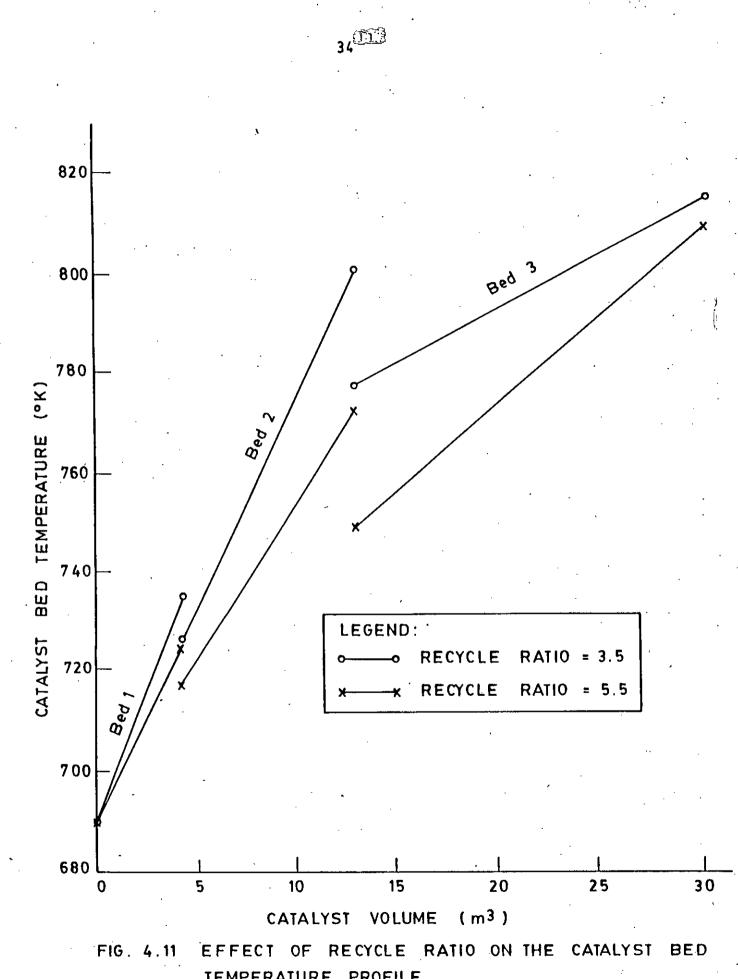
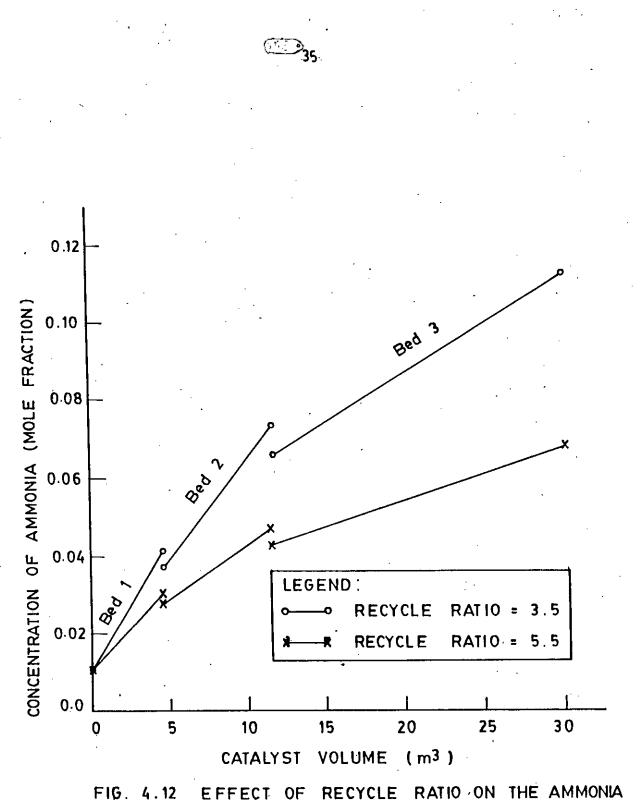




FIG. 4.10 EFFECT OF INERTS (METHANE + ARGON) IN THE FRESH FEED ON THE AMMONIA CONCENTRATION PROFILE IN THE REACTOR.

TEMPERATURE PROFILE.

CONCENTRATION PROFILE IN THE REACTOR.

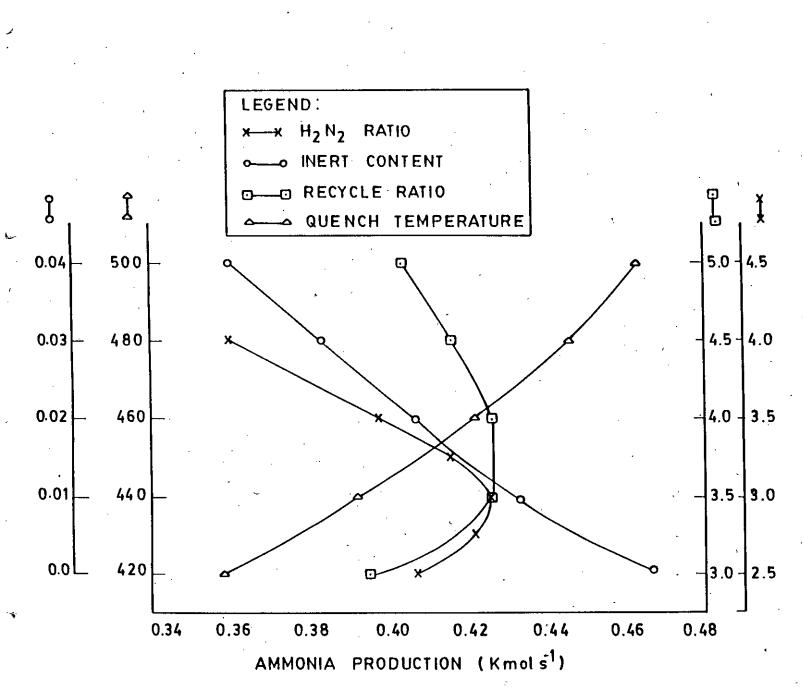
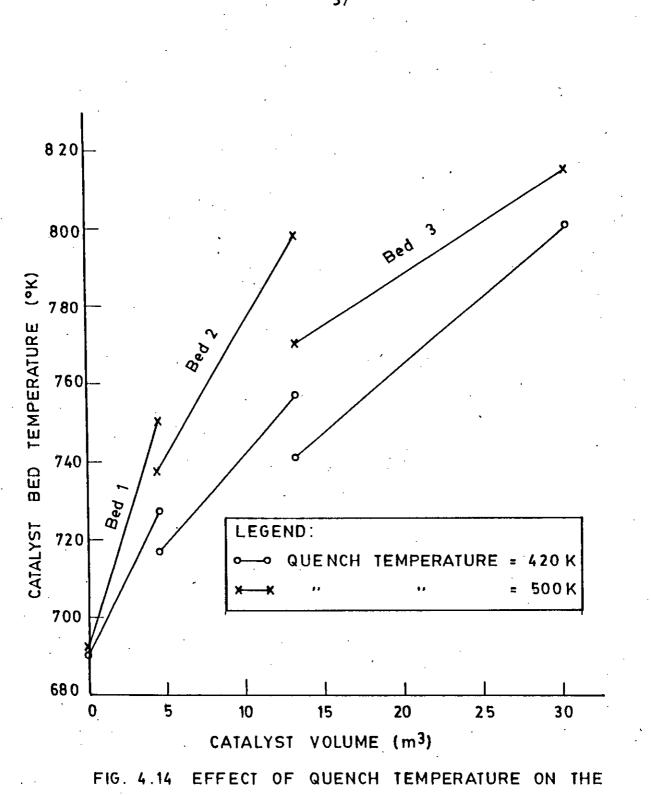



FIG. 4.13 EFFECT OF H_2/N_2 RATIO IN THE FRESH FEED, INERTS (METHANE + ARGON) IN THE FRESH FEED, RECYCLE RATIO AND QUENCH TEMPERATURE ON THE AMMONIA PRODUCTION

-

<u>(Ft)</u>

CATALYST BED TEMPERATURE PROFILE.

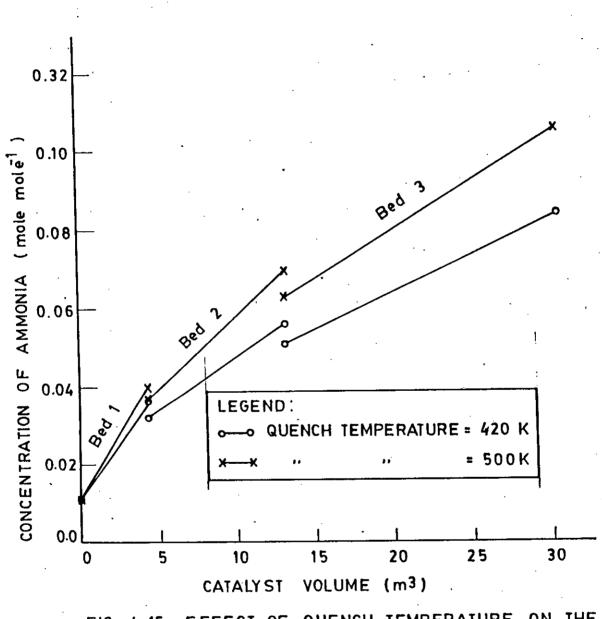


FIG. 4.15 EFFECT OF QUENCH TEMPERATURE ON THE AMMONIA CONCENTRATION PROFILE IN THE REACTOR.

38

temperature and concentration levels are much reduced as the inert content is raised from 0.001 to 0.04. Similar effect is reported by Hussain (1986).

4.5.4 Effect of Recycle Ratio

Figures 4.11, 4.12 and 4.13 shows the effect of recycle ratio on reactor performance. Initially NH₃ production increases with recycle ratio and then decreases as the recycle ratio is increased further as shown in figure 4.13. The temperature level and ammonia concentration level decreases as the recycle ratio is increased from 3.5 to 5.5.

4.5.5 Effect of Quench Temperature

Figures 4.14 and 4.15 shows the effect of quench temperature on temperature and concentration profiles. Both temperature and concentration level increases with the increase in quench temperature from 420°K to 500°K which indicates that the reaction temperature is still very far away from equilibrium temperature as is evident from figure 4.4 and the increase in quench temperature favours the synthesis reaction.

4.6 Limitations of the model and suggestions for further work

The model have been developed assuming no temperature gradient in the radial direction. But the temperature does not remain uniform at any cross section as heat is exchanged with the

gas in the annular shell and with the gas in the central tube. For improvement of the model and results obtained, the radial temperature and concentration gradient may be considered.

Liquid ammonia product was assumed to be free of any dissolved gases. But this assumption is valid at low pressure (ideal conditions). At high pressure, some amount of gases dissolves in liquid ammonia and this phenomena has to be considered for a better approach to the real case. A realistic separator calculation technique is shown in the Appendix I .

The thermodynamic properties were calculated using expressions which are functions of temperatures only, But at high pressures, the effect of pressure on properties has to be considered to account for realistic approach to actual phenomena.

The heat exchanger module (Subroutine HEATEX) was written in such a way that of the four temperatures (two shell side and two tube side), three must be specified. So these three constraints made the application of the module limited. Also approximate heat transfer coefficients and fouling factors were used for heat transfer surface area calculations. Therefore, the module has to be modified to overcome these limitations.

In the module PREL, the temperatures of the stream rising through the central tube and of the stream going downward through the shell was assumed constant; which are actually not true. Realistic temperature profiles have to be found out so that the actual temperature of the two streams can be calculated throughout the length of the reactor.

. . . .

In the parametric study only the sum of absolute differences between calculated rate and the actual rate is used to estimate the parameters in the rate expression. As a result reasonable match of temperature profiles could not be achieved. Better match could be achieved by modifying the objective function taking into account the absolute differences between actual and calculated temperature of each bed as has been suggested by Hussain (1986).

41

CHAPTER V

OPTIMIZATION

5.1 Introduction

Simulation studies alone cannot be used to predict the performance of a process in varying operating condition because in any process certain costs are involved. For example, in an Ammonia plant, ammonia production increases as the inert content in the feed is decreased. So simulation studies will favour low inert content in feed; but this low inert will cause high reforming cost. So, for design and operation of chemical plants optimization has to be done where the operating cost is minimized or the return from the system is maximized.

Current systems for the computer-aided flowsheeting and optimization of chemical processes are based on the sequentialmodular approach. However, there are serious drawbacks to this approach that are today increasingly recognized. For these drawbacks there has been considerable interest in developing alternatives to the sequential-modular approach. Two promising alternatives are the equation-based approach and the simultaneous-modular approach (Chen and Stadtherr, 1985).

In its most fundamental form, the process flowsheeting and optimization problem can be regarded as one of solving a large system of nonlinear equations. The different approaches to process flowsheeting differ most fundamentally in their approach to solving

this set of simultaneous equations. The equation system can generally be thought of as consisting of three types of equations (Chen and Stadtherr, 1985):

- . Model equations, including process unit models and physical property models
- . Flowsheet connection equations that indicate how the units are connected together in the flowsheet
- . Specifications

5.2 Main Assumptions in this Optimization

- (i) Base temperature for heat balance was taken as 298°K.
- (ii) Appropriate Lang factors were used to convert equipment cost to total cost.
- (iii) Capital cost and all utility costs were updated to 3rd quarter of 1984 using Marshall and Swift all industry cost indexes (Chemical Engg., Nov. 26, 1984).
 - (iv) 20% of total fixed capital investment was included as the annual capital charge in the annual operating cost of the system.
 - (v) The costs of all the vessels, e.g. reactors, separators, etc. were calculated assuming them as pressure vessels.
 - (vi) When actual model production was different from the required production, then fixed capital costs were adjusted using 6/10th rule (Peter and Timmerhaus, 1980)

whereas utility costs were adjusted proportionately comparing actual production to the required production.

(vii) Steam generating efficiency of the boiler was taken

44

as 75%.

Cost data and other relevant data for optimization are given in Table 5.1.

TABLE 5.1

Cost data (in US dollars for the year 1979) and other relevant data for this optimization study. (Peter and Timmerhaus, 1980; Backhurst and Harker, 1983; Rase, 1977; Wham, 1981).

Cost data: Steam (high pressure, more than 500 kPa) = $4.21*10^{-3}$ \$/Kq Steam (low pressure, less than 500 kPa) = 2.10×10^{-3} \$/Kg \$/KWH = 0.05Electricity (purchased) $= 2.65 \times 10^{-5}$ \$/Kg Cooling water \$/Kg = 1.00NH₂ refrigerant = 1.50 \$/ton of ammonia Catalyst Other relevant data: Marshall and Swift all industry cost indexes: (Peter and Timmerhaus, 1980; Chemical Engg., Nov. 26, 1984) = 561 For the year, 1979 For the 3rd quarter of 1984 =811.2

Lang factors:				
For	reactors	= 5.6		
For	boilers	= 5.6		
For	heat exchangers	= 3.5		
For	separators	= 4.0		
For	compressors	= 2.5		

5.3 Ammonia Synthesis Loop Optimization

The ammonia reactor module described in chapter IV, along with modules of pressure vessels, heat exchangers, separators, and of compressors have been used to optimize the annual operating cost of the ammonia synthesis loop of a 1000 tonne/day ammonia plant on the basis of the following assumptions;

- (i) A 3-bed quench reactor (dimensions given in table 4.1 of chapter IV) was used.
- (ii) All the studies have been started with a fixed feed rate of 1.391 kmol/s (compositions given in table 4.1 of Chap. IV).
- (iii) Fixed heat transfer coefficients from Bell (1983) were used in heat exchanger calculations.
 - (iv) The reactor exit gas was used in the converter heat exchanger to increase the temperature of the gas used in the cooling of the shell.
 - (v) Annual operating cost(\$) was determined using the following expression:-

 $C_{anopa} = C_{fr} + C_{fch} + C_{fwhb} - C_{swhb} + C_{fph} + C_{fwc}$ + C_{opwc} + C_{fac} + C_{opac} + C_{fsp} + C_{fcm}

+ C_{mnc} + C_{opc}

₹E2 46

where,		
	° _{fr}	= annual fixed cost of the ammonia reactor, \$
•	C fch	= annual fixed cost of the converter heat exchanger,\$
	C _{fwhb}	= annual fixed cost of the waste heat boiler, \$
,	C _{swhb}	= annual recovered steam cost from the waste heat
		boiler, \$
	C _{fph} =	= annual fixed cost of the process gas heat ex-
		changer, \$
	c_{fwc}	= annual fixed cost of water cooler, \$
	C _{opwc}	= annual operating cost of wagter cooler, \$
	C _{fac}	= annual fixed cost of ammonia chiller, \$
,	Copac	= annual operating cost of ammonia chiller, \$
	C _{fsp}	= annual fixed cost of the separator, \$
	Cfcm	= annual fixed cost of the compressors, \$
	Cmnc	<pre>= annual maintenance cost of the compressors, \$</pre>
	C _{opc}	= annual operating cost of the compressors, \$
	C _{anopa}	= total annual operating cost of the Ammonia syn-
		thesis loop section of a 1000 tonne/day plant.

5.4 Results and Discussions

For a fixed rate, the following four variables were chosen for optimization of the ammonia synthesis loop system:

(i) H_2/N_2 ratio in the fresh feed

(ii) Recycle ratio

(iii) Inert (CH₄+Argon) contents in the fresh feed

(iv) Quench temperature.

This optimization study was divided into two parts; in the first part the effects of different variables on the annual operating cost was studied, while in the second part a Box constrained optimization technique (Box, 1965; Kuester et al., (1973) was used to find the optimum operating conditions.

5.4.1 Part I

The effect of H_2/N_2 ratio in the feed on the annual operating cost of the ammonia synthesis loop

The effect of H_2/N_2 ratio on the annual operating cost of the ammonia synthesis loop is shown in figure 5.1 for two levels of steam cost (process conditions are the same as in table 4.1 of Chapter IV).

It is evident from figure 5.1 that:

----- The minimum annual operating cost lies near a H_2/N_2 ratio

of 3 (close to optimum ratio of 2.57) for all cases consi-

dered. Similar result is reported by Hussain (1986).

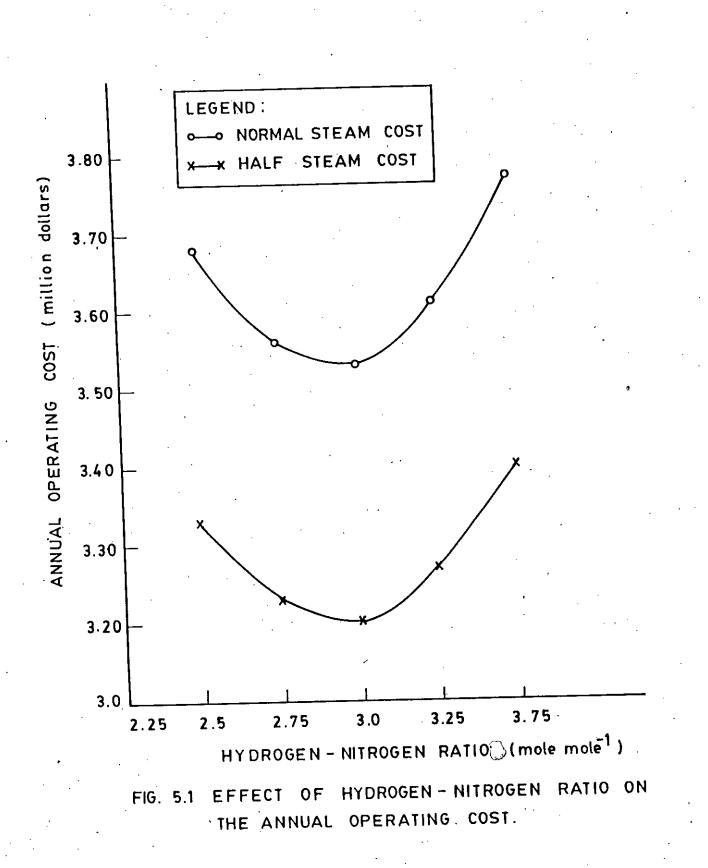
The annual operating cost is a strong function of steam cost because steam cost is a major cost item in the annual operating cost.

The effect of recycle ratio in feed on the annual operating cost of the ammonia synthesis loop

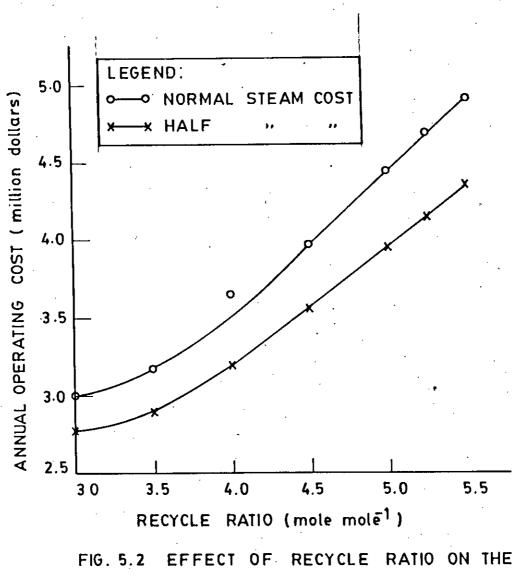
The effect of recycle ratio in feed on the annual operating cost of the ammonia synthesis loop is shown in figure 5.2 for two levels of steam cost (process conditions are the same as in table 4.1 of Chapter IV).

It is evident from figure 5.2 that:

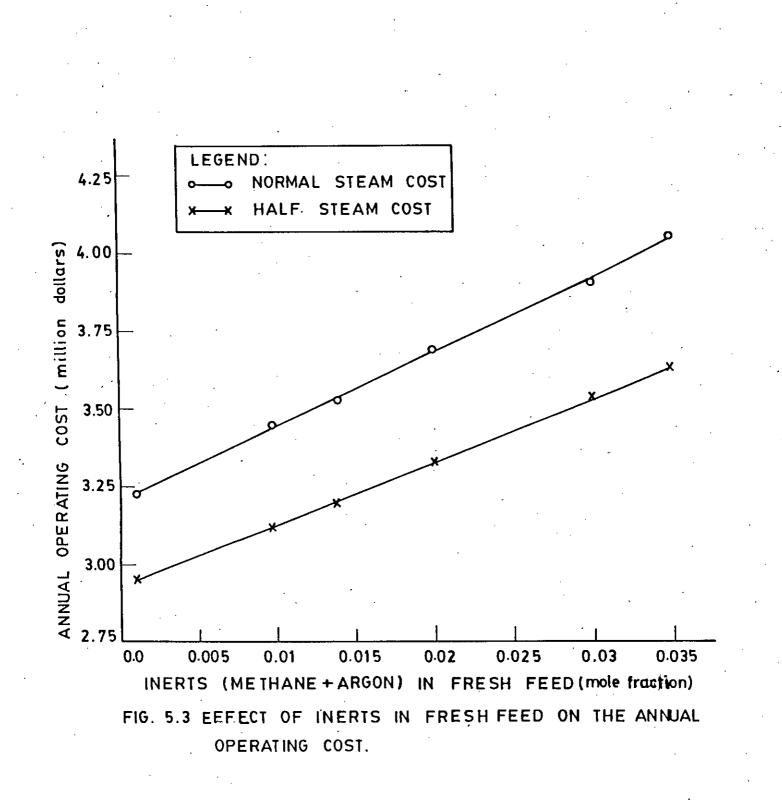
Annual operating cost of the ammonia synthesis loop decreases with the decrease in recycle ratio.

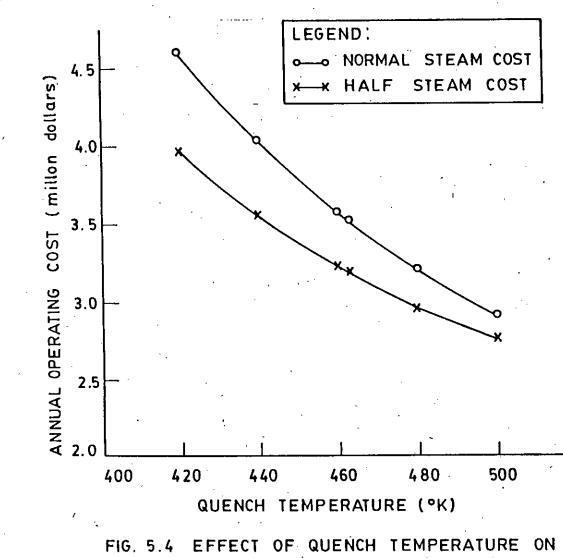

-- The reactor should be operated at the minimum possible recycle ratio.

The effect of inert (CH₄+Argon) in makeup feed on annual operating cost


/ of the ammonia synthesis loop

The effect of inert contents in the makeup feed on the annual operating cost of the ammonia synthesis loop is shown in figure 5.3 for two levels of steam cost (process conditions are the same as shown in table 4.1 of Chapter IV).


 \odot


49-1

ANNUAL OPERATING COST.

<u>____</u>

It is evident from figure 5.3 that:

Annual operating cost of the ammonia synthesis loop decreases monotonically with decrease in inert contents since reforming costs are not considered.

---- Tł

The reactor should be operated at the minimum possible inert content.

The effect of quench temperature on the annual operating cost of the ammonia synthesis loop

The effect of quench temperature on the annual operating cost of the ammonia synthesis loop is shown in figure 5.4 for two levels of steam cost (process conditions are the same as in table 4.1 of Chapter IV).

It is evident from figure 5.4 that:

Annual operating cost of the ammonia synthesis loop decreases with the increase in quench temperature and at higher temperatures the effect is less significant. It indicates that equilibrium temperature is far away from the reaction temperature.

The minimum point couldnot be reached because the quench temperature cannot be raised beyond 500 K due to program limitations.

5.4.2 Part II

The parameter values used in the Box constrained optimization are given in Table 5.2. The original program of the Box optimization technique is in Kuester et al. (1973). The tree structure of the computer program is given in figure 5.5. Computer programmes are given in Appendix III.

TABLE 5.2

Parameters used in Box constrained optimization study

No. of variables : 4 No. of constraints : 4 Total no. of points in the complex : 10 Reflexion parameter (α) : 1.3 Convergence parameter (ß) : 0.1 Explicit constraints violation correction terms δ_1 (for H_2/N_2 ratio in fresh feed) = 0.001 δ_2 (for recycle ratio) = 0.001 δ_{3} (for inert contents in fresh feed) = 0.001 δ_4 (for quench temperature) = 0.1 Convergence parameter(γ) Feasible starting point H_2/N_2 ratio = 3.0 Recycle ratio = 4.0Inert in fresh feed = 0.0139Quench temperature ($^{\circ}$ K) = 463.0

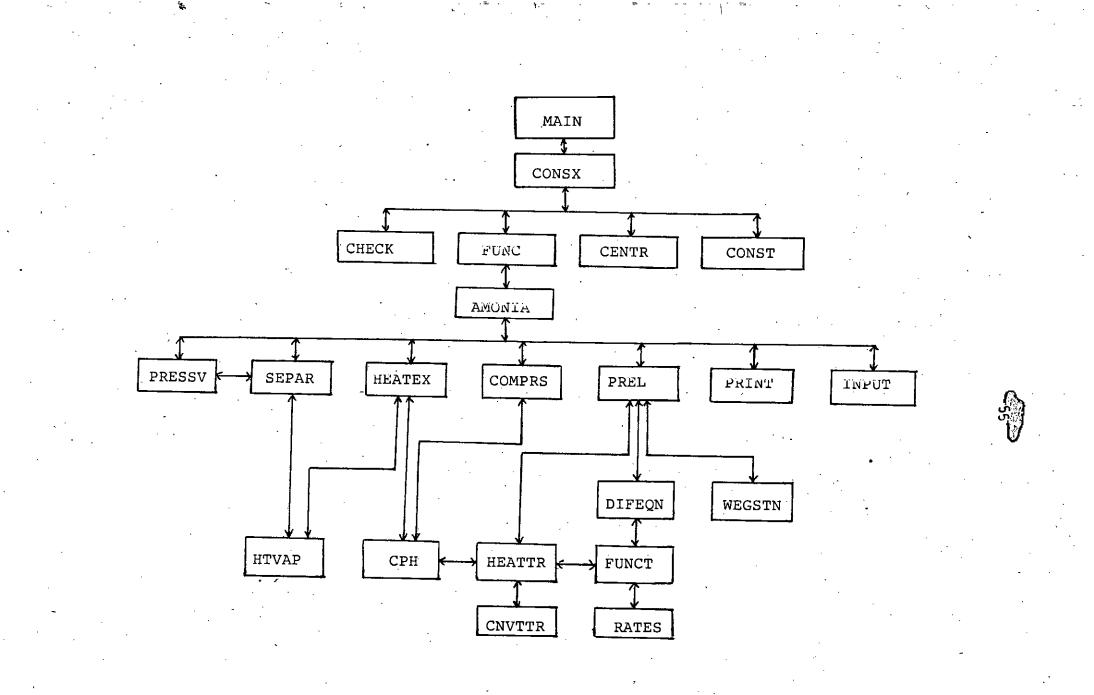


FIG. 5.5: TREE STRUCTURE OF THE OPTIMIZATION COMPUTER PROGRAM

Problem statement

Maximize

- C_{anopa} (H₂/N₂ ratio in fresh feed, recycle ratio, inert contents in fresh feed, quench temperature) subject to,

56

2.5 $\leq H_2/N_2$ ratio ≤ 4.0 3.5 \leq Recycle ratio ≤ 5.5 0.001 \leq Inert contents ≤ 0.04 420.0 \leq Quench temperature ≤ 500.0

The problem statement was run on an IBM 4331 computer with the results given in Table 5.3.

TABLE 5.3

Results of optimization study of ammonia synthesis loop

	Case I Normal cost data from table 5.1	Case II Half the steam cost, all other costs are same as in Case I	double the catalyst,all
Minimum annual operating			· · · · · · · · · · · · · · · · · · ·
cost(million \$/yr)	2.80	2.72	3.08
Optimum operating conditio	ns:		•
H ₂ /N ₂ ratio:	2.55	2.57	2.57
Recycle ratio:	3.24	3.11	3.11
Inert contents (CH ₄ +Argon)			
in feed:	0.0023	0.00955	0.00955
Quench temperature(°K):	499.9	499.9	499.9
•		•	•

It is evident from Table 5.3 that:

Catalyst cost is the most predominant item of the annual operating cost of the ammonia synthesis loop system.

As the steam cost is halved and the catalyst cost is doubled, optimum conditions move towards higher H_2/N_2 ratio.

5.5 Limitations

Merits and demerits of both perturbation type (studying the effects of one variable at a time on objective function) and partial optimization are briefly mentioned below:

<u>Merits</u>

- (i) These studies give a good idea of trends of change of the objectives e.g. operating cost, profit etc. of the system under consideration with different variables, and thereby help in finding the important variables and their ranges worthy of further study using formal optimization techniques
- (ii) The results of perturbation type optimization study can be used to check the final converged solutions of formal optimization studies, because sometimes formal optimization techniques may converge to totally wrong values depending on the initial starting conditions, convergence criterion etc.

(iii) Because of comparatively less execution times, these studies can be used to check the robustness and reliability of individual modules of the system; which are essential for large plant optimization.

Demerits

- (i) As the number of variables increase and their domain range increase, it can become very difficult to pinpoint the optimum operating conditions of a system by simply performing purturbation type optimization and also it becomes difficult to keep track of different results.
- (ii) There are dangers of partial optimization, because optimum operating conditions in one part of the plant donot usually give optimum conditions for other parts of the plant.

5.6 <u>Suggestions for further work</u>

In order to get better and realistic optimum operating conditions of the Ammonia synthesis loop the whole Ammonia synthesis plant comprising of natural gas reforming, shift conversion, CO₂ absorption and desorption and methanation should be optimized at a time.

NOMENCLATURE

a, b, c, d
Ai, Bi, Ci
Α
A A1, B1, C1 an ₂ , an ₂ , ann ₃
bi Boi, Boj Bom C1, C2, C3, C4 C C' Corr Cp
Сра Сро
Cpi
Cpg
Db Dshell Danuls

coefficients in the heat capacity equation constants used in calculation of activity coefficients of component i heat transfer area per foot of exchanger, ft^2/ft heat exchange area, m² correction terms in eq. (2.31) activity of components N2, H2, NH3 respectively, atm constant in eq. (4.5)BWR constants for i or j BWR mixture constant constants in eq. (2.30) circumference of riser, m circumference of catalyst section, m a term as defined in eq. (2.42) specific heat of reaction mixture, kcal/(kmole °K) specific heat of ammonia, kcal/(kmole.°K) molal heat capacity of the feed gas, Btu/(lbmole °F) heat capacity of component 1, kcal/(kmole °K) specific heat of feed gas, kcal/(kmole °K) bed diameter, m shell diameter, m diameter of the annular section

60-

Dentb E

Fi fn , fn , fnh 2 2 3

f°N, f°H, f°NH 2 2 3

G gj gjο ΔΗ

ΔHfo

$(\Delta Hf)N_{2}, (\Delta Hf)H_{2}, (\Delta Hf)NH_{3}$

I K Kp

К**р***

Ka

±¦__,

K

= (Dshell - Db), m

diameter of the central tube, m activation energy, cal/gmole molar flow of component i, kmole/s fugacity of N2, H2, NH3 respectively atm

standard state fugacity of N2, H2, NH3 respectively, atm free energy change at standard state cal/gmole

mass velocity, kg/(hr-m²) mass fraction of component j mass fraction of component j at inlet

heat of reaction, cal/gmole heat of formation of ammonia at standard state, cal/gmole heat of formation of N2, H2, NH3 respectively, cal/gmole constant in eq. (2.29) thermodynamic equilibrium constant equilibrium constant in partial pressure units synthesis equilibrium constant at zero pressure equilibrium constant in terms of activities equilibrium constant in terms of fugacities

rate constant of catalyst reduction reaction

k

E_61

thermal conductivity of catalyst basket insulation, kcal/(m-hr-°K) rate constant for ammonia formation rate constant for ammonia decomposition thermal conductivity of component i, $kcal/(m-hr-^{\circ}K)$ length of reactor, ft molecular weight of component i, kg/kmole moles of gas pressure, atm critical pressure of component i, atm partial pressure of N2, H2, NH3 respectively, atm gas constant,1.987 gm cal/(gmole °K) rate of formation of ammonia, kmole NH3/(kg catalyst-s) rate of reduction of catalyst total heat transfer area, m² as defined in eq. (2.25) temperature, °K temperature in annulus, °K base temperature for enthalpy =537°R temperature in the central tube, °K normalized catalyst section temperature critical temperature of component i, °K temperature of gas in cooling

tubes, °K

Tg

Tci

k ´

k 1

k 2

ki

 \mathbf{L}

Mi

n P

Pci

R

r

r'

S

 S_m

Т

*

Tanuls

Ть*

Τc

Tentb

ри, рн, рин 2 2 3

62

T_r te T_{ri} re T/

Tt Ttop*

ย V

V_e

Ψ.....

×s, ea

У№₂, Ун₂, У№н₃

Yint

Σ

GREEK LETTERS

α, β Υ₁ σ

μ<u>.</u> η

ψ ^ρcat ν_N, ν_H, ν_{NH}

Other terms

temperature in riser, °K reduced temperature of component i, T/T_{e1}

normalized empty tube section temperature

top temperature, °K

temperature on shell side of exchanger, °K

overall heat transfer coefficient,

catalyst volume, m⁼

space velocity, hr-1

weight of catalyst, kg

equilibrium ammonia concentration

mole fraction of N₂, H₂, NH₃ respectively

mole fraction of inerts compressibility factor

exponents in T-P equation activity coefficient of component i sensitivity as defined by eq. (2.74) viscosity of component i, kg/(m-s) effectiveness factor pressure correction term bulk density of catalyst, kg/m³

fugacity coefficients of N_{Ξ} , H_{Ξ} , NH_{Ξ} respectively

 $\langle \cdot \rangle$

summation term

BIBLIOGRAPHY

Alesandrini, C.G., etal., Ind. Eng. Chem. Process Des. Dev., <u>11</u>, 253 (1972).

Annable, B., Chem. Eng. Sci., 1, 145 (1962).

Anon, Ind. Eng. Chem., <u>44</u>, 754 (1953).

Anon, Petr. Refin., <u>11</u>, 216 (1959).

Anon, Chem. Eng. Prog., 12, 90 (1960).

Aris, R., "Elementary Chemical Reactor Analysis", Prentice-Hall (1969).

Attshuler, A.D., J. Chem. Phy., 22, 1947 (1954).

Backhurst, J.R. and J.H. Harker, "Process plant design", Heinemann books, London (1983).

Baddour, R.F., P.I.T. Brian, B.A.B. Logeais and J.P. Emery,

Chem. Eng. Sci., <u>20</u>, 281 (1965).

Beattie, L., J. Am. Chem. Soc., <u>52</u>, 10 (1930).

Bell, K.J., Heat exchanger design handbook, Hemisphere publishing corp., pp 3.1.4-1 to 3.1.4-9 (1983).

Bennett, C.O. and B.F. Dodge, Ind. Eng. Chem., <u>44</u>, 180 (1950). Beutler, J.A. and J.B. Roberts, Chem. Eng. Prog., <u>52</u>,69 (1956). Beveridge, G.S. and R.S. Schecter, "Optimization: Theory and

practice", McGraw-Hill Book Company, N.Y. (1970).

Bird, R.B. etal., "Transport Phenomena", John Wiley & Sons Inc. (1960).

Bokhoven, C. and W.J. Raayan, J. Phys. Chem., <u>58</u>, 471 (1954). Bokhoven, C., etal., "Research on Ammonia Synthesis since

1940", J. Catalysis, Vol. III, Reinhold (1955). Boudart, M., Chem. Eng. Prog., <u>58</u>, 73 (1962).

Box, M.J., Computer J., 8, 42 (1965).

Brayant, W.W.D., Ind. Eng. Chem., 25, 822 (1933).

Bridger, Pole, Beinlich, Thompson, Chem. Eng. Prog., <u>43</u>, 291 (1947).

Brill, R., J. Chem. Phys., 19, 1047 (1951).

Burnett, Allgood, Hall, Ind. Eng. Chem., 45, 1678 (1953).

Carnahan, B. etal., "Applied Numerical Methods", John Wiley & Sons, N.Y. (1969).

"Catalyst Handbook", Springer-Verlag (1970).

Chen, H. and M.A. Stadtherr, AIChE J., <u>31</u>, 11, 1843 (1985).

Chueh, P.L. and J.M. Prausinitz, AIChE J., 15, 471 (1969).

Comings, E.W. and R.S. Egly, Ing. Eng. Chem., <u>32</u>, 714 (1940).

Cooper, H.W., Hydrocarbon Process, <u>46</u>, 2, 159 (1967).

de Lasa, H.I., "Chemical Reactor Design and Technology", editor

p 812, Martinus Nijhoff Publishers (1986). Dean, Tooke, Ind. Eng. Chem., <u>38</u>, 389 (1946).

Dodge, B.F., "Chemical Engineering Thermodynamics", McGraw

Hill (1944).

Dyson, D.G. and J.M. Simon, Ind. Eng. Chem. Fund., 7,605 (1968).
Emmett, P.H. and S. Brunauer, J. Am. Chem. Soc., 55,1738 (1933).
Emmett, P.H. and S. Brunauer, J. Am. Chem. Soc., 56, 35 (1934).
Gaines, L.P., Ind. Eng. Chem., Process Des. Dev., 16,381 (1977).
Gillespie, L.J. and J.A. Beattie, Phys. Rev., 36, 743 (1930).
Gillespie, L.J. and J.A. Beattie, Phys. Rev., 36, 1008 (1930).
Grahl, E.R., Petr. Processing, 8, 562 (1953).
Granet, I. and P. Kass, Petr. Ref., 32, 3, 149 (1953).
Granet, I., Petr. Ref., 33, 5, 205 (1954).
Groenier, T., J. Chem. Eng. Data, 6, 204 (1961).
Guacci, U., et al., Ind. Eng. Chem., Process Des. Dev., 16, 166

(1977).

Gunn, R.D. and J.M. Prausinitz, AIChE J., 4, 494 (1958).
Hall, Tarn, Anderson, J. Am. Chem. Soc., 72, 5436 (1950).
Harrison, R.H. and K.A. Kobe, Chem. Eng. Prog., 49,7,349 (1953).
Hein, L.B., Ind. Eng. Chem., 45, 1995 (1953).
Hossain, M.M., M.Sc. Thesis, ChE Dept., BUET (1981).
Houghen, O.A., K.M. Watson and R.A. Ragatz, "Chemical Process

Principles", Part II,2nd edition, Wiley & Sons (1959). Hussain, A., "Chemical Process Simulation", 1st edition, Wiley Eastern Limited (1986).

"International Critical Tables of Numerical Data, Physics, Chemistry and Technology", McGraw-Hill Book Co. Inc.,N.Y. (1926).

Kazarnovskii, Ya.S. and M.K. Karapet'yants, Zhur. Fiz. Khim., <u>15</u>, 966 (1941).

Kazarkovskii, Ya.S., Zhur. Fiz. Khim., <u>19</u>, 392 (1945). Kistiakowsky etal., J. Am. Chem. Soc., <u>73</u>, 2972 (1951). Kjaer, J., "Measurement and Calculation of Temperature and

Conversion in Fixed-Bed Catalytic Reactor",Gjellurps. Forlag Copenhagen (1958).

Kjaer, J., "Calculation of Ammonia Convertors on an Electronic

Digital Computer", Akademisk Forlag, Copenhagen (1963). Kobe, K.A., "Inorganic Process Industries",161,McMillan (1948). Kobe, K.A. and R.H. Harrison, Petr. Ref., <u>11</u>, 261 (1954). Kozhenova, K.T. and M.Y. Kagan, J. Chem. Phys. Chem. (USSR),

14, 1250 (1940).

Kuester, J.L. and J.A. Mize, "Optimization techniques using FORTRAN", McGraw-Hill book company, N.Y. (1973).

Larson, A.T. and R.L. Dodge, J.Am. Chem. Soc., <u>45</u>, 2918 (1923). Larson; A.T. and R.S. Tour, Chem. Met. Eng., <u>26</u>, 647 (1922). Lewis, G.N. and M. Randall, "Thermodynamics and the Free

Energy of Chemical Substances", McGraw-Hill (1923). Livshits, V.D. and I.P. Sidorov, Zhur. Fiz. Khim., <u>26</u>, 538 (1952). Love, K.S. and P.H. Emmett, J. Am. Chem. Soc., <u>64</u>, 745 (1942). Lutschutenkow, S., etal., International Chemical Engineering,

<u>18</u>, 4, 567 (1978).

Maslan, F.D. and T.M. Littman, Ind. Eng. Chem., <u>45</u>,1566 (1953).
Mills, A.K. and C.O. Bennett, AIChE J., <u>5</u>, 539 (1959).
Nelson, L.C. and E.F. Obert, Trans. ASME, <u>76</u>, 1057 (1954).
Nielsen, Bohlbro, J. Am. Chem. Soc., <u>74</u>, 963 (1952).
Nielsen, A., J. Kjaer and B. Hansen, J. of Catalysis, <u>3</u>,68 (1964)
Nielsen, A., "Investigation on Promoted Iron Catalysts for the

Synthesis of Ammonia", 3rd edition, Jul. Gjellurps. Forlag, Copenhagen (1968).

Newton, R.H., Ind. Eng. Chem., 27, 302 (1935).

Othmer, D.F. and H.T. Chen, AIChE J., 12, 488 (1966).

Ozaki, A., H.S. Taylor and M. Boudart, Proc. Roy. Soc.(London),

A258, 48 (1960).

- Prausinitz, J.M. and Chueh, P.L., "Computer Calculations for High Pressure Vapour-Liquid Equilibria", pp 82-90, Prentice-Hall, Englewood Cliffs., N.J. (1968).
- Prausinitz, J.M., "Molecular Thermodynamics of Fluid-Phase Equilibria", p 156, Prentice-Hall Englewood Cliffs., N.J. (1969).

Rase, H.F., "Chemical reactor design for cheimical plants", vol. II, John Wiley & Sons, N.Y. (1977).

Redlich, O. and J.N.S. Kwong, Chem. Rev., 44, 233 (1949).

Peter, M.S. and K.D. Timmerhaus, "Plant design and economics for chemical engineers", 3rd edition, McGraw-Hill book company, N.Y. (1980).

Reid, R.C. and T.K. Sherwood, "The Properties of Gases and Liquid", 3rd edition, McGraw-Hill (1977).

Shah, M.J., Ind. Eng. Chem., <u>59</u>, 72 (1967).

Shreve, R.N. and J.A. Brink, Jr., "Chemical Process Industries" 4th edition, McGraw-Hill (1977).

Singh, P.P.C. and D.N. Saraf, Ind. Eng. Chem., Process Des. Dev., <u>18</u>, 3, 364 (1979).

Slack, A.V. N.Y. Allgood and H.E. Maune, Chem. Eng. Prog., 49, 393 (1953).

Slack, A.V. and J.G. Russell, "Ammonia", Parts I-IV, Marcel Dekker (1976).

Stephens, A.D., Chem. Eng. Sci., <u>30</u>, 11 (1975).

Stephenson, C.C. and H.O. McMohan, J. Am. Chem. Soc., 61,

437 (1939).

Takezawa, N. and I. Toyoshima, J. Phy. Chem., 70, 594 (1966).

Taylor, H.S. and J.C. Jungers, J. Am. Chem. Soc., <u>57</u>, 660 (1935).

Temkin, M.I. and V. Pyzhev, J. Phys. Chem.(USSR), 13, 851 (1939).

Temkin, M.I., J. Chem. Phys., <u>24</u>, 1312 (1950).

Temkin, M.I., N.M. Morozova and E,N, Shaptina, Kinetics and

Catalysis (USSR), <u>4</u>, 565 (1963).

Tour, R.S., Ind. Eng. Chem., <u>13</u>, 298 (1921).

Vancini, C.A., "Synthesis of Ammonia", 1st edition, MacMillan Press Ltd. (1971).

Van Heerden, C., Ind. Eng. Chem., <u>45</u>, 1242 (1953). Wagner, C., Z. Physik. Chem., A193, 1 (1944).

Wada, Y., J. Phys. Soc., 4, 280 (1949).

Wham, R.M., Oak Ridge National Laboratory, ORNL-5664, (Feb., 1981).

Wheeler, A., "Advances in Catalysis", Vol-III, 219, Academic

Press (1951).

Winchester, L.J. and B.F. Dodge, AIChE J., 2, 431 (1956).

Winter, E., Z. Physik. Chem., <u>13</u>, 401 (1931).

APPENDIX I

Vapour-Liquid Equilibrium Relationship in Presence of Other Gases

Ammonia is industrially synthesized in a variety of systems incorporating converters of various designs, which operate either at low pressures, 15200 to 30400 kPa (150-300 atm), or at higher pressures upto 60800 kPa (600 atm). In such systems, besides ammonia other components are present, viz., unconverted H₂ and N₂ and small amounts of CH4 and Ar.

In the modelling and simulation of such an industrial synthesis loop, vapour-liquid equilibrium relationships are needed in a range of 293-333 K and 2026 to 60800 kPa (20-600 atm). Temperatures in this range are more than the critical temperatures of N₂, H₂, Ar and CH₄ and less than the critical temperature of NH₃. Hence only NH₃ will condense at these conditions and the liquid NH₃, in equilibrium with the gaseous phase, will contain some amount of each of the above components dissolved in it.

In the present study, the liquid NH3 from the separator was considered to be free of any dissolved gases for simplicity of calculations. But actually it is not true. For realistic calculations, the vapour-liquid equilibrium relationship for ammonia in presence of other gases must be considered. The method is outlined below.

At equilibrium, fugacity of each component in both the liquid and vapour phases should be equal giving

 $f_i V = f_i L \tag{I-1}$

Both the vapour and liquid phases will be nonideal at the conditions under consideration. In the liquid phase, NH3 is the solvent (subcritical) and the other components are solute (supercritical). With the vapour pressure of NH3 as the reference

1 - 1

pressure, fugacity of NH3 in this phase is given by

$$f_{1}L = \gamma_{1x1}f_{p_{1}p_{1}re,1}^{s} \exp \left[\int_{P_{1}^{s}RT}^{P_{1}} dP \right]$$
(I-2)

and the fugacity of each solute by

$$f_{iL} = \forall_{i} * x_{i} H_{P_{i}}^{s}, 1 exp \left[\int_{P_{i}}^{P_{v_{i}}^{\infty}} dP \right] (i=2,...,5) (I-3)$$

The vapour phase fugacity of each component is

$$f_i v = \phi_i y_i P$$
 (1=1,...,5) (I-4)

The solvent (NH3) activity coefficient is given by

$$\ln \sqrt{1} = v_{c,1} \left[\sum_{\substack{i \\ j \\ j}} \frac{x_i v_{c,i}}{\sum_{j \\ i \\ j} x_j v_{c,j}} \alpha_{ii,1} \frac{y_j}{2} \right]^2$$
(I-5)

and for solute component by

$$\ln \forall i^* = v_{c,i} \begin{bmatrix} \sum \frac{x_j v_{c,j}}{\sum x_k v_{c,k}} & \alpha_{jj,1} & -2\alpha_{ii,1} \end{bmatrix} \begin{bmatrix} x_j v_{c,j} \\ ----- & \alpha_{jj,1} \\ j \\ \sum x_k v_{c,k} \\ k \end{bmatrix} \begin{bmatrix} x_j v_{c,j} \\ ----- \\ j \\ \sum x_k v_{c,k} \\ k \end{bmatrix}$$

The self-interaction constants of solute i in NH3, $\alpha_{ii,1}$, as obtained from binary solubility data are filled by Alesandrini et al. (1972) by the following type of equation in the range 253-378 K

$$lnaii, 1 = A + B/T + C/T^{2}$$
 (I-7)

The pressure correction term for the fugacity of solvent NH3 in the liquid phase is given by

$$\int_{P_{1}^{c}}^{P_{1}^{c}} \frac{v_{1}s}{dP} = \frac{v_{1}s}{6RT\beta_{1}s} \left[\{1 + 7\beta_{1}s(P - P_{1}s)\}^{6/7} - 1 \right]$$
(I-8)

where the saturated-liquid compressibility of NH3, β18, is calculated using the Chueh-Prausnitz (1969) equation as follows

$$\beta_{1^{5}} = \frac{v_{c,1}}{RT_{c,1}} (1 - 0.89\omega_{1^{4}}) \exp(6.9547 - 76.2853T_{R,1} + RT_{c,1})$$

 $191.306T_{R,1^2} - 203.5472T_{R,1^3} + 82.7631T_{R,1^4}$ (I-9)

The pressure coreection term for the fugacity of each solute component in the liquid phase is given by

$$\int_{P_{s}^{s}RT}^{P_{\vec{v}i^{\infty}}} dP = \int_{P_{s}^{s}RT}^{P_{\vec{v}i^{\infty}s}} [1 + 7\bar{\beta}i^{\infty s}(P - P_{1}s)]^{-1/7} dP \quad (I-10)$$

in which partial compressibility of the solute component i at infinite dilution, $\overline{\beta}_{i^{\infty 8}}$, is given by Alesandrini et al. (1972) based on the pseudocritical relationships of Gunn-Prausnitz (1958); this reduces to

$\overline{\beta}_{i^{\infty}B} = \beta_{1}B +$	$\frac{v_{1s}}{\bar{v}_{i^{\infty}s}} \lim_{x_{i^{-}} > 0} [$	HJ G	$\frac{\delta F}{\delta x i}$	FHJ G ²	(δG + δxi	FJ 8)Ή + 5xi
	$\begin{array}{ccc} FH & \delta J \\ \hline G & \hline \sigma & \hline \hline \hline \hline$						(I-11)

In equation (I-11)

$\mathbf{F} = \Sigma \mathbf{x} \mathbf{i} \mathbf{v} \mathbf{c}, \mathbf{i}$		(1-12)
i	-	

 $G = R \sum_{i} x_i T c_{,i} \qquad (I-13)$

 $H = 1 - 0.89(\sum_{i} x_{i} \omega_{i}) \%$ (I-14)

 $J = \exp[6.5947 - 76.2853(T/\sum_{i} x_i T_{c,i}) + 191.306(T/\sum_{i} x_i T_{c,i})^2 - 203.5472(T/\sum_{i} x_i T_{c,i})^3 + 86.7631(T/\sum_{i} x_i T_{c,i})^4$ (I-15)

In pressure correction term in equation (I-2) and (I-3) experimental data on partial molar liquid volumes, \overline{v}_1 and \overline{v}_1^{∞} , are required, which are rare for the binary systems and almost nonexistant for the multicomponent systems. Hence, an empirical correlation by Wada (1949) is used for calculating the partial molar volumes; for use in this correlation, the saturated liquid NH3 molar volumes at different temperatures as given in the Interna-

tional Critical Tables (1926) are filled by the following equa-

 $v_{1}s = 78.986133 - 0.43363766T + 0.00087587742T^{2}$ (I-16)

For further use in the Wada correlation, in order to calculate partial molar volume, \overline{v}_i^{∞} , at infinite dilution in NH3, $\overline{v}_i^{\infty s}$ values are required at pressure P1^s and system temperature T; these are reported by Alesandrini et al. (1972) in the range 253-378 K, which are correlated as follows

 $\overline{v}_i \infty s = A + BT + CT^2 + DT^3 + ET^4$ (i=2,...,5) (I-17) The constant of equation (I-17) are given in Table I-1.

Table I-1

		Coefficient	в of Equation	(I-17)	
	A	B	C*10-2	D*10-4	E*10-7
v2 ^{∞s}	193.19389	2.4116593	0.84695638	0.10233027	0
v3∞s	-203.39420	2.4117042	-0.84697111	0.10233186	0
v 4∞s	483.54588	-6.4121276	3.4018649	-0.80038523	0.71411916
γ 5∞s	413.8843	-5.3940156	2.9121251	-0.69651858	0.63228243

The Henry's constants for various components, $H_{P_1,1}^p$, for use in equation (I-3) are correlated by Alesandrini et al. (1972) in the range 253-378 K in the similar way as equation (I-7).

The relation for calculating the fugacity coefficient of any component i including NH3, based on the Redlich-Kwong equation is reproduced from the work of Prausnitz (1969)

2Σ aijyj. vm + bm Vm bi - ln(--- $\ln \phi_i = \ln(----) +$ bmRT1.5 vm - bm vm - bm ---] - ln $\left(\frac{1}{RT} \right)$ ambi vm + bm bm bm²RT1.5 Vm vm + bm(I - 18)

Alesandrini et al. (1972) proposed to calculate

$$a_{m} = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i}y_{j}a_{ij} \qquad (I-19)$$

(1-20)

in which for those pairs were neither i nor j is ammonia

aij = √(aiaj)

The bm is computed as originally proposed by Redlich and Kwong (1949), i.e.

$$bm = \sum_{i=1}^{n} b_i y_i \qquad (I-21)$$

For NH3, Ω_{a1} is calculated from

 $\Omega_{a1} = -0.39788936 + 0.0023754678T$ (I-22) and $\Omega_{b1} = 0.0867$. For other components $0.4278R^{2}Tc.i^{2.5}$

Furthermore, for use in equation (I-2), fugacity of the saturated liquid NH3, $f_{ppure,1}^{p}$, is given as follows

 $f_{P_{1}pure,1}^{s} = P_{1}s \left[\exp \left\{ \ln \left(-\frac{RT}{P_{1}s} \right) \ln \left(v - b_{1} \right) + \frac{b_{1}}{v - b_{1}} + \frac{a_{1}}{r_{1}r_{1}r_{5}} + \frac{1}{b_{1}} \ln \left(-\frac{v}{v + b_{1}} \right) - \frac{1}{v + b_{1}} \right\} \right] (I-25)$

Nomenclature

A = coefficient in eq. (I-7) or (I-17)

ai, aj = defined in eq. (I-23), $(cm^3/gmol)^2$ atm K%,

for component i or j

aij = defined by eq. (I-20)

am = value of a for vapour mixture, eq. (I-19)

B = coefficient in eq. (I-7) or (I-19)

 $b_{\pm} = defined by eq. (I-24), cm^{3}/gmol$ b_m = value of b for vapour mixture, eq. (I-21) C = coefficient in eq. (I-7) or (I-17)D = coefficient in eq. (I-17)`E = coefficient in eq. (I-17) F = defined by eq. (I-12) $f_1 = fugacity of component i in the liquid phase, atm$ f_{1} = fugacity of component i in the vapour phase, atm $f_{Pure,1}^{r} =$ fugacity of pure saturated liquid NH₃, atm G = defined by eq. (I-13) H = defined by eq. (I-14) $H_{1,1}^{-}$ = Henry's constant of component i in NH₂ at saturation pressure of NH-, atm i = component designation index: 1, NH_{π} ; 2, N_{π} ; 3, H_{π} ; 4, Ar; 5, CH₄ J = defined by eq. (I-15)j = same as i n_1 , n_2 = number of moles of component i or j P = pressure, atm $P_{e,i}$, $P_{e,j}$ = critical pressure of component i or j, atm P_1 = saturation pressure of NH₃, atm R = gas constant, (atm cm[∞])/(gmol-K) T = temperature, K $T_{e,i}, T_{e,j} = critical$ temperayre of component i or j, K $T_{R,1} =$ reduced temperature of NH_{π} v = molar volume, cm³/gmol $v_{c,i}$, $v_{c,j}$ = critical molar volume of component i or j, cm²/gmol $v_1 = molar$ volume of saturated liquid NH₂, cm²/gmol

 v_m = molar volume of the mixture, cm²/gmol

 \overline{v}_{\star} = partial molar volume of NHz, cm²/gmol

$$\overline{v_1}^{\circ}$$
 = partial molar volume of component i for infinite dilution
in NH₂, cm²/gmol

vi** = partial molar volume of component i for infinite dilution in NH₃ at saturation temperature of NH₃, cm³/gmol xi, xj = mole fraction of component i or j in liquid phase yi, yj = mole fraction of component i or j in vapour phase Z = compressibility factor

Greek Letters

 $\alpha_{i:i,1}, \alpha_{j:i,1} = \text{self-interaction constant of molecule i or j in the environment of molecule 1$

 β_1 = saturated liquid compressibility of NH₃.

B₁∞∞ = partial compressibility of component i at infinite dilution

 χ'_1 = activity coefficient of solvent NH₂ χ'_1 * = activity coefficient of solute i φ_1 = fugacity coefficient of component i $\Omega_{\pm 1}$ = defined by eq. (I-22) NH₂ $\Omega_{\pm 1}$ = defined as 0.0867 for NH₂ ω = accentric factor

APPENDIX II LITERATURE SURVEY

2.1 Introduction

The catalytic synthesis of ammonia from nitrogen and hydrogen is one of the most successful application of chemical technology for the benefit of mankind. Thermodynamic and kinetic considerations suggest operating at a high pressure, at a high temperature and in the presence of a catalyst, in order to combine nitrogen with hydrogen under industrially economic conditions.

Wealth of information exist in the literature on all aspects of ammonia synthesis reaction; much more are stored in the files of industrial research laboratories as classified documents (Hossain, 1981 and Vancini, 1971). In the present survey of literature, attention was focused on the following aspects of the ammonia synthesis reaction system.

a. Thermodynamic

b. Kinetics

c. Catalysis

d. Reactors and Reactor Models

2.2 Thermodynamics of Ammonia Synthesis Reaction

The synthesis of ammonia from nitrogen and hydrogen is a classical industrial example of a reversible exothermic equilibrium reaction:

$$1/2N_2(g) + 3/2H_2(g) \rightleftharpoons NH_3(g) - \Delta H$$
 (2.1)

$$K = \frac{\alpha_{\rm NH_3}}{\alpha_{\rm N_2}^{1/2} \alpha_{\rm H_2}^{3/2}}$$
(2.2)

Direct determination of heat of reaction and equilibrium over wide ranges of temperature and pressure is in practice delicate, time consuming and expensive. Therefore, indirect methods are used, which are based on thermodynamic data such as free energy, heat of formation, specific heat capacity, entropy, P-V-T relationship, etc. which are experimentally obtainable and values are available in the literature (Hossain, 1981 and Vancini, 1971). This review gives a survey of the measurements and correlations used to determine values of the thermodynamic properties of nitrogen, hydrogen, ammonia and equilibrium conversion for ammonia synthesis. The effect of process variables on the equilibrium yield are also discussed. Out of a large number of correlations available for calculating different thermodynamic properties, attempt have been made to come up with a recommended set in order to carry out the simulation studies in the work.

2.2.1 Heat of Reaction

Nielsen (1968) reports the direct determination of the heat of reaction of ammonia synthesis carried out by Haber. At 1 atm. and 0°C Haber found $\Delta H = -11,000$ cal/mole and at 1 atm.

and 600°C $\Delta H = -13,000$. Lewis and Randall (1923) gives an exp-. ression for C_p which together with the Haber's data leads to the following equation for ΔH at atmospheric pressure:

$$\Delta H = -9,500 - 4.96T - 0.000575T^2 + 0,0000017T^3 \quad (2.3)$$

Heats of reaction at higher pressures have been calculated by various authors. Gillespie and Beattie (1930) have calculated

 Δ H and Δ S at 0°C and 1 atm. on the basis of constants obtained from their equilibrium data. On this basis and the Beattie Bridgeman equation of state, they arrive at the following

equation for the determination of Δ H at different pressures

and temperatures:

 $\Delta H = - (0.54526 + 840.609/T + 459.734*10^{6}/T^{3}) P-5.34685T$ $- 0.2525*10^{-3}T^{2} + 1.692*10^{-6}T^{3} - 9157.09$

(2.4)

 $\left\{ \right\}$

Table 2.1 gives the values of heat of reaction at 500°C and pressures obtained by earlier workers@

TABLE 2.1

Values of ΔH in the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3 - 2 \Delta H$

at 500°C and different pressures

Pressure in atm.	Gillespie and Beattie (1930)	Kazarnovskii and Karapet'- yants. (1941) Without cor- rection for heat of mixing	Kazarnovskii and Karapet- yants. (1941) Corrected for differen- tial heat of mixing. Dilute solution.	Kazarnovskii Corrected for heat of mixing 17.6% NH ₃ -20.6% N ₂ -61.8% H ₂ end-product (1945)
1.	-12,660	-12,893	-12,893	-12893
100	-12,920	-13,149	-13,121	-13,040
200	-	-13,413	-13,293	-13,182
300	-13,450	-13,708	-13,411	-13,210
400		-14,023	-13,555	-13,045
500		-14,275	-13,650	-12,895
600	-14,240	-14,493	-13,741	• • • •
700		-14,702	-13,842	· .
800		-14,903	-13,943	-13,257
900		-15,098	-14,048	· ·
.000	-15,290	-15,280	-14,145	-13,595

¥

Using the heat of reaction data presented by Kazarnovskii (1945) for the formation of a mixture containing 17.6% NH_3 in a 3:1 $H_2:N_2$ mixture, Gaines (1977) derived the following expression for heat of reaction in Btu/lbmole of NH_3 formed:

$$\Delta H = -23840.37 + (P - 300) (1.08 + (P - 300) * (0.01305) + (P - 300) (0.83502*10^{-5} + (P - 300) (0.65934*10^{-7}))) + 4.5(1391 - T)$$
(2.5)

More recently Shah (1979) use the following equation:

 $(\Delta H)_{T,P} = -9184 - 7.2949T + 0.34996*10^{-2}T^{2} + .03356*10 T$ - 0.11625*10⁻⁹T⁴ - .(6329.3 - 3.1619P) + (14.3595 + 4.4552*10⁻³T)P - T²(8.3395*10⁻³ + 1.928*10⁻⁶P) - 51.21 + 0.14215P ... (2.6)

In this work, the following expression for heat of reaction have been used:

$$\Delta H = (\Delta H_{f})_{NH_{3}} - 1.5(\Delta H_{f})_{H_{2}} - 0.5(\Delta H_{f})_{N_{2}}$$
(2.7)

2.2.2 Specific Heat of Hydrogen, Nitrogen and Ammonia

Granet (1954) gives a chart showing the specific heat of hydrogen as a function of pressure and temperature at pressure from 1 atm. to 700 atm. and temperatures from 0°C to 800°C.

Granet and Kass (1953) report the specific heat of nitrogen at pressures from 1 atm. to 140 atm. and temperatures from 40°C to 800°C.

The specific heat of ammonia is given by Grahl (1953) at pressures between 0 atm. to 1,000 atm. and temperatures from 0°C to 400°C.

Harrison and Kobe (1953) derived empirical constants for heat capacity equation for ammonia. The constants for the equations of the form $C_p = a+bT+cT^2+dT^3$, for the heat capacity of ammonia are as follows:

TABLE 2.2

C*10⁶ _d*10⁹ b*10³ Temperature &Av. %Max. а °K deviation 233 - 1500 6.0864 0.55 8.8116 1.5055 1.48 233 - 15006.5846 6.1251 2.3663 1.5981 0.36 -40 - 1200 8.3810 7.9891 7.9891 -1.5055 -40 - 12008.4017 7.0601 1.0567 -1.5981

Values of constants for calculating specific heats

In calculating ΔH and ΔF , Vancini (1971) used linear expressions for heat capacities as:

for
$$N_2$$
: $C_p = 6.5 + 0.001T$ (2.8a)
for H_2 : $C_p = 6.5 + 0.009T$ (2.8b)

for
$$NH_3$$
: $C_p = 6.7 + 0.0063T$ (2.8c)

The following expressions were reported by Brayant (1933) and Kobe and Harrison (1954) for specific heat at 1 atm. from 0°C to 2000°C.

for
$$H_2$$
: $C_p = 6.5 + 0.00071T$ (2.9a)

$$C_{\rm p} = 6.85 + 0.00028T + 0.22*10^{-6}T^2$$
 (2.9b)

$$C_p = 6.30 + 0.001819T + 0.345*10^{-6}T^2$$
 (2.10b)

For ammonia specific heat equation are available for two ranges:

$$C_{p} = 7.561 + 0.00373T + 1.4*10^{-6}T^{2}$$
 (from 0°C-500°C) (2.11a)

 $C_p = 5.92 + 0.0893T - 1.764*10^{-6}T^2$ (from 0°C-2000°C) (2.11b)

The following constants were reported by Hougen, Watson and Ragatz (1959).

TABLE 2.3

Values of constants for calculating specific heats

Gas	a	b*10 ²	c*10 ⁵	d*10 ⁹
н ₂	6.952 .	-0.04567	0.09563	-0.2079
^N 2	6.903	-0.03753	0.1930	-0.6861
	х.			- -

Shah (1967) used the following heat capacity equation for NH_3

$$C_{pa} = 6.5846 - 0.61251 \times 10^{-2} T + 0.23663 \times 10^{-5} T^{2} - 1.5981 \times 10^{-9} T^{3} +$$

96.1678 - 0.067571P + $(-0.2225 + 1.6847*10^{-4}P)T+(1.289*10^{-4}P)T$

 $1.0095 \times 10^{-7} P) T^2$ (2.12)

Gaines (1977) in calculating mixture heat capacities and enthalpies used BWR equation of state. Table 2.4 containes pure component constants used to compute mixture constants; only constant B is computed from:

$$B_{om} = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i}y_{j}(B_{oi}^{0.333} + B_{oj}^{0.333})^{3}$$
(2.13)

In this work, the following expressions have been used for heat capacities of N2, H2, NH3 respectively (Reid and Sherwood, 1977):

Table 2.4

BWR CONSTANTS^a

	Nitrogen	Argon	Methane	Ammonia	Hydrogen
 A	0.0312319	0.0288358	0.0494	0.10354029	0.0008108534
A'o	0.872086	0.823417	1.855	3.789282	0.18267058
	0.0032351	0.00215289	0.00338004	0.0007195852	0.01092708
3 ₀ ·	0.0281066	0.0222852597	0.0426	0.051646121	0.026812097
$ = * 10^{-6} $	0.000547364	0.0007982437	0.002545	0.00015753298	0.00000355307
$C_{0} * 10^{-6}$	0.00781375	0.01314125	0.02257	0.1785709	0.00009996711
a .	0.0000709232	0.00003558895	0.000124359	0.000004652178	0.0000893277
8	0.0045	0.0023382711	0.006	0.019805156	0.002576974

(a = Units L/gm mol atm K)

for
$$N_2:C_p = 7.44 - .324*10^{-2}T + 0.64*10^{-5}T^2 - 2.79*10^{-9}T^3$$

(2.14a)

for $H_2:C_p=6.483+0.2215*10^{-2}T-0.3298*10^{-5}T^2+1.826*10^{-9}T^3$

for $NH_3:C_p=6.524+0.5692*10^{-2}T+0.4078*10^{-5}T^2-2.83*10^{-9}T^3$

2.2.3 Viscosity and Thermal conductivity of Reactants

Absolute viscosity and thermal conductivity of hydrogen as a function of temperature are given by Granet (1954) and of nitrogen by Granet and Kass (1953).

Comings and Egly (1940) present method for the prediction of viscosity at high pressures from the viscosity at atmospheric pressures. Thermal conductivity and dynamic viscosity at 1 kg/cm² and higher pressures for ammonia have been reported by Groenier (1961) and shown by Vancini (1971) in diagrams.

Reid and Sherwood (1977) suggested methods to calculate mixture viscosities and thermal conductivities. Pure component viscosities are computable from Chapman and Enskog equation. These are also obtainable from Wilke's method applying Dean and Stiel pressure correction (Nielsen, 1968).

Pure component thermal conductivities are computed as suggested by Bromley (Dodge, 1944). Mixture thermal conductivi-

(2.14b)

ties are computed by Lindsay and Bromley and corrected for pressure by equations of Stiel and Thodos (Reid and Sherwood, 1977).

In this work, the following expressions have been used for viscosities and thermal conductivities of N_2 , H_2 and NH_3 :

Viscosity:
$$\mu_{i} = \frac{3.5 \cdot M_{i}^{\frac{1}{2}} P_{ci}^{2/3} T_{ri}}{T_{ci}^{1/6} [1 + .36T_{ri}(T_{ri}^{-1})]^{1/6}} *10^{-7}$$
 (2.15)

Thermal conductivity : $k_i = \frac{\mu_i}{M_i} (C_{pi} + 2.48)$ (2.16)

2.2.4 P-V-T Relationship and Compressibility Factors

In industrial synthesis of ammonia, where high pressure is used, the ideal gas law does not hold good. One way to take the nonideality into consideration is to introduce the compressibility factor into the equation of state.

PV = nZRT(2.17)

Values of the compressibility factor for a 3:1 hydrogennitrogen mixture at 10°C and various pressures are given in Table 2.5. The generalized compressibility charts for pure gases are given in Dodge (1944).

TAB	\mathbf{LE}	2	•	5	

Compressibility factors for a 3:1 $H_2:N_2$ mixture at 10°C

Pressure (atm.)	Compressibility factor (Z)	
100	1.08	•
200	1.15	,
300	1.21	
400	1.28	
	· · · · · · · · · · · · · · · · · · ·	

Compressibility factors for ammonia gas has been reported by Beattie (1930).

Any appreciable content of methane or argon, and more pronouncedly of ammonia, will decrease the compressibility factor listed above. Compressibility chart for hydrogen and inert gases has been reported by Maslan and Littman (1953).

Bennett and Dodge (1950) have measured compressibility factors of mixtures of hydrogen and nitrogen above 1000 atm. and have found that at these high pressures hydrogen-nitrogen mixtures follow the additive law.

Nelsen and Obert (1950) present two sets of generalized compressibility charts. Othmer and Chen (1966) have outlined a method for determination of the compressibility factor of a gas mixture of two or more gases and compared the results by this method with experimental P-V-T data.

2.2.5 Equilibrium of Ammonia Synthesis Reaction

The thermodynamic equilibrium for this reaction can be calculated from the equation

$$-\Delta F^{\circ}/T = RlnK$$

The free energy change for the reaction can be calculated from the free energy function of the products and reactants.

$$\frac{\Delta F^{\circ}}{T} = \left[\frac{F^{\circ}-H^{\circ}}{T} + \frac{(\Delta H_{f}^{\circ})_{O}}{T}\right]_{Products} - \left[\frac{F^{\circ}-H^{\circ}}{T}\right]_{Reactants}$$

The heat of formation at 0°K, $(\Delta H_f^{\circ})_o$ can be calculated from the heat of formation and the enthalpies H-H_o°, of ammonia, nitrogen and hydrogen at 298.16°K as 9,374 cal/gmol. However, better agreement of the calculated and experimental equilibrium constants was found when $(\Delta H_f^{\circ}) = -9,254$ cal/gmol a value determined experimentally by Stephensen and Macmohan (1939). Harrison and Kobe (1953) calculated the equilibrium constant based on the best available data. Their calculated values are given in Table 2.6. A graph of logK vs. reciprocal of absolute

(2.18)

(2.19)

temperature doesnot give a straight line. They obtained the following expression for the equilibrium constant based on a method to give a minimum percentage deviation in the temperature range of 500-1300°K;

 $\log K = 2250.322/T - 0.85340 - 1.51049 \log T - 25.8987*10^{-5}T + 10^{-5}$

$$14.8961 \times 10^{-8} \mathrm{T}^2$$
 ...

Dyson and Simon (1968), Gaines (1977) and Shah (1967) used the equation of Gillespie and Beattie:

 $\log K = -2.691122 \log T - 5.519265 \times 10^{-5} T + 1.848863 \times 10^{-7} T^{2}$

+ 2001.6/T + 2.6899

(2.21)

TABLE 2.6

Equilibrium constants for Ammonia Synthesis

		· · · · · · · · · · · · · · · · · · ·
т,°К	Log K ·	K
298.16	2.83062	677.0
300.00	2.78246	606.0
400.00	0.75038	5.628
500.00	-0.52178	0.3008
600.00	-1.39940	0.03987
700.00	-2.04342	0.009048
800.00	-2.53646	0.009048
900.00	-2.92783	0.001181
1000.00	-3.24477	0.0005692
		ı.'

(2.20)

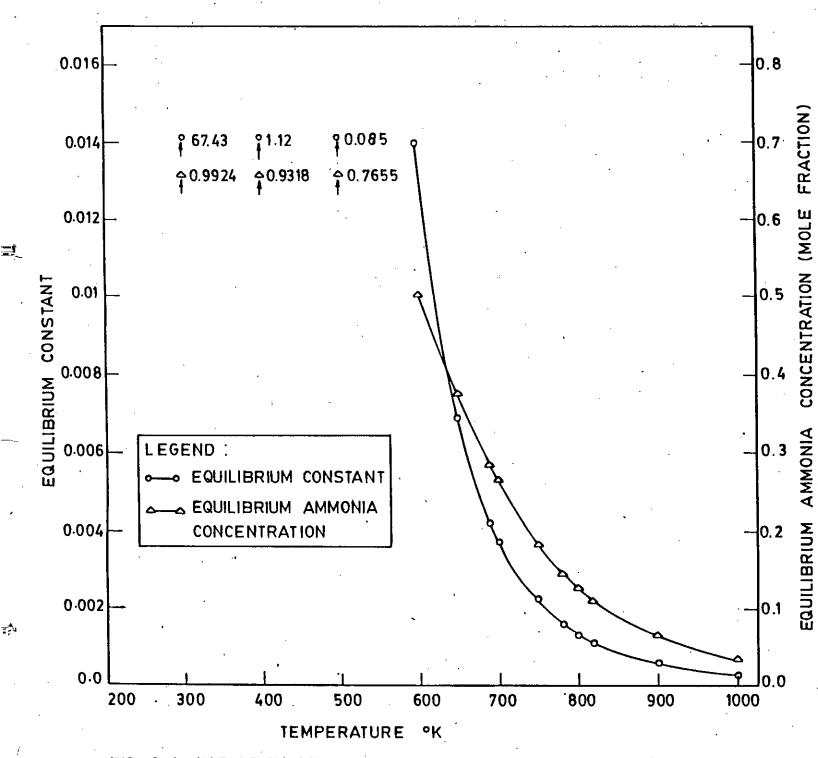


FIG. 2.1 VARIATION OF EQUILIBRIUM CONSTANT (EQ II.21) AND EQUILIBRIUM AMMONIA CONCENTRATION WITH TEMPERATURE. $(H_2/N_2 = 3:1, P = 300 \text{ atm.})$

·

The equilibrium constant is related to partial pressures and fugacity coefficient in the following way:

$$K = \frac{a_{\rm NH_3}}{a_{\rm N_2}^{1/2} a_{\rm H_2}^{3/2}} = \frac{(f/f^{\circ})_{\rm NH_3}}{(f/f^{\circ})_{\rm N_2}^{1/2} (f/f^{\circ})_{\rm H_2}^{3/2}} = K_f$$

or,
$$K = \frac{\nu_{NH_3}}{\nu_{N_2}^{1/2} \star \nu_{H_2}^{3/2}} \star \frac{\rho_{NH_3}}{\rho_{N_2}^{1/2} \star \rho_{H_2}^{3/2}}$$
 (2.22)

Or,
$$K = K_v * K_p$$
 (2.23)

The thermodynamic constant K in terms of fugacity coefficients v, for N₂, H₂ and NH₃ can be read directly or calculated from the generalized chart by Hougen and Watson (1959). This can also be calculated from the formulae reported by Cooper (1967) and Newton (1935).

$$^{\circ}NH_{3} = 0.1438996 + 0.2028538 \times 10^{-2}T - 0.4487672 \times 10^{-3}P - .1142945$$
$$\times 10^{-5}T^{2} + 0.2761216 \times 10^{-6}P^{2} \qquad (2.24a)$$

 $v_{N_2} = 0.93431737 + 0.3101804*10^{-3}T + 0.295896*10^{-3}P - 0.2707279$

(2.24b)

 $*10^{-6}T^{2} + 0.4775207*10^{-6}P^{2}$

$$H_2 = \exp[e^{(-3.8402T^{0.125}+0.541)}P - e^{(-0.1263T^{0.5}-15.98)}P^2$$

+
$$300e^{(-0.011901T-6.941)}(e^{-P/300}-1)]$$
 (2.24c)

Activity coefficients of the reactants can also be calculated on the basis of Gillespie and Beattie equation:

RTln
$$\gamma_{i} = [(B_{i} - A_{i}/RT - C_{i}/T^{3}P)P + (A_{i}^{0.5} - S_{m})^{2}/RT] P$$

(2.25)

The numerical coefficients are:

 V_{2}

7

i	A _i	B _i	$C_{i} * 10^{-4}$
^H 2	0.1975	0.02096	0.0504
N ₂	1.3445	0.05046	0.420
^{NH} 3	2.3930	0.34150	.476.98
Ar	1.2907		
CH4	2.2769	· ·	
Не	0.0216		
R =	0.08206	and	

$$S_{m} = \sum_{\substack{\Sigma \\ i=1}}^{n} y_{i} A_{i}^{0.5}$$

 \textbf{y}_{i} are the mole fractions of the components including inert.

The equilibrium constant K is related to the heat of reaction through Van't Hoff's equation

$$d\ln K/dT = \Delta H/RT^{2} = \frac{\Delta H}{O/RT^{2}} + 1/RT^{2} \int \Delta C_{p} dT \qquad (2.26)$$

$$\Delta C_p = \Delta a + \Delta bT + \Delta cT^2$$

where, $\Delta a = a_{NH_3} - (0.5a_{N_2} + 1.5a_{H_2})$

with similar expressions for $\ \Delta b \ and \ \Delta c.$

Integrating,

 $\ln K = -\frac{\Delta H}{O/RT} + (\Delta a/R) \ln T + (\Delta b/2R)T + (\Delta c/6R)T^2 + C$

... (2.27)

where C is the constant of integration which can be evaluated from known value of K at any temperature. Thus

 $\ln K_{\rm p} = -\ln K_{\rm y} - (\Delta H_{\rm o}/RT) + (\Delta a/R)\ln T + (\Delta b/2R)T + (\Delta c/6R)T^2 + C$

.... (2.28)

This is the general but approximate equation of the equilibrium constant K_p at any pressure and temperature and where the specific heat coefficients, Δa , Δb , Δc are in any case at 1 atm. The

equation is sufficiently reliable for a priori theoretical calculations upto about 400 atm.

The values of K_p , as obtained by means of accurate experimental measurements are given in Table 2.7 for the most common operating conditions. These data are sufficiently adequate for the industrial conditions of pressure and temperature. For further information on these semi-empirical equations and diagrams, nomograph on K_p of synthesis reaction, references are given (Vancini, 1971).

TABLE 2.7

Values of K_p for the reaction: $1/2N_2(g) + 3/2H_2(g) \rightleftharpoons NH_3(g)$

Pressu	res	325	Te: 350	mperatures (°¢ 400	C) 450	500
(atm)						
1		0.0401	0.0266	0.0129	0.00664	0.00382
100	·	_	-	0.0137	0.0072	0.00403
300		-	-	-	0.0088	0.00498
600		· _ · ·	-	-	0.0130	0.00561
1000		. <u> </u>	- .	-	0.0233	0.00985

The equilibrium constant is determined to calculate the equilibrium ammonia yield at any temperature and pressure, usually a higher yield is desirable though it involves operation at very high pressures. A yield between 20-30% is desirable and less than 15% is undesirable.

Larson and Dodge (1923) have suggested the following empirical equation for correlating the equilibrium constant with temperature:

$$\log K_{D}^{1/2} = -2074.8T^{-1} + 2.4943 \log T + \beta T$$

$$1.8564 \times 10^{-7} \mathrm{T}^2 + \mathrm{I}$$
 (2.29)

Coefficients β and I vary with pressures as given in Table 2.8:

TABLE	2.8

Variation of β and I with pressure

Pressures (atm.)	β	I
	·	· · · · · · · · · · · · · · · · · · ·
10	0	-1993
30 .	$0.34 * 10^{-5}$	-2021
. 50	1.256×10^{-4}	-2090
100	1.256×10^{-4}	-2113
300	1.256×10^{-4}	-2206
600	1.085*10 ⁻³	-3059
1000	2.6833*10 ⁻³	-4473

The equation that gives the equilibrium constants most closely approaching the experimental data appears to have been developed by Gillespie and Beattie (1930) from an equation proposed by Beattie and Bridgeman. This equation separates the effects of temperature and pressure as follows:

$$\log \frac{K_{p}}{K_{p}^{*}} = P \left[C_{1}T^{-1} + C_{2}T^{-4} + C_{3}T^{-2} \left(\sum x_{i}A_{i}^{1/2} \right) + C_{4}T^{-2} \left(\sum x_{i}A_{i}^{1/2} \right)^{2} \right] \dots \qquad (2.30)$$

where C_i = numerical coefficients according to the subscript, $x_i = mol$ % of component i in the gaseous mixture, A_i = the

Beattie - Bridgeman coefficient for component i, and K_p^* = the equilibrium constant extrapolated to P=O and thus depending only on temperature. Winchester and Dodge (1956) have shown that this equation applies for pressures upto 3500 atm. However, it is seldom used because of the complicated computations.

In this work Eq. (2.21) was used for equilibrium calculations.

2.2.6 Equilibrium Conversion

A nomograph for determining equilibrium ammonia percentages in the pressure range upto 330 atm. has been given by Tour (1921). In this nomograph, only the effect of temperature is considered and therefore, it should not be used when accurate values are required. In the presentation given by Kjaer (1958) the effects of temperature and pressure on K_p are separated. The pressure independent part of the equilibrium constant is expressed exactly and explicity as a function of temperature. The actual equilibrium constant K_p is expressed as

$$\log K_{p} = \log K_{p}^{*} + P(A_{1}B_{1} + C_{1})$$
 (2.31)

K * is the equilibrium constant at ideal conditions (zero p pressure) and its value is calculated from equation (2.21).

The correction term A₁ is:

$$A_1 = 1.419487x_{3,eq}^2 + 2.838990x_{3,eq} + 1.269225$$

and two temperature dependent factors B_1 and C_1 are:

$$B_1 = 38.76816/T^2$$

$$C_1 = 0.1191849/T + 25122730/T^4$$

Having K_p from equation (2.31) $x_{3'eq}$ is calculated from:

$$\frac{x_{3,eq}}{(1-x_{3,eq})^{2}} = (27/16) PK_{p} = D$$

or, $x_{3,eq} = \frac{2D - (\sqrt{1 + 4D} - 1)}{2D}$

(2.32)

Successive approximation is applied to find $x_{3,eq}$. The convergence is very fast as the pressure dependent term is rather small.

Vancini (1971) calculated the equilibrium ammonia yield using the definition of K_p . The expression for equilibrium ammonia percentage becomes

$$x_{3,eq} = \frac{K_p P}{K_p P (1 - x_{3,eq}) + 3.08}$$
 (2.33)

which can be solved by trial. Usually not more than two trials are required.

Table 2.9 gives the values of $x_{3,eq}$ at different pressures and temperatures, as obtained by applying successively equation (2.33).

TABLE 2.9

Equilibrium yields (in %) of NH_3 at different pressures and temperatures (as determined after expansion upto

ambient pressure)

Temperature Pressures (atm.)					
(°C)	10	100	300	600	1000 ,
200	50.66	81.54	89.94	95.37	98.29
300	14.73	52.04	70.96	84.21	92.55
400	3.85	25.37	48.18	66.17	79.80
500	1.21	10.51	25.80	42.32	57.47
600 [.]	0.49	4.53	12.84	24.04	31.43
700	0.25	2.18	7.28	12.60	12.87

This table shows two fundamental facts:

- (i) For the same pressure conditions the ammonia equilibrium yield decreases with increasing temperature, because the ammonia formation is hindered by increasing temperature.
- (ii) Under equal temperature conditions the equilibrium yield increases with increasing pressure. This is due to two simultaneous causes: the increase of K_p with pressure and the decrease of reaction volume, half of volume of ammonia being produced from one volume of gas mixture.

Nielsen (1968) has tabulated the values of equilibrium constant using Gillespie-Beattie equation for a stoichiometric mixture of nitrogen and hydrogen between pressure 100 atm. and 800 atm. at interval of 100 atm. and temperatures between 344°C and 600°C.

2.3 Kinetics of Ammonia Synthesis

2.3.1 Reaction Mechanism and Rate Limiting Step

Extensive studies of the catalytic synthesis of ammonia on iron suggest that the reaction occurs through surface imine radicals and comprise the following elementary steps (Hossain, 1981):

$$N_{2}(g) + 2X \longrightarrow 2N.X$$

$$H_{2}(g) + 2X \longrightarrow 2H.X$$

$$N.X + H.X \longrightarrow NH.X + X$$

$$NH.X + H.X \longrightarrow NH_{2}.X + X$$

$$NH_{2}.X + H.X \longrightarrow NH_{3}.X + X$$

$$NH_{3}.X \longrightarrow NH_{3}(g) + X$$

(2.34)

One of the main questions on the fundamentals of the ammonia synthesis is the problem of finding the rate-determining step of the overall reaction.

If the synthesis reaction is homogeneous, its activation energy is about 55,000 kcal/kmol whereas the corresponding free energy change is 6,900 kcal/kmol. Thermodynamically the synthesis reaction is not feasible, because the free energy change is positive. That is why it requires a high temperature and use of a catalyst to obtain a reasonable reaction rate.

The equilibrium between ammonia synthesis catalyst and nitrogen is particularly delicate: if the catalyst-N bond is too strong, there is formation of a stable complex; if it is too weak, no atomic N is formed and therefore no reaction takes place. Stable nitrides are formed by Li, Ca, Al, Ti, V and Cr, which are therefore not suitable catalysts; Mn and Fe form stable nitrides only under conditions of very high pressures and temperature.

As hydrogen chemisorption only will not yield ammonia, an ammonia synthesis catalyst should mainly chemisorb nitrogen; nitrogen is more stable than hydrogen as evident by a comparison of the free energy changes required to dissociate N_2 and H_2 at 25°C and 1 atm. Therefore common hydrogenation catalysts Pt, Pd, Ni and Cu donot catalyze the synthesis. Pure Fe chemisorbs nitrogen fairly well. Attempts to explain the synthesis reaction by means of the formation of intermediate compounds, of the nitride type have not been successful.

From the heat of dissociation value reported by Kistiakowsky et al. (1951) and heat of adsorption value by Emmett and Brunauer (1933), the bonding energy is of the order of 130 kcal per chemisorbed nitrogen atom. This can be compared with the bond dissociation energies in NH₂-H of 104 kcal/kmol, in NH-H of 88 kcal/kmol and in N-H of 88 kcal/kmol, as calculated by Attshuller (1954). Thus analysis of the energetics of the different steps lend support to the postulate that the activated chemisorption of nitrogen is the slowest step in the overall reaction because nitrogen has a strong bond between its atoms (Vancini, 1971).

Both nitrogen chemisorption and ammonia synthesis occur at almost the same temperature. H_2 chemisorption occur at a lower temperature and therefore H_2 chemisorption only cannot cause the ammonia synthesis reaction. H_2 and N_2 are chemisorbed by Fe as atoms and therefore hydrogenation of N atoms to NH_3 is possible. The combination of nitrogen and hydrogen in the adsorption phase requires an activation energy of about 9,500 kcal/kmol of N_2 (Vancini, 1971).

Emmett and Brunauer (1933, 1934) proved that the rate of chemisorption of nitrogen on Fe catalyst is equal to the formation of a corresponding amount of NH_3 on this catalyst. Kozhenova and Kagan (1940) proved that the hydrogenation reaction is faster than the chemisorption of N_2 .

Tylor and Jungers (1935) investigated the exchange between ammonia and deuterium on $K_2O-Al_2O_3$ promoted Fe catalyst.

 $2NH_3 + 3D_2 \rightleftharpoons 2ND_3 + 3H_2$

The reaction occurs at room temperature and no reaction occurs at about 300°C. The exchange reaction proceeds right to ND_3 as analysed by spectroscopy. Therefore at high temperature neither the chemisorption of H_2 nor the addition of last H atom to NH_2 is rate determining in ammonia synthesis.

All these facts and postulates suggest that, neither the adsorption of H_2 nor the desorption of NH_3 can be ratedetermining step. Cosequently the assumption that one of the slowest '

step in the whole heterogeneous reaction of ammonia synthesis is the chemisorption of nitrogen on uniform or on a heterogeneous surface, the coverage of the surface consisting of adsorbed NH in equilibrium with H_2 and NH_3 , is the obvious starting point for further investigations (Hossain, 1981).

2.3.2 Temkin-Pyzhev Equation

Temkin and Pyzhev (1939) derived a rate equation for ammonia synthesis, which brought order among kinetic data and helped correlating kinetic expressions. The following were introduced in course of their derivation:

- (i) The rate of activated chemisorption of N_2 on the surface of the catalyst is the rate controlling step; from this it follows that the adsorbed N_2 is in equilibrium with H_2 and NH_3 in the gas phase.
- (ii) The adsorption and desorption rates are described by the Temkin isotherm, which is based on a linear variation of activated energy of adsorption and heat of adsorption with the fraction of available surface covered.
- (iii) The N₂ adsorption phenomena is not affected by the presence of varying amounts of H_2 and NH_3 .

Temkin-Pyzhev equation (T-P equation) is given in the following form:

$$r = k_1 P_{N_2} [P_{H_2}^3 / P_{NH_3}^2]^{\alpha} - k_2 [P_{NH_3}^2 / P_{H_2}^3]^{\beta}$$
(2.35)

where, r = the conversion rate, i.e, the difference between synthesis and decomposition rates,

 k_1, k_2 = rate constants for synthesis and decomposition, respectively,

 α , β are constants so that $\alpha + \beta = 1$

2.3.3 Limitation of Temkin-Pyzhev Equation and its Modification

The equation may be discussed in terms of three main points. The first of these is the exponents α and β . Temkin and Pyzhev suggest the value of α approximately equal to 0.5 for ammonia synthesis on doubly promoted iron catalysts. However, no general agreement on a constant value of α has been obtained by various other investigators. Brill (1951) found values of α of 0.6-0.7 to give the best agreement with experimental data for an unpromoted, a singly and doubly promoted catalyst. Nielsen (1968) reports that Livshits and Sidorov (1952) found good agreement with $\alpha = 0.5$. He also reports that α depends on the process conditions and it should vary at different points along the axes of an industrial converter. Finally he recommended a value of 0.75 for α in the T-P equation to give better agreement of this experimental data and data of industrial reactors.

One other point to be mentioned in the T-P equation is the analysis of Bokhoven et al. (1955). These authors evaluated experimental results of the literature and concluded that concerning the dependency of space velocity and $H_2:N_2$ ratio the T-P equation is reasonably satisfactory upto 500 atm. pressures. But the rate constants are in most cases pressure dependent.

Temkin (1950) introduced a correction term to eliminate the dependence of k on pressure and presented this equation in the modified form in terms of fugacities instead of partial pressure.

$$r = \Psi \left[k_1 f_{N_2} \left(f_{H_2}^3 / f_{NH_3}^2 \right)^{\alpha} - k_2 \left(f_{NH_3}^2 / f_{H_2}^3 \right)^{\beta} \right]$$
(2.36)

where, ψ = correction term = exp ($\alpha \overline{V}_{s} - \overline{V}_{a}$)P/RT

 \overline{V}_{s} = partial molal volume of N₂ activated complex adsorbed \overline{V}_{a} = partial molal volume of N₂ adsorbed

P = pressure

T = temperature

Livshits and Sidorov (1952) used this equation and found rate constants to remain independent of pressure upto 400 atm. Nielsen, Hansen and Kjaer (1964) also did not find any pressure dependence of the rate constants within 150-300 atm. However, Mills and Bennett (1959) found little effect of this correction term in studying the reaction rates of ammonia synthesis over doubly promoted iron catalyst at 400°C and 450°C and at pressures upto 1,000 atm.

At zero or very low ammonia partial pressure, T-P equation breaks down, as it would give infinite rate. It has been shown that at low pressure far removed from equilibrium the rate is dependent on the partial pressure of nitrogen as well as arbitrary pressure of ammonia involving molecular adsorption of nitrogen and reaction with gaseous hydrogen.

$$N_{2}(g) + x \iff N_{2}.x$$

$$N_{2}.x + H_{2}(g) \iff N_{2}H_{2}.x$$

$$N_{2}H_{2}.x + H_{2}(g) \iff N_{2}H_{4}.x$$

$$N_{2}H_{4}.x + H_{2}(g) \iff 2NH_{3}.x$$

$$2NH_{3}.x \iff 2NH_{3}(g) + x$$

The rate equation based on the above mechanism reduces to the following equation for very low concentration of ammonia.

$$r = k_1 P_{H_2}^{0.5} \cdot P_{N_2}^{0.5}$$
(11.38)

(11.37)

Nielsen (1968) rules out the possibility of molecular adsorption and suggest a different mechanism assuming atomic adsorption of nitrogen as well as hydrogen and rate determining step is the reaction between N and H. The rate equation derived on the basis of above mechanism is

$$r = k_{1} \frac{\frac{P_{N_{2}}^{0.5} P_{H_{2}}^{0.5}}{1 + K_{N_{2}}^{P_{N_{2}}} + K_{H_{2}}^{P_{H_{2}}}}{1 + K_{N_{2}}^{P_{N_{2}}} + K_{H_{2}}^{P_{H_{2}}}}$$
(2.39)

This reduces to equation (2.38) when adsorption constants $K_{H_2}^{2}$ and $K_{N_2}^{2}$ are very small.

2.3.4 Evaluation of Rate Constants

1-

The reaction rate constants k_1 of T-P equation has been discussed in Nielsen (1968) in detail. Nielsen analyzed his data and obtained the following values of the constants.

$$k_{1} = k_{0} \exp(-E/RT)P^{2}$$

 $k_{0} = 8.57 \times 10^{11}$
 $E = 45055 \pm 1493$

 $k_2 = -0.33 \pm 0.17$

(2.40)

It is also evident that the rate constant decreases with increase of pressure. This was reported by Livshits and Sidorov (1952) as found from investigations with original T-P equation.

But analysis with pressure influence i.e., with equation (2.40) showed that k_0 was independent of pressure upto 300 atm.

and showed a small decrease at higher pressures. The relation between k_1 and k_0 is given by

$$k_{1} = k_{0} \left(\frac{a_{NH_{3}}^{2}}{a_{H_{2}}^{3}}\right)^{\beta} e^{-(\vec{V}_{a} - \alpha \vec{V}_{s})P/RT}$$
(2.41)

Kjaer (1958) discussed the influence of other factors, particularly of the temperature on the rate constant. He suggested an equation of the form

$$k_1 = C_{orr} \cdot k_{450} \ (2.42)$$

 C_{orr} is the product of the factors due to the influence of pressure, inerts, poisons, aging and catalyst particle size. \Im (A.t) is the temperature correction factor and is usually expressed in exponential form.

Dyson and Simon (1968) found the reverse rate constant explicitly as a function of temperature and recommended its application for ammonia synthesis rate at pressures 150-300 atm. with commercial catalysts.

$$\kappa_{2} = 8.849 \times 10^{15} \exp(-80, 899/\text{RT})$$

į.,

Guacci (1977) et al. obtained different coefficients in rate constant equation for various catalysts and gave the following equations for two specific catalysts.

(2.43)

For Montecatini Catalyst:

$$x_2 = \exp(2.303*14.7102-39,057/RT)$$

For Haldor-Topsoe Catalyst:

$$k_{2} = \exp(2.303*15.2059-42,893/RT)$$

2.3.5 Decomposition of Ammonia

The T-P equation can be also used satisfactorily for ammonia decomposition; experimental data gives a value

$$\alpha = 0.724$$

But Love and Emmett (1942) showed that the assumption that adsorption and desorption of N_2 are uninfluenced by adsorbed H_2 and NH does not hold good for ammonia decomposition on only Al_2O_3 promoted catalyst. And T-P equation turns out to be valid unless a negative value for is assumed which cannot be acceptable. However, for a doubly promoted iron the relationship is

$$- dP_{NH_3}/dt = k_2 (P_{NH_3}^2 / P_{H_2}^3)^{0.3}$$
 (2.44)

For ammonia decomposition, a number of other kinetic equations have been proposed. Winter (1931) found a rate expression for ammonia decomposition on iron catalyst:

$$- dP_{NH_3}/dt = k_2 P_{NH_3}^{0.9} / P_{H_2}^{1.5}$$
(2.45)

Several other authors agree in the equation

$$r = k_2 P_{\rm NH_3}^{\rm m/p} H_2^{\rm n}$$
 (2.46)

m and n vary between 0.9-2.2 and 0.25-1.5, respectively.

Takezawa and Toyoshima (1966) have determined the rate of decomposition of ammonia over a well reduced doubly promoted iron catalyst. They found a decomposition rate

$$- dP_{\rm NH_3}/dt = k_2 (P_{\rm NH_3}/P_{\rm H_2}^{1.5})^{0.48} \text{ (at 420°C)}$$
(2.47)

$$- dP_{\rm NH_3}/dt = k_2 (P_{\rm NH_3}/P_{\rm H_2}^{0.5})^{0.75} \text{ (at 479°C)}$$
(2.48)

They concluded with the comment that the rate determining step changes with temperature as evident in the rate expression.

2.3.6 Other Mechanisms for Ammonia Synthesis

Ozaki, Taylor and Boudart (1960) have proposed a new mechanism of ammonia synthesis. Their kinetic experiments include the effect of pressure and isotope on the synthesis rate. They concluded that the rate determining step is the chemisorption of N_2 on a uniform or non-uniform surface and the covered surface

consists of adsorbed (NH) in equilibrium with hydrogen and ammonia in gas phase. However, the state of the surface determines the relative amounts of adsorbed (N) and (NH). They also found the observed rate constant to be identical for hydrogen and deuterium. Nielsen, Kjaer and Hansen (1964) mentioned that this above fact proves that hydrogen is not a reaction partner in the slowest step of the synthesis.

Considering the nitrogen adsorption to be the slowest step, the authors determined a rate equation, out of those proposed by Ozaki et al. (1960) to give the best agreement with experimental measurements on ammonia synthesis at industrial conditions.

Boudart (1962) and earlier Ozaki et al. (1960) derived the various rate equations for ammonia synthesis. The equations are Uniform surface, $r = \frac{\frac{N}{k_1 P_{N_2}}}{\frac{1}{1 + KP_{NH_3} / P_{H_2}^{1.5}}} r = \frac{\frac{NH}{k_1 P_{N_2}}}{\frac{1}{1 + K'P_{NH_3} / P_{H_2}^{1.5}}}$

Non-uniform
$$r = \frac{k_1 P_{N_2}}{[1 + K_0 P_{NH_3} / P_{H_2}^{-1.5}]^{2\alpha}} r = \frac{k_1 P_{N_2}}{[1 + K_0 P_{NH_3} / P_{H_2}^{-1.5}]^{2\alpha}}$$

The above equations are derived on the assumption that the two site chemisorption of nitrogen is the rate-determining, but different with respect to the energy spectrum of the surface and the main species occupying the surface at synthesis conditions.

Nielsen et al. (1964) combined the four expressions into one and formulated a rate equation by introducing and w. The

equation takes the form:

$$r = \frac{k_1 P_{N_2}}{(1 + K_3 P_{NH_3}/P_{H_2}^{W})^{2\alpha}}$$
(2.53)

Substituting activities for partial pressures and introducing the equilibrium constant of the synthesis reaction, the final form to be used in kinetic analysis is as follows:

$$r = \frac{k_1 a_{N_2} - k_2 a_{NH_3}^2 / a_{H_3}^2}{(1 + k_3 a_{NH_3}^2 / a_{H_2}^w)^2}$$
(2.54a)

$$= \frac{k_2 (a_{N_2} K_a^2 - a_{NH_3} / a_{H_2}^3)}{(1 + k_3 a_{NH_3} / a_{H_2}^w)^2}$$
(2.54b)

The rate constant k_2 and the adsorption equilibrium constant K_3 are functions of temperature. w is a new parameter and α has its original meaning. The temperature dependence is introduced through the equations:

$$k_2 = k_{20} \exp(-E_2/RT)$$
 (2.55a)

$$k_3 = K_{30} \exp(-E_3/RT)$$
 (2.55b)

All the values of the unknown coefficients have been found and given in tabular form by Nielsen et al. (1964). As

reported, w assumes a value in the range 1.44-1.56, and the best value correlating the experiments is w = 1.50. This disproves (NH) radicals as the main species on the surfaces as it could happen when w = 1.0.

The equation (2.54b) reduces to original T-P equation with a best value of α of about 0.75.

The rate constant was found to be independent of pressure and it is so as the activities instead of partial pressures were used.

It is also reported that the apparent energy of activation is 42,300 kcal/kmol for use in T-P equation with $\alpha = 0.64$.

In this work, the Temkin-Pyzhev equation for rate expression (2.35) have been used.

2.3.7 Heat Transfer Resistances

Axial temperature profile:

By the analysis of the kinetic data from the isothermal reactor used by Nielsen et al. (1968) it was found that in most cases the temperature recorded in all the thermocouples in the bed was within 5°C. A weighted mean of the temperatures gives sufficient accuracy for isothermal condition. But in runs at high pressure and at high space velocity, the deviation was as high as 17°C.

Radial temperature profiles:

Radial temperature differences are small whether the catalyst bed is cylindrical or ringshaped as reported by Nielsen (1968). It was found that if the heat transfer to the catalyst support grid is considered, the over-temperature at the center should be around 5°C. Usually a bed diameter to pellet diameter of at least ten is used to reduce the radial gradients of temperature, velocity and composition (Hossain, 1981).

Temperature profile in Catalyst particle:

As the synthesis reaction is exothermic heat flows from the catalyst particle to the surrounding gases. Due to the flow of heat a radial temperature profile exists between the surface of the catalyst particles to their centers. These temperature gradients depend on the thermal conductivity of the catalyst particles. With an already calculated value of 3 kcal/m-hr-°C for thermal conductivity, temperature profile was estimated by Nielsen (1968). As reported in the result an appreciable overtemperature of the particles as compared with the surrounding fluid existed in the inlet zones where reaction rate is high. The temperature difference is small at a short distance into the bed and in conversion measurements these are of little consequence.

2.3.8 Mass Transfer Resistances

The industrial solid catalysts possess high activity and the restriction of the overall reaction rate by the finite diffusion velocity of reactants and products through the pores of the solid becomes more and more important. A summary of this aspect of the kinetics of heterogeneous catalysts is given by Wheeler (1951).

Two phenomena are characteristic for a restricted inter-

- With increasing particle size, the activity of the catalyst decreases.
- (2) In general Arrhenius plot is straight, but in the temperature zone where the diffusion rate restrict the reaction rate, the Arrhenius plot shows a bend.

Earlier work suggested that under the usual conditions ammonia synthesis reaction is too slow to be retarted by internal diffusion. This belief is supported by the results of some old experiments at 100 atm. reported by Bokhoven (1955) where Larson and Tour (1922) failed to find any influence of particle size on catalyst activity.

As reported by Bokhoven (1955), estimations by Wagner (1944) show that under industrial conditions (300 atm., 450°C, particle size 5-10 mm) restriction by internal diffusion is

probable. On account of this, it was suggested that at high pressure, surface migration of the chemisorbed molecules or radicals contributes considerably to the diffusion rate through the porous catalyst.

Bokhoven and Raayan (1954) reported the results of extensive study on this subject. The results show both the phenomena mentioned above, which are characteristic of diffusional retardation. It was found that the retardation by internal diffusion decreases by increasing pressure.

The method of Wagner (1944) was reported and used to calculate the effectiveness factor, the ratio of the experimental rate constant and rate constant in absence of diffusional retardation. This ratio depends on the dimensionless number kR^2/D_{eff} , where k is pseudo first order reaction rate constant, R is the particle radius and D_{eff} is the effective diffusivity. Comparison of the values of effectiveness factor show that this restriction is more pronounced at low pressure (upto 300 atm.) rather than at high pressure (with size upto 10 mm).

These conclusions and observations are based on laboratory studies. It is necessary that one should be aware of the possibility of retardation of the rates in industrial converters, where more favourable conditions for retardation of rates exists with the gases being less pure and the catalyst being much less active.

Lastly, it may be concluded that the Temkin-Pyzhev equation gives a reasonably representative picture of the kinetics of ammonia synthesis on a good number of catalysts especially on the technically important $Al_20_3-K_20$ promoted iron catalysts.

2.4 Catalysis

2.4.1 Active Metal Catalysts

The catalysts proposed for the synthesis of ammonia by catalytic combination of nitrogen and hydrogen are mainly the metals of groups V and VIII of the periodic table (Vancini, 1971). The first investigator was Haber, the contact materials he investigated were Uranium, Ruthenium, Osmium, Cerium, Iron, Manganese, Nickel, Tungsten, Palladium and Platinum. Most of them follows Temkin-Pyzhev equation and hence the mechanism of action is the same as for the iron catalyst. Of these Osmium and Uranium gave the most promising results technically. But these noble metals are not available in plenty and have no significance as a catalyst.

Two companies, Badische Anilin Soda Fabric (BASF) and Fixed Nitrogen Research Laboratory played pioneering role in the development of catalyst for ammonia synthesis. From the results of BASF, 30 different metals were found suitable for the technical production of ammonia (Vancini, 1971). However only pure Fe, Co, Mo and W were industrially important. There are also mixtures of these metals which are suitable for commercial yields, for example Fe:Mo=1:1 catalyst.

2.4.2 Promoters

After years of persistant effort in experimentation with metals it was found that no metal possesses all the properties of

a practical catalyst. Better catalytic action has been affected (i) by mixing certain active metals, and (ii) by adding small quantities of inert substance to the active metals. The BASF suggested the inert substances as oxides, hydroxides or salts of alkaline earths and the rare earth metals. The fixed Nitrogen Research Laboratory mentioned the oxides of aluminium, silicon, zirconium, cerium or thorium. In all the investigations multicomponent promoters were found superior and the best. The most common catalyst for ammonia synthesis was iron with a combination of Al_20_3 and K_20 promoters (Catalyst Handbook, 1970). Such catalyst

- (i) increases the production of ammonia without further expenditure of energy for compression or circulation of the reaction gases.
- (ii) makes possible to operate the process at low temperature.This prolongs the life of the catalysts.
- (iii) is capable of maintaining a high efficiency as the pressure is increased.
 - (iv) simplifies the heat interchange problem, because the conversion is high and heat production is also in large proportion/amount.
 - (v) can be operated at pressures as high as 1500 atmospheres without suffering any appreciable lowering of efficiency.

Of the three known iron oxides, the spinal FeO, Fe₂O₃ yields an efficient synthesis catalyst when promoters are added. It is

found in nature as magnetite and can be used directly in the syn-reaction after reduction. The mixture of oxides obtained by coprecipitation from the hydroxide is less effective. The oxides increase the catalytic activity of pure reduced iron (Vancini, 1971). Effects of two promoters are given below: Al_2O_3

- (i) increases the surface of α -iron 10-20 times;
- (ii) prevents sintering and stabilizes the surface area; and
- (iii) also prevents the loss of other oxide (K₂0) by strong bonding

(i) neutralizes the acid character of Al_20_3 ;

K₂0

- (ii) decreases the electron work function of iron and inc-reases the ability to chemisorb nitrogen;
- (iii) acts as a promoter only with Al₂O₃ and at high pressures;
 - (iv) favours the chemisorption of NH₃ at slower rate than N₂ chemisorption and prevents it from the rate determining step; and
 - (v) acts as inhibitor at low pressures or without Al₂0₃.

How promoters increase the catalytic activity is understandable from higher NH₃ yields obtainable at various promoter combinations are given below:

Pressure	= 100 atm.
Temperature	= 450°C
Spatial velocity	$= 5000 \text{ Nm}^3 / (\text{m}^3 - \text{hr})$
Pure Fe from reduced magnetite	5%
Fe + 0.4% K ₂ 0	38
Fe + 1.3% Al_20_3	98
$Fe + 1.3$ % $Al_0 + 0.4$ % K_0	13%

Molybdenum is a poor iron promoter whereas Cu and Ni are inhibitors.

Increasing the amount of added promoters (a) increases resistances of the catalyst to sintering; (b) increases the catalytic activity upto a maximum followed by a decrease; and (c) reduces mechanical resistance of catalyst.

At temperatures and pressures above 550°C and 350 atm., a total of at least 5% $Al_20_3 + K_20$ whereas at lower temperatures and pressures 2% $Al_20_3 + 1$ % K_20 are mixed for desired conversion (Bridger et al., 1947).

The effect of adding different types of oxides on catalytic activity are presented in Table 2.10 (Vancini, 1971).

TABLE 2.10

Activity	Decay	of	Catalyst
----------	-------	----	----------

r		
Addition (2% of Fe ₃ 0 ₄)	Soon after reduction	after many hours of operation
Li ₂ 0	2.3	2.2
Na ₂ O	3.2	3.3
к ₂ 0	2.8	2.9
Cs ₂ 0	1.3	1.3
B ₂ 0	2.5	2.3.
M _g 0.	3.9	3.0
CaO	1.6	0.7
SrO	1.3	0.6
BaO	1.6	0.9
^B 2 ^O 3	4.3	1.2
A12 ⁰ 3	4.7	4.6
La2 ⁰ 3	3.4	3.3
sio ₂	4.9	4.3
ThO ₂	4.6	4.4
ZrO ₂	4.9	4.7
CeO ₂	4.6	4.4

Resistance to sintering can be obtained by adding either of the promoters CaO, SiO_2 , MgO or Cr_2O_3 (Nielsen, 1952). However this method of obtaining resistance to sintering is at the expense of catalytic activity and should therefore be used only at high temperatures.

2.4.3 Physical Properties

The important characteristics of the promoted iron catalysts are (a) surface area (b) mean pore size and (c) pore size distribution. Surface area is determined either by (i) B.E.T. method or (ii) method based on sedimentation rate, gas permeability, X-ray diffraction, use of microscope or use of radioactive gases. The mean pore size and pore size distribution are determined by standard techniques such as nitrogen adsorption method or mercury penetration method.

The catalyst size for ammonia synthesis is determined by the consideration of (a) a good diffusion rate inside the catalyst pores; (b) the space inside the catalyst basket between the thermocouple protective covering and the cooling tubes should be well packed; (c) the pressure drop of the mixture should be smaller, the lower the operating pressure, and (d) the tendency to break and form dust should be hindered. (a) and (b) lead to the choice of a small catalyst size, (c) and (d) lead to the opposite choice.

Usually the catalyst size in industrial reactors having operating pressures 300 Kg/cm² is 8-15 mm, at 600-800 Kg/cm² it

drops to 4-8 mm and in laboratory reactors it is reduced to 1-4 mm (Vancini, 1971).

2.4.4 Mechanism of Catalysis

The promoted iron catalyst is formed by very minute crystals of pure α -iron; the promoters are scattered in the crystal lattice, covering more than half of the surface. The promoters give an insulating protection to the crystals and reduces the physical structure. They can also occupy the interstices occupied by the oxygen atoms of the original magnetite.

The activity of the active centers vary both with time and space from a maximum to minimum, depending on the rate and degree of chemisorption. Hydrogen and nitrogen are chemisorbed as atoms by active centers; the mechanism of action of the iron catalyst may be represented by the following (Vancini, 1971):

 $:N:::N: \implies 2.N._{ads}$ $H:N \implies 2H._{ads}$

 $(.\ddot{N}:H)_{ads} + H_{ads} \xrightarrow{(.\ddot{N}:H)}_{ads}$ $(.\ddot{N}:H)_{ads} + H_{ads} \xrightarrow{(.\ddot{N}:H)}_{ads}$ $(.\ddot{N}:H)_{ads} + H_{ads} \xrightarrow{(.\ddot{N}:H)}_{ads}$

(2.56a)

.dot indicate the valence electrons

The desorption reaction is given by:

$$(:N:H)_{ads} \longrightarrow (:N:H)_{H}$$

2.4.5 Preparation of Catalyst

The properties of an ammonia catalyst of the iron type may be modified by adding promoters or other foreign materials to it; therefore close control of chemical composition and accurate method of preparation are necessary for an active product. The preparation of a promoted catalyst involves two steps:

> the preparation of an iron oxide combined with suitable promoters and

(2.56b)

(2) its reduction by hydrogen.

The second step is done by H_2-N_2 mixture prepared for the synthesis reaction. The second step is easier; the first step involves the real problem.

Magnetite is mainly used for catalyst preparation. The characteristics of magnetite are:

- (i) It is spinel in structure with elementary cell containing 32 oxygen ions, forming octahedral and tetrahedral interstices.
- (ii) Half the Fe⁺³ is distributed in 16 octahedral interstices and an equal number of Fe⁺² is distributed in 8 tetrahedral interstices.

(iii) Heat of formation according to the reaction:

3Fe(s) + $20_2(g) \longrightarrow Fe_30_4(s)$ $\Delta H_f^\circ = -266,700 \text{ kcal/kmol}$ (iv) Free energy of formation:

 $\Delta F^{\circ} = -242,500 \text{ kcal/kmol}$

Both natural and artificial magnetite can be used for NH₃ synthesis catalyst; but the latter contains less impurities and gives the most satisfactory results. It can be obtained by burning pure iron in an oxygen atmosphere. The iron oxide is then fused with promoter under rigid control on chemical composition of the oxide mixture. The oxide cannot be melted in any crucible; even refractory materials get contaminated. The method so far suggested consists in fusing in a protecting bed of the same material, promoters are readily added to the iron oxide in this fusion.

To obtain the spinel structure, two iron oxides Fe₂O₃, FeO must be grinded and remelted at about 1500°C in an electric induction furnace. The structure is stabilized by cooling in steam bath.

Finally crystallised iron is obtainable by reducing ferrocyanide complexes. Iron metal thus formed consists of α -Fe with little γ -Fe and its activity is fairly good.

2.4.6 Reduction of Catalyst

Magnetite is reduced to pure iron by hydrogen (in practice by $N_2 + 3H_2$) according to the reaction

$$1/4Fe_{2}O_{4}(s) + H_{2}(g) \longrightarrow 3/4Fe(s) + H_{2}O(g)$$
 (2.57)

 $\Delta H = 8500 \text{ kcal/kmol}$

TABLE 2.11

Equilibrium constants for the reaction : $K_p = P_{H_2}O/P_{H_2}$

·	
Temperature (°C)	Kp
200	0.013
300	0.044
400	0.107
500	0.214

The reaction towards the right is little influenced by pressure and greatly influenced by temperature as the reaction is endothermic. During reduction a linear increase in surface area and pore volume occurs. The reaction is carried out with hydrogen in very large excess and at condition far away from equilibrium and the rate is very high. The empirical rate equation (Hall et al., 1950) is

$$r' = k (0)^{2/3}$$
 (2.58)

where (0) is the oxygen content in the partially reduced catalyst.

The value of k is reduced by promoters especially by $K_2O + Al_2O_3$. The reduction is enhanced by the addition of copper and nickel oxides, which also reduces the activity. Reaction is carried out at low pressures (50 kg/cm²) and at high spatial velocity (above 5000 Nm³/hr-m³). The latter condition decreases the formation of water vapour and thus prevents the synthesis reaction from inhibition and the catalyst from poisoning.

The reduction rate and the activity are increased by increasing spatial velocity. At the advanced stage of the reaction, the temperature is raised to increase the rate considerably; however, the maximum value is lower than the synthesis temperature. The pressure can be lower or higher and the $N_2 + 3H_2$ should be as free from moisture as possible.

A typical data on reduction of an iron catalyst with promoters $Al_2O_3 + K_2O$ is given below (Vancini, 1971):

Pressure

100-200 kg/cm², in systems at moderate pressure 300-400 kg/cm², in systems at higher pressure Temperature 24 hr at 300-350°C 24 hr at 350-400°C then for a few days at 340-450°C 48 hr at 5,000 Nm³/(hr-m³) (or as high as possible) then at 10,000 Nm³/(hr-m³) (or as high as possible)

Under the above conditions, the reduction is not lower than 95%; the catalyst weight loss is 25%.

The reduction can be carried out in the synthesis column, and then start producing ammonia with adjusting the pressure and spatial velocity. However, the economic method is to run the reduction reaction separately and dry the mixture over activated alumina before adding to the catalyst. This is again unfortunate because of the pyrophoric nature of the reduced catalyst. It can be made non-pyrophoric by passing NH_3 over it at 450°C (Burnett et al., 1953). Another method involves passing a mixture of $N_2 + 3H_2$, with 0.2 - 0.5% air over the catalyst. A third method is to keep the catalyst at 200°C for a while under N_2 stream. But the safest and most practical method consists of oxidizing the catalyst surface with a nitrogen stream containing 0.1 - 0.2% 0_2 at a pressure 2-5 kg/cm² and at temperature lower than 150°C.

II.5 Reactors and Reactor Models

In the synthesis process of ammonia different types of reactors are used, each characterized by its working pressure and temperature, space velocity, flow pattern and heat transfer arrangement. The following are the types of ammonia reactors (Hossain, 1981):

1. Quench Converter

2. T.V.A. Converter

3. NEC Converter

4. Fauser-Montecatini Converter

5. Haber-Bosch-Mittasch Converter

6. Mt. Cenis Converter

7. Uhde Converter

8. Casale Converter

9. Radial Flow Converter

10. Claude Converter

II.5.1 Reactor Models

Mathematical modelling is the mathematical representation of a physical system. Its ultimate aim is to predict the process behaviour under different sets of operating conditions for working out a better strategy to control the process. Mathematical modelling costs less money and time (Hussain, 1986). Mathematical models for simulation studies have been developed by many workers. Singh and Saraf (1979) carried out simulation studies for ammonia synthesis reactors having adiabatic catalyst beds as well as authothermal reactors. A workable method to calculate diffusion effects within the catalyst pores has been developed. Suitable rate equations have been selected to describe the ammonia synthesis rate over the catalysts of different make. The simulation model gives an insight into the physical and chemical process in the reactor. A method to evaluate the effectiveness factor is developed and used in the model calculations.

The authors used a modified form of the Temkin equation.

$$r_{\rm NH_3} = k_2 \left[\frac{K^2 f_{\rm N_2}}{4} \left(\frac{f_{\rm H_2}}{2} / \frac{f_{\rm NH_3}}{4} \right)^{\alpha} - \left(\frac{f_{\rm NH_3}}{4} / \frac{f_{\rm H_2}}{4} \right)^{1-\alpha} \right]$$
(2.59)

They used the values of α and expression for k_2 from the published work of Guacci (1977). The values used for Montecatini- Edison Catalyst:

 $\alpha = 0.55, E_2 = 39057 \text{ kcal/kmol}$ $k_2 = \exp(2.303*14.7102-39057/\text{RT})$

and for Haldor - Topsoe Catalyst:

 $\alpha = 0.692$, $E_2 = 42983$ kcal/kmol $k_2 = \exp(2.303*15.2059-42953/RT)$ The rate expressions are extended for large size industrial catalyst particles (6-12mm) by taking account of the diffusion effects. The authors solved for the following models of ammonia synthesis reactor, Figure 2.2 shows the schematic diagram of the reactors.

Adiabatic Catalyst Bed

Material balance equation is

$$dx/dV = \pi r_{NH_{2}}/G$$

Heat balance equation is

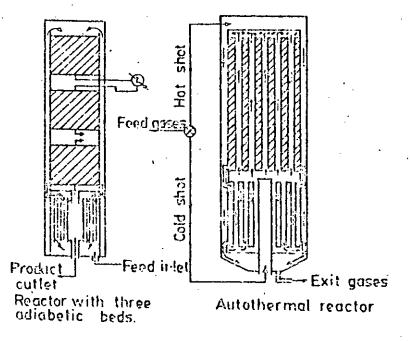
$$dT/dV = (-\Delta H/C_p) (n_{NH_3}/G)$$
 (2.61)

(2.60)

(2.62)

x is the extent of reaction defined by

$$g_j = g_{jo} + \alpha_j m_j x$$


Nonadiabatic Catalyst Bed

Material balance equation (2.60) holds for this case also. The heat balance is described by the equations:

$$dT_g/dV = UA(T-T_g)/G\bar{C}_{pg}$$
 (2.63)

$$dT/dV = (-\Delta H/C_p) (\eta r_{NH_3}/G) - UA(T-T_s)/G\bar{C_p}$$

$$= (-\Delta H/C_p) (\eta r_{NH_3}/G) - (dT_g/dV) (\bar{C}_{pg}/\bar{C}_p)$$
(2.64)

\$.,

Figure 2.2 Schematic diagrams of a three-bed reactor and an autothermal reactor for synthesis of ammonia.

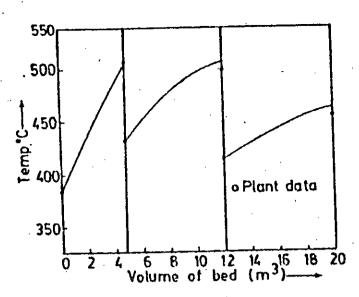
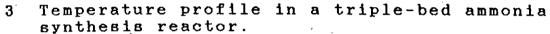
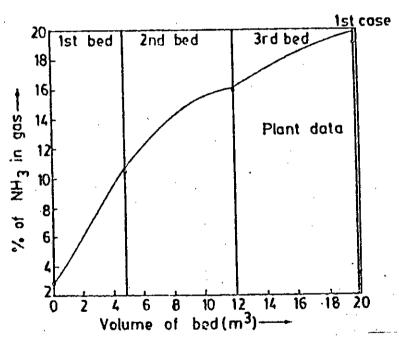




Figure 2.3

ligure 2.4

Ammonia concentration profile in a triple-bed synthesis reactor.

0.

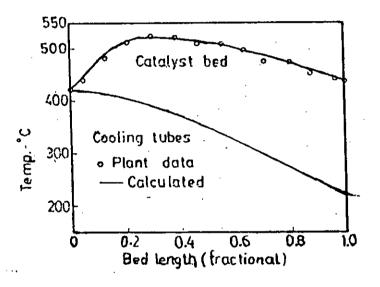


Figure 2.5

Temperature of synthesis gas in catalyst bed and cooling tubes along the length.

: .

U used in this work is 400 kcal/(hr-in²-°C). The equilibrium constant K is obtained from the Gillespie and Beattie equation (1930). The fugacity coefficients are calculated by means of the Cooper's (1967) expression for nitrogen and hydrogen and by Newton's (1935) expression for ammonia.

Each adiabatic reactor has three catalyst beds. The results are presented in figures 2.3 and 2.4 in terms of temperature and ammonia percent profile along the beds. The temperature profile for autothermal reactors are shown in fig.2.5. In al cases, comparison with plant data and simulation model shows very good agreement.

Gaines (1977) developed a steady-state model for a quenchtype ammonia converter and studied the effects of process variables upon converter efficiency over large range of operating conditions. Process variables investigated were pressure, catalyst activity, space velocity, H_2-N_2 ratio, feed Stemperature, concentration of inerts and ammonia in converter feed. A substantial improvement in converter efficiency is possible by maintaining optimal temperatures and this value may be determined from effluent concentration and equilibrium concentration. Finally they proposed a simple method for optimum temperature control to obtain better efficiency. A schematic diagram of the converter is shown in figure 2.6. Figure 2.7 gives a block diagram representation.

The equilibrium constant is calculated from equation (2.21) and activity coefficients used to calculate activities are computed from equation (2.25). The reverse rate constant is

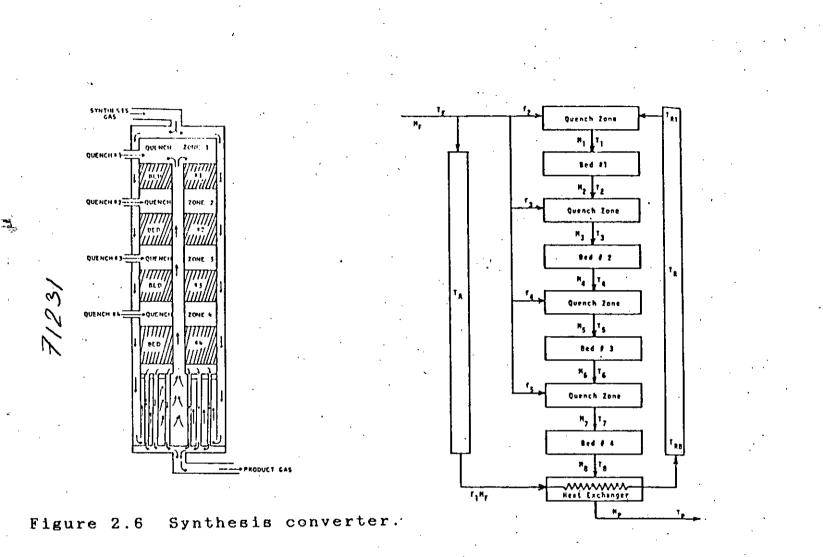


Figure 2.7 Block diagram of synthesis converter.

computed from equation (2.43). Material and energy balance are developed on the basis of the following assumptions:

- (i) the catalyst section is nearly adiabatic,
- (ii) the radial temperature distribution is nearly uniform,
- (iii) the velocity profile in the bed is uniform, as the bed diameter is much larger than the catalyst diameter,
 - (iv) the pressure varies linearly with the fraction of catalyst traversed.

Material Balance

The hydrogen consumed in a differential element of a catalyst bed is given by

$$F_{dx}$$
 = rAdZ

Component flow equations are

$$F_{c1} = F_{1}(1-x_{1})$$

$$F_{c2} = F_{2} - F_{1}x_{1}/3$$

$$F_{c3} = F_{3} + 2F_{1}x_{1}/3$$

$$F_{c4} = F_{4}, F_{c5} = F_{5}$$

(2.66)

(2.65)

Energy Balance

The converter may be divided into three sections: catalyst beds, quench zones and heat exchanger. The energy balance equations for a differential element of catalyst bed involves four heat terms:

$$\frac{dQ_{reaction} + dQ_{gas} + dQ_{riser} + dQ_{annulus} = 0}{-\frac{2}{3} \Delta HF_1 dx_1 - F_1 C_p dT - UC(T - T_r) dZ + k' C' - \frac{(T - T_a)}{dZ} = 0}$$
(2.67)

The energy balance for the reacted gas in the shell side of the heat exchanger is

$$F_{C}C_{p}dT_{s} = UA' (T_{s} - \dot{T}_{t})dZ$$
 (2.68)

The energy balance for the feed gas in the heat exchanger tubes is

$$f_1 F_1 C_p dT_t = -UA' (T_s - T_t) dZ$$
 (2.69)

Gaines has given an algorithm to solve the set of equations (2.65-2.69). The base case for the simulation study is given in Table 2.12.

TABLE	2.12

BASE	CASE	FOR	SIMULATION	OF	SINGLE	CON	VERTER

Inlet pressure	140 atm
Outlet pressure	140 atm
Feed temperature	290°F
H ₂ feed	10,243 lb-mole/hr
N ₂ feed	3,414 lb-mole/hr
NH ₃ feed	330 lb-mole/hr
Ar feed	727 lb-mole/hr
CH ₄ feed	1,817.5 lb-mole/hr
Fraction feed through exchanger	0.58
Fraction feed for first bed quench	0.03
Fraction feed for second bed quench	0.12
Fraction feed for third bed quench	0.12
Fraction feed for fourth bed quench	0.15
Outlet temperature of bed 1	897.9°F
Outlet temperature of bed 2	891.8°F
Outlet temperature of bed 3	880°F
Outlet temperature of bed 4	859.5°F
Mole fraction inerts in converter feed	0.154
H ₂ /N ₂ ratio	3.0
Mole fraction ammonia in feed	0.02
Mole fraction ammonia in effluent	0.1265

٦.

.

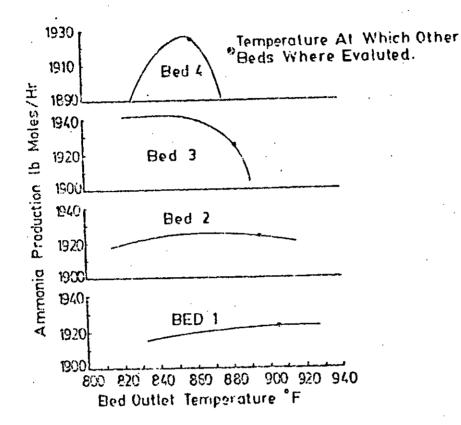


Figure 2.8 Ammonia production vs. bed outlet temperature.

() A Figure 2.8 shows the effect of temperature upon production in the four bed quench converter. The effect on the first two beds is very slight; the effect in the third bed is much if the temperature is too high. At high temperature the reaction rate is decreased and so conversion is less in the bed. This less conversion and additional quench reduces considerably the concentration of ammonia into the fourth bed. Therefore to avoid a substantial decrease in production, the third bed temperature should not be allowed to exceed by 20-30°F to that of the fourth bed.

The fourth bed temperature is of the greatest importance; this was also reported by Stephens (1975). A series of simulation was done for the said process variables and these effects can be related to the fourth bed temperature. By adjusting the quench flow a declining temperature profile was found for the fourth bed. This temperature was very sensitive to the fraction of feed through the exchanger. Simulation calculations were completed with the obtainment of maximum converter efficiency

Some of the more important results of the simulation study are as follows:

(i) For the same temperature, increase in pressure increases the ammonia outlet concentration as well as equilibrium concentrations. For the same pressure, both outlet concentration and equilibrium concentration decreases with the increase of feed temperature.

- (ii) For the same temperature, ammonia outlet concentration as well as equilibrium concentration decreases with increase in inert content in the feed. For the same inert percentage, the effect of temperature is the same as (i).
- (iii) Higher equilibrium concentration is obtainable at $H_2:N_2 = 3:1$ whereas 2.5:1 ratio gives higher converter efficiency.
 - (iv) The feed temperature has little effect upon the converter efficiency, although conversion is increased slightly at lower temperature.
 - (v) The ammonia content of feed slightly increases the effluent ammonia concentration with a net decrease in conversion.
 - (vi) Low space velocity gives higher ammonia outlet concentration approaching equilibrium value, with a decrease in production rate.
 - (vii) More active catalyst gives better ammonia percentage and therefore converter efficiency decreases with activity of the catalyst particles.
 - (viii) Simulation suggests a fourth bed temperature in the range 850°-870°F for maximum converter efficiency.

On the basis of the results obtained, the author proposed a control system to maintain/control the fourth bed temperature for the improvement of converter efficiency. The Tennessee Valley Authority reactor (TVA reactor) is a particular design of a Haber-Bosch reactor. Slack, Allgood and Maune (1953, 1976) described the operating characteristics of a TVA reactor. They reported the process variables as the temperature of the feed, reactor pressure, ammonia and inert content of the feed gas, hydrogen and nitrogen in the feed.

(Trivestigation results are as follows:

- (i) the reactor stability decreases with the increase of space velocity; the reactor blows off and ammonia concentration decreases monotonically,
- (ii) for maximum production of ammonia, an optimum value of feed temperature exists,
- (iii) the temperature profile passes through a maximum, called the "hot spot" or "peak temperature",
 - (iv) both the optimum temperature and peak temperaturevary with the process variables and catalyst activity,
 - (v) with less active catalysts, a higher value in average feed temperature is necessary for better ammonia production and to avoid instability.

Van Heerden (1953), Beutler and Roberts (1956) and Annable (1962) have derived one dimensional mathematical models to study the steady-state behaviour of Haber-Bosch type reactors. They derive the model equations allowing temperature and compositions variations in the logitudinal directions only. Their simulation results were supported by experimental results; however none of them investigated the effect of operating_and design variables on the production, stability and temperature profiles in the reactor. Kjaer's (1963) model consists of three partial differential equations and are derived allowing for temperature variations in both axial and radial directions. The temperature and concentration profiles were computed for only one set of operating conditions. The agreement of these results with plant data was good.

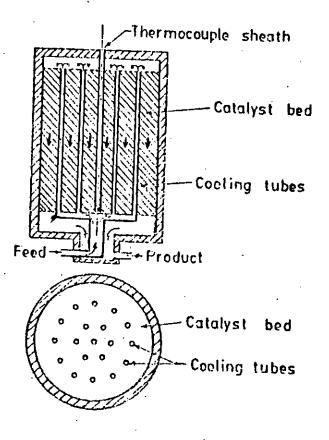
Steady-state simulation of a TVA ammonia synthesis converter has been made by Baddour, Brian, Logeais and Emery (1965). A mathematical model for the reactor was formulated and the effects of operating and design variables on

- (i) the optimum feed temperature,
- (ii) the stability of the reactor and
- (iii) the temperature profiles in the reactor

were investigated using the simulation model. The operating variables reported were; space velocity, ammonia and inert content of the feed and catalyst activity. The design variable was the heat conductance per unit volume of the reactor between the reacting gas and the gas in the cooling tube. The range of parameters are presented in Table 12.13.

TABLE 2.13

Parameters and range of Variations


Parameter	Lower Limit	Standard	<u> Upper Limit</u>
-1 Space velocity,V _O (hr)	9000	13,800	18,000
Ammonia in feed, y _{NH3}	0.01	0.05	0.10
Inert in feed, y _{int}	0.01	0.08	0.15
Catalyst activity, f	0.4	1.0	1.0
Total heat conductance,U	*S 30,000	35,000	· 80,000

A one-dimensional mathematical model was developed for the TVA ammonia synthesis converter (Baddour et al., 1965). The assumption made were:

- (i) no temperature and concentration gradient in the radial direction,
- (ii) the pressure in the reactor is constant,

Ĵ

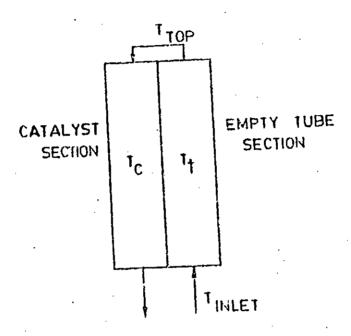
- (iii) the temperature of the gas flowing through the catalyst is equal to the temperature of the catalyst particles.
 - (iv) no heat and mass diffusion in the longitudinal direction,
 - (v) the heat capacity of the gas is independent of temperature and the effect of pressure on enthalpy is negligible.

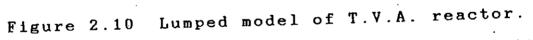
Figure 2.9 The countercurrent cooled tubular reactor.

The TVA reactor is shown in figure 2.9 and its idealized representation for mathematical model is shown in figure 2.10. The empty tube section represents the gas inside the cooling tubes and the catalyst section includes the catalyst particles and the gas flowing through them. The temperature T and T_c vary longitudinally in both direction.

Temkin-Pyzhev equation with constants obtained from Sidorov's experimental results were used. The equation for reaction rate becomes a unique function of temperature and gas composition, as mass transfer and pore diffusion resistances were neglected.

A material balance around a differential slice of catalyst section and enthalpy balance in the empty tube section and in the catalyst section characterises the steady-state behaviour of the TVA reactor and comprises the mathematical model. Equation are presented in the dimensionless forms.


(a) Material balance:


$$\frac{dx}{dx} = \left\{ \left(\frac{fA}{T_{top} V_0} \right) \left(\frac{1}{T_e} \right) \exp\left[\left(-20, 300/T_{top} \right) \left(\frac{1}{T_e} \right) \right] \right\}$$

$$\left[\left(\kappa_p P \right)^2 A \left(B - \chi \right)^{1.5} \left(b - \chi \right) / \chi - \frac{J\chi}{\left(B - \chi \right)^{1.5}} \right] \frac{\left(1 + \chi \right)^2}{1 + \chi^2} \right]$$

(b) Energy balance in the empty tube section:

$$dT/d\alpha = (US/F \Delta C) (\Delta C/\overline{C}_{po}) (T_t - T_c)$$
 (2.71)

ļ.

· · ·

(c) Energy balance in the catalyst section:

$$\begin{bmatrix} i - \frac{dC}{C_{P_0}} \left(\frac{\chi - \chi^{\dagger}}{1 + \chi}\right) \end{bmatrix} \frac{dT_e}{d\alpha} + \left(\frac{US}{F_{4C}}\right) \left(\frac{dC}{C_{P_0}}\right) \left(T_c - T_t\right) \\ - \begin{bmatrix} \frac{(-d)!_0}{T_{t_0}} - T_b^{\dagger} dC}{T_{t_0}^{\dagger} C_{t_0}} + \left(\frac{dC}{C_{P_0}}\right) T_c \end{bmatrix} + \frac{1 + \chi^{\dagger}}{(1 + \chi)^2} \frac{d\chi}{d\alpha} = 0$$

(2.72)

where y , y , y = inlet mole fractions of NH_3 , H_2 , N_2 NH_3 H_2 N_2 respectively

> f = catalyst activity factor P = pressure (assumed constant) K_p = equilibrium constant, atm^{-1} α = length of the reactor

$$A = (1.5 - Y_{H_2}) \frac{0.5 - Y_{N_2}}{(1 + Y_{NH_3})^{2.5}}$$

$$B = (Y_{H_2} + 1.5 Y_{NH_3}) / (1.5 - Y_{H_2})$$

$$b = (y_{N_2} + 0.5 y_{NH_3}) / (0.5 - y_{N_2})$$

$$D = (1 + Y_{\rm NH_3}) / (1.5 - Y_{\rm NH_3})^{1.5}$$
(2.73)

In the above equations the temperature is normalized with respect to the temperature at the top of the reactor where the gas reverses its direction to enter the catalyst section.

The boundary conditions associated with the model are specified at the top of reactor by: at $\alpha = 0$, $T_c = 1$, $T_t = 1$, $x = x^*$. The system of ordinary differential equations was solved by using Runge-Kutta formulas, with increment sizes

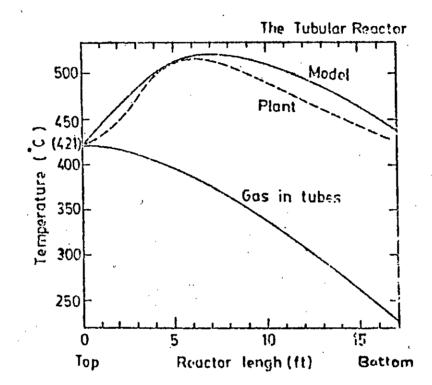


Figure 2.11 ' Comparison of solution of simulation model and actual ammonia converter temperature profile

 $\Delta \alpha = 0.05$ for $0 < \alpha < 0.5$ $\Delta \alpha = 0.10$ for $0.5 < \alpha < 1.0$

The computed results were compared with plant data provided by Allgood (1953) obtained in a converter 17 ft. long with a catalyst volume of 144 ft³. The operating variables used in the model and in the plant are given below:

Parameter	Actual Converter	Model
H ₂ mole fraction in feed	0.625	0.6375
N_2 mole fraction in feed	0.219	0.2125 •
NH_3 mole fraction in feed	0.052	0.050
Inert mole fraction in feed	0.079	0.080
Space velocity(hr ⁻¹)	13,800	13,800
Pressure, atm	286	300
Catalyst volume, ft ³	144	144

A value of heat transfer conductance, U*S, equal to 55,000 Btu/hr°F was found to give the best fit between the temperature profiles. And this is close to the value 57,300 obtained by calculations.

Typical temperature profiles are shown in figure 2.11 for both model data and plant data. Figure 2.12 shows the variation of production rate with top temperature for a fixed feed composition. With the standard space velocity of 13,800, it is clear that the optimum is about 425°C. By increasing the flowrate so that the space velocity is 18,000, a greater production can be

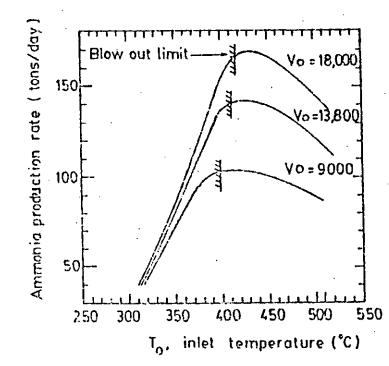
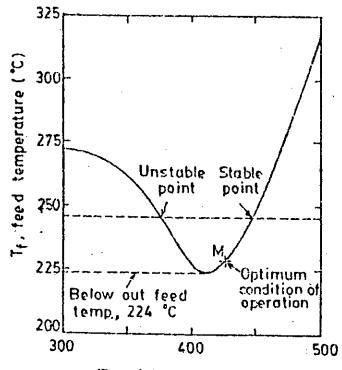


Figure 2.12

The variation of production with T_o for several flow rates.

achieved with $T_{top} = 430$ °C; but it is somewhat more sensitive to a change in top temperature. A decrease in flowrate lowers the production and makes it less sensitive to variations in temperature.


An analogous result is found with the ammonia content of the feed. The production rate of the TVA reactor is quite sensitive to the change in ammonia mole fraction in the feed gas and much less sensitive to changes in the inert content of the feed gas. A decrease in catalyst activity decreases the production rate and requires the reactor to be operated at higher temperature. Furthermore, at low catalyst activity, the production rate is more sensitive to changes in top temperature. The Stanton number has been found to have a small effect on production and the range of Stanton number for maximum production is flat. Aris (1969) reported the effect of variables on production by tabulating the sensitivities. Sensitivity has been defined in the following fashion,

$$= \frac{\Delta P/P}{\Delta q/q}$$

σ

(2.74)

where P is the production for a parameter of value q and \triangle P is the change in production due to a change in \triangle q in q. From the calculation of Baddour about the base condition, the following sensitivities of the maximum production rate can be summarized:

T_o, inlet temperature (°C)

Figure 2.13 Variation of T_f with T_o .

Operating variables	Standard value	<u>Sensitivity</u>
	•	
Space velocity	13,800 1/hr	0.7
Inlet NH3 mole fraction	0.05	-0.30
Inert mole fraction	0.08	-0.15
Catalyst activity	1.00	0.35
	•.	

Baddour's calculation give important information \bigcirc on the stability of the reactor. If a value of T is chosen and the value of feed temperature $T_f = T_o(L)$ is calculated then for this value of T_{f} , the value of T_{o} will be chosen and the profile as calculated. If these calculations are made for several values of T_{o} , all others parameters being kept constant, then T_{f} can be plotted against T_{o} , and for any prescribed T_{f} , the unknown T_{o} can be read off. Figure 2.13 shows the results of Baddour's calculations on the standard case and it is at once evident that for T_f between 224°C and 270°C there can be two values of T_o . The smaller of these is unstable because the slope of the curve is negative here and an increase in T_f actually decreases T_o . The minimum feed temperature of 224°C is called the blow-out feed temperature for there is no intersection on the figure at all. Stable operation which is also profitable is to be found only on the part of the curve to the right of the minimum. The maximum production rate actually corresponds to the point M. The feed

temperature below which the reaction will not sustain itself is obviously of great importance: the hatched line in figure 2.12 shows the variation of this for three different space velocities.

The sensitivities of the blow-out feed temperature to various parameters based on Baddour's calculations has been summarised by Aris as follows:

Operating variables	<u>Standard value</u>	<u>Sensitivity</u>
Space velocity	13,800	0.10
Inlet NH3 mole fraction	0.05	0.028
Inlet inert mole fraction	0.08	0.015
Catalyst activity	1.00	-0.09
Heat transfer conductance		
or Stanton Number	55,000 Btu/hr°F	0.74

Another operating variable of importance is the peak temperature which is about 529°C. The sensitivity of the peak temperature as given below shows its relative insensitivity to different variables.

Operating variables	Standard value	<u>Sensitivity</u>
Inlet NH3 mole fraction	0.05	-0.04
Inlet inert	0.08	-0.02
Activity	1.00	-0.04
Heat transfer conductance	55,000 Btu/hr°F	+0.076

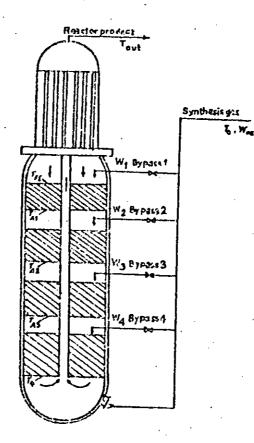


Figure 2.14 Reactor for ammonia synthesis.

Lutschutenkow et al. (1978) investigated the reactor sensitivity to changes in perturbation and control variables over a broad operating range. They also estimated and analysed the reactor properties and showed them as a basis for structural and parametric synthesis of the control system.

The reactor under consideration consists of a high pressure shell, the catalyst section consist of four packed beds and heat exchanger. The feed is divided into two streams before reaching the reactor. The larger stream is directed through slotted chambers to cool the high-pressure shell. It is then preheated in the heat exchanger; from which it enters the first catalyst bed. The second part of the feed stream is further separated by bypasses. It provides fresh feed gas and cooling of the synthesis gas between the catalyst beds and it establishes the temperature required for ammonia synthesis in the reactor. The reactor is shown in figure 2.14.

On the basis of the following assumptions the equation of mass, energy and momentum were written as the steady-state mathematical model of the fixed bed reactor:

- Catalyst and feed gas can be considered as a quasi homogeneous phase.
- The pressure gradient along the length of the reactor can be disregarded. This obviates the necessity for the momentum balance.

3. There is no gas mixing in the axial direction.

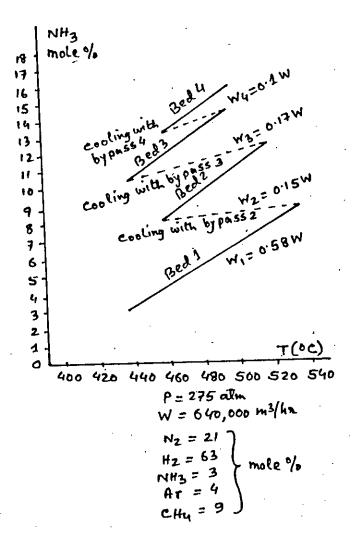


Figure 2.15

Reactor temperature and concentration profiles.

4. There is complete radial mixing.

5. There is no heat exchange in the axial direction.

 Because the reactor model is well insulated, there is no heat loss.

The reactor model consists of a set of ordinary differential equations for the contact beds along with the necessary constraints, equation for the mixing of the gas streams and heat and mass balance equations for the heat exchanger.

The set of equations was solved on a computer and computed profiles for temperature and concentration in the reactor are shown in figure 2.15.

Investigation of the sensitivity of the operational behaviour of the four-stage reactor for ammonia synthesis produced the following results:

- Productivity as function of control variables has a very pronounced extremal nature.
- 2. Maximum productivity is near the autothermy limit.
- 3. There is no way to control independently the exit temperature from the i-th bed with the i-1 th bed alone.
- 4. Productivity is extremal as a function of H_2/N_2 ratio and the bed exit temperature.

- 5. There is practically no influence on productivity by temperature variations at the reactor intake.
- Both productivity and bed exit temperature have a monotonic curve with respect to the other disturbance variables.
- 7. Sudden changes occur in the operational behaviour of the reactor in the vicinity of the autothermy limit.

The above studies clearly reveal that simulation is a useful tool to obtain informations on the performance of an ammonia synthesis reactor.

thr i

APPENDIX III

.

•

		•	
	C C		
	C C*** C C	MAIN LINE PROGRAM FOR COMPLEX ALGORITHM OF BOX	
	c	IMPLICIT DOUBLE PRECISION(A-H,O-Z) DIMENSION X(10,4),F(10),G(4),H(4),XC(4),DELTA(4) INTEGER GAMMA	
,	C C C	COMMON/VAR/TEMPIN(47), TEMP2(47), TEMP3(47), PP(47), PROD(47), TIM(47), KKK	
	C C	COMMON/SUB/CPROD(47) COMMON/HUB/LL KKK=1	
<u></u>	1	OPEN(UNIT=90,FILE='IN',STATUS='OLD') OPEN(UNIT=21,FILE='IN1',STATUS='NEW') READ(90,1) N,M,K,ITMAX,IC,IPRINT	
£	1	FORMAT(615) READ(90,2) ALPHA, BETA, (DELTA(I), I=1, N), GAMMA FORMAT(6F10.5, I5) PEAD(90.2) (Y(1.1), I=1, N)	
	3 C C4	READ(90,3) (X(1,J),J=1,N) FORMAT(4G10.5) READ(90,4)((R(II,JJ),JJ=1,N),II=2,K) FORMAT(2F10.4)	
	C C	CLOSE(90) CALL READ WRITE(21,15)	
~	15	FORMAT(//, ** CONSTRAINED OPTIMIZATION BY COMPLEX PROCEDURE OF .X **) WRITE(21,22)	
	22	FORMAT(//,2X, '** PARAMETERS **') WRITE(21,25) N,M,K,ITMAX,IC,IPRINT,ALPHA,BETA,(DELTA(I),I=1,N) .,GAMMA	
	25	FORMAT(//, 'NO. OF EXPLICIT VARIABLES(N)=',12,3X, .'TOTAL NUMBER OF CONSTRAINTS(M)=',12,/, .'TOTAL NO. OF POINTS IN THE COMPLEX(K)=',12,3X,	
		<pre>`MAX. NO. OF ITERATIONS(ITMAX)=',15,/, . NO. OF IMPLICIT VARIABLES(IC)=',12,3X, . PRINT CONTROL COUNTER(IPRINT)=',12,/,</pre>	
		. REFLEXION PARAMETER(ALPHA)=',G10.4,/, . CONVERGENCE PARAMETER(BETA)=',G10.4,/, . EXPLICIT CONSTRAINT VIOLATION CORRECTION TERM(DELTA(I)=',	•
	C C	.4(1X,G10.4),/, CONVERGENCE PARAMETER(GAMMA)=',I5) IF(IPRINT.EQ.1) THEN WRITE(21,50)((J,I,R(J,I),I=1,N),J=2,K)	
	C C50 60	ENDIF FORMAT(/`**RANDOM NUMBERS**`/,(2(2X, R(`,I1,`,',I1,`) =`,F6.4))) CALL CONSX(N,M,K,ITMAX,ALPHA,BETA,GAMMA,DELTA,X,R,F,	,
r.	С	IT, IEV2, G, H, XC, IPRINT) IF(IT.LE.ITMAX) THEN	
	70	WRITE(21,70) ABS(F(IEV2)) FORMAT(///, FINAL VALUE OF THE FUNCTION= 1,1PE16.7)	
			,

			i l
	80	WRITE(21,80)(J,X(IEV2,J),J=1,N) FORMAT(///, FINAL X VALUES ** /,(2X/,	
	420	WRITE(21,420) WRITE(21,520)(PROD(J),CPROD(J),J=1,47) FORMAT(12X, PROD',9X, CPROD')	·
С	520 230	FORMAT(10X,G10.4,4X,G10.4) WRITE(21,230) IT FORMAT(5X, 'ITERATION NO.=',I5) ELSE	
ç	90	WRITE(21,90) ITMAX FORMAT(//, THE MAXIMUM NO. OF ITERATION ,13,2X, HAS EXCEEDED / PROGRAM TERMINATED)	
с с		ENDIF NN=47 SD=0.0	
. C C1 C	1000	DO 1000 I=1,NN SD=SD+(PROD(I)-CPROD(I))**2 STD=SQRT(SD/(NN-1))	
		WRITE(21,620) STD FORMAT(5X, STANDARD DEVIATION= ',G10.4) STOP	
		END SUBROUTINE CONSX(N,M,K,ITMAX,ALPHA,BETA,GAMMA,DELTA,X,R,F, IT,IEV2,G,H,XC,IPRINT)	
C C C	••••	COORDINATES SPECIAL PURPOSE SUBROUTINE VARIABLES: IT= ITERATION INDEX	
C	• • • • • • • • • • • • • • • • • •	IEV1= INDEX OF POINT WITH MINIMUM FUNCTION VALUE IEV2= INDEX OF POINT WITH MAXIMUM FUNCTION VALUE	
C C	• • • • • • • • • • • • • • • • • • • •	KODE= CONTROL KEY USED TO DETERMINE IF IMPLICIT CONSTRAINTS ARE PROVIDED	
Ċ		IMPLICIT DOUBLE PRECISION(A-H,O-Z) INTEGER GAMMA DIMENSION X(K,M),R(K,N),F(K),G(M),H(M),XC(N)	
· C C C		COMMON/VAR/TEMPIM(47), TEMP2(47), TEMP3(47), PP(47), PROD(47), TIM(47), KKK COMMON/SUB/CPROD(47)	
	(COMMON/HUB/LL OPEN(UNIT=23,FILE=^OUT2^,STATUS=^NEW^) IT=1	
		KODE=0 IF(M.GT.N) THEN KODE=1	
		ENDIF DO 10 II=2,K DO 10 J=1,N	
· .	10	X(II,J)=0.0 CONTINUE	
			-

С	CALCULATE COMPLEX POINTS AND CHECK AGAINST CONSTRAINTS.
0	IX=25591
	DO 30 II=2,K
	DO 20 J=1,N
	I=II CALL CONST(N,M,K,X,G,H,I)
45	CALL RANDOM(IX,IY,YFL)
	IX=IY
	KX=YFL*10000
	IF(KX.GE.10000) CALL RANDOM(IX,IY,YFL)
	IF(KX.GE.10000) $IX=IY$
	IF(KX.GE.10000) KX=YFL*10000 IF(KX.GE.10000) GOTO 45
	A = FLOAT(KX) / 10000.0
	X(II,J) = G(J) + A * (H(J) - G(J))
C	X(II,J)=G(J)+R(II,J)*(H(J)-G(J))
20	CONTINUE K1=II
	CALL CHECK(N,M,K,X,G,H,I,KODE,XC,DELTA,K1)
	IF(II.GT.2) GOTO 65
	IF(IPRINT.EQ.1) THEN
5.0	WRITE(23,50)
50	FORMAT(//,2X, ** COORDINATES OF INITIAL COMPLEX ** ')
	WRITE(23,60)(IO, J, X(IO, J), J=1, N)
60	FORMAT(/,4(2X, X(',I2,',',I2,')=',1PE13.6))
	ENDIF
65	IF(IPRINT.EQ.1) THEN
	WRITE(23,60)(II,J,X(II,J),J=1,N) ENDIF
30	CONTINUE
	ITER=1
	K1=K
	DO 40 I=1,K CALL FUNC(N,M,K,X,F,I)
	ITER=ITER+1
	WRITE(23,*) F(I)
40	CONTINUE
	$\begin{array}{c} \text{KOUNT} = 1 \\ \text{IA} = 0 \end{array}$
С	FIND POINT WITH LOWEST FUNCTION VALUE
0	IF(IPRINT.EQ.1) THEN
	WRITE(23,80)(J,ABS(F(J)),J=1,K)
80	FORMAT(' ** VALUES OF THE FUNCTION ** '/
	. ,5(2X, F(',I2,')=',1PE13.7)) ENDIF
85	IEV1=1
	DO 90 ICM=2,K
	IF(F(IEV1).GT.F(ICM)) THEN
	IEV1=ICM
00	ENDIF
90	CONTINUE

С	FIND POINT WITH HIGHEST FUNCTION VALUE
0	IEV2=1
	DO 100 ICM=2,K
	IF(F(IEV2).LE.F(ICM)) THEN IEV2=ICM
	ENDIF
	CONTINUE
С	CHECK CONVERGENCE CRITERIA
	IF(F(IEV2).LT.(F(IEV1)+BETA)) THEN KOUNT=KOUNT+1
	ELSE
	KOUNT=1
	GOTO 150
	ENDIF
	IF(KOUNT.GE.GAMMA) THEN GOTO 500
	ENDIF
	.REPLACE POINT WITH LOWEST FUNCTION VALUE
150	CALL CENTR(N,M,K,IEV1,I,XC,X,K1)
	DO 110 JJ=1,N X(IEV1,JJ)=(1.0+ALPHA)*(XC(JJ))-ALPHA*(X(IEV1,JJ))
110	CONTINUE
	I=IEV1
	ITER=ITER+1
	CALL CHECK(N,M,K,X,G,H,I,KODE,XC,DELTA,K1) CALL FUNC(N,M,K,X,F,I)
С	.REPLACE NEW POINT IF IT REPEATS AS LOWEST FUNCTION VALUE
170	IEV2=1
	DO 120 ICM=2,K IE(E(IEV2)) CT $E(ICM)$ THEN
	IF(F(IEV2).GT.F(ICM)) THEN IEV2=ICM
	ENDIF
120	CONTINUE
	IF(IEV2.EQ.IEV1) THEN DO 130 JJ=1,N
	X(IEV1, JJ) = (X(IEV1, JJ) + XC(JJ))/2.0
130	CONTINUE
	ITER=ITER+1 CALL CHECK(N,M,K,X,G,H,I,KODE,XC,DELTA,K1)
	CALL FUNC(N, M, K, X, F, I)
	GOTO 170
	ENDIF
	IF(IPRINT.EQ.1) THEN WRITE(23,230) IT
230	FORMAT(/, 'ITERATION NO.=', 15)
	WRITE(23,250)(IEV1,JC,X(IEV1,JC),JC=1,N)
250	FORMAT(/,2X, COORDINATES OF CORRECTED POINT /
	. ,4(2X, X(',I2,',',I2,')=',1PE13.6)) WRITE(23,80) (I,ABS(F(I)),I=1,K)
	WRITE(23, 260) (JC, XC(JC), JC=1, N)
260	FORMAT(/,2X, ' COORDINATES OF THE CENTROID'/
	. ,4(2X, X(´,I2,´,´,C)=´,1PE13.6))
	ENDIF

- 1

IT=IT+1 IF(IT.LE.ITMAX) THEN GOTO 85
ENDIF
LL=1
CALL FUNC(N,M,K,X,F,IEV2)
RETURN
END
SUBROUTINE RANDOM(IX, IY, YFL)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
IY=IX*65539
IF (IY) 5,15,15
IY=IY+2147483647+1
YFL=IY
YFL=YFL*0.4656613E-9
RETURN
END

	a	
	C C***	SUBROUTINE CHECK
	C	SUBRUUTINE CHECK
	Ŷ.	SUBROUTINE CHECK(N,M,K,X,G,H,I,KODE,XC,DELTA,K1)
	2	DIMENSION X(K,M),G(M),H(M),XC(N),DELTA(N)
	10	KT=0
	a	CALL CONST(N, M, K, X, G, H, I)
	C	CHECK AGAINST EXPLICIT CONSTRAINTS
		IF(X(I,J),LT,G(J)) THEN
	•	X(I,J)=G(J)+DELTA(J)
		ELSE $IF(X(I,J).GT.H(J))$ THEN
	•	X(I,J)=H(J)-DELTA(J)
	50°	ENDIF CONTINUE
		CHECK AGAINST THE IMPLICIT CONSTRAINTS
		IF(KODE.EQ.0) GOTO 110
		NN=N+1
		DO 100 J=NN,M
		CALL CONST(N,M,K,X,G,H,I) IF(X(I,J)-G(J)) 80,70,70
	70	IF(H(J)-X(I,J)) = 80,100,100
•	80	IEV1=I
		KT=1
		CALL CENTR(N,M,K,IEV1,I,XC,X,K1)
		DO 90 JJ=1,N X(I,JJ)=(X(I,JJ)+XC(JJ))/2.0
	90	CONTINUE
	100	CONTINUE
		IF(KT.GT.O) THEN
		GOTO 10 ENDIF
	110	RETURN
		END
	С	
	.C***	SUBROUTINE CENTR
	C	SUBROUTINE CENTR(N,M,K,IEV1,I,XC,X,K1)
		DIMENSION $X(K,M), XC(N)$
		DO 20 J=1,N
		XC(J)=0.0
		DO 10 IL=1,K1 XC(J)=XC(J)+X(IL,J)
	10	CONTINUE
•		RK=K1
		XC(J) = (XC(J) - X(IEV1, J)) / (RK - 1.0)
	20	CONTINUE
		RETURN END

⊐t-

:

C C***	SUBROUTINE CONST
C,	SUBROUTINE CONST(N,M,K,X,G,H,I) DIMENSION X(K,M),G(M),H(M)
C C	AMMONIA SYNTHESIS LOOP OPTIMIZATION
	G(1) = 2.5 H(1) = 4.0 G(2) = 0.001 H(2) = 0.04 G(3) = 420.0 H(3) = 500.0 G(4) = 3.5 H(4) = 5.0 RETURN END
С	
C***	<pre>SUBROUTINE FUNC SUBROUTINE FUNC(N,M,K,X,F,I) DIMENSION X(K,M),F(K) COMMON/AL1/XNH3,PRODCT,SPNH3,TEMPIN,TEMPC,SEPTEM,SEPP,RECYLR,</pre>

r. √r

-}-·

C*** SUBROUTINE AMONIA

SUBROUTINE AMONIA PROGRAM FOR THE DESIGN & SIMULATION OF AN AMMONIA SYNTHESIS REACTOR, BASED ON INTERBED QUENCH REACTOR SYSTEM. THIS CASE IS BASED ON THE FOLLOWING KNOWN QUANTITIES: 1) PERCENT INERTS(CH4+ARGON) IN THE TOTAL MIXED FEED. 2) NUMBER OF BEDS IN THE REACTOR 3) INLET & OUTLET TEMP. OF EACH BED. 4) COLD SHOT TEMP. 5) AMMONIA PRODUCTION RATE 6) PRESSURE AT REACTOR INLET & AT SEPARATOR. XNH3=MOLE FRACTION OF AMMONIA IN THE CRUDE PRODUCT. PRODCT=REQUIRED AMMONIA PRODUCTION RATE, KMOLE/S. TEMPIN=FIRST BED INLET TEMPERATURE,K TMAX=MAX. ALLOWABLE TEMP. IN THE BED,K TEMPC=COLD SHOT TEMPERATURE, K SEPTEM=SEPARATOR OPERATING TEMP.,K SEPP=SEPARATOR OPERATING PRESSURE, KPA RECYLR=RECYCLE RATIO HBED(I)=HEIGHT OF BED I,M PRDROP(I)=PRESSURE DROP IN BED I, KPA DW=INTEGRATION STEP SIZE,KG ALLCAT(I)=CATALYST IN BED I,KG FRACF(I)=FRACTION OF MIXED FEED USED IN BED I EITHER AS FEED OR AS COLD SHOT T=INSTANTANEOUS GAS TEMP. .K NBED=NUMBER OF BED DIMENSION EQCOST(15), YR(8), YRR(8), RF(8) INTEGER OPTN1, OPTN2, OPTN3, OPTN4 COMMON/AL1/XNH3, PRODCT, SPNH3, TEMPIN, TEMPC, SEPTEM, SEPP, RECYLR, FPRGE ., ALCATW, HBED(3), PRDROP(3), TMAX COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5) COMMON/AL3/YN2R, YH2R, YNH3R, YCH4R, YARR, CONVCR COMMON/AL4/T, F(8), Y(8), AG(9), D1FNH3COMMON/AL13/QUSPC, FRACCL COMMON/AL14/GTOT, TOTALE, YY(8), YE(8) COMMON/AL16/CATCST, STMCS1, STMCS2, COLWCS, ELECST COMMON/CONVRT/FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/GCOM2/DZ.NBED COMMON/GCOM3/N COMMON/GCOM4/RATIO,XINRF COMMON/CST1/CSIND2, FLANG, COST COMMON/CST5/TOTCST COMMON/COM1/TPRDRP, FACTRM COMMON/COM2/FG(8), YG(8), TG COMMON/COM3/EFFCB, SATP, HEATLD

С C С С С

1

С

COMMON/PV1/RADIV, HEGHT, NOTRA, HEADV COMMON/PV2/OPTN1, OPTN2, OPTN3, OPTN4 COMMON/HX1/ALPHAS, ALPHAT, FOULS, FOULT, SPRESD, TPRESD, PREST COMMON/HX2/FS(8), FT(8)COMMON/HX3/IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16, NTPASS, NS, NT COMMON/HX4/AO,AI COMMON/HX5/TSIN, TSOUT, TTIN, TTOUT COMMON/HTV1/TL, HVT(8), CPL(8), SPVL(8), VISL(8) COMMON/HTV2/NC COMMON/HTV3/TCL(8), GPCL(8), AMWL(8) COMMON/PH1/TC(8), GPC(8), AMW(8), HV(8)COMMON/PH3/AVMW, PROCPG, VISGM COMMON/AR1/FL(5) COMMON/AR3/NN, NL COMMON/AR4/FPOWER, ULTPWF COMMON/CMP1/PIN, POUT, RLMT, TGIN, TGOUT, STEAMP COMMON/HTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1 COMMON/DSC3/NSTAGE COMMON/DSC4/COSTRB, COSTCN, ULTSTM, ULTCOL CSIND1=569.0 T2=TEMPC R1=RECYLR CALL INPUT TEMPC=T2 RECYLR=R1 PRES=P CALL PREL OPEN(UNIT=50,STATUS='NEW',FILE='OUT1') IW = 50THBED=0.0DO 10 I=1;NBED THBED=THBED+HBED(I) DO 20 I=1,N YR(I) = Y(I)Y(I) = YE(I)CALL CONVER FACTRM=1.0 HEGHT=THBED+QUSPC RADIV=DIA/2.0 CALL PRESSV JEQ=1COST=COST*FLANG*CSIND2/CSIND1 COST OF AMMONIA CONVERTER EQCOST(JEQ)=COST CALCULATION OF CATALYST COST; 1.50 US \$ PER TON OF AMMONIA PRODUCED WRITE(IW, 500) JEQ, COST, CATCST, PRES, P FORMAT(/' *** AMMONIA CONVERTER *** '// . EQUIPMENT NO.=',I2,/'INSTALLED COST OF THE REACTOR(\$)=',E12.3, ./'CATALYST COST(\$/TON AMMONIA)=',F10.3/'REACTOR INLET PRESSURE(KPA (,)=',F12.3,/'REACTOR EXIT PRESSURE(KPA)=',F12.3)

10

20

C

С

С

500

С	CALCULATION FOR CONVERTER HEAT EXCHANGER(E1)
С	GAS-GAS HEAT EXCHANGER
	CALL HTEXX1
	PREST=P
	PRESS=PRES
	JEQ=JEQ+1
	TTIN=T
	TSIN=TEMPC
	NT=N
	NS=N
	DO 30 I=1,NT
	FS(I)=(FA1+FB1)*YY(I)
30	FT(I)=TOTALE*YE(I)
	CALL HEATEX
	EQCOST(JEQ)=COST
	PREST=P-TPRESD
	PRESS=PRES-SPRESD
	P=PREST
	TOTALF=0.0
40	DO 40 I=1,NS
40	TOTALF=TOTALF+FS(I)
1000	WRITE(IW, 1000) JEQ, COST, P, TTOUT, TOTALF, AO
1000	FORMAT(/ *** CONVERTER HEAT EXCHANGER *** //
	EQUIPMENT NO.=', I2, / COST OF HEAT EXCHANGER(\$)=', E12.3, /
	. EXIT PRESSURE(KPA)=', F12.3, / EXIT TUBE SIDE TEMP(K)=', E10.3,/
	. GAS USED IN THE SHELL SIDE(KMOLE/S)= ', F12.3/
_	. OUTSIDE AREA($M**2$)=',E10.3)
С	CALCULATION FOR THE WASTE HEAT BOILER(E2)
С	GAS-LIQUID WATER TO STEAM HEAT EXCHANGER
	JEQ=JEQ+1
	TT=TTOUT
۰.	CALL HTEXX2
	TTIN=TT
С	SHELL SIDE IS WATER
	DO 55 I=1,NS
55	FS(I) = 0.0
	FS(2) = 1.0
	CALL HEATEX
С	CALCULATE THE AMOUNT OF STEAM(3 BAR SAT.) THAT COULD BE RAISED
č	BY THE HEAT CONTENT OF THE CAC(FEED HAMED DOG T)
Ŭ	BY THE HEAT CONTENT OF THE GAS(FEED WATER 308 K)
	STMBFW=ABS(HEATLD)*3.1536E7*EFFCB/2163.0*STMCS2*CSIND2/CSIND1
	EQCOST(JEQ)=COST
1200	WRITE(IW, 1200) JEQ, COST, FS(2), TTOUT, STMBFW, AO
1200	FORMAT(/' *** WASTE HEAT BOILER *** '//
	. EQUIPMENT NO.=', I2, / COST(\$)=', E10.3, / BOILER FEED WATER USED(KMO
	.L/S)= ,E10.4,/ EXIT TUBE SIDE TEMP(K)=1.E10 3./
	. VALUE OF STEAM THAT CAN BE MADE(\$/YEAR)=1.E10.4/
	100TSIDE AREA(M**2)=1,E10.3)
	T1 = TTOUT

T1=TTOUT

ŀ

		CALL HTEXX3
	С	CALCULATION FOR PROCESS GAS HEAT EXCHANGER(E3)
	C ·	GAS-GAS HEAT EXCHANGER
		TTIN=T1 TCOUT-TEMPO
		TSOUT=TEMPC TS1=TSIN
		JEQ=JEQ+1
	С	SHELL SIDE FLOW CALCULATION
		YRR(1)=YN2R
		YRR(2)=YH2R YRR(3)=YNH3R
		YRR(4) = YCH4R
		YRR(5)=YARR
		YRR(6)=0.0
		YRR(7)=0.0 YRR(8)=0.0
		DO = 60 I = 1, NS
		PF=FPRGE*RECYLR*FEEDGS*YRR(I)
		RF(I)=(1FPRGE)*RECYLR*FEEDGS*YRR(I)
	60	FS(I)=RF(I)-FA1*YRR(I) TOTLS=0.0
		DO 70 I=1,NS
	70	TOTLS=TOTLS+FS(I)
		CALL HEATEX
		EQCOST(JEQ)=COST PREST=P-TPRESD
		P=PREST
		WRITE(IW,1300) JEQ,COST,TTOUT,TOTLS,AO
		FORMAT(/' *** PROCESS GAS HEAT EXCHANGER *** 1//
		<pre>'EQUIPMENT NO.=',I2,/'COST(\$)=',E10.4,/'EXIT TUBE SIDE TEMP(K)=' E10.3,/'PROCESS GAS USED IN THE SHELL SIDE(KMOLE/S)=',E10.4/</pre>
•		OUTSIDE AREA(M**2)=',E10.3)
		TT=TTOUT
	С	CALL HTEXX4
	C	CALCULATION FOR WATER COOLER(E4) GAS-LIQUID WATER HEAT EXCHANGER
	-	TTIN=TT
	a	JEQ=JEQ+1
	С	SHELL SIDE IS WATER DO 90 I=1,NS
	90	FS(I)=0.0
	-	FS(2)=1.0
•	a	CALL HEATEX
	С	CALCULATIION OF COST OF COOLING WATER
		ULTCL1=FS(2)*AMWL(2)*3.1536E7/EFFCB*COLWCS*CSIND2/CSIND1 EQCOST(JEQ)=COST
		PREST=P-TPRESD
		P=PREST
	1400	WRITE(IW, 1400) JEQ, COST, P, TTOUT, ULTCL1, AO
,		<pre>FORMAT(/' *** WATER COOLER *** '//'EQUIPMENT NO.=',12,/ 'COST(\$)=',E10.4,/'EXIT TUBE SIDE PRESSURE(KPA)=',E10.4,/</pre>
		'EXIT TUBE SIDE TEMP(K)=',E10.3,/
		<pre>'COOLING WATER COST(\$/YEAR)=',E10.4/,'OUTSIDE AREA(M**2)=',E10.3)</pre>

	· .	
1		
· · ·	C	CALCULATION FOR COLD EXCHANGER(E5)
	č	GAS-GAS HEAT EXCHANGER
}		
}		TT=TTOUT CALL HTEXX5
• •	С	CALCULATION OF SHELL SIDE FLOWRATE
1		TTIN=TT
		TS=TSOUT DO 100 I=1,NS
	100	FS(I)=RECYLR*FEEDGS*YRR(I)
		CALL HEATEX
		EQCOST(JEQ)=COST WRITE(IW,1500) JEQ,COST,TTOUT,AO
	1500	FORMAT(/ *** COLD EXCHANGER *** // EQUIPMENT NO.= 1,12,/
		COST(\$)=',E10.4,/'EXIT TUBE SIDE TEMP(K)=',E10.4/
	С	. OUTSIDE AREA(M**2)=',E10.3) CALCULATION FOR MAIN FEED GAS COMPRESSOR
		CALL COMP2
1		JEQ=JEQ+1 POUT=PREST
•		F(1)=YN2F*FEEDGS
		F(2)=YH2F*FEEDGS
		F(3)=YNH3F*FEEDGS F(4)=YCH4F*FEEDGS
1		F(5)=YARF*FEEDGS
ţ		F(6) = 0.0
		F(7)=0.0 F(8)=0.0
	4.0.0	DO 130 I=1,N
r 1	130	FG(I)=F(I) CALL COMPRS
1 :		EQCOST(JEQ)=COST
		EMNCSF=0.04*COST
		ULTPCF=FPOWER*3.1536E7/STEAMP/0.8*STMCS1*CSIND2/CSIND1 WRITE(IW,1800) JEQ,COST,FPOWER,NSTAGE,TGOUT,EMNCSF,ULTPCF
	1800	FORMAT(/^ *** MAKEUP FEED COMPRESSOR *** //
	· •	EQUIPMENT NO.=', $I2$, /'COST(\$)=', $E10.4$, /'
	•	'TOTAL POWER REQUIREMENT(KW)=',E10.4,/'NO. OF COMPRESSION STAGE=' 12,/'EXIT TEMP. OF COMPRESSED GAS(K)=',F10.4,/
•		COMPRESSOR MAINTAINENCE COST(\$/YEAR)=1,E10_4,/
	•	STEAM COST FOR COMPRESSION(\$/YEAR)=',E10.4) II=1
		TOTG=0.0
	131	DO 131 I=1,N TOTG=TOTG+F(I)
	101	$DO \ 132 \ I=1, N$
	132	YG(I) = F(I) / TOTG
		TG=TGOUT CALL HEATTR
		PROCTG=PROCPG*(TG-298.0)
ı		DO 133 I=1,N
•	133	FG(I) = FT(I) YG(I) = YE(I)
	,	

	· · ·
	· · · · · · · · · · · · · · · · · · ·
	TG=TTOUT
	CALL HEATTR
	PROCTT=PROCPG*(TG-298.0) TOTG=TOTG+TOTALE
	DO 134 $I=1,N$
	FG(I) = F(I) + TOTALE * YE(I)
134 129	YG(I)=FG(I)/TOTG TG=TGOUT
120	CALL HEATTR
	TTT=(PROCTG+PROCTT)/PROCPG+298.0
	IF(ABS(TTT-TG).LE.0.1.OR.II.GE.4) GOTO 135 II=II+1
	TGOUT=TTT
_	GOTO 129
C C	CALCULATION FOR NH3 CHILLER(E6) GAS-LIQUID NH3 CHILLER
-C	CALCULATION FOR SHELL SIDE FLOWRATE(LIQUID NH3)
135	JEQ=JEQ+1
	TT=TTT CALL HTEXX6
	TTIN=TT
	NS=2
	NT=N DO 111 I=1,NS
111	FS(I) = 0.0
	FS(1)=1.0
112	DO 112 I=1,NT FT(I)=FT(I)+FEEDGS*YY(I)
***	CALL HEATEX
	EQCOST(JEQ)=COST
1550	WRITE(IW,1550) JEQ,COST,TTOUT,ULTCOL,AO FORMAT(/' *** NH3 CHILLER *** '//'EQUIPMENT NO.=',I2,/
	COST(\$)=',E10.4,/'EXIT TUBE SIDE TEMP(K)=',E10.4,/
	'NH3 REFRIGERATION REQUIRED(\$/YEAR)=',E10.3/
С	CALCULATION FOR SEPARATOR
Ŭ.	FL(1)=PRODCT*XNH3
	FL(2) = (1 XNH3) * PRODCT
	NL=2 NN=N
	CALL SEPX
•	JEQ=JEQ+1
	FT(3)=FT(3)-FL(1) P=SEPP
	T=TTOUT
110	$\begin{array}{c} \text{DO} 110 \text{I=1,N} \\ \text{E(I)} = \text{Em}(I) \end{array}$
110	F(I)=FT(I) CALL SEPAR
	EQCOST(JEQ)=COST
۲	P=P-TPRDRP
1600	WRITE(IW,1600) JEQ,COST,P FORMAT(/' *** AMMONIA SEPARATOR *** '//
	. 'EQUIPMENT NO.=', I2, /'COST(\$)=', E10.4, /
	(TEXIT PRESSURE(KPA)=1,E10.4)

· .

.

-<u>*</u>___

	·	•
C C	CALCULATION FOR CIRCULATING COMPRESSOR COMPRESSOR IS DRIVEN BY STEAM TURBINE USING	:
č	STEAM(3550 KPA,650K)	
	CALL COMP1 TGIN=TS	
	PIN=SEPP	
С.	POUT=PRES CALCULATION OF FLOWRATE OF GASES	
120	DO 120 $I=1, N$	
120	FG(I)=RF(I) JEQ=JEQ+1	,
	CALL COMPRS EQCOST(JEQ)=COST	
	EMNCSC=0.04*COST	
	ULTPWC=FPOWER*3.1536E7/STEAMP/0.8*STMCS1*CSIND2/CSIND1 WRITE(IW,1700) JEQ,COST,FPOWER,NSTAGE,TGOUT,EMNCSC,ULTP	WC
1700	FORMAT(/' *** CIRCULATING COMPRESSOR *** '//	
	<pre>'EQUIPMENT NO.=',12,/'COST(\$)=',E10.4,/'TOTAL POWER REQ)=',E10.4,/'NO. OF COMPRESSION STAGE=',12,/</pre>	OTREMENT (KM
	<pre>`EXIT TEMP. OF COMPRESSED GAS(K)=',F10.4,/ 'COMPRESSOR MAINTAINENCE COST(\$/YEAR)=',E10.4,/</pre>	
	STEAM COST FOR COMPRESSION(\$/YEAR)=',E10.4)	
С	CALCULATION OF TOTAL COST OF ALL EQUIPMENTS.	
	DO $140 \cdot I = 1, JEQ$	· .
140 C	TOTCST=TOTCST+EQCOST(JEQ) CALCULATION OF TOTAL COST OF ALL UTILITY USED.	
С	TULTCS=ULTCL1+ULTPWC+ULTPCF+ULTCOL	
С	CALCULATION OF ANNUAL OPERATING COST(\$/YEAR) ON THE BASIS OF 1000 TONS/DAY AMMONIA PRODUCTION.	
C C	FIXED COST ARE PROPORTIONED BY USING 6/10TH RULE; UTILITY & OTHER COSTS ARE ADJUSTED PROPORTIONATELY.	
	PRODCT=PRODCT*AMWL(1)*3600.*24.*365./1000.0	a
	TOTCST=0.2*TOTCST*(365000.0/PRODCT)**0.6+(EMNCSC+EMNCSF STMBFW)*(365000.0/PRODCT)+CATCST*365000.0	+TULTCS-
	WRITE(IW, 1900)TOTCST, PRODCT	
	<pre>FORMAT(/// ** ANNUAL OPERATING COST(\$/YEAR)='// 2X,1PE14.6,//' ** ANNUAL PRODUCTION OF AMMONIA(MTON/YEA</pre>	R)='//
	2X,1PE14.5) • RETURN	
	END	
		• .
		,
-		

÷

.

.. И

C*** SUBROUTINE INPUT С SUBROUTINE INPUT С SUBROUTINE TO INPUT THE NECESSARY DATA REQUIRED FOR SIMULATION AND С DESIGN OF AMMONIA SYNTHESIS LOOP. INTEGER OPTN1, OPTN2, OPTN3, OPTN4 COMMON/AL1/XNH3, PRODCT, SPNH3, TEMPIN, TEMPC, SEPTEM, SEPP, RECYLR, FPRGE, ALCATW, HBED(3), PRDROP(3), TMAX COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5) COMMON/AL3/YN2R, YH2R, YNH3R, YCH4R, YARR, CONVCR COMMON/AL9/CVUPRL, CVLWRL, NFREQA, FRACMN, ICOUNF COMMON/AL13/QUSPC, FRACCL COMMON/AL16/CATCST, STMCS1, STMCS2, COLWCS, ELECST COMMON/CONVRT/FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/GCOM2/DZ, NBED COMMON/GCOM3/N COMMON/CST1/CSIND2, FLANG, COST COMMON/COM1/TPRDRP, FACTRM COMMON/COM3/EFFCB, SATP, HEATLD COMMON/HX1/ALPHAS, ALPHAT, FOULS, FOULT, SPRESD, TPRESD, PREST COMMON/HX3/IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16, NTPASS, NS, NT COMMON/HX5/TSIN, TSOUT, TTIN, TTOUT COMMON/CMP1/PIN, POUT, RLMT, TGIN, TGOUT, STEAMP COMMON/PV1/RADIV, HEGHT, NOTRA, HEADV COMMON/PV2/OPTN1, OPTN2, OPTN3, OPTN4 COMMON/HTV2/NC OPEN(UNIT=10,STATUS='OLD',FILE='INPUT') READ(10,100)FEEDGS READ(10,150)YN2F,YH2F,YNH3F,YCH4F,YARF READ(10,200)YN2R,YH2R,YNH3R,YCH4R,YARR READ(10,250)XNH3, PRODCT, SPNH3 READ(10,300)TEMPIN, TMAX, TEMPC, SEPTEM, SEPP READ(10,350)P,ITMAX READ(10, 400)N, DW, NBEDREAD(10,450)CATDEN, DIA, EP, DP READ(10,500)RECYLR, FPRGE, CONVCR READ(10, 550)(FRACF(I), I=1, 5)READ(10,600)CVUPRL,CVLWRL,NFREQA,ICOUNF,FRACMN READ(10,650)(PRDROP(I),I=1,NBED)READ(10,700)(ALLCAT(I),I=1,NBED)CLOSE(UNIT=10,STATUS='KEEP') 100 FORMAT(F10.4) 150 FORMAT(5F10.4)200 FORMAT(5F10.4)250 FORMAT(3F10.4) 300 FORMAT(5F10.4)350 FORMAT(F10.2, I10)400 FORMAT(110, F10.4, 110) 450 FORMAT(4F10.4)500 FORMAT(3F10.4)550 FORMAT(5F10.6)600 FORMAT(2F10.4,2I10,F10.4)

650 FORMAT(3F10.3)

700	FORMAT(3F10.1)	
*	RETURN ENTRY CONVER	
С	DATA FOR AMMONIA CONVERTER	
	OPEN(UNIT=11,STATUS='OLD',FILE='INPUT1')	
	READ(11,750) OPTN1,OPTN2,OPTN3,OPTN4,FLANG,CSIND2,QUSPC,NOTRA READ(11,800) CATCST,STMCS1,STMCS2,COLWCS,ELECST,EFFCB	
	CLOSE(UNIT=11,STATUS='KEEP')	
	FORMAT(415,3F10.3,12)	
800	FORMAT(6E10.4) RETURN	
	ENTRY HTEXX1	
C	DATA FOR CONVERTER HEAT EXCHANGER	
C C	GAS-GAS HEAT EXCHANGER	
Ċ.	TSOUT=SHELL SIDE OUTLET, TEMPERATURE(K)	
С	TSIN= SHELL SIDE INLET REMPERATURE(K)	
C C	TTIN=TUBE SIDE INLET TEMPERATURE(K)	
Č .	TTOUT=TUBE SIDE OUTLET TEMPERATURE(K) ALPHAS=SHELL SIDE HEAT TRANSFER COEFFICIENT	
С	(KW/M**2/K)	
C C	ALPHAT=TUBE SIDE HEAT' TRANSFER COEFFICIENT	
C C	(KW/M**2/K) FOULS=SHELL SIDE FOULING RESISTANCE(M**2-K/KW)	
С	FOULT=TUBE SIDE FOULING RESISTANCE(M**2-K/KW)	
C	OPTIONS: IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16	
	OPEN(UNIT=12,STATUS='OLD',FILE='INPUT2') READ(12,950) TSIN,TSOUT,TTIN,TTOUT,ALPHAS,ALPHAT,FOULS,FOULT	
,	., FLANG, NTPASS, NS, NT, IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16	
950	FORMAT(6F10.3/,3F10.3/,9I5)	
	CLOSE(UNIT=12,STATUS='KEEP') RETURN	
	ENTRY HTEXX2	· .
	DATA FOR WASTE HEAT BOILER	
C C	GAS-LIQUID WATER TO STEAM HEAT EXCHANGER	
-	OPEN(UNIT=13,STATUS='OLD',FILE='INPUT3')	
	READ(13,1350) TSIN, TSOUT, TTIN, TTOUT, ALPHAS, ALPHAT, FOULS, FOULT.	
1350	.FLANG, NTPASS, NS, NT, IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16 FORMAT(6F10.3,/3F10.3,/9I5)	
	CLOSE(UNIT=13,STATUS='KEEP')	
	RETURN ENTRY UTEXX2	
	ENTRY HTEXX3 DATA FOR PROCESS GAS HEAT EXCHANGER	
С	GAS-GAS HEAT EXCHANGER	
C .	OPEN(UNIT=14) CTATUC=(OPE(TELE)(INDUTA()))	
	OPEN(UNIT=14,STATUS='OLD',FILE='INPUT4') READ(14,1450)TSIN,TSOUT,TTIN,TTOUT,ALPHAS,ALPHAT,FOULS,FOULT,	,
	FLANG, NTPASS, NS, NT, IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16	
1450	FORMAT(6F10.3,/3F10.3,/9I5)	
	CLOSE(UNIT=14,STATUS=`KEEP`) RETURN	ν.
		1
		_
		$\langle \cdot \rangle$

	ENTRY HTEXX4	
	DATA FOR WATER COOLER	
	GAS-LIQUID WATER HEAT EXCHANGER	
	INPUT DATA	
	OPEN(UNIT=15,STATUS='OLD',FILE='INPUT5')	
	READ(15,1550)TSIN,TSOUT,TTIN,TTOUT,ALPHAS,ALPHAT,FOULS,FOULT,	
	FLANG, NTPASS, NS, NT, IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16	
	FORMAT(6F10.3,/3F10.3,/9I5)	
	CLOSE(UNIT=15,STATUS='KEEP')	
	RETURN .	
	ENTRY HTEXX5	
	DATA FOR COLD EXCHANGER GAS-GAS HEAT EXCHANGER	
	INPUT DATA	
-	OPEN(UNIT=16, STATUS='OLD', FILE='INPUT6')	•
	READ(16,1650)TSIN, TSOUT, TTIN, TTOUT, ALPHAS, ALPHAT, FOULS, FOULT,	
	FLANG, NTPASS, NS, NT, IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16	
	FORMAT(6F10.3,/3F10.3,/9I5)	
	CLOSE(UNIT=16, STATUS='KEEP')	
	RETURN	
	ENTRY COMP2	,
	DATA FOR MAIN FEED GAS COMPRESSOR	
-	INPUT DATA	•
	OPEN(UNIT=7,STATUS='OLD',FILE='INPUT10') READ(7,1250)TGIN,PIN,RLMT,FLANG,STEAMP	
	FORMAT(5F10.3)	
	CLOSE(UNIT=7, STATUS='KEEP')	
	RETURN	
	ENTRY HTEXX6	
	DATA FOR NH3 CHILLER	
C	GAS-LIQUID NH3 HEAT EXCHANGER	
C	OPEN (UNITE AF OPATA	
	OPEN(UNIT=17, STATUS='OLD', FILE='INPUT7'), DEAD(17, 1660) TOTAL TROUT, TTAL TROUT, ALDUAT, FOULS, FOULT	
	READ(17,1660)TSIN,TSOUT,TTIN,TTOUT,ALPHAS,ALPHAT,FOULS,FOULT, FLANG,NTPASS,NS,NT,IPTN11,IPTN12,IPTN13,IPTN14,IPTN15,IPTN16	
	FORMAT(6F10:3,/3F10.3,/9I5)	
	CLOSE(UNIT=17, STATUS='KEEP')	
	RETURN	
	ENTRY SEPX	
	DATA FOR GAS-LIQUID SEPARATOR .	
	****** INPUT DATA *******	
	OPTN1, OPTN2, OPTN3, OPTN4	
	FACTRM=FACTOR FOR MATERIAL OF CONSTRUCTION	
	OPEN(UNIT=18, STATUS='OLD', FILE='INPUT8')	
1050	READ(18, 1050)OPTN1, OPTN2, OPTN3, OPTN4, FACTRM, FLANG	
	FORMAT(415,2F10.3) CLOSE(UNIT=18,STATUS='KEEP')	
	RETURN	

ENTRY COMP1 C DATA FOR CIRCULATING COMPRESSOR C ------ INPUT DATA -----C C OPEN(UNIT=19,STATUS='OLD',FILE='INPUT9') READ(19,1150)TGIN,PIN,RLMT,FLANG,STEAMP 1150 FORMAT(5F10.3) CLOSE(UNIT=19,STATUS='KEEP') RETURN

END

18 .

1

4 . . .

C C*** SUBROUTINE PREL C SUBROUTINE PREL C SUBROUTINE TO DO PRELIMINARY CALCULATION FOR AMMONIA SYNTHESIS. C 1=N2,2=H2,3=NH3,4=CH4,5=ARGON,6=H2O,7=CO,8=CO2 COMMON/AL1/XNH3,PRODCT,SPNH3,TEMPIN,TEMPC,SEPTEM,SEPP,RECYLR,

FPRGE, ALCATW, HBED(3), PRDROP(3), TMAX COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5) COMMON/AL3/YN2R, YH2R, YNH3R, YCH4R, YARR, CONVCR COMMON/AL4/T, F(8), Y(8), AG(9), DIFNH3 COMMON/AL6/RATE, PNUN, PNUH, PNUA COMMON/AL7/CLDST(3), CATWT(3) COMMON/AL9/CVUPRL, CVLWRL, NFREQA, FRACMN, ICOUNE COMMON/AL10/S(4,8),LK,ICOUNT COMMON/AL11/M COMMON/AL14/GTOT, TOTALE, YY(8), YE(8) COMMON/AL15/K COMMON/CONVRT/FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/GCOM2/DZ, NBED COMMON/GCOM3/N COMMON/GCOM4/RATIO,XINRF COMMON/PH1/TC(8),GPC(8),AMW(8),HV(8) COMMON/PH2/HG(8) COMMON/PH3/AVMW, PROCPG, VISGM COMMON/COM2/FG(8),YG(8),TG COMMON/HTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1 DIMENSION FGS(8), RF(8), PF(8), FB(8), QUNCH(8) CALCULATION OF AMMONIA & WATER CONCENTRATION IN THE PURGE PNH3, PH20, VAP. PRESSURE OF AMMONIA & WATER, KPA. OPEN(UNIT=20,STATUS='NEW',FORM='FORMATTED',FILE='OUTPUT') OPEN(UNIT=30,STATUS='NEW',FORM='FORMATTED',FILE='OUT') PRINT *, '*** AMMONIA REACTOR CALCULATION STARTS ***' PNH3=(EXP(16.9481-2132.50/(SEPTEM-32.98)))*0.133 PH2O=(EXP(18.3036-3816.44/(SEPTEM-46.13)))*0.133 YCH4F=XINRF/2.0 YARF=YCH4F YN2F=(1, 0-XINRF)/(1, 0+RATIO)YH2F=RATIO*YN2F YINR=YCH4R+YARR YINF=YCH4F+YARF ITER=1 FN2=FEEDGS*YN2F FH2=FEEDGS*YH2F FNH3=FEEDGS*YNH3F FCH4=FEEDGS*YCH4F FAR=FEEDGS*YARF DO 5 I=1,3

HBED(I)=ALLCAT(I)/(CATDEN*0.786*DIA**2)

E.

С

С

•	
•••	$t \psi = 0$
	LK=0 ICOUNT=0
	DW1=DW
	PINLT=P
100	TOTCAT=0.0
	RECYCL=FEEDGS*RECYLR
	TOTALG=RECYCL YINTF=(FEEDGS*YINF+RECYCL*YINR)/TOTALG
	GTOT=TOTALG
	DW=DW1
	P=PINLT
C	CALCULATION OF MOLE FRACTION OF DIFFERENT GASES IN THE
С	MIXED FEED.
	RF(1)=RECYCL*YN2R RF(2)=RECYCL*YH2R
	RF(3) = RECYCL * YNH3R
	RF(4) = RECYCL*YCH4R
	RF(5)=RECYCL*YARR
	RF(6) = 0.0
	RF(7) = 0.0 RF(8) = 0.0
	F(3) = 0.0 F(1) = RF(1)
	F(2) = RF(2)
	F(3) = RF(3)
	F(4) = RF(4)
	F(5) = RF(5)
	F(6) = 0.0 F(7) = 0.0
	F(8) = 0.0
	DO 12 I=1,N
	Y(1) = F(1) / TOTALG
12	YY(I)=Y(I)
	PRINT *,ITER T=TEMPIN
	T = T E D F T N T = T
	K=1
	W=0.0
	GC=9.81
•	R=8.314
С	MM=0 CALCULATION STARTS FOR THE FIRST BED
ý	TOTLG=FRACF(1)*TOTALG
	FB1=FRACF(2)*TOTLG
	FA1=TOTALG-TOTLG
	QUENCH=TOTLG-FB1
Ċ	QUENC1 = (TOTLG - FB1) * FRACF(3)
U U	QUENCH=QUENCH-QUENC1 FEED1=FB1+FA1+QUENC1
	TM=((FA1+FB1)*(T1-298.0)+QUENC1*(TEMPC-298.0))/(FEED1)+298.0
	DO 13 I=1,N
	FB(I) = (FA1 + FB1) * Y(I)
13	QUNCH(I) = QUENC1 * Y(I)

		· · · ·			
			·		, ,
	•	DO 14 I=1,N			
	14	FG(I) = FB(I)			د
	14	YG(1)=Y(1) II=1	-		
		TG=T1 CALL HEATTR			
		PROCPB=PROCPG*(TG-298.0)			
		DO 15 I=1,N FG(I)=QUNCH(I)			
	15	YG(I)=Y(I)			· ,
		TG=TEMPC CALL HEATTR			-
		PROCPC=PROCPG*(TG-298.0)			
		DO 16 I=1,N FG(I)=FEED1*Y(I)			
	16	YG(I)=Y(I)			
ь.	11	TG=TM CALL HEATTR			
	·	T=(PROCPB+PROCPC)/PROCPG+298.0	7		
		IF(ABS(T-TG).LE.0.1.OR.II.GE.4) GOTO 17 II=II+1			
		TG=T GOTO 11			
	17	DO 20 I=1,N			
	20 200	F(I)=FEED1*Y(I) PBEDIN=P			
	С	WRITE(30,1000) K			• •
7, N	С	WRITE(30,1050) T,(Y(I),I=1,5) TG=T		,	
		DO 25 I=1,N			
	25	FG(1)=F(1) YG(1)=Y(1)			
		CALL HEATTR G1=AVMW*FEED1/(0.786*DIA*DIA)			
		TOTAM1 = F(3)			
		DEN1=P*AVMW/R/T REYNO=DP*G1/VISGM			
		FK=1.75+150.0*(1.0-EP)/REYNO			
		PRDROP(K)=HBED(K)*FK*G1*G1*(1.0-EP)/(EF P=P-PRDROP(K)/2.0	P*EP*EP)/(D)	P*DEN1)/1000.0	
	220 250	CONTINUE CALL DIFEQN	· .		
	200	$F(1) = F(1) - 0.5 \times DIFNH3$			
		F(2)=F(2)-1.5*DIFNH3 TOTALG=0.0			
		DO 80 I=1,N			
	30	TOTALG=TOTALG+F(I) DO 40 I=1,N			
	40	Y(I) = F(I) / TOTALG	· · · · · · · · ·		
	С	EQNH3=(Y(3)/(Y(1)**0.5*Y(2)**1.5)/P)*(H W=W+DW	?NUA/(PNUN≭	*0.5*PNUH**1.5))
		TOTCAT=TOTCAT+DW			,
					•
		•			i

÷					
					• • •
		•			· ·
		IF(MM.EQ.1) GOTO 520			•
		IF(MM, EQ, I) GOTO 520 IF(ABS(W-ALLCAT(K)), LE.0.01)	GOTO	520	,
		IF(W.GT.ALLCAT(K)) GOTO 500			,
	Ċ	IF(ITER.EQ.1) WRITE(20,1200)) T,(Y)	(I),I=1,5)	
	~	GOTO 220 CALCULATION STARTS FOR SUBSE	ាក់ពុទ្ធស្នា		
	C 500	CALCULATION STARTS FOR SUBSEC	QUENT	RED2	
	500	F(I) = AG(I+1)			
	-	T=AG(1)			
		TOTCAT=TOTCAT-DW	•		
		W = W - DW			
		DW=ALLCAT(K)-W MM=1			
		GOTO 250		•	
	520	CATWT(K) = W			
	С	WRITE(30,1100) K			
	С	WRITE(30,1150) T,(Y(I),I=1,5	(ذ		
		W = 0.0 TOTAME = F(3) = TOTAM1		· .	
		TOTAMP=F(3)-TOTAM1 DW=DW1			,
		MM=0			
		TG = T			
		DO 60 I=1,N			
	e 0	FG(I) = F(I)			
	60	YG(I)=Y(I) CALL HEATTR			
		P = PBEDIN - PRDROP(K)			
		DEN2=P*AVMW/R/T			
		DO 70 I=1,N			
	· 70	FGS(I) = F(I)			
		IF(K,GE,NBED) GOTO 600 PRCPGI=PROCPG*(T=298,0)			•
		PRCPGI=PROCPG*(T-298.0) DO 80 I=1,N			
	80				
		T=TEMPC			
		TG=T			.:
		DO 90 I=1,N FG(I)=F(I)			
	90	YG(1) = Y(1) YG(1) = Y(1)			
		CALL HEATTR			•
		PRCPCI=PROCPG*(T-298.0)	•	· ·	
-		CLDST(K) = FRACF(K+3) * QUENCH			
		TOTALG=TOTALG+CLDST(K) DO 95 I=1,N		۲.	•
		F(I) = FGS(I) + CLDST(K) * YY(I)	T)		
		Y(1) = F(1) / TOTALG	~ ,		
	95	CONTINUE			
		T=TEMPIN			
		TG = T			
		DO 85 $I=1, N$ FG(I)=F(I)			
	85	YG(I) = Y(I)			
	-				
				,	

.

• •	· .	TT-1
	86	II=1 CALL HEATTR
	00	T=(PRCPCI*CLDST(K)+PRCPGI)/PROCPG+298.0
•		IF(ABS(T-TG).LE.O.1.OR.II.GE.4) GOTO 87
		II=II+1
		TG=T
	87	GOTO 86 T1=T
	0 f _	K = K + 1
		GOTO 200
	600	TOTALE=TOTALG
		DO 75 I=1,N
	75	YE(I)=Y(I)
	С	WRITE(20,2050)TOTALG,T,(F(I),I=1,5),(Y(I),I=1,5) TOTALG=TOTALE+FEEDGS
	,	F(1)=TOTALE+FEEDGS F(1)=TOTALE+YE(1)+FEEDGS*YN2F
'≡ <i>₹</i> ,.		F(2)=TOTALE*YE(2)+FEEDGS*YH2F.
		F(3)=TOTALE*YE(3)+FEEDGS*YNH3F
		F(4) = TOTALE * YE(4) + FEEDGS * YCH4F
		F(5) = TOTALE * YE(5) + FEEDGS * YARF
		F(6) = 0.0 F(7) = 0.0
	·	F(8) = 0.0
	С	CHECKING CONVERGENCE
		TOTLIQ=F(3)
		XNH3=F(3)/TOTLIQ
· · ·		TOTDG=TOTALG-F(3)
		YNH3R=PNH3*XNH3/SEPP TOTALG=TOTDG/(1.0-YNH3R)
		AMONIA=F(3)-YNH3R*TOTALG
		F(3) = YNH3R * TOTALG
		PRODCT=AMONIA
		XNH3=AMONIA/PRODCT
	С	WRITE(20,2200)PRODCT,XNH3 DO 110 I=1.N
	110	Y(I) = F(I) / TOTALG
	C .	WRITE(20, 2060) TOTALG, (F(I), I=1, 5), (Y(I), I=1, 5)
		PURGE=TOTALG-RECYCL
•		FPRGE=PURGE/FEEDGS
	.120	DO 120 $I=1, N$ PE(T) = PUP(E+Y(T))
	/12U	PF(I)=PURGE*Y(I) DIFIN=(FCH4+FAR)-(PF(4)+PF(5))
	С	WRITE(20, 2070) PURGE, FPRGE, DIFIN, (PF(I), I=1, 5)
	С	CHECK THE TOTAL ABSOLUTE DIFFERENCE BETWEEN ASSUMED AND CALCULATED
	С	AMOUNTS OF DIFFERENT COMPONENTS IN THE RECYCLE.
	100	DO 130 $I=1,N$
	130	F(I)=RECYCL*Y(I) TOTDIF=0.0
		DO 140 I=1,N
-	140	TOTDIF=TOTDIF+ABS(RF(1)-F(1)) \sim
1	C	WRITE(20,1300)(RF(I),F(I),I=1,5)
	С	WRITE(20,1400) TOTDIF
•		•
	•	

		· ·
	·	IF(TOTDIF/RECYCL.LE.CONVCR) GOTO 900
		IF(LK.EQ.(NFREQA-1)) THEN DO 150 I=1,N S(1,I)=RF(I)
	150	S(1,1)=RF(1) S(2,1)=F(1) IF(LK.EQ.NFREQA) THEN
		DO 160 I=1, N S(3, I)=RF(I)
	160	S(4, I) = F(I) CALL WEGSTN
		ENDIF LK=LK+1
		TOTALG=0.0 DO 170 I=1,N
		TOTALG=TOTALG+F(I) DO 180 I=1,N
	180	Y(I)=F(I)/TOTALG ITER=ITER+1
		IF(ITER.GT.ITMAX) GOTO 980 YINR=Y(4)+Y(5) YN2R=Y(1)
		YH2R=Y(2) YNH3R=Y(3)
		YCH4R=Y(4) YARR=Y(5)
	с с.	WRITE(20,1250)FEED1,(CATWT(I),I=1,K),(CLDST(I),I=1,K-1), (PRDROP(I),I=1,K)
	980	GOTO 100 WRITE(20,1700)
	900 -	RETURN WRITE(20,1500)

,	1050	FORMAT(2X, BED ENTRANCE TEMP(K)=', $F10.3$, /, 2X, MOLE FRAC. OF COMPON ENTS N2, H2, NH3, CH4, AR=', $5F10.4$)
	1100	FORMAT(36X, 'END'OF BED', I3, /, 36X, 13(1H=)) FORMAT(2X, 'BED EXIT TEMP(K)=', F10.3, /, 2X, 'MOLE FRAC. OF COMPONENTS
	1200	N2, H2, NH3, CH4, AR=', $5F10.4$) FORMAT(2X; 'INSTANTANEOUS BED TEMP(K)=', F10.3,/,
	1250	<pre>'CORRESPONDING MOLE FRAC. OF N2,H2,NH3,CH4,AR=',5F10.4/) FORMAT('FEED USED IN FIRST BED(KMOL/SEC)=',G12.4,/'WEIGHT OF CATAL YST IN DIFFERENT BEDS(KG)='/3F12.2,/'COLD SHOT(KMOL/SEC) IN DIFFER</pre>
		ENT BEDS '/2F12.4, / 'PRESSURE DROP IN THE BEDS(KPA) '/3F12.4) FORMAT(/ ASSUMED AND ACTUAL MOLES OF COMPONENTS IN THE RECYCLE /. (
		2F12.4, '; ', 2F12.4, '; ', 2F12.4)) FORMAT(/'SUM OF ABS.DIFF.OF MOLES OF COMPONENT IN THE RECYCLE',
	1500	F10.4) FORMAT(//'CONVERGENCE ACHIEVED')
	2050	FORMAT(/'MAX.NO.OF ITERATION IS EXCEEDED') FORMAT(/'CONDITION AT THE EXIT OF THE REACTOR',/'TOTAL MOLES=', C12 4 (FXIT CAS TEMP(K)=', C12 4 (INC) H2 NH2 CH4 AP (INC) FR
		G12.4, EXIT GAS TEMP(K)=',G12.4/'N2,H2,NH3,CH4,AR',/'MOLES', 5G12.4/'MOLE FRAC. ',5F10.6)

2060	FORMAT(/'CONDITION AT THE RECYCLE BEFORE PURGE.',/, TOTAL MOLES=',
	.G12.6/^N2,H2,NH3,CH4,AR.^,/, 'MOLES.',5G12.6/'MOLE FRAC.',5F10.6) FORMAT(/'CRUDE AMMONIA PRODUCTION RATE(KMOL/SEC)=',F12.6/
2070	. AMMONIA FRAC.IN PRODUCT=',F10.6) FORMAT('PURGE=',F8.6,'PURGE AS A FRACTION OF FEED=',F8.6/'DIFFEREN .CE OF INERT IN FEED & PURGE=',F10.6/'DIFF. MOLES IN PURGE'/5F10.6)
990	RETURN END
C C***	SUBROUTINE DIFEQN
C C	SUBROUTINE DIFEQN RUNGE-KUTTA-GILL METHOD IS USED TO SOLVE THE SET OF
C	DIFFERENTIAL EQUATIONS. COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5)
	COMMON/AL4/G(9),Y(8),AG(9),DIFNH3 COMMON/AL5/DG(2)
	COMMON/AL11/MM COMMON/GCOM3/N
	DIMENSION AK1(5),AK2(5),AK3(5),AK4(5) DIFNH3=0.0 M=N+1
	CALL FUNCT DO 5 I=1,M
5	AG(I)=G(I) DO 12 I=1,2
12 70	AK1(I)=DG(I) DO 20 I=1,2
20	IF(I.NE.2)K=I IF(I.EQ.2)K=4 G(K)=AG(K)+AK1(I)*DW/2.0
20	DIFNH3=G(4)-AG(4) CALL FUNCT
	DO 30 I=1,2 AK2(I)=DG(I)
	IF(I.NE.2)K=I IF(I.EQ.2)K=4 C(K) = AC(K) + (-1, 0, (2, 0, 1, 0, (2, 0)) + D(1, 0, (1, 1))
30	G(K)=AG(K)+(-1.0/2.0+1.0/SQRT(2.0))*DW*AK1(I)+ (1.0-1.0/SQRT(2.0))*DW*AK2(I) CONTINUE
	DIFNH3=G(4)-AG(4) CALL FUNCT
	DO 40 I=1,2 AK3(I)=DG(I)
	IF(I.NE.2)K=I IF(I.EQ.2)K=4 G(K)=AG(K)-1.0/SQRT(2.0)*DW*AK2(I)+(1.0+1.0/SQRT(2.))*DW*AK3(I)
4 0	CONTINUE DIFNH3=G(4)-AG(4)
	CALL FUNCT DO 50 I=1,2
50	AK4(I) = DG(I)

	DO 60 I=1,2 DIFF=DW/6.0*(AK1(I)+2.0*(1.0-1.0/SQRT(2.0))*AK2(I)+2.0*(1.0+1.0
	/SQRT(2.0))*AK3(I)+AK4(I))
	IF(MM.EQ.1) GOTO 55 IF(I.EQ.2) GOTO 55
	IF(ABS(DIFF).GT.5.0) GOTO 300 IF(ABS(DIFF).LT.0.001)GOTO 400
55	IF(ABS(DIFF)) = I = I IF(I.NE.2)K=I
	IF(I.EQ.2)K=4 G(K)=AG(K)+DIFF
60	CONTINUE
300	GOTO 500 IF(DW.LE.200.) THEN
000	DW=200
	ELSE DW=DW/2.0
	ENDIF
400	GOTO 70 IF(DW.GE.2000.) THEN
	DW=2000.
	ELSE DW=2.0*DW
	ENDIF GOTO 70
500	DIFNH3=G(4)-AG(4)
	DO 80 I=2,M IF(I.EQ.4) GOTO 80
	G(I) = AG(I)
- 80	CONTINUE RETURN
C	END
C C***	SUBROUTINE FUNCT
C .	SUBROUTINE FUNCT
C	THIS SUBROUTINE CALCULATES THE FUNCTION VALUES F(Y,W) OF THE
C C	DIFFERENTIAL EQUATIONS PRODUCED FROM MASS AND HEAT BALANCES OF THE AMMONIA SYNTHESIS REACTOR.
С	THE FIRST DIFFERENTIAL EQUATION REPRESENTS THE CHANGE IN
C C	GAS TEMPERATURE. THE SECOND DIFFERENTIAL EQUATION REPRESENTS THE CHANGE IN
C C	CONCENTRATION OF NH3.
U	N2=1,H2=2,NH3=3,CH4=4,ARGON=5,H2O=6,CO=7,CO2=8 COMMON/AL1/XNH3,PRODCT,SPNH3,TEMPIN,TEMPC,SEPTEM,SEPP,RECYLR,FPRGE
	., ALCATW, HBED(3), PRDROP(3), TMAX COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5)
	COMMON/AL4/T, F(8), Y(8), AG(9), D1FNH3
	COMMON/AL5/DT, DF3 . COMMON/GCOM1/CATDEN, DIA, P, EP, DP
	COMMON/GCOM3/N
	COMMON/AL6/RATE, PNUN, PNUH, PNUA COMMON/PH2/HG(8)
•	

	•		
		COMMON/PH3/AVMW, PROCPG, VISGM COMMON/COM2/FG(8), YG(8), TG COMMON/UTCOEF (UCCTER UTCOUL UTCOUL EAL FEL	·
		COMMON/HTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1 COMMON/CONVRT/FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF	
	·	F(1)=F(1)-0.5*DIFNH3 F(2)=F(2)-1.5*DIFNH3	
	10	TOTALG=0.0 DO 12 I=1,N	
	12	TOTALG=TOTALG+F(I) DO 20 I=1, N V(I) = F(I) (MOMALG)	
	20, 1	CALL RATES	
		TG=T. DO 30 I=1,N	
<u>\</u>	30	FG(I) = F(I) $YG(I) = Y(I)$	
. <u>.</u>		CALL HEATTR HR=HG(3)-0.5*HG(1)-1.5*HG(2)	
1		TOTHR=-(HR*RATE+(HTCOV1*3.1415*DIA*(T-303.)+HTCOV2*3.1415 .*0.203*(T-700.))/(CATDEN*0.789*DIA*DIA))	
	C ·	DIFFERENTIAL EQUATIONS DT=TOTHR/PROCPG DE2-DATE	
		DF3=RATE RETURN	
: .	C C***	END	
,	C C	SUBROUTINE RATES SUBROUTINE RATES	
	C C	IN THIS SUBROUTINE THE RATE OF AMMMONIA SYNTHESIS IS CALCULATED.	
·[C ·	REACTION: 1/2*N2+3/2*H2=NH3 RATE:RATE OF REACTION(KMOL AMMONIA/KG-CAT/SEC)	
	Ũ	COMMON/AL1/XNH3, PRODCT, SPNH3, TEMPIN, TEMPC, SEPTEM, SEPP, RECYLR, .FPRGE, ALCATW, HBED(3), PRDROP(3), TMAX	•
		COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5) COMMON/AL4/T, F(8), Y(8), AG(9), DIFNH3	
		COMMON/AL6/RATE, PNUN, PNUH, PNUA COMMON/GCOM1/CATDEN, DIA, P, EP, DP	
•		COMMON/GCOM3/N COMMON/AL15/K	
		COMMON/PH2/HG(8) DIMENSION B(7)	
		DATA B/-4.675725902354872,4.687353,-3.463308E-5,-11.28031, .1.540881E-8,10.46627/	
		R=1.987 P=P/101.325	•
	,	PN2=P*Y(1) PH2=P*Y(2)	
		PNH3=P*Y(3)	
			,
·	,		
			· .

```
С
      CALCULATION OF RATE OF AMMONIA SYNTHESIS REACTION
      GLK=-2.69112*ALOG(T)-1.271086E-04*T+4.257931E-07*T*T+4009.6848/T+
     .6.194839
      GK = EXP(GLK)
      PNU=EXP(-3.8402*T**0.125+0.541)*P-EXP(-0.1263*SQRT(T)-15.98)
     .*(P*P)+300.*(EXP(-0.011901*T-5.941))*(EXP(-P/300.)-1.0).
      PNUH=EXP(PNU)
      PNUN=0.93431737+0.3101804E-03*T+0.295896E-03*P-0.2707279E-06*T*T
     .+0.4775207E-06*P*P
      PNUA=0.1438996+0.2028538E-02*T-0.4487672E-03*P-0.1142945E-05*T*T
     .+0.2761216E-06*P*P
      X=F(3)/(F(3)+2.0*F(1))
С
      EFFECTIVENESS FACTOR
      ETA=B(1)+B(2)*T+B(3)*X+B(4)*T*T+B(5)*X*X+B(6)*T*T*T+B(7)*X*X*X
      XX1=0.9017344E+00
      XX2=0.1415377E-05
      XX3=0.1499977E+02
      XX4=0.4216922E+01
      TIME=5.00
      RATE=1.0E15*ETA*EXP(-XX4*1.0E04/(R*T))*XX3*((1.0-XX2)+XX2*EXP(
           -XX1*TIME))*((GK*GK*P**1.5*(PNUN*Y(1)*((PNUH*Y(2))**1.5))
           /(PNUA*Y(3)))-1./(SQRT(P))*((PNUA*Y(3))/((PNUH
           *Y(2))**1.5)))*(0.87)/3600.0/CATDEN
      P=P*101.325
      RETURN
      END.
С
C***
      SUBROUTINE HEATTR
С
      SUBROUTINE HEATTR
С
      SUBROUTINE TO CALCULATE THE CONVECTIVE AND OVERALL HEAT
С
      TRANSFER COEFFICIENT.
С
  *******VARIABLES********
С
      CPG(I)=SPECIFIC HEAT OF COMPONENT I AT GAS
\mathbf{C}
             PHASE TEMPERATURE, KJ/KMOL/K
      VIS(I)=VISCOSITY OF COMPONENT I, KG/M/S
С
      DIMENSION VIS(8), THC(8)
      COMMON/GCOM1/CATDEN, DIA, P, EP, DP
      COMMON/GCOM3/N
      COMMON/DD/HS(8), CPS(8), CPG(8), ES(8), EG(8)
      COMMON/PH1/TC(8), GPC(8), AMW(8), HV(8)
      COMMON/PH2/HG(8)
      COMMON/PH3/AVMW, PROCPG, VISGM
      COMMON/COM2/FG(8),YG(8),TG
      COMMON/HTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1
      AVMW=0.0
      ANUM1=0.0
      ANUM2=0.0
      DNOM1=0.0
      DNOM2=0.0
      HTCAM=0.0
```

	•		
		TOTALG=0.0 DCT=0.203	
1		AREA=3.1415*DIA*DIA/4.0	
		DO 12 $I=1.N$	
		AVMW=AVMW+YG(I)*AMW(I)	
	12	TOTALG=TOTALG+FG(I)	,
		PROCPG=0.0 DO 20 M=1,N	·
		CALL VISCO(M,TG,VIS(M))	
		CALL $CPH(M, TG, CPG(M), EG(M), HG(M))$	
	20	PROCPG=PROCPG+FG(M)*CPG(M)	
1	, C C	VISCOSITY OF THE GAS MIXTURE IS DETERMINED BY SOME AVERAGING TECHNIQUE(PERRY, 5TH, EDITION. P:3-249)	
l	υ.	DO 30 I=1, N	
		ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I))	
)	20	DNOM1=DNOM1+YG(I)*SQRT(AMW(I))	
l	30	HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1	
1	С	THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS	
	C	DETERMINED BY SOME AVERAGING TECHNIQUE,	
	С	(PERRY, 5TH EDITION. P: 3-244)	
l		DO 40 $M=1,N$ CALL CPH(M,TG,CPG(M),EG(M),HG(M))	
		CALL THCON(M, TG, CPG(M), VIS(M), THC(M))	
	40	CONTINUE	<i>,</i>
		DO 50 $I=1,N$	
).	50	ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 DNOM2=DNOM2+YG(I)*AMW(I)**0.33	
	C 50	R IS THE UNIVERSAL GAS CONSTANT, KPA-M**3/KMOLE-K	
	•	R=8.314	
		THCONM=ANUM2/DNOM2	
		TOTGMF=TOTALG*AVMW/AREA REYNO=TOTGMF*DP/VISGM	
		PRNO=HTCAM*VISGM/AVMW/THCONM	
l	С	CONVECTIVE HEAT TRANSFER COEFFICIENT INSIDE TOWER	
		HCBED1=0.023*THCONM/DIA*(REYNO)**0.8*(PRNO)**0.33	
	С	HCBED2=HCBED1*DIA/DCT OVERALL HEAT TRANSFER COEFFICIENT	
l	U	CALL CNVTTR	
l		HTCOV1=HCBED1*HCANUL/(HCBED1+HCANUL)	
l i		HTCOV2=HCBED2*HCCTB/(HCBED2+HCCTB)	
l		RETURN END	. <i>·</i>
l i	С		
l	C***	SUBROUTINE CNVTTR	
l	С		
l	С	SUBROUTINE CNVTTR SUBROUTINE TO CALCULATE THE ANNULUS AND CENTRE TUBE	
l	C	CONVECTIVE HEAT TRANSFER COEFFICIENT	
l	9	DIMENSION VIS(8), THC(8)	
l			
1	a		:
l ·			Ϋ́ν Υ
4			

COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/GCOM3/N COMMON/DD/H3(8), CFS(8), CFG(9), BS(8), EG(8) COMMON/PH1/T(6), GPC(8), ANM(8), HV(8) COMMON/PH1/T(6), GPC(8), ANM(8), HV(8) COMMON/PH3/AWM, PROCPG, VIEGM COMMON/COM2/FG(8), TG COMMON/COM2/FG(8), TG COMMON/MTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1 TCMTE-700.0 ANUM1-0.0 ANUM1-0.0 ANUM1-0.0 ANUM1-0.0 IF(K, EQ, 1) TT=TANULS IF(K, EQ, 1) TT=TANULS IF(K, EQ, 2) TT=TCMTB D0 12.1-1, N 12 AVMW-AVMH-YG(1)*AMM(1) D0 20 M=1, N CALL VISCO(H, TT, VIS(M)) C VISCOSITY OF THE GAS MIXITORE IS DETERMINED D 30 I=1, N ANUM1-ANUM1+YG(1)*VIS(I)*SQRT(AHM(1)) D 00 10 H=1, N ANUM1-ANUM1+YG(1)*VIS(I)*SQRT(AHM(1)) D 01 T=N, N ANUM1-ANUM1+YG(1)*VIS(I)*SQRT(AHM(1)) THERMAL CONDUCTIVITY OF. THE GASEOUS MIXITURE IS C DD 6M = N N ANUM1-ANUM1+YG(1)*VIS(M), THC(M) C ALL CH(M, TT, CFG(M), EG(M), HG(M)) C ALL CH(M, TT, CFG(M), FCH(M) D 00 1=1, N ANUM1-ANUM1+YG(1)*XIS(M), THC(M)) C ALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 04 0M = N, N CALL CHM(, MT, CFG(M), HG(M)) C ALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C ALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 04 0M = N, N CALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CALL CHONCHTVITY OF. THE GASEOUS MIXITURE IS D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CONTONUE D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C CONTONUE D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C 00 CONTINUE D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M)) C 00 CONTINUE D 05 00 1=1, N ANUM2-ANUM2+YG(I)*AEG(M), HG(M), I**0.33 THCOMA-ANUM2+NAM2 ANUM2-ANUM2+YG(I)*AEG(M), HG(M), I**0.33 ANUM2-ANUM2+NAM2 ANUM2-ANUM2+NAM2	•		· · · · ·		
<pre>COMMON/GOOM3/N COMMON/DD/HS(8),CPS(8),CPG(8),ES(8),EG(8) COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM K=1 111 AVMW=0.0 ANUM1=0.0 DMOM1=0.0 DMOM2=0.0 DMOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TONTB D0 12 1=1.N CALL VISCO(M,TT,VIS(M)(1) D0 20 M=1.N CALL VISCO(M,TT,VIS(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 L=1.N ANUM1=ANUM1+YG(1)*SGRT(AMW(1)) DDM1=DMOM1+YG(1)*SGRT(AMW(1)) DDM1=DMOM1+YG(1)*SGRT(AMW(1)) C THERMAL CONDUCTIVITY OF.THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CONTINUE D0 50 I=1.N ANUM2=ANUM2+YG(1)*THC(I)*AMW(1)**0.33 THCOMM=ANUM2+YG(1)*THC(I)*AMW(1)**0.33 THCOMM=ANUM2+YG(1)*THCONM IF(K.EQ.2) GOTO 60 C GONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-D1A)**2/4.0 GMF=FA1*AVWW/ANULUS BEYNO-GMF*(SHEL-D1A)/VISGM</pre>					
<pre>COMMON/GOOM3/N COMMON/DD/HS(8),CPS(8),CPG(8),ES(8),EG(8) COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM COMMON/PH3/AVMW,PROCPG,VISGM K=1 111 AVMW=0.0 ANUM1=0.0 DMOM1=0.0 DMOM2=0.0 DMOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TONTB D0 12 1=1.N CALL VISCO(M,TT,VIS(M)(1) D0 20 M=1.N CALL VISCO(M,TT,VIS(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 L=1.N ANUM1=ANUM1+YG(1)*SGRT(AMW(1)) DDM1=DMOM1+YG(1)*SGRT(AMW(1)) DDM1=DMOM1+YG(1)*SGRT(AMW(1)) C THERMAL CONDUCTIVITY OF.THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CALL THCOM(M,TT.CPG(M),EG(M),HG(M)) C CONTINUE D0 50 I=1.N ANUM2=ANUM2+YG(1)*THC(I)*AMW(1)**0.33 THCOMM=ANUM2+YG(1)*THC(I)*AMW(1)**0.33 THCOMM=ANUM2+YG(1)*THCONM IF(K.EQ.2) GOTO 60 C GONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-D1A)**2/4.0 GMF=FA1*AVWW/ANULUS BEYNO-GMF*(SHEL-D1A)/VISGM</pre>			· · · · · · · · · · · · · · · · · · ·	· · ·	
<pre>COMMON/GOOMS/M COMMON/DD/IS(8).CPS(8).CPG(8).ES(8).EG(8) COMMON/PHJ/TC(8).GPC(8).AMW(8).HV(8) COMMON/PH3/AVMW.PROCPG.VISGM COMMON/PH3/AVMW.PROCPG.VISGM COMMON/PH3/AVMW.PROCPG.VISGM COMMON/ATCOGEPHCANUL.HCCTB.HTCOV1.HTCOV2.FA1.FB1 TCNTF=700.0 TANULS=303.0 K=1 111 AVMW=0.0 ANUM1=0.0 DMOM1=0.0 DMOM1=0.0 DMOM1=0.0 DMOM1=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTE D0 12 I=1.N CCALL CFH(M,TT,VIS(M)) C CALL CFH(M,TT,VIS(M),EG(M).HG(M)) C CALL CFH(M,TT,CFG(M).EG(M).HG(M)) C CALL CFH(M,TT,CFG(M).EG(M).HG(M)) C VISCCSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1.N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) D DMOM1EDNOM1+YG(I)*SQRT(AMW(I)) D DMOM1EDNOM1+YG(I)*SQRT(AMW(I)) O HTCAN=HTCAN+YG(I)*CFG(I) VISCG=ANUM1/NNOM1 C THERMAL CONDUCTIVITY OF.THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1, N CALL THCON(M,TT.CFG(M).EG(M).HG(M)) C CALL CH(M, TT.CFG(M).EG(M).HG(M)) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1, N CALL CFH(M, TT.CFG(M).EG(M).HG(M)) C CALL THCON(M, TT.CFG(M).VIS(M).THC(M) C THECMA=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FAI*AVWW/ANULUS REYNO=GMF*(5HELL-DIA)/VISGM</pre>				•	1
<pre>COMMON/GOOMS/M COMMON/DD/IS(8).CPS(8).CPG(8).ES(8).EG(8) COMMON/PHJ/TC(8).GPC(8).AMW(8).HV(8) COMMON/PH3/AVMW.PROCPG.VISGM COMMON/PH3/AVMW.PROCPG.VISGM COMMON/PH3/AVMW.PROCPG.VISGM COMMON/ATCOGEPHCANUL.HCCTB.HTCOV1.HTCOV2.FA1.FB1 TCNTF=700.0 TANULS=303.0 K=1 111 AVMW=0.0 ANUM1=0.0 DMOM1=0.0 DMOM1=0.0 DMOM1=0.0 DMOM1=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTE D0 12 I=1.N CCALL CFH(M,TT,VIS(M)) C CALL CFH(M,TT,VIS(M),EG(M).HG(M)) C CALL CFH(M,TT,CFG(M).EG(M).HG(M)) C CALL CFH(M,TT,CFG(M).EG(M).HG(M)) C VISCCSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1.N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) D DMOM1EDNOM1+YG(I)*SQRT(AMW(I)) D DMOM1EDNOM1+YG(I)*SQRT(AMW(I)) O HTCAN=HTCAN+YG(I)*CFG(I) VISCG=ANUM1/NNOM1 C THERMAL CONDUCTIVITY OF.THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1, N CALL THCON(M,TT.CFG(M).EG(M).HG(M)) C CALL CH(M, TT.CFG(M).EG(M).HG(M)) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C ALL THCON(M,TT.CFG(M).VIS(M).THC(M) C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1, N CALL CFH(M, TT.CFG(M).EG(M).HG(M)) C CALL THCON(M, TT.CFG(M).VIS(M).THC(M) C THECMA=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 THCOMM=ANUM2/YG(I)*THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FAI*AVWW/ANULUS REYNO=GMF*(5HELL-DIA)/VISGM</pre>					1
<pre>COMMON/DD/HS(8).CFG(8),EG(8),EG(8) COMMON/PH2/HC(8),GFC(8),EG(8),HV(8) COMMON/PH3/AVMW,PROCFG,VISGM COMMON/CH2/FG(8),TG COMMON/CH2/FG(8),TG COMMON/CH2/FG(8),TG COMMON/HCOEF/HCANUL,HCCTE,HTCOV1,HTCOV2,FA1,FB1 TOUTE-700.0 TANULS-303.0 K=1 111 AVMW=0.0 ANUM2=0.0 HTCAM=0.0 DNOM2=0.0 DNOM2=0.0 TF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TANULS IF(K.EQ.2) TT=TANULS IF(K.EQ.2) TT=TANULS IF(K.EQ.2) TT=TANULS IF(K.EQ.2) TT=TANULS CALL CPH(M,TT,VIS(M)) CALL CPH(M,TT,CFG(M),BG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED D 31 T=1.N ANUM1=ANUM1+YG(1)*VIS(1)*SQRT(AMW(1)) D COM1=DNOM1=NOM1 D NOM1=DNOM1=NOM1 CALL CPH(M,TT.CFG(M),SQRT(AMM(1)) D NOM1=DNOM1=NOM1 CALL CPH(M,TT.CFG(M),CFG(1) VISCOSITY OF THE GASENUX C THERMAL CONDUCTIVITY OF.THE GASEOUS MIXTURE IS C DSTEENANED BY SOME AVERAGING TECHNIQUE D 40 M=1.N CALL CPH(M,TT.CFG(M),CFG(1) VISCOSITY OF THE GASENUX C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DSTEENANED AVERAGING TECHNIQUE D 40 M=1.N CALL CPH(M,TT.CFG(M),CFG(1) VISCOSITY OF THE GASEOUS MIXTURE IS C DSTEENINED BY SOME AVERAGING TECHNIQUE D 40 M=1.N CALL CPH(M,TT.CFG(M),VIS(M),THC(M)) CALL CPH(M,TT.CFG(M),VIS(M),THC(M)) CALL CPH(M,TT.CFG(M),VIS(M),THC(M)) CALL THCONVM2/TG(1)*THC(1)**0.33 TRCOMM=ANUM2/DNOM2 PENCO-HTCAM=VS(1)*THC(1)**0.33 TRCOMM=ANUM2/DNOM2 PENCO-HTCAM=VS(1)*THC(1)**0.33 TRCOMM=ANUM2/DNOM2 PENCO-HTCAM=VS(1)*THC(1)**0.33 TRCOMM=ANUM2/DNOM2 PENCO-HTCAM=VS(HEL-DIA)**2/4.0 GMF=FA1*AVWW/ANULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVWW/ANULUS BEYNO-GMF*(SHEL-DIA)/VISGM</pre>	1	· ,			· · · ·
COMMON/PH2/H0(8) COMMON/COM2/FG(8).YG(8).TG COMMON/COM2/FG(8).YG(8).TG COMMON/COM2/FG(8).YG(8).TG COMMON/COM2/FG(8).YG(8).TG COMMON/TH2-OCO TANULS=303.0 K=1 111 AYUW=0.0 ANUM1=0.0 ANUM1=0.0 DNOM1=0.0 DNOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TONTB D0 12 I=1,N C ALL OPH(M.TT,VIS(M)) C CALL OPH(M.TT,VIS(M)) C CALL OPH(M.TT,VIS(M)) C CALL OPH(M.TT,VIS(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1.N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) D MITCAM=HTCAM+YG(I)*SQRT(AMW(I)) C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 30 I=1.N C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N C ALL CPH(M.TT.CFG(M).EG(M).HG(M)) C CALL CH(M.TT.CFG(M).KG(M).HG(M)) C CALL CH(M.TT.CFG(M).KG(M).HG(M)) C CALL CH(M.TT.CFG(M).KG(M).HG(M)) C CALL CHIM.TT.CFG(M).KG(M).HG(M)) C CALL CHIM.TT.CFG(M).KG(M).HG(M) C CONTINUE D0 50 I=1.N ANUM2=ANUM2+YG(I)*THC(I)*AWW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM+YG(J)*THC(M) IF(K.EQ.2).GOTO 60 C OWFETIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=311415*(SHELL-DIA)/VISGM	2				
<pre>COMMON/PB3/AVMM, PROCEG, VISGM COMMON/COM2/EG(8), TGG COMMON/HTCOEF/HCANUL, HCCTB, HTCOV1, HTCOV2, FA1, FB1 TCNTB=700.0 TANULS=303.0 K=1 111 AVMW=0.0 ANUM1=0.0 ANUM1=0.0 DNOM1=0.0 HTCAM=0.0 HTCAM=0.0 HTCAM=0.0 HTCAM=0.0 NHW=AVMM+YG(1)*ANMV(1) D0 12 I=1, N CALL VISCO(M, TT, VIS(M)) C CALL CPH(M, TT, CPG(M), EG(M), HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C D 30 I=1, N ANUM1=ANUM1+YG(1)*VIS(1)*SQRT(AMW(I)) DNOM1=DNOM1+YG(1)*VIS(1)*SQRT(AMW(I)) DNOM1=DNOM1+YG(1)*CF(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1, N CALL CPH(M, TT.CPG(M), VIS(M), THC(M)) C CALL THCON(M, TT.CPG(M), VIS(M), THC(M)) C CALL THCON(M, TT.CPG(M), VIS(M), THC(M)) C CONTINUE D0 50 I=1, N ANUM2=ANUM2/DNOM2 PRNO=HTCAM*VIS(GI)*THC(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VIS(GM/AVM/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMT=FA1*AVMW/ANULUS REVNO-GMT*(SHELD-DIA)**2/4.0 GMT=FA1*AVMW/ANULUS REVNO-GMT*(SHELD-DIA)/VISGM</pre>					
CCMMON/COM2/FG(8).TG CCMMON/HTCOEF/HCANUL,HCCTB,HTCOV1,HTCOV2,FA1,FB1 TCNTE=700.0 TANULS=303.0 K=1 111 AYUW=0.0 ANUM1=0.0 ANUM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB D0 12 I=1,N 12 AYUM=AYUM+YG(I)*AMW(I) 20 CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C VISCOSITY OF THE GAS NIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1.N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) 30 HTCAM=HCAM+YG(I)*CFG(I) VISCM=ANUM1/DNOM1 C THEEMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C CONTINUE D0 50 I=1.N ANUM1-ANUM2+YG(I)*SQRT(AMW(I)) 10 HTCAM=HCAM+YG(I)*CFG(I) VISCM=ANUM1/DNOM1 C THEEMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C CONTINUE D0 50 I=1.N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM**ISCM/AYW/THCONM IF(K.EQ.2) GOTO 60 C COWVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNOLUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMT=FA1*AYWW/ANULUS REYNO-GMT*(SHELL-DIA)/VISGM					
<pre>TCNTR=700.0 TANUUS=303.0 K=1 111 AVMM=0.0 ANUM1=0.0 ANUM2=0.0 DNOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB DO 12 I=1,N CALL VISCO(M,TT,VIS(M)) 20 CALL CPH(M,TT,CPG(M).EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C VISCOSITY OF THE GAS MIXTURE IS C DY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) UISCM=ANUM1/DNOM1 C THERMAL COMPUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M).EG(M),HG(M)) C CALL THCON(M,TT.CPG(M).VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)*AMW/I)**0.33 THCONM=ANUM2+YG(I)**0.33 THCONM=ANUM2+YG(I)**0.33 THCONM=ANUM2+YG(I)**0.33 THCONM=ANUM2+YG(</pre>			COMMON/COM2/FG(8),YG(8),TG		
<pre>TANULS=303.0 K=1 111 AVMM=0.0 ANUMI=0.0 ANUMI=0.0 NUMI=0.0 DNOM1=0.0 UNOM1=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTE DO 12 I=1,N 12 AVMW=AVM+YG(I)*AMW(I) DO 20 M=1,N CALL CPH(M,TT,VIS(M)) 20 CALL CPH(M,TT,CPG(M),EG(M),HG(M)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CPH(M,TT,CPG(M),EG(M),HG(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)**00 50 EENDON2+YG(I)**00 50 EENDON2+YG(I)**00 50 EENDON2+YG(I)**00 50 EENDON2+YG(I)**00 50 EENDON2+YG(I)**00 50 EENDON2+YG(I)**00 50</pre>					
<pre>111 AVMW=0.0 ANUM1=0.0 ANUM2=0.0 DNOM1=0.0 DNOM1=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCHTB D0 12 I=1,N 12 AVMW=AVMW+YG(I)*AMW(I) D0 20 M=1,N CALL VISCO(M,TT,VIS(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERGAING TECHNIQUE D0 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) THCAM=HTCAM+YG(I)*CSQRT(AMW(I)) 0 HTCAM=HTCAM+YG(I)*CSQRT(AMW(I)) C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1,N CALL CPH(M,TT.CPG(M),EG(M),HG(M)) CALL CPH(M,TT.CPG(M),VIS(M),THC(M)) 40 CONTINUE D0 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2_DNOM2 PRN0=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMM=FA1*AVMW/ANULUS REYNO-GMF*(SHELL-DIA)/VISGM</pre>			TANULS=303.0		
ANUM1=0.0 ANUM2=0.0 DNOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB DO 12 I=1,N 12 AYUW=AVMW+YG(I)*AMW(I) DO 20 M=1,N CALL VISCO(M,TT,VIS(M)) CALL VISCO(M,TT,CPG(M),EG(M),HG(M)) CALL VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) NOM1=DNOM1+YG(I)*SQRT(AMW(I)) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL THCON(M,TT.CPG(M),EG(M),HG(M)) CALL CPH(M,TT.CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCOMM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMM/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO-BMTCAM+VISGM		111			•
<pre>DNOM1=0.0 DNOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB DO 12 I=1,N AVMM=AVMM+YG(I)*AMW(I) DO 20 M=1,N CALL VISCO(M,TT,VIS(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C HY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*VIS(I)*SQRT(AMW(I)) TCAM=HTCAM+YG(I)*CPG(I) VISCM=ANUM1/DNOM1 C THCAM=HTCAM+YG(I)*CPG(I) VISCM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M),VIS(M),THC(M)) CALL THCON(M,TT.CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2/YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 50 DNOM2=NOM2+YG(I)*AMW(I)**0.33 50 DNOM2=NOM2+YG(I)*AMW(I)**0.33 50 DNOM2=NOM2+YG(I)*AMW(I)**0.33 50 DNOM2=NOM2+YG(I)*AMW(I)**0.33 50 CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS</pre>			ANUM1=0.0		
<pre>DNOM2=0.0 HTCAM=0.0 IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB D0 12 I=1,N 12 AMW#AVMW+YG(I)*AMW(I) D0 20 M=1,N CALL VISCO(M,TT,VIS(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1,N CALL CPH(M,TT.CPG(M).EG(M),HG(M)) CALL THCON(M,TT.CPG(M).VIS(M),THC(M)) 40 CONTINUE D0 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*THC(I)*AMW(I)**0.33 50 CONTINUE D0 50 I=1,N ANUM2=ANUM2/DNOM2 PENO=HTCAM*VISCM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM</pre>	-				
<pre>IF(K.EQ.1) TT=TANULS IF(K.EQ.2) TT=TCNTB D0 12 I=1,N AYMW=AYMW+YG(I)*AMW(I) D0 20 M=1,N CALL VISCO(M,TT,VIS(M)) C CALL CPH(M,TT,CPG(M).EG(M).HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1.N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) WISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1.N CALL CPH(M,TT.CPG(M).EG(M).HG(M)) CALL THCON(M,TT.CPG(M).VIS(M).THC(M)) 40 CONTINUE D0 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM</pre>	λ.				
<pre>IF(K.EQ.2) TT=TCNTB DO 12 I=1,N AVMM=AVMM+YG(I)*AMW(I) DO 20 M=1,N CALL VISCO(M,TT,VIS(M)) CO CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) NTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M),EG(M),HG(M)) CALL THCON(M,TT.CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM+VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)**2/4.0</pre>	a,	٢			
D0 12 I=1,N AVMW=AVMW+YG(I)*AMW(I) D0 20 M=1,N CALL VISCO(M,TT,VIS(M)) 20 CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE D0 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)*2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM					
D0 20 M=1,N CALL VISCO(M,TT,VIS(M)) 20 CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE D0 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE D0 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CPH(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE D0 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		10	DO 12 I=1,N	•	
CALL VISCO(M,TT,VIS(M)) 20 CALL CPH(M,TT,CPG(M),EG(M),HG(M)) C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*SQRT(AMW(I)) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL CH(CN(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*THC(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		12			
C VISCOSITY OF THE GAS MIXTURE IS DETERMINED C BY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*THC(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM			CALL VISCO(M,TT,VIS(M))	·	
<pre>C BY SOME AVERAGING TECHNIQUE DO 30 I=1,N ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) NOM1=DNOM1+YG(I)*SQRT(AMW(I)) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM</pre>				r -	
ANUM1=ANUM1+YG(I)*VIS(I)*SQRT(AMW(I)) DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M).EG(M),HG(M)) CALL THCON(M,TT.CPG(M).VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM			BY SOME AVERAGING TECHNIQUE		
DNOM1=DNOM1+YG(I)*SQRT(AMW(I)) 30 HTCAM=HTCAM+YG(I)*CPG(I) VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M).EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM				, ·	
VISGM=ANUM1/DNOM1 C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT.CPG(M).EG(M),HG(M)) CALL THCON(M,TT.CPG(M).VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM				1	
C THERMAL CONDUCTIVITY OF. THE GASEOUS MIXTURE IS C DETERMINED BY SOME AVERAGING TECHNIQUE DO 40 M=1,N CALL CPH(M,TT,CPG(M).EG(M),HG(M)) CALL THCON(M,TT,CPG(M).VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		30		. ·	
DO 40 M=1,N CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		С			
CALL CPH(M,TT,CPG(M),EG(M),HG(M)) CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		С.			
CALL THCON(M,TT,CPG(M),VIS(M),THC(M)) 40 CONTINUE DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM					
DO 50 I=1,N ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		40	CALL THCON($M, TT, CPG(M), VIS(M), THC(M)$)		•
ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33 50 DNOM2=DNOM2+YG(I)*AMW(I)**0.33 THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		40			
THCONM=ANUM2/DNOM2 PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		5.0	ANUM2=ANUM2+YG(I)*THC(I)*AMW(I)**0.33		• .
PRNO=HTCAM*VISGM/AVMW/THCONM IF(K.EQ.2) GOTO 60 C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		50			
C CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM			PRNO=HTCAM*VISGM/AVMW/THCONM		.[.
C GAS MIXTURE IN THE ANNULUS SHELL=2.032 ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		С			r,
ANULUS=3.1415*(SHELL-DIA)**2/4.0 GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM					
GMF=FA1*AVMW/ANULUS REYNO=GMF*(SHELL-DIA)/VISGM		· · · ·			
REYNO=GMF*(SHELL-D1A)/VISGM					
HUANULEU.UZJ#THUUNM/DIA#(KEYNU)##U.8#(PRNU)##U.33			REYNO=GMF*(SHELL-DIA)/VISGM		
			$H \cup A N \cup L = U \cdot U \ge 3 \times T H \cup U N M / D T A \times (REYNU) \times U \cdot S \times (PRNU) \times U \cdot S $		

.

CONVECTIVE HEAT TRANSFER COEFFICIENT OF THE GAS MIXTURE IN THE CENTRE TUBE K=K+1 TOTCNG=FA1+FB1 GO TO 111 DCT=0.203 CNTRTB=3.1415*DCT*DCT/4.0 CTGMF=TOTCNG*AVMW/CNTRTB REYNO=CTGMF*DCT/VISGM HCCTB=0.023*THCONM/DCT*(REYNO)**0.8*(PRNO)**0.33 RETURN END

C C

60

à.

•		
C.		
с С***	SUBROUTINE COMPRS	
Č		
	SUBROUTINE COMPRS	
C	PROGRAM TO DESIGN A COMPRESSOR	
C *** C	(***** INPUT DATA *********************************	
c	INLET GAS TEMP., TGIN(K), INLET PRESSURE, PIN(KPA) OUTLET PRESSURE, POUT(KPA)	
Č	FLOW RATES OF GASES $(F(I), I=1, N)$ (KMOLE/S)	
C	ALLOWABLE COMPRESSION RATIO, RLMT	
С	N2=1,H2=2,NH3=3,CH4=4,ARGON=5,H2O=6,CO=7,CO2=8	
C	CSIND1=MARSHALL & SWIFT EQUIPMENT COST INDEX FOR YEAR, 1980	
С	CSIND2=MARSHALL & SWIFT EQUIPMENT COST INDEX FOR 4TH QR. OF 1984.	•
	DIMENSION CPG(8) COMMON/CMP1/PIN, POUT, RLMT, TGIN, TGOUT, STEAMP	
	COMMON/COM2/FG(8),YG(8),TG	•
	COMMON/CST1/CSIND2, FLANG, COST	
	COMMON/AR4/FPOWER, ULTPWR	
	COMMON/GCOM3/N COMMON/DSC3/NSTAGE	
	CSIND1=569.0	
	TOTALG=0.0	
	DO 10 I=1, N	
10	TOTALG=TOTALG+FG(I)	
00	DO 20 $I=1,N$	
20	YG(I) = FG(I) / TOTALG .	
	ΈΡΛΜ ΤΗΕ VALUE OF COMPRESSION ΡΑΤΙΟ(ΡΟΠΤ/ΡΙΝ) CALCULATE THE	
C C	FROM THE VALUE OF COMPRESSION RATIO(POUT/PIN), CALCULATE THE NUMBER OF STAGES TO BE USED IN THE COMPRESSOR BASED ON THE	
C C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE	
С	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT.	
C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN	
C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT	
C C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1	
C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT	
C C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT	
C C 30	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30	
с с зо с	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS.	
C C 30	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K	
С С 30 С	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN	
C C 30 C C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF)	
C C 30 C C C 40	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN	
C C 30 C C C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K	
C C 30 C C C 40	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN	
C C 30 C C C 40	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I,TGAV,CPG(I),EN,H2)	
C C 30 C C 40 C	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I,TGAV,CPG(I),EN,H2) AK=CPG(I)/(CPG(I)-8.314)	
C C 30 C C C 40	NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I), EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I)	
C C 30 C C 40 C	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I).EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC)))</pre>	
с с 30 с 40 с	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I), EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC))) TGOUT=TGIN*(COMPR)**((AN-1.0)/(AN*NSTAGE))</pre>	· · · · · · · · · · · · · · · · · · ·
с с 30 с 40 с	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I).EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC)))</pre>	
с с 30 с 40 с	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I), EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC))) TGOUT=TGIN*(COMPR)**((AN-1.0)/(AN*NSTAGE))</pre>	
с с 30 с 40 с	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I), EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC))) TGOUT=TGIN*(COMPR)**((AN-1.0)/(AN*NSTAGE))</pre>	· · · · · · · · · · · · · · · · · · ·
с с 30 с 40 с	<pre>NUMBER OF STAGES TO BE USED IN THE COMPRESSOR, BASED ON THE ASUMPTION THAT THE COMPRESSION RATIOWILL BE LESS THAN OR EQUAL TO ALLOWABLE LIMIT, RLMT. COMPR=POUT/PIN RLMT1=RLMT NSTAGE=1 IF(COMPR.LT.RLMT1) GOTO 40 NSTAGE=NSTAGE+1 RLMT1=RLMT1*RLMT GOTO 30 CALCULATION OF APPROXIMATE OUTLET TEMPERATURE OF THE GAS. GAS CONSTANT, R=8.314 KPA-M**3/KMOLE-K VOLUME OF FEED, VOLF(M**3/S) VOLF=TOTALG*8.314*TGIN/PIN EFFC=0.645+0.025*ALOG10(2118.9*VOLF) TGAV=TGIN GAS CONSTANT, R=1.987 KCAL/KMOLE-K TOTK=0.0 DO 50 I=1, N CALL CPH(I.TGAV, CPG(I), EN, H2) AK=CPG(I)/(CPG(I)-8.314) TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/(TOTK*EFFC))) TGOUT=TGIN*(COMPR)**((AN-1.0)/(AN*NSTAGE))</pre>	· · · · · · · · · · · · · · · · · · ·

	· · · · ·
	\cdot .
	ZS=1.0
	ZD=ZS
	TOTK=0.0
	DO 60 I=1,N
	CALL CPH(I, TGAV, CPG(I), EN, H2)
60	AK = CPG(1) / (CPG(1) - 8.314)
00	TOTK=TOTK+AK*YG(I) AN=1.0/(1.0-((TOTK-1.0)/TOTK/EFFC))
С	POWER(KW)
	FPOWER=AN/(AN-1.)*(ZS+ZD)/2.0*8.314*NSTAGE*TGIN*((COMPR)**((AN-1.0)))
	+)/(AN*NSTAGE))-1.0)*TOTALG/EFFC
	TGOUT=TGIN*(COMPR)**((AN-1.)/(AN*NSTAGE))
·C	COSTING
C	BASE PRICE FOR CENTRIFUGAL COMPRESSOR(JUNE, 1970, US\$,
C ·	BACKHURST, ETAL, 1973)
С	COST=FPOWER*2260.0*(FPOWER)**(-0.5)
C	IF THE PRESSURE IS MORE THAN 6893 KPA, INCREASE THE COST IF(POUT.LE.6893.0) GOTO 70
	COST=COST*(1.0+0.00064*(POUT)**0.68)
С	USE LANG FACTOR=2.5 TO GET THE TOTAL CAPITAL INVESTMENT
Č	FOR COMPRESSORS(PETER & TIMMERHAUS, 1979)
70	COST=COST*FLANG
С	UPDATE THE COST AT THE PRESENT TIME USING COST INDEXES
	COST=COST*CSIND2/CSIND1
	RETURN
-	END
C C	
C*** C	SUBROUTINE PRESSV
U .	SUBROUTINE PRESSV
С	PROGRAM TO DESIGN CYLINDRICAL & SPHERICAL PRESSURE VESSEL.
č	DESIGN PRESSURE IS OBTAINED BY ADDING 10% OF MAXIMUM OPERATING
Ċ	PRESSURE WITH THE OPERATING PRESSURE.
С	DESIGN TEMP. IS TAKEN AS OPERATING TEMP. PLUS 28 DEG. K
С	CONSTRUCTION MATERIAL IS ASSUMED TO BE CARBON STEEL(SA-285, GR.C)
С	EFFICIENCY OF THE WELDING JOINT(EFFJ), FRACTION
C	ALLOWABLE STRESS VALUE FOR THE MATERIAL OF CONSTRUCTION
C	(STRESS), KPA.
C	CORROSION ALLOWANCE(CORRA), M
C	DENSITY OF THE MATERIAL(DENSS), KG/M**3
C C	FOLLOWING DATA ARE NEEDED FOR THIS SUBROUTINE
Ċ	DESIGN PRESSURE(DESGP), RADIUS OF VESSEL(RADIV), LENGTH OF VESSEL (FOR CVLINDRICAL VESSEL VECUT) DESIGN TEMP (DESCT) NUMBER OF TRAV
C	(FOR CYLINDRICAL VESSEL HEGHT), DESIGN TEMP. (DESGT), NUMBER OF TRAY (NOTRA), CAPACITY OF THE HEAD PORTION OF THE VESSEL(HEADV), M**3
č	DIFFERENT OPTIONS: OPTN1 IS FOR SHAPE OF VESSEL.
č	OPTN2 IS FOR TYPE OF VESSEL HEAD.
Č.	OPTN3 IS FOR VESSEL INSTALLED POSITION.
Ċ.	OPTN4 IS FOR CHECKING WHETHER TRAY COST TO BE CALCULATED OR NOT.
С	COST FACTOR FOR THE MATERIAL OF CONSTRUCTION (FACTRM).

· .

.

Ţ

1

•

.

С OPTN1=1, FOR CYLINDRICAL VESSEL С =2, FOR SPHERICAL VESSEL С OPTN2=1, FOR HEMISPHERICAL VESSEL HEAD С =2, FOR ELLIPSOIDAL VESSEL HEAD С OPTN3=1, FOR VERTICAL INSTALLED POSITION Ċ =2, FOR HORIZONTALINSTALLED POSITION \mathbf{C} OPTN4=1, FOR NOT CALCULATING THE COST OF TRAYS C =2, FOR CALCULATING THE COST OF TRAYS INTEGER OPTN1, OPTN2, OPTN3, OPTN4 COMMON/PV1/RADIV, HEGHT, NOTRA, HEADV COMMON/PV2/OPTN1, OPTN2, OPTN3, OPTN4 COMMON/CST1/CSIND2,FLANG.COST COMMON/COM1/TPRDRP, FACTRM COMMON/GCOM1/CATDEN, DIA, P, EP, DP CSIND1=569.0 EFFJ=0.85 STRESS=82776.78 DESGP=1.1*P DENSS=7835.0 DIAV=2.0*RADIV CORRA=0.004 С CALCULATION OF WALL THICKNESS IF(OPTN1.EQ.2) GOTO 10 С CALCULATION FOR CYLINDRICAL VESSEL WALLT=DESGP*RADIV/(STRESS*EFFJ-0.6*DESGP)+CORRA IF(WALLT.LE.(RADIV/2.0).OR.DESGP.LE.0.385*STRESS*EFFJ) GOTO 20 WALLT=RADIV*SQRT((STRESS*EFFJ+DESGP)/(STRESS*EFFJ-DESGP)) +-RADIV+CORRA 20 WEGHTS=2.0*3.1415*RADIV*HEGHT*WALLT*DENSS GOTO 30 С CALCULATION FOR SPHERICAL VESSEL WALLT=DESGP*RADIV/(2.0*STRESS*EFFJ-0.2*DESGP)+CORRA 10 IF(WALLT.LE.0.356*RADIV.OR.DESGP.LE.0.665*STRESS*EFFJ) GOTO 40 WALLT=RADIV*((2.0*EFFJ*STRESS+2.0*DESGP)/(2.0*STRESS*EFFJ-DESGP)) .**0.333-RADIV+CORRA 40 WEGHTS=4.0*3.1415*RADIV*WALLT*(RADIV+WALLT)*DENSS WEGHTH=0.0GOTO 70 С CALCULATION FOR DETERMINING THE WEIGHT OF THE HEAD PORTION OF THE С CYLINDRICAL VESSEL. С TOP & BOTTOM OF THE VESSEL ARE ASSUMED TO BE OF SAME SHAPE. 30 IF(OPTN2.EQ.1) GOTO 60 С FOR ELLIPSOIDAL HEAD.... AN=1.2 IF(DIAV.GT.1.524.AND.DIAV.LE.2.0) AN=1.21 IF(DIAV.GT.2.001.AND.DIAV.LE.2.69) AN=1.22 IF(DIAV.GT.2.69) AN=1.23 WEGHTH=2.0*3.1415*(AN*DIAV+WALLT)*(AN*DIAV+WALLT)*WALLT*DENSS/4. HEADV=3.1415*DIAV*DIAV*DIAV/24.0 GOTO 70

```
FOR HEMISPHERICAL HEAD...
С
      WEGHTH=4.0*3.1415*RADIV*RADIV*WALLT*DENSS
 60
      HEADV=3.1415*DIAV*DIAV*DIAV/12.0
 70
      WEGHTT=WEGHTS+WEGHTH
      TO ACCOUNT FOR EXTRA WEIGHT DUE TO NOZZLES, MANHOLES, ETC. THE TOTAL
Ç
      WEIGHT IS INCREASED BY 15% FOR HORIZONTAL POSITION OR BY 20% FOR
С
      VERTICAL POSITION.
C
      IF(OPTN3.EQ.1) GOTO 80
      WEGHTT=1.15*WEGHTT
      GOTO 85
      WEGHTT=1.2*WEGHTT
 80
      CALCULATION OF THE COST OF THE VESSEL(PETER & TIMMERHAUS,
С
С
      P-574,1979)
      FACTRM(COST FACTOR FOR THE MATERIAL OF CONSTRUCTION)
C
      TOTCST=110.2*(2.204*WEGHTT)**(-0.34)*WEGHTT
 85
      INSTALLED COST OF THE VESSEL
C
      COST=TOTCST
      IF(OPTN4.EQ.1) GOTO 90
      COSTTR=NOTRA*(-67.2+350.39*DIAV)/(1.0-0.146*DIAV)
      GOTO 95
 90
      COSTTR=0.0
 95
      COST=COST+COSTTR
      RETURN
      END
C
C***
      SUBROUTINE SEPAR
С
      SUBROUTINE SEPAR
      PROGRAM TO DETERMINE THE DIAMETER AND HEIGHT AND
С
С
      HENCE THE COST OF GAS-LIQUID SEPARATOR
      С
С
      GASEOUS COMPONENT FLOWRATE, F(I), KMOLE/S
С
      LIQUID COMPONENT FLOWRATE, FL(I), KMOLE/S
С
      OPERATING TEMPERATURE, SEPTEM, K
С
      OPERATING PRASSURE, P, KPA
C
      SPECIFIC VOLUME OF LIQUID COMPONENT J, SPVOL(J), M**3/KG
С
      CALCULATION OF MAXIMUM ALLOWABLE SUPERFICIAL GAS VELOCITY,
      BASED ON THE EXPRESSION; V=K*SQRT((DENL-DENG)/DENG)
С
С
      CALCULATION OF LIQUID DENSITY(KG/M**3)
С
      CSIND1=MARSHALL & SWIFT EQUIPMENT COST INDEX FOR
Ċ
             PROCESS INDUSTRIES FOR THE YEAR 1979
С
      CSIND2=MARSHALL & SWIFT EQUIPMENT COST INDEX FOR
С
             PROCESS INDUSTRIES FOR 3RD QR. OF 1984 .
      DIMENSION XL(5)
      INTEGER OPTN1, OPTN2, OPTN3, OPTN4.
      COMMON/AL4/TG, F(8), Y(8), AG(9), DIFNH3
      COMMON/AR1/FL(5)
      COMMON/AR3/NN, NL
      COMMON/PV1/RADIV, HEGHT, NOTRA, HEADV
```

•			
			•
<i>!</i> .			
			•
		COMMON/PV2/OPTN1, OPTN2, OPTN3, OPTN4	
		COMMON/CST1/CSIND2, FLANG, COST	
		COMMON/COM1/TPRDRP,FACTRM COMMON/PH1/TC(8),GPC(8),AMW(8),HV(8)	
	,	COMMON/HTV1/TL, HVT(8), CPL(8), SPVL(8), VISL(8)	
		··COMMON/GCOM1/CATDEN, DIA, P, EP, DP	
		CSIND1=569.0	•
		N=NN TOTALL=0.0	
		DO 10 J=1, NL	
	10	TOTALL=TOTALL+FL(J)	
	0.0	DO 20 J=1,NL	
	20	XL(J)=FL(J)/TOTALL TL=TG	
		CALL DENLIQ	
<u>)</u>		TSPVOL=0.0	
	30	DO 30 J=1,NL TSPVOL=TSPVOL+XL(J)*SPVL(J)	
	50	AVDENL=1.0/TSPVOL	
	С	CALCULATION OF GAS DENSITY(KG/M**3)	
	С	GAS CONSTANT, R=8.314 M**3-KPA/KMOLE-K	
	-	R=8.314 TOTALG=0.0	
		DO 40 $I=1,N$	•
	40	TOTALG=TOTALG+F(I)	
		AVMOLG=0.0	
i.		DO 50 I=1,N Y(I)=F(I)/TOTALG	
	50	AVMOLG=AVMOLG+Y(I)*AMW(I)	
		AVDENG=AVMOLG*P/(R*TG)	
	C C	CALCULATION OF ALLOWABLE VELOCITY, (M/S)	·
	U	80% OF ALLOWABLE VELOCITY IS USED AK=0.11	
		ALVEL=0.8*AK*((AVDENL-AVDENG)/AVDENG)**0.5	
		DIASEP=SQRT((4.0*TOTALG*R*TG)/(P*3.1415*ALVEL))	
	С	RADIV=DIASEP/2.0 CALCULATION OF HEIGHT OF THE SEPARATOR	
	,Ŭ	HEGHT=3.0*DIASEP	
	С	COST OF MIST ELIMINATOR IS ASSUMED TO FIVE TIMES	
	С	THAT OF SIEVE TRAY	
		NOTRA=5 CALL PRESSV	
	С	CALCULATE TOTAL CAPITAL INVESTMENT FROM EQUIPMENT COST	
	С	BY USING LANG FACTOR, FLANG (PETER & TIMMERHAUS, P-181, 1979)	
	С	COST=COST*FLANG UPDATE THE COST BY USING THE COST INDEXES.	
	U	COST=COST*CSIND2/CSIND1	
	С	PRESSURE DROP CALCULATION FOR WIRE MESH DEMISTER	
	C	PRESSURE (KPA)	
	С	IN CASE OF WETTED AND DRAINED CASE: TPRDRP=0.0115*(3.28*ALVEL)**1.71*0.0254	
		RETURN	
		END	

.

,

Ċ C*** SUBROUTINE HEATEX С SUBROUTINE HEATEX PROGRAM FOR PRELIMINARY DESIGN OF A SHELL & TUBE С С HEAT EXCHANGER. С THE FOLLOWING OPTIONS ARE USED: С IPTN11=1 FOR ORDINARY HEAT EXCHANGER С =2 FOR CONDENSER C =3 FOR REBOILER C IPTN12=1 WHEN HEAT LOAD IS TO BE CALCULATED С FROM SHELL SIDE FLUID C =2WHEN HEAT LOAD IS TO BE CALCULATED Ç FROM TUBE SIDE FLUID С WHEN SHELL SIDE FLUID IS LIQUID IPTN13=1 С WHEN SHELL SIDE FLUID IS GAS/VAPOR =2 С WHEN TUBE SIDE FLUID IS LIQUID IPTN14=1 С WHEN TUBE SIDE FLUID IS GAS/VAPOR =2 C WHEN SHELL SIDE PRESSURE DROP IS TO BE IPTN15=1 C CALCULATED С = OTHER THAN 1, SHELL SIDE PRESSURE DROP NEED С NOT TO BE CALCULATED С WHEN TUBE SIDE PRESSURE DROP IS TO BE IPTN16=1 C CALCULATED С = OTHER THAN 1, TUBE SIDE PRESSURE DROP NEED C NOT TO BE CALCULATED C FOR SIMPLIFYING THE CALCULATIONS, THE FOLLOWING AVERAGE VALUES C ARE USED: С BAFFLE SPACING=0.6*SHELL ID С BAFFLE SEGMENTAL CUT FRACTION BS=0.25 С ********* VARIABLES ********** С ALPHAT=TUBE SIDE HEAT TRANSFER COEFFICIENT С (KW/M**2-K)С ALPHAS=SHELL SIDE HEAT TRANSFER COEFFICIENT С (KW/M**2-K)С FOULT=TUBE SIDE FOULING COEFFICIENT C (M**2-K/KW)С FOULS=SHELL SIDE FOULING COEFFICIENT С (M**2-K/KW)C CSIND1=MARSHALL AND SWIFT EQUIPMENT COST INDEX FOR С THE PROCESS INDUSTRIES FOR 1979. С CSIND2=COST INDEX FOR 3RD.QRT. OF 1984. С FLANG=LANG FACTOR=3.5 С SATP=SATURATED STEAM PRESSURE, KPA ABS. DIMENSION CPS(8), CPT(8), XS(8), XT(8), VIS(8) COMMON/HX1/ALPHAS, ALPHAT, FOULS, FOULT, SPRESD, TPRESD, PREST COMMON/HX2/FS(8), FT(8)COMMON/HX3/IPTN11, IPTN12, IPTN13, IPTN14, IPTN15, IPTN16, .NTPASS,NS,NT COMMON/HX4/AO,AI COMMON/HX5/TSIN, TSOUT, TTIN, TTOUT COMMON/HTV1/T, HVT(8), CPL(8), SPVL(8), VISL(8)

COMMON/HTV2/NC COMMON/HTV3/TCL(8),GPCL(8),AMWL(8) COMMON/PH1/TC(8), GPC(8), AMW(8), HV(8)COMMON/CST1/CSIND2, FLANG, COST COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/AL16/CATCST, STMCS1, STMCS2, COLWCS, ELECST COMMON/COM3/EFFCB, SATP, HEATLD COMMON/DSC3/NSTAGE COMMON/DSC4/COSTRB, COSTCN, ULTSTM, ULTNH3 CALCULATION OF OVERALL HEAT TRANSFER COEFFICIENT. OVRHT(KW/M**2-K)CSIND1=569.0 OVRHT=1.0/(1.0/ALPHAT+1.0/ALPHAS+FOULT+FOULS) TOD=0.02 TID=TOD-0.0042 IF(IPTN11.EQ.2) GOTO 499 IF(IPTN11.EQ.3) GOTO 600 CALCULATION OF SHELL SIDE FLUID PROPERTIES TOTLS=0.0 PROCPS=0.0 AVMOLS=0.0 VISCOS=0.0 ANUM1=0.0DENOM=0.0 TSPVL=0.0 NC=NS DO 10 J=1,NS TOTLS=TOTLS+FS(J) DO 20 J=1,NS XS(J) = FS(J) / TOTLSIF(TSIN.EQ.0.0) THEN AVTS=TSOUT ELSE IF(TSOUT.EQ.0.0) THEN AVTS=TSIN ELSE AVTS=(TSIN+TSOUT)/2.0 ENDIF T=AVTS IF(IPTN13.EQ.1) THEN SHELL SIDE FLUID IS LIQUID CALL VISLIQ CALL CPLQ CALL DENLIQ DO 30 J=1,NS CPS(J) = CPL(J)AVMOLS=AVMOLS+XS(J)*AMWL(J) VISCOS=VISCOS+XS(J)*ALOG(VISL(J)) TSPVL=TSPVL+XS(J)*SPVL(J)VISCOS=EXP(VISCOS) DENS=1.0/TSPVL ELSE

C C

С

С

20

10

С

		· .		
			۰.	
				• .
· · · · · · · · · · · · · · · · · · ·			•	
CALL CPH(J,AVTS,CPS(J),EN,H2)				
CALL VISCO(J, AVTS, VIS(J))		·		
VISCOS=ANUM1/DENOM				
PROCPS=PROCPS+FS(J)*CPS(J)				
ELSE				
		· ·		
	•			
CALCULATION OF TUBE SIDE FLUID PROPERTIES				
			·	
	-			
VISCOT=0.0				
ANUM1=0.0				
DO 80 J=1,NT	<i>.</i> •			
TOTLT=TOTLT+FT(J)				
IF(TTIN.EQ.0.0) THEN		-		
AVTT=TTOUT				
ELSE				
AVTT = (TTIN+TTOUT)/2.0				
ENDIF				
			· .	
TUBE SIDE FLUID IS LIQUID			-	
CALL VISLIQ				
CPT(J) = CPL(J)	•			,
AVMOLT = AVMOLT + XT(J) * AMWL(J)				
VISCOT=EXP(VISCOT)				
DENT=1.0/TSPVL				
ELSE				
EDSE				
	CALL VISCO(J,AVTS,VIS(J)) DO 50 J=1,NS ANUM1=ANUM1+XS(J)*VIS(J)*SQRT(AMW(J)) DENOM=DENOM+XS(J)*SQRT(AMW(J)) VISCOS=ANUM1/DENOM ENDIF IF(ABS(TOTLS-1.).GT.1.0E-4) THEN DO 60 J=1,NS PROCPS=PROCPS+FS(J)*CPS(J) ELSE DO 70 J=1,NS PROCPS=PROCPS+XS(J)*CPS(J) ENDIF CALCULATION OF TUBE SIDE FLUID PROPERTIES TOTLT=0.0 PROCPT=0.0 AVMOLT=0.0 VISCOT=0.0 AVMOLT=0.0 VISCOT=0.0 ANUM1=0.0 DENOM=0.0 TSPVL=0.0 NC=NT DO 80 J=1,NT TOTLT=TOTLT+FT(J) DO 90 J=1,NT XT(J)=FT(J)/TOTLT IF(TIIN.EQ.0.0) THEN AVTT=TTOUT ELSE IF(TTOUT.EQ.0.0) THEN AVTT=TTIN ELSE AVTT=(TTIN+TTOUT)/2.0 ENDIF T=AVTT IF(IPTN14.EQ.1) THEN TUBE SIDE FLUID IS LIQUID CALL VISLIQ CALL DENLIQ DO 100 J=1,NT CPT(J)=CPL(J) AVMOLT=AVMOLT+XT(J)*AMWL(J) VISCOT=VISCOT+XT(J)*ALOG(VISL(J)) TSPVL=3PVLAX	D0 40 J=1,NS AYMOLS=AVMOLS+XS(J)*AMW(J) CALL CPH(J,AYTS,CPS(J),EN,H2) CALL VISCO(J,AVTS,VIS(J)) D0 50 J=1,NS ANUM1=ANUM1+XS(J)*VIS(J)*SQRT(AMW(J)) DENOM=DENOM+XS(J)*SQRT(AMW(J)) VISCOS=ANUM1/DENOM ENDIF IF(ABS(TOTLS-1.).GT.1.0E-4) THEN D0 60 J=1,NS PROCPS=PROCPS+FS(J)*CPS(J) ELSE D0 70 J=1,NS PROCPS=PROCPS+XS(J)*CPS(J) ENDIF CALCULATION OF TUBE SIDE FLUID PROPERTIES TOTLT=0.0 PROCPT=0.0 AVMOLT=0.0 VISCOT=0.0 AVMOLT=0.0 NC=NT D0 80 J=1,NT TOTLT=TOTLT+FT(J) D0 90 J=1,NT XT(J)=FT(J)/TOTLT IF(TTIN.EQ.0.0) THEN AVTT=TTOUT ELSE IF(TTOUT.EQ.0.0) THEN AVTT=TTIN ELSE AVTT=(TTIN+TTOUT)/2.0 ENDIF T=AVTT IF(IPTN14.EQ.1) THEN TUBE SIDE FLUID IS LIQUID CALL VISLIQ CALL DENLIQ D0 100 J=1,NT CFT(J)=CPL(J) AVMOLT=400 AUDIT=4000 CALL DENLIQ D0 100 J=1,NT CPT(J)=CPL(J) AVMOLT=40000 AVMOLT=4000000000000000000000000000000000000	D0 40 J=1,NS AVMOLS=AVMOLS+XS(J)*AMW(J) CALL CPH(J,AVTS,CPS(J),EN,H2) CALL VISCO(J,AVTS,VIS(J)) D0 50 J=1,NS ANUM1=ANUM1+XS(J)*VIS(J)*SQRT(AMW(J)) DENOM=DENOM+XS(J)*SQRT(AMW(J)) VISCOS=ANUM1/DENOM ENDIF IF(ABS(TOTLS-1.).GT.1.0E-4) THEN D0 60 J=1,NS PROCPS=PROCPS+FS(J)*CPS(J) ELSE D0 70 J=1,NS PROCPS=PROCPS+FS(J)*CPS(J) ENDIF CALCULATION OF TUBE SIDE FLUID PROPERTIES TOTLT=0.0 PROCPT=0.0 AVMOLT=0.0 VISCOT=0.0 ANUM1=0.0 DEENOM=0.0 TSPVL=0.0 NC=NT D0 80 J=1,NT TOTLT=TOTLT+FT(J) D0 90 J=1,NT XT(J)=FT(J)/TOTLT IF(TIN.EQ.0.0) THEN AVTT=TTOUT ELSE IF(TTOUT.EQ.0.0) THEN AVTT=TTIN ELSE AVTT=(TTIN+TTOUT)/2.0 ENDIF T=AVTT IF(IPTN14.EQ.1) THEN TDEE SIDE FLUID IS LIQUID CALL VISLIQ CALL DELQ CALL DELQ CALC DELC CALL DELC CALC DEL	D0 40 J=1,NS AYMOLS=AYMOLS+XS(J)*AMW(J) CALL CPH(J,AVTS,CPS(J),EN,H2) CALL VISCO(J,AVTS,VIS(J)) D0 50 J=1,NS ANUM1=ANUM1+XS(J)*VIS(J)*SQRT(AMW(J)) DENOM=DENOM+XS(J)*VIS(J)*SQRT(AMW(J)) VISCOS=ANUM1/DENOM ENDIF END(F) ENDIF D0 60 J=1,NS PROCPS=PROCPS+FS(J)*CPS(J) ELSE D0 70 J=1,NS PROCPS=PROCPS+XS(J)*CPS(J) ENDIF CALCULATION OF TUBE SIDE FLUID PROPERTIES TOTLT=0.0 PROCPT=0.0 AVMOLT=0.0 VISCOT=0.0 ANUM1=0.0 DENOM=0.0 TSFVL=0.0 NC=NT D0 80 J=1,NT TOTLT=TOTLT+FT(J) D0 90 J=1,NT XT(J)=FT(J)/TOTLT IF(TIN.EQ.0.0) THEN AVTT=TTOUT ELSE AVTT=(TTIN+TTOUT)/2.0 ENDIF T=AVTT IF(IFTN14.EQ.1) THEN TOTLT=CTIN+FT(J)*ALOG(VISL(J)) TSFVL=1.0/TSFVL(SU) AVMOLT=VISUALOG CALL DENLIQ D0 100 J=1,NT CPT(J)=CP(LJ) AVMOLT=XMOLT+XT(J)*ALOG(VISL(J)) TSFVL=TSPVL+XT(J)*SPVL(J) VISCOT=1.0/TSFVL

• •

.

. •

-			
	C	TUBE SIDE FLUID IS GAS/VAPOR DO 110 J=1,NT AVMOLT=AVMOLT+XT(J)*AMW(J)	
	110	CALL CPH(J,AVTT,CPT(J),EN,H2) CALL VISCO(J,AVTT,VIS(J)) DO 120 J=1,NT	
	120	ANUM1=ANUM1+XT(J)*VIS(J)*SQRT(AMW(J)) DENOM=DENOM+XT(J)*SQRT(AMW(J)) VISCOT=ANUM1/DENOM	
		ENDIF IF(ABS(TOTLT-1.).GT.1.0E-4) THEN DO 130 J=1,NT	·
	130	PROCPT=PROCPT+FT(J)*CPT(J) ELSE	
	140	DO 140 J=1,NT PROCPT=PROCPT+XT(J)*CPT(J) ENDIF	
	С	IF(IPTN12.NE.1) GOTO 300 HEAT LOAD CALCULATION FROM SHELL SIDE FLUID HEATLD-PROCEST(TEOUT TEIN)	
	C C	HEATLD=PROCPS*(TSOUT-TSIN) CALCULATE EITHER THE INLET OR OUTLET TEMPERATURE OF THE TUBE SIDE FLUID IF THE FLOWRATE IS KNOWN	
		IF(TTIN.EQ.0.0) THEN TTIN=TTOUT+HEATLD/PROCPT ELSE IF(TTOUT.EQ.0.0) THEN TTOUT=TTIN-HEATLD/PROCPT	
	C C	ELSE IF BOTH INLET & OUTLET TUBE SIDE TEMPERATURE ARE KNOWN THEN CALCULATE THE TUBE SIDE FLOW REQUIREMENT TOTLT=HEATLD/(PROCPT*(TTIN-TTOUT))	·
	150	DO 150 J=1,NT FT(J)=TOTLT*XT(J) ENDIF	
	300	GOTO 700 CONTINUE	
	C	HEAT LOAD CALCULATION FROM TUBE SIDE SPECIFICATIONS HEATLD=PROCPT*(TTIN-TTOUT)	
	C	CALCULATE EITHER THE INLET OR OUTLET TEMPERATURE OF THE SHELL SIDE FLUID IF THE FLOWRATE IS KNOWN IF(IPTN11.EQ.2) GOTO 511 IF(IPTN11.EQ.2) THEN	
		IF(TSIN.EQ.0.0) THEN TSIN=TSOUT-HEATLD/PROCPS ELSE IF(TSOUT.EQ.0.0) THEN TSOUT=TSIN+HEATLD/PROCPS	
	C C	ELSE IF BOTH INLET & OUTLET SHELL SIDE TEMPERATURE ARE KNOWN THEN CALCULATE SHELL SIDE FLOW REQUIREMENT TOTLS=HEATLD/(PROCPS*(TSOUT-TSIN))	,
	160	DO 160 J=1,NS FS(J)=TOTLS*XS(J) ENDIF	
	C500	GOTO 700 CONTINUE	
			· · · · · · · · · · · · · · · · · · ·

	С	CALCULATION FOR CONDENSER.		
	C	ASSUMPTIONS:		
	C	1) VAPORS ARE IN THE SHELL SIDE.		
	C C	2) COOLING MEDIUM IS WATER, IN THE TUBE SIDE 3) NO SUPERHEATED VAPOR AND SUBCOOLING OF THE		
	c	CONDENSED LIQUID.		
	c	4) MAXIMUM OUTLET COOLING WATER TEMPERATURE IS		•
	Č	ASSUMED TO BE ALWAYS BELOW 322 K		
	С	(ACCORDING TO BACKHURST & HARKER, P-80(1973)		
	С	SCALING TENDS TO INCREASE AT THIS PIONT)		
	C	CALCULATION OF HEAT LOAD		
	c	TOTLT=0.0		
	C C170	DO 170 J=1, NT		
	CLIO	TOTLT=TOTLT+FT(J) DO 180 J=1,NT		
	C180	XT(J) = FT(J) / TOTLT		
·	C	AVTT = (TTIN+TTOUT)/2.0		
	С	T=AVTT		
	С	CALCULATION OF AVERAGE LATENT HEAT OF CONDENSATION OR		
	C	VAPORISATION.		
	C	CALL HTVAP		
	C C	THVT=0.0 DO 190 J=1,NS		
	C190	THVT=THVT+XS(J)*HVT(J)		
	C	HEATLD=TOTLS*THVT		
	С	CALCULATION OF COOLING WATER REQUIREMENT		
	С	AND ITS ANNUAL COST		
	511	AVTS=TSIN		
		T=AVTS NC=NS	• •	
		CALL CPLQ		
	С	CLWATR=ABS(HEATLD)/(CPL(2)*(TTOUT-TTIN))/EFFCB		
	Č	ULTCOL=CLWATR*3.1536E7*COLWCS*CSIND2/CSIND1		
		ALQNH3=ABS(HEATLD)/(CPL(1)*AVTS*EFFCB)		
	•	ULTNH3=ALQNH3*AMWL(1)*3.1536E7*1.0E-3*CSIND2/CSIND1		
	000	GOTO 700		
	600 C	CONTINUE CALCULATION FOR REBOILER		
	č	ASSUMPTIONS:		
	č	1) HEATING MEDIUM IS SATURATED STEAM IN THE TUBE SIDE.		
	С	CALCULATION OF AMOUNT OF STEAM REQUIREMENT.		
	C	CALCULATION OF SATURATED STEAM TEMPERATURE(K) AND		
	C C C	LATENT HEAT OF CONDENSATION(KJ/KG)		
I	C	SATP,SATURATED STEAM ABSOLUTE PRESSURE(KPA) (MAX. ALLOWABLE RANGE 1000 KPA)		
	U	TOTLS=0.0		
		DO 200 J=1,NS		
	200	TOTLS=TOTLS+FS(J)		
		DO 210 J=1,NS		•
	210	XS(J) = FS(J) / TOTLS		
L				
		AVTT=(TTIN+TTOUT)/2.0. T=AVTS		
		1-0110	-	
		· ·		•

,

-

:				
,				
			•.	
		· · · ·		
	a	ALL DULANTON ON ANNOLON LANDING WHAT ON CONDENCATION OF	- ·	
	C ·	CALCULATION OF AVERAGE LATENT HEAT OF CONDENSATION OR VAPORISATION.		1
	0	CALL HTVAP		
		THVT=0.0		
	000	DO 220 J=1,NS		
	220	THVT=THVT+XS(J)*HVT(J) HEATLD=TOTLS*THVT		
•		SP=SATP/100.0	•	
		SATT=349.74+26.634*SP-2.94406*SP**2+0.133348*SP**3		
	С	DELHS=2353.569-93.024*SP+113.05*SP**2-0.551*SP**3		
	C	CALCULATION OF ANNUAL STEAM REQUIREMENT & ITS COST STEAMF=ABS(HEATLD)/DELHS/EFFCB		
		ULTSTM=STEAMF*3.1536E7*STMCS2*CSIND2/CSIND1		
		TSIN=SATT	•	
、	С	TSOUT=TSIN CALCULATION OF LOGMEAN TEMPERATURE DIFFERENCE		
Ż	700			
		DELT1=ABS(TSIN-TTOUT)		
. `		DELT2=ABS(TSOUT-TTIN) IF(IPTN11.EQ.2) GOTO 740		
	•	ALMTD=ABS((DELT1-DELT2)/ALOG(DELT1/DELT2))		
		FCOR=1.0		
		IF(NTPASS.GT.1) THEN IF(TSIN.GT.TTIN) THEN		
8		TR = (TSIN - TSOUT) / (TTOUT - TTIN)		
4		TS=(TTOUT-TTIN)/(TSIN-TTIN)		
لمعما				
,		TR=(TTIN-TTOUT)/(TSOUT-TSIN) TS=(TSOUT-TSIN)/(TTIN-TSIN)		
N 71 -		ENDIF		,
1	C .	CALCULATION FOR (1-2N) SHELL & TUBE LMTD CORRECTION F	ACTOR	
		DELTA=(TR-1.)/ALOG((1,0-TS)/(1.0-TS*TR)) SQ=SQRT(TR*TR+1.)		
		ALOGIE = (2.0 - TS*(1.0 + TR-SQ))/(2.0 - TS*(1.0 + TR+SQ))		
		IF(ALOGIE.LT.0.0) THEN		
		FCOR=1.0 ELSE		
i		FCOR=SQ/DELTA/ALOG(ALOGIE)		
•.		ENDIF	•	
i		ENDIF AMTD=FCOR*ALMTD		
		WRITE(6,*) TR=1,TR, TS=1,TS, FCOR=1,FCOR, ALMTD=1,ALM	1TD	
" -		GOTO 745		
	740 C	AMTD=ABS(TSIN-TTIN) ESTIMATION OF HEAT TRANSFER AREA BASED ON OUTSIDE TUE		
	745	AO=ABS(HEATLD)/(OVRHT*AMTD)	on uurn	
	С	CALCULATION OF APPROXIMATE NO. OF TUBES, TUBE & SHELL	•	
·	C C	GEOMETRIES. USING AN EFFECTIVE TUBE LENGTH OF 8.0 METRE AND AN AV	750475	
	c	DCTL/LTA=0.15(FROM HEDH, P3.1.4-7);	TOUNDE	
	C ·	DCTL=DS(INSIDE SHELL DIAMETER)-(LBB+DT);LBB=INSIDE SH	IELL	
	C C	DIAMETER-TO-TUBE BUNDLE BY PASS CLEARANCE TOD=OUTER DIA. OF THE TUBE		ĸ
• /	U	IVD-VUIER DIR. VE INE IVDE		
1				
			•	• •
			•	• 1

		TLEN=8.0	
[TOD=0.02	
,	С	WALL THICKNESS OF TUBE IS 0.0021 M	
		TID=TOD-0.0042 SPRESD=0.0	
		TPRESD=0.0	
	750	IF(IPTN15.NE.1.AND.IPTN16.NE.1) GOTO 900	
	750 C	DCTL=0.15*TLEN ASSUMING SPLIT RING & PACKED FLOATING HEAD.OD OF TUBE=0.02 M	
	Ŭ	AVLLB=0.042	
		DS=DCTL+(TOD+AVLLB) ALLB=0.025+0.017*DS	
		DS=DCTL+(TOD+ALLB)	
	Ċ.	ASSUMING ALTP(TUBE PITCH) IS 1.33*TOD	
<u>.</u>	C C	THE 30 DEG. STAGGERED LAYOUT IS ASSUMED HERE. C1=A TUBE FIELD LAYOUT CONSTANT BASED ON TUBE LAYOUT	
	С	CHARACTERISTIC ANGLE.FOR 30 DÉG. C1=0.866,	
	C C	FOR 45 & 90 DEGREES C1=1.0 CALCULATION FOR THE TOTAL NO. OF TUBES	
	C	CALCOLATION FOR THE TOTAL NO. OF TODES	
		ALTP=1.33*TOD	
	С	TOTNT=0.78*DCTL**2/(C1*(ALTP**2)) CORRECTION FACTOR FOR NO. OF PASSES.	
	č	(FROM HEDH, P 3.3.5-12)	
		IF(NTPASS.EQ.1) PHIC=0.0	
:		IF(NTPASS.NE.1) PHIC=NTPASS*0.025 TOTNT=(1.0-PHIC)*TOTNT	
	С	CALCULATION OF EFFECTIVE TUBE LENGTH	
	С	TLEN=AO/(TOTNT*3.1415*TOD) CHECK WHETHER TUBE LENGTH IS TOO SMALL OR TOO BIG;	
	С	ADJUST TUBE LENGTH BETWEEN 3.0 & 12.0 M	
	C C	CALCULATION OF SHELL SIDE BAFFLE SPECIFICATION. AVERAGE BAFFLE SPACING IS 3/5*DS(FROM HEDH,P 3.3.5-7)	
	C	IF(TLEN.LT.2.4) TLEN=3.0	
		IF(TLEN.GT.10.0) TLEN=12.0	
		TOTNT=AO/(3.1415*TOD*TLEN) DCTL=SQRT(TOTNT*C1*ALTP**2/0.78)	
		DS = DCTL + (TOD + AVLLB)	
		ALLB=0.025+0.017*DS DS=DCTL+(TOD+ALLB)	
	ŕ	TOTNT=TOTNT*(1.0-PHIC)	
	_	BAFS=3.0/5.0*DS	
	C C	CALCULATION OF TOTAL LENGTH OF THE TUBE CALCULATION OF TUBE SHEET THICKNESS	
	U	ALTS=0.1*DS	
	C	TTLEN=TLEN+2.0*ALTS CHECK WHETHER TUBE SIDE PRESSURE DROP CALCULATION IS NEEDED.	
	С	IF(IPTN16.NE.1) GOTO 800	
	С	CALCULATION OF TUBE SIDE PRESSURE DROP	
	C	CALCULATION OF TUBE SIDE VELOCITY.	

IF(IPTN14.EQ.2) THEN VELT=TOTLT*8.314*AVTT/PREST/(TOTNT/NTPASS*0.785*TID**2) DENT=PREST*AVMOLT/(8.314*AVTT) ELSE VELT=TOTLT*AVMOLT/DENT/(TOTNT/NTPASS*(0.785*TID**2)) ENDIF С CALCULATION OF TUBE SIDE REYNOLDS NUMBER, TNRE TNRE=DENT*TID*VELT/VISCOT С CALCULATION OF TUBE SIDE FRICTION FACTOR С FOR(1000<TNRE<10**6) FRICF=0.05573/(TNRE**0.261) TPRESD=8.0*FRICF*(TLEN/TID)*DENT*VELT**2/2.0*NTPASS С ADDITION OF PRSSURE DROP DUE TO CHANGE IN DIRECTION С FOUR VELOCITY HEADS PER PASS VELH=4.0*VELT**2/(2.0*DENT) TPRESD=(TPRESD+NTPASS*4.0*VELH)/1000.0 CONTINUE 800 С CHECK WHETHER SHELL SIDE PRESSURE DROP IS NEEDED OR NOT IF(IPTN15.NE.1) GOTO 900 С CALCULATION OF SHELL SIDE PRESSURE DROP С CALCULATION OF SHELL SIDE REYNOLDS NUMBER. С CALCULATION OF THE CROSS-SECTIONAL FLOW AREA, SM С AT THE SHELL CENTER LINE WITHIN ONE BAFFLE SPACING. IF(IPTN13.EQ.2) THEN DENS=P*AVMOLS/(8.314*AVTS) ENDIF DCTL=0.15*TLEN DS=DCTL+(TOD+AVLLB) ALLB=0.025+0.017*DS SM=BAFS*(ALLB+DCTL/ALTP*(ALTP-TOD)) SNRE=TOD*(TOTLS*AVMOLS/SM)/VISCOS С CALCULATION OF AVERAGE WALL TEMPERATURE TWALL=AVTT+(AVTS-AVTT)/(1.0+ALPHAT/ALPHAS) С CALCULATION OF THE SHELL SIDE FRICTION FACTOR IF(SNRE.GE.1.0E04) THEN B1=0.372B2 = -0.123ELSE IF(SNRE.LT.1.0E04.AND.SNRE.GE.1.0E03) THEN B1=0.486 B2 = -0.152ELSE IF (SNRE.LT.1.0E03.AND.SNRE.GE.1.0E02) THEN B1=4.57 B2 = -0.476ELSE IF(SNRE.LT.1.0E02.AND.SNRE.GE.10.) THEN B1=45.1 B2 = -0.973ENDIF B3=7.0 B4 = 0.5B=B3/(1.0+0.14*(SNRE)**B4) FRICF=B1*(1.33/(ALTP/TOD))**B*(SNRE**B2)

	•
С	CALCULATION OF TOTAL NO. OF TUBE CROSSES.
	ALPP=0.866*ALTP
	ANTCC=DS/ALPP*(1.0-2.0*BC)
~	SPRESD=2.0*FRICF*ANTCC*(TOTLS*AVMOLS/SM)**2/DENS*1.0E-3
C	TO GET ACTUAL PRESSURE DROP INCREASE THE
C	SHELL SIDE PRESSURE DROP BY A FACTOR OF 5
C	(APPROXIMATELY TAKEN FROM HEDH, P 3.3.9-6)
	SPRESD=5.0*SPRESD
C	COST ESTIMATION
С	FLOATING HEAD EXCHANGER IS ASSUMED.
C	OPERATING PRESSURE=6892.85 KPA
С	PURCHASED COST IN \$(JAN, 1979)
900	AI=AO*TID/TOD
	COST=1621.81*(AI)**0.582
С	CORRECTION FOR TUBE DIA.
	CORTD=(0.7397-0.1977*TOD*39.37)/(1.0-0.4598*TOD*39.37)
С	CORRECTION FOR TUBE LENGTH
	CORTL=(-0.2-0.275*3.28*TLEN)/(1.0-0.35*3.28*TLEN)
· C	CORRECTION FOR OPERATING PRESSURE
	IF(P.LE.4300.0) THEN
	CORPR=(0.963659-0.000061*P)/(1.0-0.000128*P)
	ELSE
(-	CORPR=2.0
	ENDIF
	COST=COST*CORTD*CORTL*CORPR
С	CALCULATE THE TOTAL CAPITAL INVESTMENT & ALSO UPDATE IT.
	COST=COST*FLANG*CSIND2/CSIND1
	RETURN

END

```
С
C***
      SUBROUTINE CPH
С
      SUBROUTINE CPH(J, TEMP, CP, EN, H2)
      This subroutine calculates the molar heat capacity and
С
С
      enthalpy of gases at temperature TEMP
\mathbf{C}
      HFO = Heat of formation at 298 degres K.
С
      Unit of enthalpy is kJ/kmole
С
      Unit of Cp is kJ/kmole-K
С
      T is in degree K;Cp = AB+BC*T+CC*T*T+DD*T**3.
С
      Unit of viscosity is kg/m-s
      Unit of thermal conductivity is kJ/m-s-K
C
      Unit of diffusivity(DIFF) is m**2/s
С
      Components: 1=N2, 2=H2, 3=NH3, 4=CH4, 5=ARGON, 6=H20, 7=C0, 8=C02
С
С
      ****** Variables ******
С
      TC(I) = Critical temperature of component I,K
С
      GPC(I) = Critical pressure of component I, kPa
С
      AMW(I) = Molecular weight of component I,kg/kmole
С
      HV(I) = Heating value of component I,kJ/kmole
      HFO(I) = Standard heat of formation of component I, kcal/kmole
С
      COMMON/PH1/TC(8), GPC(8), AMW(8), HV(8)
      COMMON/GCOM1/CATDEN, DIA, P, EP, DP
      DIMENSION AB(8), BC(8), CC(8), DD(8), HFO(8), V(8)
      DATA AB, BC, CC, DD/7.44, 6.483, 6.524, 4.598, 4.969, 7.701, 7.373, 4.728,
                      -.324,.2215,.5692,1.245,.000767,.04595,-.307,1.754,
                        .64, -.3298, .4078, .286, .001234, .2521, .6662, -1.338,
                      -2.79, 1.826, -2.83, -2.703, 0.0, -.859, -3.037, 4.097/
      DATA HFO/0.0,0.0,-10920.,-17889.,0.0,-57798.,-26416.,-94052./
      DATA V/17.9,7.07,14.9,24.4,16.1,12.7,18.9,26.9/
      A1 = (TEMP - 298.)
      A2=(TEMP*TEMP-298.*298.)/2.0
      A3=(TEMP*TEMP*TEMP-298.*298.*298.)/3.0
       A4=(TEMP*TEMP*TEMP*TEMP-298.*298.*298.*298.)/4.0
      CP=(AB(J)+BC(J)*TEMP*1.E-2+CC(J)*TEMP*TEMP*1.E-5+DD(J)
          *TEMP*TEMP*TEMP*1'.E-9)*4.184
       EN=(AB(J)*A1+BC(J)*1.E-2*A2+CC(J)*1.E-5*A3+DD(J)*1.E-9*A4)*4.184
       H2=(HFO(J)+AB(J)*A1+BC(J)*1.E-2*A2+CC(J)*1.E-5*A3+DD(J)*1.E-9*A4)
          *4.184
       RETURN
С
       Viscosity is determined by Reichenberg method
       ENTRY VISCO(J, TEMP, VISC)
       A=3.5*SQRT(AMW(J))*(GPC(J)/101.325)**.67/TC(J)**.17
       TR=TEMP/TC(J)
       VISC=A*TR/(1.+.36*TR*(TR-1.))**.17*(1.E-07)
       RETURN
       Thermal conductivity of the gases is determined
С
       by Eucken's method, Perry, 5th edtn,. p:3-243.
С
       ENTRY THCON(J, TEMP, SPH, VISC, THCO)
       THCO=(VISC*10.)/AMW(J)*(SPH/4.184+2.503)*4.184/10.
       RETURN
```

```
С
      Diffusivity of the binary mixture is determined
С
      by an optimized Gilliland type equation
\mathbf{C}
      Perry, 5th edtn., p:3-233
      ENTRY DFSVTY(K, J, TEMP, DIFF)
      DIFF=0.001*(TEMP*1.75)*SQRT(1./AMW(K)+1./AMW(J))/
     .(P/101.325*(V(K)**.333+V(J)**.333)**2)*(1.E-4)
      RETURN
      END
С
C***
      BLOCK DATA
C
      BLOCK DATA
      COMMON/PH1/TC(8),GPC(8),AMW(8),HV(8).
      COMMON/HTV3/TCL(8),GPCL(8),AMWL(8)
      DATA TC/126.2,33.2,405.6,190.6,150.8,647.3,132.9,304.2/
      DATA GPC/3394.39,1296.96,11277.47,4600.16,4873.7,22048.32,3495.71,
                7376.46/
      DATA AMW/28.013,2.016,17.031,16.043,39.948,18.015,28.01,44.01/
      DATA TCL/405.6,647.3,6*0.0/
      DATA GPCL/11277.47,22048.32,6*0.0/
      DATA AMWL/17.031,18.015,6*0.0/
      END
С
C***
      SUBROUTINE HTVAP
C
      SUBROUTINE HTVAP
С
      This subroutine calculate either latent heat of vapourization
С
      or condensation of pure vapour.
С
      First latent heat is calculated at the normal boiling point
С
      by the Reidel method, then it is updated using a correlation
С
      HV2 = HV1*((1-TR2)/(1-TR1))**0.38
С
      (Reid, Sherwood & Prausnitz, 1979)
С
      The unit of HVT is kJ/kmole
С
      1=NH3, 2=H20
С
      R = Universal gas constant, kJ/kmole-K
С
      TC = Critical temperature, K
С
      GPC = Critical pressure, kPa
С
      TB = Normal boiling temperature, K
      DIMENSION TB(8), ACWL(8), CPG(8), TRF(8), VR(8), VRRO(8), VRRT(8),
     .GAMMA(8), GAMMAR(8), TRC(8), TRRC(8), B(8), TO(8)
      COMMON/HTV1/T, HVT(8), CPL(8), SPVL(8), VISL(8)
      COMMON/HTV2/NC
      COMMON/HTV3/TCL(8), GPCL(8), AMWL(8)
      DATA ACWL/0.250,0.344,6*0.0/
      DATA TB/239.7,373.2,6*0.0/
      DATA TRF/273.2,293.0,6*0.0/
      DATA VR/1.565E-3,1.0E-3,6*0.0/
      R=8.314
      DO 10 J=1,NC
         HVB=1.093*R*TCL(J)*(TB(J)/TCL(J))*(ALOG(GPCL(J)/101.325)-1.00)
         /(0.93 - TB(J) / TCL(J))
 10
         HVT(J)=HVB*((1.0-T/TCL(J))/(1.0-TB(J)/TCL(J)))**0.38
      RETURN
```

ENTRY CPLQ С This subroutine calculates the specific heat of pure liquid С The unit of CPL if kJ/kmole-K С 1=NH3,2=H20 С Corresponding method is used С (Reid, Sherwood & Prausnitz, 1979) С R = Universal gas constant, 8.314 kJ/kmóle-K R=8.314 CALL CPH(3,T,CPG(1),EN,H2) CALL CPH(6,T,CPG(2),EN,H2) DO 20 J=1.NC TR=T/TCL(J)20 CPL(J) = CPG(J) + R*(0.5+2.2*ACWL(J))*(3.67+11.64*(1.0-TR)*(1.-TR))*(1.-TR)*(1.-TR)+0.634/(1.0-TR))RETURN ENTRY DENLIQ С Program to calculate specific volume of water and С ammonia by Gunn & Yamada method С 1=NH3,2=H2O DO 30 I=1,2 TRRC(I)=TRF(I)/TCL(I) TRC(I) = T/TCL(I)DO 40 J=1.2 GAM=0.29607-0.09045*TRC(I)-0.04842*TRC(I)*TRC(I) IF(TRC(I).GE.0.8) GOTO 50 VRO=0.33593-0.33953*TRC(I)+1.51941*TRC(I)*TRC(I)-2.02512 .*TRC(I)*TRC(I)*TRC(I)+1.11422*TRC(I)*TRC(I)*TRC(I)*TRC(I) GOTO 55 50 VRO=1.0+1.3*SQRT(1.0-TRC(I))*ALOG10(1.-TRC(I))-.50879 .*(1.-TRC(I))-0.91534*(1.0-TRC(I))*(1.-TRC(I)) 55 IF(J.NE.1) GOTO 60 GAMMA(I)=GAM VRRO(I)=VRO TRC(I) = TRRC(I)60 VRRT(I)=VRO GAMMAR(I)=GAM 40 CONTINUE SPVL(I)=VR(I)*(VRRO(I)*(1.0-ACWL(I)*GAMMA(I)))/(VRRT(I)* .(1.0-ACWL(I)*GAMMAR(I))) 30 . CONTINUE RETURN ENTRY VISLIQ С This subroutine calculates viscosity of pure liquids. С Van Valzen, Cardazo & Langkemp's method is used. С (Reid, Sherwood & Prausnitz, 1979) C The unit of ciscosity is kg/m-s С T = Temperature, KС 1=NH3,2=H2O DATA B, TO/349.04, 658.25, 6*0.0, 169.63, 283.16, 6*0.0/ DO 70 I=1.NC 70 VISL(I) = (10.0 * * (B(I) * (1.0/T - 1.0/TO(I))) * 1.0E - 3RETURN END

ŧ

1

C	· · · · · · · · · · · · · · · · · · ·
C*** C	SUBROUTINE PRINT
•	SUBROUTINE PRINT
C	The final results for Ammonia Synthesis loop are
C.	printed in this subroutine COMMON IW,IR
	COMMON/AL1/XNH3, PRODCT, SPNH3, TEMPIN, TEMPC, SEPTEM, SEPP, RECYLR, FPRG
,	., ALCATW, HBED(3), PRDROP(3), TMAX
	COMMON/AL2/DW,ITMAX,ALLCAT(3),FRACF(5) COMMON/AL4/T,F(8),Y(8),AG(9),DIFNH3
	COMMON/AL7/CLDST(3), CATWT(3)
	COMMON/AL14/GTOT, TOTALE, YY(8), YE(8)
	COMMON/CONVRT/FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF
	COMMON/GCOM1/CATDEN, DIA, P, EP, DP COMMON/GCOM2/DZ, NBED
	COMMON/GCOM3/N
С	OPEN(UNIT=20,STATUS='NEW',FILE='OUTPUT',FORM='FORMATTED')
C	TOTALG=0.0
	DO 10 I=1,N
10	TOTALG=TOTALG+F(I)
20	DO 20' $I=1, N$ Y(1)=F(1)/TOTALG
20	WRITE(20,30)FEEDGS, YN2F, YH2F, YNH3F, YCH4F, YARF
	WRITE(20,40)TOTALE,(YE(I),I=1,5)
	WRITE(20,50)PRODCT WRITE(20,100)TOTALG,(Y(I),I=1,5)
	WRITE(20,200)T,(CLDST(I),I=1,NBED-1)
	WRITE(20,300)(CATWT(I),I=1,NBED)
30	WRITE(20,400)(HBED(I),I=1,NBED) FORMAT(//'FRESH FEED USED(KMOL/S)=',F10.3,/,'MOLE FRAC. OF N2,H2,
00	.NH3,CH4,AR=',5F10.4)
40	FORMAT('REACTOR EXIT GAS(KMOL/S)=',F10.3,/,'MOLE FRAC. OF N2,H2,
50	.NH3,CH4,AR=',5F10.4) FORMAT('AMMONIA PRODUCED(KMOL/S)=',F10.4)
100	FORMAT('TOTAL RECYCLED GAS(KMOL/S)=',F10.3,/,'MOLE FRAC. OF COMP.
0.00	.IN RECYCLE'/' N2,H2,NH3,CH4,ARGON'/(5F12.5))
200	FORMAT('EXIT TEMP. OF GAS(DEG K)=',F12.5,/ .'COLD SHOT REQUIRED(KMOLE/S)=',(3F12.5))
300	FORMAT('WEIGHT OF CATALYST IN DIFFERENT BEDS(KG)=',(3F12.2))
400	FORMAT('HEIGHT OF BEDS IN THE REACTOR(M)='/(3F12.5))
	RETURN END
a	
C C***	SUBROUTINE WEGSTN
C .	
a	SUBROUTINE WEGSTN
C C	In this subroutine Wegestein's accelerating technique is used for quick convergence.
С.	Convergence forcing is used for each component whose ammount
C	is greater than a certain fraction in the recycle stream.
C C	Accelerating method is used in an interval of a certain no. of iterations.
С	CVUPRL=Upper limit of Q;CVLWRL=Lower limit of Q.
С	NFREQA=Interval of number of iterations at which
С	accelerating method is used.

Ċ FRACMN=Minimum fraction of component used in С Wegestein's application. COMMON IW, IR COMMON/AL2/DW, ITMAX, ALLCAT(3), FRACF(5) COMMON/AL4/T,F(8),Y(8),AG(9),DIFNH3 COMMON/AL9/CVUPRL, CVLWRL, NFREQA, FRACMN, ICOUNF COMMON/AL10/S(4,8),LK,ICOUNT COMMON/GCOM3/N DIMENSION Q(8) TOTALG=0.0 DO 10 I=1,N 10 TOTALG=TOTALG+F(I) ICOUNT=ICOUNT+1 DO 20 I=1,N IF(ICOUNT.GT.ICOUNF) THEN F(I) = (S(4, I) + S(3, I) + S(1, I))/3.0ICOUNT=0 GOTO 20 ENDIF IF(S(4,I)/TOTALG.LT.FRACMN) GOTO 200 IF(ABS(S(3,I)-S(1,I)).LT.0.001) GOTO 200 W = (S(4,I) - S(2,I)) / (S(3,I) - S(1,I))Q(I) = -W/(1.0 - W)IF(Q(I).GT.CVUPRL) Q(I)=CVUPRL IF(Q(I),LT,CVLWRL) Q(I)=CVLWRL

WRITE(IW,1000)(Q(I),I=1,N)

1000 FORMAT(2(I); VALUES..., 8F10.4)

F(I)=Q(I)*S(3,I)+(1.-Q(I))*S(4,I)

GOTO 300

Q(1)=0.0

CONTINUE

LK=0

RETURN END

200

300

20

С

*** DATA FOR AMMONIA REACTOR SIMULATION ***

1.391					
0.2460	0.7401	0.0	0.0113	0.0026	
0.1950	0.6311	0.0280	0.1057	0.0337	
1.0	0.6262	1.0			
700.00	794.11	463.0	268.0	28161.0	
29848.8	.3	0			
	8500.0		3		
2700.0	2.0	0.293	0.008		
4.0	0.03	0.001			
0.60	0.40	0.55	0.25	0.20	
0.0	-30.0		3	2	0.001
5.0	10.0	35.0			
16980.0	25470.0	39620.0			
			4		
*** DATA	FOR AMMONI	A REACTOR	***		

 1
 1
 15.6
 811.2
 2.73
 7

 0.1E01
 4.210E-3
 2.10E-3
 2.640E-5
 0.5E-01
 0.75E00
 - 7 *** DATA FOR CONVERTER HEAT EXCHANGER *** 0.0^{-1} 0.0 0.75 463.0 700.0 0.8 0.05 0.05 3.5 8 8 1 1 2 2 1 1 1 *** DATA FOR WASTE HEAT BOILER *** 306.0 318.0 0.0513.0 6.0 0.75 0.2 2 2 2 *** DATA FOR PROCESS GAS HEAT EXCHANGER *** 0.0463.0 0.0 303.0 0.75 0.4 0.05 0.05 3.5 1 1 2 2 2 8 8 1 1 *** DATA FOR WATER COOLER *** 306.0 318.00.0 312.0 6.0 0.75 3.5 0.2 0.05 2 8 1 2 1 2 1 2 1 *** DATA FOR COLD EXCHANGER *** 0.0 · 0.0 293.0 0.8 0.75 265.0 0.05 0.05 3.5 8 8 1 1 2 2 1 2 2

 *** DATA FOR AMMONIA CHILLER ***

 258.0
 258.0
 0.0
 265.0
 0.75
 0.8

 0.05
 3.5
 1
 2
 8
 2
 1
 2
 2
 2

 *** DATA
 FOR AMMONIA SEPARATOR ***
 1
 1
 11.0
 4.0

 *** DATA
 FOR MAKEUP FEED COMPRESSOR ***
 293.0
 25200.0
 4.0
 2.5
 534.48

 *** DATA
 FOR RECYCLE GAS COMPRESSOR ***

 296.0
 24400.0
 4.0
 2.5
 534.48

APPENDIX IV

Module for a centrifugal compressor

Some compressors perform closely to adiabatic conditions; many others deviate significantly from adiabatic conditions, and must be considered polytropic. In this work the compression cycle was assumed to be polytropic.

Compressor design here was based on the following steps:

(i) Calculation of the number of compression stages.

According to Peters and Timmerhaus (1979), multistage compression is necessary if the ratio of the delivery pressure and intake pressure exceeds approximately 5:1. For this work a ratio of 4:1 was chosen. We can thus easily calculate the number of compression stages necessary.

(ii) Calculation of outlet temperature.

Assuming equal division of work in each stage and intercooling in between stages are such that inlet temperature to each stage is identical to the initial temperature, the outlet temperature was calculated by the following expression:

 $T_d = T_s (r_e)(n-1)/(n*N_s)$ (1V-1). Where, $r_e = (P_o/P_i)$

 $\frac{n-1}{n} = \frac{k-1}{k} (-\frac{1}{n}); \quad k = -\frac{Cp}{Cv}$

hp for centrifugal compressor having backward-curved impellers can be obtained by the following correlation,

 $\eta_{\rm P} = 0.645 + 0.25 \log_{10}(0.59 \text{ Vr}) \qquad (1V-2)$ (iii)Calculation for power requirement:

The power required to compress the fluid was calculated using the following correlation:

Power (kW) =
$$\frac{1}{\eta_{F}} = \frac{1}{(----)(----)} * R * N_{E} * T_{E}(r_{C})^{-1/(0NS)} - 1) * F_{F}$$

 $\eta_{F} = n-1 = 2$ (IV-3)
where, R = 8.314 kJ kmole⁻¹ K⁻¹

(iv) Calculation of total cost of the compressor:

Compressor cost was calculated using, (Backhurst et al., 1973)

Base price $(\$/kW) = 2260.0 \ kW^{-0.5}$ (IV-4) Cost was increased for pressure more than 6893 kPa. % increase in price = 0.064 P^{0.69} Where, P = highest operating pressure, kPa.

Module for a gas liquid separator

Gas liquid separator was designed on the basis of following steps:

(i) Gaseous and liquid flow, operating pressure and temperature
were passed to the separator subroutine as input data.
(ii) Maximum allowable superficial gas velocity was calculated
using, (Peters and Timmerhaus, 1979)

$$V_{g} = K_{v} - \frac{\varphi_{1} - \varphi_{g}}{\varphi_{-}}$$

The necessary diameter of the separator was calculated using allowable operating gas velocity (70% of the maximum velocity) and volumetric gas flow rate.

$$D_{\pi P} = -\frac{4}{\pi} \frac{G_{\varphi}}{V_{\varphi}}$$

(IV-6)

(IV-5)

(iv) Height of the separator was calculated assuming height is equal to three times of diameter.

 $H_{\pm p} = 3 D_{\pm p}$

(1V-7)

 (v) The pressure drop in the wire mesh demister was calculated using the following correlation for wetted and drained demister (Perry, et al., 1984).

 $P_{er} = 0.0115 (3.28 V_{eg})^{1.771} * 0.0254 kPa$ (IV-8) (vii)The cost of the separator was calculated similarly like a pressure vessel; and also that of wire mesh demister assuming its cost was around four to five times that of sieve tray.

Module for a pressure vessel

Assumptions:

- (1) Design pressure is 10% more than the maximum operating pressure (Backhurst, et al., 1973).
- (2) For vessels operating between 245 K and 615 K, the design temperature was taken as the maximum temperature plus 28 K (Backhurst, et al., 1973).
- (3) Construction material was assumed to be carbon steel(SA 285, Gr. C).
- (4) Corrosion allowance was taken as 0.004 m.

Pressure vessel was designed on the basis of the following steps:-

(i) The following data were passed to the pressure vessel subroutine:

Shape of the vessel (Cylindrical or Spherical), shape of the head in case of cylindrical vessel (Elliptical or Hemispherical), maximum operating temperature and pressure, diameter and height of the vessel, allowable stress value of the material concerned, efimum operating temperature and pressure, diameter and height of the vessel, allowable stress value of the material concerned, efficiency of the welding joint, corrosion allowance, no. of trays and types (if used), density of the material concerned.

(ii) Wall thickness, W_{\pm} (Peters and Timmerhaus, 1980) was calculated using,

For cylindrical shells:

 $W_{t} = \frac{P * R_{i}}{S * E - 0.6 P} + C_{c} \text{ for } W_{t} < 0.5 R_{i} \text{ or } P < 0.385 S * E$ (IV-9) = $R_{i} - \frac{S * E + P}{S * E - P} - R_{i} + C_{c} \text{ for } W_{t} > 0.5 R_{i} \text{ or } P > 0.385 S * E$ (IV-10)

For spherical vessels:

$$W_{\pm} = \frac{P * R_{\pm}}{2 S * E - 0.2 P} + C_{\pm} \text{ for } W_{\pm} < 0.356 R_{\pm} \text{ or } P < 0.665 S * E$$
(IV-11)
$$= \frac{2 S * E + 2 P}{2 S * E - P} - R_{\pm} + C_{\pm} \text{ for } W_{\pm} > 0.5 R_{\pm} \text{ or } P > .385 S * E$$
(IV-12)

(iii)The weight of the cylindrical shell or that of the spherical vessel was calculated using,

For cylindrical shell:

 $W_{tv} = 2\pi R_{i}H_{t}W_{t} \Psi_{mt}$ (IV-13) For spherical vessels: $W_{tv} = 4\pi R_{i}W_{t} (R_{i} + W_{t}) \Psi_{mt}$ (IV-14)

(iv) The weight of the head portion in case of a cylindrical vessel was calculated using, For Ellipsoidal head:

 $W_{\pm h} = \frac{P_{m\pm} [\pi (nD_{a} + W_{\pm})^{\mp} W_{\pm}]}{4} ; n = 1.20 \text{ for } D_{a} < 1.524$ $n = 1.21 \text{ for } 1.525 < D_{a} < 2$ $n = 1.22 \text{ for } 2 < D_{a} < 2.69$

n = 1.23 for $D_{-} > 2.7$

For Hemispherical head: $W_{th} = \varphi_{mt} (2\pi L_{k}^{2} W_{t})$ (IV-16)

(v) The total weight of the vessel was increased by 15% for horizontal position or by 20% for vertical position to take into account of extra weight due to nozzles, manholes and skirts or saddles.

(vi) Cost of the vessel (in US \$, Jan, 1979, Peters and Timmerhaus, 1980) was calculated using,

 $C_{tv} = 110.2 (2.204 W_{tt})^{-0.074} W_{tt}$ (IV-17)

(vii)The cost was updated using factors for material of construction.

(viii) Installed cost of the vessel was calculated from the purchasing cost using Lang factors.

Lang factor = 3 for horizontally installed vessels. Lang factor = 4 for vertically installed vessels. (ix) Installed cost of trays (Peters anfd Timmerhaus, 1980) was calculated using,

 $C_{\pm r} = N_{\pm r} - \frac{(-67.2 + 350.39 D_{\pm})}{(1.0 - 0.146 D_{\pm})}$ (IV-18)

(x) The total cost of both vessel and trays were updated using cost indexes.

Module for a Shell and Tube Heat Exchanger

This preliminary design algorithm of a shell and tube heat ex-

changer assumes:-

1. The overall heat transfer coefficient U, the flow rate and specific heat of the two streams are constant throughout the heat exchanger.

2. For pure countercurrent flow or cocurrent flow, the temperature of either fluid is uniform over any cross section of its path.

3. For a baffled shell and tube exchanger, the heat transferred in each baffle compartment is small compared to the overall heat load i.e. the no. of baffles is large (usually more than 5).

4. Isothermal boiling or condensation occurs uniformly over the whole length of the exchanger.

There is equal heat transfer in each tube or shell pass.
 Heat losses to the surrounding are negligible.

Steps for heat exchanger design

(i) The overall heat transfer coefficient U, was calculated using, (individual heat transfer coefficients were obtained from Bell, 1983)

(IV-19)

(1V - 20)

(ii) The heat duty Q, was calculated using,

 $Q = M_{\pm} C_{D,\pm} (T_{\pm,\pm} - T_{\pm,\pm}) \text{ or}$ $= M_{\pm} C_{D,\pm} (T_{\pm,\pm} - T_{\pm,\pm})$

or for condensing vapours, Q = M Δh

(iii) The log mean temperature difference, ΔT_{1m} and the correction factor for ΔT_{1m} if there are more than one tube or shell pass were calculated. For true countercurrent or cocurrent flow the rate

equation for heat transfer is,

$$Q = U A \Delta T_{1m}$$

For multipass shell and tube heat exchangers the above equation is modified to.

 $Q = U A F \Delta T_{1m}$ (IV-22) The correction factor F is a function of two dimensionless factors R and P defined as

$$R = \frac{(T_{e,i} - T_{e,o})}{(T_{e,o} - T_{e,i})}; P = \frac{(T_{e,o} - T_{e,i})}{(T_{e,o} - T_{e,i})};$$

The values of F were obtained from Bell, (1983).

(iv) The heat transfer area (based on outside tube surface area) was estimated using,

ہ۔ د

(IV-23)

(IV-24)

(IV-21)

(v) Approximate tube and shell geometries were estimated using, --- calculation of no. of tubes (using $D_{to} = 0.02$ m, and $L_t = 8$ m)

$$A_{e}$$

$$N_{tt} = ----$$

$$\pi D_{tto} b_{tt}$$

--- calculation of inside shell diameter, $D_{\pm,\pm}$ (using $L_{\pm p}$ = 1.35 $D_{\pm p}$, L_{bb} = 0.042 m)

The following relationships were used:

$$N_{tt} = ----- * D_{ct1}^{2}$$
(IV-25)
$$C_{1} L_{tp}^{2}$$

$$D_{\pi,i} = D_{e\pm i} + L_{bb} + D_{\pm}$$

Where, L_{bb} varies with types of heat exchanger head and shell

outside diameter; for split ring and packed floating head, it can be expressed by a straight line,

 $L_{BB} = 0.025 + 0.017 D_{B.1}$

 $C_1 = 0.866$ for 30 deg. tube layout characteristic angle. = 1.0 for 45 and 90 deg. tube layout angle. (vi) The correction factor, ψ_{e} for the reduction in no. of tubes due to tube pass partitions was calculated using the following correlations:-

for $D_{e\pm 1} = 2.0 \text{ m}$; $\Psi_e = 0.014 + 0.0115 (N_{\pm p} -2)$ for $D_{e\pm 1} = 1.5 \text{ m}$; $\Psi_e = 0.018 + 0.0160 (N_{\pm p} -2)$ (IV-26) for $D_{e\pm 1} = 1.0 \text{ m}$; $\Psi_e = 0.025 + 0.0230 (N_{\pm p} -2)$ for $D_{e\pm 1} = 0.8 \text{ m}$; $\Psi_e = 0.033 + 0.0280 (N_{\pm p} -2)$

50,

1

actual N_{tt} = previously calculated N_{tt} $(1 - \Psi_c)$ (vii)Effective tube length was calculated using,

(viii)The tube length was adjusted within 3 m and 12 m and consequently other shell and tube specifications. (ix) The shell side pressure was calculated using,

(a) Average baffle spacing was calculated using,

 $L_{\rm BC} = 0.6 \, D_{\rm s,1}$

(b) Shell side cross-sectional flow area, S_m

was calculated using,

$$S_{m} = L_{BC} \begin{bmatrix} L_{BB} + ---- & (L_{EB} - D_{E,C}) \end{bmatrix}$$
 (IV-28)

(c) Shell side Reynolds no., $N_{\text{Re.s}}$ was calculated using, $D_{\text{t.oMs}}$

- (d) Shell side fluid friction factor, f_{\pm} was calculated in accordance to $N_{R=\pm\pm}.$
- (e) Number of crosses by shell side fluid, T_{cc} (using segmental baffle cut fraction, $B_c = 0.25$) was calculated using,

$$D_{e} = \frac{D_{e}}{(1 - 2 B_{e})} (1 - 2 B_{e}) (1 V - 29)$$

Shell side pressure drop was calculated using,

$$\Delta P_{a} = \frac{2 * 10^{-3} f_{a} T_{cc} m^{2}}{\varphi_{a}}$$
(IV-30)

(x) Tube side pressure drop was calculated using,

(a) Tube side velocity, V_{\pm} was calculated using,

(c) Tube side friction factor, f_\pm was calculated using, For 10^{2} < $N_{Re.\pm}$ < $10^{6},$

0.05573f_t = ------N_{Re,t} ϕ .261

Tube side frictional pressure drop, ΔP_{\pm} was calculated using,

(1V-33)

$$\Delta P_{\pm} = ----- (IV-34)$$

$$D_{\pm,\pm}$$

Pressure drop due to change in direction (four velocity head for each pass) was added to the tube side pressure drop using,

$$\Delta P_{\pm} = \Delta P_{\pm} + \frac{4 N_{\pm p} V_{\pm}^{2}}{2 Y_{\pm}}$$
(IV-35)

(xi) Purchasing cost of the heat exchanger was calculated assuming a floating head heat exchanger using total heat transfer area based on tube inner diameter (Peters and Timmerhaus, 1980).

 $C_{E\times} = 1621.81 \ A_1^{\circ \cdot \circ \circ}$ (IV-36) Correction factors for different tube lengths, operating pressure, tube diameter, material of construction was applied to the cost.

NOMENCLATURE

Compressor:

4

ĺ

C~, C₽ .	Sp. heat of gas at constant volume and pressure
	respectively, kJ/(kmole-K)
Fe	molal flow of gas, kmole/s
k .	gas specific heats ratio
n	equivalent to k
N.	no. of compression stages
r _c	compression ratio
R	universal gas constant, kJ/(kmole-s)
Ta	outlet temperature, K
T.	inlet temperature, K
Vr	volumetric flow rate of gas, mª/s

Greek letters:

η _μ	compressor cycle polytropic efficiency
η _r	overall efficiency of the compressor

Gas liquid Separator:

Ve	maximum allowable gas velocity, m/s
Vie	operating gas velocity, m/s
κ.,	constant
D	inside diameter of the separator vessel, m
G _{e f}	mass flow rate of gas in the separator, kg/s
H	height of the separator, m
Per	operating pressure of the separator, kPa

Greek letters:

₽ _₽ , ₽ı	gas and liquid density, kg/m
۵Psr	preesure drop of fluid in the separator, kPa

Pressure vessel:

<u>.</u>		ķ.
Ce	corrosion allowance, m	
Ctv	total cost of the vessel, \$	
Ctr	installed cost of trays, \$	
D_	major axis of the ellipsoidal head, m	
Dı	inside diameter of the vessel, m	
E .	welded joint efficiency (fraction)	
Ĥ _e	height of the vessel, m	
La	inside radius of the hemispherical head, m	
а П	parameter constant	
P	design pressure, kg/m²	
Ri	inside radius of the vessel, m	
S.	allowable working stress of the pressure vessel	
	material, kg/m ⁼	
W	wall thickness, m	
. Wen	weight of the head portion, kg	
Wee	total weight of the installed vessel, kg	

Greek letters:

 Ψ_{mt} density of the vessel material, kg/m²

Heat exchanger:

A	heat	transfer	surface	area,	, m⊇			
A.	heat	transfer	surface	area	based	on	outside	tube

\'	. *	,	
			-
•			
		area, m ⁻	
	Aı	heat transfer surface area based on inside tube	
		area, m ⁻²	
<i>.</i>	Be	fraction of baffle cut	
	Cı	constant	
	C _{p.a}	sp. heat of fluid in the shell side, kJ/(kmole-K)	
	Cp.t	sp. heat of fluid in the tube side, kJ/(kmole-K)	
Ĩ			
•	Dee	outside tube diameter, m	
1,-	Dali	inside shell diameter, m	
1. 1	Dt.i	tube inside diameter, m	
۰ ۲	F	dimensionless log mean temperature difference	. ·
2 9	· ·	correction factor	
- 4	f≝, f∈	shell and tube side friction factors respectively	
	h ₌ , h _€	shell and tube side heat transfer coefficients	
		respectively, kW/(m₹-K)	`
e e e e e e e e e e e e e e e e e e e	· Lee	inside shell diameter to tube bundle by pass	
• G		clearance, m	
	Lbe	baffle spacing, m	,
¢ ·	Lt	tube length, m	
	Ltp	tube pitch, m	
i X	M _m , M _t	molal flow in the shell and tube side, kmole/s	
Υ.	N _{Re} , s	shell side Reynolds number	
	Nr.	tube side Reynolds number	
	Nee	no. of crosses made by shell side fluid	,
	Nee	total number of tubes in the heat exchanger	• ·
	P	dimensionless factor	
	Q	total heat load of the heat exchanger, kW	
	R	dimensionless factor	
,	R_, Rt	shell and tube side fouling resistances, m ² -K/kW	
•			
ń '	· ·		
,	•		3 • •
			· · ·

5"	shell side cross-sectional flow area, m^2
Τ_,.	shell side fluid inlet temperature, K
Te,1	tube side fluid inlet temperature, K
Τ	shell side fluid outlet temperature, K
T€.±	tube side fluid outlet temperature, K
U	overall heat transfer coefficient, kW/(m ^{$2-K$})
U.	overall heat transfer coefficient based on
	outside tube surface area, $kW/(m^{2}-K)$
\vee_{t}	tube side fluid velocity, m/s

	·	· ·
	Greek letters:	
	Δh	latent heat change, kJ/kmole
	ΔT _{2 m}	log mean temperature difference, K
	$\Delta P_{\pm}, \Delta P_{\pm}$	shell and tube sidé pressure drop, kPa
	δ	a correlating variable
	n	a correlating variable
	Ψ α	a correlating variable
•	μe	tube side fluid viscosity, kg/(m-s)
	Pt.	tube side fluid density, kg/m [±]

.

PROGRAM CALLING SEQUENCE

MAIN program calls the following subprogram:

CONSX

 \P^2

-13 ;

5

Subroutine CONSX calls the following subprograms:

CHECK, FUNC, CENTR, and CONST

Subroutine FUNC calls the following subprogram: AMONIA

Subroutine AMONIA calls the following subprograms:

INPUT, PREL, PRINT, PRESSV, COMPRS, SEPAR, and HEATEX Subroutine PREL calls the following subprograms:

DIFEQN, HEATTR, and WEGSTN

Subroutine DIFEQN calls the following subprogram: FUNCT

Subroutine FUNCT calls the following subprograms: RATES and HEATTR $% \left({{{\left({{{{{\bf{T}}_{{\rm{T}}}}} \right)}}} \right)$

Subroutine HEATTR calls the following subprograms:

CNVTTR and CPH

Subroutine HEATEX calls the following subprograms: CPH and HTVAP

Subroutine SEPAR calls the following subprograms:

HTVAP and PRESSV

Subroutine COMPRS calls the following subprogram:

CPH

APPENDIX V

Contraction of the second s

(a):Plant data for parametric estimation (average values)

Temperature (°K)	Pressure (atm)	Ammonia production (kg/hr)	Time (year)
743.5	272.89	34967.92	0.0
743.0	274.84	34321.67	0.0417
742.5	273.85	34026.85	0.0444
742.0	273.85	33937.50	0.0861
745.0	275.5	33713.33	0.0889
744.5	279.77	33685.83	0.1361
743.5	277.7	35270.00	0.1667
743.0	273.5	34372.08	0.2056
749.5	287.00	33684.17	0.2556
752.0	288.50	34803.75	0.2833
750.5	272.86	32819.58	0.3333
760.5	267.93	. 35043.75	0.4611
750.0	287.67	33826.67	0.5056
765.5	258.06	31452.50	0.6194
768.5	264.97	31469.58	0.7056
755.5	248.19	28640.00	0.7972
767.0	259.05	30502.50	0.8806
763.5	242.27	28415.00	0.9500
763.0	243.26	27778.33	1.0167
764.5	248.19	28875.00	1.0639
765.5	259.05	31463.00	1.1417
770.5	301.48	29685.83	1.2694
769.5	297.57	31626.25	1.3139

 \mathbb{C}

	. (6011011146)			
	Temperature (°K)	Pressure (atm)	Ammonia production (kg/hr)	Time (year)
1	762.5	263.50	35010.42	1.5194
	753.0	268.54	35481.67	1.5889
	753.5	263.60	36642.92	1.6472
	750.5	266.59	37383.33	1.6750
	750.5	267.90	36051.67	1.7167
	751.5	269.00	38879.17	1.7583
	758.0	299.48	38896.25	1 8056
	760.5	301.99	39640.83	1.8444
	762.0	294.58	38774.17	2.0611
	756.0	295.56	39411.25	2.0917
	753.0	288.50	34112.08	2.3639
	756:5	283.50	34372.50	2.3972
	760.0	289.59	38395.42	2.4361
	763:5	290.50	38747.08	2.4778
	762.0	294.56	38737.50	2.5194
	762.0	294,62	38986.67	2.5639
	758.0	296.50	38764.58	2.5917
	761.0	296.50	37502.50	2.6472
	759.5	289.16	38925.42	2.6750
	755.0	286.10	37994.58	2.7222
	7.62.0	285.50	36069.17	2.8500
	764.0	297.58	38632.92	2.8944
	763.5 ·	300.42	37992.92	3:0917
	764.0	300.42	36604.58	3.1472

(a):Plant data for parametric estimation (average values) (continued)

 \bigcirc

(b):Plant data for parametric estimation (average values)

Molar flow(kmol/hr)			Mole fraction(mole/mole)		
N ₂	H ₂	NH3	N ₂	H ₂	NH3
4974.21	9278.62	1505.68	0.2754	0.5138	0.0834
3733.44	9935.05	-1506.35	0.2138	0.5689	0.0863
3511.36	9765.03	1467.21	0.2064	0.5740	0.0863
3768.55	9656.37	1450.44	0.2195	0.5625	0.0845
3395.94	9980.70	1436.17	0.2013	0.5918	0.0852
3611.62	9937.19	1450.74	0.2066	0.5684	0.0830
3438.76	10181.44	1497.24	0.1972	0.5839	0.0859
3553.53	9991.94	1480.11	0.2035	0.5722	0.0848
3828.48	10052.58	1477.16	0.2152	0.5651	0.0830
3700.50	9884.27	1483.56	0.2110	0.5635	0.0846
3294.83	8847.31	1434.96	0.2076	0.5574	0.0904
3233.64	9361.47	1559.20	0.1942	0.5622	0,0936
3346.64	8977.60	1675.58	0.1973	0,5291	0.0988
3132.19	9101.94	1362.86	0.2040	0.5928	0.0888
3008.10	8872.64	1324.59	0.1992	0.5874	0.0877
3305.22	9403.11	1286.15	0.2070	0.5890	0.0806
2711.08	8314.72	1330.48	0.1922	0.5895	0.0943
2167.06	7625.65	1205.15	0.1731	0.6090	0.0965
2922.31	7556.51	1197.31	0.2193	0.5671	0.0899
2781.96	7727.19	1245.96	0.2080	0.5777	0.0932
2721.78	8142.88	1312.69	0.1939	0.5801	0.0935
3174.14	9112.67	1359.16	0,1976	0.5674	0.0846
3365.78	9452.22	1351.79	0.2103	0.5906	0.0845
3467.97	· 9473.61	1486.74	0,2061	0.5630	0.0883

<u>ن</u>ے)

Molar	Molar flow(kmol/hr)			Mole fraction(mole/mole)		
N2	H ₂	NH3	N ₂	H ₂	NH3	
		1500 00	0 1000	0.5681	0.0929	
3136.16	9376.90	1533.02	0.1900		,	
3318.86	9666.59	1629.90	0.1908	0.5557	0.0937	
2493.91	10027.99	1633.19	0.1488	0.5984	0.0975	
2918.79	9592.12	1567.31	0.1738	0.5710	0.0933	
3521.54	10702.69	1721.74	0.1864	.0.5666	0.0911	
4421.80	10623.52	1761.58	0.2232	0.5361	0.0889	
3746.94	10273.77	1799.20	0.2004	0.5496	0.0962	
3544.04	9814.37	1677.87	0.2006	0.5556	0.0950	
3940.56	9568.94	1730.89	0.2162	0.5249	0.0949	
4165.71	9977.70	1544.53	0.2265	0.5425	0.0840	
3604.87	10633.30	1524.77	0.1973	0.5820	0.0834	
3278.48	10743.73	1678.90	0.1765	0.5784	0.0904	
3799.63	10564.43	1717.87	0.2009	0.5586	0.0908	
3931.54	10072.56	1728.35	0.2118	0.5425	0.0931	
3650.06	10357.13	1715.97	0.1966	0.5578	0.0924	
4343.67	9849.26	1768.41	0.2301	0.5219	0.0937	
3757.13	10212.41	1682.86	0.2032	0.5524	0.0910	
4140.59	10298.42	1732.03	0.2159	0.5370	0.0903	
6170.47	8892.42	1701.60	0.3110	0.4482	0.0858	
3074.34	10466.40	1498.62	Ó.1782	0.6066	0.0868	
4610.04	9999.84	1711.72	0.2365	0.5130	0.0878	
3290.27	10594.24	1697.25	0.1800	0.5796	0.0928	
4394.10	10559.11	1684.22	0.2269	0.5452	0.0870	

(b):Plant data for parametric estimation (average values) (continued)

ि