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Abstract 
 

Recent simulation study shows that a considerable and stable band gap can be opened in 

2D materials by applying biaxial strain. But a systematic study on the effect of biaxial 

strain on band gap and other important material electronic parameters are still missing in 

literature. In this thesis, the structural and electronic properties of various configurations 

of graphene/hexagonal Boron Nitride hetero bilayer (C/h-BN HBL) system has been 

investigated using density functional theory (DFT) under local density approximation 

(LDA).Biaxial strain has been applied on this material and its effect on electronic band 

structure and properties derived from band structure such band gap, carrier effective 

mass, Fermi velocity have also been simulated. This work reveals that irrespective of 

the application of biaxial strain it remains direct and hence can be exploited in 

optoelectronic applications. Also, it has been observed that the band gap increases 

monotonically (29.7meV-113.4meV) from compressive to tensile strain region. The 

electron effective mass (0.003732me-0.024902 me) and hole effective mass (0.003747 

me-0.023888 me) also increases from compressive to tensile strain region. But Fermi 

velocity for both electron (1.257278×106 m/s-0.3866997×106 m/s) and hole 

(1.265725×106 m/s-0.3816452×106 m/s) shows an opposite trend. From density of 

states (DOS) it is clear that this material system shows a linear trend in lower energy 

region as observed in pristine graphene. Band structure calculation shows an almost 

linear dispersion relationship at Dirac point which predicts the Fermion like 

characteristics of electrons in this material system. Finally, biaxial strained materials 

were implemented in the channel of a top gate ballistic MOSFET and device 

performance was investigated using non-equilibrium Green’s function (NEGF) coupled 

with DFT. The results show that for lower band gap material the transport lacks 

saturation region which is crucial for stable operation of transistors in logic circuits. It is 

also obvious from the results that carrier effective mass and Fermi velocity has 

negligible effect on drive current. Ultimately, an optimum channel material (12% tensile 

strained B3 configuration) was proposed and implemented in the channel of MOSFET. 

Better device performance with current saturation has been observed with this proposed 

material. 
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Chapter 1 

Introduction 
 

1.1  Preface 

The dimensions of modern silicon metal-oxide semiconductor field-effect transistors 

(MOSFETs) have been shrinking exponentially with the prediction of Moore’s law. This 

scaling produces transistor faster than the previous generation but requires more power 

density. The conventional planar structures become less efficient in heat management as 

the critical thickness of the channel decreases. Moreover, FETs with short gates 

frequently suffer from degraded electrostatics and short channel effects such as threshold 

voltage roll-off, drain induced barrier lowering and impaired drain current saturation [1]-

[4]. This is because the gate gradually loses control over the channel and is not as 

efficient in switching off the channel. Consequently, it gives rise to huge power 

consumption because much leakage current passes through the transistors even when they 

are at the “off” state. This has been one of the major issues preventing further scaling 

down of MOSFETs. In order to minimize such effects, many new approaches have been 

implemented based on silicon technology, including the use of high-k dielectrics [5] and 

multiple gates [6] to better switch off the devices. On the other hand, people have also 

been seeking other materials to complement or even replace silicon technology.  

Scaling theory predicts that a FET with a thin barrier and a thin gate-controlled region  

will be robust against short-channel effects down to very short gate lengths [7].The 

possibility of having channels that are just one atomic layer thick is perhaps the most 

attractive feature of graphene for use in transistors. By comparison, the channels in III–V 

HEMTs are typically 10–15 nm thick, and although silicon-on-insulator MOSFETs with 

channel thicknesses of less than 2 nm have been reported, rough interfaces caused their 
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mobility to deteriorate. More importantly, the body of these MOSFETs showed thickness 

fluctuations that will lead to unacceptably large threshold-voltage variations. Similar 

problems are expected to occur when the thickness of the channel in III–V HEMT is 

reduced to only a few nanometers. These problems occur at thicknesses that are many 

times greater than the thickness of graphene [8]. 

Although graphene is a promising candidate for next generation electronics, the unique 

electronic structure is actually not ideal for logic device applications. Graphene does not 

have a band gap, so at finite temperature, electrons are thermally excited to the 

conduction band. As a result, graphene transistors usually have an on/off ratio lower than 

10 at room temperature, far below the requirement for logic applications.  

However, the band structure of graphene can be modified, and it is possible to open a 

band gap in several ways [9]-[22]. 

Once the problem of creating band gap is resolved in graphene, there comes the issue of 

substrate related mobility degradation due to surface phonon scattering, charge doping 

and surface roughness on SiO2/Si substrate [23]. Recently, graphene on hexagonal boron 

nitride (h-BN) has shown enhanced mobility, reduced carrier inhomogeneity and reduced 

intrinsic doping than on SiO2 [24]. So to reduce SiO2/Si substrate induced performance 

degradation, graphene/h-BN hetero bilayer composite material can be a promising 

channel material for future logic FETs.  

 

1.2    Literature Review  

The lattice structure of the purely two dimensional single-layer graphene consists of 

regular hexagons with a carbon atom at each corner. Although the idea was introduced in  

reports decades ago, even before the name graphene had been coined [25]–[27], but it 

was only after the publication of the 2004 paper by the Manchester group [28] that veered 

attention of most researchers towards this field. 
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The devices with channels made of large-area graphene, a semimetal with zero band gap, 

cannot be switched off and therefore are not suitable for logic applications. However, by 

modifying the band structure of graphene it is possible to open a band gap in three ways: 

 by constraining large-area graphene in one dimension to form graphene 

nanoribbons, [9]-[11] 

 by biasing bilayer graphene [12]-[15]  

 by applying strain to graphene [16]-[19] 

 

It has been predicted that both armchair nanoribbons and zigzag nanoribbons have a band 

gap that is inversely proportional to the width of the nanoribbon [29]. The opening of a 

band gap in nanoribbons has been verified experimentally for widths as low as about 1 

nm [9],[30]-[32], and theory and experiments both reveal band gaps in excess of 200 

meV for widths below 20 nm. However, it should be noted that real nanoribbons have 

rough edges and widths that change along their lengths. Even modest edge disorder 

obliterates any difference in the band gap between nanoribbons with different edge 

geometries [10], as well as edge functionalization and doping can also affect the band gap 

[11].  

To open a band gap useful for conventional field-effect devices, very narrow nanoribbons 

with well-defined edges are needed. But owing to the limitation of availability of 

necessary equipments currently, this poses a serious challenge. Although nanoribbons 

with uniform width and reduced edge roughness were produced by ‘unzipping’ carbon 

nanotubes [33], even a perfect nanoribbon is not perfect for electronics applications. In  

general, the larger the band gap that opens in a nanoribbon, the more the valence and 

conduction bands become parabolic (rather than cone-shaped): this decreases the 

curvature around the K point and increases the effective mass of the charge carriers [34] , 

which in turn decreases the mobility.  

Bilayer graphene, which is also gapless, has its valence and conduction bands assume a 

parabolic shape near the K point. If, however, an electric field is applied perpendicular to 
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the bilayer, a band gap opens and the bands near the K point take on the so-called 

Mexican-hat shape. This opening was not only predicted by theory, where investigations 

have shown the size of the band gap to depends on the strength of the perpendicular field 

and to reach values of 200–250 meV for high fields ((1–3) × 107 V cm-1 [12]-[13], but 

has also been verified in experiments [14]-[15].  

Finally, strain is discussed as a means of opening a band gap in large-area graphene, and 

the effect of uniaxial strain on the band structure is simulated [20],[35]. Currently, it 

seems, if possible at all, opening a gap in this way will require a global uniaxial strain 

exceeding 20%, which is  difficult to achieve in practice. Moreover, little is known about 

the ways in which other types of strain, such as biaxial strain influence the band structure 

of graphene.   

 

In addition to the aforementioned limitation, there are some other issues that need 

consideration. Various properties of graphene depend highly on surface and interfaces, 

which, on one hand, can be exploited to engineer the graphene, such as doping, but on the 

other hand, such actions inevitably introduce extra scattering. SiO2, the most commonly 

used substrate for graphene devices, has been found to have room temperature mobility  

limited by surface phonons to ~4×104 cm2/V.s, much inferior to the intrinsic limit [23], 

which is in reality,  further degraded to less than 1×104 cm2/V.s by charged impurities and 

surface roughness on the substrate [36].Such degradation highlights the importance of 

interface engineering in graphene. 

Hexagonal boron nitride (h-BN) has been reported as an ideal substrate for graphene 

because of its atomic flatness, absence of charge traps, and large optical phonon modes, 

and hence leading to a reduction in carrier scattering in graphene [24].Dean et al. [24] 

first demonstrated a dry transfer process to place graphene on h-BN flakes on a SiO2/Si 

substrate during which the side of graphene facing h-BN was never in contact with any 

liquid, so as to preserve the original nature of the interface, which turned out to be very 
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important. AFM and STM characterizations indicated that graphene is much flatter on h-

BN than on SiO2 and much more homogeneous [37]. So far, graphene sandwiched 

between h-BN offers the cleanest sample on any substrate, where many exciting quantum 

states have been observed, including fractional quantum Hall states[38], quantum Hall 

iso-spin ferromagnetic states[39],and Hofstadter spectra [40]–[42]. 

 

Recent experiments [43]-[44] at Columbia University have shown successful fabrication 

of hexagonal BN (h-BN) gated graphene field effect transistors (BN-GFETs), that 

includes both mono-layer graphene (MLG) and bilayer graphene (BLG) on h-BN 

gate/substrate which could be made arbitrarily thin and are considered to be among the 

important developments in the physics and material science of graphene [45]–[47]. 

Graphene supported on h-BN exhibits superior electrical properties with performance 

levels comparable to those observed in suspended samples [43], [44], [46], [47].Besides, 

in the context of strain engineering of electronic properties of graphene, another 

experimental development [48] uses piezoelectric actuators to apply tunable biaxial 

compressive as well as tensile stresses to graphene on h-BN substrate, which allows a 

detailed study of the interplay between the graphene geometrical structures and its 

electronic properties 

Previous theoretical studies on graphene on h-BN substrate [50] and C/h-BN HBL [49]-

[51] reported the opening of a small energy band gap in graphene which varies with the 

following: 

(a) the stacking order,  

(b) the separation distance of graphene from the h-BN, and  

(c) the externally applied perpendicular electric field. 

  

Other graphene/h-BN hetero structures such as MLG [50] and BLG [51] sandwiched 

between two mono-layers of h-BN have also been theoretically shown to have (external) 



6 
 

electric-field-tunable electronic properties. Various strain distributions on mono-layer h-

BN [53] and graphene [54]–[57] have been reported recently. Theoretically it is shown 

that the high band gap of mono-layer h-BN is strain-tunable [52], the gap-less nature of 

graphene is robust against small and moderate deformations [53]–[56]. On the 

experimental side, Raman spectroscopy studies of graphene reveal that both biaxial [56] 

and uniaxial [57]–[59] strains affect the Raman Peaks; the transport properties of strained 

graphene have been investigated by depositing samples on stretchable substrates [60]-

[62]. Behera et al. [63] reported strain engineered band gap for one of the configurations 

of C/h-BN HBL. Again, biaxial strain has also been applied on C/h-BN HBL 

experimentally [22]. But a detailed systematic simulation of biaxial strain-engineered 

electronic properties such as band structure, band gap, carrier effective mass and Fermi 

velocity is yet to be reported for all the configurations of C/h-BN HBL to the best of our 

knowledge. Moreover, tailoring the biaxial strain dependent band gap of C/h-BN in logic 

transistor and investigating the transport phenomena have not been undertaken yet to the 

best of our knowledge.  

 

1.3    Thesis Objective 

The primary objective of this work is to perform relaxation by allowing all the atoms in 

the unit cell to move freely until the optimized structure in equilibrium is obtained and to 

apply biaxial strain in the composite material and relax the structure. In addition to that, 

calculation of the band structure of both the equilibrium and strained structures of 

graphene/h-BN hetero bilayer material using Density Functional Theory (DFT) is also 

shown. And, finally, this proposed material is applied as channel in a ballistic top gate 

transistor and the transistor transport performance was investigated. 

In this thesis, hexagonal structure of graphene with the lattice parameter reported in [49] 

will be used as a starting point for geometry relaxation of C/h-BN HBL structure. The 

geometry relaxations will be performed by computing the Hellmann–Feynman (H–F) 
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forces using conjugate gradient algorithm [64]. All atoms in the unit cell will be allowed 

to move freely until the H–F force on each atom is smaller than 0.001 eVÅ−1. After 

geometry relaxation optimized structure will be obtained. Biaxial compressive and tensile 

strain will then be applied on bilayer C/h-BN HBL by changing the in-plane (a and b, 

equally) cell parameters, relaxing the structure along the direction perpendicular to the 

sheet since on applying an in-plane biaxial strain a deformation in the perpendicular 

direction is likely. Hence, interlayer distance of the relaxed structure will be obtained for 

various strain values. First-principles calculation will be performed to investigate biaxial 

strain dependent electronic properties of the bilayer material. The first-principles 

calculations will be performed within the density-functional theory (DFT) using plane 

wave basis set. Perdew-Zunger variant LDA (Local Density Approximation) will be  

performed using the Ab initio code PWSCF package of Quantum Espresso [65]. To 

include the electron-ion interaction norm conservative pseudo potentials will be used for 

all the atoms. Finally, the newly proposed channel material will be implemented in a top 

gate ballistic MOSFET and biaxial strain dependent transport performance will be 

investigated by the DFT coupled with Non-Equilibrium Green’s Function (NEGF) 

formalism [66]-[67]. 

 

1.4    Thesis Organization  

Theory behind calculation of material electronic parameters and transport phenomena is 

discussed in Chapter 2 whereas Chapter 3 deals with computational details and 

methodologies. Chapter 4 contains the detailed results of the electrical properties of the 

proposed material. Then the results of the transport phenomena with respect to biaxial 

strain are interpreted in Chapter 5. Finally, the conclusions are drawn in Chapter 6 as well 

as suggestions for future improvements are proposed. 
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Chapter 2 

Theoretical Background 
Density functional theory (DFT) which lies behind the structural and electronic properties 

simulation of material is discussed thoroughly in this chapter. Moreover, Non 

Equilibrium Green’s Function (NEGF) Technique which is widely used in couple with 

DFT to investigate transport properties of ballistic transistors is also discussed in this 

chapter.  

 

2.1    Density Functional Theory (DFT) 

 

2.1.1   Introduction 

Since electrons are thousand times lighter than the nuclei, the nuclei can be treated as a 

static point charge known as the Born-Oppenheimer approximation [68]. This assumption 

greatly simplifies the problem of interacting electrons with nuclei and makes the 

electronic Hamiltonian of the solid as follows: 

               (2.1) 

Where  

T= kinetic energy of electrons of mass m 

Vee= repulsive interaction between electrons 

Vei =attractive interaction between electrons and ions 
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And 

 

    
  

  
∑   

 
   (2.2) 

 

      
 

 
∑

  

|     |
    (2.3) 

 

      ∑     (  )   ∑
   

 

|     |
    (2.4) 

Where, 

e = the quantum of charge  

{RI}= the positions of fixed nuclei 

ri= position of electron 

The electron density is defined as follows: 

  ( )   ∫        | (        )|   (2.5) 

Where  

N=the number of electrons  

Ѱ (r1, r2, ..., rN)= Eigen function of H.  

For the ground state of H, the Eigen function is denoted by Ѱ0 and its associated electron 

density is n0(r) defined by Eq. (2.5). Eq. (2.1) should be solved for n(r) instead of ψ(r) 

self consistently.                               
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2.1.2   Hohenberg-Kohn Theorems  

It is formidable to directly solve   the Schrödinger’s equation of the solid Hamiltonian of 

Eq. (2.1). To solve this problem, Hohenberg and Kohn [69] proposed an alternative to the 

ground state solution. It is based on two theorems: 

Theorem I: Up to a trivial additive constant, the ionic potential Vion(r) has a one-to-one 

correspondence to the ground state electron density n0(r), that is different ionic potentials 

must have different ground state electron densities. 

Theorem II: For a given ionic potential Vion(r), we define an energy functional E[n] as  

   [ ]  ∫   ( )    ( )   [ ]  (2.6) 

This functional takes its minimum value at the ground state electron density n0(r) and its 

value is the ground state energy E0. 

2.1.3     Kohn-Sham Equations 
Kohn-Sham equations [70], the basis of Kohn-Sham density functional theory, are 

derived by forcing identical ground state electron density and assuming same external 

potential for both a many-electron interacting system and a non-interacting system. We 

can first write out the energy functional in Eq. (2.6) as: 

 

  [ ( )]   
  

  
∑ 〈  | 

 ||  |〉  
  

 
∬    

 
 ( ) (  )

|    |     [ ( )]  

                                                                                                ∫    ( )    ( )   (2.7) 

 

Where the electron density is constructed as: 

 

  ( )  ∑ |  ( )|
 

   (2.8) 
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Here i refers to single-particle states and the sum is over all the occupied states. Exc[n(r)] 

is called exchange-correlation functional, which is whatever is left to make Eq. (2.7) 

exact. Taking functional derivative δE[n(r)]/δψi
*(r) with the constraint that each ψi(r) is 

normalized to unit leads to: 

 ( 
  

  
      )  ( )      ( )  (2.9) 

 

 

Where VKS(r) is composed of: 

    ( )  ∫     (  )

|    |
     ( )     ( )  (2.10) 

 

The first term is the Hartree potential and denoted by VH. The second term is the local 

ionic potential. The last term is the exchange-correlation potential which is defined as: 

    ( )  
    [ ]

  ( )
  (2.11) 

Once the equations Eq. (2.9-2.11) are solved self-consistently (the solutions are denoted 

by { ̃i}), we obtain the ground state electron density: 

 

   ( )  ∑ | ̃ ( )|
 

   (2.12) 

 

And ground state energy: 

 

     
  

  
∑ 〈  ̃| 

 ||  ̃|〉  
  

 
∬       ( )  ( 

 )

|    |
    [  ]  

                                                                                          ∫     ( )    ( ) (2.13) 

 

2.1.4   Exchange-correlation functional 

The exact form of exchange-correlation functional is unknown. Various approximations 

have been made. The most widely used approximations in the solid-state calculations are 
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Local Density Approximation (LDA) [71] and Generalized Gradient Approximation 

(GGA) [72]-[73], and the former one was used in this work. So, detailed description of it 

is provided here. In this approximation, one models each small region of space around r 

as a uniform electron gas at the electron density n(r). 

 

    [ ]     
    ∫   ( )   ( ( ))   (2.14) 

 

Where ɛxc(n) is the exchange-correlation energy per atom in a uniform density at n. 

However ɛxc(n) cannot be calculated analytically. Usually ɛxc(n) is decomposed into 

exchange part and correlation part: 

    ( )    ( )    ( )   (2.15) 

 

For a uniform distributed electron gas, using the Hartree-Fock approximation, the 

exchange energy can analytically be calculated [74]: 

   ( )   
   

  
(    )

 
 ⁄   (2.16) 

 

The correlation part is more difficult to calculate analytically. In the high density limit 

(rs<< a0), we have the following serial expansion from many body perturbation theory in 

the unit of Ry: 

   ( )          (     )         (     )  (2.17) 

 

The most important result is the Ceperley and Alder monte carlo calculations that 

numerically computed the correlation part to high accuracy. Based on that, Perdew and 

Zunger further parametrize the ɛc(n) [71] as 

 

  ( )  {

        (
  

  
)         (

  

  
)   (

  

  
)        (

  

  
)   (     )

       (        √(
  

  
)        (

  

  
))                      (     )

  (2.18) 
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The exchange-correlation potential of LDA follows from Eq.(2.11) and Eq. (2.14): 

    
   ( )  

    
   [ ]

  ( )
 

 [    ( )]

  
|
 ( )

   (2.19) 

 

2.1.5 Hellmann-Feynman theorem 
For a given ion configuration, the Kohn-Sham equations calculate the self-consistent 

electron density for the ground state. The total energy for the ground state is given by Eq. 

(2.13).  

The force on the ion I is by definition: 

     
 

   
(      )  (2.20) 

 Eii= ion-ion interaction energy 

 

The second term is straightforward, though the explicit expression could be complicated. 

The tricky term is the first one, in which Vion (given by Eq. (2.4)) explicitly depends on RI 

but the Kohn-Sham states {ψi} implicitly depend on the RI. Therefore when we take the 

full derivative, we have three contributions: 

 

    

   
 

   

   
|
{ ̃ }

 ∑ ∫  {
   

  ̃ 
 ( )

  ̃ 
 ( )

   
 

   

  ̃ ( )

  ̃ ( )

   
}   (2.21) 

We can see that the functional derivative δE0/δψi
*(r) gives the Kohn-Sham equations: 

 

    

  ̃ 

 
( )

 [ 
 

  
       ( )  ∫    (  )

|    |
    ( )]  ̃ ( )     ̃ ( ) (2.22) 

The second equality holds because {ψi} are a set of solutions to the Kohn-Sham 

equations. By taking the complex conjugate, we obtain:                     

      
   

   
 

   

   
|
{ ̃ }

 ∑ ∫  {   ̃ ( )
  ̃ 
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    ̃ 
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  ̃ 
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}  

   

   
|
  ̃  

 ∑   
 

   
⟨ ̃ | ̃ ⟩      (2.23) 
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However, since {ψi} are normalized, the second term in the last equation disappears. In 

fact, if we recall that the solutions {ψi} are those wave functions that minimize the total 

energy functional, then it is natural that the first derivative of E0 with respect to ψi yields 

zero. Finally, we have a simple expression for the force on ions: 

 

     
   

   
|
  ̃  

 
    

   
  ∫    ( )

     

   
 

    

   
  (2.24) 

Eq.(2.24) is called Hellman-Feynman theorem [64]. 

 

 

2.1.6    Plane wave basis and Pseudo-potential 

Once the Kohn-Sham equations are subject to periodic boundary conditions, we can 

identify the quantum i to be nk where n is the band index and k is the crystal momentum. 

The equations now explicitly read: 

 ( 
 

  
      )   ( )        ( )  (2.25) 

Where             ( )      ( )  ∫    (  )

|    |
    ( )      (2.26) 

And               ( )  ∑ |   ( )|
 

         (2.27) 

Given an explicit VKS, we now have the practical issue on how to solve these coupled 

equations (Eq. (2.25) and Eq. (2.27)) efficiently. 

 

 

2.1.6.1     Plane wave basis 

To solve the Kohn-Sham equations numerically, we need to choose a basis to expand the 

wave functions ψnk and then truncate the basis to make the simulation time finite. The 
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most natural choice of basis is plane waves because the Bloch states ψnk have a periodic 

part which can be expanded in Fourier series. 

 

    ( )          ( )       ∑    ( )
     

√       (2.28) 

 

Where Ω = the volume of the unit cell.  

Insert Eq. (2.28) into the Kohn-Sham equations Eq. (2.25) to find that cnk(G) satisfy: 

 

 |   | 

 
   ( )  ∑  ̃  (    )   ( 

 )        ( )      (2.29) 

Where ṼKS is the Fourier transform of VKS. We need to set up a cutoff to get finite 

number of {G} basis: 

 |   | 

 
              (2.30) 

By Eq. (2.29) and Eq. (2.30), though in principle any accuracy can be achieved by 

increasing Ecut, in practice this method does not work. This occurs because the core 

electrons in molecules are tightly bound to the nuclei and their wave functions change 

rapidly in the core region and decay away swiftly. In order to accurately describe those 

wave functions, we need many plane waves to expand those functions. However, on the 

other side, those core electrons are so tightly bound to the nuclei that they participate 

little in the bonding of solids or molecules. So, by using only plane wave basis there is 

huge calculation associated to describe those electrons that do not play important roles in 

the properties which we are interested in. 

 

 

 

2.1.6.2     Pseudo-potentials 

As explained in the previous section, the bonding properties of materials largely depend 

on valence electrons rather than core electrons. Core electrons having treated immobile 
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are removed from the computation. However, numerical calculations involving wave 

functions of valence electrons are huge due to the need of excess plane wave basis for 

describing rapid oscillation of wave functions in the core region created by valence 

electrons. 

In order to solve this problem, an artificial potential that accurately reproduces the wave 

functions of valence electrons in the interstitial region and eliminates the oscillating part 

of wave functions is constructed. This idea is formalized into the so-called pseudo-

potentials [75],[76]. Numerous tests show that implementation of pseudo-potential in 

realistic simulations not only significantly reduces computation cost but also furnishes 

good description of chemical bonding. Once the pseudo-potential is obtained, the 

implementation into the Kohn-Sham equations is straightforward. In Eq. (2.09) and Eq. 

(2.10), the local ionic potential Vion(r) is replaced by a pseudo-potential Vps(r), and every 

other term remains the same. 

 

 

2.2   Non-Equilibrium Green's Functions (NEGF) 

Non-Equilibrium Green’s Function (NEGF) [67]-[79] is used for simulating transport 

properties of ballistic transistors. A top gate ballistic transistor has left electrode, central 

region and right electrode. The methods of how NEGF is applied in the device to solve 

transport phenomena are discussed below. 

 

 

 

2.2.1    Non-Equilibrium Electron Distribution 

In a transistor the left and right electrodes are assumed equilibrium systems with periodic 

boundary conditions and the properties of these systems are obtained using a 
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conventional electronic structure calculation. The challenge in calculating the properties 

of a device system lies in the calculation of the non-equilibrium electron distribution in 

the central region. 

The assumption is that the system is in a steady state such that the electron density of the 

central region is constant in time. The electron density is given by the occupied Eigen 

states of the system. Since the chemical potential is different in the two electrodes, the 

contribution from each electrode reservoir must be calculated independently. 

 

  ( )    ( )    ( )        (2.31)                  

 

The electron contribution from the left, nL, and right electrode, nR, can be obtained by 

calculating the scattering states, which are the Eigen state with scattering boundary 

conditions.  The left and right density are now calculated by summing up the occupied 

scattering states, 

   ( )  ∑ |  ( )|
  (

     

  
)        (2.32) 

   ( )  ∑ |  ( )|
  (

     

  
)        (2.33) 

The scattering states of the system are calculated by first calculating the Bloch states in 

the electrodes and subsequently solving the Schrödinger equation of the central region 

using the Bloch states as matching boundary conditions. 

2.2.2    Electron Density Matrix 

The electron density is given in terms of the electron density matrix. We divide the 

density matrix into left and right contributions, 
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                 (2.34) 

The left density matrix contribution is now given from NEGF theory by [67] 

    ∫  ( ) (
    

    
)          (2.35) 

Where 

   ( )  
 

  
 ( )  ( )  ( )       (2.36) 

is the spectral density matrix. Note that while there is a non-equilibrium electron 

distribution in the central region, the electron distribution in the electrode is described by 

a Fermi function f with an electron temperature TL. 

Furthermore in this equation, G is the retarded Green's function, and 

    
 

 
(∑  (∑ ) )        (2.37) 

is the broadening function of the left electrode, given in terms of the left electrode Self 

Energy ∑L. A similar equation exists for the right density matrix contribution. 

 

2.2.3    Retarded Green's Function 

The key quantity to calculate is the retarded Green's function matrix, 

  ( )  
 

(     )   
         (2.38) 

Where  δ+ is an infinitesimal positive number. 

 S and H are the overlap and Hamiltonian matrices, respectively, of the entire system. 

http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/bib.biblio.html#bib.BrMo02
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The Green's function is only required for the central region and can be calculated from 

the Hamiltonian of the central region by adding the electrode Self Energies 

  ( )  [(     )    ∑ ( )  ∑ ( )]      (2.39) 

In this work the matrix is stored in a sparse format, and the inversion is done using 

an     O (N)algorithm [80].Self Energy is calculated by iterative Krylov subspace method 

proposed by H.H. Sørensen et al. [81]-[82].  

 

2.2.4   Spill-in Terms 

In terms of the density matrix, D, the electron density of the central region is given by 

  ( )  ∑      ( )  ( )          (2.40) 

The Green's function of the central region gives the density matrix of the central 

region, DCC, however, to calculate the density correctly close to the central cell 

boundaries the terms involving, DLL, DLC, DCR, DRR are also needed. These terms are 

denoted spill-in terms. 

In this work all the spill-in terms are included, both for calculating the electron 

density n(r) and the Hamiltonian integral. This gives additional stability and well-

behaved convergence in the device algorithm. 

 

2.2.5   Effective Potential 

Once the non-equilibrium density is obtained the next step in the self-consistent 

calculation is the calculation of the effective potential. The calculation of the exchange-

http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/bib.biblio.html#bib.Pe2007
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correlation potential is straight forward since it is a local or semi-local function of the 

density. However, the calculation of the electrostatic Hartree potential requires some 

additional consideration in the device system. 

The starting point is the calculation of the self-consistent Hartree potential in the left and 

right electrodes. The Hartree potential of a bulk system has an arbitrary zero, however, 

the Hartree potentials of the two electrodes can be aligned through their chemical 

potentials (i.e. Fermi levels), since these are related by the applied bias 

                   (2.41) 

The Hartree potential of the central region is now obtained by solving the Poisson 

equation, using the bulk-like Hartree potentials of the electrodes as boundary conditions 

on the interfaces between the electrodes and the central region.  

 

2.2.6   Transmission Co-efficient 

When the self-consistent non-equilibrium density matrix has been obtained, it is possible 

to calculate various transport properties of the system. One of the most notable is the 

transmission spectrum from which current and differential conductance can be obtained. 

The transmission coefficient may also be obtained from the retarded Green's function 

using 

  ( )   ( )  ( )  ( )  ( )       (2.42) 

Where  

G(ɛ)= Retarded Green’s Function 

Γ(ɛ)= Broadening Function 
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In NEGF method, transmission co-efficient is the final outcome which can be further 

manipulated to produce current voltage characteristics of a electronic device. The method 

of determining current voltage characteristics from transmission spectrum is discussed in 

Chapter 3. The peaks in the transmission spectrum predict the probability of the 

participation of Eigen channels in transport through the channel.  

 

 

 

 

 

 

 

 

 

 



22 
 

Chapter 3 

Model and Computational Details 
In this chapter the structure of graphene/hexagonal boron nitride bilayer system and 

detailed computational methods are discussed. Moreover, methodologies for determining 

various electronic parameters are also discussed in brief. 

 

3.1    Graphene/ Hexagonal Boron Nitride Bilayer System 

Graphene/ Hexagonal Boron Nitride (C/h-BN) bilayer system has three variants [63]: 

1. B1 Configuration: where one C atom is directly above the B atom and other C atom 

above the center of h-BN 

2. B2 Configuration: where one C atom is directly above N atom and other C atom above 

the center of h-BN 

3. B3 Configuration: where one C atom is directly above the B atom and the other C atom 

directly above N                        
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3.2    Computational Details 

The electronic properties of the proposed super lattice are investigated using density-
functional theory (DFT) with a plane-wave basis set. Perdew-Zunger variant LDA (Local 
Density Approximation) was performed using the Ab initio code PWSCF package of 
Quantum Espresso [65]. To include the electron-ion interaction we have used norm 
conservative pseudo potentials for all the atoms.  

Our calculation methodology started with structural optimization of the B1,B2 and B3 
super lattice structure and then a precise self consistent field (SCF) analysis was done to 
determine the band structure of the super lattice. For the structural optimization the plane 
wave basis cut off was set at 45 Ry and the convergence threshold on force was 10-3 

Ry/a.u. A 36×36×1 Monkhorst-Pack k-point grid was used. To avoid the interaction 
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between repeating unit cells a large vacuum space of 20 Ǻ thickness was maintained 
throughout the optimization process.  Then the lattice parameters were varied for 
different interlayer distances to determine the optimum unit cell for the structures. 

In the next part of SCF calculation a 36×36×1 k-points Monkhorst-Pack grid was 
employed for better accuracy. The convergence threshold for self consistency in energy 
was set at 10-8 Ry. All atomic position and unit cell parameters found as the final output 
of geometry optimization and relaxation process were used for SCF and band-structure 
calculation. The band structure is plotted on the lines joining the high-symmetry points Γ, 
M, K and Γ.  

 

3.3    Methodology 

In this section methods for determining various electronic parameters are discussed. 

3.3.1 Effective Mass 

The formula for calculating carrier effective mass used in our work:  
 

   
  

   
   ⁄

           (3.1) 

 
 The second derivative was evaluated on the lowest conduction band minima using five 

point stencil method [83], [84].The energy dispersion near the lowest conduction band 
minima is almost linear like graphene. For longitudinal effective mass Γ to K path was 
considered. For transverse effective mass the direction perpendicular to Γ to K path was 
considered. 

Previous works [63], [85] have exploited this linearity to extract the electron effective 
mass using the formula  

 
   

  

    
             (3.2) 

Where, Eg is the band gap and vf is the Fermi velocity. But here we have tried to consider 

the meagre non-linearity present in the conduction band minima region and evaluate the 

effective mass using Eq. (3.1) and found that this is in good agreement with the works 

based on Eq. (3.2). 
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3.3.2 Fermi Velocity 

The electron Fermi velocity is calculated by fitting a straight line through the lowest 
conduction band minima and nearby almost linear points and then its slope was 
determined to calculate the group velocity using the equation: 

   
  

  

 
          (3.3) 

 

Similarly, the hole Fermi velocity is calculated by fitting a straight line through the 

highest valence band maxima and nearby almost linear points and then its slope was 

determined to calculate the group velocity using the same equation. 

 3.3.3 IV Characteristics 

The current is calculated from the transmission coefficient (the method for deriving 

transmission coefficient is discussed in Chapter 2) using: 

 (           )  
 

 
∑ ∫  ( ) [ (

    

    
)   (

    

    
)]        (3.4) 

where f is the Fermi function, TL/R  is the electron temperatures of the left/right electrode, 

and  Tσ (E)is the transmission coefficient for the spin component σ 

The chemical potentials of the left electrode     
     ; and the right electrode,    

  
      are defined relative to the Fermi level of the left electrode, and related to the 

applied bias through 

                       (3.5) 

                      (3.6) 

Positive current flows when the applied voltage for the left electrode is higher than that of 

the right one, thus the positive current direction is left to right. A positive current 

corresponds to the flow of charge from left to right, meaning that the flow of electrons is 

right-to-left, (since electrons have a negative charge). 
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3.3.4 Model Validation 

At first the B1 structure was reviewed using PWSCF to compare the simulated results 
with the reported results published by Behera et al. [63] to emphasize the accuracy and 
validity of our calculation. These results are summarized in Table 1 and Fig. 3.4 and Fig. 
3.5. While Table 1 illustrates the optimized parameters obtained from both this work and 
Ref [63], Fig. 3.4 and Fig. 3.5 shows respectively the dependence of band gap and 
longitudinal electron effective mass on percentage of biaxial strain applied to the super 
lattice.  

 
Table-3.1: Lattice Parameter and band gap for B1 

 

 
 

 

Figure 3.4: The band gap of B1 structure as a function of biaxial strain applied to the 

super lattice. The red line shows the results obtained in this work and the green line is 

obtained from the result published by Behera et al.[63] 

 

 

 Simulated 
Result  

Reported by Behera et al. 
[63]  

Lattice parameter    (a = b) ( Ǻ) 2.481 2.47 
Interlayer Distance ( Ǻ) 3.241 3.217 
Band gap (meV) 58.6 59 
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Figure 3.5: Longitudinal electron effective mass of B1 structure as a function of biaxial 

strain. Result published by Behera et al. [63] using Eq. (3.2) is shown in blue line. 

Electron effective mass calculated using Eq. (3.1) in this work is shown in red line. 

Moreover, in this work, the Fermi velocity for optimized B1 structure was found to be 

0.855×106 m/s, closely matched with 0.8×106 m/s reported by Behera et al.[63].All these 

comparisons show very good agreement with the published results and hence validate the 

accuracy of the model used in this work.  
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Chapter 4 

Results and Discussion: Material Properties 
In this Chapter the simulation results for structural optimization and electronic band 

structure calculation are discussed. Moreover, the effect of biaxial tensile and 

compressive strain on electronic band structure and density of states (DOS) are also 

discussed along with some important electronic parameters such as band gap, carrier 

effective mass and Fermi velocity.  

 

 

4.1    Atomic Structure and Geometry Optimization 

The optimization process was performed iteratively by varying both interlayer distance 

and lattice parameter and observing the minima of the potential energy surface. A built in 

variable cell relaxation function of PWSCF was run to verify the iterative process. The 

result for B1 configuration is shown in Fig. 4.1, from which it is seen that the lattice 

parameter of this configuration is 2.48 Ǻ and the inter layer distance is 3.2 Ǻ. 

 

A more precise relaxation process reveals that the optimized lattice parameter is 

2.481Ǻ and the interlayer distance is 3.241Ǻ, which agrees with the lattice parameter of 

2.47 Ǻ and interlayer distance of 3.217Ǻ reported by Behera et al. [63]. 
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Figure 4.1: The total energy of B1 structure as a function of lattice parameter and 

interlayer distance. 

 

The results for B2 and B3 configuration are shown in Fig. 4.2 and Fig. 4.3 respectively, 

from which it is seen that the lattice parameter of both  B2 and B3 configuration is 2.48 Ǻ 

whereas  the inter layer distance of B2 and B3  is 3.4 Ǻ and 3.5 Ǻ respectively. 

 

A more precise relaxation process reveals that for B2 the optimized lattice parameter is 

2.4805Ǻ and the interlayer distance is 3.44 Ǻ, whereas for B3 the optimized lattice 

parameter is 2.478Ǻ and the interlayer distance is 3.5675Ǻ. These values are in very 

good agreement with the reported values of lattice parameter 2.47 Ǻ (For bothB2 and B3) 

[50] and interlayer distances of 3.4Ǻ (B2) and 3.5Ǻ (B3) [86].    
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Figure 4.2: The total energy of B2 structure as a function of lattice parameter and 

interlayer distance. 

 

Figure 4.3: The total energy of B3 structure as a function of lattice parameter and 

interlayer distance. 

It is evident from the graphs that B1 has the highest stability and the order of stability is 

in literature [63]. 
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4.2    Electronic Structure 

4.2.1    Band Structure 

The band structure of the super lattice was calculated along the line joining the high 

symmetry points Γ, M, K and Γ in the Brillouine Zone. A total of 903 points was taken 

along the line using the Xcrysden [87]. Care was taken to calculate the empty bands with 

the same accuracy as for the filled bands.  

 

 
Figure 4.4: Band structure for optimized structure of B1 configuration 

 

 

The band structure for the optimized and relaxed super lattice of B1 configuration is 

shown in Fig. 4.4 and a direct band gap of 58.6 meV was obtained for this case. From the 

zoomed band structure shown in Fig 4.4 it is evident that it preserves almost linear cone 

like relationship near the Dirac point, a characteristic very similar to pristine graphene 

and indicates massless Fermion like nature of the carriers. So it is expected for this super 

lattice to preserve the attractive and promising electronic characteristics of graphene. 
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Figure 4.5: Band structure for optimized structure of B2 configuration 

 

The band structure for optimized B2 and B3 is shown in Fig. 4.5 and Fig. 4.6 

respectively, from where it is clear that both the configurations show the same trend as 

B1. So all the configurations of C/h-BN HBL show somehow characteristics similar to 

graphene and hence the electrons will show behavior similar to Fermion observed in 

graphene. From Fig. 4.5 and Fig. 4.6 it is clear that B3 configuration has greater band gap 

than B2 configuration and both conduction band minima and valence band maxima in B3 

shows a less curvature than B2.From the band structure the band gap of B2 and B3 is 

calculated as 54.3meV  and 70.4 meV respectively. 

 

  

Figure 4.6: Band structure for optimized structure of B3 configuration 
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4.2.2    Density of states (DOS) 

 

The DOS for B1, B2 and B3 are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9 respectively, 

where in (A) the DOS and in (B) the integrated DOS are placed. In two dimensional 

materials integrated DOS plays significant role in describing electronic properties of 

material and hence it is produced in this work. Interestingly, the linear shape in integrated 

DOS of B1, B2 and B3configurations is the same trend observed in graphene. Hence all 

the configurations of C/h-BN HBL show the same trend like graphene not only in terms 

of band structure shown in the previous section but also in terms of integrated DOS.  

 

 There is shown a gap near Fermi line (dotted vertical line) in Fig. 4.7 (A), 4.8 (A) and 

Fig. 4.9 (A) which is almost same to the band gap. So, band gap of the configurations can 

also be derived from the DOS in addition from band structure which is shown in the 

previous section. The band gap for B1, B2 and B3 calculated from the DOS is 58meV, 

54meV and 70meV almost similar to the results obtained from band structure in the 

previous section.  

 

The peaks in DOS of B1, B2 and B3 are almost similar as the DOS is basically 

composed of the s and p orbitals of carbon, boron and nitrogen. Almost negligible 

contribution is from d orbital as the outermost electrons in carbon, boron and nitrogen do 

not exist in d orbital. Slight change in the gap near Fermi line is observed due to the 

change in the orientation of atoms in the configurations. It is observed that B3 has the 

highest and B2 has the lowest gap shown in DOS that is consistent with their band gap.    
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Figure 4.7: DOS for optimized structure of B1: (A) DOS (B) Integrated DOS

 

Figure 4.8: DOS for optimized structure of B2: (A) DOS (B) Integrated DOS 

 

Figure 4.9: DOS for optimized structure of B3 : (A) DOS (B) Integrated DOS 
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4.3    Effect of Biaxial Strain  

After observing the electronic structure of the relaxed configurations, biaxial strain was applied 

to all the configurations to observe how the electronic structure and hence the material electronic 

properties vary with strain. Strain was applied by varying the in-plane lattice parameters equally 

and then relaxing the structure along the direction perpendicular to the plane. Then the DFT 

under LDA was used to calculate the electronic structure of the configurations of C/h-BN HBL. 

 

4.3.1 Band Structure 

 

First, biaxial strain was applied at the super lattice by varying the lattice parameter. 

Each time the structure was relaxed before the self-consistent field (SCF) analysis was 

performed to conduct the band structure determination. The interlayer distance remained 

almost constant when expanded and slightly increased during compression. The band gap 

remained direct at the K point and during compression to expansion the band gap 

increased monotonically. Fig. 4.10, Fig. 4.12 and Fig. 4.13 show all the band structures of 

the strained super lattice of B1, B2 and B3 respectively.  

 

It is observed in the band structures that the linearity and slope of the bands near K 

point increase from tensile to compressive strain for all the configurations of C/h-BN 

HBL. So it will affect the properties of the HBL in terms of Fermi velocity and Fermion 

like characteristics of the electron. Higher slope means higher Fermi velocity which is 

very promising for electronic application. By applying compressive strain Fermi velocity 

is expected to increase, a very significant finding evident from the strained band 

structures of B1, B2 and B3. 
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Figure 4.10: The band structures of the strained super lattice (B1 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain tensile was applied. F to J shows the band structure when the super lattice was 

compressed to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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The conduction bands and valence bands near high symmetry K point for three strained 

values of B1 configurations are plotted below in Fig. 4.11 to infer further interpretation 

from the strained band structure. It is observed that the curvature of both the valence and 

conduction bands increases from tensile to compressive strain. This curvature is very 

important in band minima (maxima) to predict the effective mass of electron (hole). The 

deduction that the slope of the band edges near K point increases from tensile to 

compressive strain is also substantiated from Fig. 4.11. B2 and B3 also show the same 

trend as shown in Fig. 4.11 for B1 configuration and hence the results for B2 and B3are 

not shown here. 

 
 

Figure 4.11: Effect of biaxial strain on the band structure of B1 conduction band (top) 
valence band (bottom) 
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Figure 4.12: The band structures of the strained super lattice (B2 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain was applied. F to J shows the band structure when the super lattice was compressed 

to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.13: The band structures of the strained super lattice (B3 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain was applied. F to J shows the band structure when the super lattice was compressed 

to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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4.3.2 DOS 

DOS for strained B1, B2 and B3 are shown in Fig. 4.14, Fig. 4.16 and Fig. 4.18 whereas 

the cumulative DOS is plotted in Fig. 4.15, Fig. 4.17 and Fig. 4.19 respectively. From the 

DOS it is observed that for higher tensile region the DOS show splits in higher energy 

domain. This can be explained by the overlapping of orbitals in the higher energy regions 

for higher tensile strain. For higher compressive value the peak in high energy region is 

minimized. This can be explained as for the compressive regions the overlap between 

orbitals is reduced and hence the results are observed in DOS. 

 

From the integrated DOS it is observed that the cumulative value of DOS for 

compressive strain in high energy regions becomes almost constant and the reduction is 

created by the reduction of DOS in high energy region discussed in the previous 

paragraph. For tensile strain it keeps increasing as DOS for tensile strain has high peak 

value in high energy region just discussed in earlier paragraph. So all the results are in 

consistent and thus strengthen the validity of this work. 

 

The gap near the Fermi line increases from compressive to tensile strain observed in DOS 

for all the configurations of C/h-BN HBL. These results are consistent with the 

discussions in the previous section. The reason was obvious from the band structures as 

the gap in band structure increased from compressive to tensile strain. The linear shape in 

low energy region in integrated DOS is very similar to graphene. Hence all the strained 

structures of C/h-BN HBL preserve the characteristics of graphene which is also a 

significant finding from this work.  
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Figure 4.14: The DOS of the strained super lattice (B1 configuration). A to E shows the 

band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% strain was 

applied. F to J shows the band structure when the super lattice was compressed to 2.4%, 

4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.15: The integrated DOS of the strained super lattice (B1 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain was applied. F to J shows the band structure when the super lattice was compressed 

to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.16: The DOS of the strained super lattice (B2 configuration). A to E shows the 

band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% strain was 

applied. F to J shows the band structure when the super lattice was compressed to 2.4%, 

4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.17: The integrated DOS of the strained super lattice (B2 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain was applied. F to J shows the band structure when the super lattice was compressed 

to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.18: The DOS of the strained super lattice (B3 configuration). A to E shows the 

band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% strain was 

applied. F to J shows the band structure when the super lattice was compressed to 2.4%, 

4.8%, 7.2%, 9.6% and 12% respectively. 
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Figure 4.19: The integrated DOS of the strained super lattice (B3 configuration). A to E 

shows the band structure of super lattice when +2.4%, +4.8%, +7.2%, +9.6% and +12% 

strain was applied. F to J shows the band structure when the super lattice was compressed 

to 2.4%, 4.8%, 7.2%, 9.6% and 12% respectively. 
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4.3.3 Band gap 

It is seen from Fig. 4.20 that band gap increases monotonically from compressive to 

tensile biaxial strain. Band gap of B1 structure is more than B2 structure and B3 has the 

highest band gap in all the regions except higher compressive area. The calculated band 

gap of relaxed B1, B2 and B3 are 58.6 meV, 54.3 meV and 70.4 meV respectively.  

 

   

Figure 4.20: The band gap of B1, B2 and B3 as a function of percentage biaxial strain 

applied to the super lattice. 

 

The reason for difference in band gap among B1, B2 and B3 can be explained from the 

band structures shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6. It is seen that the gap is highest 

for B3 and lowest for B2. Moreover, the increase of band gap with tensile strain can be 

explained as that with tensile strain applied to the structure, it is expanded and the 

reciprocal lattice structure is decreased. Hence the gap increases in k-space, thus creating 

greater band gap in tensile strain region.    
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4.3.4 Effective Mass 

4.3.4.1 Electron Effective Mass 

Fig. 4.21 indicates that the effective mass of the B1, B2 and B3 structure is almost same 

except for tensile strain regions. At tensile regions B3 structure shows a rapid increase 

compared to B1 and B2 structure. The transverse electron effective mass also shows 

similar trend as longitudinal one which is shown in Fig 4.22. 

 

The reason behind the results can be explained from Fig. 4.11. It is seen that the 

curvature of all conduction band minima increases with compressive strain. The effective 

mass of electron is inversely proportional to the curvature of the band near band minima. 

Hence higher curvature creates lower effective mass (both longitudinal and transverse) 

for all the configurations of C/h-BN HBL. Here longitudinal effective mass means the 

mass in Γ to K direction and the transverse effective mass is taken in the direction 

perpendicular to the Γ to K in k-space. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Longitudinal electron effective mass of B1, B2 and B3 as a function of 

percentage biaxial strain applied to the super lattice. 



49 
 

 
Figure 4.22: Transverse electron effective mass of B1, B2 and B3 as a function of 

percentage biaxial strain applied to the super lattice. 

 

4.3.4.2 Hole Effective Mass 

The longitudinal hole effective mass is the mass considered in Γ to K direction. It is clear 

from Fig. 4.23 that there is almost negligible change among the longitudinal effective 

masses of three configurations in compressive region. In tensile region B1 and B2 

increases almost similarly but B3 shows a rapid increase in effective mass with the 

increase of tensile strain. The transverse hole effective mass also shows the same trend 

like longitudinal hole effective mass as shown in Fig. 4.24. 

The reason behind the results can be explained from Fig. 4.11. It is seen that the 

curvature of all valence band maxima increase with compressive strain. The effective 

mass of hole is inversely proportional to the curvature of the band near band maxima. 

Hence higher curvature creates lower effective mass (both longitudinal and transverse) 

for all the configurations of C/h-BN HBL. Here longitudinal effective mass means the 

mass in Γ to K direction and the transverse effective mass is taken in the direction 

perpendicular to the Γ to K in k-space. 
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Figure 4.23: Longitudinal hole effective mass of B1, B2 and B3 as a function of 

percentage biaxial strain applied to the super lattice. 

 

 
 

Figure 4.24 Transverse hole effective mass of B1, B2 and B3 as a function of percentage 

biaxial strain applied to the super lattice. 
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4.3.5 Fermi Velocity 

4.3.5.1 Electron Fermi Velocity 

The electron Fermi velocity for B1, B2 and B3 structures is shown in Fig. 4.25. The 

Fermi velocity for optimized B1 structure was found to be 0.855×106 m/s, closely 

matched with 0.8×106 m/s reported by [63]. For optimized B2 and B3 structure the value 

is 0.843×106 m/s and 0.840×106 m/s respectively. 

 

Figure 4.25 Electron Fermi velocity of B1, B2 and B3 as a function of percentage biaxial 

strain applied to the super lattice 

Electron Fermi velocity decreases from compressive to tensile strain. It is also observed 

that all the three structures have almost same Fermi velocity as long as compressive strain 

is considered. In tensile strain the velocity for B3 structure decreases more rapidly than 

B1 and B2. The reason behind the results can be explained from Fig. 4.11. It is observed 

that the slope of the bands near band minima increases with compressive strain. The 

Fermi velocity is directly proportional to the slope near band edge. Hence higher slope in 

compressive region creates higher Fermi velocity. Higher Fermi velocity is very crucial 

for electronic device  application.   
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4.3.5.2 Hole Fermi Velocity 

The hole also shows almost same behavior in terms of Fermi velocity. The hole 

Fermi velocity for relaxed B1, B2 and B3 configurations are 0.853×106 m/s, 

0.845×106 m/s and 0.823×106 m/s respectively. The hole Fermi velocity also show similar 

characteristic as electron Fermi velocity.   

 

Figure 4.26: Hole Fermi velocity of B1, B2 and B3 as a function of percentage biaxial 

strain applied to the super lattice 

 

The reason behind the results can be explained from Fig. 4.11. It is observed that the 

slope of the bands near valence band maxima increases with compressive strain. The 

Fermi velocity is directly proportional to the slope near band edge. Hence higher slope in 

compressive region creates higher Fermi velocity. Higher Fermi velocity is very crucial 

for electronic device application. It plays a significant role in ambipolar transport in two 

dimensional materials. So this result will be helpful in further research in ambipolar 

transport in electronic, optoelectronic and photonic devices as well.  
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Chapter 5 

Transport Performance: Ballistic MOSFET 
In this chapter the transport performance of a top gate ballistic MOSFET was 

investigated by applying various biaxially strained C/h-BN HBL material in the channel 

and observing the IV characteristics curve. Finally, the configuration with maximum 

available band gap was used as channel material and transport performance was 

observed.    

5.1    Basic Device Structure 

 
Fig. 5.1 shows the schematic device structure of the planar 2-D C/h-BN FET considered 

for our studies. This device is a prototype device to investigate the effect of biaxial strain 

on transport performance. The channel length (Lch) and width (W) considered in our 

simulation is 30Å and 20Å respectively. High-κ HfO2 of 5Å thickness is chosen as the 

gate dielectric. Work function of metal in gate and both drain and source are considered 

to be same. X(A) direction is in the perpendicular to the channel and Z(C) is in the 

direction of the channel whereas Y(B) is in the direction of width of the MOSFET.  

 

 

Figure 5.1: Basic device structure of C/h-BN channel ballistic MOSFET. 
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Figure 5.2: Basic device structure of C/h-BN channel ballistic MOSFET 

 

5.2    IV Characteristics 

In this section, the effects of biaxial strain on current voltage (I-V) characteristics of the 

top gate ballistic MOSFET are presented. In Fig. 5.3 IV characteristics for B1, B2 and B3 

are shown. It is clear that in relaxed condition there is negligible variation in IV 

characteristics with change in configuration of C/h-BN HBL. This may be explained as 

the difference in band gap is very negligible for the relaxed configurations.    
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Figure 5.3: IV characteristics curve for relaxed structures of B1, B2 and B3 
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5.2.1   Effect of Strain (B1 Configuration) 

Fig. 5.4 shows that for B1 structure drain current increases from compressive to tensile 

strain.Current is minimum for the relaxed structure. There is no saturation achieved with 

the application of drain to source voltage for various strained B1 configurations. If the 

drain to source voltage is further increased there is the same increasing trend in the IV 

curve which is also observed in graphene. The reason may be the small band gap created 

by application of biaxial strain in this configuration.   
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Figure 5.4: Effect of biaxial strain on I-V characteristics for B1 configuration based 

MOSFET 

 

5.2.2   Effect of Strain (B2 Configuration) 

It is evident from Fig. 5.5 that for B2 configuration drain current increases from tensile to 

compressive strain. The relaxed structure has current in between compressive and tensile 

region. 
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Figure 5.5: Effect of biaxial strain on I-V characteristics for B2 configuration based 

MOSFET 

There is no saturation achieved with the application of drain to source voltage for various 

strained B2 configurations either. If the drain to source voltage is further increased there 

is the same increasing trend in the IV curve which is also observed in graphene. The 

reason may be the small band gap created by application of biaxial strain in this 

configuration.   

 

5.2.3   Effect of Strain (B3 Configuration) 

B3 structure shows similar characteristics of transport as B2. From Fig. 5.6 it is also 

observed that the IV curve shows no saturation. There is no saturation achieved with the 

application of drain to source voltage for various strained B3 configurations upto 7% 

tensile strain. If the drain to source voltage is further increased there is the same 

increasing trend in the IV curve which is also observed in graphene. The reason may be 
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the small band gap created by application of biaxial strain upto 7% strain in this 

configuration.   
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Figure 5.6: Effect of biaxial strain on I-V characteristics for B3 configuration based 

MOSFET 

 

 

5.3    Optimum Channel Material for Ballistic MOSFET 

From chapter 4 we came to know that 12% tensile strained B3 configuration has highest 

band gap ever possible in any C/h-BN bilayer system and the band gap in B3 increases 

with tensile strain. So to design a MOSFET with a channel material with considerable 

band gap, we have to choose the material from higher tensile strained configuration of 

B3. To further investigate the scenario, we measured the drain current at a particular dran 

to source voltage for tensile strained B3 configuration which is shown in Fig. 5.7  
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Figure 5.7: Drain current at a particular drain voltage is plotted as a function of 

percentage biaxial strain for B3 configuration. Here VDS=0.5V. 

From Fig. 5.7 it is clear that the drain current tends to reach saturation with the 

application of tensile strain. So 12% tensile strained B3 would be a better choice for 

channel material in MOSFET application. And interestingly we have got the drain current 

saturation with this material applied as channel in a MOSFET shown in Fig. 5.8. It is also 

observed that with the application of gate voltage the current drive current in the channel 

decreases for a particular drain to source voltage. This implies the depletion mode 

operation of the MOSFET. 
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Figure 5.8: IV characteristics curve with 12% tensile strained B3 in channel of MOSFET 
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Chapter 6 

 

Conclusion 
 

6.1    Summary 

We investigated two dimensional C/h-BN hetero bilayer (HBL) systems with all its 

possible configurations such as B1, B2 and B3 (configurations depend on the relative 

orientation of atoms in the planes). Atomic and structural optimization was done to relax 

the configurations and the optimum lattice parameter and interlayer distance for the 

configurations are obtained. Then with these parameter value, DFT under LDA using PZ 

pseudo potential was applied to calculate the electronic band structure and DOS. Then 

some important material electronic parameter like carrier effective mass, band gap and 

Fermi velocity were determined. Our results from structure optimization show very good 

agreement with the reported results in literature. From the band structure it was observed 

that relaxed B3 has the highest and B2 has the lowest band gap. By applying tensile strain 

the band gap can be further increased for all the configurations as observed in our 

simulation results. Effective mass also shows the same trend as the band gap, increases 

with the application of tensile strain. But Fermi velocity showed the opposite trend, 

decreases with tensile strain, the reason was discussed in the result section of this work. 

From DOS it was observed, that the gap in near Fermi line is almost equal to the band 

gap, in conformity with the concept discussed in literature. The linear shape in low 

energy region in integrated DOS shows the graphene like characteristics in this bilayer 

material system. It was also observed that for higher compressive strain the integrated 

DOS reaches saturation which is the outcome of the reduction in DOS for higher energy. 



60 
 

Finally, we applied various strained systems of C/h-BN HBL in channel material of a top 

gate ballistic MOSFET and observed that there is no saturation reached for B1 and B2 

configurations and also up to 7% tensile strain for B3 configuration. We also observed 

that with the increase in band gap the drive current tends to decrease and finally for 12% 

tensile strain saturation in drive current is achieved. Ultimately, gate voltage was varied 

and found that it decreases the drive current, a behavior similar to depletion mode 

MOSFET.  

6.2    Suggestion for Future Works 

This work can facilitate further study with this material system and device structure. The 

suggestions for future work are as follows: 

 In this work LDA approximation was used in determining band structure. Though 

it calculates the band curvature exactly, it underestimates the band gap. Hence GW 

method can be developed and applied in this system for a better result. 

 Monolayer graphene and single layer BN was used in this work. The number of 

layer in graphene and/or the number of layer in BN can be increased and observed 

the effects on electronic structure.  

 Sandwiched structure like one graphene layer between two BN or one BN between 

two graphene layer can also be investigated.  

 In this work prototype device structure was considered due to the huge simulation 

time and resource required for a more realistic MOSFET simulation in atomistic 

level. Analytical expressions can be developed for realistic MOSFET for easier 

simulation and understanding of the underlying physics in atomistic MOSFET.  

 Biaxial strain dependent electronic structure was calculated in the bilayer system. 

Recent studies have shown that a band gap can be opened in bilayer graphene by 

applying electric field in perpendicular direction to the plane. So the effect of 

electric field on the electronic structure of this bilayer material can also be 

investigated.  
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Appendix 
A. Flow Diagram on Algorithm to solve Kohn-Sham Equation  
The basic algorithm of Kohn-Sham equation is presented here in flow chart form. 

 

 
 

Figure A.1: A flow chart of algorithm to solve Kohn-Sham equation [88] 

 


