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ABSTRACT

A comprehensive literature survey and review of all interface elements so far

developed and implemented within their limited scope of applications have been carried out

in this study. From the literature survey, three major types of interface elements such as,

Goodman (1968) Type, Katona (1983) Type and Desai (1984) Type have been selected for.

further study depending on their successful application to physical problems. These three

most important interface elements are judged in an existing nonlinear incremental-itrative

generalized elasto-plastic Finite Element Method (FEM) program.

'* The parameters controlling the main features of each interface elements have been
, ,
identified. These parameters are examined.critically in a typical problem setting of direct-

shear box simulation. In order t~ investigate the evolution of different internal variables like

deformation, strain or stresses, various types of figures have been drawn. Each case of

analysis resulted in outputs of: (a) deformed mesh; (b) force-deformation and stress-strain

relationship inside the interface; (c) shear strain contours; and (d) displacement fields. As

most of the figures were drawn at different load steps in order to trace the progress of the

variables, it was rather easy to identify the trouble spots for a particular type of interface.

The contrast between an analysis in direct-shear box without an interface element

.1" and with an interface element is very clear. Goodman (1968) type of interface performed

well in direct shear simulation. The performance of this interface depends on the relative

stiffness of the interface compared to the surrounding soil. Its behavior also depends on the

thickness of the interface and load eccentricity from the interface. It shows distinct si,gnof

mesh penetration at higher shear deformation. Katona (1983) type interface .element is the

simplest interface in terms of number of parameters required. It does not have any

penetration or separation problem. The performance in slip mode is ideal although not

realistic. The performance of Desai (1984) type interface element seems to be the most

realistic although it showed tendency of mesh penetration. It also showed better convergence

ii



properties. Reduction in the thickness of the element improves the performance of the Desai .

type element.,{

Finally, it can be concluded that among the three interfaces studied in this research,

Katona and Desai type of interface element are much better in accuracy and although,

practically Goodman type of interface is easy to formulate and to implement.

\ ,
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CHAPTERl

1.1 GENERAL

Engineering problems employing geomaterials typically involve interaction

between dissimilar materials. The importance of correctly simulating t~e behavior of

dissimilar materials along common interface is well established. In finite element

analysis of geomaterials consisting of different material along their common

interfaces, it is practical to use suitable interface element to simulate model for

predicting their correct behavior. Such elementwill account for relative motion along

interfaces, will prevent penetration of one material into the other, and will accurately

;l predict stresses along and across the interface.

In geotechnical engineering distinction can be made between soil-soil

interface problems and soil-structure interface problems. Road embankments, river

embankments and free excavations are examples of soil-soil interface problems.

Shallow foundations, deep (pile, caisson/well) foundations, tunnels and earth

retaining structures are examples of soil-structure interface problems. Finite element

analysis is being carried out for both types of problems. It is not a very common

method of analysis in geotechnical engineeringyet, but its application is continuously

increasing. By far, most applications are in the field of soil-structure interaction

.,.,J problems, where prediction of displacements are often more important than that for

soil-soil interface proble'ms(Boulon, 1990).

The numerical modeling of soil-structure interaction in the static range of

loading is highly dependent on the type of constitutive law used to simulate the

contact between the surrounding deformable bodies, irrespective of numerical

method (e.g., the finite element method, the boundary integral method and the

distinct element method. In the early numerical analyses related to metal forming,

••.' .
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behavior of rock masses, behavior of piles and other structures embedded in soil, the

constitutive equation for unilateral (no tension) frictional contact was mainly rigid

perfectly plastic Coulomb's law, and the penalty function technique was considered

as an excellent tool for applying these contact (constraint) conditions. But the

comparison between experience and modeling has often proved to be disappointing,.

especially, for problems involving low stress levels (Boulon, 1990).

Geomechanics has pointed out that the contact zone (interface) frequently

undergoes a complete change in structure during shearing load. This change is more

or less due to granular nature of the soil,.which allows for localized dilatancy or

contraction (according to the density and local stress level) after ~mall shearing

movements, and for degradation of the friction at large tangential relative

movements. The framework of elasto-plasticity has been usually used for

representing the mechanical behavior of interfaces. Relative movements between

bodies in contact are described either by a local high velocity gradient (thin layer) or

by a kinematic discontinuity. In both cases, the development of a non-linear

behavior within the interface is drastically rapid compared with that which can

develop in the bodies in contact, inducing a very slow rate of convergence qf the

global solution. Except for models of thin layers, the well known joint elements,

incorporating the interface constitutive equations, are different in nature from volume

elements since the best sampling points for stresses are the nodes (instead of

intermediate Gauss points for volume elements). This difference induces some

numerical integration within joint elements. Since full plasticity frequently occurs in

interfaces, and since the degradation mentioned above (partially due to grain

crushing) acts as a local softening, sophisticated methods of resolution of the

resulting non-linear system of algebraic equations are required at the structural level

(Boulon, 1990).
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Distinct interface element of zero thickness is widely used in finite element

analysis of geologic structures. Goodman et al. (1968) proposed the first element of

this type applied to geologic media. Several other zero thickness elements have also

been developed based on the original formulation. The zero thickness interface

elements possess some fundamental deficiencies which' are: spurious stress

oscillations attributed to inappropriate quadrature schemes; lack of accuracy due to

excessively large stiffness parameters; and inaccurate interface stress predictions due

to insufficient mesh fineness have been cited in the past. A kinematic inconsistency

is associated with the displacement of this element proposed by Goodman et al

(1968).

In spite of the kinematic deficiencies associated with tangential response,

Goodman type element has been rather widely used due to its simple formulation,

ease of numerical implementation and robust normal response. A higher order (six-

node) version of this element has also been developed. But when integrated

analytically, it possesses kinematic deficiencies similar to the original Goodman

(1968) type element.

The second zero thickness interface element proposed by L.R. Herrmann

(1978) is a Link element. The element is referred to as LRH element. It employs a

desirable method for a~sessing response modes and exhibits acceptable tangential

response which was shown to be unreliable in predicting normal response."This

deficiency was attributed to the uncoupled form of the element equations.

Katona (1983) developed another type of robust interface element directly

from the principle of virtual work. It avoids any numerical round-off problems

inherent in the stiffness approach and controls directly interface forces and relative

movements.
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Desai et al. (1984) developed a new class of interface elements having very

small thickness. It is mainly ordinary isoparametric thin element but having a

different constitutive relationship. The constitutive relationship dictates the general

behavior of the interface element.

Although the ever-popular finite element method (FEM) has been used

extensively for the structural analysis and design as well as soil-structure interaction

problems, it is, of course, simply a numerical solution methodology. The real

challenge is to construct mechanistic models that behave something like the real

world, while striking a balance between rigorous mechanics and engineering

simplicity (Katona, 1983). Typically, for a buried culvert problem, this challenge

extends to almost every aspect of the soil-structure system, e.g. soil constitutive

model, structure constitutive model, simulation of incremental soil layers, boundary

conditions, geometrical non-linearities, etc. In this case the area of particular interest

is the treatment of the culvert-soil interface and the FEM models assume the soil is

bonded to the culvert during deformation.

In Bangladesh major civil engineering constructions are dependent on pile

foundation. Design of a complete structure with its foundation by' soil-structure

interaction makes the design cost effective and safe. But any reliable soil-structure

interaction analysis needs better interface element. And there have been no specific

studies on the relative merits and demerits of the aforementioned three major

interface elements with respect to the soil condition of Bangladesh. Moreover, in

some of the previous research on pile load test simulation, behavior of the interface,

as shown from the numerical analysis, was not satisfactory.
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1.2 SCOPE OFTHE RESEARCH

The research has a broader perspective in the field of geomechanical work. A

typical working field is soil-structure interaction using interface elements for various

types of loading systems. However, this research is intended to carry out the

following activities:

a) to study on the interface elements so far developed and implemented to

physical problems;

b) to identify widely used interface element for a comprehensive parametric

study and to implement of these elements in a nonlinear incremental iterative

generalized elasto-plastic finite element program (ONSOLA);

c) to examine critical parameters for different material properties and loading

conditions and to identify problems associated with the interfaces with respect to

their original formulation, difficulties in implementing in FEM code and deviation

from acceptable realistic behavior;

d) finally, to modify the original formulation of the interfaces and/or to apply

appropriate numerical techniques for the highly nonlinear equations to simulate

correct behavior of the interfaces.

1.3 OBJECTIVES

The primary objectives of this research are to:

• carryout sensitivity analysis of the major types of interface elements in the

context of the soil condition of Bangladesh;

• modify the original formulation of the selected interface elements and/or

apply appropriate solution techniques for making the interfaces

compatible and ease in application toFEM Code;

• compare performance of these interface elements and recommend the best

interface element for soil-structure problems.
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CHAPTER 2

2 LITERATURE REVIEW

2.1 GENERAL

In any interface between structural and geological media and at joints in rock masses

a situation of relative movement (translation and/or rotation) takes place under static and

dynamic loading. In finite element analysis of geomaterials consisting of dissimilar materials

along their common interfaces, it is practical to use suitable interface element to simulate

)i., model for predicting their correct behavior. Such elements will account for relative motion

along interfaces, will prevent penetration of one material into the other, -and will accurately

predict stresses along and across the interface.

The use of 2D elements with compatibility in a finite element analysis of dissimilar

continuum interfaces usually prohibit relative movement. Typically, nodal compatibility of

finite element method constrains the adjacent structural and soil elements to move together.

As such, interface or joint elements can be applied to model the soil-structure boundary such

as the sides of a wall or pile, or the underside of a footing. Particular advantages being the

ability to vary the constitutive behavior of the soil-structure interface (e.g., the maximum

x-J. wall friction angle) and to allow differential movement of the soil and the structure, i.e., slip

and separation.

Interface elements are numerical entities used in the finite element technique for

modeling kinematic discontinuties that are present in some boundary value problems. In

numerical practice, two types of interface elements are used: a) a reduction from a classical

volume finite element (thin layer interface elements) and b) a surface element which is a

zero thickness joint element. For the first type of element (Ghaboussi et al., 1973 and Desai

et aI., 1984) the soil-structure interface is considered as a thin continuum and the thickness

6



of the interface should be specified. This may cause some problem since the real thickness is

often unknown and is also very small compared to the other dimensions of the region. It is

"-J, even unclear which type of test should be performed to determine the constitutive law of the

material within those elements: the soil should in fact be subjected to very large

deformations for modeling this interface behavior.

Many methods have been proposed to model discontinuous behavior at the. soil-

structure interface. These include: a) use of thin2D finite elements with standard

constitutive law; b) linkage elements in which only the connections between opposite nodes

are considered (usually opposite nodes are connected by discrete springs); c) special

interface or joint elements of either zero or finite thickness; and d) hybrid methods where the

soil and structure are modeled separately and linked through constraint equations to maintain

)I.: compatibility of force and displacement at the interface.

Wilson (1977) has demonstrated that ill-conditioning of the interface element

stiffness matrix due to large off-diagonal terms causes loss of accuracy. Ghaboussi et al.

(1973) and Wilson (1977), therefore advocate the use of relative displacement as

independent degrees of freedom for interface elements. The use of this relative degree of

freedom formulation requires modification of the adjacent 2D elements only on one side of

the interface, so that they use the same relative degrees of freedom. Thus, incorporation into

a finite element program is complex. This formulation also causes problems at joint

intersections.

The benefit of the relative degree of freedom formulation is uncertain. Pande and

Sharma (1979) compared a series of analyses using the relative degrees of freedom

formulation with similar analyses using the absolute degree of freedom formulation. They

found that little ill-conditioning is experienced with the use of very thin 2D elements. The

additional effort involved in the use of the relative displacement element may not be

worthwhile.

~ ..
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Griffiths (1985) recommends the use of special interface elements instead of thin

standard 2D elements for more accurate modeling of the interface when slippage is of prime

""..J. .. concern.

Desai et al. (1984) propose a thin 2D joint/interface element called a thin-layer

element for soil-structure interaction. A special constitutive law is used to model the

principle deformation modes of shear and opening. Their report states that with the use of

zero thickness elements it is often difficult to obtain constant and stable stress in the

interface elements themselves, and therefore the stress in the adjacent 2D elements is often

adopted rather than the interface element stress itself. It is argued that the thin-layer element

is computationally more reliabJe than the zero thickness element. The choice of element

thickness is however important, and can effect the behavior of the interface given the'same

constitutive parameters. An extensive parametric study has recently resulted in guidelines

)<:. and empirical criteria for the determination of element thickness of the thin-layer element.

Zero thickness elements however have been used by many others without reporting

similar problems. The element used has been based on that proposed by Goodman et al.

(1968). The essential modifications to this original element are the extension to four and six

node isoparametric formulations to make the interface element compatible with

isoparametric quadrilateral 2D elements.

Numerical problems such as ill-conditioning, poor convergence of solution and

unstable integration point stresses have been experienced by R.A. Day and D.M. Potts

..J,... (1986) when using the zero thickness interface element to simply supported split beam,

simple pull-out test and overturning of an elastic block.

Both ill-conditioning of the stiffness matrix and high stress gradients were found to

cause numerical instability. Ill-conditioning can be reduced by careful selection of the size of

the 2D elements adjacent to the interface. The problem of steep stress gradients is entirely

one of inadequate mesh design.
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Analyses of retaining wall using interface elements confirm the analytical values of

active and passive earth pressure coefficients which are commonly used in analysis and

...-J design of retaining wall.

2.2 INTERFACE ELEMENT OF ZERO THICKNESS

Distinct interface element of zero thickness is widely used in finite element analysis

of geologic structures. Goodman et al. (1968) proposed the first element of this type applied

to geologic media. Several other zero thickness elements have also been developed based on

the original formulation. The zero thickness interface elements possess some fundamental

deficiencies which are: spurious stress oscillations attributed to inappropriate quadrature

schemes; lack of accuracy due to excessively large stiffness parameters; and inaccurate

.•.~interface stress predictions due to insufficient mesh fineness have been cited in the past. A

kinematic inconsistency is associated with the displacement of this element proposed by

Goodman et al (1968).

2.2.1 INTERFACE ELEMENT PROPOSED BY
GOODMAN ET AL.

For simplicity in the subsequent discussion, the zero thickness interface element

proposed by Goodman et al. (1968) in simulating the behavior of jointed rock masses, shall

be referred to here-in-after as the "GTB" element. This rectangular element posses four

nodes and eight displacement degrees of freedom (Refer to Figure 4-1). When using GTB

J-. element in the analysis of geologic media, at each node point along the interface a pair of
nodes is placed at the same initial geometric location; the thickness of the element is thus

initially zero. The element equations are derived on the basis of nodal relative displac~ment

components of the continuum elements on either side of the interface. The relative

displacements are then related to absolute displacements. Since they are prerequisite for

understanding the subsequent discussion, some details concerning the GTB element are

presented.

9



The vector of absolute nodal displacement degrees of freedom with ,respect to the

local coordinate system (x' -y') is given by:
" j'.....•.

(2-1)

Where, the superscript T denotes the of matrix transposition. Associated with the

above displacement components is a corresponding vector of nodal forces:

(2-2)

The vector of relative displacements is defined as

(2-3)

J< Where, Wt and Wn represent tangential and normal relative displacement respectively,

"along the interface. The matrix relating relative and absolute displacements is given by

(2-4)

where,

N, =1/2- x'/L

N2 =1/2 +x'/L

represent standard linear functions .

(2-5)

(2-6)

.J.. The tangential and normal forces per unit length of interface, O't and O'n respectively,

are related to the relative displacements through a suitable constitutive relation. Since the

aim is to address on the deficiencies associated with zero-thickness interface elements and

not on the constitutive relations used, the following simple relation shall be employed

herein,

o ]{Wt
} = [D]{w} = [DHN' ]{u'}

d22 Wn

10
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More complex constitutive relations for such elements have been presented by

various researchers.

"-'-. The constitutive parameters dll and d22 appearing in equation (2-7) represent the

tangential and normal stiffness per unit length respectively, along the interface. Alternately,

d 11 and d22 can be thought of as tangential and normal penalty numbers.

Considering {w} as a generalized "strain", the element stiffness matrix is computed from

[Ke']= f [N. r [DliN. ~x' = f [N. r [D][N. ]det[J]d~ (2-8)
x. (

Since the element is rectangular, the Jacobian [1] is constant, allowing the above

integrations to be performed analytically (similar results could of course be realized using

standard two-point Gauss-Legendre quadrature). The resulting element stiffness matrix with

),t.respect to local element coordinates, is thus:
)

2dll 0 dll 0 -dll 0 -2dll 0
2d22 0 d22 0 -d22 0 -d22

2dll 0 -2dll 0 -dll 0

[Ke'] = L 2d22 0 -2d22 0 -d22 (2-9)
6 2dll 0 dll 0

sym. 2d22 0 d22
2dll 0

2d22

,j..." The element equations must next be transformed to system coordinates (x-y). Noting

that the local and system coordinates are related through

{X'} = [ co.se
y' -sme

sine ]{x} = [R]{x}
cose y y (2-10)

It follows that the element stiffrIess matrix and force vector, with respect to system

coordinates, are computed in the usual manner; that is,

[K e ] = [R • ] T lK e' J [R • ]
11
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Where,

,~ {fe }= [R' ]T {re' } (2-12)

[R] 0 0 0

[R'] = 0 [R] .0 0 (2-13)
0 0 [R] 0

0 0 0 [R]

2.2.2 INTERFACE ELEMENT PROPOSED BY
HERRMANN

The second zero thickness interface element proposed by L.R. Herrmann (1978) is a

"X\Link element. The element is referred to as LRH element.

According to Harrmann's approach, the bond behavior is modeled through fictitious

springs - one normal and one tangential to the interface - at each pair of mating nodes. For

each pair of nodes along the interface there are thus four global unknowns: two absolute

displacements and the relative displacements 8t and 8n in the tangential and normal

directions, respectively. The relative displacements 8t and 80 between a pair of mating nodes

1 and 2 are related to the absolute displacements U'lx U'ly U'2x U'2y in the following manner

,
ulx

_J...
{::} = [~l0 1 ~],Uly (2-14)

-1 0
,
u2x,
u2y

where primed subscripts again refer to the local (x' - y') coordinate system.

The relationship between nodal element forces and relative displacements is given by:

12



-P 0 f;xI
'--iJ L 0 -Pn {:} f;y

- (2-15)\

2 PI 0 f~x
0 Pn f~y

Where L represents the length of the interface element, Pt and Pn denote the

tengential and normal link spring stiffness per unit length, respectively; they may likewise be

thought of as penalty numbers.

Substituting equation (2-14) into (2-15) gives the element equations for a single pair

of mating nodes along an interface, that is

. I~ PI 0 PI 0
,

f;x- uix
L 0 Pn 0 -P ,

f;yn uiy- = (2-16)2 -P 0 PI 0
,

f~xI u2x
0 -P 0 Pn ,

f~yn UZy

Next consider an interface to be modeled using an element of length L with two

links, one associated with nodes I and 2, the other with nodes 3 and 4 (Figure 2-1).

Assuming that the two links are independent of each other but have the same normal and

tengential stiffness per unit length, the element stiffness matrix, in local coordinates, is given

by:

...1.
PI 0 -PI 0 0 0 0 0

Pn 0 -P 0 0 0 0n
PI 0 0 0 0 0 (2-17)

[Ke'] = L Pn 0 0 0 0

PI 0 -P 02 I
sym. Pn 0 -P n

PI 0
Pn

\

~,
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where the uncoupling between links is readily apparent. The associated vectors of

nodal displacements and nodal forces are given by equations (2-1) and (2-2) respectively.

I

i-
8

x

Figure 2-1: Four-Node Zero-Thickness Interface Link Element of Herrmann

2.2.3 IMPROVED FOUR-NODED INTERFACE ELEMENT
(MACRO-ELEMENT)

In light of the deficiencies in the above mentioned interface elements, it is evident

,..l.,that an improved family of zero-thickness interface elements is desirable. Such elements

should: (a) determine response modes based on the logic of the LRH elements; (b) possess

the normal response characteristics of the GTB element; and (c) eliminate the kinematic

deficiencies associated with the GTB element by employing tangential respQnse similar to

the LRH element. The development of the simplest member of such an element family is

presented below:

14



Consider a macro-element composed of two rectangular GTB elements of equal

....,~ length (Figure 2-2) and for brevity this has been referred to as LKI element. The thickness of

both elements is initially zero prior to deformation, the pairs of nodes 1-4, 5-6 and 2-3 are

coincident. The nodal lines 1-5-2 and 4-6-3 represents straight lines oflength L.

V~1V~~,
'3 V'2.1 1-

V''2.~

Figure 2-2: Macro-Element Consisting of Two GTB Elements

Since both GTB elements are rectangular, the integrations associated wit~ the

element stiffness matrices are performed analytically. For each element, the resulting

stiffness with respect to local element coordinates, is thus given by equation (2-9) multiplied

by a factor of 0.50.

Using a standard assembly procedure, the two element stiffness matrices are next

combined to give

(2-18)

Where,

(2-19)

'L~' ..C
"
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2du 0 0 0 0 0

'-,.1 2d22 0 0 0 0

[Kul =
2du 0 -2du 0 (2-20)

2d22 0 -2d22
sym 2du 0

2d22

-2d11 0 du 0 -du 0
0 -2dn 0 d22 0 -d22

[K12l
0 0 du 0 -du 0

=
0 0 0 d22 0 -d22 (2-21)
0 0 -du 0 du 0
0 0 0 -d22 0 d22

)<
2du 0 - du 0 d11 0

2d22 0 - d22 0 d22

[K22l
4du 0 - 4dll 0

= (2-22)
4d22 0 - 4dn

sym. 4du 0
4d22

{ue'}" = {u;x I , I I I I I I I I 'V {2-23)Uly U2x U2y U3x U3y U4x U4y USx USy U6x U6y

/ ..•.. {fe'r = {f;x f;y f~x f~y f;x f;y f;x f;y f~x f~y f~x f' V (2-24)6y

Using standard procedures associated with the finite element method, the degrees of

freedom associated with nodes 5 and 6 are next condensed out from equation (2-18),

resulting in the element equations

(2-25)

•.............,,:C'-' ,

,
- ;- - ,"- 16



Where,

"\j

7dll 0 -d"l1 0 dll 0 -7dll 0,\

7d22 0 -d22 0 d22 0 -7d22
7dll 0 -7dll 0 dll 0

[Ke']" = ~
7d22 0 - 7d22 0 d22 (2-26)

48 7dll 0 -dll 0
sym 7d22 0 -d22

7dll 0

7d22

and the vectors {ue'} ** and {r'} ** are given by equations (2-1) and (2-2), respectively.

>' Comparing equation (2-26) with the stiffeness matrix associated with the GTB
\

element (equation (2-9)), it is 'evident that although the structure of the two matrices is

similar, the numerical coefficients and more importantly the signs of certain off-diagonal

terms differ.

The transformation of element equations to system coordinates (x-y) is "realized in the

manner described by equations (2-11) to (2-13).

The interface tangential and normal forces per unit length are defined m the

following manner

.,~.

f' + f' d.
at = 3x 4x =_11 (-u' -u' +u' +u' )L 8 Ix 2x 3x 4x

f' + f' d3y 4y 22(, , , ,)
an = L =8 -Uly -U2y +U3y +U4y

Where equation (2-25) has been used to substitute for f' 3x , f' 4x , f' 3y and f' 4y

17
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2.3 CONTACT -FRICTION INTERFACE ELEMENT

The specific objective of this element formulation isto: (a) present a simple friction-

contact interface element readily adaptable to standard FEM programs; (b) illustrate the

implementation and validity of the interface element; and (c) demonstrate the importance

and need of interface elements for modeling certain buried culvert problems.

The proposed interface element is capable of responding to a general step-by-step

loading history, such that tensile separation, friction sliding, or complete bonding (or

rebonding) is possible during any load step. Two nodes, one on either side of the interface,

along with the interface angle <p are used to define the interface element. By selectively

applying the constraint equations to the interface nodes in an incremental iterative solution

procedure, the behavior of a contact-friction interface is simulated.

The formulation is limited to static and two dimensional geometry; however, the

inclusion of inertia and three dimensional geometry is straightforward. Further it is assumed

that deformations are small so that changes in the interface angle are negligible, and there is

no thermal coupling.

Two computational advantages are inherent in the proposed interface element. Frist,

the constraint equations along with the associated normal and tangential interface forces are

incorporated into an incremental virtual work statement, as opposed to the more common

technique of introducing constraint equations with LaGrange multipliers in a minimization

principle (e.g. minimum potential energy). Thus, the formulation based on virtual work is

not restricted to conservative systems. Secondly, the interface element produces an element

constraint matrix and element load vector analogous to a typical element stiffness matrix

and load vector. Thus, the interface element can be assembled into the global equations by

standard techniques.
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a) Virtual work and constraint equations

A standard finite element displacement formulation (without constraints) based on

incremental virtual work, i.e. internal virtual work is equal to external virtual work, or:

(2-29)

where

u = incremental displacement vector
K = tangent global stiffness matrix
P = incremental load vector

Here DuT is an arbitrary virtual displacement, so that satisfaction of equation (2-29)

requires that Ku = P (usually solved iteratively).

If equation (2-29) represented a finite element assembly of two bodies initially in

contact at node pairs as suggested in (Refer to Figure 4-2), then, of course, the two bodies

can deform independently resulting in overlapping and/or separation along the interface. On

the other extreme, if the node pairs at the interface are constrained to move together, a

completely bonded response is' obtained. Between these two extremes, a slipping response

can be obtained by constraining only the displacements normal to the interface at each' node

pair.

The particular forms of the constraint equations and the treatment of interface friction
l

.,..1., are discussed in the next section. For now, the objective is to incorporate and arbitrary set of

constraint equations into a global virtual statement. Formally, any set of linear nodal point

constraint equations can be expressed as:

Where,

Cu-a=O

C constraint coefficient matrix

a = specified constraints (e.g. displacement gaps)

19
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Associated with each constraint equation in equation (2-30) there exists an unknown

<-J internal constraint force A enforcing constraint. For convenience, equation (2-30) can be

expressed in a scalar (work) form as:

8 A.T {Cu - a} = 0 (2-31)

where OA is an arbitrary variation of the constraint forces so that satisfaction of

equation (231) implies equation (2-30).

To this end, the virtual work of the constraint forces have not been accounted and the

internal constraint forces produce internal virtual work when the constraint is given a virtual

movement (variation), i.e., o{Cu-a} T A. Since C and a are constants, this becomes:

Constraint virtual work = OUT CT A (2-32)

Physically this is analogous to imposing constraints with stiff springs between node

pairs wherein the internal spring force corresponds to the constraint force. However, in this

case the constraint forces are primary unknowns.

To complete the formulation, we add the internal virtual work given by equation (2-

32) to the virtual work statement in equation (2-29) and append the constraint requirement in

equation (2-31) to get the general virtual work statement including constraints:

(2-33)

(2-34)

Thus, the coupled matrix equations above from the global system to be solved for u

and A. Note that the separate partitioning of the global system into u and A is a mere

formality and not required in the actual assembly. Indeed, the constraint equations may be

treated at the element level by forming an element constraint matrix, C* and vector f as:

u A

C' = {~ :}
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Here, The matrix and vector quantities associated with u pertain to only those

f = {~ ~-35)

degrees of freedom affected by the constraints. Since C* is symmetric it can be assembled

like any stiffness element as can the element load vector f . Global storage locations .for 'A

can be easily established by defining dummy nodes in the finite element mesh. However, to

maintain narrow bandedness of the assembled matrix (equation (2-33)), the dummy nodes

should be numbered as closely as possible to the nodes being constrained.

b) Interface element constraint matrix and load vector

To separate the foregoing to friction-contact interfaces, we assume that any interface

X can be modeled as a sequence of node pairs (Refer Figure 4-2), so that attention can be

focused on a single node pair (interface element) as shown in Figure 4-3. Here, the interface

element is defined in x', y' coordinates which are rotated ~ degrees from the global x, y

coordinate system. At the end of any load step k, the interface responses are characterized by

interface forces 'Ak
n and 'A\ and/or relative movements /::;\ and /::;\ where subscripts n and s

refer to normal and tangent directions, and the superscript identifies the load step. No
. . l' d . '\ '\k '\ k-lsuperscnpt Imp les an Increment, e.g., Jl,n = JI, n - JI, n.

Assuming both nodes of the element (nodes 1 and 2 in Figure 4-3) are initially in the

same location prior to loading, the relative movements are given by the nodal displacements

in the x', y' system as normal.

Ak_(, ,)k
L1 s - V 2°- VI

(2-36)

(2-37)

We can now identify three interface states impose them during a load step: fixed,

slip and free.
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(1) Fixed state: for this case the relative normal and tangential movement between the

nodes is specified by two constraint equations:

ul

[ -COS~ - sincp coscp sin~ ] VI ~{:}smcp - coscp -smcp coscp u2
v2

where,

(2-38)

a = specified normal separation (increment)
b = specified relative slip (increment)

In the above, the local u' and v' displacement increments have been replaced by

global u, v displacement increments so that equation (2-38) can be used to define element

constraint matrix C* and load vector f in global displacement coordinates as implied in the
, I

~\ equation (2-34 and (2-35). The top portion of Table 4-1 explicitly defines C* and f and may

be assembled like any stiffness element.

If a and b are both specified zero, the normal gap and relative slip do not change

during the load step, i.e., both nodes experience identical displacement increments. If on the

other hand, we wish to return the nodes to their initial position (no gaps), we set a = -11
0
k-l , b

= _A k-l
tis .

(2) Slip State: The slipping state is characterised by constrammg the normal
displacement increments and specifying the tangential interface force increment, i.e.;

(- coscp -sincp coscp

ul

sincp) VI = a
U2

v2

(2-39)

(2-40)

Since, A.sis specified, the element constraint matrix and load vector can be put in the

form shown in the center portion of Table 4-1 wherein the matrix size remains 6x6 for

computational convenience.

22



To simulate a friction-contact interface, the specified values (i.e. T and a in the above

equations) are generally determined iteratively dependent on the previous state of the

"..J, interface (fix, slip or free) and the frictional model. For this case, simple Coulomb friction is

assumed, thus the maximum possible interface tangent force at end of load step k is:

Where:

Fk =p.1A n k I sgn (A s k )

F k =maximum frictional tangent force
Jl = coefficient of friction

( k) {+ 1, for Ask > 0sgn A s = k

. - 1, for A s < 0

. (2-41)

Accordingly, the specified incremental tangent force is T = Fk - Ask-I

>( (3) Free State: The free state requires suppressing both constraint equations and
specifying the normal and tange'nt interface force increments, i.e.,

The corresponding interface element matrix and load vector are sho~ in the bottom

portion of the Table 4-1 where, again, the element matrix size is maintained as 6x6 for

computational convenience in global assembly.

Iterative procedures for determining the correct interface state and load vector

parameters (a, b, Nand/or T) are discussed next. In passing, however, it is observed that a

fourth interface state characterizes by tangential displacement constraints and specified

normal forces could be easily established as, for example, in simulating a gear-tooth

interface.

c) Interface iterative procedure

The problem is posed as follows. Given the interface solution at load step k-l,

denoted by Don
k-I , Dos

k-I ,11,/-1 and Ask-I, we seek to determine the solution increments Don, Dos,

An and As so that the solution at the end of load step k, denoted by ak = a + ak-I (ak = Donk ,

Dosk , An k or Ask), is properly determined at the end of load step k. By a proper solution we
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mean the physical compatibility and equilibrium conditions of the contact - friction interface

are satisfied.

In general the solution must be determined iteratively wherein a particular state (fix,

slip or free) is assumed and solved to obtain a trial solution. The trial solution is used to

determine if the assumed state is correct, and if not, what state is more likely to be correct.

At the same time, the trial solution is used to estimate new load vector parameters a, b or a,

Tor N , T depending on whether the new state is assumed fix, slip or free, respectively:

Table 4-2 offers an exhaustive set physical criteria to test the validity of an assumed

state. The table may be viewed as a 3x3 decision matrix wherein the previously assumed

state forms rows and the new candidate states form columns. Por example, if the previously

assumed state was fixed, row 1 of the decision matrix is queried to determine if the net

normal interface force An k is compressive and if the net tangent interface force As k is less
than the maximum frictional value pk.

If not, the fixed assumption is incorrect (at least this iteration) and the new candidate

state is slip or free depending on whether An k is tensile or compressive.

In a similar manner rows 2 and 3 of Table 4-2 test the validity of assumed slip and

free states. In row 2 an assumed slip is correct if Ank is compressive and the relative slip

increment ds has the same sign as the maximum frictional value pk• Howe~er, if ds is in

opposition to pk relative slip movement cannot reverse its direction until passive frictional

_J.., frictional force reverses direction, so that a fixed state for the next iteration is assumed.

Lastly for row 3, an assumed free state is correct if the normal gap d/ is greater than zero,
otherwise, the new state is assumed fixed. This does not imply a slip state cannot be reached

from a free state; it simply implies a slip state must be reached by and iterative path; free to

fix to slip.



For each iteration within the load step, Table 4-2 provides the choice for the next

assumed state. However, prior to assembling the stiffness elements and constraint elements

'J, (Table 4-1) for the next trial solution, the constraint load vector parameters a, b or a, T or N,

T (corresponding to fixed, slip or free) must be specified (estimated). These incremental

values are dependent on the known solution at step k-1 and the current trial solution for step

k. Table 4-2 gives these values located in a 3x3 matrix. For example, if a known slip state

existed at load step k-I and the next iteration for step k is to be assumed free, we set N = -

Ank-l and T = - Ask-l so that the resulting trial solution will give Ank = A/ = 0, i.e. no net

interface forces.

Other entries in Table 4.:3 are generally self explanatory except, perhaps, for the free-

to-fix case (matrix position 3, 1). Here the implication is that interface penetration (~~k<0)

.1M'" was observed in Table 4-2, so that we wish to assume a fixed state for the next iteration.
~ -

Accordingly, the normal gap is closed by specifying a = - ~n k-l. With regard to

specifying the slip gap increment, we first observe that the ratio a /~n is that portion of the

normal gap increment which does not cause penetration. Thus, it is reasonabie to assume

that slip gap increment can be specified in this proportion, i.e., b = ~s I a /~n I.

In brief summary, the incremental iterative algorithm is started for each load step by

assuming the interface state remains as in the step just completed. For the very first load step

we assume the node pairs are fixed and reside in the same geometric location. For all

subsequent iterations, Table 4-1 provides the logic for determining the validity of the

solution; Table 4-3 gives the corresponding load vector parameters; and Table 4-1 gives the

form for the corresponding constraint matrix and load vector to be assembled. Convergence

is witnessed by satisfying the criterion on the main diagonal of Table 4-2 as well as

obtaining converged values for the frictional force Fk.
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2.4 INTERFACE ELEMENT PROPOSED BY DESAI ET AL.

The distinguished features in the development and use of a thin solid element are to

simulate interface behavior that lie in the special treatment of the constitutive laws for the

thin-layer element, choice of its thickness, incorporation of various modes of deformation

(Refer to Figure 4-4) and implementation for a number of problems with displacement,

mixed and hybrid finite element procedures.

Schematic diagrams of the thin-layer element for two and three dimensional

idealizations are shown in Figure 4-5. The element is treated essentially like any other. solid

(soil, rock or structural) element. However, its constitutive matrix [C]i is expressed as

Where,

{da }= [C1{de }
{dO'}= vector of increments of stresses,
{dE}= vector of increments of strain

(2-41)

and the constitutive matrix [C]i is given by

[cl
(2-43)

where [Cnn] = normal component, [Css] = shear component and [Cns], [Csn] represent

coupling effects. Since it is difficult to determine the coupling terms from laboratory tests, at

this time, they are not included.

A basic assumption made is that the behavior near the interface involves a finite thin

zone (Refer to Figure 4-5) rather than a zero thickness as assumed in previous formulations.

As stated earlier, it may not be appropriate to assign an arbitrary high value for the normal

stiffness. Since the interface is surrounded by the structural and geological materials, normal

properties during the deformation process must be dependent upon the characteristics of the

thin interface zone as well as the state of stress and properties of the surrounding elements.

Based on these considerations, it was proposed to express the normal stiffness as :
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. (2-44)

Where, ami, J3mg , Ymst (m = 1,2, ) denotes the properties of the interface,

geological and structural elements, respectively. From here onwards the second subscript in

[Cnn] etc. is dropped. Equation (2-44) can be written as

(2-45)

Where, [Cn]i denotes normal behavior of the thin interface element, and AI, A2 and A3

are the participation factors varying from 0 to 1. Equation (2-45) is expressed as an addition

of various components. However, it is possible to define it by using a different (polynomial)

,;~. expression. One of the simplifiGations would be to assume A2 = A3 = 0 and Al = 1, implying

that the normal component is based on the normal behavior of the thin-layer element

evaluated just as the adjacent soil element. It is possible to arrive at appropriate values for Al

based on a trial and error procedure in which numerical solutions are compared with

laboratory or field observations. Often, it was found that satisfactory results can be obtained

by assigning the interface normal component the same properties as the geological material.

For most application presented herein, Al = 1 and A2 = A3 = 0 were adopted. As long

as the significant deformation mode is stick, these values provide satisfactory results. The

contribution of the participation factors becomes important when opening or debonding

,1- initiates. Preliminary work towards determination of the participation factors for normal

stiffness in cyclic loading has shown Al = 0.75, A2 = 0.25 and A3 = O. Now, work to:vards

derivation of these factors by comparison with laboratory data is in progress.

The shear component [Cs]i is obtained from direct shear or other interface shear

testing devices (Refer to Figure 4-6(a)). In this study [Cs]i is assumed to be composed of a

shear modulus Gj for the interface. The expression used for tangent Gj is given by:.
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(2-46)

where t = thickness of the element (Refer Figure 4-6(b) and Ur = relative displacement

a) Constitutive Modeling.

The thin layer interface element can be formulated by assuming it to be a linear

elastic, non-linear elatic or elastic-plastic. The development of its stiffness characteristic

follows essentially the same procedure as solid elements, that is the stiffness matrix, [k]i is

written as:

.~ (2-47)
v

Where, [B] = transformation matrix, V = volume and [Cep]iis the constitutive matrix.

Then the element equations are ~itten as:

(2-48)

where,{q} = vector of nodal displacements and {Q} = vector of nodal forces.

For linear elastic behavior, [Ce]i can be expressed as

.k C1 C2 C2 0 0 0

C2 C) C2 0 0 0

[ce 1 =
C2 C2 c) 0 0 0

= [[C~l [c~d (2-49)

0 0 0 Gi2 0 0

0 0 0 0 Gi2 0

0 0 0 0 0 Gi2
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where,

c _ E(I- v )
1 - (1+ v )(1- 2v )

= Ev
(1+ v )(1 - 2 v )

(2-50)

i~ E is the elastic (Young's) modulus, v is Poisson's ratio and Gii (I = 1,2,3) are the

shear moduli defined in equation (2-46). lfthe shear behavior is assumed to be isotropic, Gil

= Gi2 =;; Gi3 • Here it is assumed that the shear response is uncoupled from the normal

response represented by [Cn]. For two dimensional idealization, the special form of [Ce]i and

its inverse form, [De]i are given as:

1 -v 2 -v(I+v) 0
E E (2-51)

[De 1= -v (1+ v ). I-v 2

0
E E

~ 0 0
1
Gj

For non-linear elastic behavior such as hyperbolic simulation, E, v and G can be

defined as variable moduli based on triaxial and direct shear tests. For example Gi can be

written as:

...•..:.r'~

( J
D ( J2G. = Ky ~ 1 _ Rft

I W Pa. ca + a ° tan cp

29

(2-52)



Where, K, n and Rf are material parameters, Yw = unit weight of water, Pa =

atmospheric pressure, Ca = cohesion and ~ = angle of friction. Alternatively, the shear

<.-.I modulus can be obtained by expressing the 't VS Ur relation in a polynominal form described

subsequently.

In addition to the foregoing linear and non-linear elastic models, the proposed

formulation also allows for elastic-plastic behavior. Then the constitutive matrix for the

interface is written as:

(2-53)

where, {dul} = vector of incremental relative displacements. The second part of

equation (2-53) is found on the basis of yield and flow criteria of the theory of plasticity .

.,,~ Here conventional criteria such as Mohr-Coulomb can be used with yield function, f, and

plastic potential function, Q; for associated plasticity f = Q. To allow for dilatancy in the
case of rock joints different f and Q can be used in the context of non-associative plasticity.

b) Stick, slip, debonding and rebound modes

Depending upon the material model used, criteria such as Mohr-Coulomb and

Drucker-Prager are used to define the initiation of slip at the interface; before the slip, the

interface is assumed to be in the stick or no slip mode (Refer to Figure 4-4(a)). The stick

mode and the slip mode can occur such that the normal stress is compressive. During

debonding, the computed normal stress can be tensile, but physically, it is zero at the

interface. In subsequent loading or unloading, an interface that has experienced opening or

debonding may close or rebond. This is identified when the normal stress in the interface

becomes compressive. In soil-structure interaction problems, penetration nodes is not

permitted during closing. In a non-linear incremental analysis, the (excess) tensile stress is

redistributed in the surrounding zones during the iterations at each load increment. Thus the

stick, slip, debonding and rebonding are accounted for.
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c) Testing for interface modelling

..•.-1 For the static and cyclic behavior of interfaces and a new piece of equipment called a

cyclic multi-degrees of freedom device has been developed. It can permit testing for

interfaces andjoints under stress and strain controlled loading and for 'translational, rocking

modes.

2.5.1 SIMULATION OF INTERFACE MODES

...)/
I \

The quality of simulation of the interface behavior depends upon a number of factors

such as physical and geometrical properties of the surrounding media, non-linear material

behavior and the thickness of the thin-layer element. If the thickness is too large in

comparison with the average contact dimension (Refer to Figure 4-5) or the surrounding

elements, the thin layer element will behave ,essentially as a solid element. If it is too small,

computational difficulties may arise. Desai, et al. (1984) have proposed that for satisfactory

simulation of the interface behavior, the ratio of thickness to the average contact dimension

(tIb) should lie between 0.01 and 0.10.

Various deformation modes that an interface can experience are incorporated in the

thin layered element. It is assumed that before the application of load the interface elements

are in stick or non-slip mode. Mohr-Coulomb yield criterion is used to identify the various

modes of deformation. For a given increment ofload, the normal stress an and the total shear

't on the plane of interface element are' calculated. The modes of deformation are then

checked and if the element is found to be in separation or slip mode, appropriate

redistribution of stresses is performed. Details of the adopted procedure are given as follows:

• The normal stress an and shearing stress 't due to the loading in a particular

increment is calculated for the interface plane. Then the sign of normal str~ss an

is checked. If the sign is positive (compressive stress) the element can be either in

stick mode or in slip mode. If an is negative (tensile stress) the element is

considered to be in separation mode.
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• For value of O'n is positive, the stick or slip mode is determined using the limiting

shear stress of the interface. The limiting shear stress "CL in the shear plane is

calculated based on Mohr-Coulomb criteria which is:

'l L = ca + a n tan <Pa

Where, Ca is the adhesion and 4>a is the angle of friction between structure and
soil.

• If "C ~ "CL then, the element is in non-slip or stick mode and there will be no

redistribution of stresses and no change in the stiffness parameters E and Gj.

• If "C >"CL then the element is in slip mode and the shear stress "C would be made

equal to the limiting" shear stress "CL. Thus, the unbalanced load due to the excess

shear stress ("C -"Cd would be applied at all nodes of the interface elements as self-

equilibrating load in the next increment. The equivalent nodal loads due to

stresses in an element is calculated by:

• For negative value of O'n , i.e. separation mode, both the shear stress, "C and

normal stress, O'n are made to be almost zero. But with a negative sign (say, -

2.7x 10-30 ). As a result, the unbalanced nodal loads, calculated using the above

equation is applied at nodes of interface elements as self-equilibrating load in the

next load increment. The E and Gj values at this stage are actually zero. In .order

to avoid any numerical difficulties, a very low value of E and Gj are assigned for

the next step of analysis.

• To check the possibility of rebonding, the sign of normal s~ress for each

individual loading increment is checked. If it is positive, the total normal stress

which was negative previously is made to be equal to zero. As a result, it is no

longer negative and falls into the category of stick or slip mode. Then the element

would undergo the same steps as experienced by a normal interface element with

positive normal stress.
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TEST PROBLEMS

2.6.1 Direct Shear Test

Figure 2-3(a) shows a schematic diagram of a direct shear test device in which the

bottom half is concrete and the top half contains soil. A series of tests were performed with

concrete-sand interfa~e under different normal loads. Figure 2-4 shows two typical test

results for the sand with a relative density around 80 per cent for two normal loads.

STEEL BOX

"(c) integration points (b) IcleolizCltion of Direct SheClr Test
for Concrete-soil InterFace

6CONCRETE
n

T
" Tl

. . '. . . .
" "

," .J
B

INTERFACE

SAND

SAND

"+@ '+QO)
+Q) +~

:-'.:":' . . ',"",........
" ... ':.' :....'. . . . : ,"". . ...

(0) Direct Shear Test for
Concrete-soil InterFace

Figure 2-3:
I

Analysis for Direct Shear Test For Choice of Thickness (Desai, C.S,

Zaman, M.M., Lightner, J.G. and Siriwardane, H.J., 1984)

The direct shear test data for the normal stress of O'n=4.89 t/ft2 (4.77 kglcm2) and

O'n=9.79 t/ft2 (4.77 kg/cm2) were analysed by using a two-dimensional plane strain finite

element procedure. The shear stress vs. relative displacement curve was simulated by using a

polynomial function:

(2-54)

33



Where aj (i = 1,2, .... ,4) are constants. Herethe values of ctj were found to he aI=53

kg/cm3, a2=8.2 kg/cm~l, a3=8.2 kg/cm4, <X4=7.0kg"l. The tangent stiffness ks in equation 2-

""'-..). 54 was evaluated as the derivative of 't with respect to Ut at a point during the incremental

loading.

The fInite element mesh using eight-node isoparametric elements is shown in Figure

2-3(b). The outside metallic box was also discritised and the shear load was applied at the

mid-node on its vertical side. The material properties used are given below:

Soil:

~-

Initial modulus:

Poisson's ratio

Concrete:

Interface:

Adhesion

Angle of friction

Initial modulus

Es=I,OOOkg/cm2

vs=0.375

Ec=1.5xlOS kg/cm2

vc=0.375

ca = 0.0

~ = 38°, tan~ = 0.7813

E1 = 103kg/cm2

vj=O.375
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The thickness t, of the element was varied such that the ratio t/B was 0.001, 0.010,

0.100 and 1.00. Since the shear modulus Gj is a function of the thickness, its value also

varied with the thickness.

The computed results in terms of (relative) displacement, Uro and the ratio t/B for

applied shear stress t = 3.0 kg/cm2, O'n= 4.77 kg/cm2, and t = 5.0 kg/cm2, O'n= 9.55 kglcm2

are plotted in Figure 2-5. The computed displacements show a wide variation as the

thickness is changed. However, the results in the range of 0.01 to 0.10 of t/B show

satisfactory agreement with the observed values of 0.032 cm for the test and 0.034 cm for

the tests with O'n = 4.77 kg/cm2 and 9.55kg/cm2 respectively (Figure 2-4). Note that for

higher and lower values of t/B than this range, the computed displacements are much

different from the measured values.

Table 2-1: Distribution of Shear Stress in Interface Element at Integration Points
(Figure 2-3(c)) (Desai, C.S, Zaman, M.M., Lightner, J.G. and Siriwardane,
H.J., 1984)

O'n=4.77kg/cm2 Integration points
t/B 1 2 3 4 Average
1 2.3939 3.6034 2.1203 3.8771 2.9987
0.1 2.7390 3.2602 2.7049 3.2940 2.9996
0.01 3.0022 2.9975 2.9975 3.0022 . 2.9999
0.001 2.9967 3.0021 2.9964 3.0025 2.9994
O'n=9.55kg/cm2

1 3.7868 6.2084 3.239 6.7562 4.9976
0.1 4.4778 5.5210 4.4093 5.5895 4.9994
0.01 5.0044 4.9950 4.9950 5.0044 4.9997
0.001 4.9914 5.0065 4.9950 5.0075 4.9990

Table 2-1 shows computed values of shear stresses at the four integration points

. (Figure 2-3(c)) of the interface element. It can be seen that the best correlation between

computations and the applied stresses of t = 3.0 kg/cm2
, O'n= 5.0 kg/cm2 is obtained for a

t/B ratios smaller than 0.10. Although the average values of the computed stresses are not

significantly different for the ratios considered, the uniformity of computed stresses is

greater for t/B ratios smaller than 0.01.
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Based on the foregoing results, it can be concluded that satisfactory. simulation of

interface behavior can be obtained for t/B ratios in the range from 0.01 to 0.10. This

conclusion may need (small) modifications if the non-linear behavior. of soils and interfaces

were simulated by using other or advanced constitutive models.

Pande and Sharma (1979) reported that.thin element provided satisfactory results for

much lower ratios of t/B. From the view points of both the displacements and stresses, use

the ratio t/B in the range 0.01 to 0.10 can be appropriate. The ratio can vary during .mesh

refinement; however, if it remains within this range, the thin layer element can provide

satisfactory simulation of the interface behavior.

)~' 2.6.2 Pull-Out Test

10,0

, ,II , I , • , , I '.
0.0

0.0 1.0

50,0

12@0,50=6.0

Figure 2-6: Simulated Pull-Out Involving Zero Thickness Interface Element
(Kaliakin, V. N. and Li, J, 1995)

The finite element mesh shown in Figure 2-6 represents a simulated pull-out from a

surrounding continuum. The continnum is modeled by four-node quadrilateral elements

numbered 1 to 48. Element 4'9 to 72 are interface elements, and the inclusion of zero

thickness interface element is represented by twelve two-node bar elements (for clarity, these
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are not numbered in Figure 2-6). In order to better focus attention on the interface, both the

continnum and the inClusion are indealised as isotropic, linear elastic materials. The elastic

modulus and Poisson's ratio for the continnum are 2.0xl03 and 0.25 respectively. The self-

weight of the continnum material is considered to be negligible, and a, state of plane strain is

assumed. For the inclusion, the elastic modulus and cross-sectional area are taken equal to

2xl04 and 0.10 respectively. The shear strength of the interface is assumed to be governed

bya Mohr-Coulomb criterion with a friction co-efficient equal to 0.50 and cohesion

intercept equal to zero. A normal distributed compressive load equal to 10.0 is applied in the

first solution step and is maintained constant throughout the remainder of the loading

history. The horizontal load is applied monotonically from a value of zero at the solution

step to a value of 50.0 at the twenty-first step.

The normal response of the interface elements is first assessed. In elements such as

the GTB, LRH and LKI (Refer to Section 2.2) that employ a penalty type formulation,

momentum is exactly conserved while compatibility is approximated. Since in the first

solution step only the uniform normal distributed load is applied to the mesh, the normal

response can easily be assessed from just this one step. The results of such analyses, for

different values of d22 and for different interface elements, are summarized in Table 2-2. In

order to realize comparable vertical (normal) displacements, the values of d22 used for the

LKI elements are three times those used for the GTB and LRH element
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TABLE 2-2: Summary of Results for Response Normal to Interface
(Kaliakin, V. N. and Li, J, 1995)
Average Average Average Average Relative
Vertical Vertical Vertical Vertical Vertical

Element Stress In Stress In Stress In Stress In Displacement
Elements Elements Elements Elements Along

(d22) 1-12 13-24 25-36 37-48 Interface
GTB
(108) -10.00 -10.00 -10.00 -10.00 2.0x10-7.
LRH
(l08) -10.00 -10.00 -10.35 -19.35 2.0x10-7

LK1
(3x108) -10.00 -10.00 -10.00 -10.00 2.0x10-7

GTB
(1012) -10.00 -10.00 -10.00 -10.00 2.0x10-11

LRH No
(l012 Convergence n/a n/a n/a n/a
LK1
(3x1012) -10.00 -10.00 -10.00 -10.00 2.0x10'11

GTB
(1016) -10.00 :'10.00 -10.00 -10.00 2.0x10-15

LRH No
(1016) Convergence n/a n/a n/a n/a
LK1
(3x1016) -10.00 -10.00 -10.00 -10.00 2.0x10.15

From (able 2-2 it is evident that even for values of d22 equal to 1016, the normal

~ stress associated with the GTB and LK1 elements are exactly transmitted across the

interface. Furthermore, the use of large values of d22 yields relative normal displacements

across the interface that are effectively zero. In comparison, the normal response of the LRH

element was obviously unacceptable. In particular, for large values of d22convergence could,
not be realised. This performance characteristic, which has also been found to mesh-specific,

further supports previous observations concerning the lack of robustness of this element in

simulating response normal to the interface. For this reason, the LRH element could not be

included in the subsequent pull-out simulations.
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The combined normal and tangential response of the GTB and LKI dements is

considered next. In particular, the simulated pullout test shown in Figure 2-6 is analysed. For

the GTB elements the values dll = 1.0x106 and d22= 1.0xl010 are assumed, for the LKI

element dll = 1.0xl06 and d22= 4.0xl010
•

12,00
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L
0
LL 8,00 \\1
c;..c

\\\
-- +' 6,00+'0)
s:::: C
(\) (\)

0)-:1 4,00
I\~s::::

~~;

O+'
f- --c 2,00 \~::J
0
+' L
0 (\) 0,00
f- a.-

-2,00
0,00 1.00 2,00 3,00 4,00

• 6-GTB eleMent/side
& 12-GTB eleMent/side
o 24-GTB eleMent/s~de
o 48-GTB eleMent/side

5,00 6,00

-i

Disto.nce Along IncluSion

Figure 2-:7: Distribution of Total Tangential Force Along Inclusion at Load of30.0: GTB
elements (Kaliakin, V. N. and Li, J, 1995)

The response of the GTB element is first analysed. In order to verify the convergence

of this element, three other mesh were created in addition to that shown in Figure 2:.7. In

these meshes the number of interface elements along each side of the inclusion was equal to

six, twenty-four and forty-eight. For each of the four meshes, the distribution of total

tangential force along the inclusion at a pull-out force equal to 30 is shown .in Figure 2-7.

From this figure it is evident that: (a) convergence is realized, but with some oscillations in

_the -sign of the tangential force for the -two coarsest meshes; and (b) mesh refmement

eventually removes the oscillations, through acceptable results require a mesh containing 24

elements per side.
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Distribution of Total Tangential Force Along Inclusion at Load of 30.0: GTB
elements (Kaliakin, V. N. and Li, J, 1995)

The results of a similar convergence study for the LKI element are presented in

Figure 2-8. From this figure it is evident that: (a) monotonic convergence is ~ealized; and,

(b) the result associated with the mesh containing twelve elements on either side of the

inclusion are practically identical to those associated with the finer meshes: As such, the

mesh shown in Figure 2-6 and used in the previous portions of this example is deemed

sufficiently fine.

In summary, it has been shown that the normal response of the LKI element to be ,

_..I associated with the LRH element. The combined normal and tangential response of the LKI

element was found to be supe~or to that of the GTB element. More precisely, the force

oscillations associated with the latter element have been removed from the response of the

former. With respect to the tangential force distributions, the convergence of the LKI

,element was found to be superior to the GTB element. Finally, it is pertinent to note that the

capabilities of the LKI element for simulating actual laboratory pull-out eXp'erimentshave

recently been assessed. The agreement between numerical results and experimental

measurements was found to be quite good.
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CHAPTER 3

3 SOLUTION TECHNIQUES

3.1 GENERAL

In Dynamic relaxation (DR) a system undergoes damped vibration' excited by a

momentum constrained force which ultimately comes to at rest in the displaced position of

static equilibrium of the system under the action of the stationary force. As it attains a static

solution through a dynamic process, it is sometime called 'pseudo-transient' or 'fictitious

dynamic' process. This solution method was initially developed as an alternative to linear

solution techniques. It has got high ability to solve nonlinear geometric and material

behavior. It is a very suitable. method for computation of since it treats all quantities as

vectors which results in easy programmable method. The implementation of force-level DR

solvers has undergone a significant success in treating problems with strong, sharp

nonlinearities like non-associated flow in plasticity with large non-normality and very high

friction angle.

3.2 DYNAMIC RELAXATION SOLUTION STRATEGY

3.2.1 Dynamic Relaxation Equations

-J The governing equations for nonlinear geometry and material behavior are given by

the following:

p_pinil = F

and P = I JBadv
N ""

Where,

P is the vector of internal forces.

1,£:
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pinit is the vector of nodal forces due to initial stresses.

F is the vector of external forces.

B is the displacement-strain transformation matrix.

N is the number of elements in the FEM discretization.

(J" is the vector of stresses in each element.

ve is the volume of each element.

The solution to the above goverrung equations are obtained from the steady state response of

a dynamic equation of motion;

mu + cit + P - pinit = F

Where,

m is the mass matrix.

c is the damping matrix.

u is the acceleration vector.

and it is the velocity vector.

Applying the central difference technique to Equation 3-2, we get;

(3-2)

it=
nt+AI _ nt-AI (3-3)

2M

u=
nt+AI _ 2nt + nt-AI (3-4),...•J' (M)2

where, M is the time increment.

Using a diagonal mass matrix m, the damping matrix is determined as:

c=am

where, a is the damping ratio.

Substituting Equations 3-3, 3-4 and 3-5 into Equation 3-2), we get,

43

(3-5)



ul+<Y= l' [11t
2
(F_p+pinil)' +2u' -(1-0.5~t)UI-<Y]

(1+ O.5~t) m
.(3-6)

'(3-4)

The above equation is a time marching equation, which has to be solved explicitly. Hence a

limitation of the critical time step is imposed on this equation, which will be discussed in the

latter subsequent sections.

3.2.2 Damping Parameter Determination

The determination of the damping value is the most critical one in the dynamic

relaxation method. For a given arbitrary damping factor much larger amount of computer

time is required to get the damped static value. So, many researchers suggested several

methods to determine the critical damping factor. Those methods are listed below:

• Method 1: This method (Alwar et ai., 1984) does not need to calculate nearly critical

damping factors. Rather this method uses the decaying exponential envelope of the

damped oscillations as the basis for determining the converged static solution.

• Method 2: The variation of kinetic energy of an undamped free vibration for a system is

monitored (Rushton, 1968, Pica et ai., 1980, Bicanic, 1979). By observing the first peak

in kinetic energy variation, critical viscous damping factor, c = 0) is calculated as:

21C
0)=-

T
T = 41;

Where Tj is the time to obtain the first peak in kinetic energy.

• Method 3: This method suggests that the kinetic energy of the structure be constantly

monitored and when the energy peak is detected, all the current velocities be set to zero

(Papadrakakis, 1981a, Cundall, 1976). Using this approach, the viscous damping

coefficient of Equation 3-2) is neglected and the equation of motion becomes,

mii+Ku = F
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+ Method 4: In this method critical damping parameter is estimated by Rayleigh's quotient

(Bunce, 1972) as follows:

(3-6)

Where,

x is the eigenvectors (incremental displacement is also acceptable for approximate

damping factor)

K is the full or diagonal (approximate) stiffness matrix. .

m is the diagonal mass matrix.

+ Method 5: The fifth approach is by Papadrakakis (1981). He calculated a series of

approximation to the dominant eigenvalue A DR from,

(3-7)

When A DR converged to almost a constant value, then this is the minimum

eigenvalue needed to determine 'c' for the optimum iteration parameter.

All the methods except Method 4 need some fruitless iterations only to determine the

damping parameter or achieve kinetic damping. So, in this formulation Met~od 4 is used.

The Rayleigh's norm shown in Method 4 is proposed mainly for linear analysis. For

nonlinear problem, the same expression as Equation 3-6) can be used, selecting the nodal

.-I displacement vector u and the local tangent stiffness matrix K. The tangent stiffness matrix

K is approximated by the diagonal form as:

Ip_t-.~Jp
K=---M.lu

(3-8)

where,

I P and 1-61P are components of the internal force vector at time t and t - M ,

. respectively, and IU is a component of the velocity vector at time t.
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3.2.3 Stabilization and optimization

The dynamic relaxation scheme is an explicit formulation, and all the .explicit time-

wise integration procedure which uses the central difference formula. is only conditionally

stable. In many cases this restricts the choice of the time interval to very small values if ,

numerical instability is to be avoided. It has a definite limit of time step length beyond

which the solution method becomes unstable. This is governed by the well-known Courant-

Friedrichs-Levy condition. Actually it says that Of cannot be larger than the time taken by

the two adjacent nodes of the mesh to transfer the information of deformation. This

instability arises mainly from the mismatch of integration speed and deformation .wave

speed. Mathematically this condition can be expressed as:

I
I1t 5, 13- (3-9)

Vc

where 13 is a factor to control the stability and speed of computation( p' 5, 1.0). I is the

minimum distance between the adjacent nodal points for an element. For constant strain

elements, the value of p can be near 1.0, but for higher order elements it reduces very fast.

Vc is the constrained compression wave velocity of the medium, since the pseudo-densities

are calculated separately in each of the x and y directions. From Equation 3-9) we get the

following expression:

,0(1 + v)(1- 2v)
I1t = 131 ()E1-v

(3-10)

-,'" Following the above equation, the stability of the integration of the equation of

motion can be assured but the critical time for stability may be too short, thus too

conservative. So various forms of fictitious mass are introduced in order to increase the

convergence rate towards the static solution. In the literature the following methods

proposed to estimate the fictitious density:

• A unit mass matrix (Rushton and Laing, 1968a).

• A real mass matrix computed from different densities corresponding to the u,V and w

directions (Rushton, 1968, Alwar et aI., 1974) .
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• A diagonal mass matrix obtained from the stiffness matrix K, in which the ith

component is given by mj,= '" K where r is the order of Kij (Brew and Brotton,
L..J;=I Y

1971).

• A diagonal mass matrix obtained from the stiffness matrix K, in which the ith

component is given by mit=' Kjj (Brew and Brotton, 1971).

• The most effective method for determining the elements of m is to choose mjj in. such

that the transit time for deformation wave for the degree of freedom 'i' to the adjacent and

similar degrees of freedoms is a constant. Usually this constant is linked to the time

step, I:!t =1. So mjj is determined in such a way that I:!t is always equal to 1 according to

the stiffness of the medium through which deformation wave is proceeding (Cassel and

Hobbs, 1976).

Among these methods, essentially the fifth one is employed here to have the

optimum speed of convergence. Based on Equation 3-10) a scaling method can be

introduced, which is essentially a mesh homogenization. Namely, an artificial mass density

p is calculated from Equation 3-10) on the element-by-element basis so as to give the same

transit time across each element for any element size. In this way, deformati<m information

(unbalance forces) travels uniformly over the whole mesh irrespective of different size

elements. In this way, the computational speed can be maximized by minimizing the ratio of

maximum to minimum eigenvalues of the system. So, from Equation 3-10), taking I:!t = 1,

we can have the fictitious density for the pseudo-mass matrix: as:

E(l- v)
p=-----

/32f(l + v)(l- 2v)
(3-11 )

where, E is the Young's modulus of elasticity, v is the Poisson's ratio. I is the

minimum distance between the adjacent nodes of an element in the FEM mesh. p is the

fictitious density varying from element to element in the FEM mesh. It is already said that

/3 is a factor (0 < /3< 1) controlling the stability and speed of convergence. /3.=1means that

the integration scheme will have maximum speed and /3~ 0.0means that it will have the

lowest speed. In all of the numerical tests described in later chapter, the only adjustable DR

parameter was p, which was set equal to 0.6 to achieve the stability of the explicit DR
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computation. All the other parameters were adapted and adjusted automatically throughout

the equilibrium iterations.

3.3 TRACING THE EQUILIBRIUM PATH

In this section, the DR method is evaluated from the view point of its ability in

tracing the whole equilibrium cUrve in the load-displacement (stress-strain) space exhibiting

post-peak softening. In the case of material non-linearity, usually there is a snap-through.

This problem has been handled in three ways: (a) load control with a real time dynamic

solution at post-peak, (b) direct displacement control and (c) arc-length control. Three types

of DR solution strategy were employed to solve this type of material non-linear problem. A

-( new way of tracing the whole equilibrium curve with DR has been derived using an arc-

length from the origin (Ramesh and C. S. Krishnamoorthy, 1993) and an adaptive DR

technique (Underwood, 1983). The arc-length method of solution, which was originally

developed by Riks (Riks, 1979) and Wempner (Wempner, 1971), and later developed and

applied by Crisfield (Crisfield, 1981) and others to some boundary-value problems, was

used in this study. Further, the "load control method was augmented by a real-mass dynamic

solution to capture the post-peak part of the equilibrium path. The direct displacement

control method (Batoz and Dhatt, 1979) was also applied to trace the whole equilibrium

curve.

3.3.1 Load Control Strategy

Using the following substitutions in Equation (3-6),

1~ = 0.5aM,51 = --,52 = 1-~
1+~

~ I = l:i.t 2 , R I = (F _ P + P inil r
m
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Equation (3-6) can be rewritten .in the following concise form;

~ ..

(3-13)

In the load control solution method, Equation 3-13) is followed strictly up to the peak

state until the residual grows to a predetermined threshold value. After that moment the

sol~tion in the post-peak is sought by following a dynamic solution with a realistic damping

ratio. This is shown schematically in Figure 3-3.

3.3.2 Displacement Control Strategy

In the displacement control solution, some of the displacement components are fixed

1 during one load step while the others are solved. Equations for fixed displacement

components are as follows:

u'+At = ol(m'R' +2u' -02U'-At)

R,-At = 0,0
1
= O

2
= 1.0,u' = u'-At

(3-14)

.. ~.

The other degrees of freedom are solved by Equation 3-13) as usual, which is shown

in Figure 3-4.

3.4 CONVERGENCE CRiTERION

In this analysis, convergence was checked by checking the global residual force

norm as follows:

(IIF - P + pinit Ilf
-'---------'- < 8

(IIFII)2 - I

and the differential residual force norm between two successive iterations,

n (IIF _ p + pinit 11)2 _ n+l (IIF _ p + pinit 11)2 ~ 82
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In this analysis, most of the computations were made, based on &1 = &2 = 10-6.

";l Differential tolerance is necessary to make the solutions independent of number, size of

finite elements. Some analysis done with other tolerance values will be described where

needed. This specific value was chosen considering a compromise between the computation

time and desired accuracy. It h~s been checked that for one order reduction in that tolerance,

the computation time doubles although results did not change significantly.

3.5 REDUCED INTEGRATION

The use of reduced integration technique in the development of FEM analysis can be

traced through the references to Zienkiewicz and his colleagues, Nagtegaal et al. (1974),

Sandhu and Singh (1978) and Bicanic and Hinton (1979) and Pica and Hinton (1980).

Reduced integration uses the quadrature rule which doesn't integrate exactly all the terms

contributing to the governing coefficient matrix. Often the stresses obtained from models
. .

based on reduced integration are more accurate than those obtained from models based on

integration orders sufficient to integrate exactly all contributions to the governing coefficient

matrix.

The improvement of accuracy by usmg reduced integration can be explained

according to Kelly (1980). According to Kelly, there are two basic way ofFEM formulation.

One is based on displacement formulation and the other is the assumed stress method. The

former model is mostly used. In this analysis, also this kind of FEM approximation is used.

They are based on parametric displacement fields ensuring compatibility of deformations

both internal of the elements and across the boundaries. Displacement field is usually

approximated within an element by applying some polynomial and constraints in terms of

known displacements. This model usually produces too stiff responses as it always

underestimates the internal strain energy. So it gives an upper bound solution. The second

type of models are based on the assumed parametric stress fields maintaining the internal

equilibrium and assuring continuous stress transmission between element boundaries. Here,
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the whole stress field is in equilibrium. This model is too flexible as the physical constraint

of compatibility is not enforced. It always overestimate the internal strain energy and giving

a lower bound solution. Uniformly reduced integration gives result in-between the upper and

lower bound solution, thus improving the accuracy of solution.

However, the use of low order integration for all terms in the coefficient matrix can

.lead to a hourglass mode or a zero energy (Irons and Ahmads, 1980) displacement pattern in

the model. These modes produce rigid body motion and the mesh starts self-straining,

consequently the solution is destroyed. Flanagan et al. (1981) showed that elastic and

viscous resistance can stabilize hourglass mode. Kelly (1980) showed that proper

constraintment can eliminate any redundant load path (zero energy mode) also. In this

analysis, an anti-hourglass scheme (Flanagan et aI., 1981) of elastic resistance (0.05% of the

elastic shear modulus of material) is used to prevent the hourglass model. This fractional

value is decided after some trial and error runs with the objective that it should be kept at the

minimum level while preventing the zero-energy mode. Otherwise it stiffens the solution.

3.6 STRESS UPDATING

In the way of the solution of the non-linear incremental equilibrium equations, the

elasto-plastic incremental stress-strain relations are integrated. This integration is based on

either incremental or iterative strains. Based on the type of strain increments, stress and

other state variables are updated either incrementally or iteratively as shown in Figure 3-1.

Load Load

Iterative stress updates

Displacement . Displacement

Figure 3-1: It shows the iterative and incremental solution strategy.

51



'-,<
; I

3.6.1 Iterative Stress Update

Iterative stress update is based on the iterative strain updated. The solution method

used here is a Dynamic Relaxation (DR) method consisting of time marching sc~eme,

therefore, at any point of equilibrium iteration it is possible to compute the iterative strains

and hence the iterative stress, which can further be integrated and updated. The drawback of

this method is the 'spurious unloading' due to the iterative nature of the strain increment and

the iterative strain produced by DR is most likely to oscillate initially due to the nature of

any dynamic solution scheme.

3.6.2 Incremental Stress Update

Incremental stress update is on the incremental strain update. Due to solution
,j1

.~' procedure (DR), incremental strain has to be calculated from the last equilibrium position as

shown in Figure 3-2. Obviously, in incremental stress update more CPU is used due to the

larger incremental strain (stress). But with a good elasto-plastic incremental stress-strain

integrating tool, it produces more accurate results. Best of it is that it reduces the 'spurious

unloading', which can be significantly high in case of DR as it is based on explicit dynamic

time marching scheme.
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Equilibrated
displacements

Do

DR equilibrium iteration

Intermediate
displacement

Dn=1

DR equilibrium iteratio

-Ji"
Iterative strain,

Eiter=B(Dn=l_ Dn=2)

Intermediate
displacement

Dn=2

Incremental strain,
Eiter=B(Do- Dn=2)

Figure 3-2: Flow chart explaining the iterative and incremental stress updates.

3.7 SUMMARY OF CHAPTER 3

Solution techniques are discussed in this chapter. Especially, the methods Dynamic

Relaxation (DR) technique are explained in details. As the results of any nonlinear .FEM

depends on the efficiency and accuracy of the solution method, so the stabilization,

optimization and damping parameter determinations of DR solution technique are discussed

here. Tracing the whole equilibrium curves in cases of snap-through and snap-backs are

discussed
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Figure 3-4: Flow chart for displacement control solution.
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CHAPTER 4

4 FORMULATION OF THE DIFFERENT INTERFACES AND PARAMETRIC
STUDY

4.1 FORMULATION OF THE INTERFACES

4.2 GOODMAN TYPE ELEMENT

,~
I

The zero thickness interface element was first proposed by Goodman et al. (1968) for

use in simulating the behavior of jointed rock masses. This rectangular element includes

four nodes and eight displacement degrees of freedom (Figure 4-1). When using the element

in the analysis of geologic media, at each node point along the interface a pair of nodes is

placed at the same initial geometric location; the thickness of the element is thus initially

zero. The element equations -are derived on the basis of nodal relative displacement

components of the continuum elements on either side of the interface. The relative

displacements are then related to absolute displacements.

0]'1V~~
'3 0'2.'1 -;...'

0''2.~

Figure 4-1: Four-Node Zero Thickness Element of Goodman et al. (Kaliakin, V.
N. and Li, J, 1995)

J
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4.2.1 Original Formulation

The vector of absolute nodal displacement degrees of freedom with respect to the

local coordinate system (x' -y') is given by:

(4-1)

Where, the superscript T denotes the of matrix transposition. Associated with the

above displacement components is a corresponding vector of nodal forces:

The vector of relative displacements is defined as

{wi = {::} = [N'Ku'l

(4-2)

(4-3)

Where, Wt and Wn represent tangential and normal relative displacement,
,

respectively, along the interface. The matrix relating relative and absolute displacements is

given by

o -N~ 0 N2

-N1 0 -N2 0 '(4-4)

Where,

N1 =1/2 - x'/L

Nz =1/2+x'/L

represent standard linear functions.

(4-5)

(4-6)

The tangential and normal forces per unit length of interface, crt and crn respectively,

are related to the relative displacements through a suitable constitutive relation. Since the

aim is to focus on the deficiencies associated with zero-thickness interface elements and not

on the constitutive relations used, the following simple relation shall be employed hereip
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o ]{Wt}=[D]{W}=[DHN0]{U1
}

d22 wn

(4-7)

.~
\

More complex constitutive relations for such elements have been presented by

various researchers.

The constitutive parameters dll and d22 appearing in equation (4-7) represent the

tangential and normal stiffness per unit length, respectively, along the interface. Alternately,

dll and d22 can be thought of as tangential and normal penalty numbers.

Considering {w} as a generalized "strain", the element stiffness matrix is computed from

[Ke']= f [N°Y[DIN° ~X' = f [N°Y[D][N° ]det[J]d~ (4-8)
x' ~

Since the element is rectangular, the Jacobian [J] is constant, allo~ing the above

integrations to be performed analytically (similar results could of course be'realized using

standard two-point Gauss-Legendre quadrature). The resulting element stiffness matrix with

respect to local element coordinates, is thus:

2dll 0 dll 0 -dll 0 -2dll 0
2d22 0 d22 0 -d22 0 -d22

2dll 0 -2dll 0 -dll 0
or: [Ke'] = L 2d22 0 -2d22 0 -d22 (4-9)

6 2dll 0 dll 0
sym. 2d22 0 d22

2dll 0
2d22

The element equations must next be transformed to system coordinates (x-y). Noting

that the local and system coordinates are related through
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{X'} =.[ co.se
y' -SlOe

sine ]{x} = [RJX}
cose y ~y

(4-10)

it follows that the element stiffness matrix and force vector, with respect to system
coordinates, are computed in the usual manner; that is,

[K e ]= [R.] TlK e' J[R.]
(4-11)

{fe }= [R. ]T {fe'} (4-12)

where,

l•.j
\

[R] 0 0 0

[R.] = 0 [R] 0 0 (4-13)
0 0 [R] 0

0 0 0 [R]

4.2.2 Modified Formulation (present Study)

It has been found from the literature survey that Goodman type element with zero

thickness creates problems in convergence of the solution. This element has a tendency to

t~ penetrate adjacent element and in order to stop that vertical penetration of element, vertical

stiffness w is increased to a large number. Due to the presence of this large pivotal element

in the system stiffness matrix, the solution becomes difficult. The resulting system of

linear/nonlinear equation becomes ill-conditioned.
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In order to improve the performance of original Goodman type element, thickness of

element is added to the original formulation. This is achieved through modifying the

1- equation (4-5) and (4':6) as follows:

(N\ = (1/2 - x'/L)/t)

(N2 = (1/2 + x'/L)/t)

Where, t = thickness of the element

In the force calculation of the interface element thickness is used. In this way severe

numerical problem can be alleviated.

4.3 KATONA TYPE INTERFACE

The formulation is limited to static and two dimensional geometry; however, the

inclusion of inertia and three dimensional geometry is straightforward. Further it is assumed

that deformations are small so that changes in the interface angle are negligible, and there is

no thermal coupling. Two computational advantages were inherent in the prop'osed interface

element. Frist, the constraint equations along with the associated normal and tangential

interface forces were incorporated into an incremental virtual work statement. Secondly, the

interface element produces an element constraint matrix and element load vector

analogous to a typical element stiffness matrix and load vector. Thus, the interface element

can be assembled into the global equations by standard techniques.+,
4.3.1 Original Formulation .

(a) Virtual work and constraint equations

A standard finite element displacement formulation (without constraints) based on

incremental virtual work, i.e. internal virtual work is equal to external virtual work, or:

(4-14)
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Where,

u = incremental displacement vector
K = tangent global stiffness matrix
P = incremental load vector

Here SuT is an arbitrary virtual displacement, so that satisfaction of equation (4-14)

requires that Ku = P (usually solved iteratively).

If equation (4-14) represented a finite element assembly of two bodies initially in

contact at node pairs as suggested in Figure 4-2, then, of course, the two bodies can deform

independently resulting in overlapping and/or separation along the interface. At the other

extreme, if the node pairs at the interface are constrained to move together, a completely

bonded response is obtained. Between these two extremes, a slipping response can be

obtained by constraining only the displacements normal to the interface at each node pair.

Formally, any set of linear nodal point constraint equations can be expressed as:

y

INTERFACE NODE PAIRS

x

Figure 4-2: Idealization of two bodies with initially mating pairs along the interface
(Katona, 1983)

(4-15)
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';l' Where,

Cu-a=O

C = constraint coefficient matrix

a= specified constraints (e.g. displacement gaps)

Associated with each constraint equation in equation (4-15) there exists an unknown

internal constraint force f.. enforcing constraint. For convenience, equation (4-15) can be

expressed in a scalar (work) form as:

(4-16)

..~.
\
\

where ~f..is an arbitrary variation of the constraint forces so that satisfaction of

equation (4-16) implies equation (4-15) .

To this end, the virtual work of the constraint forces have not been accounted and the

internal constraint forces produce internal virtual work when the constraint is given a virtual

movement (variation), i.e., ~{Cu-a}T f... Since C and a are constants, this becomes:

Constraint virtual work = ~uT CT f.. (4-17)

Physically this is analogous to imposing constraints with stiff springs between node

pairs wherein the internal spring force corresponds to the constraint force. However, in this

case the constraint forces are primary unknowns.

To complete the formulation, we add the internal virtual work given by equation (4-

17) to the virtual work statement in equation (4-14) and append the constraint requirement in

equation (4-16) to get the general virtual work statement including constraints:

(4-18)

Thus, the coupled matrix equations above from the global system to be solved for u

and f... Note that the separate partitioning of the global system into u and f.. is a mere
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(4-19)

formality and not required in the actual assembly. Indeed, the constraint equations may be

treated at the element level by forming an element constraint matrix, C. and vector f as:

u /..,

C' ~ {~ ~}

(4-20)

Here. The matrix and vector quantities associated with u pertain to only those

degrees of freedom affected by the constraints. Since C. is symmetric it can be assembled

like any stiffness element as can the element load vector f . Global storage locations for /..,

can be easily established by defining dummy nodes in the finite element mesh. However, to
~- maintain narrow bandedness of the assembled matrix (equation (4-18)), the dummy nodes

should be numbered as closely as possible to the nodes being constrained.

(b) Interface element constraint matrix and load vector

To separate the foregoing to friction-contact interfaces, we assume that any interface

can be modeled as a sequence of node pairs (Figure 4-2), so that attention can be focused on

a single node pair (interface element) as shown in Figure 4-3. Here, the interface element is

defined in x', y' coordinates which are rotated ~ degrees from the global x, y coordinate

system. At the end of any load step k, the interface responses are characterized by interface

forces /..,kn and /..,\ and/or relative movements f),\ and f),\ where subscripts n and s refer to

normal and tangent directions, and the superscript identifies the load step. No superscript
-r". I' d . '1 '1k '1k-!Imp les an Increment, e.g., ""n = "" n - "" n.
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Y,v

X,LA

Figure 4-3: Interface element representation m separate state, initial state at x' ,y'
origin(Katona, 1983)

Assuming both nodes of the element (nodes 1 and 2 in Figure 4-3) are initially in the

'~ same location prior to loading, the relative movements are given by the nodal displacements
i

in the x', y' system as normal

~\ = (V'2 - V'l)k

(4-21)

(4-22)

We can now identify t~ee interface states impose them during a load step: fixed,

slip and free.

(1) Fixed state: for this case the relative normal and tangential movement between the
nodes is specified by two constraint equations:

ul
[-cos~ -sm<p cos<p sin~] VI ~{:}sm<p - cos<p - sin <p cos<p u2

v2
Where,

(4-23)

a = specified normal separation (increment)

b = specified relative slip (increment)
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In the above, the local u' and v' displacement increments have been replaced by

''1 global u, v displacement increJ;Ilents so that equation 4-23 can be used to define element

constraint matrix C* and load vector f in global displacement coordinates as implied in the

equation 4-19 and 4-20. The top portion of Table I explicitly defines C* and f and may be

assembled like any stiffness element.

Table 4-1: Element constraint matrix C* and load vector f for three interface states
(Katona, 1983)

State Ul VI U2 VI An As load
0 0 0 0 -c S 0
0 0 0 0 -s -c 0
0 0 0 0 c -s 0

Fix 0 0 0 0 s c 0
-c -s c s 0 0 a
s -c -s c 0 0 b
0 0 0 0 -c 0 -sT
0 0 0 0 -s 0 cT
0 0 0 0 c 0 sT

Slip 0 0 0 0 s 0 -cT
-c -s c s 0 0 a
0 0 0 0 0 1 T
0 0 0 0 -c 0 cN-sT
0 0 0 0 -s 0 sN+cT

Free 0 0 0 0 c 0 -cN-sT
0 0 0 0 s 0 -sN-cT
0 0 0 0 1 0 N
0 0 0 0 0 1 T

c = cos~, s = sin~

If a and b are both specified zero, the normal gap and relative slip do not change

during the load step, i.e., both nodes experience identical displacement increments. If on the

other hand, we wish to return the nodes to their initial position (no gaps), we set:

- A k-I b - A k-Ia - -Un , - -Us .
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(2) . Slip State: The slipping state is characterized by constraining the normal
.".l displacement increments and specifying the tangential interface force increment, i.e.; .

ul

(- costp - sintp sintp )
VI

costp =a
Uz
Vz

As=T

(4-24)

(4-25)

Since As is specified, the element constraint matrix and load vector can be put in the

form shown in the centre portion of Table 4-1 wherein the matrix size remains 6x6 for

computational convenience .

.~ To simulate a friction-contact interface, the specified values (i.e. T and a in the above

equations) are generally determined iteratively dependent on the previous state of the

interface (fix, slip or free) and the frictional model. For this case, simple Coulomb friction is

assumed, thus the maximum possible interface tangent force at end of load step k is:

Where: Fk = maximum frictional tangent force
l-l = coefficient of friction

( k) {+ 1, for A. sk > 0sgn A. s = k

- 1, for A. s <0

(4-26)

..~
Accordingly, the specified incremental tangent force is T = Fk _ ').,}-l

(3) Free State: The free state requires suppressing both constraint equations and
specifying the normal and tangent interface force increments, i.e.,

---L...

As=T
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The corresponding interface element matrix and load vector are shown in the bottom

.). portion of the Table I where, again, the element matrix size is maintained as 6x6 for

computational convenience in global assembly.

Iterative procedures for determining the correct interface state and load vector

parameters (a, b, Nand/or T) are discussed next. In passing, however, it is observed that a

fourth interface state characterizes by tangential displacement constraints and specified

normal forces could be easily established as, for example, in simulating a gear-tooth

interface.

(c) Interface iterative procedure

"--fJ Given the interface solution at load step k-l, denoted by L1nk-l, L1tl , Ank-1and Atl,
'I

we seek to determine the solution increments L1n, L1s, Anand Asso that the solution at the end

ofload step k, denoted by <l = a + ak-l (ak= L1nk,6/ ,Ankor Ask),is properly. determined at

the end of load step k

In general the solution must be determined iteratively wherein a particular state (fix,

slip or free) is assumed and solved to obtain a trial solution. The trial solution is used to

determine if the assumed state is correct, and if not, what state is more likely to be correct.

At the same time, the trial solution is used to estimate new load vector parameters a, b or a,

T or N , T depending on whether the new state is assumed fix, slip or free, respectively.

Table 4-2 offers an exhaustive set physical criteria to test the validity of an assumed

state. The table may be viewed as a 3x3 decision matrix wherein the previ<;msly assumed

state forms rows and the new candidate states form columns. Por example, if the previously

assumed state was fixed, rowl of the decision matrix is queried to determine if the net

normal interface force Ank is compressive and if the net tangent interface force Askis less

than the maximum frictional value pk.
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Table 4-2: . Decision Matrix For Selecting New State During Iteration Within Load Step
(Katona, 1983)

Iteration ~ I Fix Slip
-J.,

i-I
Fix ,,} <0 and Ask< Fk A/ <0 and Ask> Fk

Free

Ank <0

Ank >0

Free L1nk <0 L1n
k >0

If not, the fixed assumption is incorrect (at least this iteration) and the new candidate

.,~ state is slip or free depending on whether Ank is tensile or compressive.

Other entries in Table 4-3 are generally self explanatory except, perhaps, for the free-

to-fix case (matrix position 3, 1). Here the implication is that interface penetration (L1~k<0)

was observed in Table 4-2 so that we wish to assume a fixed state for the next iteration.

Table 4-3: Specified Values For Constraint Load Vector (Katona, 1983) ..

Iteration ~ I Fix
-J.,

k-l
Fix a=O

'If'<. b=O
I

Slip a=O
b=O

Free a=-L1nk-!
b=L1sIL1SkI

Slip Free

N = -Ank-!
T = -Ank-!

N = -Ank-!
T = -Ask-!

N=O
T=O

.~.

Accordingly, the normal gap is closed by specifying a = - ~nk-! . With regard to

specifying the slip gap increment, we first observe that the ratio a /L1nis that portion of the
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.normal gap increment which does not cause penetration. Thus, it is reason~ble to assume

that slip gap increment can be specified in this proportion, Le., b = ~s I a /~n I .

4.3.2 Modified Formulation (present Study)

The basic formulation and implementation of Katona type interface element was

carried out with a incremental only solution scheme. In the original FEM program of

CANDE, there was no provision for iteration for the minimization of the error ~f the

solution.

Recently, there is a huge development in the solution scheme of nonlinear equations

,../ arising from the weak variational formulation of the governing elliptic/hyperbolic

differential equations. All these equations solvers are of vector iterative nature. This class of

solvers are very efficient both in speed and memory storage and they are good for

parallel/distributed computing as well. With this end-in-view the original Katona type

interface element has been modified to fit into the solution scheme of DR.

In any vector iterative technique formation of the global stiffness matrix is avoided

due to the involvement of large cost. But original Katona needs incorporating the element

constraint matrix (Table 4-1). This problem is solved by imposing the required constraint at

the transfer of global trial solution to the elementary level for strain (subsequently stress)

/'r', calculation. The constrained load vector (Table-4-3) is implemented at the end of

calculation of all trial internal forces. The decision matrix (Table 4-2)is implemented at the

beginning of application of each constraint equation and load vector imposition.

J,
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4.4 DESAi TYPE INTERFACE

.~, The distinguished features in the development and use of a thin solid element to

simulate interface behavior lie in the special treatment of the constitutive laws for the thin-

layer element, choice of its thickness, incorporation of various modes of deformation (Figure

4-4) and implementation for a number of problems with displacement, mixed and hybrid

finite element procedures.

I" I"
... " ..

f
[: :J

....,-(
(0.) StiCK or no slip

~_~-Ac
Ac

I ---
- h

J
__ A=Toto.l Areo.

C' ':IA" 0
5

(c) Debonding

..,
I
I
I

...J

C' :J
(b) Slip

CIJ
C":]

A = 0
5

(c) Rebonding

i
r-t-;

Figure 4-4: Schematic of Modes of Deformation at Interface(Desai, C.S, Zaman, M.M.,
Lightner, J.G. and Siriwardane, H.J., 1984)

4.4.1 Original Formulation

a) Incremental Stress-Strain Relation

Schematic diagrams of the thin-layer element for two and three dimensional

idealizations are shown in Figure 4-5. The element is treated essentially like any other.solid

(soil, rock or structural) element. However, its constitutivematrix [Cli is expressed as :
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'~
. I, Where,

{do }= [C1{de }

{dO'}= vector of increments of stresses,

{dE}= vector of increments of strain

and the constitutive matrix [C]i is given by

(4-29)

B=overo.ge conto.ct diMension

Figure 4-5:

Cb) Three-dif'lensiono.l

Thin-layer interface element(Desai, C.S, Zaman, M.M., Lightner, J.G. and
Siriwardane, H.J., 1984)

= (4-30)

t

.A
I

where [Cnn]= normal component, [Css]= shear component and [Cns], [Csn] represent

coupling effects. Since it is difficult to determine the coupling terms from laboratory tests, at

this time, they are not included.
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A basic assumption made is that the behaviour near the interface invloves a finite

thin zone (Figure 4-5) rather than a zero thickness as assumed in previous formulations. As
.')
..• stated earlier, it may not be appropriate to assign an arbitrary high value for the normal

stiffness. Since the interface is surrounded by the structural and geological materials, normal

properties during the deformation process must be dependent upon the characteristics of the

thin interface zone as well as the state of stress and properties of the surrounding elements.

Based on these considerations, it was proposed to express the normal stiffness as:

(4-31)

where ami, Pmg
, Ymst (m = 1,2, ) denotes the properties of the interface,

geological and structural elements, respectively. From here onwards the second subscript in

[Cnn] etc. is dropped. Equation 4-31 can be written as

(4-32)

where, [Cn]i denotes normal behavior of the thin interface element, and AI, A2 and A3

are the participation factors varying from 0 to 1. Equation 4-32 is expressed as an addition of

various components. However, it is possible to define it by using a different (polynomial)

expression. One of the simplifications would be to assume A.2 = A3 = 0 and AI" = 1, implying

that the normal component is based on the normal behavior of the thin-layer element

evaluated just as the adjacent soil element. It is possible to arrive at appropriate values for A.1

based on a trial and error procedure in which numerical solutions are compared with

)r\ laboratory or field observations. Often, it was found that satisfactory results can be obtained

by assigning the interface normal component the same properties as the geological material.

For most application presented herein, Al = 1 and A2 = A3 = 0 were adopted. Ag long

as the significant deformation mode is stick, these values provide satisfactory results. The

contribution of the participation factors becomes important when opening or debonding

initiates. Preliminary work towards determination of the participation factors for normal
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stiffness in cyclic loading has shown Al = 0.75, Ai = 0.25 and A3 = O.Now, work towards

.X' derivation of these factors by comparison with laboratory data is in progress. .
. , "

The shear component [Cs]i is obtained from direct shear or other interface shear

testing devices (Figure 4-6(a)). In this study [Cs]i is assumed to be composed of a shear

modulus Gi for the interface. The expression used for tangent Gi is given by:

(4-33)

~-(
I

Where., (J'thlckness of the element (Figure 4-6(b) and Ur = relative displacement)
#

T

y

rurej'z 1_7
(b) Defor-pw tions 0. t the inter-fo.ce

(0.) Scherwtic of Dir-ect Sheo.r- Test

Figure 4-6 Behavior at Interface(Desai, C.S, Zaman, M.M., Lightner, J.G. and
Siriwardane, H.J., 1984)
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b) Constitutive modeling

The thin layer interface element can be formulated by assuming it to be a Jinear

elastic, non-linear elastic or elastic-plastic. The development of its stiffness characteristic

follows essentially the same procedure as solid elements, that is the stiffness matrix, [k]i is

written as:

(4-34)
v

Where, [B] = transformation matrix, V = volume and [CP]i is the constitutive matrix.

Then the element equations are written as

[Kli{q} = {Q}

"-( where, {q} = vector of nodal displacements and {Q} = vector of nodal forces.,
For linear elastic behavior, [C]i can be expressed as

(4-35)

C1 C2 C2 0 0 0

C2 C1 C2 0 0 0

[Ce L =
C2 C2 C1 0 0 0 ~[[C~I [c~d0 0 0 Gi2 0 0

(4-36)

0 0 0 0 Gi2 0

0 0 0 0 0 Gi2

Where,
j' C _ E(I- v)

1 - (1 +v )(1-2v)

C2
Ev

= (1+ v )(1 - 2 v )

E is the elastic (Young's) modulus, v is Poisson's ratio and Gii (I = 1,2,3) are the

shear moduli defined in equation 4-33. If the shear behavior is assumed to be isotropic, Gil =

Gi2 = Gi3 . Here it is assumed that the shear response is UfIcoupled from the normal response
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represented by [Cn]. For two dimensional idealization, the special form of [Ce]i and its

X inverse form, [De]i are given as:

[e, C2

1.1[co J, ~ ~' C1

0

1 -v 2 -v (1+v )
0

E E

[Del= -v (1 + v ) I-v 2

0
E E

0 0
1
Gj

.,,,(

(4-37)

(4-38)

the latter is used in a mixed finite element procedure.

For non-linear elastic behavior such as hyperbolic simulation, E, v and G can be

defined as variable moduli based on triaxial and direct shear tests. For example Gi can be

written as

( In( J2G. = Ky ~ 1 _ RCt

I W Pa ca + a n tan tp
(4-39)

'r'" Where K, n and Rf are material parameters, Yw = unit weight of water, Pa =

atmospheric pressure, Ca = cohesion and ~= angle of friction. Alternatively, the shear

modulus can be obtained by expressing the 't vs. Ur relation in a polynomial form described

subsequently.

In addition to the foregoing linear and non-linear elastic models, the proposed

formulation also allows for elastic-plastic behavior. Then the constitutive matrix for the

interface is written as
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(4-40)

where, {dul} = vector of incremental relative displacements. The second part of

equation 4-40 is found on the basis of yield and flow criteria of the theory of plasticity. Here

conventional criteria such as Mohr-Coulomb can be used with yield function, f, and plastic

potential function, Q; for associated plasticity f = Q. To allow for dilatancy in the case of

rock joints different f and Q can be used in the context of non-associative plasticity.

4.4.2 Modified Formulation (present Study)

Desai type element differs from the rest of the interface elements in the description of

material behavior inside the interface. So, proper material description lays the foundation of

'1.... modified Desai type interface element.

In the present study, material behavior is described as nonlinear anisotropically

hardening-softening elasto-plastic dilating frictional material (Siddiquee, 1994). The peak

angle of internal friction and the stress-strain (€ I-€3) at peak angle of internal friction depend

on the void ratio of sand. The relationship can be shown as:

)r--\
i

Rmax = f(e)
Where,

Rmax =(;1 J
3 max

. ('" ) 1-Rmax
SIn If'peak = ---

1+ Rmax

(4-41)

(4-41)

So, the material model used here in this study is a frictional model which has a

nonlinear ~-y relationship for the beginning and runs up to peak softening (critical state of

void ratio).
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vOid rotio (e) is clecreosing

Figure 4-7: Typical relationship of ~-ydepending on void ratio, e.

The modified Desai type interface element uses shear strain parameter (y) instead of

relative displacement (Ur). This may be achieved very easily, just dividing Ur with the

thickness t.

-4.5 MATERIAL DESCRIPTION

Depending on the type of interface element, material property varies widely. In most

of the interface element capture the behavior of the slippage. So, the properties, related to

slip mode should be provided as accurately as possible. Separation or penetration creates

numerical instabilities in the analysis. In order to avoid this problem, relatively high value of

stiffness:. in vertical direction (perpendicular to the joint) is provided for the interface

element.

4.5.1 Interface Element

The material properties of interface element depend on the method of its formulation.

There are some properties, like stiffness of the interface element, which do not vary much

among the different elements. The following are description of interface element properties:

- a) Goodman Type: This type of interface element reqUIres the following

parameters to be defined.
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Table 4-4: Parameters of Goodman Type Interface

~.. \.

Name of the parameter Symbol used Typical range of value

Nonnal stiffness . Kn 104 -lOll psi

Shear stiffness Ks 102 _106 psi

Residual shear Ksres 1 -10 psi

Cohesion c 0.0 - any value

Angle of internal friction ~ 0.0 - 89.9 deg.

Thickness t Less than side of an element

The residual shear stiffness is activated where there is a mode of separation starts to

persuade. Usually, a residual shear stiffness of low value is used instead of regular shear

stiffness in order to simulate separation and avoid numerical instabilities.

b) Katona Type: this type of interface element requires the following parameters to be

defined.

Table 4-5: Parameters of Katona Type Interface

Name of the parameter Symbol used Typical range of value

Cohesion C 0.0 - any value

Angle of internal friction ~ 0.0 - 89.9 deg.

This element has the minimum number of parameters to be defined. I~requires only

the cohesion and angle of internal friction (peak value) of the interface material. This

'( element is actually a zero thickness interface element.
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c) Desai Type: this type of interface element requires the following parameters to be
defined.

~ Table 4-6: Parameters of Desai Type Interface

Name of the parameter Symbol used Typical range of value

Young's modulus E 104 _108 psi

Shear modulus G 103 -107 psi

Poisson's ratio v 0.10 - 0.30

Stress-strain relationship ~""'Y Depends on density

Thickness t Less than side of an element

It is very interesting to note that this type of interface element does not require any

parameters like, e or~. Because description to the constitutive law is good enough to take

""f care of the different modes of interface element, like slip, rebonding etc.

4.5.2 Surrounding Material

The property of the surrounding. material connecting two sides of the interface

elements depends mainly on the type of the material. It can vary on the computational

requirement as well. Granular material can be modeled as elastic or elasto-perfectly plastic

or elasto-plastic hardening material. Depending on the choice of the material model, cost of

computation and accuracy of the analysis increases. In this study all the analysis carried out

assuming linear elastic parameters, Young's modulus and poisson's ratio. Ther.e arer- provision for the inclusion of conventional material models like Cam-clay or h-plasticity

models of Cap models. Due to the limitation of computation time, present study is limited

to linear elastic model only.
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4.6 PARAMETRIC STUDY

In order to evaluate the general performance of the interface elements, a detailed

parametric study has been designed. As the parameters of different interface elements are

different, it is rather difficult to prepare a scheme to vary different parameters systematically.

The most sensitive parameters are varied to study the effect of the parameters on the stress-

deformation evolution of the problem.

4.6.1 Test Problem

Interface elements are usually used in geotechnical engineering to model smear-zone

'y: between two dissimilar material formed during driving of pile/sheet pile or retaining wall

construction or soil reinforcement. In all the case of application, the interface element is

expected to model slip mode as its primary mode of deformation. So, in this study a direct

shear test is investigated. The geometry, boundary condition and the loading are as follows:

Vertical looel= 10 los/node

r---- --
2' '';.'.:.;.::.;.'.:.;.'.:';.'. :.; •••• ;.'.:;.:
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Figure 4-8: Typical FEM model of direct shear box for parametric study
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,.
.,)..., Identification of Parameters

Three types of interface elements are studied in this research with some modification

in its original formulation. There are a number of parameters involved in each interface. It

is very difficult to perform a detailed parametric study of all the parameters involved. So,

the most sensitive parameters are picked from the literature survey and studied in this

research. The following Table shows the most sensitive parameters chosen for the

parametric study.

Table 4-7: Parameters selected for parametric study

Name of the interface Parameters studied

Goodman Type Kn, Ks, c,~, t

Katona Type ~, loading

Desai Type e, t, loading

4.6.3 Design of Analysis Scheme

The scheme of the parametric study is designed in such a way that shows the

difference among all the interface elements clear to all. The following Table 4-8 shows the

cases of parametric study performed for different types of interface and the different values

't' of the parameters.
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Table 4-8: Values of Parameters Used to Evaluate Different Interface Elements

"-VJ
\

I

~

Case Interface Intrface Intrface Soil Load
Type Stiffness c ill PSi Model Interface eccentricity

KN in psi ~ in deg. Es in psi Thickness (from top) in
Kg in psi (Elastic) inch inch

1 Normal
element - - Es=30000 0.25 0.20

I Goodman KN=105 c=50 Es=30000
Kg=100 cI>=20 v =0.30 0.10 1.0

2 Goodman KN=105 c=50 Es=30000
Kg =105 cI>=20 v =0.30 0.10 1.0

3 Goodman KN=105 c=o.o Es=30000
Kg=105 cI>=20 v =0.30 0.10 1.0

4 Goodman KN=104 c=O.O Es=30000
Kg=104 ~=20 v =0.30 0.10 1.0

5 Goodman KN=104 c=O.O Es=30000
Kg=104 cI>=20 v =0.30 0.05 1.0

6 Goodman KN=104 c=O.O Es=30000
Kg=104 cI>=20 v =0.30 0.02 1.0

7 Goodman KN=104 c=O.O Es=30000
Kg=104 cI>=20 v =0.30 0:10 0.80

8 Goodman KN=104 " c=O.O Es=30000
Kg=104 cI>=20 v =0.30 0.10 0.40

1 Katona - c=O.O Es=30000 0.05 0.40
cI>=5 v =0.30

2 Katona - c=O.O Es=30000 0.05 0.40
cI>=10 v =0.30

3 Katona - c=O.O Es=30000 0.05 0.40
~=20 v =0.30

4 Katona - c=O.O Es=30000 0.05 0.40
cI>=30 v =0.30

5 Katona - c=O.O Es=30000 0.05 0.80
cI>=30 v =0.30

1 Desai - ~-y=f(e) Es=30000 0.10 0.80
e=0.66 v =0.30

2 Desai - e =0.75 -do- 0.10 0.80
3 Desai - e =0.61 -do- 0.10 0.80
4 Desai - e =0.66 -do- 0.10 1.00
5 Desai - e =0.66 -do- 0.10 0.20
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4.6.4 FEM Details of The Analysis

In the FEM discritization, four noded iso-parametric elements. are used for

surrounding material. This element, when integrated with I-point gives optimal solution.

But due to use of this I-point integration, there may be some zero energy or hour-glass

mode, which can destroy the solution. This is prevented in the present analysis with the

detection of these modes and subsequent elimination (Siddiquee, 1994).

The interface elements of Goodman type are formulated as one-dimensional arrays

and are integrated using I-point integration. Katona type interface elements are just links

between the two nodes of the elements. It has got no properties other than cohesion and

.••.,-r'" friction. Desai type elements are normal four-node elements with proper material properties.
\
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CHAPTERS

5.1 GENERAL

There are a total number of 19 cases of parametric study including the first one as a

direct shear test without any interface element. In order to evaluate the numerical

performance of each of the cases, a number of outputs have been processed in a presentable

form. Four types of output are presented for each case and these are as follows:

a) deformed mesh for load steps 1, 5, 10, 15 and 20;

b) force-displacement and average stress-strain plot for the interface elements

over the whole range of loading;

c) shear strain contours for load steps 5, 10 and 15; and

d) displacement field for load steps 1,5, 10 and 15.

All results are presented according to the order of cases shown Table 4-8. The plot

(a) of deformed meshes and the others (b), (c) and (d) are shown according to the order of

cases shown in Table 4.8. For better presentation and understanding, the Figures are

numbered serially starting from the deformed meshes. The sorted patterns of numbering the

Figures based on their caption are as follows:

i) Deformed mesh:

• Normal element: Figure 5-1(a) to Figure 5-1(e);

• Goodman type interface, case-I: Figure 5-2(a) to Figure 5-2(e); to

• Goodman type interface; case-8: Figure 5-9(a) to Figure 5-9(e);

• Katona type interface, case-I: Figure 5-10(a) to Figure 5-10(e); to

• Katona type interface, case-5: Figure 5-14(a) to Figure 5-14(e);

• Desai type interface, case-I: Figure 5-15(a) to Figure 5-15(e); to

• Desai type interface, case-5: Figure 5-19(a) to Figure 5-19(e).
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ii) a) Force vs. DisplacementPlot:

. ~ • Normal element: Figure 5-20(a);

• Goodman type interface, case-I: Figure 5-23(a), case-2: Figure 5-26(a), case-3:

Figure 5-29(a), case-4: Figure 5-32(a), case-5: Figure 5-35(a), case-6: FigUre 5-

38(a), case-7: Figure 5-4I(a), case-8: Figure 5-44(a);

• Katona type interface, case-I: Figure 5-47(a), case-2: Figure 5-50(a), case-3: Figure

5-53(a), case-4: Figure 5-56(a), case-5: Figure 5-59(a);

• Desai type interface, case-I: Figure 5-62(a), case-2: Figure 5-65(a), case-3: Figure 5-

68(a), case-4: Figure 5-7I(a), case':5: Figure 5-74(a).

ii) b) Stress vs. Strain variation Plot:

• Normal element: Figure 5-20(b);

• Goodman type interface, case-I: Figure 5-24 (5), case-2: Figure 5-24(b), case-3:.....'.rJ
\ Figure 5-29(b), case-4:. Figure 5-32(b), case-5: Figure 5-35(b), case-6: Figure 5-

38(b), case-7: Figure 5-41(b), case-8: Figure 5-44(b);

• Katona type interface, case-I: Figure 5-4 7(b), case-2: Figure 5-50(b), case-3: Figure

5-53(b), case-4: Figure 5-56(b), case-5: Figure 5-59(b);

• Desai type interface, case-I: Figure 5-62(b), case-2: Figure 5-65(b), case-3: Figure 5-

68(b), case-4: Figure 5-71(b), case-5: Figure 5-74(b).

iii) Shear strain contour:

• Normal element: Figure 5-21(a) to Figure 5-21(c);

• Goodman type interface, case-I: Figure 5-24(a) to Figure 5-24(c), case-2:Figure 5-

27(a) to Figure 5-27(d), case-3: Figure 5-29(a) to 5-30(c), case-4: Figure 5-33(a) to

5-33(c), case-5: Figure 5-36(a) to 5-36(c), case-6: Figure 5-39(a) to 5-39(c), case-7:

Figure 5-42(a) to 5-42(c), case-8: Figure 5-45(a) to 5-45(c);

• Katona type interface, case-I: Figure 5-48(a) to Figure 5-48(c); case-2: Figure 5-

5I(a) to Figure 5-51(c); case-3: Figure 5-54(a) to Figure 5:"54(c); case-4: Figure 5-

57(a) to Figure 5-57(c); case-5: Figure 5-60(a) to Figure 5-60(c);

• Desai type interface, case-I: Figure 5-63(a) to Figure 5-63(c); case-2: Figure 5-66(a)

to Figure 5-66(c); case-3: Figure 5-69(a) to Figure 5-69(c); case-4: Figure 5-72(a) to

Figure 5-72(c); case-5: Figure 5-75(a) to Figure 5-75(c).

)
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iv) Displacement field:

• Normal element: Figure 5-22(a) to Figure 5-22(d);

• Goodman type interface, case-I: Figure 5-25(a) to Figure 5-25(d), case-2: Figure 5-

28(a) to Figure 5-28(d), case-3: Figure 5-31(a) to 5-31(d), case-4: Figure 5-34(a) to

5-34(d), case-5: Figure 5-37(a) to 5-37(d), case-6: Figure 5-40(a) to 5-40(d), case-7:

Figure 5-43(a) to 5-42(d), case-8: Figure 5-45(a) to 5-45(d);

• Katona type interface, case-I: Figure 5-49(a) to Figure 5-49(d); case-2: Figure 5-

52(a) to Figure 5-52(d); case-3: Figure 5-55(a) to Figure 5-55(d); case-4: Figure 5-

58(a) to Figure 5-58(d); case-5: Figure 5-61(a) to Figure 5-64(d);

• Desai type interface, case-I: Figure 5-64(a) to Figure 5-64(d); case-2: Figure 5-67(a)

to Figure 5-67(d); case-3: Figure 5-70(a) to Figure 5-70(d); case-4: Figure 5-73(a) to

Figure 5-73(d); case-5: Figure 5-76(a) to Figure 5-76(d).

5.2 INDIVIDUAL PERFORMANCE

5.2.1 Without Any Special Interface Element

Figure 5-1(a) through Figure 5-1(e) show the deformed meshes of the analy.sis at

load steps 1,5, 10, 15 and 20. The displacements of the deformed meshes are amplified 10

times. As expected the whole shear box is acting as one and rotating against the constrained

edge.

.,
j Figure 5-20(a) shows th~'a~erag~ load~s. displacement" along the loaded nodes.

Figure 5-20(b) shows the stress-strain relationship at the gross points of the interface

elements (supposed to be). From the observation of Figure 5-20(a) it is clear that horizontal

load is increasing monotonically. While the vertical load remains constant. But Figure 5-

20(b) shows that at mid depth of the shear box, horizontal stress increase is not much

compared to the vertical stress increase.
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Figure 5-21(a) through 5-21(c) shows the contour of shear strain at load steps 5, 10

..l. and 15. It has been observed that upper edge of depth 0.75 inch is severely strained and the

lower right comer is highly strained as well.

Figure 5-22(a) through 5-22(d) show the displacement fields at load steps 1, 5, 10

and 15. It has been observed that the first displacement field showed a downward movement

of the nodes and the tendency becomes horizontal in the subsequent loading steps.

The performance of the normal elements using as interface element is for from the

actual interface behavior.

5.2.2 Goodman Type Interf~ce Element

.,"1'/ Figure 5-2(a) through Figure 5-9(e) show the deformed meshes of the analysis of 8

(eight) cases (Table 4-8) at the load steps 1, 5, 10, 15 and 20. The displacements of the

deformed mesh are amplified 5 times. From Figure 5-2(a) through Figure 5-~(e), it cali be

seen that major deformation has taken place inside the interface elements and it is

progressively increasing from load step 5 through 20. One thing is clear from the last Figure

of this series (Figure 5-2(e» that as the horizontal load is applied to the upper nodes of the

interface element, then there is a tendency of separation on the right edge and a tendency of

penetration on the left edge.

Figure 5-3(a) through Figure 5-3(e) show the results of the study (case-3 of Table 4-

r~8) about changing the normal and shear stiffness to one value. From the observation of the

Figures 5-3(a) through Figure 5-3(e), it is clear that it has large effect on the deformation of

the interface element. Also the tendency of separation or penetration is decreased. As this

case is studied with a large cohesion value (50.0 psi) at the interface element, it has probably

the minimum interface deformation, as there has been no slip or debonding at the interface.

Figure 5-4(a) through Figure 5-4(e) show the deformation of the meshes for the

analysis with no cohesion (c = 0.0) to enforce the frictional slip. From the Figures of

deformed meshes it is seen that large deformation occurred for this analysis than the

88



previous one. Hence, frictional slip has taken place. The tendency of separation and/or
\

.,~, penetration remained at minimum.

Figure 5-5(a) through Figure 5-5(e) show the deformed meshes for the analysis with

weak interface stiffness compared to the surrounding material stiffness. It is readily seen

from the deformed meshes that there has been large deformation at the nodes of the interface

element. But this analysis shows clear indication of mesh penetration on the left edge and

mesh separation on the right edge.

All the above cases of analysis are performed with element thickness't = 0.10 inch.

Figure 5-6(a) through Figure 5-6(e) and Figure 5-7(a) through Figure 5-7(e) show the

deformed meshes of the analysis with element thickness t = 0.05 inch and t = 0.02 inch

respectively. It is interesting to note that Figure 5-7(a) through Figure 5-7(e) show almost no

""f' tendency of mesh penetration or separation. So, with the decrease in the thickness of

interface element, performance of the interface element increases. Figure 5-8(a) through

Figure 5-8(e) and Figure 5-9(a) .and Figure 5-9 (e) show the deformed meshes of the analysis

with shear loading at 0.80 inch and 0.20 inch from the top respectively. It has been found

that the tendency of the separation or penetration changes with the change in the location of

shear loading. When shear loading is at 0.20 inch from the top (Figure 5-9(a) through Figure

5-9(e)) the pattern of penetration/separation is reversed compared to the sh~ar loading at

0.80 inch from the top.

Figure 5-23(a) and Figure 5-23(b) show force-displacement and stress-strain

fi' relationship of the case-1 analysis. The force-displacement relationship at the loaded node

for horizontal and vertical loads shows unique relationship. From the relationship of the

horizontal load vs. displacement, it is seen that initially there has been less displacement/slip

at the interface and it increases at larger load steps.

Figure 5-24(a) through Figure 5-24(c) show the shear strain contours of the results at

load steps 5, 10 and 15. From the shear strain contours, it is clear that internal shearing has

taken place inside the interface element and intensity of shearing is given near'the left edge.
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Figure 5-25(a) through Figure 5-5(d) show amplified displacement field. Initial

motion of the displacement vectors is somewhat eccentric which is clear from Figure 5-

~. 25(a). Subsequently, with the increase in horizontal (shearing) load, the displacement

vectors become more inclined to the direction of the resultant load.

Figure 5-26(a) and Figure 5-26(b) show the force-displacement and stress-strain

relationship of case-2 analysis. From the relationship of the horizontal load vs. displacement

it is seen that initially there has been less displacement or slip at the interface and it

increases at large load steps. Figure 5-26(b) shows the stress-strain relationship inside the

interface elements. It can be seen that horizontal or shear stress is increasing monotonically

without a limit. The Mohr-Columb friction law is applied at the interface but as cohesion c

is set to be 50 psi for this case of analysis and the applied stresses have not exceeded this

value, so shear stress inside the interface increased monotonically.

Figure 5-27(a) through Figure 5-27(c) and Figure 5-28(a) through Figure 5-28(b)

show the shear strain contours and displacement fields respectively. Figure 5-29(a) and

Figure 5-29(b) show the force-displacement and stress-strain relationship qf the case-3

analysis. From the shear (horizontal) load vs. displacement relationship, it can be observed

that maximum shear displacement Islip is large in this case compared to the previous case.

From the stress-strain curve for horizontal (shear) stress, it becomes transparent that

horizontal stress is limited by the Mohr-Coulomb governing law (in the case of c =0). This is

the main reason for larger shear deformation.

';- Figure 5-30(a) through Figure 5-30(c) and Figure 5-31(a) through Figure 5-31(d)

show the shear strain contours and displacement field respectively for case-3. The

displacement fields show no sign of anYseparation or penetration.

Figure 5-32(a) and Figure 5-32(b) show the force-displacement and stress-strain

relationship of case-4 analysis. In this case interface stiffness is decreased by an order of 10.

The result can be immediately seen from the relationship of force-displacement. The shear .

displacement increased for the previous analysis.
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Figure 5-33(a) through Figure 5-33(c) and Figure 5-34(a) through Figure 5-34(d)

show the shear strain contours and displacement fields respectively for case-4 an~ysis.

Though the contours show more uniform distribution of shear strains, displacement vectors

show a clear sign of penetration on the left edge and separation on the right edge in all

stages of loading.

Figure 5-35(a) and Figure 5-35(b) show the force-displacement and stress-strain

relationship of case-5 analysis. In this case interface thickness t is decreased to 0.05 inch.

The results show the reduced shear displacement.

Figure 5-36(a) through Figure 5-36(c) and Figure 5-37(a) through Figure 5-37(d)

show the shear strain contours. and displacement fields respectively for case-5 analysis. It

can be seen from the shear strain contours that the uniformity of the contours is increased.

From the observation of the displacement fields it is seen that tendency for

penetration/separation is reduced but existing.

Figure 5-38 (a) and Figure 5-38(b) show the force-displacement and stress-strain

relationship of case-6 analysis. In this analysis thickness of the interface is reduced to 0.02

inch. The effect of this reduction is reflected in the reduction of shear displacement and

more uniform shear movement shown in the shear strain contours in Figure 5-39(a) through

Figure 5-39(c). The tendency of penetration/separation is also completely removed as seen

from the displacement fields shown in Figure 5-40(a) through Figure 5-40(d).

Figure 5-4l(a) and Figure 5-4l(b) show the force-displacement and stress-strain

relationship for the analysis ofload case-7. Location of the shear loading is changed to 0.80

inch from the top in this analysis. This actually decreased the height of the shear loading

from I inch from the top to 0.80 inch from the top. This actually decreased the penetration

and separation as seen from displacement field Figures (Figure 5-43(a) through 5-43(d».
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Figure 5-44(a) and Figure 5-44(b) show the force-displacement and stress-strain

relationship for the last case-8. In this case, location of loading is decreased further to 0040

inch from the top. This shows a relatively slow rise in the horizontal stress in side the

interface as seen in Figure 5-44(b).

Figures 5-45(a) through Figure 5-45(c) show very uniform shear strain contours.

From the observation of Figure 5-46(a) through Figure 5-46(d), it is found that separation

and penetration reversed their initial position. So, it becomes clear that penetration or

separation were due to the eccentricity of the shear loading.

5.2.3 Katona Type Interface Element

Figure 5-10 (a) through Figure 5-14(e) show the deformed meshes for the analysis of

5 (five) cases (Table 4-8) at load steps 1, 5, 10, 15 and 20. The displacements of the

deformed mesh are amplified 10 times in order to make the deformation perceptible.

Deformed meshes of the first. four cases (Figure 5-10(a) through Figure 5-13(e» show

decreasing total shear deformation inside the interface elements due to increasing friction

angle from 5° through 10°,20° and finally to 30°. Although there is a visible thickness of the

element in all the Figures of deformed mesh still it has no significance in the element

formulation. Katona type of interface is actually a zero thickness interface element. The gap

or thickness is shown for better comprehension of the mechanism. The fifth case of the

'l". analysis is carried-out by applying shear load at different level (0.8 inch from the top). It

\ shows less shear deformation inside the interface.

Figure 5-47(a) and Figure 5-47(b) show the force-displacement and stress-strain

relationship of the case-l of Katona type interface analysis. In this case friction is relatively

low (5° only). Figure 47(a) shows that after the horizontal load is increased up to a le~el of

the vertical load than the shear deformation due to slip (debonding) begins. Figure 5-47(b)

supports the above notation.
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Figure 5-48(a) through Figure 5-48(e) show the shear strain contours for oase-l

analysis of Katona type interface. From the Figure of the contours it can be seen that

formation of the interface shearing is progressive in nature unlike Goodman type elements

deformation took place on both sides of the interface elements even at a very low friction
angle at the interface.

Figure 5-49(a) through Figure 5-49(d) show the displacement fields for case-I.

Initial displacement field at load step 1 shows a tendency of separation on the left edge of

the shear box, but soon it is stabilized to shear horizontally. Upper part of the shear box

shows perfectly horizontal movement as it is dragged in slip mode.

Figure 5-50(a) through Figure 5-58(d) show force-displacement, stress-strain

relationship, shear strain contours and displacement fields for the cases-2, 3 and 4 for the

Katona type interface analysis. In these cases only the interface friction angle have been

changed from 10° through 20° and to 30°. The results are similar in pattern. For force-

displacement relationship, less shear deformation with the increase in friction angle is

observed. Stress-strain relationship shows a larger sharp up rise point in horizontal stress

increase before it becomes flat with the increase in friction.

Figure 5-59(a) and Figure 5-59(b) show the force-displacement and stress-strain

relationship for the analysis of.load case-5 of Katona type interface. In this analysis shear

load is applied at 0.80 inch from the top, which is very near to the interface elements: This

analysis shows very uniform shear deformation substantiated by shear strain contours shown

in Figure 5-60(a) to 5-60(c) and displacement fields shown in Figure 5-61(a) to Figure 5-
61(d).
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5.2.4 Desai Type Interface Element

Figure 5-15(a) through ~igure 5-19(e) show the deformed meshes for the analysis of

case-1 to case-5 of Desai type interface at load steps 1,5, 10, 15 and 20. The displacements

of the deformed meshes are amplified 10 times. The first three cases (Figure 5-15(a) to

Figure 5-17(e)) show the effect of the density of the material used as the interface material.

The frictional property of the interface material is controlled through void ~atio, e. .it has

been observed that when void ratio of the interface material is increased, peak angle of

internal friction is reduced and subsequently more shear deformation occurred.

Figure 5-18(a) through Figure 5-18(e) show the deformed mesh for loading at 1.0

inch from the top and Figure 5-19(a) through Figure 5-19(e) show the deformed mesh for

loading at 0.2 inch from the top. From the observation of these two series of deformed

meshes, it is clear that due to eccentric loading, a tendency of separation and penetration

takes place. But it is not as severe as it happened in case of Goodman Type interface

elements. In this case thickness of the element reduced in an uneven formation:

Figure 5-62(a) and Figure 5-62(b) show the force-displacement and stress-strain

relationship for analysis of case-1 of Desai type interface. The analysis is carried out to

show the effect of material density on the shear movement of the interface element. There

are other two analyses where material density is varied. Those are shown in Figure 5-65(a),

Figure 5-65(b), Figure 5-68(a) and Figure 5-68(b). It has been shown that as with the

increase in material density angle of internal friction increases deformation in the interface

element decreases' and stresse.s increase. Similarly, it may be seen that when density

decreases, angle of internal friction decreases so deformation in the interface element

increases and stresses decreases.

Figures 5-71(a) through Figure 5-71(d) show the results of analysis for case-4 and

case-5 of Desai type interface elements. These analyses are carried out to see the effect of

load eccentricity. The case-4 analysis is carried out using shear load at 1.0 inch from the top

94



and the case-5 analysis is carried out using shear load at 0.2 inch from top. It has been found

that for higher eccentric shear loading (shown Figure 5-74, 5-75 and 5-76), there isa sign of

,.A penetration or separation. But it seems that Desai type of elements is less likely to penetrate.
'\

5.3 COMPARISON OF THE INTERFACES

Detail performance of each of the three types of interface has been discussed in the

previous section. The general ~ehavior of each of these three interfaces has its own merits

and demerits. Until now Goodman type of interface has been used in wide variety of

application due to its simple formulation and implementation. Recently, Desai type of

element is also getting popularity due to its realistic, practical formulation and

implementation. Although formulation of Katona type of interface element. is elegant, its

implementation in nonlinear incremental iterative FEM code is not a straight forward. Table

-''''1'/ 5-1.shows details of the comparison of performance among those interfaces.
\
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Table 5-1: Comparison of Performance of Interfaces Analysed

T
"

INTERFACES

PARAMETERS Normal Element Goodman Type Katona Type Desai Type
Normal Not applicable Large effect both
Stiffness, KN on convergence No effect No effect

& solution
Shear Stiffness, Not applicable Affects shear No effect No effect
Kg deformation
Stiffness of Affects overall Affects both Affects shear Affect both
Surrounding deformation normal & shear deformation shear &
Material, Es deformation normal

deformation
Cohesion, c No applicable Affects shear Affect shear No effect

deformation deformation
Friction, ~ Not applicable Affects shear Affects shear Large effect

deformation deformation on the
interface
behavior

Thickness, t Not applicable Low thickness No effect at all It has large
improves effect on
behavior stress-strain

relation
Load Has' large effect Creates Stress Tendency of
eccentricity penetration! concentration penetration!

separation on edges separation
Simulation of Bad Allows slip with Allows friction Allow slip
slip mode friction law with friction but with

law & transfer material
stress below constitutive

law
Convergence Quick Moderate Slow Quick
property
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Figure 5-1(a): Deformed mesh for Case-1 of Normal Element at load
step 1.
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Figure 5-1 (b): Deformed mesh for Case-1 of Normal Element at load
step 5.
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Figure 5-1(c): Deformed mesh for Case-l of Normal Element at load
step 10.

Figure 5-1(d): Deformed mesh for Case-l of Normal Element at load
step 15.
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Figure 5-1(e): Deformed mesh for Case-l of Normal Element at load
step 20.
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Figure 5-2(a): Deformed mesh for Case-I of Goodman Type Interface at
load step I.
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Figure 5-2(b): Deformed mesh for Case-I of Go0drnan Type Interface at
load step 5.
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Figure 5-2(c): Deformed mesh for Case-l of Goodman Type Interface at
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Figure 5-2(d): Deformed mesh for Case-l of Goodman Type Interface at
load step 15.
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Figure 5-3(a): Deformed mesh for Case-2 of Goodman Type Interface at
load step 1.
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Figure 5-4(c): Deformed mesh for Case-3 of Goodman Type Interface at
load step 10.
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Figure 5-4(d): Deformed mesh for Case.J of Goodman Type Interface at
load step 15.
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Figure 5-5( c): Deformed mesh for Case-4 of Goodman Type Interface at
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Figure 5-5(d): Deformed mesh for Case-4 of Goodman Type Interface at
load step 15.
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Figure 5-6(a): Deformed mesh for Case-5 of Goodman Type Interface at
load step 1.
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Figure 5-6(b): Deformed mesh for Case-5 of Goodman Type Interface at
load step 5.
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Figure 5-6(c): Deformed mesh for Case-5 of Goodman Type Interface at
load step 10.
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Figure 5-6(d): Deformed mesh for Case-5 of Goodman Type Interface at
load step 15.
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Figure 5-6(e): Deformed mesh forCase-5 of Goodman Type Interface at
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Figure 5-7(a): Deformed mesh for Case-6 of Goodman Type Interface at
load step 1.
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Figure 5-7(b): Deformed mesh for Case-6 of Goodman Type Interface at
load step '5.
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Figure 5-7(c): Deformed mesh for Case-6 of Goodman Type Interface at
load step 10.
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Figure 5-8(b): Deformed mesh for Case-7 of Goodffian Type Interface at
load step 5.
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Figure 5-8(c): Deformed mesh for Case-7 of Goodman Type Interface at
load step 10.
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Figure 5-8(e): Deformed mesh for Case-7 of Goodman Type Interface at
load step 20.
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Figure 5-9(e): Deformed mesh for Case-8 of Goodman Type Interface at
. load step 20.
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Figure 5-10(a): Deformed mesh for Case-1 of Katona Type Interface at
load step 1.
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Figure 5-10(b): Deformed mesh for Case-1 of Katcina Type Interface at
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Figure 5-10(c): Deformed mesh for Case-l of Katona Type Interface at
load step 10.
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Figure 5-1O(d): Deformed mesh for Case-l of Katona Type Interface at
load step 15.
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Figure 5-10(e): Deformed mesh for Case-l of Katona Type Interface at
load step 20.

I _ -

j 126



I

I
I I

, ,.. , , , " , , , , .. , ,
"

,
I I I

I II I
I i

i ! ! I

!

I I i I
I ~! ~ ~ ~ ~ ~ ~ ~ ~ ~I. J i

!

"""I """I
•.. •... """ •.. - !. - I -I

I I I II I

I
I

I
I I I I Ii I

I I I II ! I I
, I

I I I I I I I I

I

I
!

I I !
I I

()-'~~I I 'I ~rl(-----'>-----<r------':
. , • I I ! I !!.!
-- I t I '! I '! I

i I I I I

I I I I I Ir
I
I i
! I! .

1Y-'1\--+'~-£J.. )f-Lili .,.-~,')

Figure 5-1 1(a): Deformed mesh for Case-2 of Katona Type Interface at
load step I.

t
I
I
I

Figure 5-II(b): Deform~d mesh for Case-2 of Katona Type Interface at
load step 5.

127



-.. - -•.. •.. •.. -.. -r -.. -•. - -•.. -.

- - - -"u. "',f\ "',!'. "',

Figure 5-11(c); Deformed mesh for Case-2 of Katona Type Interface at
load step 10.

- . -.. .. -.. •.. •.. -.. -r -r . ..

I

~ . . . - _. - - .. --
~/l &. "l~ riA. "',ll. •• " "',~ •••./~ ""4. ", •• !I> ,!l. 1\ 'fA "'i~ "'

Figure 5-1 1(d): Deformed mesh for Case-2 of Katona Type Interface a~
load step 15.

--,--1
-- l.

128" \,



.J..

• * • • I
~ • • •, , , , , , , •

I I I I I
i

Ii
I I i
I J I , i
I I I

~I I-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~, ,•.. .. •.. •.. .. •. •.. •.. , "I .. "'i .. "j
I i I

I i !

I i I I

I I

i I I ,

I I I I
I I

I

I i i I
i-- ----- --- .-- - -- ~ - - --- ." -- .. - ...---

I I I I
I

"-- I

I i
---- I

1

I I II II
I I

I
II

I I I

I \ ! i I .\
~ ~ ... ~ "'. ~1~ ~i~ ~ ~.~~(i'" "<1 IV'&, '" Pll. "'!JJ,. '"il> '''', ::>-, :.W .;. .•. ," ;>i. .> c-
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Figure 5-12(b): Deformed mesh for Case-3 of Katona Type Interface at
load step 5.
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Figure 5-12(c): Deformed mesh for Case-3 of Katona Type Interface at
load step 10.
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Figure 5-12(d): Deformed mesh for Case-3 of Katona Type Interface at
load step 15.

131 I



* I I I I I I i i i-l' I I I II

T • • , , , , , , , T , ti , ;
! il-l' iI : !

I I t-~JiJ I !

jI I J I I i
~ J ' I •

~ ~ ~ ~ •...-'
I I I jI iI I1-_- ! iI 1, I

).
i

I i, I
Tt"::zx ;;~
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Figure 5-13(a): Deformed mesh for Case-4 of Katona Type Interface at
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Figure 5-13(c): Deformed mesh for Case-4 of Katona Type Interface at
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Figure 5-13(e): Deformed mesh for Case-4 of Katona Type Interface at
load step 20.
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Figure 5-14(a): Deformed mesh for Case-5 of Katona Type Interface at
load step 1.
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Figure 5-14(b): Deformed mesh for Case-5 of Katona Type Interface at
load step 5.
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Figure 5-l4(c): Deformed mesh for Case-5 of Katona Type Interface at
load step 10.
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Figure 5-l4(d): Deformed mesh for Case-5 OfKatona Type Interface at
load step 15.
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Figure 5-15(b): Deformed mesh for Case-l of Desai Type Interface at load
step 5.
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Figure 5-15(d): Deformed mesh for Case-1 of Desai Type Interface at load
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Figure 5-15(e): Deformed mesh for Case-1 of Desai Type Interface at load
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Figure 5-16(b): Deformed mesh for Case-2 of Desai Type Interface at load
step 5.
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Figure 5-16(d): Deformed mesh for Case-2 of Desai Type Interface at load
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Figure 5-17(a): Deformed mesh for Case-3 of Desai Type Interface at
load step 1.
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Figure 5-17(b): Deformed mesh for Case-3 of Desai Type Interface at load
step 5.
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Figure 5-17(c): Deformed mesh for Case-3 of Desai Type Interface at load
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Figure 5-17(e): Deformed mesh for Case-3 of Desai Type Interface at load
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Figure 5-18(a): Deformed mesh for Case-4 of Desai Type Interface at load
step 1.
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Figure 5-18(b): Deformed mesh for Case-4 of Desai Type Interface at loaCl
step 5.

148



.'~

'~ ,.

\..1.' ,

+ + + + + + + + + + + + + +-----+ri
j I FP \ I \ \ \ \ \ \ t-J
I I \ I' H I I', I I i, I "I
I I I' ! "I : I I

: : i .H' ! ; i -~I I ; II. : I~ •
I I I : IN! I I I

I I I' I I I I I I
: i II ! !, 'I I \ : '-----i-,

: I: Iii :
-.~ I I i~ ~ I ~J=~*~r~

'-----'-~I_I I ! I I I r I_
II I~I I
I! II

! '

I

I : •
~ ~', ~~.~ ~~

Figure 5-18(c): Deformed mesh for Case-4 of Desai Type Interface at load
step 10.
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Figure 5-18(d): Deformed mesh for Case-4 of Desai Type Interface at load
step IS.
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Figure 5-19(a): Deformed mesh for Case-5 of Desai Type Interface at load
step 1.
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Figure 5-19(b): Deformed lTIeshfor Case-5 of Desai Type Interface at load
step 5.
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Figure 5-19(c): Deformed mesh for Case-5 of Desai Type Interface at load
step 10.

Figure 5-19(d): Deformed mesh for Case-5 of Desai Type Interface at load
step 15.
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Figure 5-20(a): Average Force vs Displacement variation of Normal Element
for Case-I.
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Figure 5-20(b): Stress vs Strain variation of Normal Element for Case-I.
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Figure 5-21(b): Shear strain contour for Case-l of Normal Element at load
step 10.
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Figure 5-22(a): Displacement field for Case-l of Normal Element at load
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Figure 5-22(c): Displacement field for Case-I of Normal Element at load
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Figure 5-22(d): Displacement field for Case-I of Normal Elementat load
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6

6.1

CONCLUSION

GENERAL

CHAPTER 6

The three types of interface elements have been reformulated and parameters are

critically examined. A detail parametric study has been conducted to evaluate the

performance of the elements. Due to the limitation of time and cost of analysis only the most

critical parameters are studied to each type of interface. Following conclusions can be drawn

from the analysis:

• Goodman Type of interface element is easy to formulate and implement in any

nonlinear incremental iterative FEM code. On the other hand Katona type of interface is

rather difficult to implement in an incremental iterative framework. pesai type of

interface requires the details of material model.

• Goodman type of interface is susceptible to mesh penetration. In a number of cases

mesh penetration occurred. On the other hand Katona and Desai type of interface have

no such problem. Although Desai type of interface has a tendency of penetration but

with the reduction of interface thickness it disappears.

• From the observation of the displacement fields of all three interface element type

analysis, it has been found that Katona interface shows smooth horizontal flow of the

upper part of the shear box, but other interfaces had variety of moVements.

• Goodman and Katona type of interface followed the Mohr-Coulomb friction laws

strictly. But Desai type of element followed more natural and practical material law,

which in this case is generalized Mohr-Coulomb type yield function.

• From the view point of accuracy of solution Desai type of interface provides more

realistic solution for this specific test simulation compared to those of Goodman or

Katona solutions.
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• The cost of any numerical analysis depends on its convergence properties .

..•..\/ Hence, Desai type of interface elements showed quickest convergence behavior
..~

compared to Goodman or Katona elements.

• In case of Katona formulation, there is actually no element involved in it. It is

the constrained equation, which play major role in its implementation. This creates

major problem in its implementation in ordinary FEM code.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

Three types of interface elements have been examined in this study, embedding them

in a direct shear test simulation for a fixed normal load. The analyses are carried out in a

limited manner in order to accommodate the study within the scope of time and resource

/)r limit. This study can be further extended in the following manner:

• The soil model used in the study was linear elastic. Any type of generalized strain

hardening-softening elasto-plastic soil model can be used.

• The interface elements can be tested in a pullout! pile load test simulation

• The interface elements can be reformulated in 3D and tested in application of 3D

problems.

-{'

,',

,
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