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Abstract

Of late, the advent of online social media has led to the inception of a new form of data stream

called multi-label data stream, where each stream record carries multiple class labels and requires a

classifier to associate multiple categories to each record. Data streams present several challenges that

has to be dealt with by any stream classification model. Concept drifting, infinite length with finite

memory and processing time are the challenges that have been addressed by the existing multi-label

data stream classification models in literature. In real world applications that generate data streams,

the amount of labeled data is usually very scarce compared to the entire stream. Moreover, with the

ever changing nature of Internet and social media, the emergence new class of data in the stream is a

common phenomenon. This phenomenon is known as concept evolution. When this emergence occurs

periodically for some classes of data, it is called class recurrence. None of the existing methodologies

address any of the issues of scarcity of labeled data, concept evolution and class recurrence.

This thesis proposes a layered ensemble based classification framework (LEAD) for multi-label

data streams. The primary component of our LEAD framework is a two layer ensemble architecture.

The top layer of the ensemble architecture reflects the most recent concept of the data stream whereas

the bottom layer represents the older concepts of the stream. As a result, the bottom layer enables

LEAD to classify recurrent class instances. Moreover, the layered approach also helps to differentiate

between recurrent and novel class instances which significantly reduces the false alarm rate of novel

class instance identification. LEAD deploys a fuzzy novel class detection technique to identify the

emergence of novel concept(s) in the stream. The problem of limited amount of labeled data is

handled by a deferred classification mechanism. This mechanism allows more labeled data to appear

in the stream that may help the development of a more informed classifier. Experimental results show

clearly that LEAD exhibits better performance than the baseline methods.
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Chapter 1

Introduction

Data stream is a large, continuous and high speed sequence of data. The data stream model is mo-

tivated by emerging application involving massive data sets, such as, online social media (Twitter,

Facebook, blogs etc.), telephone records, large sets of web pages, multimedia data and so on. Being

an effective tool of data mining, classification in streaming environment has attracted special inter-

est from researchers. Infinite stream with finite processing resources (time and memory), one pass

learning, concept drift [1], concept evolution [2] and class recurrence [2] are the issues most frequently

encountered by the data stream classification models. Training a classifier with limited amount of

labeled data is another challenge in the data stream scenario [3]. In a real world streaming environ-

ment, a huge volume of data appears at high speed where majority of the data is unlabeled. The

challenge for algorithm designers is to perform meaningful computation with these restrictions.

Data stream classification is the machine learning technique of associating class label(s) to an

instance of the stream. Single label data stream classification is a common learning problem where the

goal is to classify each instance to a unique class label from a set of disjoint class labels L. Depending

on the total number of disjoint classes in L, the problem can be identified as binary classification

(when |L| = 2) or multi-class classification (when |L| > 2) problem. Unlike the single label data

stream classification problems, multi-label classification allows the instances to be associated with

more than one class label. With the proliferation of online social media, many real world applications

generate data streams where each stream record carries multiple class labels. For example, a news

article in on the disappearance of the Malaysian Airlines flight MH370 could be annotated with labels

like “Asia news”, “Tragic event”, “Rescue” etc. Thus, the goal of multi-label data stream classification

1



CHAPTER 1. INTRODUCTION 2

is to assign a set of class labels to an instance in the stream. A detailed discussion on single label and

multi-label classification is provided in Section 2.1.

In recent years, multi-label data stream classification has garnered significant interest. Two

approaches for multi-label stream classification exist in literature. They are: instance-incremental

methods and batch-incremental methods. The instance incremental methods [4]–[5] learn from each

example as it arrives. All these methods maintain a hypothetical window of instances to train a clas-

sification model. The use of such a window also helps to detect concept drifting. The accuracy drop

between consecutive windows gives an indication of concept drift. The batch-incremental methods

[6]–[7], on the other hand, gather examples in batches to learn a classification model. The batch

incremental methods can be further classified as chunk based and labels based approaches. In chunk

based ensemble methods, an ensemble of classifiers is maintained. A classifier is learnt from each

new chunk encountered in the stream. Then the oldest or most poorly performing classifier in the

ensemble is replaced by the newly learned classifier. Instead of learning a new classifier per chunk,

the label based batch-incremental methods maintain an ensemble of binary classifiers per class label.

Whenever a new chunk arrives, new classifiers are learned. The newly learned classifier replaces the

oldest or poorest classifier of only the corresponding class’s ensemble. In both cases, the classifier

replacement strategy keeps the model up to date in the presence of concept drift.

1.1 Related works

In this section, we briefly describe the existing multi-label data stream classification methods. We

first discuss several works based on the instance incremental approach and then move on to the batch-

incremental approaches. We also highlight the challenges handled by the existing methods and discuss

the deficiencies of these methods.

1.1.1 Instance incremental methods

Streaming Multi-label Random Trees (SMART) [4] is an instance incremental approach that uses

a random tree based ensemble technique for multi-label stream classification. This approach stems

from a mainstream idea for learning label relevance and regression that builds an ensemble of multiple

random trees [8]. At the beginning of the data stream, a set of binary random trees with height d

is trained where d is a parameter of the model and corresponds to the tree sizes. In each tree node,
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Figure 1.1: Multi-label data stream classification methods

a testing feature is randomly selected with a random splitting value within the valid range. Thus,

with each tree node, the feature space is partitioned into two subspaces. All the nodes in random

trees are trained from the labeled instances in the stream only. The multi-label random trees are

built at the beginning of data stream and timely updated over the data stream as follows: The tree

building process starts with all empty tree nodes. When training data points in the data stream arrive,

each node keeps updating two types of statistical information for the multiple label data stream: (1)

the probabilities of label relevances that traverse through that node, which is similar to conventional

decision trees. (2) the estimated cardinality of the label sets in that node, which is similar to regression

trees. SMART uses a simple “fading function” at the nodes of each tree in the ensemble to address the

concept drifting problem. The fading function gradually reduces the influence of the historical data

with the passage of time. The SMART framework can be explained as follows: (1) Ranking: First it

learns a ranking function which estimates the probability of relevance for each label. (2) Regression:

Then an additional function to estimate the label set cardinality for each instance is learned. (3)

Label Set Prediction: Then for each instance, the labels are ranked according to the output of the

ranking function, and the label set is predicted with the top ranked labels. For example, suppose the

ranked order of three labels is (l3 > l1 > l2), and the estimated label set cardinality is 2. Then the

predicted label set for an instances would be {l1, l3}. This work is compared with ML-kNN [9] (an

outdated multi-label k-NN based classifier) and shows only minor improvement.

Read et al. [10] on the other hand use Hoeffding trees [11], a special class of trees. Hoeffding
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Tree is a state-of-the-art classifier for single-label data streams. A Multi-label Hoeffding Tree is an

incremental decision tree classifier for multi-label data streams that it is based on the use of the

Hoeffding bound as a criterion to decide whether to split the nodes. C4.5 algorithm can be adapted

to perform multi-label data classification [12]. [10] uses the same strategy to develop a decision

tree for multi-label data streams. It proposes a new definition of entropy to compute information

gain. Entropy is a measure of the amount of uncertainty in the dataset. For each example in the

dataset, it is the information needed to describe all the classes it belongs to. In case of multi-label

examples, a computation of the information needed to describe all the classes that it doesn’t belong

to is added to the entropy definition. Moreover, pruned set (PS) classifier [13] is used as the base

multi-label classifier in the leaf nodes of the tree. PS prunes away infrequently occurring label sets

which eliminates much unnecessary and detrimental complexity. A post-pruning step breaks up the

pruned sets into more frequently occurring subsets, and is able to reintroduce pruned instances into

the data, ensuring minimal information loss.

Ensemble of multi-label Hoeffding trees with PS classifiers at the leaves of the trees, EaHTPS [14]

is an extension of [10], which deploys an adaptive window based drift detection technique. This paper

proposes a new experimental framework for learning and evaluating on multi-label data streams, and

uses it to study the performance of various methods. Also, a method for generating synthetic multi-

label concept drifting data stream is also presented in [14]. PS is employed at each leaf of a Hoeffding

Tree as in [10]. Each new leaf is initialised with a majority labelset classifier. After a number of

examples (1000 instances are allowed) fall into the leaf, a PS classifier is established to model the

combinations observed over these examples, and then proceeds to build this model incrementally with

new instances. On smaller datasets, the majority label set classifier may be in use in many leaves

during much of the evaluation. The Hoeffding Tree is then wrapped in a bagged ensemble with a

change detector to allow adaption to concept drift in an evolving stream.

In [10] and [14], an adaptive sized window is maintained along the data stream. Here, the window

is divided into fragments. Whenever there is a drop of accuracy between subsequent fragments,

concept drift is detected. Both [10] and [14] exhibit significant improvement compared to existing

baseline methods. However, both the approaches are supervised, i.e., they require all the instances in

the data stream to be labeled.

Multiple windows (MW) [5] adopts a multiple windows approach. To deal with concept drift and

skewness in the distribution of positive and negative examples of each label, it maintains two fixed-size
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Figure 1.2: Window Construction for MW Method.

windows per label: one for positive examples and one for negative examples. The multiple windows

approach employs k-nearest neighbor for classification with Binary Relevance (BR) method [15] as base

multi-label classifier. The size of the positive windows is a parameter of the approach. The positive

window size should be large enough to allow learning an accurate model and small enough to reduce

the probability of concept drift in the window. Based on the size of the positive window, the number

of examples in the negative windows is determined using a distribution ratio R (0.3 < R < 0.5).

Figure 1.2 shows how MW constructs the positive and negative windows for a given class label. The

windows are maintained as queues, i.e., the oldest instance is always deleted when the maximum

window size is exceeded. An instance is deleted from buffer only after it has been deleted from all the

label windows. Whenever an unseen class label appears a new positive and a new negative queue are

created.

To deal with class imbalance, MW deploys an incremental thresholding technique. It helps to

reduce the impact of class imbalance which is known to negatively affect the performance of the clas-

sifiers. Each k-NN classifier actually computes an estimation of the probability of the corresponding

label being relevant. For each label, a different threshold is computed. For n instances, a confidence

score is maintained per label. Higher the number of instances belonging to a label, higher the confi-

dence score. For each label, the value which would more accurately approximate the observed label

frequency in these n instances is selected as the threshold for that label. These threshold values are

used for the next n instances and re-calculated after those instances are processed.

1.1.2 Batch incremental methods

As shown in Figure 1.1, there are two chunk based and one label based batch incremental methods

of multi-label data stream classification. An universal problem all the chunk based approaches face

is that the absence of a class in the current chunk leads to absence of corresponding classifier in the

model learnt from that chunk. This may worsen the performance of the classification framework. The

label based approach tries to address this issue.
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Chunk based approaches

The first batch-incremental scheme was proposed by Qu et al. [6]. It assumes that stream instances

arrive in chunks of size S and builds an ensemble of N classifiers for N successive chunks. To deal

with concept drift, the oldest classifier is replaced by a classifier built on the latest chunk. Stacked

binary relevance [16] method is used to learn from each chunk, but the method proposed in [6] could

be coupled with any batch incremental multi-label learner. When learning for label l, 1) the weights

of additional features, which are unrelated to l, are set to 0, as they provide no useful information

for learning label l, and furthermore, they may induce noise information. Here, any certain feature

selection algorithm, such as information gain, can be used to determine whether a label is related

to l. 2) The weight of a related additional feature of label i is set to the training accuracy of

the corresponding classifier on instances having class label l. If the classifier has poor classification

performance, then there may exist a lot of noise in the classification result, which means that the

additional feature introduced by label i may not be very helpful for learning l, and therefore it should

be assigned with lower weight. In the testing phase, each test example is first classified by all the

BRs in the ensemble. Then, the final label is determined by combining the classification results from

all the binary classifiers in dynamic weighted voting ensemble approach. In static weighted voting

ensemble approach, the weight of each classifier in the ensemble is derived from the most up-to-date

chunk. However, different testing instances are associated with different classification difficulties. So,

using a global setting of ensemble weights in the ensemble to predict a certain instance may lead to

incorrect classification of the example, because the appropriate ensemble weighting for that instance

might be different.

The dynamic streaming random forests (DSRF) [17] algorithm is a self-adjusting stream classifi-

cation algorithm. The Random Forests algorithm [18] is an ensemble based classification technique

developed by Breiman. It grows a number of binary decision trees and the classification for each

new record is the plurality of the votes from the trees. It uses the Gini index [19] for selecting split

attributes. Streaming Random Forests [18] is a stream-classification algorithm that builds streaming

decision trees with the techniques from Breimans Random Forests. Its classification accuracies are

approximately equal to those of Random Forests. The Streaming Random Forests algorithm grows

binary decision trees each from a different block of data. The trees are grown using the Hoeffding

bounds to decide when to stop building on each node. The algorithm selects the attribute to split us-
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ing the Gini index. It takes two parameters, namely the number of trees to be built and the number of

records used to grow each tree (tree window). The Dynamic Streaming Random Forests algorithm is

a self-adjusting stream classification algorithm that is able to reflect concept changes. The algorithm,

like the basic Streaming Random Forests algorithm, initially grows a defined number of trees. The

difference is that the tree window is not constant for all trees. Instead, whenever a certain number

(treemin) of records have contributed to building a tree, the current classification error of the tree is

calculated. If the error is greater than a threshold, then the algorithm stops building this tree and

switches to building the next tree. This threshold ensures that none of the trees performs worse than

a random tree. If error is greater than the threshold, the algorithm continues building the current

tree using half the previous number of records, before it enters another test phase. Each tree has,

therefore, a different tree window that is never greater than 2∗treemin. Once the total number of trees

have been grown, the algorithm enters a test phase where the classification accuracy for the forest is

calculated using previously unseen labeled data records. The classification error for each individual

tree is also calculated and used to assign a weight to the tree. In addition, the algorithm derives new

values of the parameters to use in the subsequent building phase.

DSRF uses an entropy-based drift-detection technique to handle concept drift and deploys a

stacked binary relevance model to handle label correlations among multiple labels. The authors

claim that their method is able to handle both labeled and unlabeled data. However, the work pre-

sented in [17] does not discuss how the classification and subsequent labeling process of unlabeled

data is to be performed. It is applied on only on synthetic dataset with mixed performance.

Label based approaches

Label based ensemble framework (LBEF ) [7] is a framework for classification of multi-label data

streams. The chunk based ensemble frameworks are shown in Figure 3.3. In these ensembles, a set of

binary classifiers built from the labeled examples are taken as base classifiers. These classifiers share

the same weight. These chunk-based ensembles have some limitations for mining multi-label streams.

If a class label l is not observed in a data chunk, it is not possible to build a binary classifier with

respect to label l. Moreover, a problem of binary classifiers methods in data streams is that class-

label imbalance may become exacerbated by large numbers of training examples. LBEF (Figure

1.3b) addresses these two limitations. In LBEF , base classifiers are built with respect to class labels,

instead of data chunks. The following example explains the label based ensemble framework:
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(a) Chunk based approach
(b) Label based approach

Figure 1.3: Batch Incremental Methods.

In Figure 1.3a, data chunk Dn has three class labels A;B;C. Thus, three new binary classifiers

can be built and added into the ensemble. For example, a new binary classifier with respect to the

label A can be constructed and then added into the ensemble. When the same operation is applied to

the other two class labels, we can observe that, for data chunk Dn−k+1, label B is missed, and thus

corresponding binary classifier cannot be built. In Figure 1.3b, it can be seen that LBEF learns one

new binary classifier per label per chunk and then adds to the label’s ensemble. As a result absence

of class’s instance does not lead to replacement of that class’s classifier.

LBEF is able to deal with the class imbalance problem [7]. LBEF exhibits better performance

than the baseline multi-label classification methods while reducing manual labeling cost. To reduce

manual labeling cost, LBEF uses vote entropy [20] to select the most informative instances from

the stream to be labeled by human experts. Ensemble uses a bunch of weak classifiers to construct

a strong classifier. The impact of a base classifier in the ensemble is proportional to its weight. A

classifier having higher prediction accuracy will be assigned a heavier weight. The active learning is

to dynamically adjust the weight vector of each base classifier based on its prediction accuracy on

data streams. Obviously, stream records to which all the base classifiers in an ensemble assigns the

same label does not provide useful information for identifying an accurate classification boundary.

Thus, the uncertainty of an example with respect to different base classifiers can be used to adjust

the weights of an classifier. This is equivalent to calculating the vote entropy. A recent work [21] also

shows that the larger the vote entropy an example has, the more information it carries to adjust the

weight vector of the ensemble. After adding informative examples, the decrease of expected loss of the

ensemble classifier is proportional to its vote entropy. LBEF handles concept drifting by adjusting
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ensemble weight which is determined by coordinate wise gradient descent method [22]. As the concept

evolves with time, the prediction accuracy of all base classifiers may drop significantly. LBEF selects

examples to capture the concept in the current chunk in the stream. Version space denotes the area

containing all latent class boundaries, which can be used to measure the degree of uncertainty of

an ensemble model. Both the vote entropy and the version space decrease can be considered as the

reduction of uncertainty of class boundary. Thus, the ensemble classifiers can reduce uncertainty by

selecting examples for which both vote entropy and the version space decrease.

LBEF deals with concept drifting by adjusting ensemble weight which is determined by coordinate

wise gradient descent method [22]. In weighted ensemble mechanism, long absence of a class’s instance

may lead to corresponding ensemble weight becoming very small. So, a class ensemble’s vote will

become inconsequential during the classification of an instance. As a result, an existing class’s instance

reappearing after a long time may be classified to an incorrect class label. On the other hand, instances

on which the classifiers have the most disagreement, have larger vote entropy and hence, considered as

most informative examples. But when a new class’s instance x appears in the stream, all the binary

classifiers will fail to classify it. As a result, according to the definition given in [17], x’s vote entropy

will be 0. So, x will not be chosen for manual labeling. Thus LBEF fails to detect concept evolution.

Moreover, LBEF assumes the label set of the stream to be fixed. So, even if a novel class instance is

selected for manual labeling, there is no mechanism for adding new label’s ensemble in the framework.

1.1.3 Problems of the existing methods

The shortcomings of the existing multi-label data stream classification methods can be summarized

as follows:

• None of the exiting multi-label classification methods address the issues of concept evolution.

So, any novel class instance appearing in the stream is assigned to an already existing set of

class labels which may significantly degrade classifier’s performance.

• The issue of class recurrence is still unaddressed in the context of multi-label data streams.

As the data stream classifiers are frequently updated with the latest data, whenever a class’s

instances reappear in the stream after a long interval, the classifiers are trained again with the

recurring data which leads to redundant computation.

• Most of the methods except DSRF [17] and LBEF [7], consider the data stream to be labeled. As
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these are supervised learning methods, they have very little applicability in practical systems.

Although, [17] proposes an active leaning framework for labeling unlabeled data, [6] has not

discussed any such framework.

• As the amount of labeled data is scarce in real world streaming scenarios, classifiers trained with

such limited amount of labeled data tend to exhibit poor performance. The problem of scarcity

of labeled data in the stream is not considered in any of the existing methods.

• Apart from [14], none of the existing methods have presented an exhaustive experimental eval-

uation. Most of the methods have shown experimental results on 2-3 datasets.

1.2 Objective of the thesis

Motivated by the challenges of the multi-label data stream classification, we propose a layered

ensemble based classification framework (LEAD). Our proposed framework maintains a two lay-

ered ensemble architecture, G. The two layers are called the top layer ensemble, TLr and the bottom

layer ensemble, BLr. Both TLr and BLr contain label based ensembles (Els) [7] for different class la-

bels (ls) in S. TLr reflects the concept present in the most recent chunk, i.e, an El is kept in TLr only

if instances having the class label l were encountered in the most recently processed chunk. On the

other hand, BLr reflects the old concept, i.e, the concept that is not present in the most recent chunk.

Binary relevance classifier [15] is used as the base multi-label classifier. The major contributions of

our framework are as follows:

1. To deal with the scarcity of labeled data, we have proposed a deferred classification mechanism.

When classification of any unlabeled instance is failed, its classification is deferred. In the mean

time, more labeled data may appear in the stream and contribute to the construction an updated

classifier.

2. To address the issue of concept evolution, we have incorporated a novel class detector in the

form of a fuzzy c-means clustering model. The novelty detector detects the emergence of a set

of novel class labels in the multi-label data stream.

3. We have proposed a two layer (top and bottom layer) ensemble framework. The most recently

encountered class’s ensembles are maintained in the top layer ensemble. The bottom layer
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ensemble is maintained to detect the appearance instances of recurrent class or class labels. The

layered approach also helps in separating recurrent class instances from novel class instances.

The layered ensemble framework is discussed in detail in Chapter 3.

4. We have conducted extensive experiments on datasets from different domains to validate the

performance of our framework. We have also proposed two new experimental measures for

evaluating the performance of a multi-label classification framework in the presence of concept

evolution.

1.3 Outline of the thesis

The rest of the thesis is organized as follows.

In chapter 2, we present the basic components necessary to understand the idea presented in this

thesis. We start with the discussion of traditional multi-label classification models. Then we briefly

describe the challenges associated with data stream classification. Next, there is a discussion on how

the traditional classification models can be modified to address the challenges of multi-label data

stream. Then we present the role of clustering in novel concept detection in data streams and analyze

an existing novel concept detection technique. Finally, we present the necessity of fuzzy clustering in

the context of multi-label data and also discuss the existing fuzzy cluster validity measures.

Chapter 3 discusses the major contribution of this thesis. Our LEAD framework and the phases

of LEAD are thoroughly discussed with their specific purposes.

In chapter 4, the experimental results are presented. The description of the datasets used in this

thesis are presented at first. Then we discuss the formulation of the baseline methods to be compared

with LEAD. Since, LEAD framework is the first of its kind, we compare its performance with two

baseline methods, each generated by combining a novel concept detection technique with a multi-label

stream classification technique. It is followed by the discussion of the various performance metrics and

their formulation. In order to establish the fact that LEAD provides better result than the baseline

methods we also perform statistical tests here.

Finally, in chapter 5, we conclude the thesis by highlighting some future research directions. We

discuss how the proposed LEAD framework can be modified and extended further to attain better

performance. Also, some possible stream environments where LEAD can be applied is also discussed.



Chapter 2

Background

This chapter begins with a comparison between multi-label and multi-class learning. Then we briefly

introduce the traditional multi-label classification methods, followed by an analysis of the challenges

of multi-label data stream classification. The application of ensemble based techniques for performing

multi-label data stream classification is then presented. Finally, we explore the fuzzy clustering

techniques for novel concept detection in data streams.

2.1 Multi-class Vs Multi-label Classification

The problem of single-label classification is concerned with learning from instances, where each in-

stance is associated with a single label l from a finite set of disjoint labels L, where |L| > 1. If there

are more than two class labels in the label set L, then the learning problem is referred to as multi-class

classification. On the other hand, the task of learning a mapping from an instance to a set of labels

is referred to as a multi-label classification. In contrast to multi-class classification, alternatives in

(a) Multi-class classification (b) Multi-label classification

Figure 2.1: Multi-class Vs Multi-label classification

12
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Table 2.1: Example of multi-class classification

Article Id Accurate Important Informative Type

1 Yes Yes Yes Best

2 No Yes Yes Noteworthy

3 Yes No No Negligible

multi-label classification are not assumed to be mutually exclusive: multiple labels may be associated

with a single example, i.e., each example can be a member of more than one class.

Figure 2.1 depicts the difference between the two classification problems. To better understand

the multi-class classification problem, let us consider the example in Table 2.1. Suppose, a newspaper

categorizes the news articles it publishes daily in any one of the three categories: Best, Noteworthy

and Negligible. The attributes for determining the category of a news article are whether it is:

accurate, important and informative. No article can be assigned to multiple categories at once. So,

any classification model that will be used to classify the news articles will be considered as a multi-class

classification model.

The issue of learning from multi-label data has recently attracted significant attention from many

researchers, motivated by an increasing number of new applications which include semantic annotation

of images and video (news clips, movies clips), functional genomics (gene and protein function),

music categorization into emotions, text classification (news articles, web pages, patents, e-mails,

bookmarks etc.), directed marketing and others. For example, a text document that talks about

scientific contributions in medical science can belong to both science and health category, genes may

have multiple functionalities (e.g. diseases) causing them to be associated with multiple classes, an

image that captures a field and fall colored trees can belong to both field and fall foliage categories,

a movie can simultaneously belong to action, crime, thriller, and drama categories, an email message

can be tagged as both work and research project; such examples are numerous. Traditional binary

and multi-class problems both can be posed as specific cases of multi-label problem. However, the

generality of multi-label problems makes it more difficult than the others [9].
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Figure 2.2: Classification of multi-Label learning methods

2.2 Methods for multi-label learning

In this section, we briefly introduce the state-of-the-art methods for multi-label learning. As shown

in Figure 2.2, the existing methods in literature can be divided in three general categories: algorithm

adaptation, problem transformation and ensemble methods.

2.2.1 Algorithm adaptation methods

The multi-label methods that adapt, extend and customize an existing machine learning algorithm

for the task of multi-label learning are called algorithm adaptation methods. Here, we present multi-

label methods proposed in the literature that are based on the following machine learning algorithms:

k-Nearest neighbors, decision trees and neural networks. The extended methods are able to directly

handle multi-label data.

k-Nearest neighbors

Several variants for multi-label learning (ML-kNN) of the popular k-Nearest Neighbors lazy learning

algorithm have been proposed [9, 23]. The retrieval of the k-nearest neighbors is the same as in

the traditional kNN algorithm. The main difference is the determination of the label set of a test

example. Typically, these algorithms use prior and posterior probabilities of each label within the

k-nearest neighbors. First, for each test example, its k-nearest neighbors in the training set are

identified. Then, according to statistical information gained from the label sets of these neighboring

examples, i.e., the number of neighboring examples belonging to each possible label, the maximum a
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posteriori principle is used to determine the label set for the test example.

Decision trees

Clare et al. [12] adapted the C4.5 algorithm for multi-label data (ML-C4.5) by modifying the formula

for calculating entropy. It allows multiple labels in the leaves of the tree. The modified entropy sums

the entropies for each individual class label. Blockeel et al. [24] proposed the concept of predictive

clustering trees (PCTs): the top-node corresponds to one cluster containing all data, which is recur-

sively partitioned into smaller clusters while moving down the tree. PCTs are constructed using a

standard top-down induction of decision trees algorithm, where the variance and the prototype func-

tion can be instantiated according to the task at hand. PCTs have been used for predicting tuples of

variables, predicting time series and predicting classes organized into a hierarchy or a directed acyclic

graph. However, they can also be used in the context of multi-label learning, where each label is a

component of the target tuple.

Neural networks

Neural networks have also been adapted for multi-label classification [25]–[26]. BP-MLL [25] is an

adaptation of the popular back-propagation algorithm for multi-label learning. The main modification

to the algorithm is the introduction of a new error function that takes multiple labels into account.

Another neural network based multi-label learning algorithm named Ml-RBF [26] is proposed, which

is derived from the traditional radial basis function (RBF) methods. Brieflyy, the first layer of an

Ml-RBF neural network is formed by conducting clustering analysis on instances of each possible class,

where the centroid of each clustered groups is regarded as the prototype vector of a basis function.

After that, second layer weights of the Ml-RBF neural network are learned by minimizing a sum-

of-squares error function. Furthermore, Ml-RBF significantly outperforms Bp-MLL in terms of both

effectiveness and efficiency.

2.2.2 Problem transformation methods

The problem transformation methods are multi-label learning methods that transform the multi-

label learning problem into one or more single-label classification or regression problems. For smaller

single-label problems, there exists a plethora of machine learning algorithms. Problem transforma-
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tion methods can be grouped into three categories: binary relevance, label power-set and pair-wise

methods.

Another problem transformation method is the label combination method, or label power-set

method (LP). The basis of these methods is to combine entire label sets into atomic (single) labels

to form a single-label problem (i.e., single-class classification problem). For the single-label problem,

the set of possible single labels represents all distinct label subsets from the original multi-label

representation. In this way, LP based methods directly take into account the label correlations.

Another label power-set method is [27], which first constructs a hierarchy of the multiple labels and

then constructs a classifier for the label sets in each node of the hierarchy.

Binary relevance methods

The simplest strategy for problem transformation is to use the one-against-all strategy to convert

the multi-label problem into several binary classification problems. This approach is known as the

binary relevance method (BR) [15]. A method closely related to the BR method is the Classifier

Chain method (CC) proposed by Read et al. [28]. This method involves L binary classifiers linked

along a chain. Godbole et al. [16] present algorithms which extend the binary classifiers along two

dimensions: training set extension and improvement of margin. With the first approach, the training

set is extended with the predictions of the binary classifiers and then a new set of binary classifiers is

trained on the extended dataset. For the second extension, very similar negative training examples and

the negative training examples of a complete class that are similar to the positive class are removed.

Label power-set methods

A second problem transformation method is the label combination method, or label power-set method

(LP) [29]. The basis of these methods is to combine entire label sets into atomic (single) labels to form

a single-label problem (i.e., single-class classification problem). For the single-label problem, the set of

possible single labels represents all distinct label subsets from the original multi-label representation.

In this way, LP based methods directly take into account the label correlations. However, the space of

possible label subsets can be very large. To resolve this issue, Read has developed a pruned problem

transformation method called Pruned Set (PS) [13], that selects only the transformed labels that

occur more than a predefined number of times. Another label power-set method is HOMER [27],

which first constructs a hierarchy of the multiple labels and then constructs a classifier for the label
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sets in each node of the hierarchy.

Pair-wise methods

A third problem transformation approach to solving the multi-label learning problem is pair-wise or

round robin classification with binary classifiers [30]. The basic idea here is to use
L(L− 1)

2
classifiers

covering all pairs of labels. Each classifier is trained using the samples of the first label as positive

examples and the samples of the second label as negative examples. To combine these classifiers, the

pairwise classification method naturally adopts the majority voting algorithm. Given a test example,

each classifier predicts (i.e., votes for) one of the two labels. After the evaluation of all
L(L− 1)

2
classifiers, the labels are ordered according to their sum of votes. A label ranking algorithm is then

used to predict the relevant labels for each example. Besides majority voting in CLR, Park et al. [31]

propose a more effective voting algorithm. It computes the class with the highest accumulated voting

mass, while avoiding the evaluation of all possible pairwise classifiers. Mencia et al. [32] adapted the

L Weighted approach to multi-label learning (QWML).

2.2.3 Ensemble methods

The ensemble methods for multi-label learning are developed on top of the common problem transfor-

mation or algorithm adaptation methods. The most well known problem transformation ensembles

are the RAKEL system by Tsoumakas et al. [33], ensembles of pruned sets (EPS) [13] and ensembles

of classifier chains (ECC) [28]. RAKEL constructs each base classifier by considering a small random

subset of labels and learning a single-label classifier for the prediction of each element in the power-set

of this subset. EPS uses pruning to reduce the computational complexity of label power-set methods,

and an example duplication method to reduce the error rate as compared to label power-set and other

methods. This method proved to be particularly competitive in terms of efficiency. ECC are ensem-

ble methods that have classifier chains (CC) as base classifiers. The final prediction is obtained by

summing the predictions by label and then applying threshold for selecting the relevant labels. Note

that binary methods are occasionally referred to as ensemble methods because they involve multiple

binary models. However, none of these models is multi-label itself and therefore we use the term

ensemble strictly in the sense of an ensemble of multi-label methods. Algorithm adaptation ensemble

methods are the ensembles whose base classifiers are themselves algorithm adaptation methods. An

example of an algorithm adaptation ensemble method are the ensembles of predictive clustering trees
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(PCTs) [34]. These ensembles use PCTs for predicting tuples of variables as base classifiers. Each

base classifier makes a multi-label prediction and then these predictions are combined by using some

voting scheme.

Each base classifier makes a multi-label prediction and then these predictions are combined to

obtain the final classification decision. The combination of results can be done in two ways: majority

voting and weighted ensemble voting. In majority voting, the class label to which an instance is

classified by most of the classifiers in the ensemble is chosen as that instance’s class label. In ensemble

weighting methods, each classifier in the ensemble is assigned a weight. The most reliable classifier

is assigned the highest weight, and the least accurate one is assigned the least weight. The final

prediction Yt (N predictors) is defined by:

Yt =
1

N

N∑
i=1

Yti (2.1)

where Yti is the prediction made by the individual classifier. Another way is using relative perfor-

mance(i.e. mean scaled error(MSE)) of each predictor [27], where the weight is specified by:

wi =
1

MSEi
N∑
i=1

MSEi

(2.2)

In this weighted average, the high performance classifier will be given larger weight and vice versa.

We have adopted the majority voting scheme in the LEAD framework.

2.3 Data stream and its challenges

Data stream is a special form of data that has spawned several research issues in recent years. It is an

infinite sequence of instances {x1, x2, . . . , xi, . . . }, where each instance xi is a d-dimensional feature

vector. As explained in Chapter 1, each instance of a multi-label data stream can be associated with

multiple class labels. In this section, we discuss the challenges that the stream classifiers have to deal

with in data stream environment.
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High speed nature of data streams

The inherent characteristic of data streams is its high speed. The algorithm should be able to adapt to

the high speed nature of streaming information. The rate of building a classification model should be

higher than the data rate. So, the amount of time available for classification is very limited compared

to the traditional non-stream classification models.

Unbounded memory requirements

Classification techniques require data to be resident in memory for building the model. The huge

amounts of data streams generated rapidly dictate the need for unbounded memory. This challenge

has been addressed using load shedding, sampling, aggregation, and creating data

One pass learning

Data streams must be accessed in order and that can be read only once or a small number of times

[35]. But the modern applications generate huge volume of streaming data. As discussed earlier,

with the constraint of limited storage and faster processing time, data streams can be allowed to

be scanned only once. So, the data stream mining models must posses the capability to learn the

underlying nature of data in a single pass over the data.

Lack of labeled data

The amount of labeled data in the stream affects the quality of the learned model. Manual labeling

of data is often costly and time consuming, so in a streaming environment, where data appear at

a high speed, it is not always possible to manually label all the data as soon as they arrive. Thus,

in practice, only a small fraction of the stream can be labeled by human experts. So, a stream

classification algorithm will have very few instances to update its models in such circumstances,

leading to poor classifiers.

Concept drifting

Concept drifts change the classifier results over time. This is because of the change in the underlying

data patterns. This results in the model becoming stale and less relevant over time. The capture of
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(a) A data chunk (b) Presence of concept drift

Figure 2.3: Concept drift in data streams

such changes would help in updating the classifier model effectively. The use of an outdated model

could lead to very low classification accuracy.

Let us consider the example in Figure 2.3. As a new chunk arrives (Figure 2.3a), a new classifier is

learned. The decision boundary is denoted by the straight line. The positive examples are represented

by white circles while the negative examples are represented by dark circles. With the passage of time

the concept of some of the examples may change. As shown in Figure 2.3b, due to concept drift

some negative examples may have become positive. So, the previous decision boundary has become

outdated and a new model has to be learned.

Concept evolution

Concept evolution occurs when a new class or set of classes emerge in the data stream. For example,

#MH370 is currently an emerging trend in Twitter and the related posts can be associated with

multiple tags like #rescue, #mystery etc.

Let us consider the example in Figure 2.3. As a new chunk arrives (Figure 2.3a), a new classifier

is learned. The decision boundaries for different classes (A,B,D) are shown by the straight lines.

With the passage of time some new examples belonging to a new class C may arrive that cannot be
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(a) A data chunk (b) Presence of concept drift

Figure 2.4: Concept evolution in data streams

classified by existing classifiers. So, the previous classifier has become outdated and a new classifier

has to be learned.

Class recurrence

A special case of concept-evolution is that of a recurring class, which occurs when a class reappears

after a long disappearance from the stream. This special case is also common because an intrusion

in network traffic may reappear after a long time, or social network actors may discuss an interesting

topic in Twitter at a particular time every year (e.g., Halloween).

2.4 Mining data streams

One of the goals of traditional data mining algorithms is to mine models from large databases with

bounded memory. Traditional data mining algorithms require multiple scans of the training data

makes them inappropriate in the streaming data environment where the examples are coming in at a

higher rate than they can be repeatedly analyzed. One option for mining data streams is Incremental

or online data mining methods [36]–[37]. These methods continuously revise and refine a model

by incorporating new data as they arrive. However, in order to guarantee that the model trained

incrementally is identical to the model trained in the batch mode, most online algorithms rely on

a costly model updating procedure, which sometimes makes the learning even slower than it is in
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batch mode. Recently, an efficient incremental decision tree algorithm called VFDT is introduced by

Domingos et al [11]. For streams made up of discrete type of data, Hoeffding bounds guarantee that

the output model of VFDT is asymptotically nearly identical to that of a batch learner.

The above mentioned incremental and on-line methods such as VFDT, all produce a single model

that represents the entire data stream. It suffers in prediction accuracy in the presence of concept

drifts. This is because the streaming data are not generated by a stationary stochastic process;

indeed, the future examples we need to classify may have a very different distribution from the

historical data. In order to make time-critical predictions, the model learned from the streaming data

must be able to capture up-to-date trends and transient patterns in the stream. The idea is to revise

the model by incorporating new examples and also eliminate the effects of examples representing

outdated concepts. The ensemble approach offers this capability. Instead of continuously revising a

single model, an ensemble of classifiers is trained. Another benefit of the ensemble approach is its

efficiency and ease-of-use.

2.4.1 Ensemble based learning of data streams

Ensemble learning is a commonly used tool for building prediction models from data streams, due to

its intrinsic merits of handling large volumes stream data. Different from traditional incremental and

online learning approaches that merely rely on a single model [11, 38], ensemble learning employs a

divide-and-conquer approach to first split the continuous data streams into small data chunks, and

then build light-weight base classifiers from the small chunks. At the final stage, all base classifiers are

combined together for prediction. By doing so, an ensemble model can enjoy a number of advantages,

such as scaling up to large volumes of stream data, adapting quickly to new concepts, achieving lower

variances than a single model, and easily to be parallelized.

Ensemble classifiers on data streams provide a generic framework for handling massive volume data

streams with concept drifting. The idea of ensemble classifiers is to partition continuous data streams

into small data chunks, from which a number of base classifiers are built and combined together for

prediction. Two main motivations for combining classifiers are as follows:

• Statistical (or worst case) motivation: It is possible to avoid the worst classifier by aver-

aging several classifiers. It was confirmed theoretically by Fumera and Roli in [39]. This simple

combination was demonstrated to be efficient in many applications. There is no guarantee,
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however, the combination will perform better than the best classifier.

• Representational (or best case) motivation: Under particular situations, fusion of multiple

classifiers can improve the performance of the best individual classifier. It happens when the

optimal classifier for a problem is outside of the considered “classifier space”. There are many

experimental evidences that it is possible if the classifiers in an ensemble make different errors.

This assumption has a theoretical support in some cases when linear combination is performed.

2.5 Cluster-based novel concept detection in data streams

In this section, we first discuss a popular cluster based novel concept detection technique for the single

label data streams. Then we explain how clustering can deployed in multi-label data stream scenario.

Finally, we present some validity measures for fuzzy clustering.

2.5.1 Concept evolution and clustering

Detecting novel concept is a unsupervised process. As the classification model has no prior knowledge

of the novel class, the best way to make sense of concept evolution is to identify hidden patterns in

the data. Hence, clustering is the most suitable approach for novel concept detection. A popular

clustering based novel concept detection technique is online novelty and drift detection algorithm

(OLINDDA) [40].

An overview of OLINDDA is shown in Figure 2.5. The proposed approach relies on three

hypersphere-based models to store knowledge about (1) the normal profile, (2) concepts that ex-

tend the normal profile and (3) novel concepts. The normal model is the only static one, remaining as

a reference to the initial learning phase. It corresponds to what is usually employed by most novelty

detection techniques. The extension and novelty models can be created and continuously updated.

Once newly discovered concepts become part of these two models, they will also help to explain future

examples. Since this structure is naturally incremental, the algorithm is able to start with a basic

description and extend it, weakening the requirement of a comprehensive initial labeled dataset, that

may not always be available. Furthermore, since these models are composed basically of the coordi-

nates of centroids and respective radii, besides a few other measures and statistics, model updating

is fast, which is essential when working with data streams.
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Figure 2.5: Overview of OLINDDA

Phase 1: Supervised learning of the normal concept

The proposed technique starts by modeling the normal or expected behavior in the domain under

investigation, described by a set of normal examples. To build the normal model, k clusters are

produced using, typically, the k-means clustering algorithm. The normal model is composed of k

hyperspheres, built in feature space, obtained directly from the clusters and represented by their

centers and radii. Each hypersphere center is the centroid of a cluster, and its radius is the Euclidean

distance from the centroid to the farthest example of the respective cluster.
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Phase 2: Unsupervised continuous learn-ing of novel concepts

For each new example, the algorithm first checks if it can be explained by the knowledge acquired

until that point, represented by (up to) three models, as previously described. If the coordinates of

the example lie inside a hypersphere of any of the existing models, it is considered as explained by the

corresponding model. The corresponding statistics are the updated, and the example is discarded.

Otherwise, the example is marked as a member of an unknown profile and moved to a short-term

memory for further analysis. That memory works like a FIFO queue to avoid its uncontrolled growth.

The maximum number of examples in this memory can be modified. The steps of this phase are as

follows:

• Cluster validation: Novel concepts are initially identified as clusters of examples previously

considered unknown that comply with certain restrictions. In order to discover these clusters,

each time a new unknown example is found, k candidate clusters are generated from the examples

currently available at the short-term memory of unknown profiles. Candidate clusters are then

evaluated to determine if any presents enough evidence of the appearance of a new concept.

This is not a trivial task, since it is a totally unsupervised process. On the other hand, the fact

that no labels are required allows its application to a large amount of data that could not be

manually classified.

• Distinction between extension and novelty: Once a cluster is considered valid, the algo-

rithm analyzes its similarity to the normal concept. An extension should naturally be located

in the vicinity of the region associated with the normal concept, while a concept very dissimilar

to normal should be considered novelty. This notion of vicinity is defined by a hypersphere

centered at the centroid of the centroids of the normal model, whose radius is the distance to

the farthest centroid. If the centroid of the new cluster is located inside this hypersphere, the

new concept is labeled extension. Otherwise, it is considered novelty.

• Merging of concepts: A new valid cluster may itself represent a new concept. However,

as learning progresses, a concept may be more adequately described by a set of clusters. For

this reason, OLINDDA evaluates the similarity between newly discovered concepts and existing

concepts of the same model. It does that by checking if the new valid cluster intercepts any

of the previous clusters. If it does, they are grouped under the same label and their statistics
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are merged. If it does not, the cluster is considered a new con-cept on its own and receives a

new label. A single cluster may trigger a sequence of mergers. This process tends to produce a

smaller number of concepts (labels), that are usually easier to analyze, directing the algorithm

toward the final goal of producing a class structure as similar to the real one as possible.

• Dynamic adaptation of the number of clusters: The number of clusters k is an intrinsic

parameter of the k-means clustering algorithm, used (1) to create the initial normal model

and (2) to periodically generate candidate clusters in the online phase. In the initial model,

k is defined by a parameter, since it depends on the data distribution. For the generation of

candidate clusters in the online phase, however, k is dynamically adapted to optimize the chance

of discovering a valid cluster. The automatic adaptation of k takes place after each iteration

in which candidate clusters have been generated. If at least one candidate cluster is considered

valid, the value of k is maintained. Otherwise, the algorithm checks what prevented each cluster

from being accepted: sparseness or lack of examples. Then, considering the most frequent cause

of failure for all candidate clusters, it decides how to adapt k. After a few iterations, k tends to

stabilize around the optimum value that generates valid clusters.

2.5.2 Fuzzy clustering and data streams

In multi-label data stream, one record may belong to multiple classes. Hence, the hard clustering

methods like k-means clustering cannot be applied for novelty detection in multi-label data stream

scenario. Although, some fuzzy data stream clustering methods exist in literature, novelty detection

is an unexplored issue in multi-label data streams. In fuzzy clustering, every data point has a degree

of associativity to clusters, rather than belonging completely to just one cluster. All the fuzzy data

stream clustering algorithms in literature are based on objective functions. Most of these algorithms

are based on the “Fuzzy C-means Clustering” (FCM) algorithm [41] which applies fuzzy partitioning

logic. Possibilistic partitioning [42], an unconstrained fuzzy partition logic, has also been used in

literature. So, the fuzzy logic based data stream clustering algorithms can be classified as either fuzzy

methods or possibilistic methods.



CHAPTER 2. BACKGROUND 27

Fuzzy C-means clustering

In fuzzy clustering, every point has a degree of belonging to clusters, as in fuzzy logic, rather than

belonging completely to just one cluster. Thus, points on the edge of a cluster may be in the cluster

to a lesser degree than points in the center of cluster. Fuzzy C-means Clustering a very popular fuzzy

clustering algorithm. It is based on minimization of the following objective function:

Jm =
N∑
i=1

C∑
j=1

umij ||xi − cj ||2 (2.3)

Here, N is the number of candidate novel instances, uij is the degree of membership of xi in the cluster

j, xi is the i-th of d-dimensional measured data, cj is the d-dimension center of the cluster, and ||∗ || is

any norm expressing the similarity between any measured data and the center. The algorithm takes

three parameters. They are: C, m, and ε. C denotes the number of clusters to be created. m is the

fuzziness co-efficient or fuzzifier. The fuzzifier m determines the level of cluster fuzziness. A large m

results in fuzzier clusters. If m = 1, the cluster memberships converges to 0 or 1, which implies a

crisp partitioning. In the absence of experimentation or domain knowledge, m is commonly set to 2.

ε is the termination criterion where 0 < ε < 1.

The fuzzy C-means algorithm is very similar to the k-means algorithm. The steps are as follows:

1. Choose a number of clusters C

2. Assign randomly to each point coefficients for being in the clusters

3. Repeat until the algorithm has converged (that is, the coefficients’ change between two iterations

is no more than ε

4. Compute the centroid for each cluster, using the formula above.

5. For each point, compute its coefficients of being in the clusters, using the formula above.

The algorithm minimizes intra-cluster variance as well, but has the same problems as k-means; the

minimum is a local minimum, and the results depend on the initial choice of weights.

2.5.3 Estimating fuzzy clustering validity

Clustering aims at detecting natural groups (or clusters) in multidimensional data sets. The principle

is that data points within a cluster are as similar as possible whereas data points of different clusters



CHAPTER 2. BACKGROUND 28

are as dissimilar as possible. Since clusters may have different shapes and sizes, a partition resulting

from this unsupervised classification process needs to be validated. In this section, we discuss several

validity measures for fuzzy clustering models.

Partition co-efficient

In fuzzy clustering, a partition coefficient F was initially designed by Bezdek [43]. The coefficient

measures the amount of overlap between fuzzy clusters. Its disadvantages are the lack of direct

connection to a geometric property and its monotonic decreasing tendency with the number of clusters

C. F is given by-

F =
1

n

N∑
i=1

C∑
j=1

u2
ij (2.4)

In this form F is inversely proportional to the overall average overlap between pairs of fuzzy

subsets. A value of F = 1 corresponds to hard clustering.

Fuzzy within-cluster sum of square

Fuzzy within-cluster sum of square (fWCSS) [44] is applicable for correlation-based FCM algorithm.

It has been designed by introducing fuzzy membership into the conventional measure within-cluster

sum of square (WCSS). This new measure is

fWCSS(k) =
k∑
j=1

Dj (2.5)

where Dj is given by

Dj =
∑
i

umijd(xi, Cj) =
∑
i

umij b1− corr(xi, Cj)2c (2.6)

The term b1 − corr(xi, Cj)2c is a Pearson correlation based distance metrics, which is the same one

used in the algorithm. The fWCSS(k) measures the overall compactness of fuzzy clusters, and the

amount of overlap between fuzzy clusters with the inclusion of fuzzy membership. It measure uses

the same distance metrics being used in the correlation-based FCM algorithm.
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Compact and separate fuzzy validity criterion

The fuzzy validity criterion S [45] measures the overall average compactness and separation of a fuzzy

c-partition. In this thesis, we will denote the criterion as W . W can be explicitly written as

W =

N∑
i=1

C∑
j=1

u2
ij ||xi − cj ||2

N min
i,j
||ci − cj ||2

(2.7)

A larger W indicates that all clusters are separated. On the other hand, a smaller W indicates that

all the clusters in the partition are overall compact and separate to each other. W is independent of

the underlying fuzzy clustering algorithm. For fuzzy c-means algorithm, W can be applied as follows:

1. Initialize C ← 2, S∗ ←∞, C∗ ← 1, cmax ← based on some heuristic;

2. Initialize fuzzy membership uij ;

3. Apply FCM to obtain cj and uij ;

4. Do convergence test. If negative, go to 3;

5. Compute S;

6. If S < S∗, then S ← S∗ and C ← C∗;

7. If optimal candidate not found, go to 2;

8. c = c+ 1. If c = cmax, stop;

9. Go to 2.

W is monotonically decreasing when C is large and close to N . Several heuristics exist in literature

to identify the stop value cmax for the clustering model.

2.6 Statistical tests for comparing algorithms

In this section, we discuss the statistical tests that have been conducted in the thesis to compare the

competing methods. An analysis of the significance of the tests is also presented. We have used three

statistical tests. They are: Wilcoxon signed-rank test [46], Iman-Davenport test [47] and Holm’s post

hoc test [48].
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2.6.1 Wilcoxon signed-rank test

The Wilcoxon signed ranks test is used for answering the following question: do two samples represent

two different populations? It is a nonparametric procedure employed in hypothesis testing situations,

involving a design with two samples. This is analogous to the paired t-test in nonparametric statistical

procedures; therefore, it is a pairwise test that aims to detect significant differences between two sample

means, that is, the behavior of two algorithms.

Wilcoxons test is defined as follows. Let di be the difference between the performance scores of the

two algorithms on i-th out of n problems (if these performance scores are known to be represented in

different ranges, they can be normalized to the interval [0, 1], in order to not prioritize any problem.

The differences are ranked according to their absolute values; in case of ties, the practitioner can do

any of the following: ignore ties, assign the highest rank, compute all the possible assignments and

average the results obtained in every application of the test.

Let R+ be the sum of ranks for the problems in which the first algorithm outperformed the second,

and R the sum of ranks for the opposite. Ranks of di = 0 are split evenly among the sums; if there

is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (2.8)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (2.9)

Let T be the smaller of the sums, T = min(R+, R). If T is less than or equal to the value of the

distribution of Wilcoxon for n degrees of freedom, the null hypothesis of equality of means is rejected;

this will mean that a given algorithm outperforms the other one, with the p-value associated. The

table values are available at any standard books on statistical tests.

2.6.2 Iman-Davenport test

Iman-Davenport test is an extension of Friedman test [49]. The Friedman test (Friedman two-way

analysis of variances by ranks) is a nonparametric analog of the parametric two-way analysis of

variance. It can be used for answering the following question: in a set of k samples (where k ≥ 2),

do at least two of the samples represent populations with different median values?. It is a multiple
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comparisons test that aims to detect significant differences between the behavior of two or more

algorithms. The null hypothesis for Friedmans test states equality of medians between the populations.

The alternative hypothesis is defined as the negation of the null hypothesis, so it is non-directional.

The first step in calculating the test statistic is to convert the original results to ranks. They are

computed using the following procedure:

1. Gather observed results for each algorithm/problem pair.

2. For each problem i, rank values from 1 (best result) to k (worst result). Denote these ranks as

rji (1 ≤ j ≤ k).

3. For each algorithm j, average the ranks obtained in all problems to obtain the final rank Rj =
1

n

∑
i
rji .

Thus, it ranks the algorithms for each problem separately; the best performing algorithm should

have the rank of 1, the second best rank 2, etc. Again, in case of ties, average rank is computed.

Under the null hypothesis, which states that all the algorithms behave similarly (therefore their ranks

Rj should be equal) the Friedman statistic Ff can be computed as:

Ff =
12n

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(2.10)

which is distributed according to a χ2 distribution with k − 1 degrees of freedom, when n and k are

big enough (n > 10 and k > 5).

Iman and Davenport proposed a derivation from the Friedman statistic given that this last metric

often produces a conservative effect not desired. The proposed statistic is:

FID =
(n− 1)χ2

F

n(k − 1)− χ2
F

(2.11)

which is distributed according to an F distribution with k − 1 and (k − 1)(N − 1) degrees of

freedom.

2.6.3 Holm’s post hoc test

The main drawback of the Friedman and ImanDavenport tests is that they only can detect significant

differences over the whole multiple comparison, being unable to establish proper comparisons between
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some of the algorithms considered. When the aim of the application of the multiple tests is to perform

a comparison considering a control method and a set of algorithms, a family of hypotheses can be

defined, all related to the control method. Then, the application of a post hoc test can lead to

obtaining a p-value which determines the degree of rejection of each hypothesis.

A family of hypotheses is a set of logically interrelated hypotheses of comparisons which, in

1 ∗ N comparisons, compares the k1 algorithms of the study (excluding the control) with the con-

trol method, whereas in N ∗ N comparisons, it considers the
k(k − 1)

2
possible comparisons among

algorithms. Therefore, the family will be composed of k1 or
k(k − 1)

2
hypotheses, respectively, which

can be ordered by its p-value, from lowest to highest. The p-value of every hypothesis in the family

can be obtained through the conversion of the rankings computed by each test by using a normal

approximation. The test statistic for comparing the i-th algorithm and j-th algorithm, z , depends

on the main nonparametric procedure used.

z = (Ri −Rj)
√
k(k + 1)

6n
(2.12)

where Ri and Rj are the average rankings by the Iman-Davenport test of the algorithms compared.

The z -value in all cases is used to find the corresponding probability (p-value) from the table of

normal distribution N(0, 1), which is then compared with an appropriate level of significance α.

The Holm’s post hoc test adjusts the value of α in a step-down manner. Let p1, p2, ..., pk−1 be

the ordered p-values (smallest to largest), so that p1 ≤ p2 ≤ ... ≤ pk−1, and let H1, H2, ...,Hk−1 be

the corresponding hypotheses. The Holm procedure rejects H1 to Hi−1 if i is the smallest integer

such that pi >
α

(k − 1)
. Holms step-down procedure starts with the most significant p-value. If p1

is below
α

(k − 1)
, the corresponding hypothesis is rejected and p2 is compared with

α

(k − 1)
. If the

second hypothesis is rejected, the test proceeds with the third, and so on. As soon as a certain null

hypothesis cannot be rejected, all the remaining hypotheses are retained as well.

Holm APVi : min(v, 1), where v = max((1− pj)(k − j) : 1 ≤ j ≤ i).

2.7 Summary

Multi-label classification itself is more difficult than single label classification. Several methods for

multi-label learning exists in the literature. But the issues that arise in the multi-label data stream
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environment makes classification even more challenging for the stream learning models. Although,

there are online or incremental learning methods for streaming environments, the multi-model ensem-

ble methods tend to exhibit better performance than traditional single model incremental methods.

Concept evolution, a prime challenge posed by data streams, cannot be handled by the traditional

stream classification models and requires unsupervised mining techniques like, the clustering of the

streams. In a multi-label data stream scenario, the hard clustering methods do not apply due the

multiplicity of label cardinality of the stream instances. So, fuzzy clustering techniques are applied

to identify multiple novel concepts that may appear in the stream.
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Proposed Method

In this chapter, we first introduce the notations that will be used to describe our proposed framework.

A brief overview of the proposed approach is then provided. Finally, the proposed layered ensemble

framework and associated algorithms are explained in detail.

3.1 Symbols and notations

Let us consider a multi-label data stream S with P% of the instances being labeled. L denotes the

set of existing class labels in S. As concept evolution is a common phenomena in the data streams

L is not fixed for S because novel classes may appear in the stream with the passage of time. The

average label cardinality is denoted by LC, i.e, instances in S belong to LC class labels on average.

The value of LC is dependent on the data domain and assumed to be known beforehand [14, 7].

Although, SMART [4] learns the value of LC from the labeled examples observed so far by obtaining

their average label cardinality and setting it as LC. For the batch incremental setting, S is divided

into chunks {D1, D2, . . . , Dj , . . . } each of size B. Here, Dj denotes the j-th chunk in the stream.

In the LEAD framework, each instance xi in a given data chunk is associated with two attributes:

a set of class labels (Ls) and the time of arrival (t). For convenience, we address each data point as

timestamped instance X with attributes X.Ls and X.t. Arrival time is assigned to 0 (X.t ← 0) for

each newly arrived X. Td is the allowable time constraint until which classification of an instance

can be deferred and Tu is the allowable time constraint until which an instance is not considered for

novelty detection.

Figure 3.1 illustrates the significance of Td and Tu with an example. Here, Xk is the latest instance

34
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Figure 3.1: Illustration of Td and Tu

that has arrived in S. Let, Xj be the instance that arrived Td time units earlier, and Xi be the instance

that arrived Tu time units earlier. Then, Xi and all instances that arrived before Xi (shown with

dark-shaded area) are classified and labeled since all of them are at least Tu time units old. On the

other hand, Xj and all instances that arrived before Xj but after Xi (the light-shaded area) are either

classified or candidate for novel class detection. Since, the instances are at least Td time units old

some of them will be classified by the classifier. The rest of the instances were not classifiable by the

classifier and are considered as potential novel class instances. Instances that arrived after Xj (age

less than Td) may or may not be classified (shown with the unshaded area). Since S contains both

labeled and unlabeled instances, some of the instances in both light shaded (t ≤ Tu) and unshaded

(t ≤ Td) are labeled (P%) and used to train the classifiers in the framework. The rest of the instances

in those areas are unlabeled. In summary, Tu is enforced by labeling an instance X after Tu time units

of its arrival, and Td is enforced by either identifying X as potential novel instance or by classifying

X within Td time units of its arrival, for every instance X in the stream.

Setting the value of the time constraints Td and Tu is itself an independent research problem. The

value of Td depends on both the speed of at which the stream data arrives and the speed at which

the base classifiers can be constructed. If stream data arrives at a higher rate, then more labeled

instances will be readily available for the classification model. As a result, informed classifiers can be

learned quickly and hence, Td can be set to a lower value. The stream data arrival rate depends on

the underlying application that generates the data stream. For example, social networks like twitter,

facebook, etc. generate data at a speed which is much higher than credit card transaction data of

a particular bank. On the other hand, the learning rate of a classifier also contributes to the value

of Td. If a base classifier A can learn at higher rate than another base classifier B, then Td can be

set to a higher value for A than B. The faster learning rate of a classifier allows the model to defer

the classification for longer period of time and still attain faster classification results. Similar to Td,

the value of Tu also depends on the aforementioned factors. Furthermore, as Tu is related to novel
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class detection, its value also depends on the clustering speed of the novelty detector. If the novelty

detector can perform clustering at a higher speed, then the value of Tu can be a set to higher value

and still attain a fast response. So, the value of these time constraints are dictated by several factors

and can be tuned based on these factors to attain a faster data stream classification framework.

LEAD maintains six buffers bufl, bufu, bufd, bufuu, bufnovel and buffeed for storing instances

with different status while processing S. bufl and bufu stores the labeled and unlabeled instances

of the current data chunk, respectively. bufd stores the instances with X.t < Td and are tired for

classification until X.t exceeds Tu. bufuu stores the instances with X.t < Tu (i.e., potential novel

instance) and are tired for classification until X.t exceeds Td. bufnovel stores the instances with

X.t > Tu and are the eventual candidates for novel class detection. buffeed stores the classified and

novel class instances. Instances in buffeed are labeled by human experts. Table 3.1 summarizes the

symbols and terms used across the paper.

Table 3.1: Commonly used symbols and terms

S Multi-label Data Stream bufl Buffer of labeled instances
Dj j-th data chunk bufd Buffer of instances with deferred classification
B Data chunk size bufu Buffer of unlabeled instances
X Time Stamped Instance bufuu Buffer of unlabeled unclassified instances
X.x Feature vector of data point x buffeed Buffer for Manual Labeling
X.Ls Label set of X.x bufnovel Buffer for novel class detection
X.t Arrival Time of X.x P % of labeled data
L Set of Class Labels Bnovel Unlabeled buffer size
LC Average Label Cardinality of S Td Time constraint for deferred classification
l A class label Tu Time constraint for novelty detection
El Classifier ensemble for class label l C Number of Clusters for fuzzy c-means
G Classifier ensemble m Fuzzyness co-efficient, m = 2
TLr Top layer ensemble ε Termination criterion for fuzzy c-means, 0 < ε < 1
BLr Bottom layer ensemble Θ Fuzzy Clustering Model

BRil i-th Binary Relevance classifier in El NΘ Set of instance frequencies per cluster in Θ
Nm Number of classifiers per label’s ensemble TBRl Temporary BR classifier trained class label l

3.2 Overview of the approach

Our proposed framework maintains a two layered ensemble architecture, G. The two layers are called

the top layer ensemble, TLr and the bottom layer ensemble, BLr. Both TLr and BLr contain label

based ensembles (Els) [7] for different class labels (ls) in S. TLr reflects the concept present in the

most recent chunk, i.e, an El is kept in TLr only if instances having the class label l were encountered

in the most recently processed chunk. On the other hand, BLr reflects the old concept, i.e, the concept
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Figure 3.2: LEAD Framework

that is not present in the recent chunk. The motivation for maintaining the two ensemble layers is as

follows:

1. Instead of classifying an instance X with all the Els in G, we compare it with only the Els in

TLr. This is done because the current chunk is most likely to be similar in concept with the

preceding chunk. X is only classified with the ensembles in BLr if the LC criteria is not met,

i.e, X.Ls < LC. As a result, extraneous computation can be avoided.

2. The layered approach helps with the class recurrence scenario. BLr contains Els of those class

labels, whose instances did not appear in the most recent chunk. If instances having any of

those class labels appear in future, they can be correctly classified by BLr, a part of G.

3. The layered approach also helps to differentiate between novel class and recurrent class instances.

Novel class instances can’t be classified by either of top or bottom layer ensembles. But failure

to differentiate between novel class and recurrent class instances will increase the false alarm

rate. The layered ensemble approach pre-emptively limits the false alarm rate. Moreover, failure

to detect novel class results in poor classification performance which is also addressed in this

framework.

In each El, a set of Nm binary relevance (BR) classifiers [15] is maintained as base multi-label

classifiers. The BR approach transforms a multi-label problem into multiple binary problems and
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tackles each problem independently. The advantage of this approach is that it can be combined with

any binary classification algorithm. Furthermore, it can easily handle the appearance of instances with

a new label by training a new binary classifier. Other methods like CC [28], RAKEL [33], HOMER

[27], PCT [50], ML-kNN [9] etc. could have also been used in our LEAD framework.

The LEAD framework is depicted in Figure 3.2. As a new chunk Dj arrives, one BR model BRjl

is first trained for instances of each l in Dj . Then G tries to classify the instances in Dj by using

TLr and BLr. If TLr can classify an instance it is stored in buffeed for manual labeling. Otherwise,

the instance is forwarded to BLr for classification. If BLr fails to classify the instance, it is stored in

bufd for deferred classification. Any instance stored in bufd that cannot be classified within the time

interval Td is considered as a prospective novel instance and stored into bufnovel. When the bufnovel

has enough (|bufnovel| ≥ Bnovel) instances, a “Novelty Detector” tries to identify a set of novel classes

from the prospective novel instances. The novel class instances are then labeled and forwarded to the

output of the framework. The “Novelty Detector” also propagates the new class label information

to G for subsequent refinement. Finally, G is updated to best reflect the current concept of stream

S. In each El, the most poorly performing classifier (BRjl ) is always replaced by the newly trained

classifier. The replacement strategy is introduced to keep the model up to date in order to deal with

concept drift.

3.3 Algorithmic framework

The LEAD framework can be divided in the following phases: (i) Initial layered ensemble construc-

tion, (ii) Classification, (iii) Novel class detection, and (iv) Ensemble refinement and update. While

Algorithm 3.1 outlines the entire LEAD framework, the other algorithms (Algorithms 3.2–3.4) corre-

spond to different phases of LEAD. To illustrate the construction and update of G (phase i and iv),

we consider the following scenario: Let, the first four chunks of a data stream S are D1 = {A,C, F},

D2 = {A,C,H}, D3 = {A,F,Q}, and D4 = {A,C,H} where L = {A,C, F,H,Q}. For simplicity the

chunks are represented with class labels of the labeled instances. We assume that Nm = 2, i.e. the

initial G is constructed from two chunks and each El in G will maintain two BRils. As we analyze the

different phases of LEAD, we inspect how they function for the given example. The different states

of G for the aforementioned scenario are shown in Figure 3.3.
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Algorithm 3.1 LEAD(S)

Input: Data Stream S

1: Set bufl, bufd, bufu, bufuu, and bufnovel as empty
2: G← Build-initial-Ensemble()
3: while S is not empty do
4: Load New Chunk Dj

5: bufl ← labeled instances of Dj

6: bufu ← unlabeled instances of Dj

7: TBR← Train(bufl) . TBR← Set of TBRl
8: for all TBRl ∈ TBR do
9: Add TBRl to ensemble El of G

10: end for
11: for each instance x in bufu do
12: X ← empty
13: X.x← x
14: X.t← 0
15: Classify(G, X) . Algorithm 3.2
16: end for
17: buftemp ← empty
18: for each instance X in bufd do
19: if X.t ≤ Td and X.t 6= 0 then
20: Classify(G, X)
21: else if X.t > Td then
22: Add(bufuu,X.x)
23: else
24: Add(buftemp, X) . Classification deferred.
25: end if
26: end for
27: bufd ← buftemp
28: buftemp ← empty
29: for each instance X in bufuu do
30: if X.t ≤ Tu then
31: Classify(G, X)
32: else if X.t > Tu then
33: Add(bufnovel,X.x)
34: else
35: Add(buftemp, X) . Novelty Detection deferred.
36: end if
37: end for
38: bufuu ← buftemp
39: if |bufnovel| ≥ Bnovel then
40: L′ ←DetectNovelLabelSet(bufnovel) . with C, ε, m. Algorithm 3.3
41: end if
42: Manual labeling of bufnovel and buffeed
43: bufl ← bufl ∪ {bufnovel ∪ buffeed}
44: G←Update-Model(L,L′) . Algorithm 3.4
45: Empty all buffers
46: end while
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3.3.1 Initial ensemble construction

The initial ensemble G is constructed by Build-initial-Ensemble() procedure (Algorithm 3.1, Line

2) with the first Nm data chunks. Whenever a new chunk Dj arrives, its labeled and unlabeled

instances are stored in bufl and bufu, respectively. For each class label l in bufl, LEAD first trains

a new BRjl using instances having class label l. It then adds BRjl to the corresponding label based

ensemble El. The process is continued until Nm chunks have arrived.

To visualize this process, let us consider Figure 3.3a. As the data chunk D1 arrives, LEAD first

trains classifiers BR1
A, BR1

C and BR1
F and then adds to EA, EC and EF , respectively. These three

ensembles are the members of the top layer ensemble TLr. LEAD repeats the same process for the

chunk D2. It means one more classifier is added to both EA and EC because D2 contains instances

with the class labels A and C. Moreover, a new label based ensemble EG is added to TLr due the

presence of instances with the class label G. Initially, all the Els are added to TLr and BLr remains

empty.

3.3.2 Stream data classification

This phase involves Algorithms 3.1 and 3.2. Starting from the (Nm + 1)-th data chunk, labeled and

unlabeled instances of a newly arrived chunk Dj are first stored in bufl and bufu, respectively. Then

a temporary binary classifier TBRl is trained with instances having class label l. TBRl does not

replace any existing classifier in El, rather acts as the representative of the concept of the current

chunk Dj . Each instances x of bufu (Algorithm 1, Lines 16-18) is then fetched and assigned time 0

(X.t ← 0). As discussed before, such an instances is called the timestamped instance (X). Each El

in TLr and if required the BLr, attempt to classify X (Algorithm 3.2). Classification is done based

(a) Initial Ensemble Construction (b) Ensemble update (c) Ensemble update

Figure 3.3: Different states of the layered ensemble architecture.



CHAPTER 3. PROPOSED METHOD 41

on the majority voting of the classifiers in El. The vote of TBRl is considered during classification

decision. During classification the following cases may arise:

1. X can be classified by the TLr.

2. X can be classified by BLr, but not TLr.

3. X can be classified by neither TLr nor by BLr, i.e. |X.Ls| = 0

Case 1: X is classifiable by TLr and is labeled accordingly (Algorithm 3.2, Lines 1–18). If |X.Ls| <

LC, then X is further classified by BLr. The advantage with this approach is that if X’s label set

satisfies the cardinality condition we need not check the bottom layer. As a result, excess computation

can be avoided across the entire stream S.

Case 2: X is classifiable by BLr but not by TLr, i.e, X.x belongs to classes whose instances haven’t

appeared in recent chunks. Hence, the corresponding Els were demoted to the bottom layer ensemble.

So, Case 2 handles to the class recurrence scenario.

Case 3: This case arises when X.Ls is empty (Algorithm 3.2, Lines 19-29). Which means the

current architecture can’t classify X. There can be two sub-cases: a) X belongs to a novel class; b)

some classifier BRjl can classify X, yet X is voted unclassifiable by majority of the classifiers of El.

Time stamped instances with Case 3a, are stored in bufuu for further consideration. Case 3b may

occur when X’s class label is l, but all the Els in G are underdeveloped and can’t classify X. So, X’s

classification is deferred and stored in bufd for further classification attempts.

The classified instances are stored in buffeed. The Classify(G,X) procedure is followed up by

deferred classification (Algorithm 1, Lines 21-31). Each X in bufd is fetched again for classification.

Then X.t is updated. If X.t is less than Td and X’s classification has failed, it is again stored in bufd.

On the other hand, if X.t exceeds Td, it is stored in bufuu. To avoid classification attempt on X

twice in the same iteration, the X.t = 0 condition is checked (line 23). Finally, before an X in bufuu

is eligible for novelty detection (when X.t < Tu), it is again tried for classification. If classification

fails, X.t is updated. If X is eligible for novelty detection it is stored in bufnovel for further analysis

in novel class detection phase.

3.3.3 Novel class detection

This phase involves Algorithm 3.3 and deals with instances in bufnovel. In the multi-label data stream,

one record may belong to multiple classes. Hence, the hard clustering methods like k-means clustering
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Algorithm 3.2 Classify(G, X)

Input: Layered ensemble G, Time stamped instance X
Output: Classification Decision.

1: for all l ∈ L and El in top layer do
2: Dsn← empty set of decisions
3: for all classifier i ∈ El do
4: Dsn← Dsn ∪BRil(X.x)
5: end for
6: decisionl ← majority-voting(Dsn)
7: end for
8: X.Ls← decision
9: if |X.Ls| < LC then

10: for all l ∈ L and El in bottom layer do
11: Dsn← empty set of decisions
12: for all classifier i ∈ El do
13: Dsn← Dsn ∪BRil(X.x)
14: end for
15: decisionl ← majority-voting(Dsn)
16: end for
17: end if
18: X.Ls← decision
19: if X.Ls is empty then
20: if some classifier Nm of any El can classify X.x then
21: X.t← X.t+ 1
22: Add(bufd,X)
23: else . no classification decision can be made
24: X.t← X.t+ 1
25: Add(bufuu,X)
26: end if
27: else . X can be classified
28: Add(buffeed, X)
29: end if
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cannot be applied for novelty detection in multi-label data streams. In the LEAD framework, we

deploy fuzzy clustering technique for the novel class detection. In fuzzy clustering, every data point

has a degree of associativity to clusters, rather than belonging completely to just one cluster. Here, we

have used the Fuzzy C-means (FCM) clustering algorithm [41] for constructing our novelty detector.

Algorithm 3.3 DetectNovelLabelSet(bufnovel)

Input: Buffer of Novel Instances bufnovel
Output: Novel Label Set L′

1: c← 2
2: for c < |bufnovel| do
3: Θc ← Fuzzy-C-Means(bufnovel, c, m, ε)
4: Ω← Ω ∪Θc

5: end for
6: cmax ← c value from where monotonically decreasing tendency of W starts
7: Θbest ← min

2≤c≤cmax
{min

Θc∈Ω
W}

8: L′ ← Cluster-to-Class(Θbest)

In our approach, a fuzzy clustering model Θ is generated using Fuzzy-C-Means() procedure.

Apart from bufnovel, the procedure takes three more parameters. They are: C, m, and ε. The

main assumption behind novel class detection is that an instance should be closer to the instances of

its own class (compactness) and farther apart from the instances of other classes (separation). The

validity of the fuzzy clusters obtained are measured based on a compact and separate fuzzy validity

criterion W as discussed in Section 2.5.3. A lower value of W for a cluster combination indicates

better compactness within a cluster and more separation among all the clusters.

A problem of implementing W is that it has a tendency to eventually decrease when c becomes

large. So, the value of W is meaningless when c gets close to |bufnovel|. To address this issue, [45]

deploys a heuristic to identify the maximum acceptable value, cmax. According to the heuristic, first

the W value is obtained for c = 2 to |bufnovel|−1. Then the c value from which W starts monotonically

decreasing is considered to be cmax. With c = 2 to |bufnovel| − 1, the cluster combination for which

the minimum W value can be found is selected as the best fuzzy clustering (Θbest). The clusters in

Θbest are selected as novel clusters by the novelty detector. The novel clusters are then labeled and

corresponding class labels are added to L′ (Algorithm 3.3, Line 8), a set of novel class labels. L′ is

used by ensemble refinement and update phase for subsequent update of G.



CHAPTER 3. PROPOSED METHOD 44

Algorithm 3.4 Update-Model(L,L′)

Input: Existing Label set L, Novel Label Set L′

Output: Update G

1: for all l ∈ L do
2: Remove TBRl from El
3: end for
4: BRj ← Train(bufl) . BR← Set of BRjl
5: Lcurr ← empty
6: for all BRjl ∈ BR do
7: Lcurr ← Lcurr ∪ l
8: Remove the worst performing Binary classifier in El
9: Add BRjl to ensemble El of G

10: end for
11: for all l′ ∈ L′ do
12: El′ ← Ensemble for Label l′

13: Add El′ to TLr
14: end for
15: for all l ∈ Lcurr and El ∈ BLr do
16: Remove El from BLr
17: Add El to TLr
18: end for
19: Lold ← L− Lcurr
20: for all l ∈ Lold and El ∈ TLr do
21: Remove El from TLr
22: Add El to BLr
23: end for

3.3.4 Ensemble refinement and update

This phase corresponds to Algorithm 3.4. All the instances of bufnovel and buffeed are first added

to bufl (Algorithm 3.2, Line 47). All the TBRls are removed from G next. Then new classifiers

are learned with instances having class label l. The poorest classifier BRjl in El is replaced with

the new classifier. Moreover, the novelty detector may detect novels classes and new ensemble El′

is constructed for each of the new class labels l′. El′s are then added to TLr. Finally, top layer Els

whose class instances were not encountered in the current chunk are transferred to BLr. On the other

hand, bottom layer Els whose class instances were encountered in the current chunk are transferred

to TLr (Algorithm 3.4, Lines 15-23).

To visualize the ensemble update process, let us consider the scenarios in Figure 3.3b and 3.3c

corresponding to the example discussed at the start of this section. After data chunk D3 is processed

by the previous two phases, a new ensemble EQ is generated due to the presence of labeled instances



CHAPTER 3. PROPOSED METHOD 45

of class Q (Figure 3.3b). EQ is then added to TLr. As instances of class C and G were not present

in D3, EC and EG are demoted to BLr. The other Els kept in TLr. From Figure 3.3c, it can be seen

that a novel class Z has been identified by the novelty detector. So, EZ is constructed with a classifier

BR4
Z and added to TLr. As instances of class C and G were present in D4, EC and EG are promoted

to TLr. But EF and EQ are demoted to BLr due to the absence of instances of class F and G in D4.

3.4 Summary

LEAD is a multi-phase classification framework that can detect and identify concept evolution in

multi-label data streams. The primary component of LEAD is a layered ensemble architecture that

can classify the existing class instances and isolate the novel class instances from existing class in-

stances. The novelty detector component of the framework can identify emergence novel concepts

in the stream. The ensemble architecture can also detect recurrent class instances and classify them

accordingly. The ensemble architecture of LEAD is updated and refined regularly to keep the model

up to date even in the presence of concept drift and concept evolution.



Chapter 4

Experimental Result

In this chapter, we evaluate the effectiveness of our proposed LEAD framework and compare its per-

formance with two baseline methods. We first describe the datasets used for experimental evaluation.

The evaluation measures for analyzing the predictive performance of the competing methods are then

discussed. Two new evaluation measures for novel class detection have been proposed in this thesis.

The classification and novel class detection performance of the competing methods are then analyzed.

We also establish the statistical significance of LEAD by using statistical tests.

4.1 Datasets

We have used 11 different multi-label datasets. Of them, 10 are multi-label classification benchmark

data sets from different application domains and 1 is a synthetic datasets. Table 4.1 presents the

basic statistics of the datasets. We can note that the datasets vary in size: from 1702 up to 10,00,000

instances, from 103 up to 47236 features (numeric or nominal), from 6 to 374 labels, and from 1.252

to 4.376 label cardinality. First, we discuss the benchmark datasets followed by a discussion on the

synthetic datasets.

4.1.1 Benchmarks datasets

The benchmark datasets are from three domains: biology, multimedia and text categorization. From

the biological domain, we have the yeast dataset [51]. It is a widely used dataset, where genes are

instances in the dataset and each gene can be associated with 14 biological functions (labels). The

datasets that belong to the multimedia domain are: scene, corel5k and mediamill. Scene [52] is a

46
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Table 4.1: 11 datasets from different application domains. B = nominal attributes, N = numeric
attributes

Name Domain Instances Labels Attributes Cardinality

20NG Text 28596 22 1001B 2.2

corel5k Multimedia 5000 374 499B 3.522

enron Text 1702 53 1001B 3.378

mediamill Multimedia 43907 101 120N 4.376

rcv1v2(subset1) Text 6000 101 47236N 2.88

scene Multimedia 2407 6 294N 1.074

tmc2007 Text 28596 22 500B 2.158

yeast Biology 2417 14 103N 4.237

slashdot Text 3782 22 1079B 1.2

imdb Text 120919 28 1001B 2.0

SynT-D Synthetic 1000000 8 30B 3.0

widely used scene classification dataset. Each scene can be annotated in the following six contexts:

beach, sunset, field, fall-foliage, mountain, and urban. The Corel5k [53] dataset contains Corel images

that are segmented using normalized cuts. The segmented regions are then clustered into 499 bins,

which are further used to describe the images. Each image can be then assigned several of the 374

possible labels. Mediamill [54] originates from the 2005 NIST TRECVID challenge dataset, which

contains data about annotated videos. The label space is represented by 101 “annotation concepts”,

such as explosion, aircraft, face, truck, urban, etc.

The domain of text categorization is represented with six datasets: 20NG, enron, tmc2007, slash-

dot, imdb, and finally, rcv1v2: subset1. 20NG is the classic 20 newsgroups collection [55] with around

20,000 articles sourced from 20 newsgroups. Enron [56] is a dataset that contains the e-mails from

150 senior Enron officials. The e-mails were categorized into several categories developed by the UC

Berkeley Enron Email Analysis Project. The labels can be further grouped into four categories: coarse

genre, included/forwarded information, primary topics, and messages with emotional tone. tmc2007

[57] contains instances of aviation safety reports that document problems that occurred during certain

flights. The labels represent the problems being described by these reports. We use a reduced version

of this dataset with the top 500 attributes selected, same as Tsoumakas et al. [58]. Slashdot [59]

consists of article blurbs with subject categories, mined from http://slashdot.org/. IMDB data set

[28] contains 120,919 movie plot text summaries gathered from the Internet Movie Database. This

data set is labeled as one or more classes out of 28 labels. rcv1v2 text data sets [60] are popularly
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used as benchmark in text classification. The data set contains Reuter newswire stories and we use

one of the subsets of the dataset each containing 6000 instances with 47236 numeric features. rcv1v2

text data were collected in time sequence, and thus has concept drifting problem.

To simulate in our proposed framework, these data sets are processed as follows:

1. First, a set of class labels are selected at random as novel class labels. The number of novel class

labels range from 2 to 10 depending on the label set cardinality (|L|) of a dataset. To simulate

concept evolution, instances of these class labels are not included in the data stream until 50%

instances of the entire dataset has already been sent to the stream.

2. Then a set of class labels are selected at random as recurrent class labels. The number of

recurrent class labels range from 2 to 4 depending on the label set cardinality (|L|) of a dataset.

Instances of these class labels are initially included in the data stream. But to simulate class

recurrence, after a few chunks are processed by our framework, the selected recurrent class

instances are excluded from inserting into the stream. These class instances are again pushed

into the stream after 60% of the remaining instances in the dataset have been included in the

stream.

3. While inserting an instance in the data stream, a random value v (0 < v < 1) is picked. The

instance is then pushed in the stream as labeled (|X.Ls| > 0) or unlabeled (|X.Ls| = 0) with

probability P .

4.1.2 Synthetic datasets

The benchmark methods apart from rcv1v2(subset1) don’t present any concept drift. The SynT-Drift

dataset can be found in [14] that simulates concept drift. We denote the data set as SynT-D. Three

concept drifts of varying type, magnitude, and extent occur in SynT-drift. For N generated examples,

the drifts are centred over examples 1/N ,2/N ,and 3/N , extending over N/1000, N/100, and N/10

examples, respectively. In the first drift, only 10% of label dependencies change. In the second drift,

the underlying concept changes and more labels are associated on average with each example (a higher

label cardinality). In the third drift, 20% of label dependencies change. Such types and magnitudes

of drift can be found in real world data. To simulate concept evolution and class recurrence in SynT-

D, we have also deployed the processing steps as discussed in Section 4.1.1. We call this variation
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SynT-DN. Here, two classes were chosen at random for simulating concept evolution and two classes

were chosen at random for simulating class recurrence.

4.2 Baseline methods

To the best of our knowledge, there is no approach that can classify multi-label data streams and

detect novel class simultaneously. So, we like to compare our approach with a combination of two

baseline techniques: OLINDDA [40] combined with either Ensemble of Hoeffding Trees with Pruned

Sets classifier (EaHTPS) [14] or Chunk Based Ensemble Framework (CBEF ) with binary relevance

classifier. OLINDDA works as novel class detector and both EaHTPS and CBEF perform multi-

label classification. As discussed in Section 1.1, EaHTPS is a bagged adaptive window based instance

incremental approach for classifying concept drifting multi-label data streams. On the other hand,

CBEF is a batch incremental multi-label classification process where classifiers are learned per chunk

and an ensemble of these classifiers are maintained for classification of data stream instances. When-

ever a new chunk arrives, a new classifier is learned. The new classifier then replaces the one of the

existing classifiers. The classifier that most poorly classifies the current chunk is chosen for replace-

ment. OLINDDA has been discussed in detail in Section 2.5.1. We denote the baseline methods as

OE (OLINDDA combined with EaHTPS) and OC (OLINDDA combined with CBEF ).

4.3 Experimental Setup

The experiments on the baseline methods are conducted as follows: for each instance, OLINDDA

determines whether the instance is novel. The classification of an instance is delayed by Td time

interval. That is, OLINDDA is given Td time intervals to determine whether an instance is novel. If

the stream instance is identified as a novel class instance, then it is considered novel and not classified

using the classifiers. Otherwise, the instance is assumed to be an existing class instance, and its class

is predicted using the classifier corresponding to the baseline method. We use OLINDDA as the

novelty detector since it is a novel concept detection technique that has shown to have outperformed

other novelty detection techniques in data streams [40]. However, OLINDDA assumes that there is

only one “normal” class, and all other classes are “novel”. So, it is not directly applicable to the multi-

label novelty detection problem, where any combination of classes can be considered as the “existing”

classes. Therefore, we propose an alternative solution. We build parallel OLINDDA models, one for
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each class, which evolve simultaneously. Whenever the instances of a novel class appear, we create

a new OLINDDA model for that class. A test instance is declared as novel, if all the existing class

models identify this instance as novel. In all experiments, the ensemble size and chunk size are kept

the same for all the baseline techniques. Besides, the same base learner is used for EaHTPS , CBEF

and LEAD.

All the methods (EaHTPS , CBEF and LEAD) were developed in JAVA. EaHTPS was developed

using the MEKA (http://sourceforge.net/projects/meka/) library and CBEF was developed using

the WEKA library [61]. LEAD was developed using both MULAN (http://mulan.sourceforge.net)

and WEKA library.

For parameter settings we have classified the datasets into three categories based on number of

instances. They are: Small (corel5k, enron, scene, yeast, slashdot, rcv1v2(subset1)), Medium (20NG,

mediamill, tmc2007) and Large (imdb, SynT-D, SynT-DN).

Table 4.2: Parameters used in experimentation

Category B Bnovel Nm Td Tu C m ε

Small 300 450 4 3 2 10
2 0.3Medium 1000 2500 5 3 3 20

Large 2500 3000 5 3 3 20

The parameter used in LEAD for different categories of datasets are shown in Table 4.2. The

parameters B and Bnovel are given in terms of number of instances. Nm denotes the number of data

chunks considered for initial G construction. Td and Tu denote the maximum time interval for deferred

classification and novel class detection of an instance, respectively. C is the number of clusters initially

created. For all the categories, m and ε are set to 2 and 0.3, respectively. These parameters are tuned

to achieve overall satisfactory performance.

For CBEF , the two parameters B and Nm are required. For each dataset, these parameter were

set to their optimal values to obtain the best performance for CBEF . For EaHTPS , the adaptive

window size is kept equal to chunk size B. The initial classifier is constructed using the first B

examples. Among the class labels encountered in the first B examples, the 30 most frequent labels

are considered to construct the Pruned Set (PS) classifier. For OLINDDA the parameter settings

are B, Bnovel, Nm, C and Td. Here, C is interpreted as the number of clusters built in the initial

model. The other parameters bear the same meaning as LEAD. All the parameter values are set as
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per Table 4.2. The experimental results presented in this paper were averaged over 30 runs. During

each of the 30 runs, results were averaged over all evaluation windows for OE . On other hand, results

were averaged over all the data chunks for OC and LEAD during each of the 30 runs.

4.4 Evaluation measures

Now, we present the measures that are used to evaluate the predictive performance of the competing

methods in our experiments. In the definitions below, yi denotes the set of true labels of example

xi and h(xi) denotes the set of predicted labels for the same examples. All definitions refer to the

multi-label setting. Furthermore, we propose two new evaluation metric for novel class detection.

4.4.1 Evaluation measures for classification

In this thesis, three measures are used for evaluation classification performance. They are: Accuracy,

F1-score and Macro − F1. The classification measures can be further divided into example based

measures and labels based measures.

Example based measures for classification

The example based evaluation measures are based on the average differences of the actual and the

predicted sets of labels over all examples of the evaluation dataset. Accuracy and F1-score are both

example based measures of evaluation.

Accuracy for a single example xi is defined by the Jaccard similarity coefficients between the label

sets h(xi) and yi. Accuracy is micro-averaged across all examples:

Accuracy =
1

N

N∑
i=1

|h(xi) ∩ yi|
|h(xi) ∪ yi|

(4.1)

F1-score is the harmonic mean between precision and recall and is defined as:

F1 − score =
1

N

N∑
i=1

2× |h(xi) ∩ yi|
|h(xi) + yi|

(4.2)

F1 is an example based metric and its value is an average over all examples in the dataset. F1

reaches its best value at 1 and worst value at 0.
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Label based measures for classification

The label-based evaluation measures assess the predictive performance for each label separately and

then average the performance over all labels. Macro− F1 is a label based evaluation metric.

Macro − F1 is the harmonic mean between precision and recall, where the average is calculated

per label and then averaged across all labels. If pj and rj are the precision and recall then Macro−F1

is defined as:

Macro− F1 =
1

Q

Q∑
j=1

2× pj × rj
pj + rj

(4.3)

where pj and rj are defined as follows:

pj =
1

Q

Q∑
j=1

tpj
tpj + fpj

(4.4)

rj =
1

Q

Q∑
j=1

tpj
tpj + fnj

(4.5)

Here, tpj and fpj are the number of true positives and false positives for the j-th label and fnj

is the number of false negatives for the j-th label considered as a binary class.

4.4.2 Evaluation measures for novel class detection

In this section, we propose two new evaluation measures for novel class detection. They are: PFnovel

and ATnovel. PFnovel is an example based measure whereas ATnovel is a label based measure.

PFnovel

PFnovel is the fraction of existing class instances identified as novel class instances and is defined as

follows:

PFnovel =
Fnovel
Nexisting

(4.6)

where Fnovel is the number of existing class instances identified as novel class and Nexisting is the total

number of existing class instances. The closer the value of PFnovel to 0 the better the performance of

the novel class detector. The higher value of PFnovel occurs when the novelty detector misidentifies
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many existing class instances as novel class instances. This phenomenon usually takes place when

recurrent class instances appear in the stream and the novelty detector fails to identify them as

existing class instance.

ATnovel

ATnovel is a measure of the prediction accuracy of the novel class detector. ATnovel is defined as the

average number of novel class instances identified correctly (true novel) across all novel classes in the

data stream and expressed as follows:

ATnovel =
1

Qnovel

Qnovel∑
i=1

(Pnovel)i
(Tnovel)i

(4.7)

where Qnovel is the number of novel classes identified, (Pnovel)i is the number of instances predicted

as class i instances and (Tnovel)i is the actual number of instances of novel class i.

The value ATnovel << 1 occurs for two reasons. They are: (1) if many of the novel class instances

have been identified as existing class instance and (2) if very few existing class instances have been

identified as novel class instances. So, PFnovel will also be very small when ATnovel << 1. The value

ATnovel > 1 also occurs for two reasons. They are: (1) if the number of true novel class instances

identified is either large or small but, a large number of existing class instances are identified as novel

class instances or (2) if the number of true novel class instances identified is large but, a small number

of existing class instances identified as novel class instances. So, the value of ATnovel alone cannot

be a measure of the performance of the novelty detector. If PFnovel is very close to 1, then ATnovel

might attain a value close to or greater than 1 which denotes poor performance. On the other hand,

given PFnovel is close to 0, it can be safely said that the closer the value of ATnovel to 1 the better

the performance of the novel class detector.

4.5 Results

In this section, we present the classification and novelty detection performance of LEAD and compare

them with the baseline methods. Then the performances of the competing approaches are analyzed

using several statistical tests.
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Table 4.3: Comparison of classification performance for P = 40.

Dataset Approach Accuracy Macro-F1 F1-score

20 Ng
LD 0.5643 0.5986 0.6172
OE 0.4671 0.4991 0.5178
OC 0.3874 0.4057 0.4213

corel5k
LD 0.4503 0.4693 0.4824
OE 0.2214 0.2471 0.2765
OC 0.1986 0.2109 0.2347

enron
LD 0.4029 0.4057 0.4419
OE 0.2718 0.3043 0.3190
OC 0.2306 0.2500 0.2883

mediamill
LD 0.3291 0.3733 0.4202
OE 0.2115 0.2361 0.2734
OC 0.1803 0.2017 0.2394

rcv1v2(s1)
LD 0.7236 0.7395 0.7820
OE 0.7080 0.7461 0.7619
OC 0.6416 0.6604 0.6986

scene
LD 0.7044 0.6820 0.7090
OE 0.5890 0.6021 0.6487
OC 0.5264 0.6019 0.6514

tmc2007
LD 0.5163 0.5273 0.6207
OE 0.4901 0.5381 0.5688
OC 0.4349 0.4528 0.4862

yeast
LD 0.5209 0.5564 0.6321
OE 0.3243 0.3432 0.3756
OC 0.3581 0.3726 0.3901

slashdot
LD 0.5529 0.5623 0.5786
OE 0.4183 0.4375 0.4736
OC 0.4402 0.4604 0.4847

imdb
LD 0.3209 0.3648 0.4162
OE 0.2316 0.2743 0.2906
OC 0.1958 0.2174 0.2538

SynT-DN
LD 0.1957 0.1899 0.2201
OE 0.1539 0.1710 0.1964
OC 0.0986 0.1046 0.1207

4.5.1 Classification performance

Table 4.3–4.6 compare the classification performance of LEAD (LD), OLINDDA − EaHTPS (OE)

and OLINDDA−CBEF (OC). The classification results were compared with four different percent-

age of labeled data in the stream (P = 40, 60, 80, 90). For all the measures, higher value indicates

better performance.

Table 4.3 shows the classification performance of LEAD, OE and OC when 40% of the instances in

S are labeled. In all dataset categories LEAD outperforms both OE and OC except for two datasets

in case of the Macro-F1 measure. OE is better than LEAD: for rcv1v2(subset1) and tmc2007

dataset. But the difference between those values are quite insignificant ( 1%). LEAD exhibits very

good performance for scene and rcv1v2(subset1) dataset. The overall performance of LEAD for the

small datasets are quite noteworthy. As the datasets size increases, there has been a drop in accuracy
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Table 4.4: Comparison of classification performance for P = 60.

Dataset Approach Accuracy Macro-F1 F1-score

20 Ng
LD 0.6140 0.6497 0.6615
OE 0.4909 0.5246 0.5563
OC 0.4382 0.4598 0.4779

corel5k
LD 0.4981 0.5016 0.5140
OE 0.2485 0.2549 0.2801
OC 0.2046 0.2179 0.2483

enron
LD 0.4710 0.4800 0.5080
OE 0.3230 0.3361 0.3604
OC 0.2712 0.2890 0.3172

mediamill
LD 0.3615 0.4096 0.4493
OE 0.2482 0.2637 0.3159
OC 0.2031 0.2378 0.2675

rcv1v2(s1)
LD 0.7912 0.8010 0.8369
OE 0.7293 0.7546 0.7852
OC 0.6739 0.7005 0.7327

scene
LD 0.7095 0.7011 0.7150
OE 0.5909 0.6198 0.6505
OC 0.5798 0.6213 0.6568

tmc2007
LD 0.5370 0.5839 0.5946
OE 0.4986 0.5294 0.6089
OC 0.4426 0.4608 0.4972

yeast
LD 0.5539 0.5887 0.6589
OE 0.3444 0.3761 0.3916
OC 0.3760 0.3902 0.4253

slashdot
LD 0.5679 0.5781 0.5898
OE 0.4261 0.4407 0.4823
OC 0.4498 0.4712 0.5048

imdb
LD 0.3786 0.4056 0.4608
OE 0.2479 0.2796 0.312
OC 0.2294 0.2439 0.2883

SynT-DN
LD 0.2041 0.2181 0.2366
OE 0.1624 0.1829 0.2017
OC 0.1108 0.1187 0.1485

but not too alarming. For large datasets the accuracy of LEAD is lower compared to the other data

categories.

Table 4.4 shows the classification performance of LEAD, OE and OC when 60% of the instances

in S are labeled. LEAD exhibits very good performance for scene and rcv1v2(subset1) dataset.

The overall performance of LEAD for the small datasets are quite noteworthy. As the datasets size

increases, again there has been a drop in accuracy but not too alarming. For large datasets the

accuracy of LEAD is lower compared to the other data categories. But in all dataset categories

LEAD outperforms both OE and OC.

Table 4.5 shows the classification performance of LEAD, OE and OC when 80% of the instances

in S are labeled. LEAD exhibits very good performance for scene and rcv1v2(subset1) dataset.

The overall performance of LEAD for the small datasets are quite noteworthy. As the datasets size
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Table 4.5: Comparison of classification performance for P = 80.

Dataset Approach Accuracy Macro-F1 F1-score

20 Ng
LD 0.6572 0.6905 0.7086
OE 0.5195 0.5436 0.5742
OC 0.4726 0.4938 0.5139

corel5k
LD 0.5273 0.5418 0.5596
OE 0.2653 0.2813 0.308
OC 0.2194 0.2328 0.2738

enron
LD 0.5132 0.5249 0.5470
OE 0.3433 0.3614 0.3877
OC 0.3095 0.3308 0.3692

mediamill
LD 0.3968 0.4283 0.4701
OE 0.3093 0.3142 0.3419
OC 0.2558 0.2697 0.3146

rcv1v2(s1)
LD 0.8289 0.8421 0.8613
OE 0.7583 0.7762 0.8196
OC 0.7024 0.7321 0.7692

scene
LD 0.7570 0.7685 0.7896
OE 0.6263 0.6514 0.6761
OC 0.6093 0.6152 0.6286

tmc2007
LD 0.5784 0.6051 0.6813
OE 0.5186 0.5568 0.6112
OC 0.4619 0.4893 0.5385

yeast
LD 0.5934 0.6367 0.6567
OE 0.3597 0.3918 0.4043
OC 0.3929 0.4247 0.4302

slashdot
LD 0.6450 0.6483 0.6626
OE 0.4529 0.4627 0.5089
OC 0.4746 0.4904 0.5381

imdb
LD 0.4228 0.4410 0.5011
OE 0.3411 0.3532 0.3927
OC 0.2503 0.2724 0.3385

SynT-DN
LD 0.2235 0.2333 0.2683
OE 0.1983 0.2075 0.2436
OC 0.1402 0.1604 0.1847

increases, there has been a drop in accuracy but not too alarming. For large datasets the accuracy

of LEAD is lower compared to the other data categories. But in all dataset categories LEAD

outperforms both OE and OC. .

Table 4.6 shows the classification performance of LEAD, OE and OC when 90% of the instances

in S are labeled. But in all dataset categories LEAD outperforms both OE and OC. There is one

case with the F1-score measure where OE is better than LEAD: for SynT-DN dataset. But the

difference between those values are quite insignificant ( 1%). LEAD exhibits very good performance

for scene and rcv1v2(subset1) dataset. The overall performance of LEAD for the small datasets

are quite noteworthy. As the datasets size increases, there has been a drop in accuracy but not too

alarming. For large datasets the accuracy of LEAD is lower compared to the other data categories.

As can be seen from the results, LEAD performs overall best under all of the measures of predictive
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Table 4.6: Comparison of classification performance for P = 90.

Dataset Approach Accuracy Macro-F1 F1-score

20 Ng
LD 0.6982 0.7259 0.7439
OE 0.5420 0.5683 0.5908
OC 0.5076 0.5294 0.5531

corel5k
LD 0.5619 0.5672 0.5928
OE 0.2916 0.2943 0.3277
OC 0.2410 0.2659 0.2983

enron
LD 0.5496 0.5716 0.5901
OE 0.3876 0.4219 0.4498
OC 0.3521 0.3967 0.4254

mediamill
LD 0.4273 0.4627 0.4952
OE 0.3511 0.3487 0.3976
OC 0.2810 0.3102 0.3299

rcv1v2(s1)
LD 0.8532 0.8694 0.8891
OE 0.7931 0.8126 0.8401
OC 0.7257 0.7611 0.7988

scene
LD 0.7738 0.7791 0.7903
OE 0.6442 0.6619 0.6999
OC 0.6318 0.6459 0.6784

tmc2007
LD 0.6047 0.6347 0.7029
OE 0.5211 0.5371 0.5923
OC 0.4851 0.5003 0.5497

yeast
LD 0.6136 0.6497 0.6597
OE 0.3608 0.4010 0.4112
OC 0.3846 0.4171 0.4398

slashdot
LD 0.6697 0.6569 0.6821
OE 0.4986 0.5197 0.5477
OC 0.5155 0.5316 0.5872

imdb
LD 0.4637 0.4966 0.5273
OE 0.4172 0.4210 0.4788
OC 0.2578 0.2996 0.3629

SynT-DN
LD 0.2471 0.2589 0.2863
OE 0.2285 0.2306 0.2982
OC 0.1698 0.1727 0.1893

performance, starting from very limited amount of labeled data to almost completely labeled data.

Among the baseline methods, OE has a better performance than OC for medium and large datasets.

It is because EaHTPS uses multi-label Hoeffding Trees. But Hoeffding trees are rather conservative

learners and need a considerable number of examples to identify the best split point for a node.

As predictive performance is averaged over evaluation windows, initial low performance can have an

overall negative impact on figures. OC outperforms OE in scene and slashdot datasets and shows

comparable performance in enron and yeast dataset. LEAD outperforms both in all the datasets.

However, as datasets get larger OE’s performance improves and for the largest dataset SynT-DN,

OE and LEAD’s predictive performance are somewhat closer.

To corroborate the aforementioned observations, we selected two popular statistical methods to

show the statistical differences among the obtained results. For a pair-wise comparison between LEAD
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Table 4.7: Wilcoxon signed rank test summary between LEAD and baseline methods for standard
data-sets

OE OC
P Algorithm R+ R− Hypothesis(α = 0.05) p-value R+ R− Hypothesis(α = 0.05) p-value

Accuracy 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
40 Macro-F1 63 3 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346

F1-Score 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
Accuracy 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346

60 Macro-F1 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
F1-Score 65 1 Rejected for LEAD 0.004439 66 0 Rejected for LEAD 0.003346
Accuracy 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346

80 Macro-F1 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
F1-Score 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
Accuracy 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346

90 Macro-F1 66 0 Rejected for LEAD 0.003346 66 0 Rejected for LEAD 0.003346
F1-Score 65 1 Rejected for LEAD 0.004439 66 0 Rejected for LEAD 0.003346

and baseline methods, Wilcoxon signed rank test [46] was used. To detect significant statistical

difference among multiple algorithms, we used the Iman-Davenport test [47], which is actually an

extension of the Friedman test [49]. If the Iman-Davenport test indicated a significant difference,

we applied Holm’s post hoc analysis [48] to find out which algorithm(s) is(are) actually distinctive.

The test results are summarised in Table 4.7–4.10. The tests were conducted on all the classification

performance measures and across four different percentage of labeled data (P = 40, 60, 80, 90).

Table 4.7 shows the summary of Wilcoxon signed rank test on the Accuracy, Macro-F1 and F1-

score results obtained from datasets given in Table 4.1. Here, R+ corresponds to the sum of ranks

for LEAD and R− for the compared algorithm. This same notation is used throughout this thesis.

These results show that null hypothesis has been rejected in favor of LEAD against all the compared

baseline methods with a significance level 0.05. In fact the associated p-values indicate that even a

significance level 0.004 would have resulted in the rejection of null hypothesis in favor of LEAD. Also

we can see from the results, our approach performs very well even with lack of labeled data. Even if

the amount of labeled data increases in the stream, LEAD succeeds to maintain better performance

than the baseline methods.

The results of the Iman-Davenport test and Holm’s post hoc analysis for Accuracy are presented

in Table 4.8 where these tests were carried out within a particular percentage of labeled data (P )

considering LEAD present each time. Here, Iman-Davenport test has rejected the null hypothesis for

all the baseline methods. That is why we continued for Holm’s post hoc analysis for all of them. The

Holm’s post hoc analysis also rejected the null hypothesis in favor of LEAD against all the algorithms
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Table 4.8: Iman Davenport test and Holm’s post hoc test summary for Accuracy between LEAD and
baseline methods for standard data-sets with α = 0.05

Accuracy
Holm’s post hoc test

P Iman-Davenport test (α = 0.05) Algorithm k i z p-value ( α
k−i ) Hypothesis

40 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

60 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

80 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

90 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

Table 4.9: Iman Davenport test and Holm’s post hoc test summary for Macro-F1 between LEAD
and baseline methods for standard data-sets with α = 0.05

Macro-F1

Holm’s post hoc test
P Iman-Davenport test (α = 0.05) Algorithm k i z p-value ( α

k−i ) Hypo

40 χ2 = 14.73, Ff = 20.25, p = 1.56e− 5, Rejected OE 3 2 -1.92 5.50e-2 0.050 Rejected
OC 3 1 -3.84 1.24e-4 0.025 Rejected

60 χ2 = 17.63, Ff = 40.42, p = 9.42e− 8, Rejected OE 3 2 -2.98 2.8e-3 0.050 Rejected
OC 3 1 -4.05 5.10e-5 0.025 Rejected

80 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

90 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

for different percentage of labeled data.

The results of the Iman-Davenport test and Holm’s post hoc analysis for Macro-F1 are presented

in Table 4.9 where these tests were carried out within a particular percentage of labeled data (P )

considering LEAD present each time. Here, Iman-Davenport test has rejected the null hypothesis for

all the baseline methods. That is why we continued for Holm’s post hoc analysis for all of them. The

Holm’s post hoc analysis also rejected the null hypothesis in favor of LEAD against all the algorithms

for different percentage of labeled data.

The results of the Iman-Davenport test and Holm’s post hoc analysis for F1-score are presented

in Table 4.10 where these tests were carried out within a particular percentage of labeled data (P )

considering LEAD present each time. Here, Iman-Davenport test has rejected the null hypothesis for

all the baseline methods. That is why we continued for Holm’s post hoc analysis for all of them. The

Holm’s post hoc analysis also rejected the null hypothesis in favor of LEAD against all the algorithms

for different percentage of labeled data.
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Table 4.10: Iman Davenport test and Holm’s post hoc test summary for F1-score between LEAD and
baseline methods for standard data-sets with α = 0.05

F1-Score
Holm’s post hoc test

P Iman-Davenport test (α = 0.05) Algorithm k i z p-value ( α
k−i ) Hypo

40 χ2 = 17.63, Ff = 40.42, p = 9.42e− 8, Rejected OE 3 2 -2.98 2.8e-3 0.050 Rejected
OC 3 1 -4.05 5.10e-5 0.025 Rejected

60 χ2 = 15.27, Ff = 22.70, p = 7.1e− 6, Rejected OE 3 2 -2.56 1.05e-2 0.050 Rejected
OC 3 1 -3.84 1.24e-4 0.025 Rejected

80 χ2 = 18.73, Ff = 57.22, p = 5.31e− 9, Rejected OE 3 2 -2.77 5.58e-3 0.050 Rejected
OC 3 1 -4.26 2.01e-5 0.025 Rejected

90 χ2 = 16.54, Ff = 30.33, p = 8.78e− 7, Rejected OE 3 2 -2.35 1.90e-2 0.050 Rejected
OC 3 1 -4.05 5.10e-5 0.025 Rejected

Table 4.11: Performance improvement of LEAD over OE and OC. Here, LEAD = L, OE = E and
OC = C

Dataset PI40(L,E) PI40(L,C) PI60(L,E) PI60(L,C) PI80(L,E) PI80(L,C) PI90(L,E) PI90(L,C)

20 Ng 17.22 31.35 20.05 28.63 20.95 28.09 22.37 27.30

corel5k 50.83 55.90 50.11 58.92 49.69 58.39 48.10 57.11

enron 32.54 42.76 31.42 42.42 33.11 39.69 29.48 35.94

mediamill 35.73 45.21 31.34 43.82 22.05 35.53 17.83 34.24

rcv1v2(s1) 2.16 11.33 7.82 14.83 8.52 15.26 7.04 14.94

scene 16.38 25.27 16.72 18.28 17.27 19.51 16.75 18.35

tmc2007 5.07 15.77 7.15 17.58 10.34 20.14 17.13 19.78

yeast 37.74 31.25 37.82 32.12 39.38 33.79 41.20 37.32

slashdot 24.34 20.38 24.97 20.80 29.78 26.42 25.55 23.03

imdb 27.83 38.98 34.52 39.41 19.32 40.80 10.03 44.40

SynT-DN 21.36 49.62 20.43 45.71 11.28 37.27 7.53 31.28

The lower significance level of the statistical tests can be further substantiated by depicting per-

centage of improvement of accuracy of LEAD over the baseline methods. We denote the improvement

as PIPA,B, i.e., the percentage increase/decrease in the accuracy from method A to B for P% labeled

data. The results have been shown in Table 4.11. A positive value indicates increase in accuracy

whereas a negative value indicates decrease in accuracy. From the results it can be seen that, for all

the datasets, LEAD exhibits superior performance in terms of accuracy for all the different percentage

of labeled data.
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4.5.2 Effect of labeled data

Now, we analyze the performance of LEAD, OE and OC with the change of P , i.e. percentage of

labeled data in the stream. Three cases of change in P is considered. They are: (1) when amount of

labeled data is changed from 40% to 60%, (2) when amount of labeled data is changed from 60% to

80% and (3) when amount of labeled data is changed from 40% to 60%. As the amount of labeled

data increases in the stream, the performance of the classifiers should also increase. As more labeled

data are available, the classifiers will be trained more comprehensively. As a result, the classifiers will

reflect the concept of the data much better. This general observation is supported in Figure 4.1, 4.2

and 4.3. In general, for all the methods, Accuracy increases most for the last two cases of change in

P .

Figure 4.1 shows the change (increase/decrease) in Accuracy of LEAD with the increase of labeled

data in the stream. For smaller datasets like corel5k, enron and rcv1v2(subset1), there is a higher

increase in accuracy as the amount of labeled data is changed from 40% to 60%. For the other three

smaller datasets, accuracy increases the most when amount of labeled data is changed from 60% to

80%. The increase in accuracy is steady for all the small datasets when amount of labeled data is

changed from 80% to 90%. For medium datasets there is a significant increase in accuracy for the

first two cases of change in P (40-60 and 60-80). For one of the large datasets (SynT-DN), change in

accuracy is not quite high for any of the three cases. On the other hand, for imdb datasets there is a

considerable rise in accuracy for all three cases. As can be seen, the increase of Accuracy of LEAD

does not depend on the size of the dataset. So, there is no specific trend in the Accuracy of LEAD.

Figure 4.2 shows the change (increase/decrease) in Accuracy of OE with the increase of labeled

data in the stream. For smaller datasets like corel5k, enron and yeast, there is a higher increase in

accuracy as the amount of labeled data is changed from 40% to 60%. For the two of the smaller

(a) Small Datasets (b) Medium Datasets (c) Large Datasets

Figure 4.1: Change in Accuracy with P for LEAD.
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(a) Small Datasets (b) Medium Datasets (c) Large Datasets

Figure 4.2: Change in Accuracy with P for OE.

(a) Small Datasets (b) Medium Datasets (c) Large Datasets

Figure 4.3: Change in Accuracy with P for OC.

datasets, slashdot and rcv1v2(subset1) accuracy increases the most when amount of labeled data is

changed from 80% to 90%. The increase in accuracy is steady for all the small datasets when amount

of labeled data is changed from 60% to 80%. But for scene dataset, the increase in accuracy for this

case exceeds the other two cases. For medium datasets there is a significant increase in accuracy for

the first two cases of change in P (40-60 and 60-80). But the increase in accuracy is highest when

the amount of labeled data is changed from 60% to 80%. For one of the large datasets (SynT-DN),

change in accuracy is not quite high for any of the three cases. On the other hand, for imdb datasets

there is a considerable rise in accuracy for the last two cases. As discussed in earlier, OE exhibits

better performance for larger dataset. Figure 4.2 supports this observation. For four of the medium

and large datasets (except tmc2007), there is a significant increase in Accuracy of OE with increasing

P . But LEAD as a consistent increase in Accuracy for such datasets.

Figure 4.3 shows the change (increase/decrease) in Accuracy of OC with the increase of labeled

data in the stream. For smaller datasets like enron, rcv1v2(subset1), scene and yeast, there is a higher

increase in accuracy as the amount of labeled data is changed from 40% to 60%. For the two of the

smaller datasets, slashdot and corel5k accuracy increases the most when amount of labeled data is

changed from 80% to 90%. The increase in accuracy is steady for all the small datasets when amount

of labeled data is changed from 60% to 80%. An interesting case arises for yeast dataset. As the
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amount of labeled data is changed from 80% to 90% accuracy actually drops in case of yeast dataset

(decrease by 0.83%). For medium datasets there is a significant increase in accuracy for the last two

cases of change in P (60-80 and 80-90). But the increase in accuracy is highest when the amount

of labeled data is changed from 60% to 80%. For one of the large datasets (SynT-DN), change in

accuracy is not quite high for any of the three cases. On the other hand, for imdb datasets there is a

considerable rise in accuracy for all the cases.

4.5.3 Response to concept Drift

As discussed in Section 4.4.1, the synthetic dataset SynT-D has been designed to simulate concept

drift where as Synt-DN simulated both concept drift and concept evolution. Here, we analyze the

performance of the competing methods only in the presence of concept drift. The data chunk size

B for LEAD and OC are kept same (2500 instances) as the window size of OE. So, Accuracy is

measured at the same time interval for all the methods. Figure 4.4 shows the Accuracy of the methods

for different P values over 400 chunks/windows.

From Figure 4.4 it can be seen that, LEAD exhibits better response to concept drift than both

OE and OC. Even if the percentage of labled data is changed, LEAD maintains its supremacy in the

presence of concept drift. As the value of P is increased, LEAD continues to show better performance

than the previous P value. The same case can be observed for both OC and OE also. But none of

the methods can supersede LEAD.

OC uses the CBEF model for classification. CBEF always replaces one of the existing classifiers

with the newly trained classifier. There are two strategies: (1) replace the oldest classifier or (2)

replace the classifier that shows the worst classficatiob performance for the current chunk of the data

stream. But due to this replacement strategy, one or more class’s classifier may be missed in the

current model. For example, let instances having some class label l had appeared in Di but not in

Dj . Unfortunately, classifier trained from Di shows very poor performance for Dj . This means that

a concept drift has occurred. Hence, the classifier will be replaced. As a result, CBEF will have

no knowledge on class label l’s instances. So, in the presence of concept drift, OC has the poorest

performance of all the methods. On the other hand, OE deploys an adaptive window (ADWIN) based

ensemble of Hoeffding trees. Occasionally, the ADWIN models have a tendency to detect change when

there is none; or when it is only temporary. Each time drift is detected, new model is learned that

may prematurely replaces relevant classifiers from EaHTPS . The primary advantage of LEAD is
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(a) P = 40 (b) P = 60

(c) P = 80 (d) P = 90

Figure 4.4: Accuracy of the approaches over chunks/windows for SynT-D.

that, it maintains a label based ensemble of binary classifiers for each of the classes encountered in

the stream. A number of binary classifiers (Nm) are maintained in each El. Each time a new model

is learned instead of replacing the entire El, only one of the classifiers in the ensemble is replaced. So,

an already leaned concept is never omitted and makes LEAD robust in the presence of drift.

Since, LEAD succeeds to avoid both forced and premature reconstruction of classifiers, its per-

formance is better than the baseline methods. So, it can be safely concluded that, in the presence

of concept evolution and class recurrence along with concept drift, LEAD will exhibit better per-

formance than both OE and OC. The performance of LEAD compared to both OE and OC for

SynT-DN dataset supports this claim (Table 4.3, 4.4, 4.5 and 4.6).

4.5.4 Novel class detection performance

Table 4.12–4.15 compares the novel class detection performance of LEAD, OE and OC. The results

were compared with four different percentage of labeled data in the stream (P = 40, 60, 80, 90).
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PFnovel indicates the false alarm rate which is a measure of a classifier’s ability to separate novel class

instances from existing class instances. As mentioned in Section 4.4.2, there is a correlation between

PFnovel and ATnovel. So, the ATnovel cannot alone provide any significant insight on the novelty

detection performance of the methods. First, we will analyze the false alarm detection performance

of the competing methods. Then we will observe the correlation between PFnovel and ATnovel for all

the methods and analyze the behavior of LEAD for the observed values.

Table 4.12 shows the novel class detection performance of LEAD, OE and OC when 40% of the

instances in S are labeled. LEAD exhibits very good performance for scene and yeast dataset. The

overall performance of LEAD for the datasets slashdot and rcv1v2(subset1) is quite noteworthy. But

for corel5k and enron LEAD has a higher false alarm rate than the other smaller datasets. Even

OE and OC shows better performance for these two datasets than LEAD. For two of the medium

datasets 20Ng and mediamill, LEAD as a higher false alarm rate than the other dataset tmc2007. In

case of large dataset, the performance of LEAD is not consistent. For imdb dataset, LEAD’s false

alarm rate is high. On the other hand, for SynT-DN dataset LEAD has a very low false alarm rate.

Table 4.13 shows the novel class detection performance of LEAD, OE and OC when 60% of

the instances in S are labeled. LEAD exhibits very good performance for scene and yeast dataset.

The overall performance of LEAD for the datasets slashdot, enron and rcv1v2(subset1) is quite

noteworthy. But for corel5k LEAD has a higher false alarm rate than the other smaller datasets.

Even OE and OC shows better performance for this dataset than LEAD. For one of the medium

datasets mediamill, LEAD as a higher false alarm rate than the other two datasets. For tmc2007,

LEAD exhibits very good performance. In case of large datasets, the performance of LEAD is not

consistent. For imdb dataset, LEAD’s false alarm rate is high. On the other hand, for SynT-DN

dataset LEAD has a very low false alarm rate.

Table 4.14 shows the novel class detection performance of LEAD, OE and OC when 80% of the

instances in S are labeled. LEAD exhibits very good performance for scene, slashdot, rcv1v2(subset1)

and yeast dataset. The overall performance of LEAD for the datasets enron and corel5k is quite

noteworthy. For the medium datasets, performance of LEAD is mixed. For one of the medium

datasets mediamill, LEAD as a higher false alarm rate than the other two datasets. For tmc2007,

LEAD exhibits very good performance. On other hand, for 20Ng dataset, LEAD’s performance is

satisfactory. In case of large datasets, the performance of LEAD is not consistent. For imdb dataset,

LEAD’s false alarm rate is high. On the other hand, for SynT-DN dataset LEAD has a very low
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Table 4.12: Comparison of novelty detection performance for P = 40.

Dataset Approach PFnovel ATnovel

20 Ng
LD 0.3223 0.8782
OE 0.5719 1.0826
OC 0.6196 1.1780

corel5k
LD 0.3712 0.9128
OE 0.0727 0.1492
OC 0.0493 0.1609

enron
LD 0.5247 1.0209
OE 0.1443 0.1869
OC 0.0914 0.1635

mediamill
LD 0.4149 0.8694
OE 0.5926 1.0020
OC 0.6286 1.0807

rcv1v2(s1)
LD 0.1671 0.9517
OE 0.1967 0.8932
OC 0.2243 0.9120

scene
LD 0.0110 0.9048
OE 0.2981 0.8945
OC 0.3386 0.8525

tmc2007
LD 0.0617 0.9586
OE 0.3109 0.9123
OC 0.3326 0.8726

yeast
LD 0.0241 0.9672
OE 0.4262 0.6132
OC 0.4598 0.6962

slashdot
LD 0.1518 0.8439
OE 0.4189 0.7524
OC 0.4372 0.7193

imdb
LD 0.4351 0.9256
OE 0.6872 0.5798
OC 0.7129 0.5635

SynT-DN
LD 0.0309 0.9794
OE 0.2892 0.6152
OC 0.2739 0.5931

false alarm rate.

Table 4.15 shows the novel class detection performance of LEAD, OE and OC when 90% of the in-

stances in S are labeled. LEAD exhibits very good performance for scene, slashdot, rcv1v2(subset1),

enron and yeast dataset. The overall performance of LEAD for the datasets corel5k is quite note-

worthy. For the medium datasets, performance of LEAD is mixed. For one of the medium datasets

mediamill, LEAD as a higher false alarm rate than the other two datasets. For tmc2007, LEAD ex-

hibits very good performance. On other hand, for 20Ng dataset, LEAD’s performance is satisfactory.

In case of large datasets, the performance of LEAD is not consistent. For imdb dataset, LEAD’s

false alarm rate is high. On the other hand, for SynT-DN dataset LEAD has a very low false alarm

rate.

From the values of the false alarm rate observed for different datasets across different percentage
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Table 4.13: Comparison of novelty detection performance for P = 60.

Dataset Approach PFnovel ATnovel

20 Ng
LD 0.2574 0.9199
OE 0.3582 0.7431
OC 0.3826 0.7298

corel5k
LD 0.2819 1.0000
OE 0.1896 0.2278
OC 0.1711 0.2537

enron
LD 0.1760 0.8724
OE 0.2541 0.8829
OC 0.2909 0.8516

mediamill
LD 0.3754 0.9279
OE 0.4872 0.7653
OC 0.4528 0.7192

rcv1v2(s1)
LD 0.1198 0.9907
OE 0.1676 0.8978
OC 0.1927 0.9322

scene
LD 0.0140 0.9217
OE 0.3134 0.9143
OC 0.3078 0.8621

tmc2007
LD 0.0253 0.9715
OE 0.2876 0.9348
OC 0.3289 0.9034

yeast
LD 0.0269 0.9485
OE 0.3921 0.8420
OC 0.4002 0.8091

slashdot
LD 0.1211 0.9247
OE 0.4341 1.0680
OC 0.4422 1.1051

imdb
LD 0.3647 0.9178
OE 0.4471 0.6904
OC 0.4728 0.6297

SynT-DN
LD 0.0295 0.9920
OE 0.3472 0.7908
OC 0.3651 0.7528

of labeled data, it can be summarized that, as the percentage of labeled data is increased the false

alarm rate of LEAD decreases. For smaller datasets, the performance continues to improve as LEAD

outperforms more and more smaller datasets. Also, for medium datasets there is a marked improve-

ment in LEAD’s performance as P increases. On the other hand, large datasets the although there

is an improvement in the performance of LEAD. But the scale of improvement is not quite high to

take note of.

4.5.5 Analysis of false alarm rates

Figure 4.5–4.8 shows the false alarm rate of the three methods for different values of P across different

datasets. In majority of datasets with different P values, LEAD shows lower frequency of false alarms

than OE and OC. For corel5k dataset with P = 40 and P = 60, LEAD exhibits higher number
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Table 4.14: Comparison of novelty detection performance for P = 80.

Dataset Approach PFnovel ATnovel

20 Ng
LD 0.1718 1.0000
OE 0.2956 0.9483
OC 0.4329 0.7773

corel5k
LD 0.2135 1.0000
OE 0.3284 0.6675
OC 0.3381 0.6724

enron
LD 0.1253 1.0000
OE 0.2240 0.9117
OC 0.2389 0.8887

mediamill
LD 0.3518 1.0000
OE 0.3679 0.7927
OC 0.5826 0.7283

rcv1v2(s1)
LD 0.0942 0.9974
OE 0.1507 0.9627
OC 0.2025 0.8967

scene
LD 0.0090 0.9890
OE 0.2376 0.9367
OC 0.2578 0.8956

tmc2007
LD 0.0186 0.9883
OE 0.2238 0.9278
OC 0.2554 0.9146

yeast
LD 0.0214 0.9978
OE 0.3763 0.8618
OC 0.3939 0.8337

slashdot
LD 0.0982 1.0000
OE 0.2745 0.9381
OC 0.2983 0.9193

imdb
LD 0.3288 0.9759
OE 0.3662 0.8129
OC 0.3970 0.7926

SynT-DN
LD 0.0182 1.0001
OE 0.1391 0.8752
OC 0.1446 0.8706

of false alarms than both OE and OC. Also, for enron dataset with P = 40, LEAD shows inferior

results. In both cases, as the value of P increases, LEAD attains lower false alarm rate than the

other two methods. The overall superior performance of LEAD is due to the ability to differentiate

recurrent classes from novel classes. Both OE and OC fail to identify class recurrence and hence,

treat recurrent class instances as novel class instance. As a result, the false alarm rate increases. But

PFnovel doest not indicate the novel class detection success.

In this paper, we have coupled PFnovel with ATnovel to analyze novel class detection performance.

Let us consider the case ATnovel << 1 first. For corel5k dataset (P = 40, Nexisting = 4951), both

PFnovel and ATnovel are small for OE and OC. The value of Fnovel for LEAD, OE and OC are

1838, 350 and 244 respectively. The similar trend continues for P = 60. The same case arises in

enron dataset for OE and OC with P = 40. But ATnovel is quite small for both OE and OC which
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Table 4.15: Comparison of novelty detection performance for P = 90.

Dataset Approach PFnovel ATnovel

20 Ng
LD 0.1362 1.0000
OE 0.2804 0.9573
OC 0.2982 0.9175

corel5k
LD 0.1719 1.0000
OE 0.2874 0.8259
OC 0.3048 0.8169

enron
LD 0.0820 1.0000
OE 0.1584 0.9378
OC 0.1712 0.9193

mediamill
LD 0.3162 1.0000
OE 0.3038 0.8195
OC 0.3529 0.7712

rcv1v2(s1)
LD 0.0701 0.9863
OE 0.1286 0.9694
OC 0.1463 0.9214

scene
LD 0.0096 0.9900
OE 0.1923 0.9444
OC 0.2013 0.9246

tmc2007
LD 0.0132 1.0090
OE 0.1625 0.9378
OC 0.1318 0.9056

yeast
LD 0.0200 1.0000
OE 0.3113 0.8858
OC 0.3423 0.8579

slashdot
LD 0.0734 0.9980
OE 0.1172 0.9563
OC 0.1428 0.9265

imdb
LD 0.2719 0.9892
OE 0.3187 0.8365
OC 0.3285 0.8108

SynT-DN
LD 0.0176 1.0000
OE 0.0980 0.9426
OC 0.1235 0.9292

indicates failure to detect large amount of novel class instance. Interestingly, the value of ATnovel

for LEAD is quite close to 1 which indicates good novel class detectability. For enron, although

ATnovel is higher for LEAD, large value of PFnovel indicates higher false alarm rate, which might

be the primary contributor to higher value of ATnovel than better novel class detectability. Similar

scenario (ATnovel > 1 and large PFnovel) can be seen in case of mediamill (P = 40) and slashdot

(P = 60) datasets for OE and OC. Another case is high value of PFnovel and considerably lower

value of ATnovel. For example, yeast (P = 40), slashdot (P = 40) and imdb (P = 40) for OE and

OC. This indicates high false alarm rate with low novel class detectability. Low PFnovel with high

ATnovel indicates lower false alarm rate with better novel class detectability. This scenario can be

seen in case of, LEAD for medium and large datasets with (P = 60, 80).
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(a) Small (b) Medium (c) Large

Figure 4.5: False alarm frequency of the competing methods for P = 40

(a) Small (b) Medium (c) Large

Figure 4.6: False alarm frequency of the competing methods for P = 60

(a) Small (b) Medium (c) Large

Figure 4.7: False alarm frequency of the competing methods for P = 80

(a) Small (b) Medium (c) Large

Figure 4.8: False alarm frequency of the competing methods for P = 90
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4.5.6 Novelty Detection: LEAD vs OLINDDA

We observe in the evaluation that LEAD outperforms both OE and OC in detecting novel classes for

most of the cases. The main reason behind the poorer performance of OE and OC in detecting novel

classes is the way OLINDDA detects novel class. OLINDDA makes two strong assumptions about

a novel class and normal classes. First, it assumes a spherical boundary (or, convex shape) of the

normal model. It updates the radius and centroid of the sphere periodically and declares anything

outside the sphere as a novel class if there is evidence of sufficient cohesion among the instances

outside the boundary. The assumption that a data class must have a convex/spherical shape is too

strict to be maintained for a real-world problem. Second, it assumes that the data density of a novel

class must be at least that of the normal class. If a novel class is sparser than the normal class, the

instances of that class would never be recognized as a novel class. But in a real-world problem, two

different classes may have different data densities. OLINDDA would fail in those cases where any of

the assumptions are violated. On the other hand, LEAD does not consider the shape of the class

for novelty detection. Rather, it uses a soft clustering model to identify potential novel clusters and

then uses cluster validity measure to identify the best clusters from among them. Therefore, LEAD

can detect novel classes much more efficiently. Besides, OLINDDA is less sensitive to concept-drift,

which results in falsely declaring novel classes when drift occurs in the existing class data. On the

other hand, LEAD correctly distinguishes between concept-drift and concept-evolution, avoiding false

detection of novel classes in the event of concept-drift. LEAD uses classifier replacement strategy

to handle concept drift while using the layered ensemble architecture to identify concept evolution.

The performance of OE and OC are somewhat similar for novel class detection as they both use

OLINDDA.

In general, existing novel class detection techniques have limited applicability since those are

similar to one-class classifiers. That is, they assume that there is only one “normal” class, and all

other classes are novel. However, our technique is applicable to the more realistic scenario where there

are more than one existing classes in the stream. Besides, our novel class detection technique requires

neither any specific data distribution nor the classes to have convex shape.
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Table 4.16: Response of LEAD for Tu = 0

P Dataset PFnovel ATnovel P Dataset PFnovel ATnovel
scene 0.4285 0.6992 scene 0.3948 0.7361

40 20NG 0.5912 0.6089 60 20NG 0.5572 0.6215
imdb 0.1497 0.8259 imdb 0.1376 0.8531

P Dataset PFnovel ATnovel P Dataset PFnovel ATnovel
scene 0.2710 0.8152 scene 0.2109 0.8934

60 20NG 0.5136 0.6480 90 20NG 0.4527 0.6732
imdb 0.1139 0.9206 imdb 0.1078 0.9154

4.5.7 Parameter Sensitivity (Tu)

According to Table 4.2, for all three types of datasets, the value of Tu is set to some non-zero value.

In this section, we will observe the novel class detection performance of LEAD when Tu is set to 0.

We have conducted the experiment on three datasets, one from each of the dataset categories. The

chosen datasets are: scene, 20NG and imdb. The results are shown in Table 4.16.

When Tu is set to 0, all three datasets exhibit the similar pattern in their novel class detection

performance. For all three datasets, as the percentage of labeled data is increased, the value of PFnovel

continues to decrease. The higher the value of PFnovel, the poorer the false alarm rate, i.e., a higher

percentage of existing class instances have been identified as novel class instances. On the other hand,

the value of ATnovel continues to increase. Compared to Table 4.12-4.15, we observe that Table 4.16

exhibits inferior novel class detection performance. So, why such behavior is being exhibited by the

LEAD framework? The answer lies in the two parameters Tu and P .

As Tu is set to 0, potential novel instances are not allowed to accumulate in bufnovel. Rather,

the instances are sent to novelty detector as soon as Td has elapsed. So, instances arriving in the

same chunk are chosen for novelty detection at the same time. On the other hand, setting Tu to a

non-zero value allows several chunks’ potential novel instances to accumulate in bufnovel. As a result,

the number of potential novel instances might be lower when Tu = 0. In addition to that, when

the value of P is lower, most of the instances in the stream are unlabaled. So, the classification of

a large number of instances are deferred. As a result, even if Tu = 0, a large number of instances

are considered for novelty detection. Hence, a lot of existing class instances are identified as novel

class instances. So, PFnovel will be higher than usual. The existing class instances will also be the

primary contributors in the value of ATnovel. When the value of P is higher, most of the instances
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in the stream are labeled. So, the classification of a small number of instances are deferred. Hence,

a small number of instances are considered for novelty detection. As a result, very few existing class

instances are identified as novel class instances. So, PFnovel will be low when P is large. The value

of ATnovel will depend on the number of actual novel class instances identified.

The analysis made in the aforementioned paragraph has been corroborated in Table 4.16. For all

the datasets, PFnovel decreases as P increases. For lower P values, ATnovel is lower. So, LEAD

has lower novel class detectability and the a large number of existing class instances contribute to

the value of ATnovel as they are identified as novel class instance. On the other hand, for higher P

values, lower false alarm rate with high ATnovel indicates better novel class detectability. So, setting

the value of Tu = 0 affects the performance of LEAD at a larger scale, when the percentage of labeled

data in the stream is lower.

4.6 Summary

This chapter presents the evaluation of LEAD’s performance on several multi-label classification

problems, including 10 real-world problems and one synthetic problems. We use the synthetic problem

to analyze how LEAD responds in the presence of concept drift in the data stream. We modify all

the datasets to introduce concept evolution and class recurrence in the stream and analyze both

classification and novel class detection performance of LEAD and two other baseline methods. With

the evaluation measures used in this thesis, we observe that LEAD has a superior classification

performance than the baseline methods. We also propose two new evaluation measures for novel class

detection. The interpretation of the values for different datasets indicate that LEAD also outperforms

the baseline methods in case of novel class detection. Further analysis on the synthetic dataset reveals

LEAD’s robustness in the presence of concept drift.
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Conclusion

In this thesis, we have addressed several challenging problems related to multi-label data steam

classification. Classifying multi-label data itself is a more challenging task than classifying single

label data. When this data assumes the stream behavior, the classification models are faced with

several other challenges like concept drifting, concept evolution and class recurrence. Furthermore,

real world streaming applications suffer from availability of limited amount of labeled data. Apart from

the issue of concept drifting, the existing methods in literature have ignored the rest of the issues

related to multi-label data stream classification. To deal with these challenges, we have proposed

a batch incremental label based data stream classification framework, LEAD. Existing methods

assume that the number of class labels in the stream is fixed and hence, the novel class instances are

misclassified by the existing techniques. We show how to detect novel class instances automatically

even when the classification model is not trained with the novel class instances. Novel class detection

becomes more challenging in the presence of concept-drift. Failure to detect class recurrence causes

false identification of novel classes.

A new layered ensemble architecture is introduced in LEAD to deal with these challenges. The

top layer of the ensemble architecture reflects the most recent concept of the data stream whereas the

bottom layer represents the older concepts of the stream. As a result, even if instances of older class

labels that did not appear in the stream for a long time suddenly appears in the stream the bottom

layer will be able to classify those instances. So, LEAD addresses the class recurrence issue. Moreover,

if an instance cannot be classified by any of the layers in the ensemble architecture, it is considered as a

potential novel class instance. Such instances are candidates for novel class detection. So, the layered

74
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approach also helps to differentiate between recurrent and novel class instances which significantly

reduces false identification of recurrent class instances as novel class instances. The problem of limited

amount of labeled data in the stream is handled by a deferred classification mechanism. We impose

two time constraints Td and Tu on the instances of the data stream. If an instance cannot be classified

in the first try, then Td is the allowable time constraint until which classification of that instance can

be deferred. After an instances has been identified as a potential novel instance, attempts are still

made to classify the instance until its time stamp exceeds Tu. In the mean time, more labeled data will

appear in the stream that may help the newly trained classifiers to classify the previously unclassified

instances. Failure to classify an instance within Tu time units leads to considering the instance as a

novel instance. Apart from the usual classification performance measures for multi-label data stream

classification, we propose two new measures to evaluate the novel class detection performance of

a framework. Empirical results on both synthetic and real-world data sets have demonstrated the

effectiveness of the LEAD framework.

5.1 Future work

In this section, we discuss the research areas that can be ventured in future. The data stream models

offer some promising research avenues where our proposed LEAD framework can be applied. As

mentioned in Chapter 1, there are a lot of real world applications that generate data streams. We

can apply LEAD for meaningful analysis of those applications. Besides, we also hope to improve the

performance of our framework by introducing new methodologies.

5.1.1 Social network analysis

Social network analysis (SNA) is the analysis of social networks, e.g., facebook, twitter etc. It is the

mapping and measuring of relationships and flows between people, groups, organizations, computers,

URLs, and other connected knowledge entities in the social networks. SNA provides both a visual

and a mathematical analysis of human relationships. Social networks are one of the primary sources

of data streams. In future, we can apply our LEAD framework to analyze various aspects of the

social networks, e.g. detecting emerging trends, identifying malicious contents and users etc.
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Trend detection

Trend detection is defined as the process of spotting the underlying emerging patterns in a given

data. Social networks are one of the primary conduits of information, opinions, and behaviors. They

carry news about products, jobs, and various social programs; influence decisions to become made, to

contribute socially; and drive political opinions and attitudes toward other groups. In view of this, it

is important to understand how beliefs and behaviors of individuals in a social network are influenced

by their virtual social setting. The identification of emergent and important topics discussed in social

networks as well as other traditional online news sources is crucial for a better understanding of societal

concerns. It also helps users to keep abreast of trends without having to surf through vast amounts

of shared information. If we consider posts in social networks as instances of data stream, our LEAD

framework can be deployed to identify the emergence of new trends (concept) in the social network.

For example, during the Shahbag movement in Bangladesh, social networks like twitter were flooded

with posts containing #shahbag hashtag. Our LEAD framework can identify appearance of such

trends using the layered ensemble architecture and novelty detector. Moreover, some trends appear

periodically, which can be considered as recurrent trends and can easily be identified by LEAD.

Topic models

In machine learning and natural language processing, topic model is a type of statistical model for

discovering the abstract “topics” that occur in a collection of documents. These models help us

develop new ways to search, browse and summarize large archives of texts. In recent years, topic

models have been applied in social networks to identify and extract specific topics, e.g., discovering

spoilers, identifying malicious contents (e.g., spam, threats etc.) in posts and so forth. We can

incorporate LEAD in such topic models to address such issues in social networks.

A spoiler is an element of a disseminated summary or description of any piece of fiction that

reveals any plot elements which threaten to give away important details concerning the turn of events

of a dramatic episode. Typically, the details of the conclusion of the plot, including the climax

and ending, are especially regarded as spoiler material. It can also be used to refer to any piece

of information regarding any part of a given media that a potential consumer would not want to

know beforehand. Because enjoyment of fiction depends a great deal upon the suspense of revealing

plot details through standard narrative progression, the prior revelation of how things will turn out
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can “spoil” the enjoyment that some consumers of the narrative would otherwise have experienced.

Currently, social network posts containing spoilers about media are one of the major concerns for the

users. For example, after the airing of each episode of the popular television series “Game of Thrones”,

some of the users post information regarding the events of that episode which spoils the enjoyment

of other users. We can apply LEAD as a part of a filter to isolate such posts. Another research

problem in social networks analysis is identifying posts containing violent threats, spam information

etc. Similar to spoiler detection models, our LEAD framework can be incorporated in spam detection

models to identify the emergence of such malicious posts in social network.

5.1.2 Performance improvement

In future, we hope to further improve the performance of LEAD. One approach can be to parallelize

the components of LEAD to develop a faster classification framework. Moreover, we can refine the

architecture of LEAD to make it a more robust framework in the face of the challenges posed by the

data stream environment.

Distributed classification framework

A future research avenue can be a distributed classification framework where classification and novel

class detection mechanisms can be paralleled to attain better performance. Currently, classification

and novel class detection are sequential processes in LEAD. In a distributed LEAD framework,

we can perform these tasks in separate computing resources. A central computing resource (master)

where the ensemble architecture may reside will receive the data stream and the classifiers will be

trained. Potential novel instances will be then transferred to a secondary computing resource (slave)

that will perform novel class detection. The updated results of novelty detection can again be sent to

the master. This work share will ensure faster performance of individual resources.

Layered label based ensembles

To further improve the performance of LEAD, we may maintain two layers of binary classifiers in each

label based ensemble, El. Instead of deleting the poorly performing classifier, it can be demoted to the

bottom layer of El. We can also incorporate a fading function of time to assign lesser weight to much

older concepts. Introducing layered labeled based ensembles in the layered ensemble architecture may

ensure more robustness in the presence of concept drift.
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