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ABSTRACT 

Video-based vehicle tracking has become an active research area due to its numerous 

transportation related applications. Some common challenges in traditional video-based 

tracking methods include initialization of tracking, tracking an unknown number of targets, 

sensitivity to drift from true position due to the variations in lighting condition, scene 

conditions and camera position in long sequences, and absence of corrective mechanism. In 

this thesis, a novel approach for unsupervised vehicle tracking algorithms is developed by 

introducing multiple time-spatial images (MTSIs)-based detection in the Monte-Carlo 

Particle filter or Kalman filter based-tracking. Such a use of MTSIs in tracking algorithm 

provides the opportunity of reliable identification of a vehicular object automatically 

whenever it appears in a scene. Notably, the proposed tracking method employs the concept 

of multiple numbers of key vehicular frames (KVFs) for each of the vehicular-objects in the 

traffic. These KVFs allow an accurate estimate of the centroid position of a vehicle in the 

key frames, due to the fact that the relative sizes of the vehicles captured in the video are 

maintained in these KVFs. The spatial correspondence of a vehicle in KVFs is then 

integrated in Particle filter or Kalman filter-based tracking as a corrective measure to 

alleviate the common problem of drifting and thereby increasing the accuracy in tracking 

trajectory. Extensive experimentations are carried out in vehicular traffics of varying 

environments to evaluate the tracking performance of the proposed method as compared 

with the existing methods. Experimental results demonstrate that the proposed approach not 

only automates the initialization of tracking procedure, but also increases the accuracy of 

tracking trajectory evaluated by the closeness of centroids of a vehicular object both in the 

forward and backward tracking. 
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1.  INTRODUCTION 

1.1 Introduction 

Fatalities and serious injuries caused by traffic-related accidents are globally 

recognized as a serious and growing problem due to increasing usage of automobiles. A 

recent study by the World Health Organization has shown that over 1.2 million fatalities and 

20 million serious injuries occur worldwide due to traffic-related accidents per year [1]. It is 

also reported that the associated hospital bill, costs of damaged properties and others incur a 

loss of more than one percent of the gross domestic product of the world [2]. Thus, with an 

aim of reducing traffic-related accidents and enhancing the chance of safe and smooth driving 

of an automobile in traffic, vision-based sensing system for vehicle has been recognized as an 

active area of research by the government agencies and automobile manufacturers over the 

past decade [2], [3]. Automatic tracking of vehicles can be very effective in this regard due to 

its numerous transportation related applications including the safety-aware instructions for 

driver assistance, monitoring a scene to detect suspicious activities for automatic surveillance 

or even development of driverless intelligent vehicles. 

1.2 Vehicle Tracking: A Review 

At present, there are mainly three approaches of vehicle tracking, viz., wireless 

distributed sensor network-based [4], [5], remote-sensing-based, e.g., radar sensing [6], [7] 

and lidar sensing [8], [9], and video-based tracking [10], [11]. Vehicle tracking in a sensor 

network is very similar to tracking a mobile phone in a cell, wherein the vehicles are 

monitored using radio frequency signals and associated controllers. Since the performance of 

such tracking is highly dependent on the availability of controlling signals, network-based 

tracking fails to provide any assistance when the sensor-mounted vehicles are out of range of 

the network or any surrounding vehicle without having such a sensor within the network. 
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Further, network-based tracking often shows significant position errors, and hence, cannot be 

used for instantaneous driver assistance. Remote sensing-based tracking transmits radar or 

laser signals and estimate the position of objects using the corresponding received signals 

[12]. In general, the costly radar or lidar sensors cannot provide sufficient field-of-view for 

vehicle tracking and due to high sensitivity to environmental noise often fails to classify the 

moving objects [11]. Video-based tracking algorithms, on the other hand, capture video 

frames from the wide field-of-view from the vehicle using high performance and noise-robust 

CCD or CMOS cameras. This is why these algorithms very often provide very accurate 

estimate of the relative positions and classification of surrounding vehicles even in the remote 

areas.  

The techniques for video-based vehicle tracking usually follow two major strategies - 

one approach treats vehicular object identification in each frame and finding correspondence 

of the object in the neighboring frames independently [13], [14] and the other treats both 

these issues jointly [15]- [19]. The first approach is mainly based on recognizing and tracking 

objects by applying feature extraction and matching algorithms. An approach to detect 

keypoints with features more suitable for object tracking applications is showed in [20]. The 

SURF (Speeded Up Robust Features) algorithm claims to be a robust algorithm for object 

detection, which may be also suitable or tracking applications [21]. Another interesting 

approach is SIFT (Scale Invariant Feature Transform), which presents considerable potential, 

due to its promised robustness for different scales and under low level of affine 

transformations [22], [23]. 

Since the first approach considers the object identification and estimating object 

correspondence as two processes in serial, the real time implementation of tracking fails in 

many cases using this approach; especially for simultaneous tracking of multiple vehicles.  

Further, this approach in many cases assumes that the vehicle features remain invariant over 
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the frames, and thus tracking performance of the methods using such strategy is also not 

satisfactory. In general, the second approach uses standard statistical techniques for joint 

recognition of vehicular objects in the frames and their correspondence over the successive 

frames. In these methods, moving vehicles in a video traffic are modeled in the standard state 

space frame work, in which the vehicular objects are assumed to follow certain random 

processes. Measurements for the random processes include the position/co-ordinates, 

velocity, and acceleration of vehicular objects in the frames. In order to find the solution of 

the state space model, the density function of the random processes can be chosen as 

parametric or non-parametric. The Kalman filter-based vehicle tracking is the most popular 

among the parametric approaches, which obtains an analytical solution for tracking by 

assuming a linear dynamics of vehicular movements and a Gaussian distributed intensity of 

vehicular objects [15], [18]. The Kalman filter based algorithm performs well in most of the 

cases. However, due to the variations of traffic, weather, and viewing conditions, the 

intensities of the vehicular objects may follow a non-Gaussian statistics as well as the 

movements of vehicular objects may follow a non-linear dynamics. Variations of the Kalman 

filter, such as the extended Kalman Filter has been proposed [24], [25] to apply the 

constrained Kalman filter to nonlinear systems and nonlinear state constraints and as a result 

performance improved in complex traffic environments. However, in such cases of non-

gaussian intensity statistics and non-linear vehicle movement, the non-parametric approach 

that uses the Gaussian mixture density function [16] or the Particle filter [17], [19] for 

describing the nonlinear and non-Gaussian random processes show a significant success over 

the traditional parametric approaches. Among Particle filtering approaches, Condensation 

algorithm is commonly used in object tracking [17], [26]. Moreover, a color based Particle 

filter is proposed in many works [27], [28] for object tracking. In their case, target model of 

the Particle filter is defined by the color information of the tracked object. According to [27], 
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an adaptive mixture color model is used for updating reference color model to make more 

robust visual tracking. Mainly color and texture cues are integrated in Particle filter based 

implementation. Moving edge features is used in [29]. The Particle filtering approach can 

simultaneously represent multiple hypotheses about a target‟s state. These Particle filter 

based methods also have the ability to keep a memory about the evolving state of an object 

over subsequent images, which can be very useful for resolving targets through situations of 

occlusion. However, Particle filtering approach is computationally more costly than Kalman 

filtering approach. Additionally, in [30], some other statistical tracking approaches have been 

reported, which include Joint Probability Data Association Filtering (JPDAF) and Multiple 

Hypothesis Tracking (MHT) [31], [32]. These approaches address some problems of 

tracking, but none of them provide a complete solution. Moreover, in most of the cases, they 

suffer from high computational complexity. 

1.3 Scope of the Work 

The inherent challenge of the most popular Kalman or Particle filter-based vehicle 

tracking algorithms is their high sensitivity to drift from the true object position, especially in 

long sequences for frequent occurrences of occlusion, for change in lighting conditions, for 

sudden turning or bumping of vehicles. Another problem of such algorithms is that, they are 

semi-supervised in a sense that the initial co-ordinate of a vehicular object in a video is 

necessary as an input to start the tracking. Since, they require relatively accurate vehicular-

target initialization, it makes automatic tracking of an unknown number of vehicle in a 

complex scene difficult. Recently, time-spatial image (TSI) using a virtual detection line 

(VDL) has been shown to be very effective in identifying the vehicular objects from captured 

video traffics [17], [18]. Thus, this VDL-based identification of vehicles may be used for 

developing unsupervised tracking algorithms. Further, this method employs a concept of key 

vehicular frame (KVF) from which the position of a vehicle may be estimated accurately in 
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this frame. In this context, the accurate positions obtained from a suitable set of KVFs may 

also be used as corrective measures for addressing the drifting problems of the Kalman filter 

or Particle filter-based vehicle tracking. 

1.4 Objective 

The main objective of this thesis is to develop a fully unsupervised tracking algorithm 

that identifies a vehicular object automatically whenever it appears in a scene and to provide 

an accurate trajectory of the object using the spatial correspondence of the concerned vehicle 

obtained from MTSI and a Kalman filter or Monte Carlo-based Particle filter. The 

performance of the proposed video-based tracking algorithm will be investigated and 

compared with that of the existing methods both in the case of forward and backward 

tracking. 

1.5 Organization 

The rest of the thesis is organized as follows.  

In Chapter 2, a brief description of TSI based object identification, and how it can be 

used for tracking initialization are given. The concept of MTSI based vehicular-object 

identification is also presented in this chapter.  

In Chapter 3, a novel vehicle tracking approach is described, which not only 

automates the Particle filter or Kalman filter-based vehicle tracking algortihms, but also 

provides a corrective measure, utilizing the co-ordinate position of centroid of that vehicle in 

the KVFs obtained from multiple TSIs.  

In Chapter 4, experimental results are given to show the significance of using MTSI 

in the existing Kalman or Particle-filre based tarcking. Both the forward and backward 

tracking trajectories and the normalized relative distance (NRD) of these two trajectories are 

also examined, to compare the performance.  
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Finally, in Chapter 5, a general concluding discussion about the contribution and 

potential impact of the proposed method is presented. Scopes for future work are also given 

here. 



7 

 

2.  MULTIPLE TIME-SPATIAL IMAGES FOR VEHICLE DETECTION 

2.1 Introduction 

The initial task to start tracking a vehicle from video is to identify the existence of the 

vehicle, and then locate its coordinates in the frame. The problem with most of the tracking 

algorithms is that the initial coordinate of a vehicular object in a video is required to feed to 

start the tracking. Thus, they are not suitable for real-time implementation when vehicle 

appears suddenly in the video scene. 

In order to carry out automated tracking procedure, the tracking method requires an 

object detection mechanism when the object first appears in the video. Given the object 

regions in the image, it is then the tracker‟s task to perform object correspondence from one 

frame to the next to generate the trajectory. A common approach for object detection is to use 

temporal information computed from frames of video. This temporal information is usually in 

the form of frame differencing [33], background subtraction [34], [35], optical flow 

estimation method [37], [35], Gaussian scale mixture model method [38], [39], which 

highlights changing regions in consecutive frames. It is well known that frame differencing 

and optical flow estimation methods suffer significantly from accuracy [33], [37] and 

background subtraction and Gaussian scale mixture model based methods suffer from 

computational efficiency [34], [35], [38]. However, the major concern is that, the detection 

method works independently to only detect the initial coordinate and don‟t provide any 

further assistance to the tracker. Moreover, this auxiliary detection mechanism needs to be 

performed on every frame to identify the entrance of new vehicle, which introduces 

substantial computational complexity. 

 In [40], it has been shown that multiple virtual line based time-spatial image 

detection method may be used as a reliable vehicle detection mechanism because of its 

accuracy in detecting vehicles and notable computational efficiency. The MTSI based method 
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utilizes a concept of key vehicular frame, which provides a comparable estimate of the 

centroid position of vehicles on a selected virtual line in the key frames, due to the fact that 

the relative sizes of the vehicles captured in the video are maintained in these KVFs. As 

centroid coordinates of a vehicular object is known in key frames, these mechanism will not 

only provide a detection mechanism for initialization of tracking, but also it will provide 

further assistance to the tracker. In this regard, the remainder of this chapter will firstly 

present a brief review of TSI based detection method. Then, the multiple TSI will be 

introduced to explain how it overcomes the limitation of single TSI based detection approach. 

The coordinates of vehicular object in KVFs obtained using MTSI method will be used not 

only to initialize the tracking in a video but also to correct the tracking trajectories of the 

Kalman or Particle filter-based algorithms shown in Chapter 3. 

2.2 TSI for Vehicle Detection 

Time Spatial Image is generated by placing the pixel strips of the frames on the 

virtual detection line (VDL) in a chronological order. VDL is in fact a set of indexes whose 

position is usually perpendicular to the motion of the vehicles and is independent of the 

frames. An example of a VDL on a few consecutive frames of a video-sequence and the 

corresponding TSI for the sequence are shown in Figures 2.1 and 2.2, respectively. It can be 

seen from these figures that each of the vehicle passing the VDL corresponds to an object in 

TSI. These objects are referred to as TSI object blobs (TOBs). Hence, the number of vehicles 

in traffic may be determined by counting these TOBs. It is to be noted that the horizontal 

length or width of an object in TSI corresponds to the number of frames in which the 

corresponding vehicle was on the VDL. Thus, the width of TOB is related to the length and 

speed of vehicle. On the other hand, the vertical length or height of the object in TSI 

corresponds to the breadth of the vehicle. In this way, TOBs include the characteristics of 

both the temporal and spatial features of the vehicles passing the VDL.  
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Figure 2.1: VDL on a few consecutive frame of a typical video sequence 

 
Figure 2.2: TSI generated from a VDL wherein each object corresponds to a vehicle. 

 
Figure 2.3: The edge of the objects obtained from Canny edge detector. 

 
Figure 2.4: Binary masks of the TOBs are obtained using two consecutive morphological 
closing operations, first with line object L5 and then with square object S7. 

 
In order to extract the features of TOB, a binary image mask is created from the TSI. 

For this purpose, Canny edge detector is used at first, for detecting fine details of the objects 

in TSI. Then, morphological erosion and dilation operations are performed with suitable 

objects to obtain a segmented region correspond to each of the objects in a TSI. Figures 2.3 

and 2.4 show the edge detected and region of binary mask obtained, respectively, from the 
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TSI shown in Figure 2.2. A number of shape-features may be obtained from the objects of 

TSI by using this kind of binary mask for the purpose of vehicle classification. 

To obtain the coordinates of a vehicle in a frame, it is necessary to first find the KVF 

wherein each of the vehicles captured in the video should have the same distance from the 

camera. In this method, the key frame KVF is selected as the midpoint of the width of a TOB, 

which corresponds to the frame in which the midpoint of the vehicle is approximately on the 

VDL. The appearances of some of the vehicles in the KVFs, as shown in Figure 2.5, are such 

that the shape and texture of the vehicles are comparable on the same scale and do not depend 

on the speed of the vehicle. This is why only the KVFs are used to obtain the features of the 

vehicular object. Since the TSI-based vehicle method uses only the KVFs for detecting 

vehicle, the computational complexity of the algorithm is significantly lower compared to 

other methods.  

To obtain the region of interest (ROI) from the KVF, the values of the center and 

width of the corresponding TOB in TSI is used.  The vertical strip of width         is 

cropped using the width of TOB from the KVF. To find the width of horizontal strip, the 

absolute difference of the vertical strips of     and       is used. An example showing 

the process of obtaining the silhouette of a vehicle „car‟ is shown in Figure 2.6. 
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        Figure 2.5: Example of Vehicle on KVFs 
 

 

 

 

Figure 2.6: Obtaining the ROI from the KVF. (a) Center and Width of TOB in TSI provide 
the y-axis coordinates   and             between which the vehicle passes. (b) A vertical 
strip of width        is cropped. (c) The frame difference provides the width to be 
cropped for the horizontal strip. 

(a) 

(b) 

(c) 
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Figure 2.7: Obtaining the silhouette from the  ROI of the vehicle. (a) Edge detected. (b) 
Image obtained from the closing operation on (a) with object   . (c) Image obtained from the 
closing operation on (b) with object    (d) KVB obtained after removing the unwanted region 
inside ROI. 
 

A segmentation process is necessary to obtain the silhouette from the ROI that 

describes the shape and texture of the vehicle concerned. This segmentation process is similar 

to the generation of binary masks of TOBs in a TSI. The edges of the ROI found from the 

edge detector are often very discontinuous. To connect the disjoint edges, two successive 

closing operations using the line object    and square object    are done. The resulting binary 

mask is referred to as the key vehicular blob (KVB), using which the features are extracted 

for the purpose of classification. The values of parameters λ and µ need to be chosen based 

on environment. The KVB obtained from a typical silhouette of a vehicle “car” using     

and     is shown in Figure 2.7. From this figure, it is evident that the KVB maintains the 

apparent shape of the vehicle considered in the example. 

2.3 Multiple TSI for Vehicle Detection 

The primary reason for introducing Multiple TSI based detection is to minimize the 

occurrence of misdetection and misclassification, mainly due to merging between TOBs. 

Merging between TOBs are found when occlusion is seen between two or a higher number of 

neighboring vehicles because of viewing angle or the closely spaced TOBs become 
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connected because of morphological dilation operation. Hence, in the MTSI method, a 

number of VDLs are used to generate TSI with the consideration that each of the vehicles on 

a road successively passes all the VDLs in a uniflow direction, as shown in Figure 2.8. This 

method improves detection performance by successfully identifying the vehicles, whose 

TOBs are merged in certain TSIs and remain disjoint in others. The improvement in 

classification is also achieved by using multiple TOBs in classification for a single vehicle. 

The VDLs on uniflow traffic on roads need to be chosen at such distances that the 

vehicles of the traffic fully remain in the scene, the chance of occlusion among vehicles is 

low, and the lateral movements of the vehicles to the flow direction are approximately zero. 

In general, the chance of occlusion of a vehicle by another vehicle increases with the 

increasing distance between the view line on the road defined by a VDL and the camera 

position. For each of the VDLs to cover almost the same breadth of the road through which 

the vehicles pass, the length of a VDL decreases as the distance between the view lines on the 

road defined by the VDL and the camera position increases. 
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Figure 2.8: Frame showing a few number of VDLs perpendicular to the traffic flow 

 
Figure 2.9: Section of the scaled version of multiple TSIs generated from MVDLs. (a)TSI1, 
(b)TSI2,   (c)TSI3 

 

Let                  be the lengths of the VDLn               in terms of 

pixels. To process each of the TSIs on the same scale, the TSIs are generated by placing the 

up- or downsampled version of the pixel strips of the frames on the VDLs, so that the height 

of the TSIs remains same. The scaling factors for up- or downsampling are determined from 

the ratio between    and   , where    is the height selected for the TSIs. Let the scaled 

version of the TSIs denoted as                    be generated from the corresponding 

                  . The processing of the scaled version of the TSIs reduces the effects 

of environmental factors such as the size of vehicles on the road, elevation of the camera, and 

video resolution on the choice of position of VDLs. A section of the binary masks generated 

for the objects in such a scaled version of the TSIs for    , where the selected height is D1, 

(a) 

(b) 

(c) 



15 

 

is shown in Figure 8. It may be observed from this figure that the TSIs have similar heights 

and that a vehicle leaves a delayed version of similar TOBs on the successive TSIs. It is also 

observed from this figure that some of the TOBs are merged in certain TSIs and remain 

disjoint in others. For example, the TOBs corresponding to the second and third vehicles 

from the left of the TSIs become merged in TSI1 and TSI2, whereas they are disjoint in TSI3. 

The MTSI-based method shows improved detection performance than single TSI based 

method. In practice, the chance of merging of TOBs are reduced by increasing the elevation 

of the camera or reducing the size of the line and square objects in the morphological 

operations for segmentation of the objects in a TSI. In general, by identifying the merged 

TOBs and adjusting the total count of TOBs, detection performance may be significantly 

improved. To detect possible merging, the y-axis co-ordinate of the centroid   
 , the width 

along both x- and y-axis   
 , and   

 , and the area                 of each of the TOBs 

of the TSIs are estimated. Since the MVDLs are close to each other in the direction of traffic 

flow, the value of   
 ,   

  and    for a distinct TOB should not significantly change with 

variation of  . A significant change in these parameters indicates that the TOBs have merged 

side by side in the direction of traffic flow. In a similar manner, change in parameters   
  

and    indicates that the TOBs have merged back to front in the direction of traffic flow. Let 

  be a 2-D array of size     that keeps the trace of whether the TOBs corresponding to m 

number of distinct vehicles are disjoint or merged by placing the element as zero or one, 

respectively. Here,   indicates the total number vehicle in the sequence. This array is 

generated from an iterative process by starting from the left of the TSIs and comparing the 

parameters previously mentioned. Let   be a 1-D array containing   rows to track the 

position of TOBs on different TSIs traced from the left. To estimate the elements of arrays   

and  , three major steps are followed in each iteration. 
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Step 1: In this step, a search region is found to compare a TOB in a TSI corresponding 

to a vehicle with that in other TSIs. It is to be noted that a TSI is formed using the pixels on a 

VDL of each of the frames; hence, thex-axis of aTSI corresponds to the frame number of the 

video. Let    represent the difference in pixel position between two successive VDLs in a 

frame of a video. Thus, if a vehicle in the video passes two successive VDLs, then the vehicle 

has actually passed the physical distance      meter, where    is the resolution of the video 

in meters per pixel. In such a case, the speed of the vehicle in meters per second may be 

estimated from TSIs corresponding to two successive VDLs as 

                (1) 

Where    is the number of frames required for a vehicle to pass two successive VDLs, and    

is the frame rate of the video. Let      and      be the maximum and minimum speed limits, 

respectively, of the traffic in video. Let a TOB corresponding to a vehicle exist on      

      in such a position that the lower and upper limits of the x-axis coordinate of the TOB 

are    and          ), respectively. In such a case, the search region S along the x-axis of 

the TOB corresponding to the same vehicle in              will be between      
    

and      
   , wherein 

  
                       (2) 

  
                      (3) 

It is to be noted that the VDLs are chosen in such a way that the lateral movements of 

the vehicles to the traffic flow are considerably small. Hence, the changes in the position of a 

TOB along they-axis among the TSIs are very insignificant. As a consequence, the search 

region S along the y-axis for the TOB in              will be between   
 
    

  and 

  
 
    

 , where   is chosen to be as small as 0.1. This way, search region S ensures that a 

given TOB in      has only one corresponding TOB in            . 
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Step 2: This step finds out the dissimilarity among N number of TOBs, each obtained 

from a TSI using the search region S defined in Step 1. The dissimilarity among the TOBs is 

estimated using the differences of four shape-based features, viz.,   
 
   

    
 , and   . The 

logical value of the differences is found to be  

   
   

 
   

 
  

   
 
 

    
 
                                  

 

   
   

 
   

 
  

   
 
 

    
 
                              

      

   
   

    
   

   
  

    
                                

    

    
      

  
                                       

           
Where,                                        ; and   

 ,   
 ,    , and    are the 

threshold parameters that may be dependent on the illumination, vehicle size, and video reso-

lution. For example, a higher threshold value may be chosen when shadow in a highly 

illuminated environment affects the segmentation of the vehicle. In the experiments, it is 

found that the values of the threshold parameters lie between 5% and 15%. Since a merging 

of TOBs may occur either side by side or back to front, conditions    and    may not be true 

at the same time. Hence, the TOBs are considered merged when condition   is true, wherein 

                  (8) 

 

Step 3: In this step, arrays   and   are updated depending on whether the TOBs are 

merged or not, the decision of which is obtained from Step 2. If, in a given iteration, the 

TOBs are found to be disjoint, then one column of zeros is appended to  , and elements of 

  are incremented by one. On the other hand, when merging occurs on TOBs, it is crucial to 

detect the number of merged TOBs referred to as     . Since various shapes and sizes of 
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TOBs exist in a TSI, it is intuitive that      may be obtained as the number of disjoint TOBs 

for which the added values of the features, i.e., area and widths, are approximately equal to 

those of the merged TOB. Let the widths and area of a merged TOB in      be denoted as 

   ,    , and   , respectively, and those remaining disjoint in the search region S of 

           as   
      

  
  and   

  respectively. In such a case, the number of TOBs that are 

merged in TSIn may be estimated from search region S of TSIl as 

                     (⌊
   

∑   
  

   

  
 

 
⌋   )                       

                     (⌊
   

∑   
  

   

  
 

 
⌋   )                           

                  (⌊
  

∑   
 

   

  
 

 
⌋   )                                

          (                                  )                            

 

where ⌊ ⌋ denotes the largest integer contained in z, and mode     indicates the 

integer number whose occurrence is maximum in    . In the event of a tie, precedence is 

given to          ,            , and             with consideration that the TOBs 

corresponding to vehicles are most likely to be close side by side, compared to back to front. 

When the TOBs become merged, the 2-D array   is updated by appending      number of 

columns, wherein the elements for the  th row become ones and the rest become zeros. It is to 

be noted that a TOB corresponding to a vehicle in a given TSI may be merged and, at the 

same time, may remain disjoint in other TSIs. In such a case, the elements of array   are 

incremented only by the number of disjoint TOBs. 
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Figure 2.10: Block diagram of the proposed detector 

 

Table 2.1: RESULTS CONCERNING THE CENTROIDS, WIDTHS, AND AREAS OF THE FIRST THREE 
OBJECTS FROM THE LEFT OF THREE TSIS ‡ 

 

 

 

It is clear that the number of columns on the 2-D array   provides the number of 

vehicles that pass through the VDLs. If, for any row, the elements of a given column are one, 

it indicates that the TOBs corresponding to the vehicles are merged, and zero elements 

represent the TOBs remaining disjoint. A simple block diagram of the proposed vehicle-
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counting process is shown in Figure 2.10. From this figure, it can be seen that an iterative 

process that follows Steps 1-3 and updates   and   accordingly in each iteration is 

sufficient for detection of vehicles. We would provide an example showing how arrays   

and   are updated, provided that the TSIs have merged and disjoint TOBs. Let us consider 

only those TOBs from the left of the three TSIs shown in Figure 2.9 that correspond to the 

first five vehicles. It can be seen from the figure that the TOBs corresponding to the first, 

fourth, and fifth vehicles appeared in the TSIs that are disjoint, whereas the TOBs 

corresponding to the second and third vehicles are merged in TSI1 and TSI2 and remain 

disjoint in TSI3. Since the example considers three TSIs, there are three rows in arrays   and 

  and are initialized by an empty matrix and [1 1 1]T, respectively. The y-axis coordinate of 

the centroids, widths, and areas of the first three TOBs from the left (which are referred to as 

TOB1, TOB2, and TOB3, with the last two being merged in the first two TSIs) are given in 

Table 2.1. It can be seen from this table that the y-axis coordinate of the centroids, widths, 

and areas are significantly deviated when individual objects such as TOB2 and TOB3 in TSI3 

are merged in the other two TSIs. On the other hand, these features have closeness in values, 

while the TOBs remain separated in the TSIs. It is also noted that the sum of the x-axis 

widths and areas of the two disjoint TOBs in TSI3 are approximately equal to those of the 

merged TOB in TSI1 or TSI2, which indicates that the number of merged TOBs is two. The 

elements of the 2-D array   and 1-D array   estimated for the first four iterations by using 

the proposed detection algorithm are shown in Table 2.2. It can be seen from this table that 

the five columns of   represent the five vehicles that have passed the VDL, and the second 

and third columns of the first and second rows show that the second and third vehicles have 

been merged in TSI1 and TSI2. 
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Table 2.2: RESULTS CONCERNING THE ELEMENTS OF N AND M FOR THE FIRST FOUR ITERATIONS 
FOR THE CLIP CORRESPONDING TO FIGURE 2.6 

 
 

2.4 Conclusion  

In this chapter, multiple VDL based MTSI detection approach has been discussed in 

detail. Using this method, the spatial correspondence in terms of coordinates of a vehicle is 

identified on KVFs corrensponding to the virtual detection lines. It is expected that, the center 

coordinate position obtained from detection mechanism will not only help to start tracking, 

but also will help to track vehicles in some key positions of road, which can later be used as 

corrective tool for other tracking methods.  
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3.  MTSI-BASED TRACKING ALGORITHMS 

3.1 Introduction 

In Chapter 2, it has been mentioned that the vehicular object in KVFs obtained using 

MTSI method can be very helpful in obtaining a very accurate position of the vehicle in the 

key frames. In this chapter, first we present computationally efficient very fast tracking 

algorithm using the vehicular coordinate positions obtained from the MTSI described in 

Chapter 2. Then, we describe the Kalman and Particle filter-based tracking algorithms those 

are commonly referred to video-based tracking literature. Finally, we present a high 

performance tracking algorithm, which improves reliability of tracking by incorporating 

MTSI based detection method into the Kalman or  Particle filter-based tracking methods. 

3.2 Low-Complexity MTSI-Based Tracking 

In Chapter 2, it has been shown that comparable TOBs for a vehicle can be identified 

on different TSI using that MTSI based detection method. Multiple TOBs for a single vehicle 

provides multiple KVFs, where the positions of the vehicle are known. As we accurately 

know the position of vehicular object on different key frames, the approximate trajectory of 

vehicular movement can be estimated by interpolating the coordinates. The accuracy of 

estimated trajectory will be increased with increasing the number of VDLs, as more data will 

then be used to estimate the trajectory.  This trajectory will not give an accurate trajectory as 

the estimated trajectory between the VDLs depends on interpolator.  

In this approach, at first we need to choose the interpolator for constructing new data 

points within the range of a discrete set of known center data points in KVFs. As there is 

usually very little lateral movement of vehicle between VDLs and also the speed is almost 

constant between VDLs, a linear interpolator or a polynomial interpolator with a lower 

degree may give a good estimate.  
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The simplest method is linear interpolation. Generally, linear interpolation takes two 

data points, say         and           in the Cartesian coordinate system and the interpolant 

is given by: 

             
    

     
 at the point                     (3.1) 

If there is no lateral movement of vehicle and speed is fully constant, then using a 

linear interpolator will give good result. Linear interpolation is quick and easy but the chance 

of getting a precise result is low in real world case. However, nonlinear trajectory estimation 

may improve the tracking accuracy, but at the expense of computational complexity. In such 

a case, the polynomial interpolator with degree n (           ) may be applied to obtain a 

sufficiently accurate trajectory. The process for constructing the interpolation polynomial of 

degree n is given below.  

Given a set of   data points         corresponding to   TSIs, polynomial p of degree 

at most N-1 can be formed with the property 

                 -1 

Suppose that the interpolation polynomial of degree     is in the form 

          
         

         
                (3.2)  

The statement that p interpolates the data points means that 

                                  

If we substitute equation (3.2) in here, we get a system of linear equations in terms of 

the coefficients   . Now, the system in matrix-vector form 
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We have to solve this system for    to construct the interpolant     . 
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We used Lagrange polynomial to solve the problem. The polynomial may be written down 

immediately in terms of Lagrange polynomials: 

     
                      

                         
    

                      

                         
    

             
                      

                         
       

That is,     

     ∑  

 

   

∏
    
     

                      

           

 

So,      polynomial can be formed using the known n number of given center points. From 

this     , the coefficients of equation (3.2) can be calculated. Here, since the coordinate 

positions are estimated from the KVBs only, the forward and backward tracking trajectories 

will be the same. 

3.3 High Performance Tracking: MTSI Integrated with Particle Filter or Kalman Filter 

In this high performance approach, the tracking procedure for each vehicle will be 

started automatically using the coordinate of center position of the vehicle in the KVF 

corresponding to the first VDL [40]. Then the tracking will be continued in successive frames 

using a Monte-Carlo Particle filter tracker [17], [41] or Kalman filter tracker [18]. A tracking 

coordinate correction will go on in parallel, which will only be active in KVFs using 

vehicular coordinates obtained in KVFs using MTSI detection method. Here, the procedure 

for tracking a single vehicle in successive frames using Kalman filter tracker will be 

discussed in Section 3.3.1. The procedure for tracking a single vehicle in successive frames 

using Monte Carlo Particle filter tracker will be discussed in Section 3.3.2. Then, tracking 

correction in KVFs method for the vehicle will be described in Section 3.3.3. 
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3.3.1 Tracking in Succesive Frames Using Kalman Filter 

In this section, Kalman filtering algorithm will be described for tracking vehicular 

object in successive frames. The Kalman filter is a combination of a predictor and a filter. 
Both the predictor and the filter are linear systems. A constant velocity model is assumed for 

our target. If we assume a constant velocity model for our target, the Kalman filter reduces to 

the alpha-beta filter. Here, the predictor estimates the location of the target at      th frame 

given  th previous frame observations. When observation     arrives, the estimate is 

improved using an optimal filter to estimate the target position at frame    . The filtered 

estimate is the final estimate of the true location of the target att frame    .  

Initially, the vehicle center is identified for tracking using TSI based detection. This 

center coordinate will be fed into the tracker as the first predicted coordinate estimate. 

Additionally, velocity in X-direction (  ) and velocity in Y-direction (  ) is also needed to be 

initialized to start the tracking. Since in vertical direction, Y-coordinate is decreasing in the 

direction of vehicular movement, the proposed tracking methods initialize    as -1 for 

forward tracking and    as 1 for backward tracking. On the other hand,    is initialized as 1 

for both cases. 

Here, for tracking, two Kalman filters are formed for prediction/estimation: one for 

the horizontal position and the other for the vertical position of the vehicular-object center. 

Let,     and   
  be the horizontal coordinate of center and vertical coordinate of center of a 

vehicle at video frame  . 

Then, the predicted center position at      th frame (       ̅        
 ̅ ) is estimated based on 

track history 

      
 ̅     

     ̅     
     

      
 ̅

    
 
    ̅     

                    (3.4) 
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Where    is the time between frames, obtained from framerate and  ̅       and  ̅     
  is 

the predicted velocity in X-direction and Y-direction respectively, at      th frame. Here, 

initially     and   
  is found from the vehicular-object identified using TSI based detection 

method. The goal of the prediction portion is to estimate the next position of the target, given 

the previously acquired image sequence. 

Once we have an estimate of the next target position, we look at a small subimage for 

the target and avoid searching the whole image again. The Observed position at      th 

frame (     ̂       
 ̂ ) is found by calculating center of mass(intensity centroid) of a small sub-

image region, centered at the predicted position (       ̅        
 ̅ ) . This region is termed as track 

gate, which depends on height and width of KVB identified using TSI based detection 

method. 

Finally, the filtered center position is calculated as 

    
  =         ̂              

 ̅  , 

    
 

 =        
 ̂

             
 ̅           (3.6) 

Where,            a gain is determined by the Kalman filter.  

 

The predicted velocity is given by 

 ̅     
   ̅     

       
 ̂        

 ̅                          (3.7)  

 ̅     
 

  ̅     
 

      
 ̂
       

 ̅
                         (3.7) 

Where    (      ) is another Kalman gain.  

The gains     and     depend upon the noise variances and the state vector error 

covariance matrix. Here,     determines the balance between the previous track history 

and the new observation.  If    is large (near 1), it is believed that the observations are 

very reliable (this is essentially ignoring the track history). On the other hand, If it is 

small (near 0), it is believed that there is a lot of measurement noise (this is essentially 
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ignoring the observation). So, the gain    in (3.6) is increased in order to give more 

weight to the observations and less weight to the predictions as the track commences.  

The other Kalman gain     controls how new observation affects the predicted 

velocity. If it is near 0, it means that it is believed that the observations are unreliable 

and that the actual velocity is really a constant. In this case, the observation does not 

affect the predicted velocity. However, if     is near 1, then the observations are reliable. 

Here, a drift (acceleration) in velocity is expected. 

3.3.2 Tracking in Succesive Frames Using Particle Filter 

In this section, a modified Particle filtering algorithm for tracking vehicular object in 

successive frames is described. In frame     , let      be the target state and      be the 

observed image state. In practice, the stochastic state transition model            is assumed 

to be a Markov chain. The observation model             is defined to make the maxima in 

             correspond to the measured image intensity features. The density of  

             (where                        ) can be propagated according to 

Condensation algorithm developed by Isard and Blake [14] : 

              =                                     (3.8) 

Where,              =∫                      dXi ,                        (3.9)  

And      is a normalizing constant. 

Based on the factored sampling [42], [43], [45], the Condensation algorithm 

approximates                by a sample set {    
   ,     

   }, where     
    is the sample m,     

    

is its weight, and                    M is the sample size,. Suppose the sample set 

{  
   ,  

   } approximates           . We generate {    
   ,     

   
  to approximate 

               using following steps: 
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1.  Resample the set {  
   ,   

   } from the observation by drawing a sample     
    such that 

the samples have a prediected probability   
   

             ; 

2.  Draw a sample     
   , from the state transition model                

   
 , m =1, 2,...,M; 

3.  Weight     
    by the image intensity observation 

    
   

 
                 

   
 

∑               
   

   
  

    
                                                                    

The target state is estimated by 

 ̂                         ∑                  
   

  
                           (3.11) 

3.3.2.1 Sample generation 

In the Particle filter tracker algorithm, a sample set is used to approximate the 

posterior density            of the target state. The sample set contains   
    samples and their 

corresponding weight   
   . Here, m= 1,2, …M, where M is the sample size. 

The samples are generated from the state transition model           , which is built 

through probabilistic learning. It is noted that deterministic learning from some training 

sequences cannot obtain a motion model representing the all the possible movements of the 

vehicles. In the Monte Carlo tracker, the vehicle position is predicted using the movement of 

previous steps, and then the samples     
    are generated around the prediction randomly. 

The vertical direction in the frame is set to be parallel with the vehicle flow direction 

in the road. The elapsed time between two consecutive frames in the video sequence is very 

small that depends on frame-rate of video. In this short time period, the vehicle horizontal 

movement is negligible. Further, its speed does not change dramatically. The vehicle center 

position is predicted by following equations: 
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 ̅    

 ̂   

     
 ̅

   
 ̂
     

 ̂
     

 ̂
            

 ̂
     

 ̂
       (3.12) 

Where       ̅      
 ̅

  is the predicted vehicle center position at           frame after the 

start of tracking,     ̂    
 ̂
  is the estimated position in frame  , and   (   ) is a constant. 

For     ,   is chosen as 1. Here, to automatically start tracking of a vehicle, the co-ordinate 

of center position of key vehicular blob corresponding to the first VDL will be used as the 

initial input     ̂    
 ̂
 .  

The sample      
   

      
    

     
    

  is generated around (     ̅      
 ̅  ): 

    
    

      
 ̅   ̃     ,               

    
    

      
 ̅

  ̃                           (3.13) 

Where  ̃ is a random number with normal distribution         , where   is mean and    is 

variance and   is a random number with uniform distribution on the interval       .  

3.3.2.2 Local image intensity measurement 

Vehicles are of different shapes and a vehicle sillouttes contain varying number of 

pixels having significant intensity and edge variations within. Here, for simplicity, we 

consider a circular object around estimated center. This radius of the circular object is chosen 

based on the image intensity property observation in such a way that image intensity remains 

constant inside the object varies significantly outside the boundary [47]. 

On the basis of these properties, a method is adopted to measure the local image 

intensity features Z for a given position of the vehicle center        . 

By performing radial edge detection around        , the object boundary is detected. We 

construct several line segments extending radially from         with 

coordinates                   such that  
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Where    is the number of line segments,     is the number of points on each line,   gives 

the orientation of the line segment, and    and    are pre-specified values delimiting the 

length of the line segments. Note that (3.14) defines line segments for detecting potential 

object boundaries, where (3.13) gives a locus of samples around the predicted center position. 

The one-dimensional edge detection operator is applied on each line segment [44], [48]. 

      |  ́         ́         ́         ́     |                       (3.15) 

Where   ́    is the image intensity at point                 , which is obtained by bilinear 

interpolation. The corresponding coordinate, denoted            , with the maximum       is 

the detected edge point for the orientation  . The value of    records the distance between 

        and            . 

The object shape characteristic is represented by  ̅ and   , the mean and the variance 

of   , respectively. The object image intensity characteristic    is defined as the image 

intensity standard deviation inside the vehicular-object. In this method,    is obtained by 

computing the image intensity standard deviation in the detected area centering at         

with radius  ̅   , where   is a positive constant. Here, the use of the circular area to compute 

   in an area as large as possible and the use of  ̅    are to lessen the effect of the boundary. 

The local image intensity measurement for the position         is defined as the following 

two-component vector: 

           
           (3.16) 

According to object image intensity properties, if         is near the center, the elements of 

   should not differ much with each other and   should not be large. 
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  Radial edge detection requires choosing    and    appropriately according to the 

object size. The edge detection detects the boundary where    and    are chosen 

appropriately. If the radial edge detection can detect the object boundary on all orientations 

      we regard the edge detection as successful. 

3.3.2.3 Sample Weighting 

Given a set of generated samples and the associated image measurements, the sample 

weighting is defined by comparing the local image intensity measurement of the sample with 

that of the target object center. Here, normalized weight     
    for each sample is calculated 

using Intensity standard deviation and mean of radius. 

Let, the target center in the first frame        
 
  is known to us. The local image 

intensity measurement of        
 
   is               

  and that of     
    is     

   
 

       
   

       
   

  .       
    is defined to measure the difference between       

    and     , and       
    

is defined to measure the difference between       
   and     : 

   

      
   

 |∑  (      
   

   ̅)
 

 

     
 |                                                         

      
   

 |      
   

     |                                                                                   
 
Where  ̅ and    are, respectively, the mean and the variance of      , and    is the number of 

detected boundary points       .  

The sample weighting should be defined to force the maxima in              

correspond to the target object image intensity features. If     
    is near the target center, the 

distribution of       
   will not differ much with that of      and       

    will be small. The values 

of       
   

 and      will not be large since the image intensity is relatively constant inside the 



32 

 

selected object and       
   will not be large. These imply     

   
 should be large when       

   
 and 

      
   

 are small and can be assumed to follow Gaussian distribution.  

  The conditions that the samples     
   is near the target center require both       

   
 and 

      
   

 be small and they are two independent measurements. Hence, the weight criterion is 

defined as: 

    
   

        
   

      
   

                                                                          
    

Where 

      
   

  
 (

      
    

   
 )  

                                                                             

      
   

  
 (

      
    

   
 )  

                                                                             

And    and    are constants. We disregard the constant coefficients in the Eqs.(3.20) and 

(3.21) because     
    will be normalized. After normalization, the weight assigned to the 

sample     
   

 is 

    
   

 
    
   

∑  
   

    
    

                                                                                                   

     

The center coordinate in      th frame is calculated finally from the multiplication of 

normalized weight vector   and position sample vector s. 

The center horizontal coordinate,        ∑     
   

    
     

    

The center horizontal coordinate,     
 

  ∑     
   

    
     

    

These coordinates will be used as input in equation (3.12) for estimating predicted center 

position in next frame.  
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3.3.3 Trajectory Correction in KVFs 

In section 3.3.1 and 3.3.2 the center coordinate has been estimated using Kalman filtering 

and Particle filtering approach. In many cases, Kalman or Particle filter misses the 

correspondence of the vehicular object center in the estimated trajectory. The error in 

trajectory may occur due to weak image intensity features, partial occlusion of the selected 

object by other edges or structures, and broken boundaries. Thus, a investigation is 

mandatory at a regular interval for finding out whether the tracking coordinates for a given 

vehicle obtained from Kalman or Particle filter have missed the correspondence or not.  

Here, in order that the tracking method will not miss the correspondence in the trajectory 

over the frames, the center coordinates of vehicle on KVFs is used. It has been mentioned in 

Chapter 2 that the TOBs corresponding to each vehicle in the MTSIs can be used to identify 

accurate co-ordinate positions in KVFs. The center position estimated from the Kalman or 

Particle filter is compared in the selected number of KVFs of the proposed tracking method. 

The estimated trajectory co-ordinate is considered to be erroneous, if it significantly differs 

from the centroid co-ordinates of the vehicle in that frame estimated from the TOB.  

Let    
    

   
    

  be the estimated center coordinate of a vehicular object in KVF 

corresponding to  th VDL calculated using the MTSI method presented in Section 2.2. Let 

   
    

   
    

  be the center coordinates of the same vehicular object in that same KVF 

estimated using the Kalman filtering approach presented in Section 3.3.1 or Particle filtering 

approach presented in Section 3.3.2, respectively. To determine whether the trajectory 

estimated from filter has been deviated significantly from the estimated positions using 

MTSI, the following criteria are used:  
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Where,      and      indicates the highest coordinate value along X-axis and Y-axis, 

respectively.    
     and   

    are the width along x-axis and y-axis of KVB detected using 

 th VDL, respectively. Here,  
 ,   

 ,   
 ,   

  are the threshold parameters, which are chosen 

based on movement on the direction as well as average speed of the vehicular traffic. The 

factors of choosing these parameters due to the variations of illumination, vehicle size, and 

video resolution are also investigated on the tracking performance. For example, a higher 

threshold value may be chosen when shadow in a highly illuminated environment affects the 

segmentation of the vehicle. In the experiments, it is found that the value of the   
  lies 

between 1% and 5% whereas   
  lies between 5% and 15%. Here, the value of   

  is 

relatively greater than   
  because of the fact that the probablity of movement in flow 

direction (y-axis) is much higher than the probability of lateral movement in x-direction. On 

the other hand,   
  and   

   is selected to be 50% to ensure that the center doesnot lie outside 

the vehicular-object. 

An error in tracking trajectory may occur in both x-direction and y-direction in any 

one direction. So, the decision on trajectory correction is true when 

                                                                     

 

If   is false, then the tracking will follow the trajectory porived by the filtering methods. 

On the other hand, if    is true then error in estimate is confirmed. In case of such error in 

trajectory estimation, the co-ordinate estimated from the TOB    
    

   
    

   will be fed into 

the Kalman or Particle filter tracker to restart the tracking process from the next frame.  

Here, increasing the number of VDL will increase the number of KVFs and as a result 

the frequency of tracking correction checking will also be increased. So, the number of VDLs 
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required for the tracking algorithm is needed to be investigated in terms of number of 

vehicles in the scene, average speed of the vehicles, field-of-view, as well as the frame rate of 

the video. In our experiment, we found that using 5 VDLs on the road, gives an acceptable 

tracking performance. 

3.4 Conclusion 

In this chapter, two tracking approach has been proposed. Firstly, a low complexity 

tracking approach based on MTSI detection method is introduced, which provides an 

approximate estimate of trajectory in a significantly low computational time. Then, 

traditional Kalman filter based tracking and Particle filter based tracking approach that we 

adopted has been presented. Finally, the center coordinates of vehicle calculated from KVF 

obtained using the MTSI method, has been incorporated into the filter-based tracking 

approach to obtain a highly reliable trajectory. It is expected that the proposed high 

performance tracking method will not only provide an automatic tracking method with low 

complexity, but also will increase reliability of tracking. 
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4.  EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Introduction 

In  order  to  evaluate  the  performance  of  the  algorithms  proposed  in  Chapter  3, 

experiments  are  carried  out  on  a vehiclular traffic-video database.  Both subjective and 

objective evaluations of the vehicular video sequences are done. The subjective evaluation is 

done through visualization of the tracking trajectory of the vehicles. On the other hand, the 

objective evaluation is done based on the closeness of estimated tracking trajectories from 

forward and backward direction. In ideal tracking situation, both these trajectories in terms of 

coordinates should be the same. Thus, the performance metric is defined based on the 

normalized relative distance between forward and backward tracking coordinate, referred to 

as NRDT. The NRDT value is used here to evaluate the competency of video-based tracking 

algorithms. In the experiments, five different video-based tracking algorithms, viz., Kalman-

filter based tracking [18], [24], Particle-filter based tracking [49], [41] and three MTSI-based 

tracking methods proposed in Chapter 3 are considered. In the following sections of this 

chapter, details of the test data, mathematical definition of the performance metric, plot of 

forward and backward tracking trajectories in terms of the Cartesian coordinates for each 

vehicle for the proposed and the existing algorithms will be presented.  Moreover, the 

performance of the proposed MTSI based tracking methods will be discussed based on 

performance metrics. 

4.2 Vehiclular Traffic-Video Data and Description 

Experimentations on the video-based vehicle tracking algorithms have been 

conducted on a database [39], [40] that contains road-traffic video of Dhaka, Bangladesh and 

Suwon, Korea, under various sunlight and traffic conditions using a fixed camera of model 

Sony W-110. In the database, both the incoming and outgoing traffic flows are considered, 
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with variations in the elevation of camera, so that different appearances of similar vehicles 

are captured in the video. The traffic consists of vehicles of seven types, namely, motorbike 

(Type I), rickshaw (Type II), auto-rickshaw (Type III), car or station wagon (Type IV), jeep 

or minivan (Type V), covered-van (Type VI), and Bus (Type VII). The vehicles also can be 

grouped into four broad classes based on number of wheels, viz., 2Wh, 3Wh, 4Wh, and 6Wh. 

To process the sequences, the captured clips will be converted to gray-scale sequences having 

a suitable frame size (say, 176×144) and a suitable frame rate (say, 25 frame/sec). The 

minimum and maximum speeds of the vehicles in video traffic are 8 and 60 km/h, 

respectively.  

4.3 Performance Metrics 

Here, the evaluation of performance of tracking methods is done mainly by frame by 

frame relative distance between vehicle center coordinate in forward and backward tracking. 

The mathematical expressions of the performance metrics, viz., NRDT and ANRDT 

considered in this thesis are given next.  

Let,   
 
    and   

 
    indicates the center coordinate in forward and backward 

tracking at ith frame. Moreover,      is the maximum pixel value in flow direction and    is 

the frame count of tracking. NRDT can be calculated using the following equation,  

      
∑    

       
          

  
   

      
                                          

Where,    is the maximum number of frames, for which tracking trajectory is continued. 

Average NRDT for a class of vehicle is calculated using the following equation, 

       
∑      
 
   

 
                                                                

Where,   indicates the total number of vehicle in a selected vehicle-class and       

indicates the NRDT value of the jth object of that vehicle class. 
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4.4 Performance Analysis 

At first, vehicle trajectory obtained from the low-complexity MTSI based tracking 

method is compared with the trajectory obtained using the filter-based tracking algorithms. 

Then, the performance of MTSI integrated Kalman filter(MTSIIKF) based tracking algorithm 

and MTSI integrated Particle filter(MTSIIPF) based tracking algorithm is compared with the 

existing Kalman and Particle filter based algorithms to find out which performs better on 

vehicle-video database. Average NRDT value for every vehicle class is investigated for 

comparing the performance of tracking algorithm. Here, a lower value of ANRDT indicates 

better tracking performance. Moreover, the correctness in estimating trajectory of vehicles is 

detected considering the NRDT values of the vehicles. 

4.4.1 Low Complexity MTSI Tracking Algorithm 

In this section, vehicle trajectory obtained from the low-complexity MTSI based 

tracking method is compared with the trajectory obtained using other popular methods like 

Particle filter [49] and Kalman filter tracking  [24]. The tracking trajectory estimate of low 

complexity TSI based tracking method is very close to the tracking trajectory estimated using 

using the filter-based tracking algorithms, as shown in Figs 4.1 and 4.2. Thus, it may be 

useful in cases where very low computational complexity is expected, as the performance is 

close enough to the other popular methods. 
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(a) 
 

       
 

(b) 

Figure 4.1: Comparison of Low-Complexity MTSI based tracking approach with Kalman 
[18] and Particle filtering [41] approach in a typical video sequence in terms of tracking of (a) 
Vertical center coordinates; (b) Horizontal center coordinates  
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 4.2: Comparison of trajectory of Low-Complexity MTSI tracking method with 
Kalman[18] and Particle[41] filtering approach on real frame. Here, (a), (b) and (c) show 
three vehicles in a typical video sequence and (d), (e) and (f) show the corresponding 
trajectories, respectively. 

4.4.2 Kalman and Particle Filter-Based Tracking Algorithms 

In this section, the tracking coordinates obtained using existing filter-based algorithms 

are evaluated. For evaluation, the Cartesian coordinates in flow direction (y-axis) , obtained 

using Kalman filter based [24] and Particle filter based tracking alogorithm[49] are plotted in 

Figures 4.3 and 4.4 for two typical sequences of database. Here, only coordinate in y-

direction is considered, as it is the vehicle flow direction.  In all the following figures the line 

with red star will indicate the forward tracking trajectory and the line with blue bubble 

indicates backward tracking trajectory.   
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(a)  

 
 

(b)  

Figure 4.3: Tracking center coordinate along flow direction of first typical video sequence in 
forward and backward direction, using (a) Kalman filter (b) Particle Filter  
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(a)  
 

 
 

(b)  

Figure 4.4: Tracking center coordinate along flow direction of second typical sequence in 
forward and backward direction, using (a) Kalman filter and (b) Particle Filter 

 

From Figures 4.3 and 4.4, it is evident that Particle tracker misses trajectory in lesser 

cases than that of Kalman tracker. However, it can also be seen that, most of the vehicles 

those don‟t lose trajectory, the Kalman tracker performs better in terms of closeness between 

forward and backward tracking coordinate. 
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This result is expected, as Kalman filter estimates the predictor and filter as linear 

system. So, if the vehicle movement is linear, Kalman filtering performs very well and the 

tracking coordinate matches closely in forward and backward tracking. However, in real 

world scenario, there are cases where vehicluar movement may not be linear and Kalman 

filter fails in such cases. On the other hand, Particle filter doesn‟t have the linearity problem 

of Kalman filter based tracking and performs better in such scenarios. Thus Particle filter 

tracker performs better in terms of not missing trajectory.  

4.4.3 TSI Integrated Filter-based Tracking Algorithm 

Integrating MTSI based correction mechanism, improves the performance of both 

Kalman filter and Particle filter based tracking methods. However, the performance of 

Kalman is improved more, as MTSI correction mainly performs to correct the tracking 

coordinates in case of significant drift from the actual trajectory and doesn‟t have any impact 

on coordinates in case of little drift. Thus, as the chance of losing trajectory completely is 

significantly reduced using correction mechanism, the relative distance between forward and 

backward tracking coordinate is the dominating performance evaluation criterion now. As a 

result, it is expected that MTSIIKF algorithm will perform better than that of MTSIIPF 

algorithm. For evaluation, the Cartesian coordinates in flow direction (y-axis), obtained using 

MTSIIKF approach and MTSIIPF approach are plotted in Figures 4.5 and 4.6 for the same 

typical sequences of database used in Figures 4.3 and 4.4. 
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(a)  

 
 

(b)  

Figure 4.5: Tracking center coordinate along flow direction of first typical sequence in 
forward and backward direction, using (a) MTSIIKF and (b) MTSIIPF  
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(a)  

 
 

(b)  
Figure 4.6: Tracking center coordinate along flow direction of second typical sequence in 
forward and backward direction, using (a) MTSIIKF and (b) MTSIIPF  
 

It can be seen from the figures that the difference between forward and backward 

tracking coordinate is larger in MTSIIPF approach than that of MTSIIKF. For a better 

understanding of performance before and after integrating MTSI based correction, the 

zoomed-in trajectory of three vehicle of second typical video-sequence is shown in Figure 

4.7. Moreover, the tracking trajectory of left-most and center vehicle of Figure 4.7 estimated 

using existing and proposed approaches, are shown in Figures 4.8 and 4.9.  
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 (a)  

 

 
(b)  

 

 
(c)  

 

 
(d)  

Figure 4.7: Zoomed-in center coordinate tracking along flow direction of three vehicles in 
forward and backward direction using (a) Kalman filter (b) Particle filter (c) MTSIIKF and 
(d) MTSIIPF  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8: Tracking Trajectory of left most vehicle of the sequence considered in Figure 4.7 
using (a) Kalman filter, (b) Particle filter, (c) MTSIIKF and (d) MTSIIPF 
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(a)  (b) 

 
(c) 

 
(d) 

Figure 4.9: Tracking Trajectory of middle vehicle of the sequence considerd in Fig 4.7 using 
(a) Kalman filter, (b) Particle filter, (c) MTSIIKF and (d) MTSIIPF 

 

From the Figures 4.6 and 4.7, it is evident that after integrating MTSI based 

correction, the proposed tracker identifies the case of significant displacement from the actual 

trajectory using the of correction mechanism on KVFs. As a result, the tracking trajectory 

estimate is changed only for those vehicles and a significantly improved trajectory is found. 

Moreover, the closeness between forward and backward tracking is also increased for those 

vehicles.  Additionally, from Figures 4.7, 4.8 and 4.9, it can be said that before integrating 

MTSI, tracker with Particle filter performs better than tracker with Kalman filter in terms of 

not losing trajectory. However, after integrating MTSI based correction, the chance of 
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completely missing trajectory is significantly reduced. Thus, on the basis of closeness 

between trajectory coordinate, MTSIIKF performs better than MTSIIPF.  

4.5 Results and Analysis 

Extensive experimentations have been carried out on the database discussed in 

Section 4.2, in order to perform objective evaluation of the performance of the proposed 

MTSI based vehicle tracking methods. For this, the proposed MTSI-based vehicle tracking 

methods are compared with two other existing methods, i.e., the Particle filter based tracking 

method [49] and Kalman filter based tracking method [24]. The results concerning the 

performance of vehicle tracking algorithms on different vehicle class, based on closeness 

between forward and backward trajectory coordinate is shown in Table 4.3 in three video 

sequences, when the environment was sunny, cloudy, and normal. Here, ANRDT value of 

different vehicle-type in video-sequences is shown in Table 4.3 the proposed and existing 

tracking algorithms. A lower ANRDT value indicates better tracking performance. From the 

table, it is found that MTSIKF provides the best result. 

On the other hand, the results concerning the error in tracking vehicles of four 

methods, mainly considered in our experiment are shown in Table 4.4. Here, NRDT value for 

each vehicle is calculated to measure the correctness of tracking. From the visual inspections 

and observing the corresponding NRDT values, a vehicle with NRDT value lower than 0.07 

is considered as correctly tracked. From the table, it is found that MTSIKF and MTSIPF 

provide best result in terms of number of vehicle correctly tracked and their performance is 

same in the video sequences of vehicle-traffic video databse [40]. 
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TABLE 4.3: RESULTS CONCERNING THE PERFORMANCE OF VEHICLE TRACKING ALGORITHMS USING 
ANRDT VALUE OF DIFFERENT VEHICLE CLASS 

Test 
Sequence 

Methods 2Wh 3Wh 4Wh 6Wh 
Type I Type II Type III Type IV Type V Type VI Type VIII 

 
Normal 

Sequence 

Vehicle Count 29 41 78 47 51 31   42 
Particle[49] 
Kalman[24] 
MTSIIPF 
MTSIIKF 

0.0607 
0.0414 
0.0358 
0.0225 

0.0582 
0.0471 
0.0411 
0.0272 

0.0595 
0.0356 
0.0328 
0.0171 

0.0632 
0.0381 
0.0346 
0.0244 

0.0529 
0.0391 
0.0427 
0.0291 

0.0221 
0.0152 
0.0188 
0.0152 

0.0248 
0.0169 
0.0212 
0.0169 

 
Sunny 

Sequence 

Vehicle Count 31 48 89 68 34 28 57 
Particle[49] 
Kalman[24] 
MTSIIPF 
MTSIIKF 

  0.0745 
0.0552 
0.0513 
0.0239 

0.0669 
0.0501 
0.0528 
0.0351 

0.0588 
0.0347 
0.0361 
0.0189 

0.0538 
0.0401 
0.0383 
0.0263 

0.0455 
0.0274 
0.0285 
0.0181 

0.0259 
0.0113 
0.0259 
0.0113 

0.0210 
0.0127 
0.0210 
0.0127 

 
Cloudy 

Sequence 

Vehicle Count 23 27 58 45 37 22 29 
Particle[49] 
Kalman[24] 
MTSIIPF 
MTSIIKF 

0.0698 
0.0486 
0.0452 
0.0197 

0.0622 
0.0514 
0.0498 
0.0312 

0.0620 
0.0450 
0.0363 
0.0226 

0.0515 
0.0433 
0.0339 
0.0236 

0.0403 
0.0295 
0.0317 
0.0231 

0.0197 
0.0141 
0.0197 
0.0141 

0.0229 
0.0146 
0.0188 
0.0146 

Total Particle[49] 
Kalman[24] 
MTSIIPF 
MTSIIKF 

0.0683 
0.0485 
0.0442 
0.0222 

0.0627 
0.0493 
0.0479 
0.0314 

0.0598 
0.0377 
0.0350 
0.0192 

0.0559 
0.0404 
0.0359 
0.0250 

0.0470 
0.0329 
0.0354 
0.0242 

0.0228 
0.0136 
0.0215 
0.0136 

0.0227 
0.0145 
0.0205 
0.0145 

 

 

From these results, it is evident that tracking performance of both the MTSIIKF and 

MTSIIPF metods are more reliable than that of traditional filter-based methods. However, 

due to the fact that vehicular traffics follow nearly linear trajectories mostly, in general, the 

MTSIIKF method shows better performance, as compared to the MTSIIPF method in terms 

of closeness between forward and backward tracking trajectory. 
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TABLE 4.4: RESULTS CONCERNING THE PERFORMANCE OF THE VEHICLE TRACKING ALGORITHMS IN 
TERMS OF CORRECTNESS IN TRACKING VEHICLES 

Test 
Sequence 

Methods 2Wh 3Wh 4Wh 6Wh Total 
Tracked 

Tracking 
Error Type I Type II Type III Type IV Type V Type VI Type VIII 

Normal  
Sequence 

Kalman[24] 
Particle[49] 
Particle+TSI 
Kalman+TSI 

24(29) 
26(29) 
29(29) 
29(29) 

38(41) 
40(41) 
41(41) 
41(41) 

70(78) 
72(78) 
77(78) 
78(78) 

42(47) 
44(47) 
47(47) 
47(47) 

49(51) 
50(51) 
51(51) 
51(51) 

31(31) 
31(31) 
31(31) 
31(31) 

42(42) 
42(42) 
42(42) 
42(42) 

296(319) 
305(319) 
319(319) 
319(319) 

7.21% 
4.39% 
    - 
    - 

Sunny  
Sequence 

Kalman[24] 
Particle[49] 
Particle+TSI 
Kalman+TSI 

28(31) 
28(31) 
31(31) 
31(31) 

46(48) 
47(48) 
48(48) 
48(48) 

78(89) 
81(89) 
89(89) 
89(89) 

64(68) 
65(68) 
68(68) 
68(68) 

32(34) 
31(34) 
34(34) 
34(34) 

28(28) 
28(28) 
28(28) 
28(28) 

57(57) 
57(57) 
57(57) 
57(57) 

335(355) 
338(355) 
355(355) 
355(355) 

5.63% 
4.79% 
   - 
   - 

Cloudy 
Sequence 

Kalman[24] 
Particle[49] 
Particle+TSI 
Kalman+TSI 

19(23) 
21(23) 
23(23) 
23(23) 

26(27) 
26(27) 
27(27) 
27(27) 

48(58) 
49(58) 
57(58) 
57(58) 

41(45) 
44(45) 
45(45) 
45(45) 

36(37) 
36(37) 
37(37) 
37(37) 

22(22) 
22(22) 
22(22) 
22(22) 

29(29) 
29(29) 
29(29) 
29(29) 

221(241) 
227(241) 
241(241) 
241(241) 

8.29% 
5.81% 
   - 
   - 

Total Kalman[24] 
Particle[49] 
Particle+TSI 
Kalman+TSI 

71(83) 
75(83) 
83(83) 
83(83) 

110(116) 
113(116) 
116(116) 
116(116) 

196(225) 
202(225) 
225(225) 
225(225) 

147(160) 
153(160) 
160(160) 
160(160) 

117(122) 
117(122) 
122(122) 
122(122) 

81(81) 
81(81) 
81(81) 
81(81) 

128(128) 
128(128) 
128(128) 
128(128) 

852(915) 
870(915) 
915(915) 
915(915) 

6.89% 
4.92% 
     - 
     - 

 

4.6 Conclusion 

In this chapter, the performance of proposed MTSI based tracking algorithms has 

been evaluated in terms of closeness between forward and backward tracking trajectories. 

Both the graphical representation and NRDT value has been considered for the detection of 

correctness in trajectory estimation and closeness with actual trajectory. The performance of 

proposed MTSI integrated filter-based methods has been compared with two existing filter-

based tracking methods, i.e. Kalman and Particle filter. From these evaluations, it is found 

that the proposed tracking algorithms perform better than the existing algorithms in terms of 

accuracy in tracking the complete trajectory. Additionally, it is also found that, among the 

proposed methods MTSIKF performs better than MTSIPF in terms of closeness with actual 

trajectory. 
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5.  CONCLUSION 

5.1 Conclusion and Discussion 

The development of the efficient tracking algorithm for vehicles is crucial in 

designing a video-based intelligent transportation system. Traditional tracking algorithms 

mainly suffer from initialization of tracking, sensitivity to drift from true object position in 

long sequences, and absence of corrective mechanism. In this thesis, MTSI based detection 

mechanism is integrated into the Monte-Carlo Particle filter and Kalman filter based-tracking 

algorithms. Such a use of MTSIs in tracking algorithm not only provide the opportunity of 

tracking initialization with a low computational complexity, but also supplies a corrective 

measure for the traditional tracking methods. To evaluate the performance of tracking 

algorithms, all the vehicles have been tracked from both the forward and backward direction. 

The net difference between forward and backward tracking coordinate is used as the 

peroformance measurement criterion. Extensive experimentations have been carried out on a 

number of video sequences obtained under different illumination conditions to evaluate the 

tracking performance of the proposed tracking methods, compared with that of existing 

methods. The result provides a useful insight about choosing method for tracking in terms of 

environment. Furthermore, results have shown that the proposed methods perform better than 

existing methods in terms of accuracy. It has also been shown that among the proposed MTSI 

integrated methods, relatively low computationally complex MTSIIKF method performs 

better than the more computationally complex MTSIIPF method when most of the vehicles 

on the road proceeds with a linear movement. Hence, the proposed MTSI-based methods may 

be highly effective in designing a real-time video-based intelligent transportation system.   
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5.2 Scope of Further Work 

There are a number of scopes to extend the research done in the thesis. For example, 

in the proposed approach only single static camera is used to store video. Video sequence 

obtained from multiple number of moving cameras or vehicle-mounted cameras may be 

examined to further elaborate this method with the consideration of stereo vision and relative 

speed of vehicles. 
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