An Experimental Investigation on the Aerodynamic Characteristics of NACA 4412 Aerofoil with Curved-Edge Planform

by
Muhammad Nazmul Haque

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Department of Mechanical Engineering BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

March, 2015

An Experimental Investigation on the Aerodynamic Characteristics of NACA 4412 Aerofoil with Curved-Edge Planform

by
Muhammad Nazmul Haque

A THESIS SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING, BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET) IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Department of Mechanical Engineering BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

March, 2015

The thesis titled "An Experimental Investigation on the Aerodynamic Characteristics of NACA 4412 Aerofoil with Curved-Edge Planform" submitted by MUHAMMAD NAZMUL HAQUE, Roll No : 0409102010, Session : April 2009 has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering on 21 March, 2015.

BOARD OF EXAMINERS

1.

Dr. Mohammad Ali
Professor, Dept. of Mechanical Engineering,
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh.

Chairman
(Supervisor)

Member (Ex-Officio)

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh.
3.

Dr. Md. Quamrul Islam
Professor, Dept. of Mechanical Engineering,
Member
Bangladesh University of Engineering and Technology Dhaka, Bangladesh.
4.

Dr. Mohammad Mamun
Professor, Dept. of Mechanical Engineering, Member Bangladesh University of Engineering and Technology Dhaka, Bangladesh.
5.

Dr. A. K. M. Sadrul Islam
Professor, Dept. of Mechanical \& Chemical Engineering,
Member
Islamic University of Technology (External)

Gazipur, Bangladesh.

CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Signature of the Candidate:

Muhammad Nazmul Haque

ACKNOWLEDGEMENT

This research work was performed under close supervision and thorough guidance of Dr. Mohammad Ali, Professor, Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET). The author would like to expresses his profound gratitude to Professor Dr. Mohammad Ali for his delicate supervision, ceaseless inspiration, deliberate encouragement and untiring support throughout this research work.

The author is also grateful to all the staffs of Turbulence Laboratory of Department of Mechanical Engineering, BUET for providing helping hands while preparing the experimental set up for this research and collecting experimental data.

Finally, the author would like to express his sincere thanks to all other teachers of the Mechanical Engineering Department, BUET, his friends and family members who encouraged him throughout the research work and helped to accomplish the work successfully.

Abstract

Aircraft wings are the lifting surfaces with the chosen aerofoil sections. The lift generated by the wing sustains the weight of the aircraft to make flight in the air. Again, from an aerodynamic perspective, the main source of the airplane drag is associated with the wing. Therefore, the effects of wing shape and size are crucial to aerodynamic characteristics (lift, drag, lift to drag ratio, pitching moment, etc.) on which the efficiency as well as the performance of aircraft depend. The shape/geometry of wing can be varied span wise to search better performance. This thesis represents the experimental investigation to explore better aerodynamic performance by incorporating curvature at the leading edge and trailing edge of wing. The curvature is incorporated in the wing geometry without changing the overall surface area to reduce the chord length towards the tip of the wing.

The experimental investigation is carried out in the wind tunnel to explore aerodynamic characteristics of two different wings of curved-edge planforms; one having curve at leading edge and the other having curve at trailing edge. Similar characteristics of a rectangular wing of equal span and surface area are also investigated in the same way for reference. Wooden wing models for rectangular planform and curved-edge planforms are prepared having the same span and equal surface area. All the models are tested at air speed of 85.35 kph (0.07 Mach) i.e. at Reynolds Number 1.82×10^{5} in the closed circuit wind tunnel. The static pressure at different Angle of Attack ($-4^{\circ}, 0^{\circ}, 4^{\circ}, 8^{\circ}, 12^{\circ}, 16^{\circ}, 20^{\circ} \& 24^{\circ}$) are measured from both upper and lower surfaces of the wing models through different pressure tapings by using a multi-tube water manometer. The aerodynamic characteristics (Coefficient of Lift, Coefficient of Drag and Lift to Drag ratio) for different models are determined from the static pressure distribution.

After analyzing the data, it is found that the curved leading edge wing planform is having higher lift coefficient and lower drag coefficient than the rectangular planform. Again, the curved trailing edge planform is having higher lift coefficient and lower drag coefficient than the curved leading edge wing. Thus, the curved trailing edge planform is having the highest lift to drag ratio among the three types of planforms. Due to reduction in the chord length near the tip of the curved-edge wings, the tip loss is also reduced. As such, aerodynamic performance of the curved edge planforms are found better than that of the rectangular planform.

CONTENTS

Title I
Certificate of Approval II
Candidate's Declaration III
Acknowledgement IV
Abstract V
Contents VI
List of Figures VIII
List of Tables XI
Nomenclature XII
CHAPTER 1. INTRODUCTION
1.1 General 1
1.2 Aerodynamic Characteristics of Wing 2
1.3 Motivation for Present Work 4
1.4 Scope and Objectives of the Research 4
1.5 Outline of the Research Report 5
CHAPTER 2. LITERATURE REVIEW 6
CHAPTER 3. OVERVIEW OF WING AERODYNAMICS
3.1 Wing and Aerofoil 14
3.2 General Features of an Aerofoil 14
3.3 Aerodynamic Forces Developed by Aerofoil 15
3.4 Characteristic Graphs of an Airfoil 17
3.5 Aerofoil Data Sources 19
3.6 Familiarization with NACA Airfoils 19
3.7 Geometric Parameters of Wing 21
3.8 Familiarization with Different Wing Planforms 22
CHAPTER 4. MATHEMATICAL MODELING
4.1 Determination of Pressure Coefficient 27
4.2 Estimation of Aerodynamic Coefficients 28
CHAPTER 5. EXPERIMENTAL SETUP AND METHODOLOGY
5.1 Design and Construction 37
5.2 Experimental Setup 39
5.3 Methodology 41
CHAPTER 6. RESULTS AND DISCUSSION
6.1 Data Collection and Analysis 42
6.2 Surface Pressure Distribution 42
6.3 Lift Characteristics 70
6.4 Drag Characteristics 71
6.5 Lift to Drag Ratio 72
CHAPTER 7.CONCLUSION AND RECOMMENDATIONS
7.1 Conclusion 73
7.2 Recommendations for Future Work 74
REFERENCES 76
APPENDIX-I Calculated Values of Pressure Coefficients 79
APPENDIX-II Uncertainty Analysis 87

LIST OF FIGURES

Page No.
1
Figure 1.1: Typical Drag Breakdown by Components of Transport Aircraft
Figure 1.2: Geometric Features of a Typical Aircraft Wing 2
Figure 1.3: Aerodynamic Characteristics of Aircraft Wing 2
Figure 1.4: Variation of Aerodynamic Characteristics with Angle of Attack 3
Figure 3.1: Wing and Aerofoil 14
Figure 3.2: Geometric Features of an Aerofoil 15
Figure 3.3: Flow around an Aerofoil 16
Figure 3.4: Pressure Distribution around an Aerofoil 16
Figure 3.5: Aerodynamic Forces Acting on Aerofoil 16
Figure 3.6: Characteristics Graphs of Aerofoil 18
Figure 3.7: NACA Aerofoil Co-ordinates 19
Figure 3.8: Wing Geometric Parameters 21
Figure 3.9: Wing Planforms according to AR 23
Figure 3.10: Wing Planforms according to Wing Sweep 23
Figure 3.10: Wing Planforms according to Chord Variation 25
Figure 3.11: Variable Wing Planforms 26
Figure 3.12: Wing Planforms due to Wing-Body Combinations 26
Figure 4.1: \quad Pressure Distribution over an Aerofoil’s Surface in Terms of C_{P} 27
Figure 4.2: Illustration of Pressure and Shear Stress on Aerofoil Surface 29
Figure 4.3: Resultant Aerodynamic Force and Its Components 29
Figure 4.4: \quad Nomenclature for Integration of p and τ Distribution 30
Figure 4.5: Aerodynamic Force on an Element of the Body Surface 31
Page No.
Figure 4.6: Reference Area and Length for Airplane 33
Figure 4.7: Geometrical Relationship of Differential Lengths 34
Figure 4.8: Paneling of the Wing Surface 35
Figure 5.1: Experimental Wing Models 37
Figure 5. 2: Multi-tube Manometer 38
Figure 5. 3: \quad Schematic Diagram of the Wind Tunnel at BUET's Turbulence Lab 39
Figure 5. 4: Photograph of Experimental Setup 40
Figure 6.1: $\quad C_{p}$ Distribution of Segment-A at $\alpha=-4^{\circ}$ 43
Figure 6.2: $\quad C_{p}$ Distribution of Segment-B at $\alpha=-4^{\circ}$ 44
Figure 6.3: $\quad C_{p}$ Distribution of Segment-C at $\alpha=-4^{\circ}$ 45
Figure 6.4: $\quad C_{p}$ Distribution of Segment-D at $\alpha=-4^{\circ}$ 47
Figure 6.5: $\quad C_{p}$ Distribution of Segment-A at $\alpha=0^{\circ}$ 48
Figure 6.6: $\quad C_{p}$ Distribution of Segment-B at $\alpha=0^{\circ}$ 49
Figure 6.7: $\quad C_{p}$ Distribution of Segment-C at $\alpha=0^{\circ}$ 50
Figure 6.8: $\quad C_{p}$ Distribution of Segment-D at $\alpha=0^{\circ}$ 51
Figure 6.9: $\quad C_{p}$ Distribution of Segment-A at $\alpha=4^{\circ}$ 52
Figure 6.10: $\quad C_{p}$ Distribution of Segment-B at $\alpha=4^{\circ}$ 53
Figure 6.11: $\quad C_{p}$ Distribution of Segment-C at $\alpha=4^{\circ}$ 54
Figure 6.12: $\quad C_{p}$ Distribution of Segment-D at $\alpha=4^{\circ}$ 55
Figure 6.13: $\quad C_{p}$ Distribution of Segment-A at $\alpha=8^{\circ}$ 56
Figure 6.14: $\quad C_{p}$ Distribution of Segment-B at $\alpha=8^{\circ}$ 57
Figure 6.15: $\quad C_{p}$ Distribution of Segment-C at $\alpha=8^{\circ}$ 58
Figure 6.16: $\quad C_{p}$ Distribution of Segment-D at $\alpha=8^{\circ}$ 58
Figure 6.17: $\quad C_{p}$ Distribution of Segment-A at $\alpha=12^{\circ}$ 59

Figure 6.18: $\quad C_{p}$ Distribution of Segment-B at $\alpha=12^{\circ}$
Figure 6.19: $\quad C_{p}$ Distribution of Segment-C at $\alpha=12^{\circ}$
Figure 6.20: C_{p} Distribution of Segment-D at $\alpha=12^{\circ}$ 62

Figure 6.21: $\quad C_{p}$ Distribution of Segment-A at $\alpha=16^{\circ}$ 63

Figure 6.22: $\quad C_{p}$ Distribution of Segment-B at $\alpha=16^{\circ}$ 64

Figure 6.23: $\quad C_{p}$ Distribution of Segment-C at $\alpha=16^{\circ}$64

Figure 6.24: C_{p} Distribution of Segment-D at $\alpha=16^{\circ} \quad 65$
Figure 6.25: $\quad C_{p}$ Distribution of Segment-A at $\alpha=20^{\circ} \quad 66$
Figure 6.26: C_{p} Distribution of Segment-B at $\alpha=20^{\circ} \quad 66$
Figure 6.27: C_{p} Distribution of Segment-C at $\alpha=20^{\circ} \quad 67$
Figure 6.28: C_{p} Distribution of Segment-D at $\alpha=20^{\circ} \quad 67$
Figure 6.29: C_{p} Distribution of Segment-A at $\alpha=24^{\circ} \quad 68$
Figure 6.30: C_{p} Distribution of Segment-B at $\alpha=24^{\circ} \quad 69$
Figure 6.31: C_{p} Distribution of Segment-C at $\alpha=24^{\circ} \quad 69$
Figure 6.32: C_{p} Distribution of Segment-D at $\alpha=24^{\circ} \quad 70$
Figure 6.33: Variation of Lift Coefficient with Angle of Attack 71
Figure 6.34: Variation of Drag Coefficient with Angle of Attack 71
Figure 6.35: Variation of Lift to Drag Ratio with Angle of Attack 72

LIST OF TABLES

Page No.
Table 1: \quad Calculated Values of Pressure Coefficients at -4° Angle of Attack 79
Table 2: \quad Calculated Values of Pressure Coefficients at 0° Angle of Attack 80
Table 3: Calculated Values of Pressure Coefficients at 4° Angle of Attack 81
Table 4: \quad Calculated Values of Pressure Coefficients at 8° Angle of Attack 82
Table 5: \quad Calculated Values of Pressure Coefficients at 12° Angle of Attack 83
Table 6: \quad Calculated Values of Pressure Coefficients at 16° Angle of Attack 84
Table 7: \quad Calculated Values of Pressure Coefficients at 20° Angle of Attack 85
Table 8: \quad Calculated Values of Pressure Coefficients at 24° Angle of Attack 86

NOMENCLATURE

A	Axial force
b	Wing span
C	Wing chord
C_{D}	Coefficient of drag
C_{L}	Coefficient of lift
C_{P}	Coefficient of pressure
$\mathrm{C}_{\text {Pl }}$	Lower surface pressure coefficient
$\mathrm{C}_{\text {Pu }}$	Upper surface pressure coefficient
D	Drag force
L	Lift force
L/D	Lift to drag ratio
L.E.	Leading edge
N	Normal force
p	Pressure
P_{∞}	Free stream pressure
R_{N}	Reynolds number
S	Wing surface area
T.E.	Trailing edge
U_{∞}	Free stream velocity of air
v	Velocity of air
α	Angle of attack
τ	Shear stress
ρ or, ρ_{a}	Density of air
ρ_{w}	Density of water
$\mu_{\text {a }}$	Absolute viscosity of air
$\mu_{\text {w }}$	Absolute viscosity of water
$1 / 2 \rho \mathrm{U}_{\infty}{ }^{2}$	Free stream dynamic pressure

1. INTRODUCTION

1.1 General

Similar to a bi rd's wing, an aircraft w ing is t he lif ting s urface w ith the c hosen aerofoil s ection, whose shape/geometry can be varied s pan wise to s earch be tter performance. The lift ge nerated by the wing sustains the weight of the aircraft to make flight in the air. Again, from an aerodynamic perspective, the main source of the airplane drag is associated with the wing. Around two-thirds of the total drag of typical transport aircraft at cruise conditions is produced by the wing [1].

Figure 1.1: Typical Drag Breakdown by Components of Transport Aircraft [1]

Therefore, the e ffects of w ing s hape and size ar e crucial to a erodynamic characteristics on which the ef ficiency as w ell as t he pe rformance of ai rcraft depends. As s uch, researches on different wing s hapes/geometries a re s till on throughout the world to explore the maximum possible lift and minimum possible drag. T he pr esent r esearch is a lso f ocusing on t he i mproved a erodynamic characteristics and performance through variation in wing planforms.

1.2 Aerodynamic Characteristics of Wing

The wing is a 3D object, but is usually treated as a set of two 2D geometric features; planform ($x-y$ plane) and airfoil ($x-z$ plane) as shown in Figure 1.2:

Figure 1.2: Geometric Features of a Typical Aircraft Wing

The flow of a ir through the surfaces of an aircraft produces the lifting force. The shape of the wings of an aircraft is designed to make the airflow through the surface to produce a lifting force in the most efficient manner. In addition to the lift, a force directly opposing the motion of the wing through the air is always present, which is called drag force. The a ngle be tween the relative wind and t he c hord l ine is t he Angle of Attack of the airfoil.

Figure 1.3: Aerodynamic Characteristics of Aircraft Wing

The lift and drag forces developed by the wing vary with the ch ange of an gle of attack. The lift force increases almost linearly with angle of attack until a maximum value is reached, whereupon the wing is said to stall. The variation of the drag force with angle of attack is approximately parabolic. It is desirable for the wing to have the maximum lift and smallest possible drag i.e. the maximum possible lift to drag ratio. The variation of all these ae rodynamic characteristics (1 ift fo rce, drag fo rce and lift to drag ratio) with angle of attack for a typical aircraft are shown in Figure 1.4:

Figure 1.4: Variation of Aerodynamic Characteristics with Angle of Attack

The aerodynamic characteristics of a wing depend on several parameters; the wing's geometry, density of air, airspeed and the Angle of Attack. In this research, NACA 4412 aerofoil has been used for different planforms in the same airspeed, density of air and Angle of Attack with aviewto search the effect of va riation of wing planform/geometry on the aerodynamic characteristics.

1.3 Motivation of the Present Work

Literature review as discussed in the next chapter reveals that researches on different airfoils and conventional wing geometries like rectangular, sweepback, tapered or, delta shapes have been carried out in many places around the world in an extensive way. But aerodynamic characteristics of curved-edge wing planforms are yet to be explored. A s s uch, e ffort was taken to investigate aer odynamic ch aracteristics of such wings through experimental method (wind-tunnel test).

1.4 Scope and Objectives of the Research

The proposed experimental investigation is carried out in the wind tunnel to explore aerodynamic characteristics of t wo different wings of curved-edge planforms; one having curve at 1 eading edge a nd the ot her ha ving cur ve at trailing edge. Similar characteristics of a rectangular w ing o fequ al span and surface area ar eal so investigated in the same way for reference. At the end, the cha racteristics of t he curved-edge wings are compared with that of the rectangular wing. So the specific objectives and scope of the research are as follows:
a. To obtain the pressure distribution over the surfaces of different shapes of wing with NACA 4412 aerofoil (rectangular, cur ved leading ed ge and curved trailing edge).
b. To obtain the pressure distribution at different Angles of Attack of the wing models with a suitable fixture required during the experiment in the wind tunnel available at turbulence lab of BUET.
c. To determine the aerodynamic characteristics (Coefficient of PressureC_{p}, Coefficient of Lift- C_{L}, Coefficient of D rag-C C_{D} and Lift to D rag Ratio-L/D) from static pressure distributions of the wing models.
d. To analyze and compare all the above characteristics with the variation of Angle of Attack.

1.5 Outline of the Research Report

The research report is organized as follows:
a. The f irst c hapter pr esents t he ba ckground i nformation a long w ith scope and objectives of the research.
b. The s econd chapter r eviews t he ava ilable 1 iterature r elated to the present research work.
c. The third chapter presents the overview of the aerodynamics of wing.
d. The fourth chapter describes theory of calculations and mathematical modeling in details.
e. The fi fth chapter illus trates the de tails of e xperimental set up and procedures.
f. The sixth chapter presents the experimental results and discussion on the important aspects of the results.
g. Finally, the s eventh chapter con cludes t he ove rall r esearch and recommends f ew scopes for further research related to the pr esent outcome

2. LITERATURE REVIEW

The available literature directly or indirectly related with the aerodynamics of wings and aerofoils focus on the following areas:

Hossain et al . [2] co nducted an experimental ana lysis f or t he a erodynamic characteristics of rectangular wing with and without bird feather like winglets for different R eynolds N umber. T he e xperimental r esult s hows $25 \sim 30 \%$ r eduction in drag coefficient and 10~20\% increase in lift c oefficient by using bird feather like winglet at 8 degree angle of attack.

Dwivedi et al. [3] adopted a simple approach for experiment on aerodynamic static stability analysis of different types of wing shapes. They tested the reduced scale size wings of different shapes like rectangular, rectangular with curved tip, tapered, tapered with c urved t ip, e tc. in l ow s peed s ubsonic w ind t unnel a t different a ir speeds and different angles of attack. The authors found that the tapered wing with curved tip was the most stable at different speeds and ranges of working angles of attack.

Mineck et al. [4] tested three planar, untwisted wings with the same elliptical chord but with different curvatures of the quarter-chord line. They found that the elliptical wing w ith t he uns wept qua rer-chord line ha s the low est 1 ifting e fficiency, the elliptical wing with the unswept trailing edge has the highest lifting efficiency and the crescent-shaped wing has efficiency in between.

Recktenwald [5] tested a circular planform non-spinning body with an airfoil section configuration developed and produced by Geobat Flying Saucer Aviation Inc. in the Auburn U niversity wind t unnel facility. F or c omparison pur pose, a C essna 172 model was also tested. The author found that the lift curve slope of the Geobat was less than that of Cessna 172 but displayed better stall characteristics.

Wakayama [6] studied and presented basic results from wing planform optimization for minimum drag with constraints on structural weight and maximum lift. Analyses in each of t hese di sciplines w ere de veloped and integrated to yield successful optimization of w ing pl anform s hape. R esults de monstrated t he i mportance o f weight constraints, compressibility drag, maximum lift, and static aero-elasticity on wing s hape, and t he n ecessity of m odeling t hese e ffects $t o$ achieve r ealistic optimized planforms.

Paulo et a 1. [7] studied Multi-disciplinary Design and Optimization (MDO) of a transport ai rcraft w ing. T hey d eveloped a m athematical m odel of t he M DO framework us ing M ATLAB which i ncludes the c alculation of a ircraft drag pol ar (based on geometrical characteristics), s tability de rivatives and pe rformance for some flight phases.

Aerodynamic characteristics analyses for different airfoils have also been conducted at different corners of the world like Mahmud [8] analyzed the effectiveness of an airfoil with bi-camber surface. Kandwal et al. [9] presented a computational method to de duce the lift and drag p roperties, which can reduce the de pendency on wind tunnel testing. The study is done on a ir flow over a two-dimensional NACA 4412 Airfoil us ing A NSYS FLUENT (version 12.0.1 6), to obt ain the s urface pr essure distribution, from which dr ag a nd $1 \mathrm{ift} w$ ere c alculated us ing integral e quations of pressure over finite surface areas. In addition, the drag and lift coefficients were also determined. The C FD simulation results show c lose a greement with those of the experiments, thus s uggesting a r eliable a lternative to experimental method in determining drag and lift. Robert [10] studied the variation of pressure distribution over an a irfoil with Reynolds Number. Sharma [11] analyzed the flow be haviour around an airfoil body.

Ismail [12] pr esented a pr eliminary a nalytic m ethod f or estimation of 1 oad and pressure di stributions on low speed wings with flow separation a nd wake rollup phenomena. A hi gher order vor tex panel method was coupled with the numerical lifting line theory by m eans of iterative procedure including m odels of separation
and wake rollup. The presented method was investigated through a number of test cases with di fferent t ypes of wing sections (NACA 0012 and G A (W)-1) for different aspect r atios a nd a ngles of attack, t he r esults include t he 1 ift a nd $d r a g$ curves, 1 ift a nd pr essure di stributions a long t he w ing s pan t aking i nto t he consideration the ef fect of the an gles of at tack and the as pect ratios on t he wake rollup. T he pr essure di stribution on t he w ings s howed t hat t here is a region of constant pr essure on t he upper surface of the wings n ear the trailing e dge in the middle of the wing, also there is a region of flow separation on the upper surface of the wings. A good a greement was found be tween the presented work results a nd other from previous researches.

Wells [13] made an effort to verify the high performance characteristics of the coflow jet (CFJ) airfoil experimentally. The CFJ utilizes tangentially injected air at the leading edge and tangentially removed air at the trailing edge to increase 1 ift and stall ma rgin and a lso to decrease drag. The mass flow r ates of f the injection and suction are equal, so there is a z ero net mass flow rate. Two airfoils were tested at the U niversity of F lorida. O ne a irfoil ha d an injection s lot s ize of $0.65 \% \mathrm{c}$ hord length and the other had an injection slot size twice as large or 1.31% chord length. Both airfoils had a suction slot size of 1.96% chord length. The smaller injection slot size pe rformed superior f or i ncreased lift and stall m argin, whereas t he 1 arger injection slot size performed superior for decreased drag. The smaller injection slot airfoil had an increase in maximum lift of 113% to 220% and an increase in stall margin of 100% to 132% when compared to the baseline airfoil.

Demasi [14] presented an original method of predicting the minimum induced drag conditions in conventional or innovative lifting s ystems. The procedure shown is based on the lifting line the ories and the small perturbation acceleration potential. Under the hypothesis of linearity and rigid wake al igned with the free stream, the optimal condition was formulated using the Euler-Lagrange integral equation under the conditions of fixed total lifting force and wing span. The minimum induced drag problem w as t hen f ormulated a nd s olved num erically and a nalytically w hen possible. C lassical configurations and non -planar lifting systems were extensively
analyzed. In particular, the configurations examined were: Classical cantilever wing and biplane, Circular a nnular w ing, Elliptical a nnular w ing, Elliptical lif ting a res. For each system, the optimal circulation distribution and the minimum induced drag were calculated. Also, comparison with the theoretical and experimental reference values was made.

McArthur [15] studied three airfoil shapes at Reynolds numbers of 1 and 2×10^{4}; a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag for ce measurements were made on bot $h 2 \mathrm{D}$ and 3D conditions, with the 3D wings ha ving an a spect r atio of 6 , a nd t he 2 D condition be ing a pproximated $b y$ placing end plates at the wing tips. Comparisons to the limited number of previous measurements showed adequate agreement. Previous studies had been inconclusive on whether lifting line theory could be applied to this range of R_{N}, but this study showed that lifting line theory could be applied when there were no sudden changes in the slope of the force curves.

Alam [16] made an effort to determine the interference effect of different biplane configurations. NACA 0024 s ymmetric aerofoil with chord length of 100 mm w as used for f our bi plane c onfigurations. The interference effects w ere an alyzed by varying the distance between the aerofoils and the angle of attack numerically with the help of CFD software. The interference effect is more for biplane configuration at 0.40 of c hord 1 ength a nd r educes w hen t he di stance b etween t he a erofoils increases.

Hassan et al. [17] investigated the aerodynamic cha racteristics of forward swept wing th eoretically and experimentally. Theoretically, a computer p rogram w as constructed to predict the pressure distribution about surface of the wing using three dimensional Low O rder Subsonic Panel method. The a erodynamic coefficients of the w ing w ere c alculated f rom t he pr essure di stribution w hich gained f rom tangential ve locities e xperimentally. T est w ere ca rried out byd esigning and manufacturing a wing model with special arrangement for pressure tapping suitable for wind tunnel testing. The entire wing was rotated about an axis in the plane of
symmetry and normal to the chord to produce different sweep and incidence angles for w ing by us ing r otating m echanism. W ind t unnel t est w as c arried out a t $\left(U_{\infty}=33.23 \mathrm{~m} / \mathrm{s}\right)$ for di fferent s wept a ngles and angles of attack. Comparisons were made be tween the pr edicted and experimental r esults. It w as cl ear f rom t he investigation that the lift and drag characteristics for the forward swept wing were less in values compared with the swept back wing. Therefore, a forward swept wing can fly at higher speed corresponding to a pressure distribution associated for lower speed.

Ahmed [18] s tudied the f low c haracteristics ove ra N ACA 4415 a irfoil experimentally at a R eynolds num ber of 2.4×10^{5} by varying the an gle of at tack from 0 to 10° and ground clearance of the trailing edge from five percent of chord to eighty percent. The pressure distribution on the airfoil surface was obtained, velocity survey over the surface was performed, wake region was explored and lift and drag forces were measured. A strong suction effect was observed on the lower surface for angles of attack of 0 and 2.5° at small ground clearances. For the angle of attack of 0°, a s eparation bubbl ef ormed on t he 1 ower s urface f or t he s mallest g round clearance while for 2.5°, laminar separation occurred from the lower surface well ahead of the trailing edge. Increased suction was observed on the upper surface for small ground clearances. For the angle of attack of 10°, the flow on the upper surface could not withstand the adverse pr essure gradient at small gr ound clearances and separated from the surface resulting in a loss of lift and an increase in drag.

Walter [19] investigated the effect of ground proximity on the lift, drag and moment coefficients of inverted, two-dimensional aerofoils. The purpose of the study was to examine t he ef fect of ground pr oximity on a erofoils poststall, in a $n e f f o r t o$ evaluate the use of active aer odynamics to increase the performance of a race car. The aerofoils were tested at angles of attack ranging from $0^{\circ} \sim 135^{\circ}$. The tests were performed at a Reynolds number of 2.16×10^{5} based on chord length. Forces were calculated via the use of pressure taps al ong the centre line of the aer ofoils. The RMIT Industrial Wind Tunnel (IWT) was used for the testing. The IWT was chosen as it would allow enough he ight to reduce blockage effect caused by the aerofoils
when at high angles of incidence. The walls of the tunnel were pressure tapped to allow monitoring of the pressure gradient along the tunnel. The results show a delay in t he s tall of t he a erofoils t ested w ith r educed g round c learance. T wo of t he aerofoils tested showed a decrease in C_{L} with decreasing ground clearance; the third showed an increase. The C_{D} of t he a erofoils post-stall de creased with reduced ground clearance. Decreasing ground clearance was found to reduce pitch moment variation of the aerofoils with varied angle of attack.

Al-Kayiem et al. [20] investigated the wing-ground collision experimentally a nd numerically. The investigation involved a series of wind tunnel measurements of a 2-D wing model having NACA 4412 airfoil section. A n experimental set up ha s been designed and constructed to simulate the collision phenomena in a low speed wind t unnel. The i nvestigations were c arried o ut at di fferent R eynolds num bers ranging from 10^{5} to 4×10^{5}, various model heights to chord ratios ranging from 0.1 to 1 , and different angles of attack ranging from -4° to 20°. Numerical simulation of the wing-ground collision was carried out us ing FLUENT software. The r esults showed that t he aer odynamic characteristics w ere co nsiderably influenced when the wing is close to the ground, mainly at angles of attack 4° to 8°. The take-off and landing speeds were found to be very influencing parameters on the aerodynamic characteristics, mainly the lift of the wing in collision status.

Janiszewska [21] c onducted a comprehensive experimental investigation on a LS (1)-0421MOD a irfoil m odel. S urface pr essure d istributions w ere obt ained for 2D baseline a nd 3D c onfigurations unde r c lean and s urface grit c onditions. S everal vortex generator configurations were evaluated. The data were taken for steady state and unsteady conditions. The steady state data included angles of attack from 0° to 30° and Reynolds numbers of 1.0 million. The unsteady conditions were simulated using a face camthat provided a s inusoidal a ngle of attack va riation wio ith 10 amplitude for three frequencies of 0.6 and 1.8 Hz at mean angles of attack of $8,14^{\circ}$ and 20°. Surface pressure data were obtained from six spanwise stations, which were integrated to local coefficients. The maximum 2D lift coefficient obtained for the 1.0 million Reynolds num ber w as 1.58 at 14.4 angle of attack. For the 3D case the
maximum lift coefficient at the wall was 1.58 at 19.5 and at the tip was 1.20 at 18.3°. The results showed that the application of the grit roughness reduces the maximum lift c oefficients in all configurations by as much as 50%. The F lat and Curled vortex generators increased the maximum lift coefficient for both the 3D tip and w all s tations, up to 1.6 a nd 1.92, respectively. The a pplication of the vor tex generators shifted the stall angle of attack by approximately 30%. A gritted model with the vortex generators showed an increase in bot h the maximum lift and stall angle of a ttack by a pproximately 25% in c omparison to g rit onl y . T he uns teady maximum lift coefficients were always higher than those for the steady state up to 60% a nd s howed, generally, 1 arge h ysteresis 1 oops. T he h ysteresis 1 oops w ere smaller for the 3 D wing configuration due to the t ip vor tex influence, therefore smallest hysteresis loops occurred at the tip. The Flat and Curled vortex generators removed the hysteresis loops for all frequencies at 14 me an angle and significantly reduced the minimum value of the pitching moment and the pressure drag at stall.

Arora [22] studied aerodynamic ch aracteristics for the aircraft model with NACA wing No. 65- 3-218 using subsonic wind tunnel of $1000 \mathrm{~mm} \times 1000 \mathrm{~mm}$ rectangular test section. Tests were conducted on the aircraft model with and without winglet of two configurations at Reynolds numbers $1.7 \times 10^{5}, 2.1 \times 10^{5}$, and 2.5×10^{5}. Lift curve slope increased more with the addition of the elliptical winglet and at the same time the drag decreased more for the a ircraft model with elliptical shaped winglet giving an edge over the aircraft model without winglet as far as lift to drag ratio for the e lliptical winglet is considered. Elliptical winglet of c onfiguration 2 (winglet inclination 60°) showed, overall, the best performance, giving about 6% increase in lift curve slope as compared to without winglet configuration and it also provided the best lift to drag ratio.

Mashud [23] i ntroduced a f low s eparation c ontrol m echanism to improve the aerodynamic characteristics of an airfoil. Control of flow separation over an airfoil which e xperiences a laminar s eparation bubble for a 1 ow R eynolds nu mber was experimentally simulated under the effects of suction and injection. To perform the experiment a NACA 4215 airfoil profile was chosen to make the wing model. The
wing mode 1 w ith control me chanism was tested in a s ubsonic wind t unnel for different an gles of attack a nd di fferents uction-injection f requency. T he experimental r esults s howed that t he f low separation could be controlled by t he proposed m echanism. The w ing pe rformance was significantly i mproved due to control of flow separation by suction and injection. It was also found that the lift increased about 14% and drag reduced about 23% at 8° angle of attack.

3. OVERVIEW OF WING AERODYNAMICS

3.1 Wing and Aerofoil

The wing may be considered as the most important component of an aircraft, since a fixed-wing aircraft is not able to fly without it. The primary function of the wing of an aircraft is to generate lift for ce to make the flight pos sible in the a ir. This will be generated by a special wing cross section called airfoil. Wing is a three dimensional component, while the airfoil is two dimensional section as shown in Figure 3.1. The wing may have a constant or a non-constant cross-section across the wing [24].

Figure 3.1: Wing and Aerofoil

3.2 General Features of an Aerofoil

Any section of the wing cut by a pl ane parallel to the aircraft xz plane is called an aerofoil. It is usually looks like a positive cambered section that the thicker part is in front of the aerofoil. A typical aerofoil section is shown in Figure 3.2, where several geometric parameters are illustrated $[25,26]$.

Figure 3.2: Geometric Features of an Aerofoil

The major feature of an aerofoil is the mean camber line, which is the locus of points halfway between the upper and lower surfaces. The most forward and rearward points of the mean camber line are the leading and trailing edges respectively. The straight line connecting the leading and trailing edges is the chord line of the aerofoil and the precise distance from the leading to the trailing edge measured along the chord line is called the chord of the aerofoil. The camber is the maximum distance between the mean camber line and chord line, m easured perpendicular to the c hord line. If the mean camber line in a straight line, the a irfoil is referred to as s ymmetric a irfoil, otherwise it is called cambered aerofoil. The camber of aerofoil is usually positive. The angle between the chord line and the direction of air flow is called the angle of attack.

3.3 Aerodynamic Forces Developed by Aerofoil

An airfoil-shaped body moved through the air will vary the static pressure on the top surface a nd on t he bot tom surface of the airfoil. In a positive cambered a irfoil, the upper surface static pressure in less than ambient pressure, while the lower surface static pressure is higher than ambient pressure [24-26]. This is due to higher airspeed at upper surface and lower speed at lower surface of the airfoil as shown in Figure 3.3. As the ai rfoil ang le of attack increases, the pr essure di fference be tween upper and lower surfaces will be higher as shown in Figure 3.4.

Figure 3.3: Flow around an Aerofoil

Figure 3.4: Pressure Distribution around an Aerofoil

The force divided by the area is called pressure, so the aerodynamic force generated by an airfoil in a flow field may be calculated by multiplication of total pressure by area. The total pressure is simply determined by integration of pressure over the entire surface. T he m agnitude, 1 ocation, a nd di rection of t his a erodynamic f orce a re functions of airfoil geometry, angle of attack, flow properties, and airspeed relative to the airfoil. The location of this resultant force out of the integration is called center of pressure. The location of this center depends on a ircraft speed and the airfoil's angle of attack.

Figure 3.5: Aerodynamic Forces Acting on Aerofoil

Thus, t he pr essure a nd s hear s tress di stributions ove rt he a irfoil ge nerate a n aerodynamic force. However, this resultant force is replaced with two aerodynamic forces as shown by the vector in Figure 3.5. On the other word, the aerodynamic force can be resolved into two forces, perpendicular (lift) and parallel (drag) to the relative wind. T he l ift is a lways de fined a st he component of t he a erodynamic f orce perpendicular to the relative wind. The drag is always defined as the component of the aerodynamic force parallel to the relative wind.

3.4 Characteristics of an Airfoil

There a re s everal graphs t hat illustrate t he cha racteristics of ea ch airfoil when compared to other airfoils in the wing airfoil selection process. These are mainly the variations of non-dimensionalized lift and drag relative to angle of attack [27, 28]. Two aerodynamic f orces ar e us ually non -dimensionalized b y di viding t hem $t o$ appropriate parameters as follows:

$$
\begin{align*}
& C_{L}=\frac{L}{1 / 2 \rho U_{\infty}^{2} A} \tag{3.1}\\
& C_{D}=\frac{D}{1 / 2 \rho U_{\infty}^{2} A} \tag{3.2}
\end{align*}
$$

Where, L and D are the lift force and drag force respectively.
A is the Planform area=Chord \times Span.
U_{∞} is the free stream air velocity.
$1 / 2 \rho U_{\infty}{ }^{2}$ is the dynamic pressure.

Another i mportant pa rameter, the lif t-to-drag ratio (L/D) is the a mount of lif t generated by an airfoil, divided by the drag it creates by moving through the air. An airplane has a high L/D if it produces a large amount of lift or a small amount of drag. A higher or more favourable L/D is typically one of the major goals in aircraft design.

$$
\begin{equation*}
\text { Ratio }=\frac{\text { Lift }}{\text { Drag }}=\frac{L}{D} \tag{3.3}
\end{equation*}
$$

Thus, the performance and characteristics of an airfoil may be evaluated by looking at the following graphs:
a. The variations of lift coefficient with angle of attack
b. The variations of drag coefficient with angle of attack
c. The variations of drag coefficient with lift coefficient
d. The variations of lift-to-drag ratio with angle of attack

Figure 3.6: Characteristics of Aerofoil

3.5 Aerofoil Data Sources

Selection of a proper airfoil is possible from the previously designed and published airfoil sections. Two reliable airfoil resources are NACA and Eppler. The details of Eppler airfoils have been published in [29]. NACA airfoils have been published in a book published by Abbott and Von Donehoff [30]. Eppler airfoil names begin with the letter "E" followed by three numbers. In general, the Eppler airfoils are for very low Reynolds number, Wortman airfoils for low (sailplane-ish) Reynolds number, and the NASA Low-Speed airfoils (e.g. LS(1)-0413) and Mid Speed Airfoils e.g. MS(1)0313) are for "moderate" Reynolds numbers [31].

3.6 Familiarization with NACA Airfoils

One of the most reliable resources and widely used data base is the airfoils developed by National Advisory Committee for Aeronautics, NACA (predecessor of NASA) in 1930s and 1940s. Different groups of airfoils like Four-digit, Five-digit, 6-series, 7series, 8 -series and 16 -series NACA ai rfoils a re ava ilable. The C ambered airfoil sections of all NACA families are obtained by combining a mean line and a thickness distribution [32].

Figure 3.7: NACA Aerofoil Co-ordinates

The abs cissas, ordinates and slopes of the mean line are designated as x_{c}, y_{c} and $\tan \theta$ respectively. If x_{u} and y_{u} represent the abscissa and ordinate of a typical point of the upper surface of the airfoil and y_{t} is the ordinate of the symmetrical thickness distribution at the chordwise position x, the upper and lower surface coordinates are given by the following relations (u denotes u pper s urface a nd l denotes 1 ower surface):

$$
\begin{align*}
& x_{u}=x-y_{t}(x) \operatorname{Sin} \theta \tag{3.4}\\
& y_{u}=y_{c}(x)+y_{t}(x) \operatorname{Cos} \theta \tag{3.5}\\
& x_{l}=x+y_{t}(x) \operatorname{Sin} \theta \tag{3.6}\\
& y_{l}=y_{c}(x)-y_{t}(x) \operatorname{Cos} \theta \tag{3.7}
\end{align*}
$$

Where, $y_{t}(x)$ is the thickness function
$y_{c}(x)$ is the camber line function
$\tan \theta=\frac{d y_{c}}{d x}$ is the camber line slope

The first family of a irfoils de signed in the a bove mentioned way is known as the NACA F our-Digit a erofoils. The e xplanation of t he 4 -digit N ACA a erofoil is a s follows [28, 32]:
a. The f irst di git s pecifies the ma ximum camber in pe rcentage of t he chord.
b. The s econd di git indicates t he position of t he maximum c amber in tenths of chord.
c. The la st two digits provide the maximum thi ckness of the airfoil in percentage of chord.

For ex ample, the N ACA 4412 airfoil chos en for t his r esearch has a maximum thickness of 12% with a c amber of 4% located 40% back from the a irfoil leading edge.

3.7 Geometric Parameters of Wing

Aircraft wing can be defined by several geometric parameters such as span (b), wing surface a rea or pl anform (S), root c hord ($\mathrm{C}_{\text {root }}$), t ip c hord $\left(\mathrm{C}_{\text {tip }}\right)$, etc. as shown in Figure 3.8. Other important parameters are discussed below:

Figure 3.8: Wing Geometric Parameters

3.7.1 Mean geometric chord (C_{g})

The mean geometric chord is the chord of a rectangular wing having the same span and the same area as the original wing. It can be found for any general wing in the following way:

$$
\begin{equation*}
C_{g}=\frac{\int_{0}^{b / 2} c(y) d y}{\int_{0}^{b / 2} d y}=\frac{2}{b} \int_{0}^{b / 2} c(y) d y=\frac{S}{b} \tag{3.8}
\end{equation*}
$$

3.7.2 Mean aerodynamic chord ($\mathrm{C}_{\mathrm{MAC}}$)

The mean aerodynamic chord is (loosely) the chord of a rectangular wing with the span, (not area) that has the same aerodynamic properties with regarding the pitching moment characteristics as the original wing. It c an be found for any general wing in the following way:

$$
\begin{equation*}
C_{M A C}=\frac{\int_{0}^{b / 2}[c(y)]^{2} d y}{\int_{0}^{b / 2} c(y) d y}=\frac{2}{S} \int_{0}^{b / 2}[c(y)]^{2} d y \tag{3.9}
\end{equation*}
$$

3.7.3 Aspect ratio (AR)

The aspect ratio is the wing span divided by the mean geometric chord. It is a measure of how long and na rrow a wing is. A s quare wing would have an aspect ratio of 1 . Aspect ratio can be calculated in following ways:

$$
\begin{equation*}
A R=\frac{b}{C_{g}}=\frac{b^{2}}{S} \tag{3.10}
\end{equation*}
$$

2.7.4 Tapper ratio (λ)

It is the ratio of the tip chord to the root chord and is expressed as follows:

$$
\begin{equation*}
\lambda=\frac{C_{\text {tip }}}{C_{\text {root }}} \tag{3.11}
\end{equation*}
$$

3.8 Familiarization with Different Wing Planforms

There a re va rious t ypes of w ing pl anforms which are ei ther s uccessfully us ed in different aircrafts or still in the process of researches for viable uses. The planforms can be determined according to various factors as discussed below:

3.8.1 According to aspect ratio (AR)

The as pect r atio is the s pan di vided $\mathrm{b} y$ the mean or a verage c hord. It is a measure of how long and slender the wing appears when seen from above or below.

Figure 3.9: Wing Planforms according to AR

3.8.2 According to wing sweep

Wings maybes wept back or forward swept. A s mall de gree of s weep is sometimes used to adjust the centre of lift when the wing cannot be attached in the ideal position for some reason, such as a pilot's visibility from the cockpit. Some wings may vary the wing sweep during flight:

Swept Back

Forward Swept

Variable Sweep
(Swing-Wing)

Figure 3.10: Wing Planforms according to Wing Sweep

3.8.3 According to chord variation along span

The wing chord may be varied along the span of the wing, for both structural and aerodynamic r easons. By va rying the c hord 1 ength a long the s pan, the types of planforms are as follows:

Elliptical

Trapezoidal

Constant chord, tapered outer

Circular

Constant chord

Reverse tapered

Birdlike

Delta

Tapered

Compound Tapered

Batlike

Cropped Delta

Compound Delta

Cranked Arrow

Ogival Delta

Crescent

W-Planform

Figure 3.10: Wing Planforms according to Chord Variation

3.8.4 Variable planforms

There are a lso va rious t ypes of f ings ha ving variable pl anforms s uch a s telescopic w ing, e xtending w ing, bi directional wing, f olding w ing, e tc. In telescoping wing, the outer section of wing telescopes over or within the inner section of wing, varying span, aspect ratio and wing area. In extending wing or expanding wing, part of the wing retracts into the main aircraft structure to reduce drag and low-altitude buffet for high-speed flight and is extended only for t akeoff, low -speed c ruise and 1 anding. Bi-directional wing is a proposed design in which a low-speed wing and a high-speed wing are laid across each other in the form of a cross. The aircraft would take off and land with the lowspeed wing facing the airflow, then rotate a quarter-turn so that the high-speed wing faces the airflow for supersonic flight.

Telescoping
Planform

Extending Planform

Bi-directional Planform

Figure 3.11: Variable Wing Planforms

3.8.5 Wing-body combinations

Some de signs ha ve no clear join be tween wing a nd fuselage (body of the aircraft) such as flying wing, blended wing body (BWB) and lifting body. In flying wing, the aircraft has no distinct fuselage or horizontal tail (although fins a nd pods, bl isters, etc. may be p resent) whereas in B WB , a s mooth transition occurs between wing and fuselage, with no hard dividing line. BWB design reduces wetted area and can also reduce interference between airflow over the wing root and any adjacent body and thus reduces drag. In case of lifting bod y, the aircraft lacks i dentifiable wings but relies on the fuselage (usually at high speeds or high angles of attack) to provide aerodynamic lift.

Flying Wing

Blended Wing Body

Lifting Body

Figure 3.12: Wing Planforms due to Wing-Body Combinations

4. MATHEMATICAL MODELING

4.1 Determination of Pressure Coefficient

Pressure, by itself, is a dimensional quantity. But in the aerodynamic literature, it is very common to find pressures given in terms of C_{P} rather than the pressure itself. Figure 4.1 shows the pressure distribution at any point over the surface in terms of the pressure coefficient, C_{P}, which is defined as follows:

$$
\begin{equation*}
c_{p}=\frac{p_{\text {local }}-p_{\infty}}{1 / 2 \rho U_{\infty}^{2}} \tag{4.1}
\end{equation*}
$$

Where, $1 / 2 \rho U_{\infty}{ }^{2}$ is the free stream dynamic pressure head

Figure 4.1: Pressure Distribution over an Aerofoil's Surface in terms of $\boldsymbol{C}_{\boldsymbol{P}}$

Thus, surface pressure coefficient, C_{p} can be calculated from the static pressure by the following formula [33].

$$
\begin{equation*}
c_{p, i}=\frac{p_{i}-p_{\infty}}{\frac{1}{2} \rho U_{\infty}^{2}} \tag{4.2}
\end{equation*}
$$

Where, P_{i} is the surface static pressure at any designated point i.

Values of C_{p} at any point over the aerofoil surface c an be approximated from the corresponding bound ary values by using the first or der Lagrange interpolation and extrapolation:

$$
\begin{equation*}
c_{p}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)} c_{p, o}+\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} c_{p, 1} \tag{4.3}
\end{equation*}
$$

4.2 Estimation of Aerodynamic Force Coefficients from C_{P}

The aerodynamic forces and moments on the body are due to only two basic sources such as the pressure d istribution over t he bod ys urface and the Shear stress distribution over the body surface [12]. No matter how complex the body shape may be, the aerodynamic forces and moments on the body are due entirely to the above two basic sources. The only mechanisms nature has for communicating a force to a body moving through a fluid are pressure and shear stress distributions on the body surface. B oth pressure p and shear stress τ have dimensions of force per unit a rea (pounds per square foot or newtons per square meter). As sketched in Figure 4.2, p acts normal to the surface, and τ acts tangential to the surface. Shear stress is due to the "tugging action" on t he surface, which is caused by friction between the bod y and the air.

Figure 4.2: Illustration of Pressure and shear Stress on Aerofoil Surface

The net effect of the p and τ distributions integrated over the complete body surface is a resultant aerodynamic force R on the body. In turn, the resultant R can be split into components, two sets of which are shown in Figure 4.3. In Figure 4.3, U_{∞} is the relative wind, defined as the flow velocity far ahead of the body. The flow far away from the body is called the free stream, and hence U_{∞} is also called the free stream velocity. In Figure 4.3, by definition,

$$
\begin{aligned}
& L=\operatorname{lift}=\text { component of } R \text { perpendicular to } U_{\infty} \\
& D=\operatorname{drag}=\text { component of } R \text { parallel to } U_{\infty}
\end{aligned}
$$

Figure 4.3: Resultant Aerodynamic Force and its Components

The chord c is the linear distance from the leading edge to the trailing edge of the body. Sometimes, R is split into components perpendicular and parallel to the chord, as also shown in Figure 4.3. By definition,

$$
\begin{aligned}
& N=\text { normal force }=\text { component of } R \text { perpendicular to } \mathrm{c} \\
& \mathrm{~A}=\text { axial force }=\text { component of } R \text { parallel to } \mathrm{c}
\end{aligned}
$$

The angle of attack α is defined as the angle between c and U. Hence, α is also the angle be tween L and N and be tween D and A. The geometrical relation between these two sets of components is found from Figure 4.3 as:

$$
\begin{align*}
L & =N \operatorname{Cos} \alpha-A \operatorname{Sin} \alpha \tag{4.4}\\
D & =N \operatorname{Sin} \alpha+A \operatorname{Cos} \alpha \tag{4.5}
\end{align*}
$$

The integration of the pressure and shear stress distributions can be done to obtain the aerodynamic forces and moments [24, 34]. Let us consider the two dimensional body sketched in Figure 4.4. The chord line is drawn hor izontally, a nd hence the relative wind is in clined relative to the horizontal by the angle of attack α. An $x y$ coordinate system is or iented parallel and perpendicular, respectively, to the chord. The distance from the leading edge measured along the body surface to an arbitrary point A on the upper surface is s_{u}; similarly, the distance to an arbitrary point B on the 1 ower s urface is s_{l}. The p ressure and s hear s tress on t he upp er s urface are denoted by p_{u} and τ_{u}, respectively; both p_{u} and τ_{u}, are functions of s_{u}. Similarly, p_{l} and τ_{l} are the corresponding quantities on the lower surface and are functions of s_{l}.

Figure 4.4: Nomenclature for Integration of \boldsymbol{p} and $\boldsymbol{\tau}$ Distribution

At a given point, the pressure is normal to the surface and is oriented at an angle θ relative to the perpendicular; shear stress is tangential to the surface and is oriented at the same angle θ relative to the horizontal. In Figure 4.4, the sign convention for θ is positive when measured clockwise from the vertical line to the direction of p and from the horizontal line to the direction of τ. In Figure 4.4, all thetas are shown in their positive direction.

Figure 4.5: Aerodynamic Force on an Element of the Body Surface

Now let us consider the two-dimensional shape in Figure 4.4 as a cross section of an infinitely long cylinder of uniform section. A unit span of such a cylinder is shown in Figure 4.5. Let us consider an elemental surface area $d S$ of this cylinder, where $d S$ $=(d s)(l)$ as shown by the shaded area. We are interested in the contribution to the total normal force N^{\prime} and the total axial force A^{\prime} due to the pressure and shear stress on the el emental ar ea $d S$. The pr imes on N^{\prime} and A^{\prime} denote force per u nit s pan. Examining both Figures 4.4 and 4.5, it is seen that the elemental normal and axial forces acting on the elemental surface $d \mathrm{~S}$ on the upper body surface are

$$
\begin{align*}
& d N_{u}^{\prime}=-p_{u} d s_{u} \operatorname{Cos} \theta-\tau_{u} d s_{u} \operatorname{Sin} \theta \tag{4.6}\\
& d A_{u}^{\prime}=-p_{u} d s_{u} \operatorname{Sin} \theta+\tau_{u} d s_{u} \operatorname{Cos} \theta \tag{4.7}
\end{align*}
$$

On the lower body surface, we have

$$
\begin{align*}
d N_{l}^{\prime} & =p_{l} d s_{l} \operatorname{Cos} \theta-\tau_{l} d s_{l} \operatorname{Sin} \theta \tag{4.8}\\
d A_{l}^{\prime} & =p_{l} d s_{l} \operatorname{Sin} \theta+\tau_{l} d s_{l} \operatorname{Cos} \theta \tag{4.9}
\end{align*}
$$

In these equations, the positive clockwise convention for θ must be followed. For example, consider ag ain Figure 4.4. Near the leading edge of the body, where the slope of the upper body surface is positive, τ is inclined upward, and hence it gives a positive contribution to N^{\prime}. For an upward inclined τ, θ would be counterclockwise, hence negative. Therefore, in Equation (4.6), $\operatorname{Sin} \theta$ would be negative, making the shear stress term (the last term) a positive value, as it should be in this instance.

The total normal and axial forces per unit span are obtained by integrating Equations (4.6) to (4.9) from the leading edge (LE) to the trailing edge (TE):

$$
\begin{align*}
N^{\prime} & =-\int_{L E}^{T E}\left(p_{u} \operatorname{Cos} \theta+\tau_{u} \operatorname{Sin} \theta\right) d s_{u}+\int_{L E}^{T E}\left(p_{l} \operatorname{Cos} \theta-\tau_{l} \operatorname{Sin} \theta\right) d s_{l} \tag{4.10}\\
A^{\prime} & =\int_{L E}^{T E}\left(-p_{u} \operatorname{Sin} \theta+\tau_{u} \operatorname{Cos} \theta\right) d s_{u}+\int_{L E}^{T E}\left(p_{l} \operatorname{Sin} \theta-\tau_{l} \operatorname{Cos} \theta\right) d s_{l} \tag{4.11}
\end{align*}
$$

In turn, the total lift and drag per unit span can be obtained by inserting Equations (4.10) and (4.11) into (4.4) and (4.5).

There a re qua ntities of an e ven m ore f undamental na ture t han t he a erodynamic forces t hemselves. These ar e dimensionless force co efficients. We have al ready defined a di mensional quantity called the f ree s tream dynamic pr essure as q_{∞} $=1 / 2 \rho U_{\infty}{ }^{2}$. In addition, let s be ar eference a rea and l be a reference length. The dimensionless force coefficients are defined as follows:

Lift coefficient:

$$
\begin{equation*}
C_{L}=\frac{L}{q_{\infty} S} \tag{4.12}
\end{equation*}
$$

Drag coefficient:

$$
\begin{equation*}
C_{D}=\frac{D}{q_{\infty} S} \tag{4.13}
\end{equation*}
$$

Normal force coefficient: $\quad C_{N}=\frac{N}{q_{\infty} S}$
Axial force coefficient:

$$
\begin{equation*}
C_{A}=\frac{A}{q_{\infty} S} \tag{4.15}
\end{equation*}
$$

In the above coefficients, the reference area S and reference length I are chosen to pertain to the given geometric bod y s hape; for different s hapes, S and I may be different things. For example, for an airplane wing, S is the planform area, and I is the mean chord length, as illustrated in Figure 4.6.

Figure 4.6: Reference Area and Length for Airplane

The s ymbols in capital letters listed above, i.e., C_{L}, C_{D}, C_{N}, and C_{A}, denote the force coe fficients for a complete three-dimensional bod y such as an airplane or a finite wing. In contrast, for a two-dimensional body, the forces are per unit span. For these t wo di mensional bodi es, itisc onventional t o de note t he a erodynamic coefficients by lowercase letters as follows:

$$
c_{l}=\frac{L^{\prime}}{q_{\infty} c} \quad \text { and } \quad c_{d}=\frac{D^{\prime}}{q_{\infty} c}
$$

Where, the reference area $\mathrm{S}=c(1)=\mathrm{c}$.

Figure 4.7: Geometrical Relationship of Differential Lengths

The m ost us eful forms of E quations (4.10) and (4.11) a re int erms of t he dimensionless c oefficients i ntroduced a bove. F rom the ge ometry s hown in Figure 4.7,

$$
\begin{aligned}
& d x=d x \operatorname{Cos} \theta \\
& d y=-d s \operatorname{Sin} \theta \\
& S=c(1)=c
\end{aligned}
$$

Substituting the above expressions of $d x, d y$ and S into Equations (4.10) and (4.11), dividing by q_{∞}, we obtain the following integral forms for the force and moment coefficients:

$$
\begin{align*}
\boldsymbol{C}_{n} & =\frac{1}{c} \int_{0}^{c}\left(c_{p, l}-c_{p, u}\right) d x+\frac{1}{c} \int_{0}^{c}\left(c_{f, u} \frac{d y_{u}}{d x}+c_{f, l} \frac{d y_{l}}{d x}\right) d x \tag{4.16}\\
\boldsymbol{C}_{a} & =\frac{1}{c} \int_{0}^{c}\left(c_{p, u} \frac{d y_{u}}{d x}-c_{p, l} \frac{d y_{l}}{d x}\right) d x+\frac{1}{c} \int_{0}^{c}\left(c_{f, u}+c_{f, l}\right) d x \tag{4.17}
\end{align*}
$$

Here, y_{u} is di rected above the x axis, and hence is positive, whereas y_{l} is di rected below the x axis, and hence is ne gative. A lso, $d y / d x$ on both the upper and lower surfaces follow the usual rule from calculus, i.e., positive for those portions of the body with a positive s lope a nd ne gative for those portions with a ne gative slope. When shear stress due to vi scous effect is ne glected, an integration of a pressure distribution over an a irfoil chord for bot h upper a nd lower surfaces is known to provide normal and axial force acting on an airfoil section [24,34] as follows:

$$
\begin{align*}
& \boldsymbol{C}_{n}=\frac{1}{c} \int_{0}^{c}\left(c_{p, l}-c_{p, u}\right) d x \tag{4.18}\\
& \boldsymbol{C}_{a}=\frac{1}{c} \int_{0}^{c}\left(c_{p, u} \frac{d y_{u}}{d x}-c_{p, l} \frac{d y_{l}}{d x}\right) d x \tag{4.19}
\end{align*}
$$

The know n pressure co efficients from t he ex periment can be calculated for t he normal and axial force by using a numerical integration of the above equations in the Trapezoidal approximating forms.

Figure 4.8: Paneling of the Wing Surface

As shown in F igure 4.8, both the surfaces of the wing section c an be divided into small pa nels corresponding to a total of gaps between each pressure tap location [34]. When n is a number of panels, the equations can be converted to:

$$
\begin{align*}
\boldsymbol{C}_{n} & =\sum_{i=1}^{n}\left[\left(c_{p, l, i}-c_{p, u, i}\right) \Delta\left(\frac{x_{i}}{c}\right)\right] \tag{4.20}\\
\boldsymbol{C}_{a} & =\sum_{i=1}^{n}\left[\left(c_{p, u, i} \frac{\Delta y_{u, i}}{\Delta x_{i}}-c_{p, l, i} \frac{\Delta y_{l, i}}{\Delta x_{i}}\right) \Delta\left(\frac{x_{i}}{c}\right)\right] \tag{4.21}
\end{align*}
$$

The interpolated and extrapolated pressure coefficients would be applied to Equation (3.20) and (3.21) in order to get the normal and axial force at a section of interest. Lift and drag coefficient can be obtained from:

$$
\begin{align*}
& c_{l}=c_{n} \operatorname{Cos} \alpha-c_{a} \operatorname{Sin} \alpha \tag{4.22}\\
& c_{d}=c_{n} \operatorname{Sin} \alpha+c_{a} \operatorname{Cos} \alpha \tag{4.23}
\end{align*}
$$

The ove r-all va lue of t he c oefficients for t he whole w ing can be found out $b y$ averaging the same values of each segments of the wing along the span.

5. EXPERIMENTAL SETUP AND METHODOLOGY

5.1 Design and Construction

The a erodynamic cha racteristics ($\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{D}}$ and L / D) can be calculated from t he surface pressure di stribution of the wing as di scussed in the p revious chapter. To obtain the pressure distribution over the surfaces, wooden wing models are prepared with a specific a erofoil, suitable fixture is prepared to set the models in the wind tunnel and a multi-tube manometer is fabricated to take the pressure readings from the surfaces of the wing models.

5.1.1 Wing models

Using N ACA 4412 a erofoil, w ooden models for three w ings are p repared having the s ame s pan (245 mm) a nd e qual surface a rea ($31115 \mathrm{~m} \mathrm{~m}^{2}$) as shown in Figure 5.1.

(a) Curved Leading Edge Planform

(b) Rectangular Planform (Reference)

(c) Curved Trailing Edge Planform

Figure 5.1: Experimental Wing Models

Each model is provided with 32 pr essure tapings along the span and chord (16 at upper surface \& 16 at lower surface). A long the span the wings are divided into four equal s egments (61.25 mm). F or r ectangular w ing, the chord length is same $(127 \mathrm{~mm})$ for all the four segments but for the curved edge w ings, t he average c hord 1 ength is di fferent for di fferent s egments along the s pan (for segment A-152.4mm, for segment B- 140 mm , for segment C- 110 mm and for segment D-101.6 mm). Thus, the ratio of root chord to tip chord of the curved edge planforms is 1.5 . Four pressure tapping points at upper surface and four pressure tapping points at lower surface are made a $\mathrm{t} 20 \%, 40 \%, 60 \%$ a nd 80% of t he av erage chord length of ea ch segment of all the wing models.

5.1.2 Pressure measuring device

The ar rangement of mu lti-tube m anometer for measuring t he pr essures is shown in Figure 5.2. The multi-tube manometer mainly consists of a water tank and 36 m anometer glass tubes connected to the tapping points in wing model surfaces. The water tank is used to store the distilled water. Each limb is fitted with a scale g raduated in mm to measure the difference of w ater height. The static pressure is calculated from the difference in water height.

Figure 5. 2: Multi-tube Manometer

5.1.3 Fixture for altering angle of attack

The de tails of wind tunnel are shown in Figure 5.3. A fixture is fabricated and fixed in the test section of the wind tunnel as shown in Figure 5.4. The fixture facilitates the wing models to rotate a nd fix at any a ngle of attack. The wing models are tested at angle of attack from -4° to 24° with a step of 4°. Each model is rotated and fixed at the desired angle by seeing the preset scales (in degrees) pasted on the frame.

5.2 Experimental Setup

5.2.1 Wind tunnel

The e xperiment is carried out in a $700 \mathrm{~m} \mathrm{~m} \times 700 \mathrm{~mm} \mathrm{c}$ losed c ircuit w ind tunnel as shown in Figure 5.3 available at turbulence lab of Department of Mechanical Engineering, BUET.

Figure 5. 3: Schematic Diagram of the Wind Tunnel at BUET's Turbulence Lab [35]

The wind speed is created by the two 700 mm counter rotating fans. At the discharge of the fans there is a silencer to reduce the sound level. From the silencer air flow passes through the flow controlling butterfly valve, diffuser and the plenum chamber to stabilize the flow to certain level. The fan motors are pow ered b y $400 \mathrm{~V}-3 \Phi-50 \mathrm{~Hz}$ pow er s upply t hrough m otor s peed controller. T hus t he w ind s peed int he t unnel c an be va ried bot hb y controlling the fan motor speed as well as by controlling the butterfly valve [35]. T o facilitate the present e xperiment in the open a ir c ondition the diffuser at the end of the test section is taken out and the discharge side of the te st section is f itted with a $700 \mathrm{~m} \times 700 \mathrm{~mm}$ di scharge duc ta nd a $1000 \mathrm{~mm} \times 1000 \mathrm{~mm}$ t o $762 \mathrm{~m} \mathrm{~m} \times 762 \mathrm{~mm}$ be 1 m outh e ntry is added at t he return duct to have smooth entry. Thus the 406 mm open flow field created between the discharge duct and be 11 mouth entry become the experimental space as shown in Figure 5.4 where desired velocity is obtained.

Figure 5. 4: Photograph of Experimental Set-up

5.2.2 Experimental parameters

All the experimental data are taken at room temperature of 35 C and at air speed of $23.71 \mathrm{~m} / \mathrm{s}(85.35 \mathrm{kph})$ and the air flow is considered incompressible throughout t he e xperiment. S pecific de nsity of bot $h a$ ir a nd w ater corresponding to room temperature is assumed to be $1.145 \mathrm{~kg} / \mathrm{m}^{3}$ and 994 $\mathrm{kg} / \mathrm{m}^{3}$ respectively.

5.3 Methodology

a. At first, the static pressure at different angles of attack $\left(\alpha=-4^{\circ}, 0^{\circ}, 4^{\circ}\right.$, $8^{\circ}, 12^{\circ}, 16^{\circ}, 20^{\circ} \& 24^{\circ}$) are measured from both upper and lower surfaces of t he w ing m odels t hrough different pressure t apings $b y$ using a multi-tube manometer during wind tunnel testing.
b. From the static pr essure data, the respective coe fficient of pr essure $\left(\mathrm{C}_{\mathrm{p}}\right)$ is calculated using equation (4.1) to (4.3).
c. The values of C_{p} of both surfaces of individual planforms are plotted in C_{p} versus $\% \mathrm{C}$ graph to obs erve the pressure pattern of different segments of each planform along the chord length.
d. $\quad C_{L}$ and C_{D} of a ll the wing planforms at eve ry angle of attack are determined from equation (4.20) to (4.23).
e. L/D at different angle of attack for all the wing models are obtained from the ratio of C_{L} to C_{D} at respective angle of attack.
f. At la st, the lift characteristics, drag ch aracteristics and lift to drag ratio of the wing pl anforms are analyzed and compared with each other from C_{L} versus α, C_{D} versus α and L / D versus α graphs.

6. RESULTS AND DISCUSSION

6.1 Data Collection and Analysis

To analyze aerodynamic characteristics of the wings with curved leading edge (L.E.) planform and curved trailing edge (T.E.) planform, the pressure coefficients of both upper and lower surfaces were measured through the wind tunnel testing. Then the pressure coefficients are plotted along chordwise positions (\% C) at every angle of attack for each of the four segments. The pressure coefficients of a rectangular wing planform are al so measured through t he w ind tunnel t esting and those da ta are plotted in the s ame w ay in all the graphs as r eference. Then surface p ressure distribution of all the wing planforms are discussed making comparison with each other at every segment for every angle of attack. The resulting data, computed in terms of the normal and a xial forces on t he w ing models, are us ed to de termine coefficient of $1 \mathrm{ift}\left(\mathrm{C}_{\mathrm{L}}\right)$, coefficient of drag $\left(\mathrm{C}_{\mathrm{D}}\right)$ a nd 1 ift to dr ag ratio (L/D) of individual wing. Finally, lift characteristics, drag characteristics and lift to drag ratio for all three wing planforms are discussed making comparison with each other from C_{L} versus α, C_{D} versus α and L / D versus α plots respectively. Calculated values of pressure co efficients of allthree pl anforms from -4° to 24° angles of at tack are shown in Appendix-I. Uncertainties of experimental results are also analyzed in light of the procedure suggested by Cimbala [36]. The details of uncertainty analysis are shown in Appendix-II.

6.2 Surface Pressure Distribution

Pressure distribution of both upper and lower surfaces along the chord length of four segments (Segment-A, B, C a nd D) of t hree experimental wing pl anforms a re plotted for $-4^{0}, 0^{0}, 4^{0}, 8^{0}, 12^{0}, 16^{0}, 20^{0}$ and 24^{0} angle of attack. In the graphs, the horizontal axis represents the percentage of the chord length (\%C) and the vertical axis represents the surface pressure coefficient $\left(\mathrm{C}_{\mathrm{p}}\right)$. The vertical axis above the zero line (horizontal a xis) r epresents t he negative pr essure coe fficients or s uction pressure coefficients and the vertical axis below the zero line represents the positive
pressure coefficients. In the following sub-paragraphs, the said graphs are discussed in detail.

6.2.1 Pressure distribution at -4° angle of attack

Surface pr essure di stribution at -4° angle of at tack for four s egments of rectangular, curved L.E. and curved T.E. planforms are shown in Figure 6.1, $6.2,6.3$ a nd 6.4 respectively. In all the four figures, both upper and lower surface pr essure coe fficient, C_{pu} and C_{pl} are plotted a long t he c hord. In Figure 6.1, it is observed that both upper and lower surface pressure of all the three planforms near the root (segment-A) are almost at the suction side. The lower surfaces are having more suction pressure than the upper surfaces near the leading edge up to $30 \sim 35 \% \mathrm{C}$ but from $40 \% \mathrm{C}$ up to the trailing edge, the suction pressure of upper surfaces are greater than the suction pressure of 1 ower s urfaces. It is a lso obs erved t hat t he 1 ower s urface pr essure decreases from $10 \% \mathrm{C}$ to $40 \% \mathrm{C}$ rapidly and then de creases slowly up to $90 \% \mathrm{C}$ f or all t he t hree pl anforms. For c urved L.E. and c urved T .E. planforms, the upper surface pressure increases up to $40 \% \mathrm{C}$ and then slowly decreases up t o 90% C but for r ectangular planform t he uppe r urface pressure remains almost constant throughout the chord length.

Figure 6.1: C_{p} Distribution of Segment-A at $\alpha=-4^{\circ}$

In Figure 6.2, upper and lower surface pressure distribution for segment-B of the three planforms are shown. The graph shows that both upper and lower surface pressure of all the three planforms at segment B are also almost at the suction side. For rectangular and curved L.E. planforms, the lower surfaces are h aving m ore suction pressure than the upp er surfaces ne ar the l eading edge up to $30 \% \mathrm{C}$ but from $30 \% \mathrm{C}$ up to the trailing edge, the suction pressures of uppersurfaces are greater than the suction pressure of lower surfaces. For curved T.E. planform, the suction pressure of the upper surface is greater than the suction pressure of the lower surface throughout the chord length (from leading edge to trailing edge). Up to $60 \% \mathrm{C}$, the lower surface pressure curve is at the highest for rectangular planform, lowest for cur ved T.E. planform and in between for curved L.E. planform. Beyond $60 \% \mathrm{C}$ up to the t railing edg e, the s aid curves ar e al most overlapping e ach ot her following the similar pattern.

Figure 6.2: C_{p} Distribution of Segment-B at $\alpha=-4^{\circ}$

Up to $40 \% \mathrm{C}$, the upp er s urface pr essure c urve of r ectangular pl anform remain at the hi ghest, c urved L.E. pl anform at the lowest and curved T.E. planform is in between the rectangular and curved L.E. planforms. But from $40 \sim 80 \% \mathrm{C}$, t he uppe r s urface pressure of c urved L.E. pl anform is at t he highest 1 evel, r ectangular pl anform a $\mathrm{t} t$ he 1 owest a nd f or c urved T .E. planform it is in be tween rectangular and c urved L.E. pl anforms. Again, from $80 \% \mathrm{C}$ towards the trailing edge, the upper surface pressure curve of the rectangular pl anform tends to reach to the higher level than the curved L.E. and curved T.E. planform.

Figure 6.3 s hows t he upper and l ower s urface pr essure di stribution f or segment-C of t he t hree pl anforms. For r ectangular pl anform, the 1 ower surface is having more suction pressure than the upper surface up to $40 \% \mathrm{C}$. The lower surface pressure decreases rapidly from $10 \% \mathrm{C}$ to $40 \% \mathrm{C}$ and then further decreases slowly up to the trailing edge.

Figure 6.3: C_{p} Distribution of Segment-C at $\alpha=-\mathbf{4}^{\circ}$

But the upper surface pressure remains constant from the leading edge up to $60 \% \mathrm{C}$ and then slowly de creases up to the trailing edge. For c urved L.E. planform, the upper surface is having more suction pressure than the lower surface t hroughout t he chord length a nd bot h s urfaces' p ressure gradually decrease from t he l eading ed ge t owards t he t railing edge. The difference between t he upp er s urface a nd 1 ower s urface pr essure of curved L.E. planform is highest at $10 \% \mathrm{C}$ and this difference gradually decreases up to $60 \% \mathrm{C}$ and again increases slightly from $60 \% \mathrm{C}$ to 90% C. For Curved T.E. planform, the lower surface suction pressure is greater than the upper surface suction pressure only up to 20% C and from 20% C up to the trailing edge upper surface is having greater suction pressure than the lower surface. The difference between the upper and lower surface pressure of the curved T.E. planform is observed at $40 \% \mathrm{C}$.

The surface pressure distributions for segment-D of the three planforms are shown in F igure 6.4. F or rectangular planform, the lower surface is having
more suction pressure than the upper surface only up to $20 \% \mathrm{C}$. The lower surface pressure de creases rapidly from $10 \% \mathrm{C}$ to $40 \% \mathrm{C}$ and then further decreases s lowly up to t he t railing edge. T he uppe r surface p ressure decreases slowly from 10% C up t o 60% C and then increases up to the trailing e dge. For c urved L.E. pl anform, the up per s urface is ha ving m ore suction pressure than the lower surface throughout the chord length and both surfaces' pr essure gradually de crease f rom t he leading edge t owards t he trailing ed ge. The di fference be tween the upper surface and lower surface pressure of curved L.E. planform is having the highest value from $60 \% \mathrm{C}$ to 90% C. For Curved T.E. planform, the lower surface suction pressure is also greater than the upper surface suction pressure throughout the chord length. The difference be tween the upper and lower surface p ressure of the curved T.E. planform is observed at $10 \% \mathrm{C}$. This difference gradually decreases up to $40 \% \mathrm{C}$ and then slowly increases up to t he t railing edge. T he ov erall pressure di fference b etween the t wo s urfaces is hi ghest for cur ved T.E. planform, lowest for rectangular planform and in between the highest and the lowest for curved L.E. planform in segment-D.

Figure 6.4: C_{p} Distribution of Segment-D at $\alpha=-4^{\circ}$

6.2.2 Pressure distribution at 0° angle of attack

Both upper and lower surface pressure coefficient, C_{pu} and C_{pl} at 0° angle of attack for four s egments of re ctangular, curved L.E. a nd curved T .E. planforms are plotted along the chord and shown in Figure 6.5, 6.6, 6.7 a nd 6.8 respectively.

The surface pressure distributions for segment-A of the three planforms at 0° angle of attack are shown in Figure 6.5. From the figure it is observed that upper surface of the rectangular planform is ha ving higher suction pressure than it's lower surface pressure. For curved L.E. and curved T.E. planforms, the upper s urface suction pressure is lower than the pressure of the lower surface up to 20% C but beyond $20 \% \mathrm{C}$ up to the trailing edge upper surface suction pressure is higher than the lower surface pressure. The lower surface pressure of all the three planforms de creases from leading edge to trailing edge but t he r ate of r eduction is h igher up t o 40% C. For r ectangular planform, the upper surface pressure decreases gradually from leading edge to t railing e dge. F or bot h c urved L.E. a nd c urved T .E. pl anforms, uppe r surface pressure increases from the leading edge up to 40% C, then decreases towards the trailing edge. But the upper surface suction pressure of curved T.E. pl anform is hi gher t han t hat of t he c urved L.E. pl anform and 1 ower surface of curved T.E. planform is having greater positive pressure than the curved L.E. planform. The difference between the upper surface and lower surface pr essure of both curved L.E. and c urved T .E. planforms become maximum at $40 \% \mathrm{C}$.

Figure 6.5: C_{p} Distribution of Segment-A at $\alpha=0^{\circ}$

The surface pressure distributions for segment-B of the three planforms at 0° angle of attack are shown in Figure 6.6. From the figure it is observed that upper surface of all the three pl anforms are having higher suction pressure than the lower surface pressure of the respective planforms except in case of rectangular pl anform a $\mathrm{t} 60 \% \mathrm{C}$. At $60 \% \mathrm{C}, \mathrm{t}$ he uppe r urface of t he rectangular pl anform is ha ving t he pos itive pr essure i nstead of s uction pressure. For rectangular pl anform, t he upper surface pr essure d ecreases from $10 \% \mathrm{C}$ and reaches to the positive value at $60 \% \mathrm{C}$, then again increases up to the trailing edge. The lower surface pressure remains almost constant throughout t he c hord. F or c urved L.E. pl anform, uppe r s urface pr essure increases slowly from the leading edge up to $60 \% \mathrm{C}$, then decreases towards the trailing edge rapidly. The lower surface pressure decreases from leading edge to trailing edge. The di fference be tween the upper surface and lower surface pressure of curved L.E. planform becomes maximum at $60 \% \mathrm{C}$. In case of curved T.E. the upper surface pressure remains almost constant up to $60 \% \mathrm{C}$ a nd t hen de creases t owards t he t railing e dge. The 1 ower s urface
pressure de creases from 1 eading ed ge to trailing ed ge. The uppe r s urface suction pressure of curved L.E. planform is higher than that of the curved T.E. pl anform and 1 ower s urface of both curved L.E. and c urved T.E. planforms are having almost same pressure throughout the chord.

Figure 6.6: C_{p} Distribution of Segment-B at $\alpha=\mathbf{0}^{\circ}$

Figure 6.7 shows t he upper and 1 ower s urface pr essure di stribution f or segment-C of t he t hree pl anforms. F or r ectangular pl anform, t he 1 ower surface is having more suction pressure than the upper surface up to $80 \% \mathrm{C}$. The 1 ower s urface p ressure increases from $10 \% \mathrm{C}$ to $40 \% \mathrm{C}$ and t hen decreases slowly up to the trailing edge. For curved L.E. planform, the upper surface suction pr essure is m ore than that of the lower surface. The up per surface pressure gradually reduces from leading edge to trailing ed ge. The lower s urface pressure gradually de creases up to $40 \% \mathrm{C}$ a nd t hen a gain increases. F or curved T.E. pl anform, the upper surface suction pressure is lower than that of the lower surface up to $20 \% \mathrm{C}$ and from $20 \% \mathrm{C}$ to trailing edge t he uppers urface pressure is hi gher t han t he pr essure of t he 1 ower
surface. The upper surface pressure slowly increases from $10 \% \mathrm{C}$ to $60 \% \mathrm{C}$ and then gradually decreases up to the trailing edge. From $10 \% \mathrm{C}$ the lower surface suction pressure rapidly decreases and reaches to the positive value at $40 \% \mathrm{C}$ and again increases up to the trailing edge.

Figure 6.7: C_{p} Distribution of Segment-C at $\alpha=0^{\circ}$

The surface pressure distributions for segment-D of the three planforms at 0° angle of attack are shown in Figure 6.8. From the figure it is observed that upper surface of all the three pl anforms are having higher suction pressure than the lower surface pressure of the respective planforms. For rectangular planform, the upper surface pressure de creases from $10 \% \mathrm{C}$ to $60 \% \mathrm{C}$ and then again increases up to the trailing edge. The lower surface pressure also reduces up to $60 \% \mathrm{C}$ a nd then remains a lmost constant up t o the trailing edge. For curved L.E. planform, both the upper and lower surface pressure decreases from the leading edge to the trailing edge. The difference between the uppe r s urface and 1 ower s urface pr essure of c urved L.E. pl anform is observed maximum at $10 \% \mathrm{C}$. In case of c urved T.E. planform, the upper
surface pressure decreases up to $60 \% \mathrm{C}$ and then remains almost constant up to the t railing ed ge. The 1 ower s urface pr essure increases s lightly from leading edge to $40 \% \mathrm{C}$ and finally reaches to the positive value at $90 \% \mathrm{C}$. Out of the three planforms, the upper surface of the curved T.E. planform is having the lowest suction pressure but it's lower surface is having the highest pressure.

Figure 6.8: C_{p} Distribution of Segment-D at $\alpha=0^{\circ}$

6.2.3 Pressure distribution at 4° angle of attack

Figure $6.9,6.10,6.11$ a nd 6.12 show the pressure distribution of both upper and lower surface of rectangular, curved L.E. and curved T.E. planforms at 0° angle of attack for four segments respectively.

From Figure 6.9 it is observed that pressure difference between the upper and lower surface of rectangular planform in segment- A is the highest a mongst all the t hree pl anforms. B ecause, t he uppe $\mathrm{r} s$ urface pr essure of t he rectangular pl anform is hi gher t han t hat of c urved L.E. a nd c urved T.E. planforms up to 40% C. Another observation is that the pressure difference
between the t wo surface of cur ved T.E. planform is g reater t han that of curved L.E. planform because of greater pressure difference near the trailing edge of curved T.E. planform.

Figure 6.9: C_{p} Distribution of Segment-A at $\alpha=4^{\circ}$

In F igure 6.10, i tis observed t hat t he uppe $\mathrm{r} s$ urface pressure of t he rectangular pl anform ins egment-Br apidly d ecreases f rom t he hi ghest suction pressure at $10 \% \mathrm{C}$ to the positive pressure at $60 \% \mathrm{C}$ then again the pressure reaches to the suction side at 90% C. But in case of both curved L.E. and curved T.E. planforms, the upper surface pressure always remain at suction s ide. T he di fferene be tween uppe r a nd 1 ower s urface pr essure is observed 1 owest f or r ectangular pl anform a nd hi ghest f or c urved T .E. planform. The upper surface pressure of both curved L.E. and curved T.E. planforms de crease very slowly from $10 \% \mathrm{C}$ to $60 \% \mathrm{C}$ and then de creases rapidly up to $90 \% \mathrm{C}$. The upper surface pressure of curved L.E. planform is
lower than the upper s urface pressure of curved T.E. planform. The lower surface of curved L.E. planform is having lower positive pressure than that of curved T.E. planform.

Figure 6.10: C_{p} Distribution of Segment-B at $\alpha=\mathbf{4}^{\circ}$

Figure 6.11 s hows the pressure di stribution of segment-C of all the th ree planforms. F rom t he figure, it is obs erved t hat the uppe r s urface s uction pressure is highest for curved T.E. planform throughout the chord and lowest for t he r ectangular pl anform. T he l ower s urface pr essure of c urved T .E. planform is a lso hi ghest a mongst the three pl anforms. The 1 ower s urface pressure for rectangular planform mostly remains at the suction side whereas the lower s urface pr essure of bot h c urved L.E. and c urved T.E. pl anform remain at t he pos itive pressure s ide. As ar esult, the pr essure di fference between the upp er a nd lower surface of c urved T.E. is a lso at the hi ghest level. In Figure 6.12, almost similar type of pressure distribution of all three planforms for segment-D are observed as in segment-C. But the difference
between two surfaces pressure of respective planforms is lower than that of segment-C.

Figure 6.11: C_{p} Distribution of Segment-C at $\alpha=\mathbf{4}^{\circ}$

Figure 6.12: C_{p} Distribution of Segment-D at $\alpha=4^{\circ}$

6.2.4 Pressure distribution at 8° angle of attack

Both upper and lower surface pressure coefficient, C_{pu} and C_{pl} at 8° angle of attack for four s egments of re ctangular, curved L.E. a nd curved T.E. planforms are plotted along the chord and shown in Figure 6.13, 6.14, 6.15 and 6.16 respectively.

The surface pressure distributions for segment-A of the three planforms at 8 angle of attack are shown in Figure 6.13. From the figure it is observed that upper surface of all the three pl anforms are having higher suction pressure than the lower surface pressure of the respective planforms. For rectangular planform, the lower surface pressure decreases slowly from 10% C to 40% C, then further decreases slowly up to $60 \% \mathrm{C}$ and again increases up to the trailing edge. The upper s urface p ressure de creases gradually from 1 eading edge to trailing edge. For both curved L.E. and curved T.E. planforms, upper surface pressure increases from the leading edge up to $40 \% \mathrm{C}$, then decreases
towards t he t railing edge and the 1 ower s urface pr essure de creases from leading edge to trailing edge. The difference between the upper surface and lower surface pressure of curved L.E. planform be comes maximum at 40\% C. But the upper surface suction pressure of curved T.E. planform is higher than t hat of t he c urved L.E. pl anform a nd l ower s urface of c urved T.E. planform is having greater positive pressure than the curved L.E. planform.

Figure 6.13: C_{p} Distribution of Segment-A at $\alpha=\boldsymbol{8}^{\circ}$

In F igure 6.14, i t i s observed t hat t he uppe $r s$ urface pressure of t he rectangular pl anform in s egment- Br apidly d ecreases f rom t he hi ghest suction pressure at $10 \% \mathrm{C}$ to the positive pressure at $60 \% \mathrm{C}$ then again the pressure rises to the suction side at 90% C. But in case of both curved L.E. and c urved T .E. pl anforms, t he uppe r s urface pressure a lways r emain a t suction s ide. T he di fferene be tween uppe r a nd 1 ower s urface pressure is observed 1 owest f or r ectangular pl anform a nd hi ghest f or c urved T .E. planform. The upper surface pressure of both curved L.E. a nd curved T.E. planforms de crease from 10% C to 90% C. The upper surface pressure of
curved L.E. planform is lower than the upper surface pressure of curved T.E. planform. T he 1 ower s urface of c urved L.E. planform is ha ving 1 ower positive pressure than that of curved T.E. planform.

Figure 6.14: C_{p} Distribution of Segment-B at $\boldsymbol{\alpha}=\boldsymbol{8}^{\circ}$

Figure 6.15 and Figure 6.16 show the pressure distribution of segment-C and segment-D of a ll the thr ee pl anforms respectively. F rom the figures, it is observed that the upper surface suction pressure is hi ghest for curved T.E. planform throughout the chord and lowest for the rectangular planform. The lower surface pressure of curved T.E. planform is also highest a mongst the three planforms. The lower surface pressure for rectangular planform mostly remains at the suction side whereas the lower surface pressure of both curved L.E. a nd c urved T .E. pl anform r emain at t he pos itive pressure s ide. As a result, the pressure difference between the upper and lower surface of curved T.E. is also at the hi ghest level. In segment-D, the difference between two surfaces' pressure of respective planforms are lower than those of segmentC.

Figure 6.15: C_{p} Distribution of Segment-C at $\boldsymbol{\alpha}=\boldsymbol{8}^{\circ}$

Figure 6.16: C_{p} Distribution of Segment-D at $\alpha=\boldsymbol{8}^{\circ}$

6.2.5 Pressure distribution at 12° angle of attack

Surface pr essure di stribution at 12 angle of attack for four s egments of rectangular, c urved L.E. and c urved T.E. pl anforms a re pl otted along the chord and shown in Figure 6.17, 6.18, 6.19 and 6.20 respectively.

The surface pressure di stributions for segment-A of the three planforms at 12° angle of attack are shown in Figure 6.17. From the figure it is observed that uppe rs urface of a ll t he t hree pl anforms are h aving hi gher s uction pressure t han the lower s urface pressure of t he respective pl anforms. For rectangular planform, the lower surface pressure increases slowly from 10% C up to the trailing edge. The upper surface pressure d ecreases gradually from leading edge to trailing ed ge. For curved L.E. planform, upper surface pressure i ncreases from t he 1 eading e dge up $\mathrm{t} ~ 40 \% \mathrm{C}$, t hen de creases towards t he t railing edge and the 1 ower s urface pr essure increases from leading edge to trailing edge.

Figure 6.17: C_{p} Distribution of Segment-A at $\alpha=12^{\circ}$

For c urved T.E. pl anform, uppe r s urface p ressure de creases from $10 \% \mathrm{C}$ towards t he t railing edge and the 1 ower s urface pr essure increases f rom leading e dge t o t railing e dge. T he di fference b etween uppe r surface a nd lower surface pressure is observed maximum for rectangular planform. The upper surface suction pressure of curved T.E. planform is higher than that of the c urved L.E. pl anform up t o $30 \% \mathrm{C}$ a nd lower s urface of c urved T.E. planform is ha ving s lightly 1 ower pos itive pr essure t han t he curved L.E. planform.

Figure 6.18, F igure 6.19 and Figure 6.20 show the pressure di stribution of segment-B, segment-C and segment-D of a llt he t hree pl anforms respectively. From Figure 6.18, it is observed that the upper surface suction pressure of all three planforms reduces from leading ed ge to trailing ed ge and the lower surface positive pressure reduces from leading edge to trailing edge in segment-B. Thus the pressure di fference between upper a nd lower surface is ma ximum ne ar the tr ailing e dge at $10 \% \mathrm{C}$. Also, the overall pressure di fference b etween upper and 1 ower s urface is maximum f or rectangular planform and lowest for curved T.E. planform in segment-B. But in segment-C, t he di fference b etween upp er a nd 1 ower s urface pr essure becomes m aximum f or c urved T .E. pl anform a s s hown in F igure 6.19. Because in segment-C, the uppe r s urface s uction pressure of r ectangular planform and curved L.E. planform reduces rapidly from leading edge up to trailing e dge but for c urved T .E. pl anform, t he uppe r s urface pr essure reduces very slowly up to the trailing edge. In segment-D, overall pressure difference between upper and lower surface of all the three planforms seems equal as shown in Figure 6.20. From Figure 6.20, it is also observed that the upper s urface s uction p ressure of a $11 t$ he t hree $p l$ anforms r educes m ore rapidly up t o $40 \% \mathrm{C}$ a nd t he 1 ower s urface positive pr essure i ncreases rapidly up to $60 \% \mathrm{C}$. From $60 \% \mathrm{C}$ to $90 \% \mathrm{C}$, the difference between two surfaces' pressure of individual planform changes very slowly.

Figure 6.18: C_{p} Distribution of Segment-B at $\alpha=12^{\circ}$

Figure 6.19: C_{p} Distribution of Segment-C at $\alpha=12^{\circ}$

Figure 6.20: C_{p} Distribution of Segment-D at $\alpha=12^{\circ}$

6.2.6 Pressure distribution at 16° angle of attack

Surface pressure di stribution along the chord at 16° angle of attack for four segments of rectangular, curved L.E. and curved T.E. planforms are shown in Figure 6.21, 6.22, 6.23 and 6.24 respectively.

Pressure distribution along the chord for segment-A is shown in Figure 6.21. From t he graph itis obs erved t hat uppe r s urface s uction pr essure of rectangular pl anform de creases from 10% C t o 40% C r apidly, t hen decreases slowly up to $60 \% \mathrm{C}$ and again increases up to $90 \% \mathrm{C}$. The lower surface pos itive pr essure gr adually de creases up to $60 \% \mathrm{C}$ a nd f inally reaches to the suction side from $60 \% \mathrm{C}$ to $90 \% \mathrm{C}$. For curved L.E. planform, the upper surface suction pressure reduces gradually from leading e dge to trailing edge and its lower surface positive pressure increases gradually from leading edge to trailing edge. For curved T.E. planform, the upper and lower
surface pr essure cur ves follow the similar pa ttern as those of c urved L.E. planform. B ut uppe $\mathrm{r} s$ urface of c urved T .E. pl anform is ha ving gr eater suction pressure than that of curved L.E. planform and the lower surface of curved T.E. planform is ha ving greater pos itive pressure than that of he curved L.E. planform. Thus, curved T.E. planform is having greater pressure difference between its two surfaces than that of curved L.E. planform. From the graph it is evident that the pressure difference be tween two surfaces of curved T.E. planform is also higher than the pressure difference between the surfaces of rectangular planform.

Figure 6.21: C_{p} Distribution of Segment-A at $\alpha=16{ }^{\circ}$

Similarly, Figure 6.22, 6.23 and 6.24 shows the surface pressure distribution of segment B, C and D respectively for all the three planforms at 16° angle of attack. From the figures it is observed that pressure difference between the surfaces of curved T.E. planform is higher than that of other two planforms in segment B, C and D .

Figure 6.22: C_{p} Distribution of Segment-B at $\alpha=16^{\circ}$

Figure 6.23: C_{p} Distribution of Segment-C at $\alpha=16^{\circ}$

Figure 6.24: C_{p} Distribution of Segment-D at $\alpha=16^{\circ}$

6.2.7 Pressure distribution at 20° angle of attack

Figure $6.25,6.26,6.27$ a nd 6.28 s hows t he s urface pr essure di stribution along t he c hord at 20° angle of at tack for fou r s egments of re ctangular, curved L.E. and c urved T .E. pl anforms r espectively. From all t he f our figures, it is observed that in all the four segments, the upper surface suction pressure of t he r ectangular pl anform is ve ry much 1 ower t han t he u pper surface suction pressure at previous angle of attack (16° and below) as shown in the previous figures. For curved L.E. planform and curved T.E. planform, the reduction in upper surface suction pressure is noticed comparatively less than those at the previous angle of attack. In Figure 6.25 and Figure 6.26, the difference between t he upper a nd 1 ower s urface pr essure of c urved L.E. planform is obs erved maximum f or s egment-A a nd s egment-B. But in segment-C and segment-D, the said difference is maximum for curved T.E. planform as shown in Figure 6.27 and Figure 6.28.

Figure 6.25: C_{p} Distribution of Segment-A at $\alpha=20^{\circ}$

Figure 6.26: C_{p} Distribution of Segment-B at $\alpha=20^{\circ}$

Figure 6.27: C_{p} Distribution of Segment-C at $\alpha=20^{\circ}$

Figure 6.28: C_{p} Distribution of Segment-D at $\alpha=\mathbf{2 0}^{\circ}$

In c omparison t o t he p ressure di fference of t he s urfaces of curved L.E. planform ins egment-A a nd s egment- B, t he p ressure di fference of t he surfaces of curved T.E. planform in segment-C and segment-D a re hi gher. Another obs ervation is made from F igure 6.27 a nd F igure 6.28 is that the upper s urface pr essure c urve of r ectangular planform a nd curved L.E. planform follow almost similar pattern in segment-C and segment-D.

6.2.8 Pressure distribution at 24° angle of attack

Figure $6.29,6.30,6.31$ a nd 6.32 s hows t he s urface pr essure di stribution along the c hord at $2^{\circ} 4$ angle of at tack for four s egments of all the t hree planforms respectively.

Figure 6.29: C_{p} Distribution of Segment-A at $\alpha=24^{\circ}$

Figure 6.30: C_{p} Distribution of Segment-B at $\alpha=24^{\circ}$

Figure 6.31: C_{p} Distribution of Segment-C at $\alpha=24^{\circ}$

Figure 6.32: C_{p} Distribution of Segment-D at $\alpha=24^{\circ}$
In a $l l t$ he a bove f our figures, it is obs erved t hat t he pr essure difference between upper and lower surface of all the planforms are very less compared to those at previous angles of attack. But among three planforms, curved T.E. planform i s ha ving hi gher pr essure di fference between upp er and 1 ower surfaces at 24° angle of attack as observed in Figure 6.29-6.32.

6.3 Lift Characteristics

Variations of lift coefficient with angle of attack for three wing planforms are shown in Figure 6.33. It is observed that the lift coefficient curve rises from -4° angle of attack up to 16° angle of attack for all the planforms and then falls rapidly beyond 16° angle of attack. Thus, the critical angle of at tack of all the t hree planforms remain a round 16° beyond which the stall occurs. Lift coefficient curve for curved T.E. planforms is observed much higher than that of the curved L.E. planform and the rectangular pl anform. The difference b etween the v alues of lift coefficient of curved T.E. planform and other two planforms are observed highest at 16° angle of attack.

Figure 6.33: Variation of Lift Coefficient with Angle of Attack

6.4 Drag Characteristics

In Figure 6.34 , t he va riation of dr ag coefficient f or all the w ing pl anforms are plotted against di fferent angle of attack and it is obs erved that the values of drag coefficient for curved T.E. planform a re much lower than that of the rectangular wing planform a nd c urved L.E. pl anform. The s ignificant r eduction of dr ag of curved T. E. planform is observed from 8° to 24° angle of attack.

Figure 6.34: Variation of Drag Coefficient with Angle of Attack

6.5 Lift to Drag Ratio

The values of lift to drag ratio are plotted for various angle of attack in Figure 6.35. The figure shows that the lift to drag ratio of curved L.E. wing is higher than that of the rectangular wing. It is also observed from the graph that the lift to drag ratio of curved T.E. pl anform is hi gher t han t hat of t he c urved L.E. pl anform and t he rectangular planform for all angles of attack. For -4° angle of attack, lift to drag ratio of c urved T .E. wing pl anform is obs erved s ignificantly higher t han other t wo planforms.

Figure 6.35: Variation of Lift to Drag Ratio with Angle of Attack

7. CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

In this research, curved boundary is incorporated at the leading e dge and trailing edge of two separate wing planforms in such a way that the surface ar ea from the middle of the wing towards the root increases and towards the tip the area decreases in the same rate. But the ove rall surface area of the wings remain same as of the rectangular planform. The ove rall outcome of the research may be summarized as follows:
a. From the analysis of surface pressure distribution, it is observed that the difference in upper and lower surface pressure of the curved-edge wing planforms near the root (in segment-A and segment-B) are higher than the pressure difference near the tip (in segment-C and segment-D). Thus, the curved-edge wing planforms can produce more lift due to increased surface area near the root of the wings.
b. It is also observed that near the tip (in segment-C and segment-D), the difference be tween upper and lower surface pressure of c urved-edge planforms is comparatively higher than that of the rectangular planform. This phe nomenon ha ppened as tip loss of t he curved-edge wing planforms is reduced due to reduction of chord length at the tip.
c. From the analysis of variation of lift coefficient with angle of attack, it is observed that t he cr itical angle of at tack for c urved-edge pl anforms remain a round 16° as of the rectangular planform. So, stalling oc curs after 16° angle of attack for all three wing planforms.
d. The curved trailing e dge planform exhibits the be st lift characteristics among the three planforms a nd he curved leading edge planform exhibits be tter lif tc haracteristics tha n the rectangular planform. Analyzing the drag coefficient versus angle of attack curves, it is found that the drag is lowest for the curved trailing edge planform among the three experimental w ings. The cur ved leading edg e pl anform a lso produces less drag than the rectangular planform. As a result, the lift to drag ratio is best for the curved trailing edge planform.

7.2 Recommendations for Future Work

The author would like to make the following recommendations for future work in this field:
a. Position a nd na ture of t he leading edge and trailing edg e cur ve may be changed by varying the ratio of root chord to tip chord and wind tunnel test of t hose curved-edge pl anforms m ay be c arried out to investigate aerodynamic characteristics.
b. The research may be conduc ted at higher wind tunnel speed to analyze the variation of aer odynamic characteristics of curved-edge planforms with the variation of air speed or Mach number.
c. Flaps m ay be i ncorporated at any suitable location at the 1 eading edg e and/trailing edge to analyze the aerodynamic characteristics of curved-edge wing planforms with and without flaps.
d. The coe fficient of m oment of the cur ved-edge wing pl anforms may be determined and compared with that of the rectangular planform to analyze the aerodynamic stability characteristics of the wings.
e. Aerofoil section ot her than N ACA 4412 may be used for the curved-edge wing planforms.
f. Different aerofoils may be us ed at di fferent segments of the same cur vededge planform to investigate its aerodynamic characteristics.

REFERRENCES

[1] Lynch, F.T., "Commercial Transports-Aerodynamic Design for Cruise Performance Efficiency," Chapter II in Transonic Aerodynamics, David Nixon, Ed., Progress in Astronautics and Aeronautics, Vol. 81, AIAA, New York, 1982, pp. 81-144.
[2] Hossain, A., Rahman, A., Iqbal, A.K.M.P., Ariffin, M., and Mazian, M., "Drag Analysis of an Aircraft Wing Model with and without Bird Feather like Winglet", International Journal of Aerospace and Mechanical Engineering, Vol. 6, No.1, 2012, pp.8-13.
[3] Dwivedi, Y.D., Prasad, M.S., and Dwivedi, S., "Experimental Aerodynamic Static Stability Analysis of Different Wing Planforms", International Journal of Advancements in Research \& Technology, Vol. 2, No. 6, June 2013, pp.6063.
[4] Mineck, R.E., and Vijgen, P.M.H.W., "Wind-Tunnel Investigation of Aerodynamic Efficiency of Three Planar Elliptical Wings with Curvature of Quarter-Chord Line", NASA Technical Paper 3359, October 1993, pp. 1-20.
[5] Recktenwald, B., "Aerodynamics of a Circular Planform Aircraft", American Institute of Aeronautics and Astronautics 022308, 2008, pp.1-7.
[6] Wakayama, S., "Subsonic Wing Planform Design Using Multidisciplinary Optimization", Journal of Aircraft, Vol. 32, No. 4, July-August 1995, pp. 746753.
[7] Paulo, F.R., Bento, S.M., Roberto, M.G., and Pedro, P., "Wing Planform Optimization of a Transport Aircraft", $22^{\text {nd }}$ Applied Aerodynamics Conference, 16-19 August 2004, Rhode Island, U.S.A., pp.1-14.
[8] Mahmud, M.S., "Analysis of Effectiveness of an Airfoil with Bi-camber Surface", International Journal of Engineering and Technology, Vol. 3, No. 5, May 2013, pp.569-577.
[9] Kandwal, S., and Singh, S., "Computational Fluid Dynamics Study of Fluid Flow and Aerodynamic Forces on an Airfoil", International Journal of Engineering and Technology, Vol. 1, No. 7, September 2012, pp.1-8.
[10] Robert, M.P., "The Variation with Reynolds Number of Pressure Distribution over an Airfoil Section", NACA Report No. 613, pp.65-84.
[11] Sharma, A., "Evaluation of Flow Behavior around an Airfoil Body", M. Engg thesis, Department of Mechanical Engineering, Thapar University, Patiala147004, India, July 2012, pp.1-60.
[12] Ismail, L.W., "Investigation of Load and Pressure Distribution on Wing with Wake Rollup for Low Speed Aircraft", Al-Khwarizmi Engineering Journal, Vol. 4, No. 2, 2008, pp. 59-68.
[13] Wells, A. J., "Experimental Investigation of an Airfoil with Co-Flow Jet Flow Control", M Sc Thesis, University of Florida, 2005.
[14] Demasi, L., "Aerodynamic Analysis of Non-conventional Wing Configurations for Aero-elastic Applications", Ph D Dissertation, Politecnico di Torino, April 2004.
[15] McArthur, J., "Aerodynamics of Wings at Low Reynolds Numbers: Boundary Layer Separation and Reattachment", Ph D Dissertation, University of Southern California, December 2008.
[16] Alam, G. M. J., "Interference Effect and Flow Pattern of Four Biplane Configurations using NACA 0024 Profile", Proceedings of the International Conference on Mechanical Engineering 2011, 18-20 December 2011, Dhaka, Bangladesh.
[17] Hassan, I. A., Darwish, A. S., and Jaffal, H. M., "Theoretical and Experimental Study of a Forward Swept Wing", Anbar Journal for Engineering Sciences, Vol.3, No.2, 2010, pp. 15-30.
[18] Ahmed, M. R., "Aerodynamics of a Cambered Airfoil in Ground Effect", International Journal of Fluid Mechanics Research, Vol. 32, No. 2, 2005, pp. 157-183.
[19] Walter, D. J., "Study of Aerofoils at High Angle of Attack, in Ground Effect", M Sc thesis, School of Aerospace, Mechanical \& Manufacturing Engineering, RMIT University, Australia, September 2007.
[20] Al-Kayiem, H. H. and Kartigesh, A.K., "An Investigation on the Aerodynamic Characteristics of 2-D Airfiol in Ground Collision", Journal of Engineering Science and Technology, Vol. 6, No. 3, 2011, pp. 369 - 381.
[21] Janiszewska, J. M., "Three Dimensional Aerodynamics of a Simple Wing in Oscillation Including Effects of Vortex Generators", Ph D Dissertation, Graduate School of Ohio State University, 2004.
[22] Arora, P. R., Hossain, A., Edi, P., Jaafar, A. A., Younis, T. S., and Saleem, M., "Drag Reduction in Aircraft Model using Elliptical Winglet", Journal of The Institution of Engineers, Malaysia, Vol. 66, No. 4, December 2005, pp. 1-8.
[23] Mashud, M., and Hossain, M. F., "Experimental Study of Flow Separation Control of an Airfoil by Suction and Injection", Proceedings of the $13^{\text {th }}$ Asian Congress of Fluid Mechanics, 17-21 December 2010, Dhaka, Bangladesh, pp. 166-169.
[24] Anderson, J.D., "Fundamentals of Aerodynamics", McGraw-Hill Series in Aeronautical and Aerospace Engineering, $3^{\text {rd }}$ Edition, pp. 15-22.
[25] Kermode, A. C., "Flight without Formula", Pitman, 8th edition 1970.
[26] Clancy, L. J., "Aerodynamics", John Wiley, New York, 1975.
[27] Laurence, K. L. Jr. and Poteat, M. I., "Aerodynamic Characteristics of several NACA airfoil sections at seven Reynolds number from 0.7×10^{6} to $9.0 \times 10^{6 "}$, Langley Memorial Aeronautical Laboratory, 1948.
[28] Abbott, I. H. and Doenhoff, A. E. V., "Theory of Wing Sections including a Summary of Aerofoil Data", Dover Publications, Inc, New York, 1959.
[29] Eppler, R., "Airfoil Design and Data", Springer-Verlag, Berlin, 1990.
[30] Abbott, I. H., Von Doenhoff, A. E. V., and Stivers, L. S., "Summary of Aerofoil Data", NACA Report No. 824, 1945.
[31] Sadraey, M. H., " Aircraft Design: A Systems Engineering Approach", Wiley publications, October 2012, pp. 170-178.
[32] Ramesh, P., "Numerical and experimental investigation of the effect of geometry modification on the aerodynamic characteristics of a NACA 64(2)415 wing", M Sc Thesis, Royal Institute of Technology, Stockholm, Sweden, 2013.
[33] White, F.M., "Fluid Mechanics", McGraw-Hill Series in Mechanical Engineering, $4^{\text {th }}$ Edition, 1999, pp. 526.
[34] Devenport, W.J. and Schetz, J. A., "The Investigation of an Inboard-Winglet Application to a Roadable Aircraft", M Sc in Aerospace Engineering Thesis, Virginia Polytechnic Institute and State University, May 2002, pp. 24-26.
[35] Mainuddin, M., and Ali, M.A.T., "Experimental Investigation of Lift to Drag Ratio between Volumetric Equivalent Fuselages", Proceedings of the $4^{\text {th }}$ BSME-ASME International Conference on Thermal Engineering, 27-29 December 2008, Dhaka, Bangladesh, pp.383-390.
[36] Cimbala, J. M., "Experimental Uncertainty Analysis", Online Edition, 30 January 2013, pp. 1-4.

APPENDIX-I

Table 1: Calculated Values of Pressure Coefficients at $\mathbf{- 4}^{\circ}$ Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.545454545	-1.53030303	0.090909091	-0.772727273	-0.121212121	-0.227272727
	20	-0.515151515	-1.121212121	-0.060606061	-0.545454545	-0.242424242	-0.151515152
	30	-0.484848485	-0.712121212	-0.212121212	-0.318181818	-0.363636364	-0.075757576
	40	-0.454545455	-0.303030303	-0.363636364	-0.090909091	-0.484848485	0
	50	-0.378787879	-0.181818182	-0.318181818	-0.03030303	-0.409090909	0.015151515
	60	-0.303030303	-0.060606061	-0.272727273	0.03030303	-0.333333333	0.03030303
	70	-0.318181818	-0.03030303	-0.227272727	0.045454545	-0.348484848	0.045454545
	80	-0.333333333	0	-0.181818182	0.060606061	-0.363636364	0.060606061
	90	-0.348484848	0.03030303	-0.136363636	0.075757576	-0.378787879	0.075757576
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.575757576	-1.212121212	-0.181818182	-0.772727273	-0.393939394	-0.272727273
	20	-0.545454545	-0.909090909	-0.272727273	-0.575757576	-0.393939394	-0.181818182
	30	-0.515151515	-0.606060606	-0.363636364	-0.378787879	-0.393939394	-0.090909091
	40	-0.484848485	-0.303030303	-0.454545455	-0.181818182	-0.393939394	0
	50	-0.181818182	-0.151515152	-0.515151515	-0.106060606	-0.363636364	0.03030303
	60	0.121212121	0	-0.575757576	-0.03030303	-0.333333333	0.060606061
	70	-0.151515152	0.015151515	-0.424242424	0.015151515	-0.151515152	0.075757576
	80	-0.424242424	0.03030303	-0.272727273	0.060606061	0.03030303	0.090909091
	90	-0.696969697	0.045454545	-0.121212121	0.106060606	0.212121212	0.106060606
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.5	-1.272727273	-0.893939394	-0.318181818	-0.424242424	-0.681818182
	20	-0.454545455	-0.939393939	-0.727272727	-0.242424242	-0.424242424	-0.424242424
	30	-0.409090909	-0.606060606	-0.560606061	-0.166666667	-0.424242424	-0.166666667
	40	-0.363636364	-0.272727273	-0.393939394	-0.090909091	-0.424242424	0.090909091
	50	-0.409090909	-0.227272727	-0.272727273	-0.075757576	-0.424242424	-0.015151515
	60	-0.454545455	-0.181818182	-0.151515152	-0.060606061	-0.424242424	-0.121212121
	70	-0.181818182	-0.090909091	-0.166666667	0	-0.348484848	-0.121212121
	80	0.090909091	0	-0.181818182	0.060606061	-0.272727273	-0.121212121
	90	0	0.090909091	-0.196969697	0.121212121	-0.196969697	-0.121212121
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.651515152	-0.803030303	-0.590909091	-0.515151515	-0.878787879	0
	20	-0.606060606	-0.575757576	-0.515151515	-0.393939394	-0.696969697	-0.03030303
	30	-0.560606061	-0.348484848	-0.439393939	-0.272727273	-0.515151515	-0.060606061
	40	-0.515151515	-0.121212121	-0.363636364	-0.151515152	-0.333333333	-0.090909091
	50	-0.454545455	-0.060606061	-0.363636364	-0.060606061	-0.333333333	-0.045454545
	60	-0.393939394	0	-0.363636364	0.03030303	-0.333333333	0
	70	-0.454545455	0	-0.348484848	0.060606061	-0.333333333	0.045454545
	80	-0.545454545	0	-0.333333333	0.090909091	-0.333333333	0.090909091
	90	-0.636363636	0	-0.318181818	0.121212121	-0.333333333	0.136363636

Table 2: Calculated Values of Pressure Coefficients at 0° Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.0151515	-0.33333	-0.121212121	-0.424242424	-0.121212121	-0.227272727
	20	-0.9090909	-0.24242	-0.272727273	-0.303030303	-0.242424242	-0.151515152
	30	-0.8030303	-0.15152	-0.424242424	-0.181818182	-0.363636364	-0.075757576
	40	-0.6969697	-0.06061	-0.575757576	-0.060606061	-0.484848485	0
	50	-0.5454545	-0.04545	-0.454545455	-0.015151515	-0.409090909	0.015151515
	60	-0.3939394	-0.0303	-0.333333333	0.03030303	-0.333333333	0.03030303
	70	-0.3484848	-0.01515	-0.303030303	0.060606061	-0.348484848	0.045454545
	80	-0.3030303	0	-0.272727273	0.090909091	-0.363636364	0.060606061
	90	-0.2575758	0.015152	-0.242424242	0.121212121	-0.378787879	0.075757576
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \stackrel{\circ}{1} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	10	-0.969697	0.045455	-0.590909091	-0.272727273	-0.393939394	-0.272727273
	20	-0.8484848	0	-0.606060606	-0.212121212	-0.393939394	-0.181818182
	30	-0.7272727	-0.04545	-0.621212121	-0.151515152	-0.393939394	-0.090909091
	40	-0.6060606	-0.09091	-0.636363636	-0.090909091	-0.393939394	0
	50	-0.2272727	-0.0303	-0.666666667	-0.060606061	-0.363636364	0.03030303
	60	0.15151515	0.030303	-0.696969697	-0.03030303	-0.333333333	0.060606061
	70	-0.1060606	0.015152	-0.484848485	0.015151515	-0.151515152	0.075757576
	80	-0.3636364	0	-0.272727273	0.060606061	0.03030303	0.090909091
	90	-0.6212121	-0.01515	-0.060606061	0.106060606	0.212121212	0.106060606
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \text { U } \\ & \stackrel{\rightharpoonup}{\varpi} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & \sim \end{aligned}$	10	-0.9090909	-0.16667	-1.333333333	-0.212121212	-0.424242424	-0.681818182
	20	-0.7575758	-0.18182	-1.060606061	-0.121212121	-0.424242424	-0.424242424
	30	-0.6060606	-0.19697	-0.787878788	-0.03030303	-0.424242424	-0.166666667
	40	-0.4545455	-0.21212	-0.515151515	0.060606061	-0.424242424	0.090909091
	50	-0.5	-0.18182	-0.363636364	0	-0.424242424	-0.015151515
	60	-0.5454545	-0.15152	-0.212121212	-0.060606061	-0.424242424	-0.121212121
	70	-0.2272727	-0.06061	-0.181818182	-0.015151515	-0.348484848	-0.121212121
	80	0.09090909	0.030303	-0.151515152	0.03030303	-0.272727273	-0.121212121
	90	-0.0454545	0	-0.121212121	0.075757576	-0.196969697	-0.121212121
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \text { Q } \\ & \stackrel{\rightharpoonup}{\stackrel{1}{\omega}} \\ & \stackrel{\text { ®on }}{0} \end{aligned}$	10	-0.9848485	-0.34848	-0.984848485	-0.348484848	-0.878787879	0
	20	-0.8787879	-0.27273	-0.818181818	-0.242424242	-0.696969697	-0.03030303
	30	-0.7727273	-0.19697	-0.681818182	-0.136363636	-0.515151515	-0.060606061
	40	-0.6666667	-0.12121	-0.545454545	-0.03030303	-0.333333333	-0.090909091
	50	-0.5606061	-0.06061	-0.484848485	-0.03030303	-0.333333333	-0.045454545
	60	-0.4545455	0	-0.424242424	-0.03030303	-0.333333333	0
	70	-0.469697	0	-0.393939394	0.045454545	-0.333333333	0.045454545
	80	-0.4848485	0	-0.363636364	0.121212121	-0.333333333	0.090909091
	90	-0.5	0	-0.333333333	0.196969697	-0.333333333	0.136363636

Table 3: Calculated Values of Pressure Coefficients at 4° Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.439393939	-0.106060606	-0.318181818	-0.136363636	-0.409090909	-0.181818182
	20	-1.212121212	-0.090909091	-0.424242424	-0.090909091	-0.484848485	-0.121212121
	30	-0.984848485	-0.075757576	-0.53030303	-0.045454545	-0.560606061	-0.060606061
	40	-0.757575758	-0.060606061	-0.636363636	0	-0.636363636	0
	50	-0.560606061	-0.075757576	-0.5	0.03030303	-0.53030303	0.03030303
	60	-0.363636364	-0.090909091	-0.363636364	0.060606061	-0.424242424	0.060606061
	70	-0.303030303	-0.045454545	-0.272727273	0.075757576	-0.409090909	0
	80	-0.242424242	0	-0.181818182	0.090909091	-0.393939394	0.060606061
	90	-0.181818182	0.045454545	-0.090909091	0.106060606	-0.378787879	0.121212121
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.454545455	0.121212121	-0.909090909	0.045454545	-1.015151515	0.106060606
	20	-1.212121212	0.060606061	-0.878787879	0.03030303	-0.96969697	0.090909091
	30	-0.96969697	0	-0.848484848	0.015151515	-0.924242424	0.075757576
	40	-0.727272727	-0.060606061	-0.818181818	0	-0.878787879	0.060606061
	50	-0.303030303	-0.03030303	-0.787878788	0	-0.848484848	0.045454545
	60	0.121212121	0	-0.757575758	0	-0.818181818	0.03030303
	70	-0.075757576	0	-0.515151515	0.045454545	-0.439393939	0.03030303
	80	-0.272727273	0	-0.272727273	0.090909091	-0.363636364	0.03030303
	90	-0.46969697	0	-0.03030303	0.136363636	-0.287878788	0.03030303
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.212121212	-0.075757576	-1.803030303	-0.106060606	-2.121212121	0.060606061
	20	-1	-0.090909091	-1.393939394	0	-1.757575758	0.151515152
	30	-0.787878788	-0.106060606	-0.984848485	0.106060606	-1.333333333	0.242424242
	40	-0.575757576	-0.121212121	-0.575757576	0.212121212	-0.909090909	0.333333333
	50	-0.560606061	-0.121212121	-0.393939394	0.106060606	-0.757575758	0.272727273
	60	-0.545454545	-0.121212121	-0.212121212	0	-0.606060606	0.212121212
	70	-0.196969697	-0.075757576	-0.166666667	0.03030303	-0.454545455	0.196969697
	80	0.151515152	-0.03030303	-0.121212121	0.060606061	-0.303030303	0.181818182
	90	0.106060606	0.015151515	-0.075757576	0.090909091	-0.151515152	0.166666667
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.181818182	-0.121212121	-1.393939394	-0.121212121	-1.636363636	0.075757576
	20	-1.060606061	-0.121212121	-1.151515152	-0.060606061	-1.363636364	0.090909091
	30	-0.939393939	-0.121212121	-0.909090909	0	-1.090909091	0.106060606
	40	-0.818181818	-0.121212121	-0.666666667	0.060606061	-0.818181818	0.121212121
	50	-0.621212121	-0.060606061	-0.545454545	0.03030303	-0.696969697	0.106060606
	60	-0.424242424	0	-0.424242424	0	-0.575757576	0.090909091
	70	-0.439393939	0	-0.378787879	0.075757576	-0.53030303	0.121212121
	80	-0.454545455	0	-0.333333333	0.151515152	-0.424242424	0.151515152
	90	-0.46969697	0	-0.287878788	0.227272727	-0.318181818	0.181818182

Table 4: Calculated Values of Pressure Coefficients at $\mathbf{8}^{\circ}$ Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-2.106060606	0.196969697	-0.787878788	0.121212121	-0.939393939	0.303030303
	20	-1.696969697	0.151515152	-0.787878788	0.121212121	-0.878787879	0.272727273
	30	-1.287878788	0.106060606	-0.787878788	0.121212121	-0.818181818	0.242424242
	40	-0.878787879	0.060606061	-0.787878788	0.121212121	-0.757575758	0.212121212
	50	-0.651515152	0	-0.606060606	0.136363636	-0.606060606	0.181818182
	60	-0.424242424	-0.060606061	-0.424242424	0.151515152	-0.454545455	0.151515152
	70	-0.318181818	-0.03030303	-0.287878788	0.136363636	-0.333333333	0.151515152
	80	-0.212121212	0	-0.151515152	0.121212121	-0.212121212	0.151515152
	90	-0.106060606	0.03030303	-0.015151515	0.106060606	-0.090909091	0.151515152
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.818181818	0.303030303	-1.46969697	0.303030303	-1.651515152	0.424242424
	20	-1.515151515	0.212121212	-1.333333333	0.272727273	-1.484848485	0.393939394
	30	-1.212121212	0.121212121	-1.196969697	0.242424242	-1.318181818	0.363636364
	40	-0.909090909	0.03030303	-1.060606061	0.212121212	-1.151515152	0.333333333
	50	-0.378787879	0.060606061	-0.893939394	0.151515152	-1	0.272727273
	60	0.151515152	0.090909091	-0.727272727	0.090909091	-0.848484848	0.212121212
	70	0	0.045454545	-0.5	0.121212121	-0.545454545	0.196969697
	80	-0.151515152	0	-0.272727273	0.151515152	-0.242424242	0.181818182
	90	-0.303030303	-0.045454545	-0.045454545	0.181818182	0.060606061	0.166666667
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.666666667	0.212121212	-2.333333333	0.166666667	-2.727272727	0.424242424
	20	-1.333333333	0.151515152	-1.787878788	0.212121212	-2.121212121	0.393939394
	30	-1	0.090909091	-1.242424242	0.257575758	-1.515151515	0.363636364
	40	-0.666666667	0.03030303	-0.696969697	0.303030303	-0.909090909	0.333333333
	50	-0.606060606	0.015151515	-0.46969697	0.151515152	-0.681818182	0.242424242
	60	-0.545454545	-0.060606061	-0.242424242	0	-0.454545455	0.151515152
	70	-0.196969697	-0.075757576	-0.136363636	0.03030303	-0.348484848	0.136363636
	80	0.151515152	-0.090909091	-0.03030303	0.060606061	-0.242424242	0.121212121
	90	0.5	-0.106060606	0.075757576	0.090909091	-0.136363636	0.106060606
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.621212121	0.090909091	-1.848484848	0.03030303	-2.075757576	0.212121212
	20	-1.363636364	0.060606061	-1.515151515	0.090909091	-1.727272727	0.242424242
	30	-1.106060606	0.03030303	-1.181818182	0.151515152	-1.378787879	0.272727273
	40	-0.848484848	0	-0.848484848	0.212121212	-1.03030303	0.303030303
	50	-0.666666667	0.03030303	-0.681818182	0.136363636	-0.818181818	0.196969697
	60	-0.484848485	0.060606061	-0.515151515	0.060606061	-0.606060606	0.090909091
	70	-0.46969697	0.045454545	-0.409090909	0.121212121	-0.5	0.151515152
	80	-0.454545455	0.03030303	-0.303030303	0.181818182	-0.393939394	0.212121212
	90	-0.439393939	0.015151515	-0.196969697	0.242424242	-0.287878788	0.272727273

Table 5: Calculated Values of Pressure Coefficients at 12° Angle of Attack

	\%C	Cpu, rect	Cpl,rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-2.42424	0.409091	-0.560606061	0.303030303	-0.924242424	0.196969697
	20	-1.90909	0.333333	-0.666666667	0.272727273	-0.878787879	0.181818182
	30	-1.39394	0.257576	-0.772727273	0.242424242	-0.833333333	0.166666667
	40	-0.87879	0.181818	-0.878787879	0.212121212	-0.787878788	0.151515152
	50	-0.62121	0.090909	-0.606060606	0.212121212	-0.560606061	0.136363636
	60	-0.36364	0	-0.333333333	0.212121212	-0.333333333	0.121212121
	70	-0.25758	0.015152	-0.196969697	0.181818182	-0.257575758	0.106060606
	80	-0.15152	0.030303	-0.060606061	0.151515152	-0.181818182	0.090909091
	90	-0.04545	0.045455	0.075757576	0.121212121	-0.106060606	0.075757576
	\%C	Cpu, rect	Cpl,rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-2.27273	0.621212	-1.848484848	0.590909091	-1.424242424	0.257575758
	20	-1.81818	0.484848	-1.575757576	0.484848485	-1.151515152	0.242424242
	30	-1.36364	0.348485	-1.303030303	0.409090909	-0.878787879	0.227272727
	40	-0.90909	0.212121	-1.03030303	0.333333333	-0.606060606	0.212121212
	50	-0.78788	0.181818	-0.848484848	0.242424242	-0.46969697	0.196969697
	60	-0.66667	0.151515	-0.666666667	0.151515152	-0.333333333	0.181818182
	70	-0.33333	0.106061	-0.424242424	0.166666667	-0.136363636	0.166666667
	80	0	0.060606	-0.181818182	0.181818182	0.060606061	0.151515152
	90	0.333333	0.015152	0.060606061	0.196969697	0.257575758	0.136363636
	\%C	Cpu, rect	Cpl,rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \text { U } \\ & \stackrel{\rightharpoonup}{\stackrel{~ N}{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	10	-1.90909	0.454545	-2.272727273	0.303030303	-1.545454545	0.272727273
	20	-1.51515	0.363636	-1.727272727	0.333333333	-1.393939394	0.212121212
	30	-1.12121	0.272727	-1.181818182	0.363636364	-1.242424242	0.151515152
	40	-0.72727	0.181818	-0.636363636	0.393939394	-1.090909091	0.090909091
	50	-0.45455	0.121212	-0.409090909	0.196969697	-0.818181818	0.075757576
	60	-0.48485	0.060606	-0.181818182	0	-0.545454545	0.060606061
	70	-0.18182	0.015152	-0.090909091	0.015151515	-0.409090909	0.03030303
	80	0.121212	-0.0303	0	0.03030303	-0.272727273	0
	90	0.424242	-0.07576	0.090909091	0.045454545	-0.136363636	-0.03030303
	\%C	Cpu, rect	Cpl,rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \text { Q } \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\sim}{0} \\ & \sim \end{aligned}$	10	-2	0.409091	-2.196969697	0.257575758	-1.909090909	0.666666667
	20	-1.63636	0.30303	-1.727272727	0.272727273	-1.484848485	0.484848485
	30	-1.27273	0.19697	-1.257575758	0.287878788	-1.060606061	0.303030303
	40	-0.90909	0.090909	-0.787878788	0.303030303	-0.636363636	0.121212121
	50	-0.68182	0.121212	-0.606060606	0.212121212	-0.515151515	0.136363636
	60	-0.45455	0.151515	-0.424242424	0.121212121	-0.393939394	0.151515152
	70	-0.42424	0.121212	-0.333333333	0.136363636	-0.333333333	0.121212121
	80	-0.39394	0.090909	-0.242424242	0.151515152	-0.272727273	0.090909091
	90	-0.36364	0.060606	-0.151515152	0.166666667	-0.212121212	0.060606061

Table 6: Calculated Values of Pressure Coefficients at $\mathbf{1 6}^{\circ}$ Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-2.651515152	0.575757576	-1.606060606	0.439393939	-2.181818182	0.590909091
	20	-1.939393939	0.484848485	-1.333333333	0.393939394	-1.818181818	0.545454545
	30	-1.227272727	0.393939394	-1.060606061	0.348484848	-1.454545455	0.5
	40	-0.515151515	0.303030303	-0.787878788	0.303030303	-1.090909091	0.454545455
	50	-0.363636364	0.166666667	-0.545454545	0.287878788	-0.818181818	0.409090909
	60	-0.212121212	0.03030303	-0.303030303	0.272727273	-0.545454545	0.363636364
	70	-0.272727273	-0.03030303	-0.227272727	0.227272727	-0.424242424	0.303030303
	80	-0.333333333	-0.090909091	-0.151515152	0.181818182	-0.303030303	0.242424242
	90	-0.393939394	-0.151515152	-0.075757576	0.136363636	-0.181818182	0.181818182
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.757575758	0.848484848	-2.227272727	0.742424242	-2.575757576	0.878787879
	20	-1.272727273	0.666666667	-1.818181818	0.636363636	-2.121212121	0.787878788
	30	-0.787878788	0.484848485	-1.409090909	0.53030303	-1.666666667	0.696969697
	40	-0.303030303	0.303030303	-1	0.424242424	-1.212121212	0.606060606
	50	-0.348484848	0.242424242	-0.772727273	0.303030303	-0.984848485	0.424242424
	60	-0.393939394	0.181818182	-0.545454545	0.181818182	-0.757575758	0.242424242
	70	-0.363636364	0.106060606	-0.378787879	0.151515152	-0.545454545	0.196969697
	80	-0.333333333	0.03030303	-0.212121212	0.121212121	-0.333333333	0.151515152
	90	-0.303030303	-0.045454545	-0.045454545	0.090909091	-0.121212121	0.106060606
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-1.803030303	0.666666667	-1.318181818	0.409090909	-1.893939394	0.727272727
	20	-1.424242424	0.545454545	-1	0.424242424	-1.515151515	0.666666667
	30	-1.045454545	0.424242424	-0.681818182	0.439393939	-1.136363636	0.606060606
	40	-0.666666667	0.303030303	-0.363636364	0.454545455	-0.757575758	0.545454545
	50	-0.515151515	0.196969697	-0.303030303	0.348484848	-0.606060606	0.454545455
	60	-0.363636364	0.090909091	-0.242424242	0.242424242	-0.454545455	0.363636364
	70	-0.121212121	0.015151515	-0.257575758	0.121212121	-0.424242424	0.242424242
	80	0.121212121	-0.060606061	-0.272727273	0	-0.393939394	0.121212121
	90	0.363636364	-0.136363636	-0.287878788	-0.121212121	-0.363636364	0
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-2.090909091	0.575757576	-2.121212121	0.439393939	-2.242424242	0.636363636
	20	-1.696969697	0.454545455	-1.606060606	0.424242424	-1.818181818	0.606060606
	30	-1.303030303	0.333333333	-1.090909091	0.409090909	-1.393939394	0.575757576
	40	-0.909090909	0.212121212	-0.575757576	0.393939394	-0.96969697	0.545454545
	50	-0.696969697	0.212121212	-0.484848485	0.272727273	-0.787878788	0.424242424
	60	-0.484848485	0.212121212	-0.393939394	0.151515152	-0.606060606	0.303030303
	70	-0.424242424	0.151515152	-0.409090909	0.151515152	-0.575757576	0.272727273
	80	-0.363636364	0.090909091	-0.424242424	0.151515152	-0.545454545	0.242424242
	90	-0.303030303	0.03030303	-0.439393939	0.151515152	-0.515151515	0.212121212

Table 7: Calculated Values of Pressure Coefficients at 20 ${ }^{\circ}$ Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.31818182	0.621212121	-1.303030303	0.606060606	-1.424242424	0.53030303
	20	-0.33333333	0.515151515	-1.181818182	0.515151515	-1.151515152	0.454545455
	30	-0.34848485	0.409090909	-1.060606061	0.424242424	-0.878787879	0.378787879
	40	-0.36363636	0.303030303	-0.939393939	0.333333333	-0.606060606	0.303030303
	50	-0.34848485	0.151515152	-0.651515152	0.318181818	-0.348484848	0.242424242
	60	-0.33333333	0	-0.363636364	0.303030303	-0.090909091	0.181818182
	70	-0.36363636	-0.07575758	-0.348484848	0.212121212	-0.045454545	0.121212121
	80	-0.39393939	-0.15151515	-0.333333333	0.121212121	0	0.060606061
	90	-0.42424242	-0.22727273	-0.318181818	0.03030303	0.045454545	0
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.5	0.393939394	-1.46969697	0.848484848	-1.727272727	0.606060606
	20	-0.48484848	0.363636364	-1.151515152	0.727272727	-1.333333333	0.515151515
	30	-0.46969697	0.333333333	-0.833333333	0.606060606	-0.939393939	0.424242424
	40	-0.45454545	0.303030303	-0.515151515	0.484848485	-0.545454545	0.333333333
	50	-0.45454545	0.227272727	-0.53030303	0.318181818	-0.333333333	0.272727273
	60	-0.45454545	0.151515152	-0.545454545	0.151515152	-0.121212121	0.212121212
	70	-0.43939394	0.075757576	-0.560606061	0.106060606	-0.03030303	0.151515152
	80	-0.42424242	0	-0.575757576	0.060606061	0.060606061	0.090909091
	90	-0.40909091	-0.07575758	-0.590909091	0.015151515	0.151515152	0.03030303
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.33333333	0.651515152	-0.318181818	0.424242424	-2.045454545	0.803030303
	20	-0.42424242	0.515151515	-0.393939394	0.424242424	-1.727272727	0.575757576
	30	-0.51515152	0.378787879	-0.46969697	0.424242424	-1.409090909	0.348484848
	40	-0.60606061	0.242424242	-0.545454545	0.424242424	-1.090909091	0.121212121
	50	-0.54545455	0.136363636	-0.560606061	0.318181818	-0.727272727	0.151515152
	60	-0.48484848	0.03030303	-0.575757576	0.212121212	-0.363636364	0.181818182
	70	-0.18181818	-0.09090909	-0.515151515	0.090909091	-0.242424242	0.090909091
	80	0.121212121	-0.21212121	-0.454545455	-0.03030303	-0.121212121	0
	90	0.424242424	-0.33333333	-0.393939394	-0.151515152	0	-0.090909091
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.72727273	0.454545455	-0.651515152	0.393939394	-2.409090909	0.909090909
	20	-0.66666667	0.318181818	-0.636363636	0.393939394	-1.848484848	0.696969697
	30	-0.60606061	0.181818182	-0.621212121	0.393939394	-1.287878788	0.484848485
	40	-0.54545455	0.166666667	-0.606060606	0.393939394	-0.727272727	0.272727273
	50	-0.57575758	0.151515152	-0.606060606	0.242424242	-0.545454545	0.257575758
	60	-0.60606061	0.090909091	-0.606060606	0.090909091	-0.363636364	0.242424242
	70	-0.6969697	0.03030303	-0.651515152	0.060606061	-0.303030303	0.196969697
	80	-0.78787879	-0.03030303	-0.696969697	0.03030303	-0.242424242	0.151515152
	90	-0.87878788	0	-0.742424242	0	-0.181818182	0.106060606

Table 8: Calculated Values of Pressure Coefficients at 24° Angle of Attack

	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.25757576	0.712121212	-1.075757576	0.696969697	-1.212121212	0.772727273
	20	-0.27272727	0.606060606	-0.939393939	0.606060606	-1.060606061	0.666666667
	30	-0.28787879	0.5	-0.803030303	0.515151515	-0.909090909	0.560606061
	40	-0.3030303	0.393939394	-0.666666667	0.424242424	-0.757575758	0.454545455
	50	-0.3030303	0.227272727	-0.590909091	0.393939394	-0.666666667	0.393939394
	60	-0.3030303	0.060606061	-0.515151515	0.363636364	-0.575757576	0.333333333
	70	-0.33333333	-0.015151515	-0.5	0.257575758	-0.515151515	0.287878788
	80	-0.36363636	-0.090909091	-0.484848485	0.151515152	-0.454545455	0.242424242
	90	-0.39393939	-0.166666667	-0.46969697	0.045454545	-0.393939394	0.196969697
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.46969697	0.939393939	-0.727272727	0.939393939	-0.878787879	1
	20	-0.42424242	0.757575758	-0.666666667	0.818181818	-0.787878788	0.909090909
	30	-0.37878788	0.575757576	-0.606060606	0.696969697	-0.696969697	0.818181818
	40	-0.33333333	0.393939394	-0.545454545	0.575757576	-0.606060606	0.727272727
	50	-0.36363636	0.318181818	-0.53030303	0.409090909	-0.575757576	0.545454545
	60	-0.39393939	0.242424242	-0.515151515	0.242424242	-0.545454545	0.363636364
	70	-0.34848485	0.121212121	-0.484848485	0.166666667	-0.484848485	0.242424242
	80	-0.3030303	0	-0.454545455	0.090909091	-0.424242424	0.121212121
	90	-0.2575757	-0.121212121	-0.424242424	0.015151515	-0.363636364	0
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
	10	-0.25757576	0.787878788	-0.333333333	0.53030303	-0.409090909	0.636363636
	20	-0.33333333	0.636363636	-0.363636364	0.515151515	-0.424242424	0.606060606
	30	-0.40909091	0.484848485	-0.393939394	0.5	-0.439393939	0.575757576
	40	-0.48484848	0.333333333	-0.424242424	0.484848485	-0.454545455	0.545454545
	50	-0.43939394	0.227272727	-0.439393939	0.378787879	-0.454545455	0.424242424
	60	-0.39393939	0.121212121	-0.454545455	0.272727273	-0.454545455	0.303030303
	70	-0.12121212	0	-0.424242424	0.121212121	-0.393939394	0.151515152
	80	0.151515152	-0.121212121	-0.393939394	-0.03030303	-0.333333333	0
	90	0.424242424	-0.242424242	-0.363636364	-0.181818182	-0.272727273	-0.151515152
	\%C	Cpu, rect	Cpl, rect	Cpu, curved L.E.	Cpl, curved L.E.	Cpu, curved T.E.	Cpl, curved T.E.
$\begin{aligned} & \text { O } \\ & \stackrel{1}{\bar{\omega}} \\ & \stackrel{\text { ® }}{0} \\ & \dot{\sim} \end{aligned}$	10	-0.63636364	0.545454545	-0.515151515	0.575757576	-0.575757576	0.696969697
	20	-0.57575758	0.409090909	-0.484848485	0.545454545	-0.545454545	0.636363636
	30	-0.51515152	0.272727273	-0.454545455	0.515151515	-0.515151515	0.575757576
	40	-0.45454545	0.242424242	-0.424242424	0.484848485	-0.484848485	0.515151515
	50	-0.48484848	0.212121212	-0.439393939	0.348484848	-0.454545455	0.393939394
	60	-0.51515152	0.106060606	-0.454545455	0.212121212	-0.424242424	0.272727273
	70	-0.60606061	0	-0.5	0.166666667	-0.378787879	0.181818182
	80	-0.6969697	-0.106060606	-0.545454545	0.121212121	-0.333333333	0.090909091
	90	-0.78787879	0	-0.590909091	0.075757576	-0.287878788	0

APPENDIX-II

UNCERTAINTY ANALYSIS

Experimental uncertainty analysis provides a method for predicting the uncertainty of a variable based on its component uncertainties. Furthermore, unless otherwise specified, each of these uncertainties has a confidence level of 95%.

In this experiment, values of pressure coefficients on each surface points are calculated from the respective multi-tube manometer readings obtained during wind tunnel test. Then coefficient of lift and coefficient of drag is estimated from the surface pressure coefficients. As such, the uncertainty started from the initial measurement of manometer height and it propagates with the values of C_{P}, C_{P} and C_{D}. The uncertainty in C_{P}, C_{P} and C_{D} can be estimated if their components' individual uncertainty is known.

The equation of C_{p} can be rewritten in terms of all its components from equation (4.2) as follows:
$C_{p}=\frac{\rho_{\text {water }} \times g \times \Delta H_{\text {multitubemanometer }}}{1 / 2 \rho_{\text {air }} \times U_{\infty}^{2}}=f\left(g, \rho_{\text {water }}, \rho_{\text {air }}, U_{\infty}, \Delta H_{\text {multitubemanometer }}\right)$

Due to temperature rise during the experiment, the density of air is changed. So, uncertainty of 0.038 may be assumed as the uncertainty of $\rho_{\text {air }}$ (diffence between the values of air density for 35 C and $40^{\circ} \mathrm{C}$). Uncertainty in the measurement of height from the multi-tube manometer may be assumed 0.002 (as the readings vary $\pm 2 \mathrm{~mm}$ or 0.002 m from the actual reading). The uncertainties in other components of C_{p} can be neglected. So,

$$
\begin{aligned}
& u_{\rho_{a i r}}=0.038 \\
& u_{\Delta H}=0.002
\end{aligned}
$$

The expected uncertainty in C_{p} can be estimated from the following formula:
$U_{C_{p}}=\sqrt{\left(u_{\rho_{\text {air }}} \frac{\partial C_{p}}{\partial \rho_{\text {air }}}\right)^{2}+\left(u_{\Delta \mathrm{H}} \frac{\partial C_{p}}{\partial \Delta \mathrm{H}}\right)^{2}}$

Let us consider the case of segment-A of rectangular wing at 0° AOA. There, at 20% chord on the upper surface, $\Delta \mathrm{H}=-30 \mathrm{~mm}, \rho_{\text {air }}=1.145 \mathrm{~kg} / \mathrm{m}^{3}$ and corresponding $\mathrm{C}_{\mathrm{p}}=-$ 0.910 . So, from equation (1),

$$
\begin{aligned}
& \frac{\partial C_{p}}{\partial \rho_{\text {air }}}=\frac{-C_{p}}{\rho_{\text {air }}{ }^{2}}=\frac{-(-0.910)}{(1.145)^{2}}=0.694 \\
& \frac{\partial C_{p}}{\partial \Delta \mathrm{H}}=\frac{C_{p}}{\Delta \mathrm{H}}=\frac{(-0.910)}{(-0.03)}=30.33
\end{aligned}
$$

Putting the above two values and the component uncertainties in equation (1), we get the uncertainty of C_{p} as:

$$
U_{C_{p}}=\sqrt{(0.694 \times 0.038)^{2}+(30.33 \times 0.002)^{2}}=0.07
$$

So, the uncertainty in C_{p} is 7%. Similarly from the respective equation of C_{L} and C_{D}, their corresponding uncertainty can be calculated considering the uncertainty of respective C_{p} values.

