L-3/T-2/CE

1.

Date : 17/12/2012

(21)

(21)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B. Sc. Engineering Examinations 2010-2011

Sub : CE 313 (Structural Analysis & Design - II)

Full Marks: 210

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

SECTION - A

There are **SEVEN** questions in this Section. Question 1 is compulsory. Answer any **FOUR** from the rest. Assume reasonable value of any missing data.

The plan of a reinforced concrete building having flat plate floor system is shown in Fig. 1. It is a ten storied building to be used as a hospital in Khulna City. Floor-to-floor height is 11' and the column bases are located 2' below ground level. Soil condition is unknown. Following the equivalent static force method of BNBC-1993, compute earthquake forces at each story level.

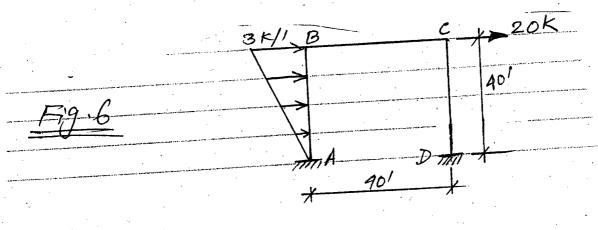
ĄΥ Buldin Column Stab thickness = 10" Floor (1218h=25 p8f 60 Pormanon B บภา x 24 $\overline{\prime}$ 60 Dlan Building

2. Analyze the plane frame of Fig. 2 using approximate cantilever method of analysis and draw the bending moment of the beam EFGH and column BFJ.

J 50K 0 60K G Column (1)() 4 N area Ď \mathcal{B} A 20 18 27

<u>CE 313</u>		• •
. Draw the shear force and	d bending moment diagrams for the column ABC	of the mill
•	find bar force in the knee brace EH.	(21
		·
a second a second and a second second as a second second second second second second second second second secon	1K/12 5K 10K 5K	181
a sector sector and a first a construction of the sector and the		1 81
\Box_{2} 2	G G H	F 8'
	B B	E
n na alanda sayan nagan ke kanan sayan ke kanan kanan kanan kanan kanan ke kanan ke kanan ke kanan ke kanan ke	nan semanangan sa	201
an 1997 - 1900 proc 19 fairth - 19 gailt Shinin anns - a chu an Shallan bar anns a' Shananna. Y	The A	D mr +
en in de esti, nomen alto international a portaneo colori engenariana entre en a sua a	6@8'=481	
A uslaust the alone frame	of Fig. 4 by approximate method and draw the she	ar force and
Analyze the plane frame of bending moment diagram	ns of the beam of 1st floor and the axial force dia	gram of the
	acted upon by 5 k/ft of dead load and 3 k/ft of live	
direction of gravity.		(21
	e e e en e	- KROOF
αντιστικό με ματιστικό το ματιστικό το ματιστικό το το το ματιστικό το το ματιστοριστικό το πορογοριατικό το τ Το πορογοριατικό το πορογοριατικό το	พระ กรุณพุทธ - เพราะเหตา เพราะเหตาและสารแรงการ - เมาะ จากเราะ รายเพราะ เป็นเกาะการเป็นและ กรุณาณาและกรุณา	3
алама – Ижала изгали и иго и шара ул ижи и и и сала има спирали или сари рамабит у рисси и сурана, и сари и са Ката и	11111111111111111111111111111111111111	
No. 1	ne na se la sense anna anna a se a se a se anna martin na anna anna anna anna a se anna anna	
<u> </u>	·····	IF.
	мания на стати и по стати и на стати и по стати и по стати стати и рака. По стати стати с стати и по стати стати По стати и по стати и по стати и по стати и по стати стати и по стат	
anna ann an Aonaichte ann an Aonaichte ann an Aonaichte anna an ann an ann an ann an Aonaichte ann an Aonaicht Anna ann an Aonaichte ann an Aonaichte ann ann an Aonaichte ann ann an Aonaichte ann ann ann an Aonaichte ann an	an a construction of the second of the secon	GF
	1 301 1 251 1 201	- / -
Ear the building describe	ed in question 1 and Fig. 1, determine the total the	rust of wind
	de. The wind blows in x direction.	(2
based on BIABC-1775 Coc		(-
5. The space truss of Fig. 5	is in the form of a cube. Determine the force in e	ach member
due to force $P = 20$ kip ac	cting at joint E along line CE.	(2
the second se	ting at joint E along line CE. 个 Z	(2
the second se	<u>↑</u> Z	
the second se		
	↑Z CSC hinge	
	↑Z CSC hinge	(2
	↑Z CSC hinge	(2
	P	(2
 A second s	P	(2
 A second s	P CHE hinge D CHE hinge	(2
	P CHE hinge D A F H	· · · · · · · · · · · · · · · · · · ·

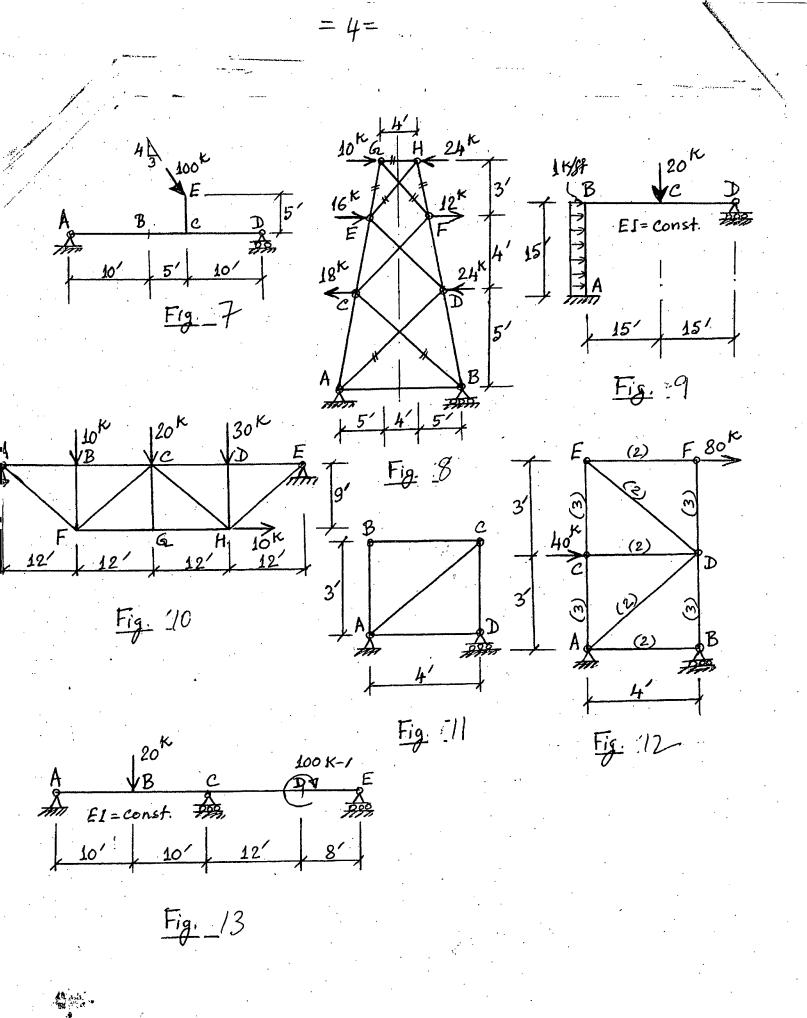
= 2 =

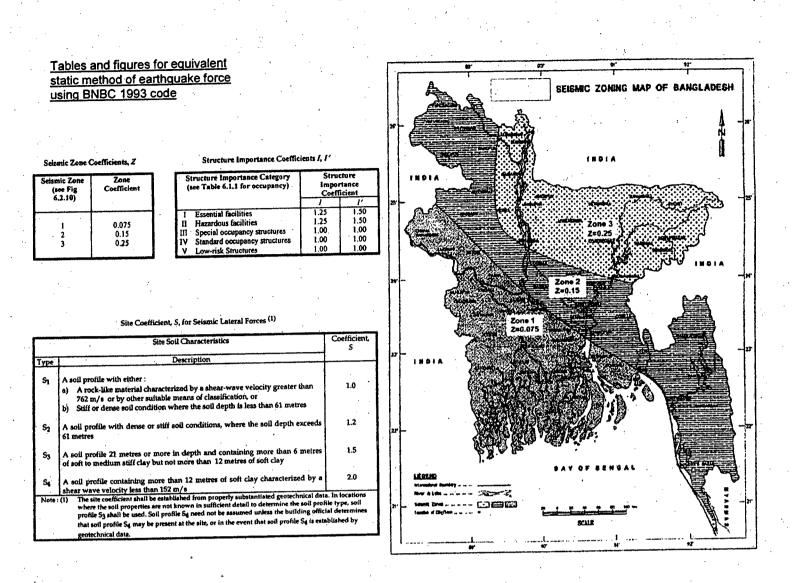

<u>CE 313</u>

7. Analyze the plane frame of Fig. 6 by an approximate method and draw the axial force, shear force and bending moment diagrams.

(21)

Contd. P/4


3


<u>SECTION – B</u>

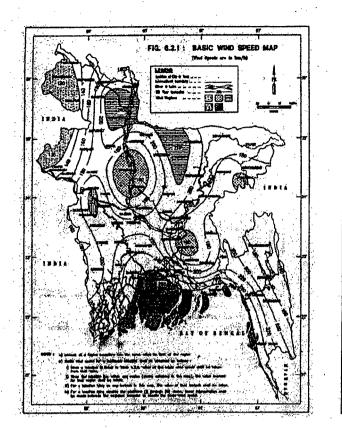
There are SEVEN questions in this Section. Answer any FIVE.

14	. Draw shear force and bending moment diagrams for the beam shown in Fig. 13. Given: EI = constant throughout.	(21)
13.	Compute the relative displacement of joints C and F along the line joining them (Fig. 12) due to the loads shown. Cross sectional areas of members in in^2 are shown in parentheses alongside each member. Given: $E = 30000$ ksi.	(21)
12.	Compute the amount of translation and its direction of the joint at B of the truss shown in Fig. 11. The temperature of AB and CD falls by 50°F and that of all other members rises by 80°F. Given: $\alpha_t = \frac{1}{1,50,000} 1/°F$	(21)
11.	For the truss shown in Fig. 10, determine all reactions and member forces. Use method of consistent deformation. Given: $E = 29 \times 10^3$ ksi and cross sectional area, $A = 2$ in ² for all bars.	(21)
10.	Using method of consistent deformation, draw axial force, shear force and bending moment diagrams for the frame shown in Fig. 9. EI is constant throughout. Neglect axial force effect.	(21)
9.	Determine the forces in the bars AD, BC, GH, GE, HF, GF and EH of the structure shown in Fig. 8. Use approximate method of analysis.	(21)
8.	Compute vertical displacement and rotation at B of the structure shown in Fig. 7 due to the 100 kip load applied of E. Given: $E = 30,000 \text{ ksi}$; $I = 360 \text{ in}^4$; $A = 16 \text{ in}^2$ throughout.	(21)

Contd ----P/5

= 5

Response Modification Coefficient for Structural Systems, R


Basic Structural System(1)	Description of Lateral Force Resisting System	R
a. Bearing Wall System	1. Light framed walls with shear panels i) Plywood walls for structures, 3 storeys or less	8
	ii) All other light framed walls	6
	2. Shear walls	6
1	i), Concrete	6
•	ii) Masonry	4
	3. Light steel framed bearing walls with tension only	6
	bracing	4
	the barrier companying loads	· 4
	.,	
	ii) Concrete (3)	
•	iii) Heavy timber	
b. Building	1. Steel eccentric braced frame (EBF)	. 10
Frame	2. Light framed walls with shear panels	9.
System	i) Plywood walls for structures 3-storeys or less	7
	ii) All other light framed walls	8
	3. Shear walls	8
	i) Concrete	8
19 A.	ii) Masonry	8
•	4. Concentric braced frames (CBF)	, 8
•	i) Steel	
	ii) Concrete (3)	ŀ
	iii) Heavy timber	1
	i di compre	1
c. Moment		12
Resisting	i) Steel	12
Frame System	ii) Concrete	8
	2. Intermediate moment resisting frames (IMRF),	6
	concrete(4)	5
	3. Ordinary moment resisting frames (OMRF)	2
	i) Steel	1
	ii) Concrete (5)	<u> </u>

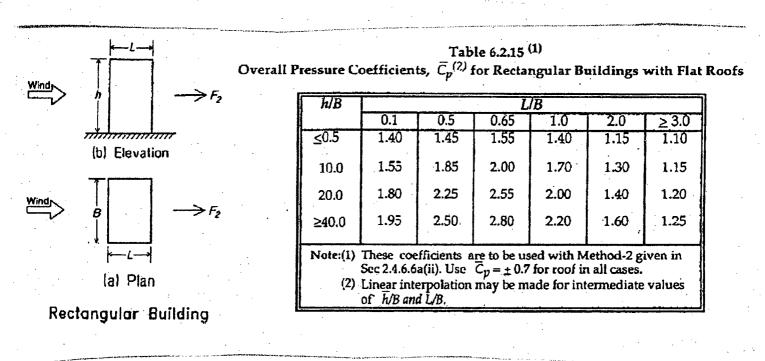
Basic Structur System(1)	al Description of Lateral Force Resisting System	R
d. Dual System	 Shear walls Concrete with steel or concrete SMRF Concrete with steel OMRF Concrete with concrete IMRF (4) Masonry with steel or concrete SMRF Masonry with steel OMRF Masonry with steel OMRF Masonry with concrete IMRF (3) Steel EBF With steel OMRF With steel OMRF Concentric braced frame (CBF) Steel with steel SMRF Steel with steel OMRF Concrete with concrete SMRF (3) (v) Concrete with concrete IMRF (3) 	12 6 9 8 6 7 12 6 10 6 9 6
e. Special Structural Systems	See Sec 1.3.2, 1.3.3, 1.3.5	
Notes : (1) (2) (3) (4) (5)	Basic Structural Systems are defined in Sec 1.3.2, Chapter 1. See Sec 2.5.6.6 for combination of structural systems, and Sec 1 limitations. Prohibited in Seismic Zone 3. Prohibited in Seismic Zone 3 except as permitted in Sec 2.5.9.3. Prohibited in Seismic Zones 2 and 3. Sec 1.7.2.6.	.3.5 for system

Contd ---- P/6

Tables and figures for wind load calculation using BNBC 1993

= 6 =

,	Basic Wind		Basic Wind
Location	Speed (km/h)	Location	Speed (km/h)
			· · · ·
Angarpota	150	Lalmonirhat	204
Bagerhat	252	Madaripur	220
Bandarban	200	Magura	208
Barguna	260	Manikganj	185
Bartsal	256	Meherpur	185
Bhola	225	Maheshkhali	260
Bogra	198	Moulvibazar	168
Brahmanbaria	180	Munshiganj	184
Chandpur	160	Mymensingh	217
Chapal Nawabganj	130	Naogaon	175
Chittagong	260	Narail	222
Chuadanga	198	Narayanganj	195
Comilia	196	Narsinghdi	190
Cox's Bazar	260	Natore	198
Dahagram	150	Netrokona	210
Dhake	210	Nilphamari	140
Dinajpur	130	Noakhati	184
Faridpur	202	Pabna	202
Fent	205	Panchagarh	130
Gaibandha	210	Patuakhali	260
Gazipur	215	Pirojpur	260
Gopalganj	242	Raibart	188
Habiganj	172	Rajshahl .	155
Hatiya	. 260	Rangameti	180
Ishurdi	225	Rangpur	209
Joypurhat	180	Satkhire	183
Jamalpur	180	Shariatour	198
Jessore	205	Sherpur	200
Jhalakati	260	Sirajganj	160
Jhenaldah	208	Srimangal	160
Khagrachhari	180	St. Martin's Island	260
Khuina	238	Sunamganj	195
Kutubdia	260	Sylhet	195
Kishoreganj	207	Sandwip	260
Kurigram	210	Tangali	160
Kushtia	215	Teknaf	260
Lakshmipur	162	Thakurgaon	130
•			


Gust Response Factors, <i>G_h</i> and <i>G_z</i>				
Height above	Dove Gh (2) and Gr			
ground level	Exposure A	Exposure B	Exposure C	
(metres)				
0-4.5	1.654	1.321	1.154	
6.0	1.592	1.294	1.140	
9.0	1.511	1.258	1.121	
12.0	1.457	1.233	1.107	
15.0	1.418	1.215	1.097	
18.0	1.388	1.201	1.089	
21.0	1.363	1.189	1.082	
24.0	1.342	1.178	1.077	
27.0	1.324	1.170	1.072	
30.0	1.309	1.162	1.067	
35.0	1.287	1.151	1.061	
40.0	1.268	1.141	1.055	
45.0	1.252	1.133	1.051	
50.0	1.238	1.126	1.046	
60.0	1.215	1.114	1.039	
70.0	1.196	1.103	1.033	
80.0	1,180	1.095	1.028	
90.0	1.166	1.087	1.024	
100.0	1.154	1.081	1.020	
110.0	1.114	1.075	1.016	
120.0	1.134	1.070	1.013	
130.0	1.126	1.065	1.010	
140.0	1.118	1.061	1.008	
150.0	1.111	1.057		
160.0	1.104	1.057	1.005	
170.0	1.098	1.053	1.003	
180.0	1.092	1.049	1.001	
190.0	1.092		1.000	
200.0	1.087	1.043	1.000	
220.0	1.073	1.040	1.000	
240.0	1.065	1.035	1.000	
260.0	1.055	1.030	1.000	
280.0	1.056	1.026	1.000	
300.0	1.045	1.022	1.000	
and the second se	ain wind-force	1.018 resisting s	1.000	
Note: (1) For main wind-force resisting systems, use				

90.0 00.0 20.0 40.0 60.0 80.0	1.087 1.082 1.073 1.065 1.058	1.043 1.040 1.035 1.030 1.026	1.000 1.000 1.000 1.000 1.000	
0.0	1.051 1.045	1.022	1.000 1.000	
buildi	ng or structure interpolation	e height <i>h</i> for <i>z</i> . is acceptable for	systems, use	

and the second se			
Height above	Coefficient, $C_{z}(1)$		
ground level, z (metres)	Exposure A	Exposure B	Exposure C
0-4.5	0.368	0.801	1.196
6.0	0.415	0.866	1.263
9.0	0.497	0.972	1.370
12.0	0.565	1.055	1.451
15.0	0.624	1.125	1.517
18.0	0.677	1.185	1.573
21.0	0.725	1.238	1.623
24.0	0.769	1.286	1.667
27.0	0.810	1.330	1.706
30.0	0.849	1.371	1.743
35.0	0.909	1.433	1.797
40.0	0.965	1.488	1.846
45.0	1.017	1.539	1.890
50.0	1.065	1.586	1.930
60.0	1.155	1.671	2.002
70.0	1.237	1.746	2.065
80.0	1.313	1.814	2.120
90.0	1.383	1.876	2.171
100.0	1.450	1.934	2.217
110.0	1.513	1.987	2.260
120.0	1.572	2.037	2.299
130.0	1.629	2.084	2.337
140.0	1.684	2.129	2.371
150.0	1.736	2.171	2.404
160.0	1.787	2.212	2.436
170.0	1.835	2.250	2.465
180.0	1.883	2.287	2.494
190.0	1.928	2.323	2.521
200.0	1.973	2.357	2.547
220.0	2.058	2.422	2.596
240.0	2.139	2.483	2.641
260.0	2.217	2.541	2.684
300.0	2.910 2.362	2.595 2.647	2.724 2.762
	ground level, z (metres) 0-4.5 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 100.0 100.0 120.0 120.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 220.0 240.0 260.0 280.0 300.0	ground level, z Exposure A (metres) 0-4.5 0.368 6.0 0.415 0.368 9.0 0.497 12.0 0.565 15.0 0.624 18.0 0.677 21.0 0.725 24.0 0.769 27.0 0.810 30.0 0.849 35.0 0.909 40.0 0.965 45.0 1.017 50.0 1.065 60.0 1.155 70.0 1.237 80.0 1.313 90.0 1.383 100.0 1.450 110.0 1.513 120.0 1.572 130.0 1.629 140.0 1.684 150.0 1.736 160.0 1.787 170.0 1.835 180.0 1.833 190.0 1.928 200.0 2.058 240.0 2.139 260.0 2.217 280.0 2.217 280.0 2.910 300.0 2.362	Coefficient, C. ground level, z (metres) Exposure A Exposure B 0-4.5 0.368 0.801 6.0 0.415 0.866 9.0 0.497 0.972 12.0 0.565 1.055 15.0 0.624 1.125 18.0 0.677 1.185 21.0 0.725 1.238 24.0 0.769 1.286 27.0 0.810 1.330 30.0 0.849 1.371 35.0 0.909 1.433 40.0 0.965 1.488 45.0 1.017 1.539 50.0 1.065 1.586 60.0 1.155 1.671 70.0 1.237 1.746 80.0 1.313 1.814 90.0 1.383 1.876 100.0 1.450 1.934 110.0 1.513 1.987 120.0 1.572 2.037 130.0 1.

Contd ... P/ 7

Tables and figures for wind load calculation using BNBC 1993

Structure Importance Category	Structure Importance
(see Table 6.1.1 for Occupancy)	Coefficient, CI
I Essential facilities	1.25
II Hazardous facilities	1.25
III Special occupancy structures	1.00
IV Standard occupancy structures	1.00
V Low-risk structures	0.80

=7=

Date : 24/12/2012

4-12-12

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B. Sc. Engineering Examinations 2010-2011

Sub : CE 317 (Design of concrete structure II)

Full Marks : 280

The figures in the margin indicate full marks.

Time: 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) A 16 × 25 in. column is reinforced with ten No. 9 bars as shown in Fig. 1. Construct the nominal strength interaction diagram for the column with five points corresponding to pure axial load, pure bending, balanced condition, $\mathcal{E}_s = 0.001$ (tensile) and $\mathcal{E}_s = 0.004$ (tensile). Also find corresponding ϕ for the above points. Assume bending about Y - Y axis. Given: $f'_c = 4$ ksi and $f_y = 60$ ksi.

(b) A circular column carries working loads $P_{DL} = 900$ kip and $P_{LL} = 500$ kip. Design the spirally reinforced column using reasonable percentage of main reinforcement. Also design the ACI spiral. Use USD. Given $f'_c = 4$ ksi and $f_y = 60$ ksi.

Spirally teinforced column. (c) What is ACI spiral? Explain the failure behaviour of ACI specially teinforced column.

2. (a) A ground floor column of a multistoried building is to be designed for the following load combinations - Gravity load combination $P_u = 600$ kip, $M_u = 70$ kip-ft. Lateral load combination $P_u = 550$ kip, $M_u = 400$ kip-ft. Architectural considerations require that a rectangular column with b = 15 in and h = 25 in is to be used. Material strengths are $f'_c = 4$ ksi and $f_y = 60$ ksi.

Find the required column reinforcement, tie size and spacing and show in sketch. Use along relevant design chart assuming reinforcement distributed about the perimeter.

(b) Design a tied column with about 3% reinforcement to support unfactored laods $P_{DL} = 450$ kip and $P_{LL} = 350$ kip. Due to architecture al reason, the width of column b = 12'' should be maintained. Also design tie size and spacing. Use USD and show sketches. Given: $f'_c = 5$ ksi and $f_y = 72.5$ ksi.

(c) Why are ϕ values lower for compression than those for flexure or shear? What is the significance of using α in column design?

3. (a) Design a single footing to support an 18×18 in square tied column reinforced with eight No. 9 bars. One side of the footing is limited to 9.0 ft. The column carries unfactroed axial dead load of 275 kip and live load of 200 kip. The base of the footing is 4-ft below grade and the available soil pressure is 5 ksf. Use $f'_c = 3$ ksi and $f_y = 60$ ksi.

(23²/₃)

Contd^{*}..., P/2

(20)

(14)

(25)

(14)

 $(7\frac{2}{3})$

L-3/T-2/CE

<u>CE 317</u> <u>Contd ... Q. No. 3</u>

(b) A column 19" × 19" in size carries working dead load $P_{DL} = 300$ kip and live load $P_{LL} = 150$ kip. Cast in-situ piles of diameter 20 in with allowable load carrying capacity of 125 kip are to be used. Pile spacing shall be 3 times the pile diameter. Design the pile cap using USD method. Draw plan and section showing all reinforcements and necessary details. Given: $f'_c = 3$ ksi and $f_y = 60$ ksi.

= 2 =

4. (a) A gravity retaining wall as shown in Fig. 2 is to retain a bank 15 ft high whose horizontal surface is subjected to a live load surcharge of 300 psf, The soil is a sand-gravel mix with unit wt = 120 lb/ft³ and ϕ = 30°. Assume base friction coefficient = 0.5, allowable bearing capacity = 7000 psf and unit wt. of concrete = 150 lb/ft³. Check if the wall has adequate factors of safety against overturning, bearing and sliding.

(b) The section of RC cantilever retaining wall supporting granular soil is shown in Fig. 3. Assuming that there are adequate factors of safety against overturning, bearing and sliding, design the thickness and flexural reinforcement for the arm at the bottom (curtailment is not required). Also find other reinforcements required in the arm. Show all reinforcement in a sketch. Given: $f'_c = 3$ ksi and $f_y = 60$ ksi, unit wt of soil = 120 lb/ft³

 $\phi \doteq 30^\circ$, surcharge = 400 psf.

(c) Why is seismic detailing essential for earthquake resistant design of structures? Draw and explain seismic detailing provisions for column of an intermediate moment resisting frame as per ACI/BNBC code.

SECTION – B

There are FOUR questions in this Section. Answer any THREE.

5.	(a) Why is it essential to provide minimum thickness for slabs as per ACI/ BNC code?	(8)
	(b) Write in short ACI/BNBC code provisions for one-way joist floor.	(8)
	(c) What are the guidelines generally used for estrablishing the axes of rotations and yield	
	lines for slabs?	(8)
•	(d) Calculate the yield moment for a simply supported square slab subjected to uniformly load load distributed by equilibrium method.	(8)
	(e) Using the method of vertical work, determine the load carrying capacity of the one-	(0)
	way uniformly loaded continuous slab which has a 12 ft span and is reinforced to provide	
	a resistance to positive bending moment 6.0 kip-ft /ft throughout the span. In addition,	

a resistance to positive bending moment 6.0 kip-ft /ft throughout the span. In addition, negative steel over the supports provides moment capacities of 6.0 kip-ft/ft at one end and 9.0 kip-ft/ft at other end.

 $(14\frac{2}{3})$

Contd P/3

(23)

(21)

(14)

(11%)

<u>CE 315</u>

- 6. (a) Name different types of reinforced concrete floor slabs commonly used in Bangladesh with neat sketches.
 - (b) What are the code provisions of drop panel for flat slab structures?

(c) A 10-storied office building at Dhaka is to be designed using a flat plate floor system. The columns are $18'' \times 18''$ in size and they are spaced 20 ft c/c. Using direct design method, design an interior slab panel and show the reinforcements with neat sketches. Assume slab thickness 7.5''. Specifed LL = 80 psf and superimposed DL = 60 psf in addition to self-weight of slab $f'_c = 3.5$ ksi and $f_y = 60$ ksi.

7. (a) Describe briefly the different stages of loading to which a prestressed concrete member is often subjected.

(b) Compute the value of the live load that the beam of Fig. 4 can carry without producing crack at the bttom of Sec 1 - 1. Given: $f_r = 400$ psi; n = 7 and Effective prestress = 800 kN. (31²/₃)

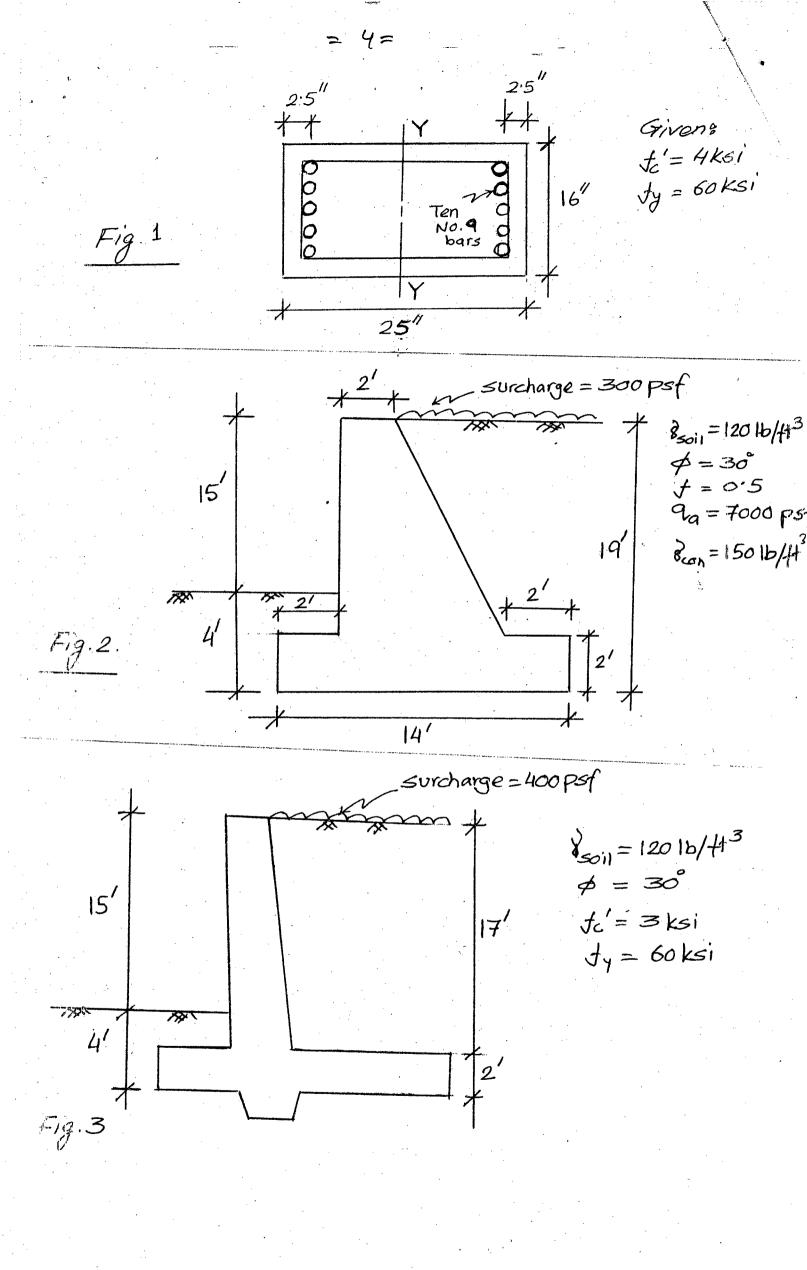
8. (a) Describe briefly the different sources which cause loss of prestress in a prestressed concrete member.

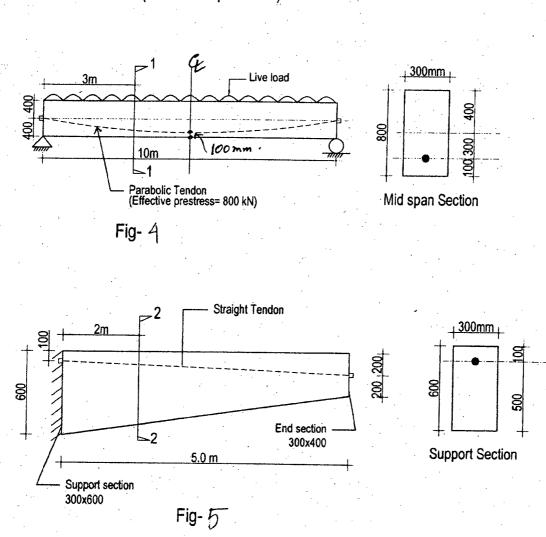
(b) Compute the loss of prestress in steel at sec 2-2 of Fig. 5 due to elastic shortening. The prestress in steel at transfer is 1000 MPa. Given:

Aps = 600 mm²; $E_s = 2 \times 10^5$ MPa; $E_c = 2.5 \times 10^4$ MPa and $f'_{ci} = 30$ MPa.

Neglect the self-weight of the beam.

(31%)

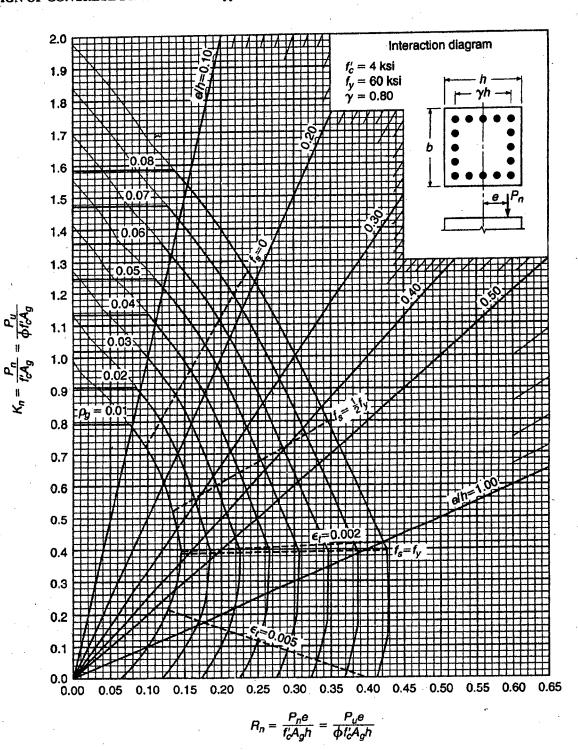

(15)


(8)

(8)

 $(30\frac{1}{3})$

(15)


= 5=

CE 317 for CE (Session-April 2012)

V

774

DESIGN OF CONCRETE STRUCTURES Appendix A

= 6 =

Date : 31/12/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B. Sc. Engineering Examinations 2010-2011

Sub : CE 343 (Geotechnical Engineering II)

Full Marks : 210

Time: 3 Hours

The figures in the margin indicate full marks.

Assume reasonable values of any data, if missing.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer Q. No. 1 and any TWO from the rest. Q. No. 1 is Compulsory.

1. (COMPULSORY QUESTION). Answer any seven of the following nine short questions. Answer should be brief and to the point. Preferably all the answers should be given in sequential order.

(a) What is negative skin friction? What are the remedial measures for skin friction?

(b) What is the purpose of conducting load test for piling works?

(c) What are the information obtained from a subsoil investigation?

(d) How would you classify soil sample and soil samplers?

(e) Show in a Table the classification of piles considering various criteria.

(f) A pile group consisting of four piles is in a square pattern with equal spacing in both directions. Find the centre to centre spacing in terms of the diameter of the piles, if efficiency of the group is 75% as per Converse-Labarre formula.

(g) What are the contents of a good subsoil investigation report?

(h) What are the terms and limiting values used to describe the percentage of gravel, sand and fines in a soil sample?

(i) The inner diameter of a sampling tube and that of a cutting edge are 70 mm and 68 mm respectively; their outer diameter are 72 mm and 74 mm respectively. Determine the area ratio and inside clearance ratio.

2. (a) Describe briefly the principal considerations of a subsoil investigation Programme. (b) A 400 mm diameter \times 15 m long precast concrete pile is driven in the soil stratigraphy shown in Fig. 1.

XXXX $c_{\mu} = 35 \text{ km/m}^2$) = 18 KN/m3 Loyer-L: 5m x = 1.0 ; poor WTD cu = 40 KN/m2 8 3-+ = 19 KN/m3 Layer-2: 5m 2=0.9 Cu = 45 KN/m2 85nt = 19.5 KN/m3 Layer 3: 5m $\alpha = 0.8$ Fig. 1 (For Q. NO. 26): Soil Properties of clay Contd P/2 Layers.

(13)

(22)

L-3/T-2/CE

<u>CE 343</u>

Contd ... Q. No. 2(b)

All soil layers are clay. The properties of each clay layer are shown in Fig. 1. The effective angle of internal friction of all clay layers is 25°. The compressive strength of the concrete used to manufacture the pile is 35 MPa. Calculate the skin friction capacities of the pile using α -method, β -method and λ -method.

= 2

Layer 1 and 2: Normally consolidated, Use $k = 1 - \sin \phi$

Layer 3: Over consolidated with OCR = 2, Use $k = (1 - \sin \phi) \sqrt{OCR}$

Assume $\lambda = 0.21$ for an embedment length of 15 m.

3. (a) Describe with a neat sketch the wash boring method of soil exploration. What are its merits and demerits?

(b) Estimate the allowable load bearing capacity of a precast concrete driven pile 500 mm \times 500 mm in section and 17 m long in a stratified soil with the following data using Meyerhof's method based on SPT value.

Layer No.	Depth (m)	Soil Type	N-value
1	0-5	Fill clay	4
2	5-15	Sand	20
3	15 - 25	Sand	25

Use a global factor of safety of 3.0. If the settlement of single pile is estimated as 15 mm, what would be the settlement of a group of the above pile consisting of 9 piles in a square pattern with a c/c spacing of 1.5 m?

(a) Explain the "Conventional method" and "Meyerhof's effective width concept" for an eccentrically loaded footing. Draw and explain typical soil pressure – settlement curves for footings of different widths on surface of a homogeneous sand deposit.

(b) Determine the allowable load on the footing resting on a clay deposit.

Footing size:	$2.0 \times 3.0 \text{ m}$
Depth of footing:	2 m
Thickness of footing:	0.5 m
Unit weight of soil:	18 kN/m ³
q _u of soil:	120 kN/m^2
Water table:	3.0 m level

Given the following chart:

D _f /B	0.5	1.0	2.0	3.0	4.0	
N _c (strip)	6.0	6.5	7.0	7.4	7.5	

Contd P/3

(13)

(22)

(13)

(22)

<u>CE 343</u>

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5. Using design charts of Fig. 2, determine

(i) Allowable load on a wall footing 2 ft wide resting at 5 ft depth.

(ii) Allowable load on a 10 ft by 10 ft square footing resting at 7.5 ft depth. Calculate

factor of safety against bearing capacity failure.

Given:

Corrected SPT value for the given site.

		Ų	·				00.01	25 0/	
Depth	2.5'	5.0'	7.5'	10.0'	12.5'	15.0'	20.0′	25.0	
Doptin						25	25	27	
N.T.	20 -	22	21	22	23	25	25	21	
N _{Corr}	20		. — -					L	

Unit weight of soil is 120 pcf

Ground water table at 10 ft below ground level

Thickness of 2 ft wide footing = 12''

thickness of square footing = 30''

6. (a) Calculate the settlement of footing resting on a deep deposit of clay at 8 ft below

ground level.

Given: Footing size: $10' \times 12'$

Dead load: 150^k

Live load: 100^k

Average unit weight of soil = 125 pcf

 $C_c = 0.16$ $C_r = 0.03$

 $e_0 = 0.85$ $\sigma_{v max} = 6 \text{ ksf}$

Water table is at 20 ft below ground level.

(b) A raft 100×120 ft in plan has its base 16 ft below surface of a clay deposit with unit weight of 120 pcf. The unconfined compressive strength of the clay is 0.8 tsf. The factor of safety against bearing capacity failure is 3. What total weight of building plus foundation can safely be supported on the raft? Use N_c value from Q. No. 4(b).

7. (a) A pile group consists of 20 piles spaced at 5 ft centre to centre. The pile group is subjected to vertical load of 1200 kip at centre and a moment 1000 kip-ft and 600 kip-ft in long and short direction, respectively. Draw necessary sketches and calculate load on piles at four corners.

(b) Calculate the factor of safety of slip circle shown in Fig. 3. The figure is drawn to scale. Attach the figure with answer script.

8. (a) Draw and explain typical shore protection systems for excavation of 20 ft deep and 100×120 ft in plan.

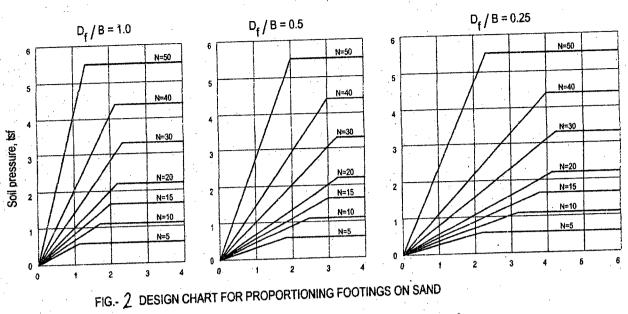
(b) Calculate the factor of safety for slice 1 and 2 shown in Fig. 4. The figure is drawn to scale. Attach the figure with answer script.

Contd. P/4

(23)

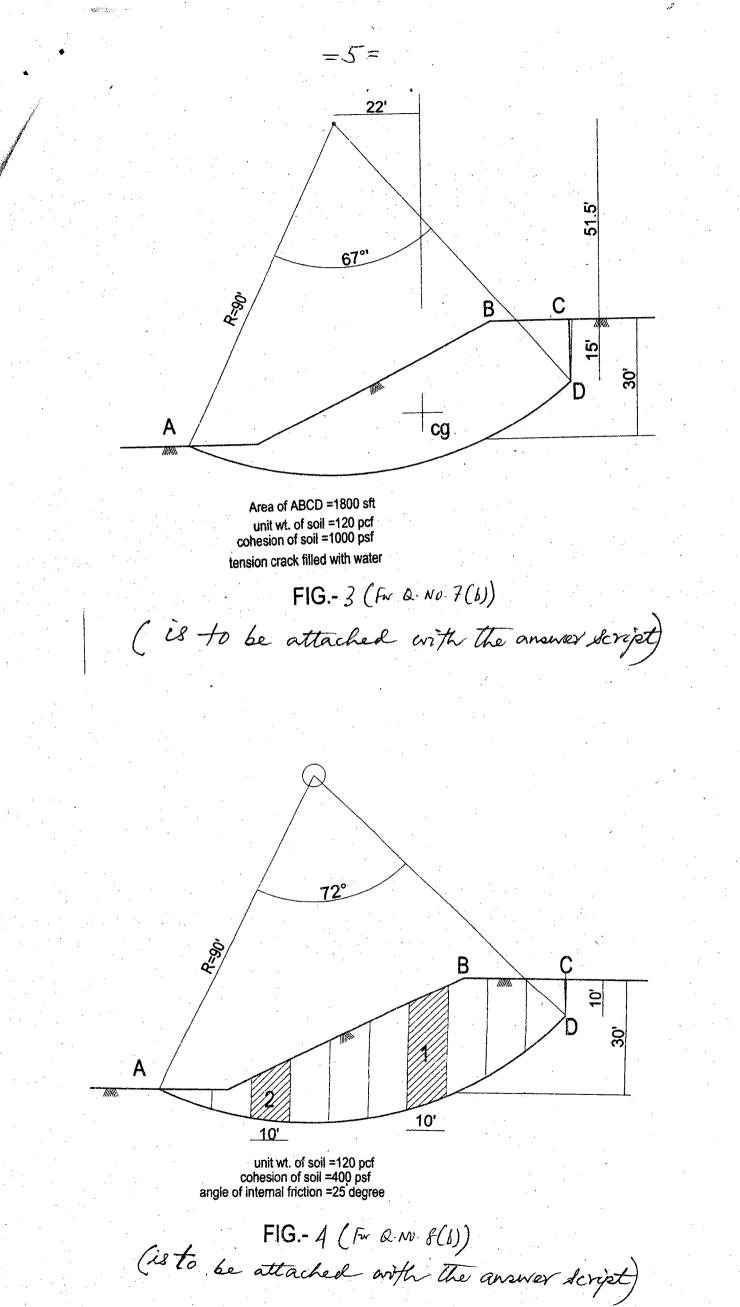
(12)

(20)


(15)

(12)

(23)


(35)

=4=

Date: 07/01/2013

(5)

(5)

(5)

(5).

(15)

(5)

(5)

(5)

(20)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B. Sc. Engineering Examinations 2010-2011

Sub : WRE 303 (Hydrology)

Full Marks: 210

L-3/T-2/CE

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE. 1. (a) Explain why the temperature increases with altitude in the stratosphere. (b) Discuss in brief the logic behind forming polygons in Thiessen polygon Method. (c) Define Trade Wind. Explain why most of the deserts are located in the horse latitudes. (d) With a neat sketch show Hadley cell, Polar cell, Westerlies, and belts of high and low pressures in the Northern Hemisphere.

(e) Calculate precipitable water for surface temperature of 10 °C in first 1 km of saturated atmospheric column if the surface pressure = 101.3 kPa and lapse rate = 6.5 °C/km. Also compute precipitable water for surface temperature of 25 °C in first 1 km of similar column and calculate the percent increase or decrease from the previously computed value. Justify your calculations. Assume any reasonable value for missing data.

2. (a) Define 'extreme value'. Why Gumbel's distribution is known as extreme value distribution?

(b) Classify and explain streams according to annual hydrograph.

(c) Name the forces associated with a falling raindrop. Define terminal velocity.

(d) Maximum recorded precipitation intensities in a catchment for the period 1991 to 2005 are given below:

Year	Maximum Precipitation Intensity (in/hour)	Year	Maximum Precipitation Intensity (in/hour)
1991	0.5	1999	5.0
1992	3.0	2000	3.8
1993	2.6	2001	3.2
1994	2.8	2002	3.3
1995	2.2	2003	0.7
1996	3.6	2004	1.0
1997	3.4	2005	0.8
1998	4.2	· ·	

Contd P/2

WRE 303 (CE)

<u>Contd ... Q. No. 2(d)</u>

•	(i) Use the Gumbel's extreme value distribution to estimate design precipitation	1
	intensities with return periods of 50 and 100 years. Given, $\overline{y}_n = 0.5128$ and $s_n = 1.0206$	
	for N = 15.	
	(ii) Use the IDF curves shown in Fig. 1 to estimate the design durations of precipitation	
	for return periods of 50 and 100 years.	. *
	(iii) Compute the design depths of rainfall for return periods of 50 and 100 years.	
	(iv) Compute the 90% confidence limits for return periods of 50 and 100 years for	
•	precipitation intensity. Given, $f(c) = 1.645$ for $c = 90\%$.	
·		
3.	(a) Differentiate between condensation nuclei and freezing nuclei.	(5)
	(b) Define residence time. Give a qualitative comparison between atmospheric moisture	
	and water in the rivers in terms of residence time.	(5)
	(c) Explain why the actual vapor pressure is taken equal to saturation vapor pressure at	
	dew point temperature.	(5)
	(d) Explain in brief the possible flow paths of infiltrated water.	(5)
	(e) In a 140-min storm, the following intensities of rainfall were observed in successive	
*	20-min intervals: 3.3, 3.6, 9.0, 6.6, 0.6, 0.9 and 6.0 cm/hour. Assume the ϕ -index value as	
	3.0 cm/hour, compute,	(15)
	(i) total volume of runoff, (ii) total volume of infiltration, and (iii) time of rainfall excess.	
	The catchment area is 2 km^2 .	
4.	(a) Explain in brief the rainfall-runoff correlation method in computing annual runoff	(
	volume.	(5)
,	(b) Define return period. 'The exceedence probability for a flood with a 100-year return	
	period is 0.01' – explain the sentence above in brief.	(5)
	(c) Define time of concentration. How is it related to peak discharge from a catchment area?	(5)
	(d) Write down the factors that affect the infiltration capacity and explain in brief.	(5)
	(e) Consider a catchment with longitudinal slope = 0.005 , area = 2 km^2 and runoff	
	coefficient = 0.1. The peak discharge is computed to be 4.2 m^3/s . Compute the	
	corresponding intensity of rainfall, time of concentration for the catchment and maximum	
	length of travel of water for a return period of 100 years. Use Rational Method, IDE	
	curves, (Fig. 1) and Kirpich formula for your estimation.	(15)

2

Contd P/3

WRE 303 (CE)

<u>SECTION – B</u>

= 3 =

There are FOUR questions in this section. Answer any THREE.

5. (a) Write short notes on (i) sounding weight (ii) echo-depth recorder (iii) flow measuring structures.

(b) Explain how a current meter is calibrated. Describe the unsteady flow effect on rating curve.

(c) A 320 g/l solution of Rhodamine dye was discharged into a stream at a constant rate of 40 l/s. The background concentration of that dye in the stream water was found to be 15 ppm. The average width, depth and Chezy's coefficient of that stream are 250 m, 8 m and 22 m^{1/2}/s respectively. (i) Determine the safe mixing length of the stream. (ii) If the equilibrium dye concentration at a downstream section is 36 ppm, estimate the discharge in the stream.

(d) The stream discharges for various stages at a particular section were observed to be as follows. Obtain the rating curve equation and determine the discharge for a stage of 6.5 m.

Stage (m)	1.8	2.0	2.3	2.9	3.7	4.5	5.4	6.1	7.3	7.7	8.1
Discharge (cumec)	1.0	1.5	2.5	5.6	11.7	20.2	32.5	44.5	70.0	80.0	90.0

6. (a) Mention the importance of telemetry system in hydrological data acquisition. Write down the operational uses of satellite data in estimating precipitation and land use/land cover.(b) List the factors which affect the shape of flood hydrograph. Discuss the role of these factors.

(c) The characteristics of two meteorologically similar catchments P and Q are as follows. For catchment P: L = 318 km, $L_{ca} = 198$ km, A = 4480 km². For catchment Q: L = 284 km, $L_{ca} = 184$ km, A = 3780 km². The following are the ordinates of 9 hour unit hydrograph of catchment P.

Time hr)	0	9	18	27	36	45	54	72	90
Discharge (cumec)	0 ·	69	1000	210	118	74	46	13	0

Using Snyder's method, develop a 9 hour unit hydrograph for catchment Q and plot the hydrograph.

- 7. (a) Explain the use, limitation and duration of unit hydrograph.
 - (b) Describe the procedure of deriving D-hour unit hydrograph for a catchment.

(c) The ordinates of a 4 hour unit hydrograph for a particular basin are given below. Determine the ordinates of S-curve hydrograph and there from the ordinates of 6 hour unit hydrograph (with necessary corrections).

Time (hr)	0	2 ·	4	6	8	10	12	16	18	20	24	26	30
Discharge	0	25	100	160	190	170	110	60	30	20	8	4	0
(cumec)											L	~	

Contd P/4

(15)

(6)

(3+6)

(4+4)

(12)

(4+6)

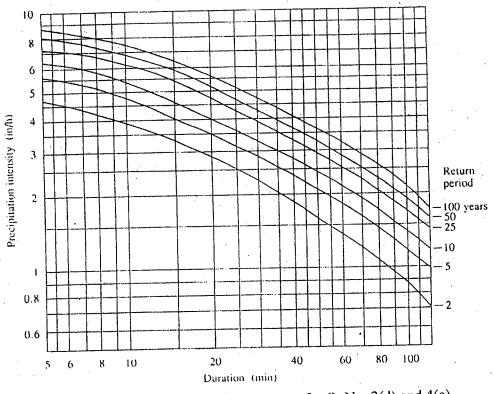
(10)

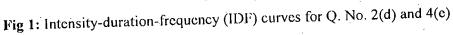
(10)

(10)

(15)

WRE 303 (CE)


8. (a) Define and also explain the importance of channel routing and reservoir routing?


(b) Describe the procedure of hydrologic storage routing.

(c) The inflow hydrograph for a stream reach are given below for which the Muskingum coefficients of K = 36 hr and x = 0.15. At the beginning of the flood, the value of outflow is same as inflow. Route the flood through the reach and determine the outflow hydrograph. Also determine the value of attenuation and lag.

Time (hr)	0	12	24	36	48	60	72	84	96	108	120	132	144	
Discharge (cumec)	42	45	88	272	343 342	288	240	198	162	133	85	60	50	

(15)

.

(13)

(22)

L-3/T-2/CE

Date : 31/12/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-2 B. Sc. Engineering Examinations 2010-2011

Sub : CE 343 (Geotechnical Engineering II)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks. Assume reasonable values of any data, if missing.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer Q. No. 1 and any TWO from the rest. Q. No. 1 is Compulsory.

1. (COMPULSORY QUESTION). Answer any seven of the following nine short questions. Answer should be brief and to the point. Preferably all the answers should be given in (7×5=35) sequential order.

(a) What is negative skin friction? What are the remedial measures for skin friction?

(b) What is the purpose of conducting load test for piling works?

(c) What are the information obtained from a subsoil investigation?

(d) How would you classify soil sample and soil samplers?

(e) Show in a Table the classification of piles considering various criteria.

(f) A pile group consisting of four piles is in a square pattern with equal spacing in both directions. Find the centre to centre spacing in terms of the diameter of the piles, if efficiency of the group is 75% as per Converse-Labarre formula.

(g) What are the contents of a good subsoil investigation report?

(h) What are the terms and limiting values used to describe the percentage of gravel, sand and fines in a soil sample?

(i) The inner diameter of a sampling tube and that of a cutting edge are 70 mm and 68 mm respectively; their outer diameter are 72 mm and 74 mm respectively. Determine the area ratio and inside clearance ratio.

2. (a) Describe briefly the principal considerations of a subsoil investigation Programme. (b) A 400 mm diameter \times 15 m long precast concrete pile is driven in the soil stratigraphy shown in Fig. 1.

X X	$c_n = 35 k_N / m^2$
Layer-L: 5m	$7 = 18 \ \text{kn/m}^3$
WT P	$\chi = 1.0 $
	$c_{\mu} = 40 \text{ km/m}^2$
Layer-2: 5m	$33-t = 19 \ kn/m^3$
and a second	$\chi = 0.9$
	$C_{n} = 45 k N/m^{2}$
Layer 3: 5m	$\partial s_{nt} = 19.5 \ \text{km/m}^3$
	$\alpha = 0.8$
F / F	NO. 26): Soil Properties of clay Contd P/2
Figil Leord:	NV: 2 Up - laners

Layers.

<u>CE 343</u>

Contd ... Q. No. 2(b)

All soil layers are clay. The properties of each clay layer are shown in Fig. 1. The effective angle of internal friction of all clay layers is 25°. The compressive strength of the concrete used to manufacture the pile is 35 MPa. Calculate the skin friction capacities of the pile using α -method, β -method and λ -method. Layer 1 and 2: Normally consolidated, Use k = $1 - \sin\phi$ Layer 3: Over consolidated with OCR = 2, Use k = $(1 - \sin\phi)\sqrt{OCR}$ Assume $\lambda = 0.21$ for an embedment length of 15 m.

= 2.=

3. (a) Describe with a neat sketch the wash boring method of soil exploration. What are its merits and demerits?

(b) Estimate the allowable load bearing capacity of a precast concrete driven pile 500 mm \times 500 mm in section and 17 m long in a stratified soil with the following data using Meyerhof's method based on SPT value.

Layer No.	Depth (m)	Soil Type	N-value
. 1	0-5	Fill clay	4
2	5 15	Sand	20
3	15-25	Sand	25

Use a global factor of safety of 3.0. If the settlement of single pile is estimated as 15 mm, what would be the settlement of a group of the above pile consisting of 9 piles in a square pattern with a c/c spacing of 1.5 m?

4. (a) Explain the "Conventional method" and "Meyerhof's effective width concept" for an eccentrically loaded footing. Draw and explain typical soil pressure – settlement curves for footings of different widths on surface of a homogeneous sand deposit.
(b) Determine the allowable load on the footing resting on a clay deposit.

Footing size:	$2.0 \times 3.0 \text{ m}$
Depth of footing:	2 m
Thickness of footing:	0.5 m
Unit weight of soil:	18 kN/m ³
q _u of soil:	120 kN/m ²
Water table:	3.0 m level

Given the following chart:

D _f /B	0.5	1.0	2.0	3.0	4.0
N _c (strip)	6.0	6.5	7.0	7.4	7.5

Contd P/3

(22)

(13)

(22)

(13)

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5. Using design charts of Fig. 2, determine

(i) Allowable load on a wall footing 2 ft wide resting at 5 ft depth.

(ii) Allowable load on a 10 ft by 10 ft square footing resting at 7.5 ft depth. Calculate

factor of safety against bearing capacity failure.

Given:

<u>CE 343</u>

Corrected SPT value for the given site.

Depth	2.5'	5.0'	7.5'	10.0′	12.5'	15.0'	20.0'	25.0'
N _{Corr}	20	22	21	22	23	25	25	27

Unit weight of soil is 120 pcf

Ground water table at 10 ft below ground level

Thickness of 2 ft wide footing = 12''

thickness of square footing = 30"

6. (a) Calculate the settlement of footing resting on a deep deposit of clay at 8 ft below ground level.

Given: Footing size: $10' \times 12'$

Dead load: 150^k

Live load: 100^k

Average unit weight of soil = 125 pcf

 $C_c = 0.16$ $C_r = 0.03$

 $e_0 = 0.85$ $\sigma_{v max} = 6 \text{ ksf}$

Water table is at 20 ft below ground level.

(b) A raft 100×120 ft in plan has its base 16 ft below surface of a clay deposit with unit weight of 120 pcf. The unconfined compressive strength of the clay is 0.8 tsf. The factor of safety against bearing capacity failure is 3. What total weight of building plus foundation can safely be supported on the raft ? Use N_c value from Q. No. 4(b).

7. (a) A pile group consists of 20 piles spaced at 5 ft centre to centre. The pile group is subjected to vertical load of 1200 kip at centre and a moment 1000 kip-ft and 600 kip-ft in long and short direction, respectively. Draw necessary sketches and calculate load on piles at four corners.

(b) Calculate the factor of safety of slip circle shown in Fig. 3. The figure is drawn to scale. Attach the figure with answer script.

8. (a) Draw and explain typical shore protection systems for excavation of 20 ft deep and 100×120 ft in plan.

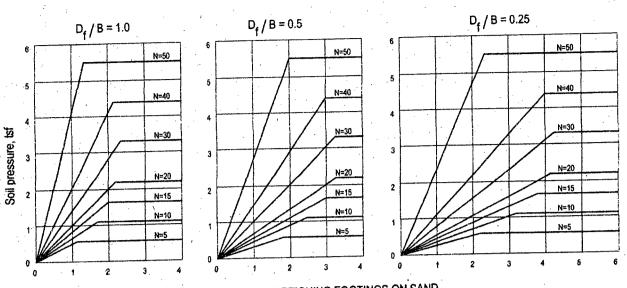
(b) Calculate the factor of safety for slice 1 and 2 shown in Fig. 4. The figure is drawn to scale. Attach the figure with answer script.

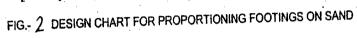
Contd. P/4

(35)

(23)

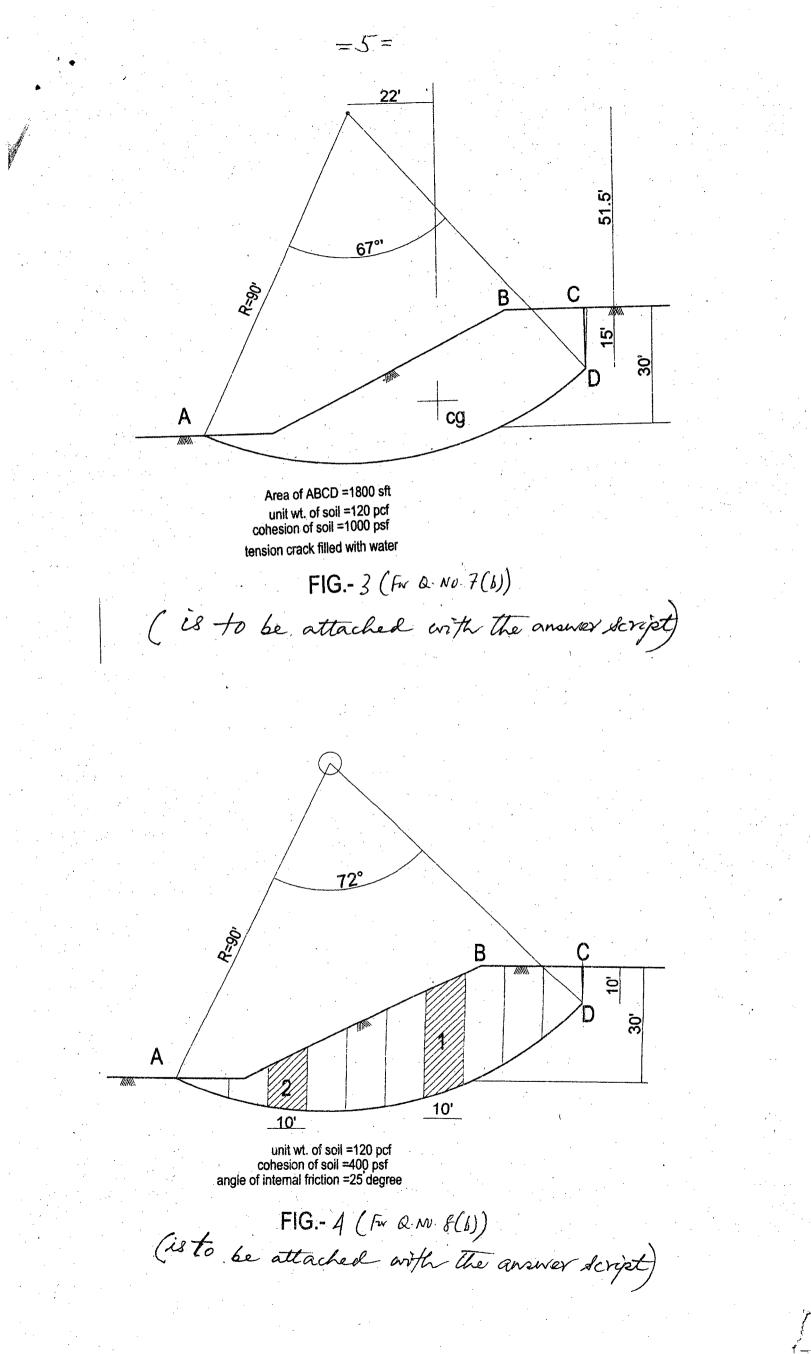
(12)


(20)


(15)

(12)

(23)


=4=

÷

6

