EVALUATION OF AQUIFER CHARACTERISTICS OF DHAKA CITY USING PUMPED WELL DATA

MOHAMMED IQBAL HOSSAIN

#91758#

Department of Water Resources Engineering Bangladesh University of Engineering and Technology, Dhaka

October, 1997

EVALUATION OF AQUIFER CHARACTERISTICS OF DHAKA CITY USING PUMPED WELL DATA

Submitted by

MOHAMMED IQBAL HOSSAIN

In partial fulfilment of the requirements for the degree of Master of Engineering (Water Resources)

Department of Water Resources Engineering Bangladesh University of Engineering and Technology, Dhaka

October, 1997

CERTIFICATE

This is to certify that this project work has been done by me and neither this project nor any part thereof has been submitted elsewhere for the award of any degree or diploma.

MA90/199

(Dr. Muhammed A. Bhuiyan) Countersigned by Supervisor

rea-

(Mohammed Iqbal Hossain) Signature of Candidate

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF WATER RESOURCES ENGINEERING

14 October, 1997

We hereby recommend that the project work prepared by Mohammed Iqbal Hossain entitled "EVALUATION OF AQUIFER CHARACTERISTICS OF DHAKA CITY USING PUMPED WELL DATA" be accepted as fulfilling this part of the requirements for the degree of Master of Engineering (Water Resources).

Chairman of the Committee (Supervisor)

(Dr. Muhammed A. Bhuiyan)

M. - La Zhelbau' (Prof. M. F. Bari) Cm.

M. Mirjahan (Prof. M. Mirjahan)

Member

Member

ABSTRACT

Dhaka WASA has divided the whole city into six zones to administer its operations of potable water supply and safe sewerage disposal. The construction and the development test data of 44 selected tubewells from these six zones have been analyzed to evaluate its aquifer and well specific properties. Parameters, such as, transmissivity and storativity are evaluated to characterize the aquifer properties while well efficiency and skin factor are evaluated to demonstrate its well specific parameters. Another important parameter called specific capacity is also determined to represent the productivity of both the aquifer and the well itself.

The development tests on the deep tubewells of DWASA are performed without installing piezometers. Thus, the pumping tests conducted by DWASA can be treated as a single well test. Determination of transmissivity and storativity are therefore constrained with the utilization of the well-known methods based on piezometric readings. To utilize these single well tests under the confined and/or leaky aquifer system, there are 5 suitable methods selected from literature to overcome the lack of piezometer readings. The selected 5 methods are Jacob's straight line method, Theis's recovery method, Papadopulos-Cooper's method (curve fitting), Hurr-Worthington's method and the Logan approximate method. Among these 5 methods, Jacob straight line method gives consistently higher transmissivity values than the other 4 methods. Jacob method is very sensitive to the non-linear well losses which have been found in appreciable magnitude for the most of the wells tested in Dhaka city. Papadopulos-Cooper method is valid for fully penetrated confined aquifer, mostly not the case existing for the configuration and aquifer system analysed here. Hurr-Worthington and recovery methods have been judged the most suitable methods for the aquifer system in Dhaka city. Out of these two, Hurr-Worthington method is selected to draw the isotransmissivity lines to represent its variations instantaneously in Dhaka city. It is seen from the map (Fig. 5.1) that the south-western part and north-eastern corner of Dhaka city have higher transmissivity (700-1000 m^2/d) values than the rest of the city. The majority of the city area representing transmissivity values ranging from 400 to 500 m²/d. The Hurr-Worthington method evaluates the transmissivity by using the corrections due to well losses

on its observed drawdowns. While the aquifer loss is dependent on the aquifer characteristics only, the well loss arises from the combined effect of screen entrance loss and frictional loss inside the pumped wells. The aquifer losses in Dhaka city are found to vary from 8.2 m to 20.9 m and the total well losses from 2.1 m to 14.7 m. As the well losses are found appreciable in Dhaka city compared to its overall drawdowns, it dictate the use of an appropriate method which takes care of these losses in its transmissivity determination. In this respect, Hurr-Worthington method may be a better option to be used for Dhaka city aquifer system. The Logan method, known as an approximation method uses the specific drawdown data for transmissivity determination is liable to produce some error under vertical leakage and transient aquifer responses.

For the selected single well methods, the storativity values can only be provided by the Papadopulos-Cooper method and its values vary from 1.5×10^{-6} to 9.5×10^{-5} . It is seen from the iso-storativity map (Fig. 5.2) that the south-western part of Dhaka city have the highest storativity values than the rest of the city. The majority of the city area representing storativity values of about 2×10^{-5} . Both the specific capacity and the well efficiency are important to measure the performance of a well. In Dhaka city, the specific capacity of the wells varies from 219 m²/day to 550 m²/day and well efficiency varies from 45 to 86 percent. Low efficiency as low as 70 percent is the indication of inadequate and poor well development: Again, skin effect is to account for the head losses in the vicinity of a well. Skin factor in Dhaka city is found to vary 0.32 to 8.06.

ii

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude and indebtness to his supervisor Dr. Muhammed Ali Bhuiyan, Associate Professor, Department of Water Resources Engineering, BUET for his persistent guidances and encouragement to complete this project work. The author is sincerely grateful to his supervisor for help and co-operation throughout the study program.

Grateful appreciations are due to Dr. F. M. Bari, Professor, and Dr. M. Mirjahan, Professor and Head, Department of Water Resources Engineering, BUET for their constructive and valuable suggestions for the improvement of the organisation and contents of this thesis.

The author wishes to express his acknowledgement to BUET-DUT Linkage project office and NUFFIC (The Netherlands Organization for International Cooperation in Higher Education) for providing financial assistance for this study.

The author is grateful to Mr. Sajal Chandra Dhar, Assistant Engineer, Flood Forecasting, BWDB, Dhaka for giving valuable suggestions and Mr. Md. Faisal, Assistant Engineer, P & D division, Dhaka WASA for supplying data. The author is also indebtness to Mr. Shameem, Managing Director, Misory Ltd. for giving computer facility.

And to all friends and well wishers who helped the author in various ways during the study.

iii

TABLE OF CONTENTS

7

1

Page

Abstract			i
Acknowledge	ement		iii
Table of Contents		iv	
List of Tables		vii	
List of Figur	es		viii
Abbreviation	t		ix
Notation			x
CHAPTER	1	INTRODUCTION	
	1.1	General	1
	1.2	Objectives of the Study	3
CHAPTER	2	LITERATURE REVIEW	
	2.1	Physical Properties and Principles	4
	2.1.1	Physical Properties of Water Bearing Formation	4
	2.1.2	Groundwater Movement/Darcy's Law	7
	2.2	Previous Study	7
CHAPTER	3	STUDY AREA	
	3.1	Physical Setup of Dhaka City	12
	3.1.1	Geology of the Dhaka City	12
	3.1.2		13
	3.1.3	Land Form	13
	3.1.4	Drainage System	14
	3.2	Recharge and Discharge	14
	3.3	Climate	18
	3.4	Subsurface Geology and Aquifer System	18
	3.5	Groundwater Hydrograph	19
	3.6	Features of the DWASA Wells	20

			Page
	3.6.1	Well Design	21
	3.6.2	Construction of Deep Tubewells	23
			•
CHAPTER	4	METHODOLOGY	
	4.1	Introduction	25
	4.2	Collection of Data	25
	4.3	Selection of Tubewells	26
1	4.4	Single Well Pumping Test	27
	4.4.1	Jacob Straight Line Method	27
	4.4.2	Theis Recovery Method	34
	4.4.3	Papadopulos-Cooper Method	37
	4.4.4	Hurr-Worthington Method	39
	4.5	Logan Approximation Method	42
	4.6	Well Performance Test	43
	4.6.1	Step Drawdown Test	44
	4.6.2	Hantush-Bierschenk Method	45
	4.7	Determination of Different Types of Losses	47
• •	4.8	Specific Capacity of the Well	47
	4.9	Well Efficiency	48
	4.10	Determination of Skin Factor	48
CHAPTER	5	RESULTS AND DISCUSSION	
	5.1	Transmissivity	50
	5.2	Storativity	58
	5.3	Different Types of Losses	. 60
	5.4	Specific Capacity and Well Efficiency	61
	5.5	Skin Factor	61
	5.6	Limitations of the Study	66

CHAPTER	6	CONCLUSIONS AND RECOMMENDATIONS	
	6.1	Conclusions	
,	6.2	Recommendations	69
			70
REFERENC	ES		
			71
APPENDIX-	A	Sample Calculations	
APPENDIX-	в		74
APPENDIX-		Time-Drawdown Curves for Jacob Method	78
		Time-Drawdown Curves for Papadopulos-Cooper Method	84
APPENDIX-		Time-Drawdown Curves for Theis Recovery Method	90
APPENDIX-J	E	Tables for Determining Transmissivities by	20
		Hurr-Worthington Method	
APPENDIX-H	7	Specific Drawdown- Discharge Curves for	96 [·]
		Hantush-Bierschenk Method	102
APPENDIX-C	3	Pumping Test and Recovery Test Data	103
		rest Data	108

¥

*

+

Page ·

vi

LIST OF TABLES

Table	Description	Page
Table 3.1	Gravel Size Used in DWASA Wells as Pack Material	22
Table 4.1	Selected Number of Well in DWASA MODS Zone	26
Table 5.1	Transmissivity and Storativity Values for Zone 1	51
Table 5.2	Transmissivity and Storativity Values for Zone 2	51
Table 5.3	Transmissivity and Storativity Values for Zone 3	51
Table 5.4	Transmissivity and Storativity Values for Zone 4	52
Table 5.5	Transmissivity and Storativity Values for Zone 5	52
Table 5.6	Transmissivity and Storativity Values for Zone 6	52
Table 5.7	Range of Transmissivity Values for Zone 1 by the Selected 4 Methods	54
Table 5.8	Range of Transmissivity Values for Zone 2 by the Selected 4 Methods	54
Table 5.9	Range of Transmissivity Values for Zone 3 by the Selected 4 Methods	54
Table 5.10	Range of Transmissivity Values for Zone 4 by the Selected 4 Methods	55
Table 5.11	Range of Transmissivity Values for Zone 5 by the Selected 4 Methods	55
Table 5.12	Range of Transmissivity Values for Zone 6 by the Selected 4 Methods	55
Table 5.13	Comparison of Transmissivity Values with the Previous Studies	57
Table 5.14	Comparison of Storativity Values with the Previous Studies	58
Table 5.15	Different Types of Losses (Zone 1) at an Operating Discharge 7348 m3/d	62
Table 5.16	Different Types of Losses (Zone 2) at an Operating Discharge 7348 m ³ /d	62
Table 5.17	Different Types of Losses (Zone 3) at an Operating Discharge 7348 m^3/d	62
Table 5.18	Different Types of Losses (Zone 4) at an Operating Discharge 7348 m^3/d	63
Table 5.19	Different Types of Losses (Zone 5) at an Operating Discharge 7348 m^3/d	63
Table 5.20	Different Types of Losses (Zone 6) at an Operating Discharge 7348 m^3/d	63
Table 5.21	Different Well and Aquifer Parameters for Zone 1	64
Table 5.22	Different Well and Aquifer Parameters for Zone 2	64
Table 5.23	Different Well and Aquifer Parameters for Zone 3	64
Table 5.24	Different Well and Aquifer Parameters for Zone 4	65
Table 5.25	Different Well and Aquifer Parameters for Zone 5	65
Table 5.26	Different Well and Aquifer Parameters for Zone 6	65

vii

Table

Description

Table 5.27 Different Types of Losses (Zone 1) at an Operating Discharge 4898 m³/d 68 Table 5.28 Different Types of Losses (Zone 2) at an Operating Discharge 4898 m³/d 68 Table 5.29 Different Types of Losses (Zone 3) at an Operating Discharge 4898 m^3/d 68 Table 5.30 Different Types of Losses (Zone 4) at an Operating Discharge 4898 m³/d 69 Table 5.31 Different Types of Losses (Zone 5) at an Operating Discharge 4898 m^3/d 69

Table 5.32 'Different Types of Losses (Zone 6) at an Operating Discharge 4898 m^3/d

LIST OF FIGURES

Figure	Description	Page
Fig. 3.1	Topography of Dhaka City	15
Fig. 3.2	Landform of Dhaka City	16
Fig. 3.3	Drainage Map of Dhaka City	17
Fig. 4.1	Drawdown in a Pumped Artesian Aquifer	30
Fig. 4.2	Drawdown vs. Time Curve using the Jacob Method	32
Fig. 4.3	Time Drawdown and Residual Drawdown	34
Fig. 4.4	Family of Papadopulos-Cooper's Type Curves	38
Fig. 4.5	Graph of Corresponding Values of u_w and $u_w W(u_w)$.	41
Fig. 4.6	Various Head Losses in a Pumped Well	44
Fig. 5.1	Transmissivity Map of Dhaka City	56
Fig. 5.2	Storativity Map of Dhaka City	59

ABBREVIATION

ADB	Asian Development Bank
BADC	Bangladesh Agriculture Development Corporation
BGS	British Geological Survey
BUET	Bangladesh University of Engineering and Technology
BWDB	Bangladesh Water Development Board
DPHE	Department of Public Health Engineering
DWASA	Dhaka Water and Sewerage Authority
IMGD	Million Imperial Gallons Per Day
MODS	Maintenance, Operation, Distribution and Service
MPO	Master Plan Organization
PWL	Pumping Water Level
STW	Static Water Level
UNDP	United Nations Development Program

NOTATIONS

.

Δa	Aquifer Loss (L)
$B_1(r_w,t)$	Linear Aquifer Loss Co-efficient
B_2	Linear Well Loss Co-efficient
C	Non-linear Well Loss Co-efficient
D	Thickness of Aquifer (L)
E_w	Well Efficiency
g	Acceleration due to Gravity (L/T ²)
h	Piezometric Head (L)
K	Hydraulic Conductivity (L/T)
KD	Transmissivity (L^2/T)
n	Porosity
N _R	Reynold's Number
Q	Discharge (L^3/T)
r .	Radial Distance from Well Axis (L)
r _{ew}	Effective Radius of Pumping Well (L)
r _w	Actual Radius of the Well (L)
S'	Storativity during Recovery
S	Storativity of the Aquifer
S _r	Specific Retention
S _s	Specific Storage (L ⁻¹)
S	Average Drawdown (L)
s′	Residual Drawdown (L)
Sy	Specific Yield
ť	Time since Pumping Stopped (T)
t _p	Total Pumping Time (T)
t _{sw}	Time when Aquifer Losses are Zero (T)
V	Gross Volume of Sample (L ³)
V _T	Total Volume of Sample (L ³)
V_v	Volume of Void (L ³)
V_w	Volume of Water (L ³)

-

xi

W _r	Volume Occupied by Retained Water
W(u)	Well Function
W_y	Volume of Water Drained (L ³)
α and β	Compressibility of Aquifer and Compressibility of Water
dv _T	Total Volume Change of a Sample
$d\sigma_e$	The Change in the Effective Stress
d _p	Change in the Water Pressure
σ	Density of Fluid
μ	Viscosity of Fluid

Chapter 1 Introduction

1.1 General

With the increase of population, the demand for water is increasing throughout the world. Groundwater can be regarded as a reliable source of water supply for any climatic condition of a region. While, surface water is generally easy and economical, its availability is uncertain with season. Thus, the effective management of groundwater system is essential for a region to meet the increasing demand of water supply. Groundwater source provides clear water at almost constant temperature and is preferred compared to surface water for municipal water supply. As an assured supply of water, it can be obtained from the underground source even in the desert areas if the system is properly designed and maintained.

The city of Dhaka has an extensive water supply system dependent mainly on groundwater source. Dhaka WASA is supplying potable water to the metropolitan area by operating numerous deep tubewells at different places inside the city. The demand of potable water is increasing day by day and WASA shall have to depend mostly on tubewells for water supply for a number of years to come.

To keep pace with the expansion of the Dhaka city, water supply system has expanded through the development of numerous tubewells, and extension of the distribution system. At present 93 percent of Dhaka city water supply are met from exploitation of groundwater. Dhaka WASA is currently operating about 220 deep tubewells with a total production of water equal to 800 million liters/day while the existing water works at Chandnighat supplies about 50 million liters/day of treated surface water mainly to the old Dhaka city. Since the inception of the water supply system, about 360 wells have been drilled in Dhaka city out of which about 40 percent wells are not functioning at present.

The reasons for deterioration of yielding capacity of the operating wells have not been properly investigated. In most cases, the actual condition of the wells are not known. In general, no regular measurement of drawdown is carried out and deteriorated condition of the wells are observed only after the groundwater level has dropped below the level of the pump. Only recently, with the assistance of UNDP/World Bank under the Water and Sanitation project, DWASA has installed a computerized data base to facilitate the monitoring of performances of the wells.

There are many well commissioning test reports available with Dhaka WASA from long back. In the long span of period from early sixties to date, Dhaka WASA's tubewell commissioning test reports were not used to provide logical and systematic information about the hydraulic parameters of the aquifer system underneath. Historically, most of the installation of deep tubewells were based on thumb rules. Almost all the pumping tests conducted are without piezometers to mark water tables/heads at distances. The suites of tubewell commissioning reports are provided with specific drawdown data through step-drawdown tests under single-well principle. However, the single-well principle inhibits the identification of certain class of aquifer parameters; e.g., storage coefficient, specific yield etc.

The present research work deals with the evaluation of aquifer characteristics of the Dhaka city using the available pumping test of Dhaka WASA wells. Dhaka, the metropolitan and capital city of Bangladesh, is one of the fastest growing cities of the world withstanding the ever increasing population pressure through rapid transformation of its land use pattern. It has long been suspected that the annual abstraction of groundwater is much higher than its annual recharge. Several studies (Bhuiyan 1995; DWASA 1991; Serajuddin 1990 b; Dhar 1995 etc) indicated its annual static water level declination at the rate of 0.5 m to 1.5m, depending on the area considered. Hence, the aquifer system of the city exhibits its restricted capability to supply water to the existing wells. Due to progressive trend of abstraction the Dhaka city aquifer system is withstanding, the recharge-discharge regime may significantly be changed as a function of time. Clearly, the basin yield depends both on the manner in which the effects of withdrawals are transmitted through the aquifers and on the changes in rates of groundwater recharge and

discharge induced by the withdrawals. As a result, the aquifer parameters may exhibit some changing trend with time also. An up to date knowledge of these parameters are essential to be incorporated in the saturated portion of a groundwater basin to analyse its transient hydrologic budget.

Very little work on the hydraulic properties of the Dhaka city aquifer system were performed. The study of saturated-unsaturated mathematical modeling by Bhuiyan (1995) has discussed these difficulties which arose due to the non-availability of the relevant parameters. However, the option for using some selected pumping test data already available with the Dhaka WASA may greatly relieve the pains in its modeling studies.

1.2 Objectives of the Study

There are many well commissioning test reports available in Dhaka WASA from long back. These reports were never used for any systematic study for unknown reason. The pumping tests conducted by DWASA have never used piezometers to determine its time drawdowns at distances. As such the proposed study will use those data as a single well pumping test to fulfil the following objectives:

- (i) To determine the transmissivity of the Dhaka city aquifer system by some selected methods which are most suitable for the pumping test conducted by Dhaka WASA.
- (ii) To compare the results obtained by different methods and thereby identify the most suitable method for the existing pumping tests conducted by the Dhaka WASA.
- (iii) To determine the well and aquifer losses based on those single well pumping tests.
- (iv) To determine the storativity of the aquifer.
- (v) To prepare an iso-transmissivity map for the Dhaka city.
- (vi) To prepare an iso-storativity map for the Dhaka city.
- (vii) To determine the specific capacity, well efficiency, skin factor etc.

Chapter 2 LITERATURE REVIEW

2.1 Physical Properties and Principles

At present, a significant proportion of our water requirements are met from groundwater source. Adequate knowledge on its origin, occurrence, recharge and movement are essential. Therefore, hydraulic properties of the aquifers need to be evaluated at different places for the proper design, construction and maintenance of the wells. There are many physical properties related to water bearing formation that are in common use in the literature has been described in the following sub-sections for its ready references.

2.1.1 Physical Properties of Water Bearing Formation

The parameters that are generally used in groundwater flow analysis are as follows:

Porosity(n): Porosity is an index of how much groundwater can be stored in the saturated material. Mathematically it is expressed as

$$n = \frac{V_v}{V_T}$$

where, V_T = total volume of the sample; V_v = volume of void Porosity is usually expressed as a decimal fraction or as a percentage.

Hydraulic Conductivity (K): The hydraulic conductivity is the constant of proportionality in Darcy's law. It is defined as the volume of water that will move through a porous medium in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow.

Compressibility of Aquifer (α): Compressibility of aquifer is an important material property in the analysis of unsteady flow to wells. It describes the change in the volume or the strain induced in an aquifer (or aquitard) under a given stress, or

$$\alpha = \frac{-dV_T/V_T}{d\sigma_e}$$

here, dV_T = the total volume change of a given mass of material; $d\sigma_e$ = the change in the effective stress.

Compressibility is expressed in m²/N or Pa⁻¹. Its value for clay ranges from 10^{-6} m²/N, to 10^{-8} , for sand from 10^{-7} to 10^{-9} m²/N, for gravel and fractured rock from 10^{-8} to 10^{-10} m²/N.

Similarly, the compressibility of water is defined as

$$\beta = \frac{-dV_w/V_w}{dp}$$

A change in the water pressure dp induces a change in the volume Vw of a given mass of water. The compressibility of groundwater under the range of temperature that is usually encountered can be taken constant as $4.4 \times 10^{-10} \text{ m}^2/\text{N}$.

Transmissivity (KD or T): Transmissivity is the product of the average hydraulic conductivity (K) and the saturated thickness (D) of the aquifer. Consequently, transmissivity is the rate of flow under a unit hydraulic gradient through a cross-section of unit width over the whole saturated thickness of the aquifer. Transmissivity has the dimension of length²/time.

Specific Storage (S_s) : The specific storage of a saturated confined aquifer is the volume of water that a unit volume of aquifer releases from storage under a unit decline in hydraulic head. The release of water from storage under condition of decreasing head (h) stems from the compaction of the aquifer due to increasing effective stress and the expansion of the water due to decreasing pressure (p). Mathematically, specific storage is expressed as

 $Ss = \rho g(\alpha + n\beta)$

where, ρ = mass density of water; g = acceleration due to gravity; n = porosity The dimension of specific storage is length⁻¹. Storativity (S): The storativity of a saturated confined aquifer of thickness D is the volume of water that is released from storage per unit surface area of the aquifer per unit decline in the component of hydraulic head normal to that surface. Mathematical, storativity is defined as,

$$S = \rho g D (\alpha + n\beta) = S_s D$$

Specific Retention (S_r) : In the saturated zone, groundwater fills all the interestics of soil, hence porosity of the formation is the direct measure of the water contained per unit volume. The specific retention of a soil is the ratio expressed as a percentage of the volume of water it will retain after saturation against the force of gravity to its own volume. If S_r is the specific retention, then expressed as

 $S_r = 100 W_r / V$

where, W_r = volume occupied by retained water; V= gross volume of the soil

Specific Yield (S_y) : The specific yield S_y may be defined as the ratio expressed as a percentage of the volume of water which after being saturated can be drained by gravity to its own volume. Thus

$$S_{v} = 100 W_{v}/V$$

where, $W_v =$ volume of water drained

As, Wr+Wy = W, it is apparent that n = Sy+Sr, thus, specific yield is a fraction of the porosity of the formation. Values of specific yield depend upon grain size, shape and distribution of pores and compaction of the stratum.

Diffusivity (KD/S): The hydraulic diffusivity is the ratio of the transmissivity and the storativity of a saturated aquifer. Diffusivity has the dimension of length/time.

2.1.2 Groundwater Movement/Darcy's Law

Groundwater in its natural state is invariably moving. The flow through aquifers can be expressed by Darcy's law which states that the flow rate Q through porous media is proportional to the head loss "dh" and inversely proportional to the length of flow path "dl", or

$$V = -K \frac{dh}{dl}$$

Experiment shows that Darcy's law is valid for Reynolds number, $N_R < 1$ and does not depart seriously up to $N_R = 10$ (Todd 1980) where,

$$N_R = \frac{\rho V d}{\mu}$$

where, V = specific discharge; d = representative length; ρ = density of fluid μ = viscosity of fluid

2.2 Previous Studies

Very little work on the hydraulic properties of the Dhaka city aquifer system were performed. Aquifer test data are reported by Parsons (1980), BWDB (1984), the British Geological Survey (BGS) as reported by Barker et al. (1989) and MMI (1990). Parsons (1980) supervised a total of 32 tests on different wells; out of which only 17 tests conducted on WASA wells in Dhaka city and the remaining 15 tests on BADC and other organization wells in the adjoining areas of Tongi, Joydebpur, Savar and Narayangonj. But the methods of analysis were not indicated. BWDB (1984) have carried out 16 tests throughout greater Dhaka, but only 3 tests were in Dhaka city area. The tests were analysed by various methods including the leaky aquifer type methods. Barker et al. (1989) reported 14 detailed pumping tests in Dhamrai, Saturia and Manikgonj upazilas. The study also included laboratory hydraulic conductivity tests. MMI (1990) reported four aquifer tests from Kapasia upazila, analysed by leaky aquifer type curve and other methods.

A transmissivity map has been prepared by the Dhaka Region Groundwater and Subsidence Project (DWASA, 1991) from the pumping tests data reported earlier (Parsons 1980; BWDB 1984; Barker et al. 1989 and MMI 1990) for the greater Dhaka district. The map contains very few data points within the city area. There are about 360 deep tubewells installed over a period from 1960 to 1997 within Dhaka city which contain only the construction and development data of the wells. Almost all the wells are under partial penetration, tapping a complex layering system of confined-unconfined-leaky conditions. Although correction for partial penetration exists, the influence of layering is such that the effective aquifer thickness is only slightly more than the screen length. A considerable thickness of these fine sand layers, not screenable with standard well screens available in Bangladesh, are yet to be tested. Also, there may be difficulties in interpreting these tests, in particular failing to take proper account of vertical leakage may lead to serious over estimation of the transmissivities. This effect is, however, in the opposite direction to that of partial penetration.

A common and greater cause of error results from misinterpretation of piezometer data in layered aquifers, especially where low conductivity horizons are not clearly defined. This is one of the constant dilemmas of practical pumping test interpretation. Piezometers are essential if storage coefficients and leakages are to be analysed, and yet may lead to a larger error than using only the pumping well as the indicator of the water level. So far in Dhaka WASA wells, almost no piezometer has been used for pumping tests. Under the single well pumping test, if well losses are significant, the drawdown due to laminar flow in the aquifer will be exaggerated and hence the transmissivity may be underestimated. Thus, a proper estimation of well losses is a precondition of applying any time variant method of transmissivity determination. Transmissivity may be estimated from specific drawdown data using Logan approximation method (Kruseman and de Ridder 1990); which is the method appropriate to commissioning test data. The method is liable to produce over estimated results under vertical leakage and transient aquifer responses.

Transmissivity may also be estimated from lithological data. Considerable work on correlating grain size, color and conductivity was done on the IDA I, IDA II and ADB deep tubewell projects (MMP 1984). Their purpose was to establish a system for predicting well yields, and indirectly therefore optimising well design from drilling data alone. Hydraulic conductivities were assigned on the basis of a back analysis of existing wells. Their system

has been successful in producing two cusec deep tubewells over a wide area of Bangladesh. A comparison of the transmissivities calculated from aquifer tests and estimated either by the Logan method or on the basis of lithology shows a considerable deviation from the expected 1:1 relationship. Welsh (1977) also determined transmissivity close to Dhaka city by analysing the attenuation of river stage fluctuations in adjacent piezometers. Welsh (1977) concluded that the magnitude of the groundwater fluctuation proves that there is a good hydraulic continuity between the rivers and the aquifer. Unfortunately, Welsh (1977) did not report the storage values used, however, the transmissivity values were approximately half the average values derived from aquifer tests in Dhaka city (DWASA, 1991).

Since most tubewells in Bangladesh are partially penetrating, horizontal conductivity was estimated from both aquifer test and Logan method by taking the screen length as the effective aquifer thickness. However, only the BGS finite element method (Barker et al. 1989) calculated horizontal conductivities directly. An empirical relationship has been derived by DWASA (1991) study between the conductivities determined from the Logan transmissivity and those estimated from lithology as follows:

 $K = 1.39 K_{litho}$ -16.8

The relationship fits a good straight line such that a lithological data may provide the hydraulic conductivity directly. The lithological grouping based on MMP (1984) classification coincide with the physiographic units, as well as the underlying geological units (DWASA, 1991). The study concluded that the typical brown fine to medium grained sand (available in upper alluvium) has an average conductivity of 15-20 m/day, ranging up to about 30 m/day where significant coarse sand is present. Grey medium to coarse sands, which are characteristic of the lower alluvial sequence, are typically in the range of 55-75 m/day. Although the conclusion neither contradicts nor confirms the effects of weathering of feldspars, it does explain why the color effect should be so marked. Except in the BGS study there are practically no data available for the upper aquifer, which is generally too fine to screen, conductivity was therefore based on lithology. The results of the BGS study showed that the lower aquifer is three times more permeable than the upper.

For the areas around Dhaka city, Davies and Herbert (1990) have published the results of 150 laboratory hydraulic conductivities carried on good quality drive samples (all grey sands) of the upper and lower alluvial sequences in a falling head permeameter. The finer grained sediments tested by Davies and Herbert (1990) are the only direct measurements of conductivity for the non-screenable aquifers.

Aquifer tests may also provide an estimate of the vertical conductivity of the overlying aquitard. A range of values $(2.2x10^{-4} \text{ to } 7.1x10^{-1} \text{ m/d})$ obtained from analytical solutions of DWASA (1991) and BGS finite element model (Barker et al. 1989) have provided an aggregate parameter that does not explicitly recognize the effects of layering. However, more data are available from geotechnical investigations as vertical conductivity can be calculated from the time rate of consolidation, although sample disturbance may lead to underestimation of the conductivity of over consolidated Dhaka clays. Various attempts were made to correlate these conductivities with index properties. Although it can be argued that the conductivity of a clayey soil is related to some combination of grain size (such as clay content or Atterberg limits) and an in situ parameter (such as void ratio, bulk density or liquidity index), no statistically valid relationship could be found. It has been shown (DWASA 1991) that the low-land alluvium (around 10⁻⁴ m/d) is more permeable than the Madhupur clay (around 10⁻⁵ m/day). In so far as anisotropy influences the conductivity of clays, BUET (1977) reported six determinations for Madhupur clay and low-land alluvium from the Dhaka-Narayanganj-Demra scheme. The ratio of horizontal to vertical conductivities fell into the narrow range of 1.4 to 2.4. Five determinations of the vertical conductivities of Madhupur clay at depths of 3-4 m in Dhaka city reported by Welsh (1977) in the range of 1.1×10^{-3} to 2.1×10^{-2} m/day. His method and the explanation of this difference are not known. The differences in aquitard conductivity derived from pumping test and laboratory measurement may not simply be due to analytical problems, it is quite likely that they reflect the heterogeneity of the upper aquitard. Laboratory determination of the vertical conductivity of sand is not normally done because of the difficulty of taking undisturbed samples below the water table. In general, therefore vertical conductivity of saturated sand must be assumed with the horizontal conductivity taken as a limiting value. Anisotropy in sand is usually considered to be between 1 and 10 (DWASA 1991), although high anistrophy probably reflects layering rather than an

intrinsic property. An indirect determination of the vertical conductivities of the Dihing upper and lower alluvial sequences was reported from the BGS model (Barker et al. 1989).

The groundwater model requires the specific storage of each layer (storage coefficient divided by thickness) as an input parameter. Frequency distribution conducted by DWASA (1991) for the three main aquifers shows that the Dupi Tila has the least confinement and also the smallest range of values $(7.5 \times 10^{-5} \text{ to } 2.5 \times 10^{-6} \text{ per m})$ and therefore indicates the greatest elastic compressibility. The frequency distribution for the lower alluvial unit is smaller, but lower. The upper unit shows wide range of specific storage, which probably represents the variable degree of confinement. Although the specific yield may be defined in simple terms as "the ratio of the volume of water that, after saturation, can be drained by gravity to its own volume" (Todd 1980). In practice it is more complicated, because, the piezometric surface and geological layering make specific yield a time and depth dependent parameter, respectively.

It is possible to calculate specific yield from pumping tests; however, such tests are rarely long enough, and their interpretation is usually complicated by natural groundwater fluctuations. One such determination, of 0.21, is reported by Welsh (1977) for the Gymkhana site in Dhaka, where he observed the gradual transition from leaky to unconfined conditions over a period of months. But, even this can only be valid for a particular water table depth. Specific yield of the top aquitard was also calculated in the Barker et al. (1989) finite element model. The results range between 0.02 and 0.27, with an average of 0.084. The BGS values are constant with depth, and derived from a short term test. For modeling purpose the approach adopted by MPO (1987) may be used, in which specific yield is related to lithology and can, therefore, be made depth dependent. The specific yield values for the top 40 m, but in one meter intervals, were reported by DWASA (1991) for about 100 profiles for different parts of greater Dhaka.

Chapter 3 Study Area

3.1 Physical Setup of Dhaka City

The study area is the Dhaka city which is metropolis as well as the capital of Bangladesh. The study area lies between latitude 23°40'N to 23°54'N and longitudes between 90°20'E to 90°31'E. It is bounded by the Tongi khal in the north, the Buriganga river in the south and south-east, the Balu river in the east and the Turag river in the west, covering an area of about 415 km² (180 sq.miles). A Number of N-S, E-W, NE-SW and NW-SE trending faults and lineaments traverse through the city. The faults control stream courses and characterized by vertical and lateral movements. The following sub-sections describe the general features of Dhaka city in terms of its geology, topography, land form and recharge and discharge systems as a whole.

3.1.1 Geology of the Dhaka City

Geologically, Dhaka city is an integral part in the southern tip of the Madhupur tract, an uplifted block in the Bengal Basin, with many depressions of recent origin in it.

The city is compacted by Madhupur clay occupying the major northern part. Flood plain deposits laid down by the Brahmaputra river and its distributaries. The Madhupur clay formation is overlained and underlained by the alluvium and Dupi Tila formations respectively. A stratigraphic succession of Madhupur tract in Dhaka city has been given by Salahuddin (1991), Alam (1988), Alam et al. (1990), Monsur (1990), and DWASA (1991). The thickness of the Madhupur clay formation varies from 6 to 25 m with an average thickness of about 10 m. From base to top, this formation can be divided into two units (Rizvi 1970; Islam 1976). The lower clay unit is grey with molting of red brown, yellow and orange colours. The clay is sticky, plastic and compact containing calcareous modules. The upper clay unit is highly weathered. It is generally brownish, red to brick red, massive steady, plastic and compact in dry condition and

soft when wet. It contains some calcareous modules, plant roots and manganese spot (Monsur 1991).

The alluvium formation unconformably overlies the Madhupur clay formation. The thickness varies from 0 to 25 m. It is divided into two units depending on the mode of occurrence. The high land alluvium lies above the present flood plain (mainly silt and clay) whereas the low land alluvium laid down by the main drainage system. It is divided into three sub-unit: the back swamps and depression deposits; natural levee and interstream deposits and the river bed deposits.

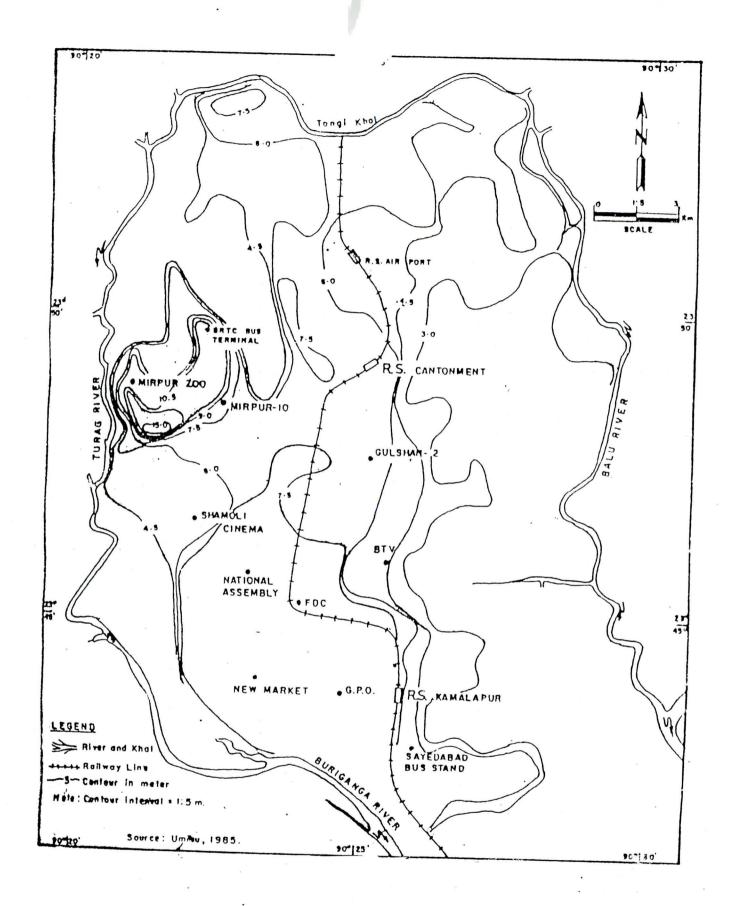
The Dupi Tila formation is mainly comprises two distinct units - a lower sand stone and an upper clay stone (Khan 1978). The sand stone is yellow, medium to coarse grained, massive, poorly consolidated, contains quartz granules and pebbles with sub ordinate clay stone. The maximum thickness is about 600 m. The sand forming the main aquifer at Dhaka city beneath the Madhupur tract are assigned to Dupi Tila (Alam et al. 1990).

3.1.2 Relief and Topography

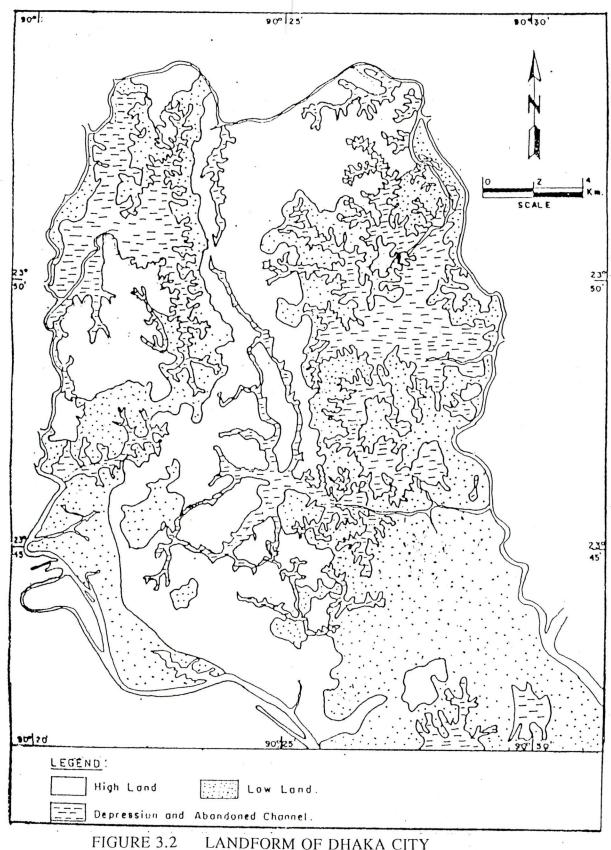
The city is characterized by low relief with many low depressions. The average elevation of the city is about 6 m above M.S.L. The maximum and minimum elevation occur in the Mirpur zoo and the peripheral area of the city respectively (Fig. 3.1). The ground surface slopes towards both east and west but general slope is from the north towards the south and southeast (Chowdhury 1993).

3.1.3 Land Form

Three distinct land forms can be recognized in the city. These are high lands, low lands and abandoned channels and depressions. The high land areas have greater N-S extent and constitute about 40 percent of the land areas. The extreme north western and middle western parts of the city area are highly eroded and the ground surface elevation (about 5 to 8 m) does not represent the actual elevation. This unit remain unaffected during flooding. The peripheral part of the city is low and constitute about 35 percent of the study area. It is affected by flood during monsoon season. The north western, central eastern and south eastern part of the city are marked by abandoned channels and depressions which constitute 25 percent of the study area (Fig. 3.2). The general elevation is 1.5 to 2.5 m and sometimes with elevations below sea level (Chowdhury 1993).

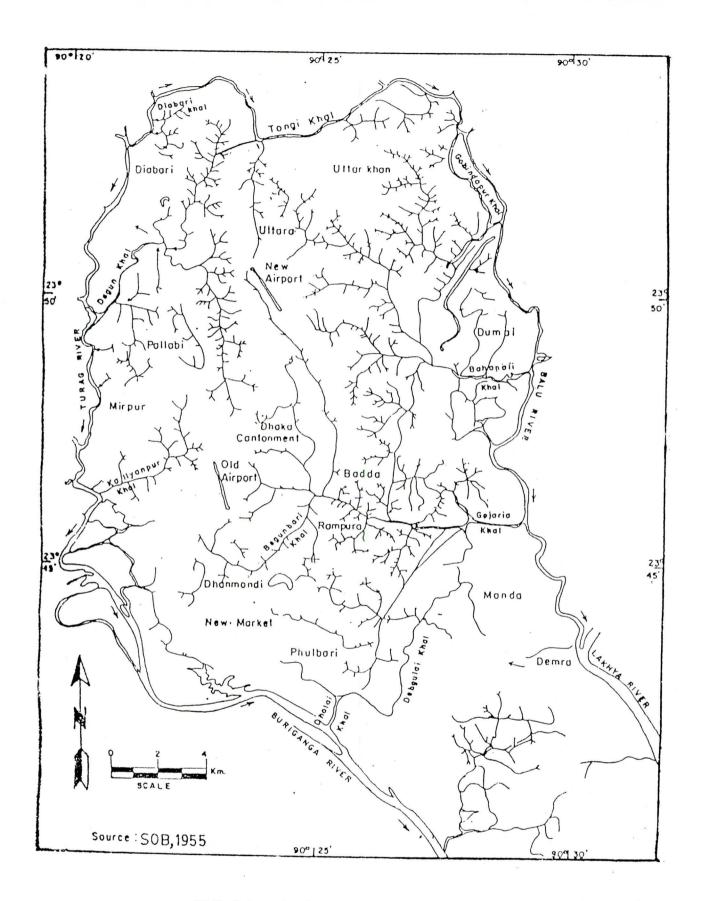

3.1.4 Drainage System

The city is demarcated by three main rivers and one khal. The rivers are the Turag in the west, the Balu river in the east and the Buriganga in the south and south-east. The Tongi-khal is situated in the north of the city (Fig. 3.3).


The Turag river comes from the north and joins the Buriganga river near Mirpur. The Balu river also comes from the north and joins the Lakha river near Demra. The Tongi khal takes water from the Turag river and discharges it into the Balu river. The Buriganga is a tidal river which issues from the north-west and flows towards the southeast. The city is traversed by numerous khals, entrenched streams and lakes. The rivers commonly show dendritic pattern except the western part which shows trellise pattern together with dendritic drainage system.

3.2 Recharge and Discharge

In Dhaka city recharge to the aquifer system occurs primarily from the rivers that enters as horizontal flow and secondarily from the vertical inflow from the rainfall and flooding. Recharge is also reported to take place through leakage from the water supply and sewer systems. Vertical recharge takes place very slowly as the aquifer system consists of thick clay layer (on average about 10 m) above it. Recharge from horizontal as well as vertical inflow from the flood water of the low lying areas in and around the city is thought to be occurred only during the period from July to September. The recharge to the aquifer system of the city has been reduced gradually as the rechargeable areas are being reduced due to urbanization. In general groundwater moves toward maximum hydraulic gradient, i.e., from recharge areas of high water level to pumping areas of depressed water level.



1.6

3.3 Climate

The Dhaka district lies within the humid subtropical zone with moderately warm temperature, high humidity and high annual rainfall (Chowdhury 1993). The dry winter season from November through March, is characterized by moderate temperature and scanty rainfall. The monsoon season experiences with almost daily rainfall and high temperature which prevails from June through September. The lowest temperature records in January varies from 45°-60°F and highest temperature recorded in April or May varies from 100-105°F (Chowdhury 1991).

The area receives concentrated rainfall from June to September (areal average is 2130 mm). The annual evaporation of Dhaka region ranges from 840 to 1020 mm.

3.4 Sub-Surface Geology and Aquifer System

Detailed information about the sub-surface geology are available with the BWDB and DWASA bore log data. The aquifer system beneath Dhaka is complex in nature and functioning as a leaky, semiconfined aquifer. The thickness of different formation layers as well as the aquifer properties are found to vary between places. A simplified configuration of this aquifer system (which is a closer approximation of the actual lithology) have been visualized (DWASA 1991).

Upper Aquitard

Top most layer of top soil composed of finer plastic concentration of impervious clay and low permeable silt. It ranges from 6 to 10 m on average up to a 15 m thick at different places.

Upper Aquifer

Below upper aquitard, the media composed of fine to medium fine sand to a depth of 30-45 m. Shallow and hand-pump tubewells extract water from this aquifer. Lower Aquitard

Bottom to upper aquifer, the material composed of silt and clay with variable thickness.

Lower Aquifer

Below lower aquitard, the media composed of medium to coarse sand with a thickness of ranging from 90 to 120 m depth. This is the main source of municipal and irrigation water supply for Dhaka city. It is found that in majority of the places the main aquifer can be classified as semi-confining in nature.

3.5 Groundwater Hydrographs

The position and fluctuation of groundwater table or potentiometric surface may be available from routinely monitored BWDB and BADC piezometers located in the study area. From the available data a marked difference on seasonal fluctuation of groundwater hydrograph in and outside the Dhaka city have been observed. The fluctuation of groundwater table in BWDB piezometers outside Dhaka show a good response with seasonal change. Besides, piezometric hydrographs show gradual declination with time. A highest depressed groundwater level in Dhaka city than its adjoining area can easily be noticed. The possible cause of this situation is the excessive abstraction of groundwater. The deepest groundwater level was found in the central Dhaka (Motijheel, Ramna and its adjoining areas). The rate of water level fall is increasing gradually which may create an alarming situation in future.

The annual rainfall in Dhaka city is about 2130 mm and the most part of which occurs through the months of June through September. The low lying areas inside and outside the Dhaka get flooded from July to September. This water may recharge the aquifer in the study area by vertical percolation. However, the following factors may retard the process of vertical percolation in the study area:

- Gradual reduction of rechargeable surface areas due to construction of buildings, roads and concrete pavements.
- The top most fine material consists of plastic clay (about 7 to 15 m in thickness) which retards greatly the percolation rate.
- The percolation through the unsaturated materials reduces the inter connected pore spaces by the deposition of finer materials.
- Lowering of groundwater level increases the length of flow paths which in turn develops the time constraints of recharge.
- Most of the beels and low lying areas surrounding the Dhaka city are covered by the thick impervious clay which is not favourable for vertical recharge.

The contribution of water from the adjoining rivers into the aquifer system are seemed to be limited although it is indicated that there are great differences between the river stages and the groundwater levels. The rivers are being silted and reducing the permeabilities of their beds.

The groundwater gradient and the flow path towards Dhaka city (Fig. 3.3) indicates that there is no outflow even at full recharge time. Besides, the higher depth of bottom aquifer and its static water level indicate that the components of evapotranspiration from groundwater is negligible.

3.6 Different Features of DWASA Wells

To meet the increasing water demand in Dhaka city, priority was given to the abstraction of groundwater than surface water due to its excellent potable quality. DPHE first installed water wells in Dhaka city in 1949. Since 1949, DPHE and later on DWASA after its establishment has been installing wells at an average rate of about 3 to 4 wells per year. During the period 1949-

1959, wells were drilled and constructed at depths between 75-110 m using 20-30 m length of slotted brass screen. The pump chambers were 25-40 cm in diameter and about 20 m depth. Between 1959-1969, the well depths were increased to 110-140 m using 30-45 m of slotted brass screen. Depth of pump chambers during this period were increased to 27-34 m and its diameter to 36 cm. From 1969, DWAŞA wells have been drilled progressively deeper ranging from 110-190 m and have been using a standard more or less fixed design parameters and construction procedures for tubewells inside Dhaka city.

Since the first deep tubewell in 1949, WASA has installed about 360 wells, most of them during the last 15 years. In June 1997, 220 deep tubewells were in operation and they produced in all 800 million liters/day.

3.6.1 Well Design

Since 1969, DWASA has been installing (Serajuddin 1984) gravel packed wells drilled by reverse rotary drilling method. The tubewells are designed with a minimum yield of 4896 m^3 /day (1 IMGD).

The tubewells are drilled with a diameter of 560 mm (22 inch) to a depth of about 200 m. Typically they have an upper pump housing section made of mild steel, usually 460 mm in diameter, to a depth of about 60 m which generally specified by the engineers during drilling operation. The length and diameter of upper pump housing depend on pumping water level (PWL) when well is in operating condition and size of the pump installed.

Immediately after upper housing, a reducer is attached of different shape which connects the lower blind pipe and strainer of the well. The diameter of the blind pipe and strainer is 200 mm. After the boring operation, the concerned engineers check the log of material along with the respective sample (sieve analysis is done from sample taken in every 1.5 m). Depending upon their engineering practice they select the most potential stratum of the aquifer and the strainer is placed accordingly in that region of the aquifer. The strainer length depends on

aquifer configuration. The blind pipe is placed in the remaining portion of the well. A bail plug about 1.5 m long of same diameter having its bottom securely sealed is installed at the bottom of the well. Centralizers (minimum 9.5 mm dia steel bar) are generally attached with the 200 mm blind pipe and screen at an interval not exceeding 10 m which provide a well clearance.

Previously Dhaka WASA used 50 slot screen. As a consequence of wide spread sand yielding problem, around in 1989, DWASA started to use 30 slot screen.

In Dhaka, a proper commercial graded gravel pack material is difficult to purchase. Instead, a gravel pack material is collected from local source and graded at site as per design. The following design criteria is followed in selecting gravel size for the pack material shown in Table 3.1.

Gravels are placed immediately after installation of well fixtures with an average thickness of 175 mm. The gravels are poured around the tubewell up to a level 15 m below the ground surface. Prior the completion of graveling, two G.I. pipes each of 8 cm nominal diameter with sufficient length are installed to reach from 30 cm above the pump house floor to 60 cm below the top of the gravel pack.

Screen size	Percent by weight retained by the screen sizes specified
3/8"	0
4	20-30
8	40-60
16	20-40
Pan	0-5

Table 3.1. Gravel Size Used in DWASA Wells as Pack Material

As a sanitary protection of annular space between the housing pipe and the hole above the gravel pack are back-filled with paddled clay upto a level 6 m below the ground surface. The remaining space is filled with cement grout (1:1:2) as per direction of site engineer. The pumps used in DWASA wells may either be a submersible or turbine pump. When a new well is constructed, a pump with a capacity of 200 m³/hr is installed. It has the ability to produce a 70 meter pressure head and are mainly essential to lift water on overhead water reservoirs, otherwise, a 40 m head is enough.

3.6.2 Construction of Deep Tubewells

Reverse rotary drilling method is applied to drill wells in Dhaka city. The drilling fluid flows down the borehole outside the drill pipe from a mud pit. The drilling fluid is air lifted by drilling pipe to the surface entering through the bit and the cuttings are allowed to settle in the pit. To prevent the borehole caving, the fluid level is kept at ground level at all times. No stabilizer is used with the drilling fluid. After every 1.5 m drilling, samples are collected for sieve analysis to prepare bore log data which afterwards used for placement of screens.

Placement of gravel pack around a well is carried out carefully to avoid segregation or bridging. From ground level, gravel is poured into the annular space of well. A circulation of water is established downward in the annular space which force the gravel to pass downward.

Previously the well development was practiced by DWASA consisted of step pumping and back washing only. This method was considered to be inefficient. Therefore, recently water jetting has been added to well development. The equipment used for water jetting include a jetting tool which is a piece of pipe with fittings. It has a diameter of less than that of the screen and four nozzles placed at 90° angle. Beginning at the lowest screen, jetting tool is gradually drawn upward, slowly rotated by turning a clamp at the top. The high velocity jet, forces water through the screen openings. Fine sand, silt and clay are washed out of the aquifer and the turbulence created by the jet, brings these fine materials into the well through screen openings above and below the point of operation. While jetting, abstraction is continued to ensure a negative head to remove the fines as they are washed into the well. Dhaka WASA use a pressure between 3,000 kPa to 4,000 kPa for water jetting. Each screen is jetted at least 5 minutes or until the discharge water is clear.

To carry out step pumping with back washing, water is lifted to the surface by a pump. The pump is then stopped and the water in the column pipe falls back into the well thus creating a surging effect through the screen opening. Step pumping starts at an initial rate of 75 percent of the design discharge. The rate is then gradually increased to 150 percent of the design discharge. Development pumping is continued for at least 6 hours or until water is clear and contains less than 100 ppm of sand. Pumping is carried out with intermittent backwashing at 30 minutes intervals.

The principle aim of a pumping test is to determine the performance characteristics of the well and the hydraulic properties of the aquifer. Dhaka WASA starts test pumping after the development is completed and the static water level has recovered within 30 mm of the static water level before development.

The pumping is generally conducted as follows:

Pumping at 75 percent of design capacity for 6 hours

"	100		"	"	6 hours
"	125	."	"	"	6 hours
"	150	"		"	6 hours

Water level records are taken during the test pumping as follows: every second minute for 10 minutes every fifth minute for 20 minutes every tenth minute for 30 minutes every twentieth minute for 3 minutes every half hour for 2 minutes.

6 hourly recovery records are taken immediately after pumping stopped. Recovery records are taken in specified time intervals.

Chapter 4 Methodology

4.1 General

General flow equation of groundwater movement are derived from Darcy's law and the equation of continuity. Well flow equations derived from these flow formula are the effective tools to understand the flow of water towards a well. The subsurface geology may have the different types of configuration and none of the two geological systems are very identical. For practical purpose, some simplified definitions have been developed to mathematically interpret their behaviour on groundwater flow. Through such simplications, a number of flow formula have been developed depending on different flow conditions, geological variations and different boundary conditions. Even though the original concept of flow formula are almost same, their final representation vary depending on followings:

- steady or unsteady flow
- constant or variable discharge
- fully or partially penetrating well .
- isotropic or anisotropic aquifer
- aquifer types such as confined, unconfined or leaky aquifer
- special boundary conditions of geologic section

The DWASA deep tubewells have the construction and development test data. The measured drawdowns are available in a well itself. Thus the aquifer properties are obtained with the help of single well principle. Theoretical concepts of single well pumping test are demonstrated in section 4.4. The brief description on the selection of tubewells and the types of data collected for the present study are provided in sections 4.3 and 4.2, respectively.

4.2 Collection of Data

This study involves an analysis related to deep tubewell construction and development data. The data generated from DWASA wells for the design, construction and development are preserved for each well in DWASA office. The lithology/ bore log data obtained for the

well location at the time of drilling are also available along with their description of well fixtures. The tests that are carried out for DWASA wells can be delineated as follows:

i) six hourly well development test at 3 to 4 different discharges;

ii) a recovery test;

iii) six hourly step drawdown test at 3 to 4 different discharges;

iv) another recovery test.

In the present study, the step drawdown test data and its subsequent recovery test data are used. The first step (for six hours at a discharge of $3674 \text{ m}^3/\text{day}$ in most cases) of the step drawdown data are analysed considering it as a single well test. The data of these pumping tests are provided in Appendix-G.

4.3 Selection of Tube Wells

The tubewells that are selected for the present study meet the following criteria:

i) both the data related to construction (bore-log, well fixtures etc. of the wells) and the performance tests (step drawdown with recovery test) are available for the well concerned;

ii) the number of selected wells in a zone should be representative for that zone.

According to Dhaka WASA, there are 6 MODS zones in the city area. The number of selected wells for analysis from each zone are shown in Table 4.1.

 Table 4.1
 Number of Selected Tubewells at Different Zones

MODS Zone	I.	II	III	IV	V	VI	Total
Number of	8	7	7	9	6	7	44
Wells Selected							

4.4 Single Well Pumping Tests

A single well test is in which no piezometers are used. Water level changes during pumping or recovery are measured only in the well itself. The drawdown in a pumped well, however, is influenced by well losses and well-bore storage. In the hydraulics of well flow, the well is generally regarded as a line source or line sink, i.e., the well is assumed to have an infinitesimal radius, so that the well bore storage can be neglected. In reality, any well has a finite radius and thus a certain storage capacity. Well-bore storage is large when compared with the storage in an equal volume of aquifer material. In a single well test, wellbore storage must be considered when analyzing the drawdown data.

To determine whether the early time drawdown data are dominated by well-bore storage, a log-log plot of drawdown versus pumping time should be made. If the early time drawdowns plot as a unit slope straight line, we can conclude that well-bore storage effects exists. Here, the methods presented are derived from single well constant discharge test. The methods applied in the present study are:

- i) Jacob's straight line method
- ii) Theis recovery method
- iii) Papadopulos-Cooper curve fitting method
- iv) Hurr-Worthington method.

4.4.1 Jacob's Straight Line Method

In order to develop and solve the well flow equations, it becomes necessary to make the following assumptions:

- i) The aquifer has an infinite areal extent.
- ii) The aquifer is homogenous, isotropic and of uniform thickness over the area that will be influenced by the test.

- iii) Prior to pumping the piezometric surface is horizontal (or nearly so) over the area that will be influenced by the test.
- iv) The aquifer is pumped at a constant discharge rate.
- v) The well penetrates to the entire thickness of the aquifer and thus receives water by horizontal flow.
- vi) The flow to the well is in unsteady state.
- vii) The water removed from storage is discharged instantaneously with decline of head.

viii) The time condition that are to be met

 $\frac{25 r_c^2}{KD} < t < \frac{cS}{20} \quad (= \frac{L^2 S}{20 KD})$

where, $r_c =$ radius of the unscreened part of the well where the water level is changing; t = time since the start of pumping; S = storativity;

if the above conditions are satisfied, the effect of well-bore storage and leakage can be neglected.

When water is pumped from a production well, the water level in the well and also in the vicinity of the well lowers. The distance-drawdown curve around a well forms a cone of depression, the outer boundary (meeting point of cone of depression and original piezometric level of water level) of which depicts the area of influence of well.

The approximate partial differential equation representing the unsteady radial flow in a homogenous, isotropic and compressible confined aquifer of uniform thickness with transmissivity KD and storativity S is,

$$\frac{\partial^2 h}{\partial r^2} + \frac{1}{r} \frac{\partial h}{\partial r} = \frac{S}{KD} \frac{\partial h}{\partial t}$$
(4.1)

where, h = piezometric head; r = the radial distance from the well axis;t = the pumping time; S = dimensionless storativity; KD = transmissivity, m²/day; Theis (1935) obtained a solution for the unsteady radial flow to a well in a non-leaky confined aquifer based on the analogy between groundwater flow and heat conduction. In the analysis, the well is replaced by a mathematical sink of constant strength and is assumed to have an infinitesimal diameter.

The boundary conditions are

 $h = h_0$ as r = infinity for $t \ge 0.0$, and

lim

7

$$r \to 0$$
 $\left(r \frac{\partial h}{\partial r}\right) = \frac{Q}{2\pi KD}$ (4.2)

and the initial condition,

 $h(r,0) = h_0$ for t < 0.0,

The solution to the problem (Fig. 4.1) given by Eq^n . 4.1 is as follows:

$$s = h_0 - h = \frac{Q}{4\pi KD} \int_u^{\infty} \frac{e^{-u}}{u} du$$
 (4.3)

where, h_0 = piezometric head 'before pumping starts as in Fig. 4.1 Q = operating discharge of the well; u = r²S/4KDt

$$S = \frac{4KD t u}{r^2}$$
(4.4)

The exponential integral expressed symbolically as W(u), that is,

$$\mathcal{W}(u) = \int_{u}^{\infty} \frac{e^{-u}}{du}$$
(4.5)

Where W(u) is read as the "Well Function" for non-leaky isotropic confined aquifers for fully penetrated wells and at constant discharge condition.

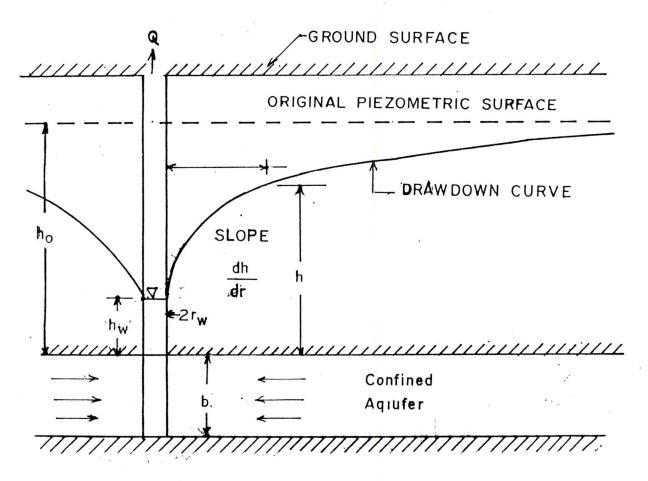


Fig.4.1 Drawdown in a Pumped Artesian Aquifer

Based on Theis formula, Jacob developed a method (Cooper and Jacob 1946) to calculate the aquifer parameters or the drawdown at any distance from the well when the aquifer parameters are known.

The Theis equation can be written as

$$s = \frac{Q}{4\pi KD} \mathcal{W}(u) = \frac{Q}{4\pi KD} \left[-0.5772 - \ln u + u - \frac{u^2}{2.2!} + \frac{u^3}{3.3!} - \dots \right]$$
(4.6)

The value of u decreases when,

i) the time (t) increases and

ii) the distance from the well (r) decreases.

Evidently, the terms beyond ln u in the series become so small that they can be neglected, i.e.,

- after a sufficiently long pumping time and

- drawdown observations are made in the near vicinity of the well.

In that case for small values of u (for u < 0.01) the drawdown can be approximated by,

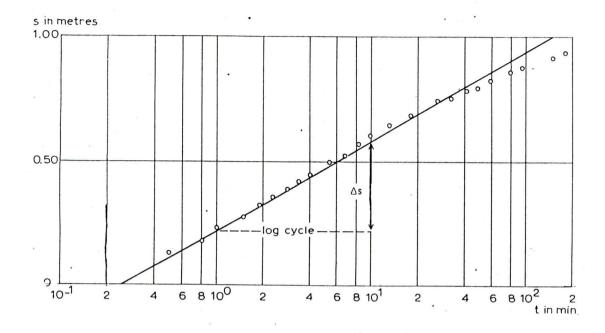
$$s = \frac{Q}{4\pi KD} \left(-0.5772 - \ln \frac{r^2 S}{4KD t} \right)$$
(4.7)

with an error less than	1%	2%	5%	10%
for u smaller than	0.03	0.05	0.1	0.15

After being rewritten and changed into decimal logarithms, the equation reduces to,

$$s = \frac{2.3Q}{4\pi KD} \log \frac{2.25 KD t}{r^2 S}$$
(4.8)

Because Q, KD and S are constant, a plot of drawdown s versus the logarithm of t forms a straight line (Fig. 4.2). If this line is extended until it intercepts the time-axis where s=0, the interception point has the coordinates, s = 0 and $t = t_o$, substituting these values into Eqⁿ. (4.10) gives


$$0 = \frac{2.3Q}{4\pi KD} \log \frac{2.25 KD t_{0}}{r^{2}S}$$

and because $\frac{2.3Q}{4\pi KD} \neq 0$

it follows that,
$$\frac{2.25 \text{ KD } t_0}{r^2 S} = 1$$
 (4.9)

The slope of the straight line, i.e., the drawdown difference Δs per log cycle of time log $t/t_o = 1$ is equal to 2.3 Q/4 π KD, Hence,

$$KD = \frac{2.3Q}{4\pi\Delta S} \tag{4.10}$$

Similarly, it can be shown that, for a fixed time t, a plot of s versus r on semi-log paper forms a straight line and the following equations can be derived as follows:

$$S = \frac{2.25 \, KD \, t}{r_0^2} \tag{4.11}$$

and

$$KD = \frac{2.3Q}{4\pi\Lambda\bar{S}}$$
(4.12)

Again, If all the drawdown data of all piezometers are used, the values of s versus t/r^2 can be plotted on semi-log paper. Subsequently, a straight line can be drawn through the plotted points. Continuing with the same line of reasoning as above, it will derive the following formulas

$$S = \frac{2.25 \text{ KD } t}{r_0^2} \qquad (4.13)$$

and

$$KD = \frac{2.3Q}{4\pi\Delta S}$$

This method can also be applied to single well constant discharge tests to estimate the aquifer transmissivity.

For single well test, in confined aquifer, the time condition should be met is $t > 25r_c^2/KD$

If this time condition is met, the effect of well-bore storage can be neglected. For single well tests in leaky aquifers

$$\frac{25 r_c^2}{KD} < t \quad < \frac{cS}{20} \left(= \frac{L^2 S}{20 KD} \right)$$

As long as $t < \frac{cS}{20}$, the influence of leakage is negligible.

Jacob's method can also be applied if the well is partially penetrating provided that late time

 $\left(t > \frac{D^2S}{2KD}\right)$ data are used. According to Hantush (1964) the additional drawdown due to

partial penetration will be constant for $t > D^2S/2KD$ and hence will not influence the value of Δs as used in Jacob's method.

Procedure

- On semi-log paper, plot the observed values of s versus the corresponding time t (t on a logarithmic scale) and draw a straight line through the plotted points.
- Determine the slope of the straight line, i.e., the drawdown difference Δs per log cycle of time.
- Substitute the values of Q and Δs into KD = 2.30Q/4 $\pi\Delta s$ and calculate KD.

4.4.2 Theis Recovery Method

When the pump is shut down after a pumping test, the water levels in the well and the piezometers will start to rise. This rise in water levels is known as residual drawdown s'. It is expressed as the difference between the original water level before the start of pumping and the water level measured at a time t' after the cessation of pumping (Fig. 4.3).

It is always good practice to measure the residual drawdowns during the recovery period. Recovery test measurements allow the transmissivity of the aquifer to be calculated, thereby providing an independent check on the results of the pumping tests, although costing very little in comparison with the pumping test.

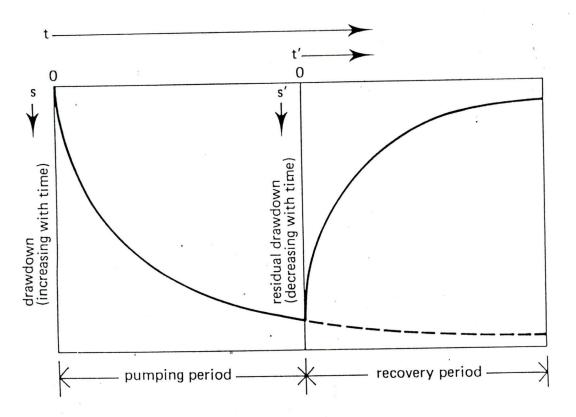


Fig. 4.3 Time Drawdown and Residual Drawdown

Residual drawdown data are more reliable than pumping test data because recovery occurs at a constant rate, whereas a constant discharge during pumping is often difficult to achieve in the field.

Assumptions

- i) The aquifer is confined leaky or unconfined
- ii) The aquifer has an infinite areal extent.
- iii) The aquifer is homogenous, isotropic and of uniform thickness over the area influenced by the test.
- iv) Prior to pumping the piezometric surface is horizontal (on nearby so) over the area that will be influenced by the test.
- v) The aquifer is pumped at a constant discharge rate.
- vi) The well penetrates the entire thickness of the aquifer and thus receives water by horizontal flow.
- vii) The water removed from storage is discharged instantaneously with decline of head.
- viii) The flow to the well is in unsteady state.

ix)
$$t_{\rm p} > 25 r_{\rm c}^2 / \text{KD}$$

 $t' > 25 r_c^2 / KD$

where, t_p = pumping time; t' = recovery time; r_c = radius of the unscreened part of the well where the water level is changing.

The analysis of a recovery test is based on the principle of superposition. Applying this principle, we assume that after the pump has been shut down, the well continues to be pumped at the same discharge as before, and that an imaginary recharge equal to the discharge is injected into the well. The recharge and the discharge thus cancel each other, resulting in an idle well as is required for the recovery period.

According to Theis (1935), the residual drawdown after pumping test with a constant discharge is

$$s^{-} = \frac{Q}{4\pi KD} \{W(u) - W(u^{-})\}$$

$$(4.14)$$

where,

$$u = \frac{r^2 S}{4\pi K D t} and \quad u' = \frac{r^2 S'}{4\pi K D t'}$$

when u and u' are sufficiently small (for u < 0.01) - Eqⁿ. (4.14) can be approximated by

$$s' = \frac{Q}{4\pi KD} \left(\ln \frac{4KD t}{r^2 S} - \ln \frac{4KD t}{r^2 S} \right)$$
(4.15)

where, s' = residual drawdown in m; S' = storativity during recovery, dimensionless; S = storativity during pumping, dimensionless; t = time in days since the start of pumping; t' = time in days since the cessation of pumping; Q = rate of recharge = rate of discharge in m³/d.

when S and S' are constant and equal and KD is constant, Eqⁿ. (4.15) can be written as

$$s = \frac{2.30 \, Q}{4 \pi K D} \log \frac{t}{t}$$

$$(4.16)$$

A plot of s' versus t/t' on semi-log paper (t/t' on log) will yield a straight line. The slope of the line is

$$\Delta s = \frac{2.30 \, Q}{4 \, \pi K D} \tag{4.17}$$

where, $\Delta s'$ is the residual drawdown difference per log cycle of t/t'.

The Theis recovery method is also applicable to data from single well pumping test conducted in confined, leaky or unconfined aquifers.

Procedure

For each observed value of s', calculate the corresponding value of t/t'

- Plot s' versus t/t' on semi-log paper (t/t' on the logarithmic scale)

- Fit a straight line through the plotted points

- Determine the slope of the straight line, i.e., the residual drawdown difference $\Delta s'$ per log cycle of t/t'

- Substitute the known values of Q and $\Delta s'$ into Eqⁿ. (4.17) $\Delta s' = 2.30 \text{ Q}/4\pi \text{KD}$ and calculate KD.

4.4.3 Papadopulos-Cooper's Method

The assumptions and conditions underlying the Papadopulos-Cooper method are:

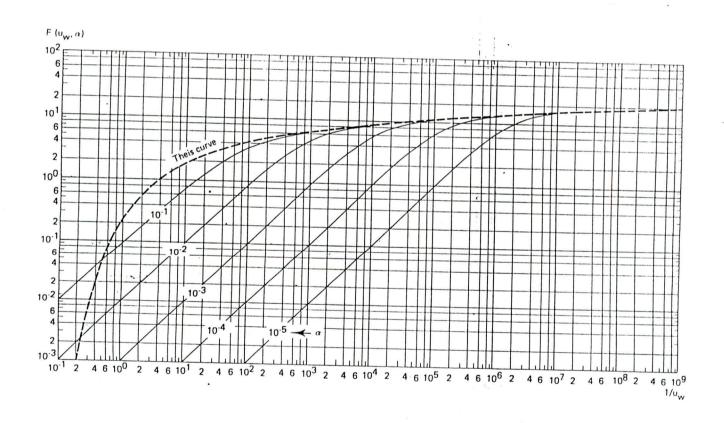
i) The aquifer is confined.

ii) The aquifer has an infinite areal extent.

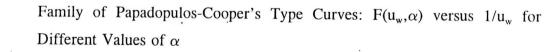
- iii) The aquifer is homogenous, isotropic and of uniform thickness over the area influenced by the test.
- iv) Prior to pumping the piezometric surface is horizontal (or nearly so) over the area that will be influenced by the test.
- v) The aquifer is pumped at a constant discharge rate.
- vi) The well penetrates the entire thickness of the aquifer and thus receives water by horizontal flow.
- vii) The water removed from storage is discharged instantaneously with decline of head.
- viii) The well diameter can not be considered infinitesimal; hence, storage in the well can not be neglected.
- ix) The flow of the well is in an unsteady state.
- x) The non-linear well losses are negligible.

Papadopulos and Cooper (1967) observed that the influence of well-bore storage on the drawdown in a well decreases with time and becomes negligible at $t > 25r_c^2/KD$, where r_c is the radius of the unscreened part of the well, where the water level is changing.

For a constant discharge test in a well that fully penetrates a confined aquifer, Papadopulos and Cooper (1967) devised a curve fitting method that takes the storage capacity of the well into account. The method is based on the following drawdown equation


$$s_{w} = \frac{Q}{4\pi KD} F(u_{w}, \alpha)$$
(4.18)

where, $u_w = \frac{r_{ew}^2 S}{4KD t}$ so, $S = \frac{4KD t u_w}{r_{ew}^2}$


$$\alpha = \frac{r_{ew}^2 S}{r_e^2}$$

 r_{ew} = effective radius of the screened (or otherwise open) part of the well,

 $r_{ew} = r_{w}$. e^{-skin} ; r_{w} = radius of unscreened part of the well where the water level is changing.

(4.19)

Procedure

- On log-log paper, the family of type curves $F(u_w, \alpha)$ versus $1/u_w$ for different values of α are plotted and shown in Fig. 4.4.
- On another sheet of log-log paper of the same scale, plot the data curve s_w versus t. Match the data curve with one of the type curves.
 - Choose an arbitrary point on the superimposed sheets and note for that point the values of $F(u_w, \alpha)$, $1/u_w$, s_w and t note also the value of α on the matching type curve.
 - Substitute the values of $F(u_w, \alpha)$ and s_w , together with the known value of Q, into Eqⁿ. (4.18) and calculate KD and then calculate the value of S using the Eqⁿ. (4.19).

4.4.4 Hurr-Worthington's Method

Hurr-Worthington's method is based on the following assumptions and conditions.

- i) The aquifer is confined or leaky.
- ii) The aquifer has an infinite areal extent.
- iii) The aquifer is homogenous, isotropic and of uniform thickness over the area influenced by the test.
- iv) Prior to pumping the piezometric surface is horizontal (or nearly so) over the area that will be influenced by the test.
- v) The aquifer is pumped at a constant discharge rate.
- vi) The well penetrates the entire thickness of the aquifer and thus receives water by horizontal flow.
- vii) The water removed from storage is discharged instantaneously with decline of head.
- viii) The storage in the well can not be neglected.
- ix) The flow to the well is in unsteady state.

x) The storativity is known or can be estimated with reasonable accuracy.

xi) The non-linear well losses are negligible.

The unsteady state flow to a small diameter well pumping a confined aquifer can be described by a modified Theis equation, provided that the non-linear well losses are negligible. The equation is written as

$$s_{w} = \frac{Q}{4\pi KD} \mathcal{W}(u_{w}) \qquad (4.20)$$

where,
$$u_w = \frac{r_{ew}^2 S}{4KD t}$$
 (4.21)

Rearranging Eqⁿ. (4.20) gives

$$\mathcal{W}(u_w) = \frac{4\pi KD \ s_w}{Q} \tag{4.22}$$

Hurr (1966) demonstrated that multiplying both sides of Eqⁿ. (4.22) by u_w eliminates KD from the right hand side of the equation

$$u_{w}\mathcal{W}(u_{w}) = \frac{4\pi KD \ s_{w}}{Q} * \frac{r_{ew}^{2}S}{4KD \ t} = \frac{\pi \ r_{ew}^{2}S}{t} * \frac{s_{w}}{Q}$$
(4.23)

The Fig. 4.5 is plotted to illustrate the given values of u_w and $u_wW(u_w)$.

Hurr (1966) outlined a procedure for estimating the transmissivity of a confined aquifer from a single drawdown observation in the pumped well. In 1981, Worthington incorporated Hurr's procedure in a method for estimating the transmissivity of (thin) leaky aquifers from single well drawdown data.

In leaky aquifers the drawdown data can be affected by well losses, by well-bore storage phenomena during early pumping times, and by leakage during late pumping times.

According to Worthington (1981), after the drawdown data have been corrected for non-linear well losses, one can calculate "pseudo-transmissivities by applying Hurr's procedure to a sequence of the corrected data. Both well-bore storage effects and leakage effects reduce the drawdown in the well and will therefore lead to calculate pseudotransmissivities for each time and each corrected drawdown. An average of these pseudotransmissivity values is the best estimated transmissivity in the location concerned.

The unsteady state drawdown data from confined aquifers can also be used to construct a semi-log plot of pseudo-transmissivities versus time to account for the early time well-bore storage effects.

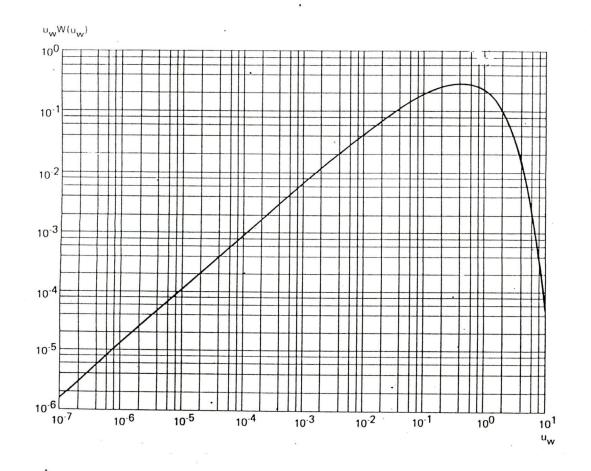
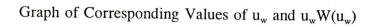



Fig. 4.5

Procedure

- For a single drawdown observation calculate $u_w W(u_w)$ from Eqⁿ. (4.23) for known values of S and r_{ew} and the corresponding values of t, s_w , and Q.
- From Fig. 4.5 determine the corresponding value of u_w by knowing $u_wW(u_w)$.
- Calculate pseudo-transmissivity value by substituting the values of u_w , r_{ew} , t and s_w into Eqⁿ. (4.21).
 - An average of all the pseudo-transmissivities will provide the best estimate of transmissivities in the location concern.

4.5 Logan Approximation Method

If a well in a confined aquifer has been pumped for such a long period that the flow is in steady-state, the Logan method can be applied to calculate the transmissivity.

Logan (1964) derived his formula from the Theim's formula for a confined aquifer which can be written as

$$KD = \frac{2.3 \ Q \ \log \ r_{\max} / \ r_{w}}{2\pi s_{mw}}$$
(4.24)

where, $r_w = radius$ of the pumped well; $r_{max} = radius$ of influence (= radius of depression cone); $s_{mw} = maximum$ drawdown in the pumped well.

The accuracy of the calculation depends only on the accuracy of the measurement of s_{mw} (on which well losses may have a substantial influence) and on the accuracy of the ratio r_{max}/r_w . The ratio of r_{max}/r_w can not be accurately determined without the use of piezometers. However, the variations in the ratio r_{max} and r_w may be substantial, the variations in the logarithms of their ratios are much smaller.

Therefore, assuming an average condition of the radius of influence, a value of 3.33 for the logarithm of the ratio may be accepted as a rough approximation and the Eqⁿ. (4.24) yields

$$KD = \frac{1.22Q}{s_{mw}}$$
(4.25)

Substituting the values of Q and s_{mw} in the Eqⁿ. (4.25) and the value of KD can be determined.

4.6 Well Performance Test

The drawdown in a pumped well consists of two components, the aquifer loss and the well loss. A well-performance test is conducted to determine these losses (Fig. 4.6).

Aquifer losses are the head losses that occur in the aquifer where the flow is laminar. They are time-dependent and vary linearly with the well discharge. In practice, the extra head loss induced, for instance, by partial penetration of a well is also included in the aquifer losses.

Well losses are divided into linear and non-linear head losses. Linear well losses are caused by damaging of the aquifer during drilling and completion of the well. These losses comprise, head losses due to compaction of the aquifer material during drilling, head losses due to plugging of the aquifer with drilling mud which reduces the permeability near the bore-hole, head losses in the gravel pack and head losses in the screen. Amongst the non-linear well losses are the friction losses that occur inside the well screen and in the suction pipe where the flow is turbulent, and the head losses that occur in the zone adjacent to the well where the flow is usually also turbulent. All these well losses are responsible for the drawdown inside the well being much greater than one would expect on theoretical grounds.

The well performances tests are mainly two types: step drawdown test and recovery test. However, the main objective of any well performance test is to split the total drawdown into different loss components. Here, the step drawdown test is used for the analysis.

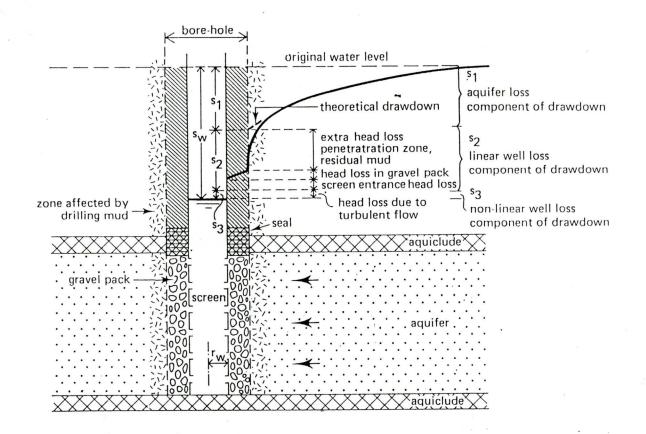


Fig. 4.6 Various Head Losses in a Pumped Well

4.6.1 Step Drawdown Test

It is a single well test (first performed by Jacob in 1947) in which the well is pumped at a low constant discharge rate until the drawdown within the well stabilizes. The pumping rate is then increased to a higher constant discharge rate and the well is pumped until the drawdown stabilizes once more. This process is repeated through at least three steps, which should all be of equal duration say, from 30 minutes to 2 hours each. For the drawdown in a pumped well, Jacob gave the following equation:

$$s_{m} = B(r_{mn}, t)Q + CQ^{2}$$
 (4.26)

where,
$$B(r_{ew}, t) = B_1(r_{ew}, t) + B_2$$
 (4.27)

 $B_1(r_{ew},t)$ and B_2 = linear aquifer and well loss coefficients respectively; C = non-linear well loss coefficient; r_{ew} = effective radius of the well; r_w = actual radius of the well; Q = discharge; t = pumping time.

Like, Jacob, different researchers have also found considerable variations in water level in and outside of the wells and tried to explain it mathematically in more exact form. Rorabaugh (1953) therefore suggested that Jacob's equation should be:

$$s_{\rm w} = BO + CQ^{\rm p} \tag{4.28}$$

where, p have the values of 1.5 to 3.5, depending on the value of Q. But the value of p = 2, as proposed by Jacob is still accepted (Ramey 1982; Skinner 1988).

Various methods are available to analyze the step drawdown test. The methods based on Jacob's equation are:

- i) The Hantush-Bierschenk method determines B and C which can be applied in confined, leaky or unconfined aquifers;
- ii) The Eden-Hazel method can be applied in confined aquifers which gives the value of well loss coefficients as well as estimates of the transmissivity of the aquifer.

In this study, Hantush-Bierschenk method is used to determine the losses.

4.6.2 Hantush-Bierschenk's Method:

The procedure suggested by Hantush (1964) and Bierschenk (1963) is applicable if the following assumptions and conditions are satisfied:

i) The aquifer is confined or leaky.

- ii) The aquifer has an infinite areal extent.
- iii) The aquifer is homogenous, isotropic and of uniform thickness over the area influenced by the test.
- iv) Prior to pumping the piezometric surface is horizontal (or nearly so) over the area that will be influenced by the test.
- v) The aquifer is pumped step-wise at increased discharge rate.
- vi) The well penetrates the entire thickness of the aquifer and thus receives water by horizontal flow.
- vii) The water removed from storage is discharged instantaneously with decline of head
- viii) The diameter of the well is small, i.e,. the storage in the well can be neglected
- ix) The flow to the well is in an unsteady state
- x) The non-linear well losses are appreciable and vary according to the expression CQ^2

Applying the principle of superposition to Jacob's equation, Hantush (1964) expressed the drawdown $s_{w(n)}$ in a well during the n-th step of a step-drawdown test as:

$$S_{w(n)} = \sum_{i=1}^{n} \Delta Q_{i} B(r_{ew}, t_{-t_{i}}) + C Q_{n}^{2}$$
(4.29)

where, $s_{w(n)}$ = total drawdown in the well during the n-th step at time t;

 r_{ew} = effective radius of the well; Q_n = constant discharge during the n-th step;

 t_i = time at which the i-th step begins ($t_1 = 0$); $\Delta Q_i = Q_i - Q_{i-1}$ = discharge increment beginning at time t_i ; Q_i = constant discharge during the i-th step of that preceding the n-th step.

The sum of increments of drawdown taken at a fixed interval of time from the beginning of each step $(t-t_i = \Delta t)$ can be obtained from Eqⁿ. (4.29).

$$\sum_{i=1}^{n} \Delta s_{w}(i) = s_{w(n)} = B(r_{ew}, \Delta t) Q_{n} + CQ_{n}^{2}$$
(4.30)

where, $\Delta s_{w(i)}$ = drawdown increment between the i-th step and that preceding it, taken at

time $(t_i + \Delta t)$ from the beginning of the i-th step. Eqⁿ. (4.30) can also be written as,

$$\frac{s_w(n)}{Q_n} = B(r_{ew}, \Delta t) + CQ_n \tag{4.31}$$

A plot of $s_{w(n)}/Q$ versus Q_n on arithmetic paper will yield a straight line whose slope is equal to C. The ordinate of this straight line at zero discharge gives the value of B.

4.7 Determination of Different Types of Losses

Referring from the Jacob's formula, the drawdown in a fully penetrated well (neglecting the well loss components) can be expressed as

$$s = \frac{2.3Q}{4\pi KD} \log \frac{2.25 KD t}{r_{ew}^2 S}$$
(4.32)

$$= B_{1}(r_{ew},t)Q = Aquifer Loss$$

Again, from Eqⁿ. (4.27)
$$B(r_{ew},t) = B_{1}(r_{ew},t) + B_{2}$$

multiply both side by Q
$$B(r_{ew},t)Q = B_{1}(r_{ew},t)Q + B_{2}Q$$

Where, $B(r_{ew},t)Q = Laminar Loss$, $B_{1}(r_{ew},t)Q = Aquifer Loss$, $B_{2}Q = Linear Well Loss$
$$B_{2}Q = B(r_{ew},t)Q - B_{1}(r_{ew},t)Q$$

Turbulent loss (non-linear well loss) = CQ²

Total well loss = Linear well loss + Non-linear well loss = $B_2Q + CQ^2$

4.8 Specific Capacity of the Well

If the operating discharge is divided by the average drawdown (ADD) of a production well, the specific capacity is obtained. Specific capacity is a measure of the productivity of a well. From step drawdown test, the drawdown of a well is $s = (B_1 + B_2) Q + CQ^2$ Therefore, the specifc capacity is

$$\frac{Q}{s} = \frac{1}{(B_1 + B_2) Q + C Q^2}$$
(4.33)

Any significant decline in the specific capacity of well can be attributed either to a reduction in the transmissivity due to a lowering of the ground water level in an unconfined aquifer or to an increase in well losses associated with various type clogging or the deterioration of well screen.

4.9 Well Efficiency

The theoretical well efficiency or simple the well efficiency Ew can be expressed as

$$E_{w} = \frac{B_1 Q}{(B_1 + B_2) Q^+ C Q^2} *100 \%$$
(4.34)

A well is said to be 100 percent efficient, if it exhibit no well losses, that is the $(B_2Q + CQ^2)$ term becomes zero. A well efficiency of 70 to 80 percent is usually obtainable if an appropriate and efficient design construction and development practice are followed.

4.10 Determination of Skin Factor

In groundwater hydraulics, the skin effect is defined as the difference between the total drawdown observed in a well and the aquifer loss component, assuming that the non-linear well losses are negligible. Adding skin effect to Jacob's Eq^n . (4.8) and assuming that the non-linear well losses are so small that they can be neglected, we get

$$S_{w} = \frac{Q}{4\pi KD} \ln \frac{2.25 \ KD \ t}{r_{w}^{2}S} + (skin) \cdot \frac{Q}{2\pi KL}$$

$$= \frac{Q}{4\pi KD} \left[\ln \frac{2.25 \, KD \, t}{r_{w}^{2} S} + 2(skin) \right]$$
(4.35)

Where, $skin(Q/2\pi KD) = skin$ effect in m, skin = skin factor dimensionless

 $r_{\rm w}$ = actual radius of the well in m.

After the pump has been shut down, the residual drawdown s'_w in the well for $t' > 25r_w^2S/KD$ is

$$S'_{w} = \frac{Q}{4\pi KD} \left[\ln \frac{2.25 \text{ KD } t}{r_{w}^{2}S} + 2(\text{ skin }) \right] = \frac{Q}{4\pi KD} \left[\ln \frac{2.25 \text{ KD } t'}{r_{w}^{2}S} + 2(\text{ skin }) \right]$$

 $=\frac{2.3Q}{4\pi KD}\log \frac{t}{t'}$

For t' > $25r_w^2S/KD$, a semi log plot of s'_w versus t/t' will yield a straight line. For time t = t_p = total pumping time, Eqⁿ. (4.35) becomes,

$$S_{w}(t_{p}) = \frac{Q}{4\pi KD} \ln \frac{2.25 \ KD \ t_{p}}{r_{w}^{2}S} + (skin) \frac{Q}{2\pi KL}$$

The difference between $s_{\rm w}(t_p)$ and the residual drawdown ${s'}_{\rm w}$ at any time t' is

$$S_{w}(t_{p}) - S_{w}^{\prime} = \frac{Q}{4\pi KD} \ln \frac{2.25 \ KD \ t_{p}}{r_{w}^{2}S} + (skin) \frac{Q}{2\pi KD} - \frac{Q}{4\pi KD} \ln \frac{t_{p} + t_{i}}{t_{i}^{\prime}}$$
(4.36)

For,
$$\frac{t_p + t_i'}{t_i'} = \frac{2.25 \text{ KD } t_p}{r_r^2 S}$$
 (4.37)

 Eq^{n} . (4.36) reduces to

$$s_w(t_p) - s_{wi}' = skin \left(\frac{Q}{2\pi KD}\right)$$

$$skin = \frac{2\pi KD}{Q} \{ s_{w}(t_{p}) - s_{w}^{\prime} \}$$
(4.38)

Results and Discussions

5.1 Transmissivity

The construction and development tests on the DWASA deep tubewells were performed without installation of piezometers. So, the pumping tests conducted by DWASA can be treated as a single well test. Determination of transmissivity and storativity are therefore encountered some constraints in utilizing the well-known methods which are based on piezometric readings. To utilize the single well tests, some 5 suitable methods are selected from literature to overcome these constraints. The methods are Jacob straight line method, Theis recovery method, Papadopulos-Cooper method (curve-fitting method), Hurr-Worthington method and Logan (approximation) method. The selected 44 wells are analysed by these methods and their zonewise transmissivity and storativity results are presented in Tables 5.1 - 5.6. Calculations on each of these methods are explained in Appendix-A. Few graphical representations of the time-drawdown curves based on Jacob method are shown in Appendix-B, Papadopulos-Cooper method in Appendix-C, Theis recovery method in Appendix-D, Hurr-Worthington method in Appendix-E.

It is seen from Tables 5.1 - 5.6 that the Jacob straight line method gives consistently higher values than the other 4 methods. Transmissivity values calculated from these other 4 methods vary more or less closely. Actually, Jacob's method is a well known method to determine the transmissivity using the drawdowns observed by piezometers at certain distances apart from the pumped well. In this regard, although the Jacob's method under single well principle does not require piezometric readings, it becomes very sensitive with respect to drawdown for minor variations in the discharge rate. A constant discharge is essential for this method which is very difficult to achieve in practice. Again, Jacob's straight-line method is applicable to data from single well tests in leaky aquifers, provided that $25r_c^2/KD < t < cS/20$. Under single well test, it is not possible to determine the value of c for Dhaka city wells. If we take very high value of c and a minimum value of S, the time we obtain indicates that the method is not applicable for late time data points.

The Hurr-Worthington's method is applicable for corrected time-drawdown data. To do the correction, the turbulent losses calculated are subtracted from the observed drawdown data. On the otherhand, the Logan approximation method is an empirical method, dependent only on the maximum drawdown observed in the well.

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
Jurain	1733	494	508	465	459	1.0x10 ⁻⁵
Mughdapara	1149	730	584	450	484	1.8×10^{-5}
Gopibagh	736	657	636	501	512	1.2×10^{-5}
Jatrabari	1636	403	532	227	372	3.2x10 ⁻⁵
Bangababan	1013	482	487	342 .	339	2.4x10 ⁻⁵
Sayedabad	925	395	493	371	475	1.3x10 ⁻⁵
Paterbagh	1321	738	493	408	450	4.7x10 ⁻⁵
Laxmibazar	1325	686	633	526	544	1.3×10^{-5}

 Table.
 5.1
 Transmissivity and Storativity Values for Zone 1

Table.5.2Transmissivity and Storativity Values for Zone 2

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
B.D.R. Pil.	3057	820	756	582	676	1.9x10 ⁻⁵
Azimpur	1784	643	1170	1026	1075	2.9x10 ⁻⁵
Hazaribag	3887	1219	1026	927	959	4.6×10^{-5}
Islambag	2056	• 1187	975	840	959	9.5x10 ⁻⁵
Jagonnath. C.	1285	-	685	465	832	1.5×10^{-5}
Rajnra. D.R.	2121	1291	1349	1385	1096	2.2x10 ⁻⁵
Mitford H.	4638	1276	923	524	791	1.9x10 ⁻⁵

Table.5.3Transmissivity and Storativity Values for Zone 3

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
Central Road	1896	747	840	651	699	1.6x10 ⁻⁵
Dhanmondi R7	2257	1216	878	856	857	8.3x10 ⁻⁵
Pisci.M.pur	1822	642	585	452	498	1.2×10^{-5}
Dhaka Lab.S.	1188	400	824	694	738	3.1x10 ⁻⁵
Barabo,Smoli	892	519	468	331	365	2.7×10^{-5}
Monipuripara	2509	754	975	798	777	· 1.7x10 ⁻⁵
Bangla Motor	2013	1019	866	672	709	1.7×10^{-5}

51

.

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
Mirpur-2	1690	544	452	484	570	· 1.6x0 ⁻⁶
Mirpur-7	1320	873	. 715	722	587	2.3×10^{-5}
Mirpur-10	1620	831	797	684	725	2.6×10^{-5}
Mirpur-12 B.D	1288	386	439	318	350	4.7×10^{-5}
Mirpur B. C.	612	462	487	405	445	3.7×10^{-5}
Kallyanpur	457	328	355	246	266	1.2×10^{-5}
Pallabi	1387	399	452	556	366	3.3×10^{-5}
Kafrul	1725	366	546	387	420	3.9x10 ⁻⁶
Gudaraghat	2196	239	300	208	214	1.5×10^{-6}

 Table.
 5.4
 Transmissivity and Storativity Values for Zone 4

Table.5.5Transmissivity and Storativity Values for Zone 5

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
Nakhalpara	1672	500	508	427	457	1.0×10^{-5}
Banani	3396	630	755	531	611	1.1×10^{-5}
Uttara	2481	1096	1125	994	975	1.4×10^{-5}
Shahajadpur	1644	781	548	441	493	1.1×10^{-5}
Kuratoli	2016	920	910	857	901	1.5×10^{-5}
Ashkona	1532	720	738	691	665	$\cdot 2.5 \times 10^{-5}$

Table.5.6Transmissivity and Storativity Values for Zone 6

Location	Jacob St. Line Method (m ² /d)	Theis Recovery Method (m ² /d)	PapadopuCooper Method (m ² /d)	Hurr-Worth. Method (m ² /d)	Logan Method (m ² /d)	Storativity by Papa Cooper Method
Circuit House	1752	525	582	511 .	558	1.9x10 ⁻⁵
Rajarbagh	826	517	451	359	388	1.6x10 ⁻⁵
Ulon,Rampura	1546	775	873	648	712	1.0×10^{-5}
Goran	1889	630	650	584	598	2.3×10^{-5}
Shahajanpur	2095	545	508	410	462	8.4x10 ⁻⁶
Eskaton Gar.	1241	384	609	453	487	3.0x10 ⁻⁵
Khilgaon	1321	720	499	383	412	1.1x10 ⁻⁵

The Papadopulos-Cooper's method is a curve-fitting method devised to match data curves with the type curves by taking the storage capacity of the well into account. The early-time portion of the type curves corresponds to the period when most of the water is derived from storage within the well. But the data points observed for Dhaka city wells are taken after exhausting the storage in the wells. Thus the observed data on the logarithmic plots exhibit a flat curvature. Apparently several good matching positions depending on personal judgement are obtainable. In such case, Papadopulos-Cooper method becomes practically indeterminate. Again, the method is only applicable for confined aquifers which is very difficult to ascertain in Dhaka city aquifer systems.

In the Theis recovery method, the transmissivity depends on the slope of the residual drawdown versus time (log) curves. It is known that the storage in the well have an influence on the residual drawdown at the beginning of a recovery test. If the conditions $t_p > 25r_c^2/KD$ and $t' > 25r_c^2/KD$ are met, a semi-log plot of s'_w versus t/t' yields a straight-line and Theis recovery method is applicable. As the observed recovery data should be plotted as a straight-line for at least one log cycle of t/t', according to Uffink (1982) both t_p and t' should be at least $500r_c^2/KD$. While the above conditions for t_p and t' are met for all the wells in Dhaka city, it has been pointed out that the tests conducted are for 4 different discharges of 4 time steps. Thus the discharge value that is used in the Theis equation is the weighted average of the 4 discharges applied in the test. But the water level that is observed recovers at a rate may not in conformation to this weighted average discharge. Although it is known that the recovery test is more reliable than pumping test, the above testing procedure left some doubt in its subsequent analysis by Theis method.

Therefore, it reveals from the above discussion that the Hurr-Worthington's method provides a better result than the other 4 methods. In the Hurr-Worthington's method there are provisions for correcting the observed drawdowns due to turbulence losses occurred in the wells. As a result, Hurr-Worthington method is selected as an appropriate method for the already available pumping tests of DWASA wells. Subsequently on the basis of the Hurr-Worthington's method, an iso-transmissivity map, using the selected 44 wells data, is drawn to get an idea of its spatial variations in the aquifer system of the Dhaka city. The map as presented in Fig. 5.1 shows that the south-west region and north-east corner of the city have higher transmissivity values in the range of 700 to $1000m^2/day$. Tables 5.7 to 5.12 are provided here to isolate the point transmissivity values obtain by Hurr-Worthington method along with the range of transmissivity values (maximum and minimum) obtained by those other 4 methods, i.e., Papadopulos-Cooper, Hurr-Worthington, Theis recovery and Logan methods. It is observed from

Table 5.7	Range of Transmissivity	Values for Zone 1 by	y the Selected 4 Methods
-----------	--------------------------------	----------------------	--------------------------

Location	Hurr-Worthingtong (m ² /d)	Max ^m (m ² /d)	$\operatorname{Min}^{n}(\mathrm{m}^{2}/\mathrm{d})$
Jurain	465	508	459
Mughdapara	450	730	450
Gopibagh	501	657	501
Jatrabari	· 227	532	227
Bangababan	342	487	339
Sayedabad	371	493	371
Paterbagh	408	738	408
Laxmibazar	526	686	526

Table 5.8Range of Transmissivity Values for Zone 2 by the Selected 4 Methods

Location	Hurr-Worthingtong (m ² /d)	$Max^m (m^2/d)$	$Min^n (m^2/d)$
B.D.R. Pilkhana	582	820	507
Azimpur	1026	1170	943
Hazaribag	927	1219	927
Islambag	840	1187	840
Jagonnath. College	465	832	465
Rajnarayan Dhar Road	1385	1385	1096
Mitford Hospital	524	1276	524

Table 5.9Range of Transmissivity Values for Zone 3 by the Selected 4 Methods

Location	Hurr-Worthingtong (m ² /d)	$Max^m (m^2/d)$	$Min^n (m^2/d)$
Central Road	651	840	651
Dhanmondi Road 7	856	1216	856
Pisciculture, M.pur	452	642	452
Dhaka Lab. School	694	824	491
Barabo, Shamoli	331	519	331
Monipuripara	798	975	777 .
Bangla Motor	672	1019	672

Location	Hurr-Worthingtong (m ² /d)	$Max^m (m^2/d)$	$Min^n (m^2/d)$
Mirpur-2	484	570	452
Mirpur-7	722	873	580
Mirpur-10	684	831	684
Mirpur-12 B.D	318	439	318
Mirpur B. C.	405	487	405
Kallyanpur	146	355	246
Pallabi	556	556	366
Kafrul	387	546	387
Gudaraghat	208	300	208

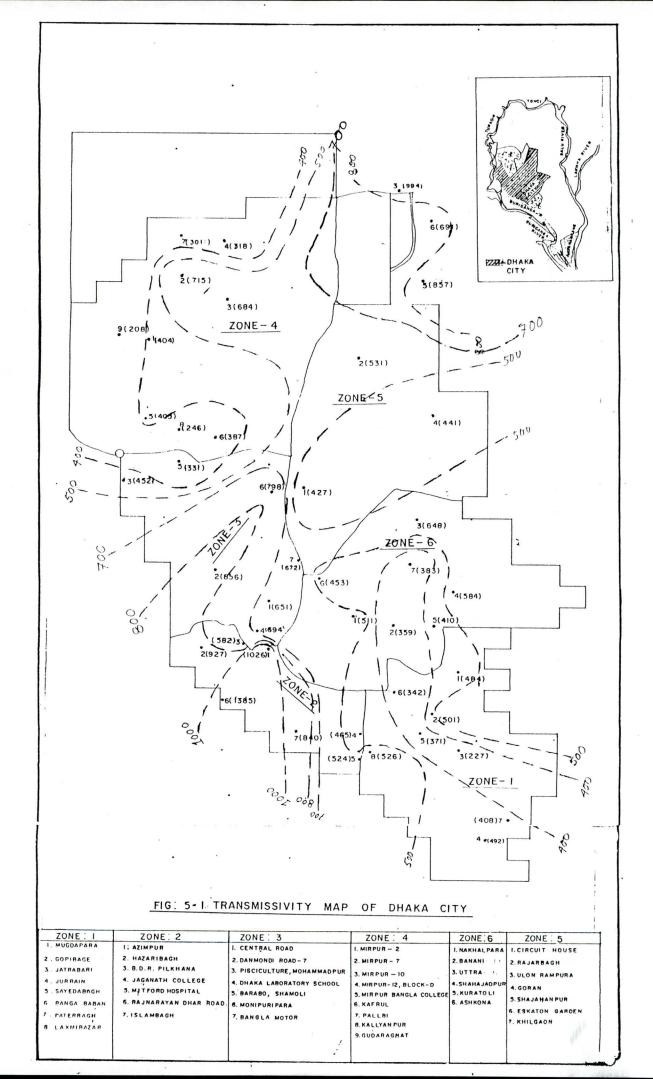

Table 5.10 Range of Transmissivity Values for Zone 4 by the Selected 4 Methods

 Table 5.11
 Range of Transmissivity Values for Zone 5 by the Selected 4 Methods

Location	Hurr-Worthingtong (m ² /d)	Max^{m} (m ² /d)	$Min^n (m^2/d)$
Nakhalpara	427	508	427
Banani	531 .	755	531
Uttara	994	1125	975 .
· Shahajadpu	441	781	441
Kuratoli	857	920	857
Ashkona	691	738	665

Table 5.12	Range of Transmissivity	Values for Zone 6 by	y the Selected 4 Methods

Location	Hurr-Worthingtong (m ² /d)	$Max^m (m^2/d)$	$Min^n (m^2/d)$
Circuit House	511 .	558	512
Rajarbagh	359	517 .	359
Ulon,Rampura	648	873	648
Goran	. 584	650	584
Shahajanpur	410	545	410
Eskaton Gar.	453	609	453
Khilgaon	383	720	383

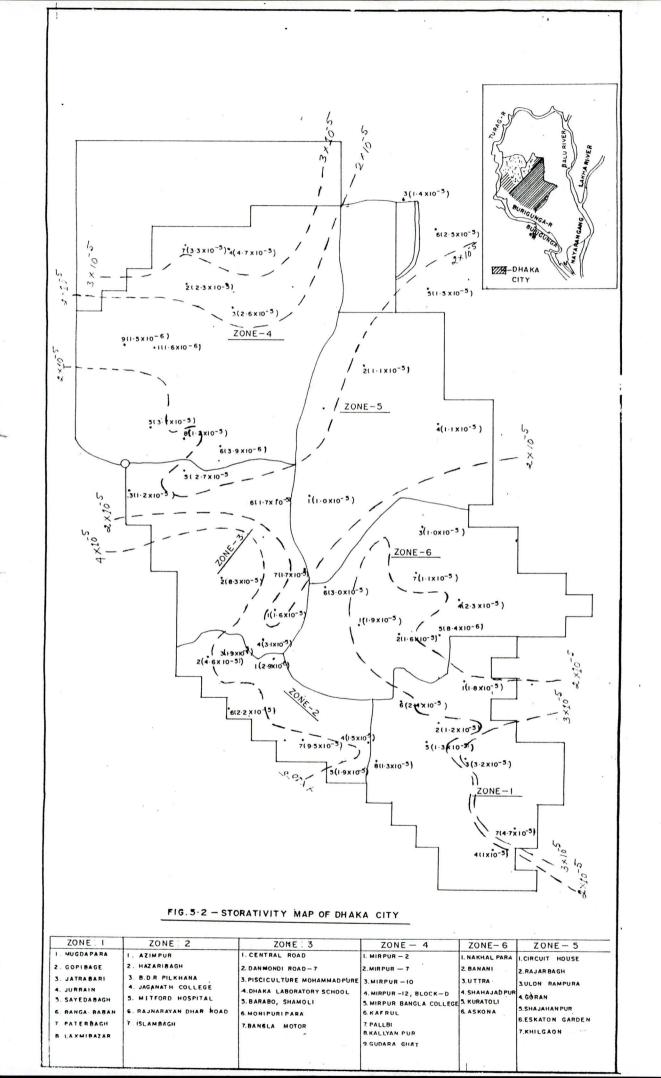
and the second second

these tables that the highest point transmissivity obtained at Uttara (Zone 5) by Theis recovery method which is about 1517 m²/day and the lowest point transmissivity obtained at Gudaraghat (Zone 4) by Hurr-Worthington method which is about 208 m²/day. It is worthy to mention here that the highest point transmissivity value obtained by Hurr-Worthington method is at Rajnarayan Dhar Road of Zone 2 which is about 1385 m²/day.

Transmissivity values obtained by the present study are compared with the previous studies conducted for the same wells or nearby wells and are presented in Table 5.13. It is observed that the values are in close proximity. The methods applied for the previous studies are not mentioned in their report. Despite of very scantly transmissivity values are available from previous studies, the closeness of the values with present study builds some confidence to the values obtained for a large number of points, and off course will be more beneficial for detail characterization of the aquifer concern.

Table 5.13 Comparison of Transmissivity Values with Previous Studies

Location	Transmissivity fro	om present study	Transmissivity from previous studies		
	Hurr-Worth. Method (m ² /day)	Theis Recovery Method (m ² /day)	Values (m ² /day)	References	
Dhanmondi 7	856	1042	. 794	Parsons, 1980	
Azimpur	1025	943	1048	Parsons, 1980	
Uttara	994	1317	1001	BWDB	
Mirpur	405	462	422	BWDB	
Gymkhana/B.D.R.Pil.	582	507	435	Welsh, 1977	
Tajgaon/Monipuripara	798	1114	1184	Parsons, 1980	
Khilgaon	383	705	901	Parsons, 1980	
Rampura	648	-	884	Sajal, 1995	


5.2 Storativity

The storativity values of different places of Dhaka city are calculated only by Papadopulos-Cooper's methods and zone-wise storativity values are presented in Tables 5.1-5.6. It is observed that the highest storativity value is found in Islambagh (9.5 x 10^{-5}) tubewell of Zone 2 and lowest storativity value is found in Gudaraghat ($1.5x10^{-6}$) of Zone 4. A storativity contour map is drawn in Fig. 5.2 which shows the storativity values of different places of Dhaka city. It is seen from the map that the majority of the city area representating storativity values around $2x10^{-5}$. It is also seen that the south-western part of the Dhaka city gives the highest storativity values which is about $4x10^{-5}$. The north-west corner and the south-east corner of Dhaka city represent the storativity values of $3x10^{-5}$.

Location	Storativity from present study	Storativity from previous studies			
	Papadopulos-Cooper Method	Storativity Value	Reference		
Mirpur	3.7x10 ⁻⁵	3.5x10 ⁻⁴	BWDB		
Gymkhana/B.D.R.Pil.	1.9x10 ⁻⁵	1.6x10 ⁻³	Welsh, 1977		
Uttara	1.4x10 ⁻⁵	9.0x10 ⁻⁴	BWDB		
Dhanmondi	8.3x10 ⁻⁵ .	4.7x10 ⁻⁴	Parsons, 1980		

Table 5.14	Comparison of Storativit	iy Values with	Previous Studies
------------	--------------------------	----------------	-------------------------

Storativity values obtained by the present study are compared with the previous studies conducted for the same wells or nearby wells and are presented in Table 5.14. The values compared vary more than one order of magnitude for two wells and the rest two wells are within one order at magnitude. There is no method mentioned for the previous studies obtained from the literature. For the present study, only Papadopulos-Cooper method is found suitable for S determination. Again, the method is applicable under confined aquifer system which is in doubt for the situation prevailing in Dhaka city.

5.3 Different Types of Losses

The well performance test (step drawdown test) data are used to determine the different types of losses which are presented in Tables 5.15 - 5.20. Co-efficients of B and C are calculated from the s/Q versus Q curves (Appendix-F). The zone-wise values of B and C are presented in Tables 5.21 - 5.26. These values can then be used to obtain the relationship between drawdown and discharge to choose, empirically, an optimum yield for the well, or to obtain information on the condition or efficiency of the well.

(a) Aquifer Losses

Aquifer losses are the head losses that occur in the aquifer where the flow is laminar. They are time dependent and vary linearly with the well discharge. Aquifer losses are independent of the well itself and depend on various aquifer characteristics. The highest aquifer loss found in Kallyanpur well (20.91 m) of Zone 4 and the lowest aquifer loss is found in Rajnarayan Dhar Road well (8.21 m) of Zone 2. It is interesting to note that the Zone-wise aquifer losses shown in the tables are comparable with the areas where transmissivity values are higher have less aquifer losses and areas where transmissivity values are lower have high aquifer losses.

(b) Total Well Losses

Total well losses are divided into linear and non-linear well losses. Linear well losses are caused by damaging of the aquifer during drilling and completion of the well, i.e., head losses due to plugging of the aquifer with drilling mud which reduces the permeability near the borehole, head losses in the gravel pack and head losses in the screen. The non-linear well losses are the friction losses that occur inside the well screen and in the suction pipe where the flow is turbulent and the head losses that occur in the zone adjacent to the well where the flow is also turbulent. All these well losses are responsible for the drawdown inside the well being much greater than one would expect on theoretical ground. The total well losses are found to vary in Dhaka city between 2.14 m and 14.73 m.

(c) Laminar Losses

Laminar losses are the sum of the aquifer losses and the linear well losses of the well. In this study the laminar well losses are found to vary between 10.4 m and 25.7 m.

(d) Turbulent Losses

These losses are also called non-linear well losses which occur due to turbulent flows inside the well and just outside in the vicinity of the well. Turbulent losses that are found for all the wells tested vary between 0.59 m and 7.83 m.

All these types of losses at an operating discharge of 4897 m^3/day (2 cusec) are obtained and shown in Table 5.26 to 5.31.

5.4 Specific Capacity and Well Efficiency

Both the specific capacity and the well efficiency are important to measure the performance of a well. The specific capacity (discharge/drawdown) represents the productivity of the aquifer also. In Dhaka city, the specific capacity varies from 550.82 m²/day to 219.00 m²/day and zone-wise specific capacity values of the wells are given in Tables 5.21 - 5.26.

The well efficiency (aquifer loss/total loss) represents the productivity of the well only and its evaluation requires the distinction of total drawdown into its aquifer and well loss component. The highest efficiency is found in Mirpur-10 well (86 percent) of Zone 4 and the lowest efficiency found in Khilgaon well (45 percent) of Zone 6. The well efficiency of different tubewells are presented in Tables 5.15 - 5.20. Low efficiency as low as 70 percent indicates its inadequate and poor well development.

5.5 Skin Factor

Skin effect is to account for the head losses in the vicinity of a well. The theory behind this concept is that the aquifer is assumed to be homogeneous up to the wall of the borehole, while all head losses are assumed to be concentrated in a thin, resistant, 'skin' against the wall of the borehole. The skin factors of the wells of Dhaka city varies from 0.32 to 8.06. The high values of skin factors indicate that the wells are poorly developed.

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
Jurain	18.52	4.85	16.12	7.25	69
Mughdapara	18.54	2.08	13.37	7.25	· 65
Gopibagh	17.38	3.12	14.59	5.90	71
Jatrabari	23.48	1.22	19.66	5.04	79 ·
Bangababan	25.72	7.83	18.81	14.73	56
Sayedabad	19.77	2.57	16.82	5.52	75
Paterbagh	19.47	1.76	16.96	4.27	79
Laxmibazar	16.42	3.38	14.8	5.00	75

 Table. 5.15
 Different Types of Losses in Zone 1 at an Operating Discharge 7348 m³/day

 Table.
 5.16
 Different Types of Losses in Zone 2 at an Operating Discharge 7348 m³ /day

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
B.D.R. Pil.	15.36	0.94	13.21	3.10	81
Azimpur	14.03	0.59	9.39	5.23	64
Hazaribag	13.74	1.49	9.04	6.19	59
Islambag	13.52	2.21	10.49	5.24	66
Jagonnath College	17.33	4.05	15.59	5.78	73
Rajnarayan D.R.	10.43	4.19	8.21	6.41	56
Mitford Hospital	14.18	1.49	11.94	3.73	76

 Table. 5.17
 Different Types of Losses inZone 3 at an Operating Discharge 7348 m³/day

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
Central Road	14.11	1.99	12.58	3.52	78
Dhanmondi R7	12.05	1.89	10.59	3.55	· 76
Pisci.M.pur	17.86	2.57	15.63	4.8	76
Dhaka Lab.S.	14.92	2.03	13.09	3.86	77
· Barabo,Smoli	18.36	3.92	14.16	8.12	64
Monipuripara	11.39 .	2.69	9.85	4.23	70
Bangla Motor	12.64	1.43	11.52	2.55	81

Table. 5.18	Different Types of Losses in Zone 4 at an Operating Discharge 7348 m ³ /day	
-------------	--	--

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
Mirpur-2	22.71.	2.96	18.56	7.11	72
Mirpur-7	16.17	3.78	14.84	5.11	74
Mirpur-10	14.55	1.11	13.52	2.14	86
Mirpur- 12 BD	22.06	3.78	18.74	7.00	72
Mirpur B. C.	19.39	1.35	17.05	3.69	82
Kallyanpur	23.49	3.19	20.91	5.77	78
Pallabi	24.69	3.24	18.99	. 8.93	68
Kafrul	21.6	4.86	18.67	7.79	71
Gudaraghat	-	-	-	-	

91758

Table. 5.19

19 Different Types of Losses in Zone 5 at an Operating Discharge 7348m³/day

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
Nakhalpara	19.46 ·	2.92	17.25	5.12	77
Banani	16.09	0.69	13.16	3.62	81
Uttara	11.31	2.03	8.4	4.94	63
Shahajadpur	18.11	1.49 .	11.11	8.49	57
Kuratoli	12.71	1.84	8.88	5.67	61
Ashkona	16.68	3.81	14.54	5.95	71 .

Table. 5.20

Different Types of Losses in Zone 6 at an Operating Discharge 7348 m³/day

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)	Efficiency (%)
Circuit House	15.91	2.51	13.52	4.81	73
Rajarbagh	21.75	5.27	18.08	8.94	67
Ulon,Rampura	15.79	1.22	12.05	4.96	71
Goran	15.58	3.29	13.95	4.92	74
Shahajanpur	19.24	1.35	14.29	6.29	. 69
Eskaton Gar.	19.10	2.11	17.43	3.78	82
Khilgaon	21.53	2.43	10.86	13.1	45

Table.	5.21	Different	Well	and	Aquifer	Parameters	for	Zone	1

Location	Sp. Capacity (m ² /day)	$B (day/m^2)$	$C (day^2 /m^5)$	Skin Factor
Jurain	314.40	2.52×10^{-3}	9x10 ⁻⁸	1.1
Mughdapara	356.35	2.523x10 ⁻³	3.85x10 ⁻⁸	3.75
Gopibagh	358.60	2.365x10 ⁻³	5.75x10 ⁻⁸	1.63
Jatrabari	297.49	3.195x10 ⁻³	2.25x10 ⁻⁸	0.93
Bangababan	219.00	3.5x10 ⁻³	1.45x10 ⁻⁸	3.38
Peterbagh	328.92	2.65×10^{-3}	3.25x10 ⁻⁸	4.64
Sayedabad	346.11	2.69x10 ⁻³	4.75x10 ⁻⁸	0.52
Laxmibazar	371.00	2.235x10 ⁻³	6.25×10^{-8}	1.75

Table. 5	.22	Different	Well	and A	Aquifer	Parameters	for	Zone 2	
----------	-----	-----------	------	-------	---------	------------	-----	--------	--

Location	Sp. Capacity (m ² /day)	B (day/m ²)	C (day^2/m^5)	Skin Factor
B.D.R. Pil.	450.73	2.09x10 ⁻³	1.75x10 ⁻⁸	2.86
Azimpur	502.6	1.91×10^{-3}	1x10 ⁻⁸	7.89
Hazaribag	482.47	1.87x10 ⁻³	2.75x10 ⁻⁸	4.89
Islambag	465	1.84×10^{-3}	4.1x10 ⁻⁸	6.38
Jagonnath College	343.69	2.158x10 ⁻³	. 5.5x10 ⁻⁸	1.01
Rajnarayan D.R.	502.59	1.42×10^{-3}	7.75x10 ⁻⁸	3.59
Mitford Hospital	468.9	1.93×10^{-3}	1.25x10 ⁻⁸	7.42

Table. 5.25 Different wen and Aquiter Parameters for Lone 3	Table.	5.23	Different Well and Aquifer Parameters for	Zone 3	
---	--------	------	---	--------	--

Location	Sp. Capacity (m ² /day)	$B (day/m^2)$ ·	$C (day^2 / m^5)$	Skin Factor
Central Road	456.39	1.92×10^{-3}	3.7x10 ⁻⁸	0.98
Dhanmondi R7	527.	1.64×10^{-3}	3.5x10 ⁻⁸	5.22
Pisci.M.pur	359.67	2.43x10 ⁻³	4.75x10 ⁻⁸ .	1.72
Dhaka Lab.S.	433	2.03x10 ⁻³	3.75x10 ⁻⁸	0.32
Barabo,Smoli	329	2.498x10 ⁻³	3.75x10 ⁻⁸	0.91
Monipuripara	521.88	1.55x10 ⁻³	5.00x10 ⁻⁸	1.02
Bangla Motor	522.25	1.72×10^{-3}	2.65x10 ⁻⁸	3.08

Table. 5.24 Different Well and Aquifer Parameters for	or Zone 4
---	-----------

Location	Sp. Capacity (m ² /day)	$B (day/m^2)$	C (day^2 / m^5)	Skin Factor
Mirpur-2	286.25	3.09x10 ⁻³	5.5x10 ⁻⁸	2.54
Mirpur-7	368	2.2×10^{-3}	7x10 ⁻⁸	5.03
Mirpur-10	469	1.98x10 ⁻³	2.05x10 ⁻⁸	3.37
Mirpur- 12 BD	284.36	3.41x10 ⁻³	7.0x10 ⁻⁸	0.42
Mirpur B. C.	354.29	2.64×10^{-3}	2.5x10 ⁻⁸	4.19
Kallyanpur	275.4	3.197x10 ⁻³	5.90x10 ⁻⁸	4.16
Pallabi	263.09	3.36x10 ⁻³	6.00x10 ⁻⁸	2.05
Kafrul	277.7	2.94x10 ⁻³	9.00x10 ⁻⁸	. 0.81
Gudaraghat	-	-	-	-

Table.	5.25	Different Well and	Aquifer Parameters for Zone 5
--------	------	--------------------	-------------------------------

Location	Sp. Capacity (m ² /day)	B (day/m ²)	C (day^2 / m^5) ·	Skin Factor
Nakhalpara	328.33	2.648x10 ⁻³	5.40x10 ⁻⁸	0.56
Banani	437.9	2.19x10 ⁻³	1.275x10 ⁻⁸	0.75
Uttara	550.82	1.54×10^{-3}	3.75x10 ⁻⁸	2.84
Shahajadpur	374.89	2.465x10 ⁻³	2.75x10 ⁻⁸	8.06
Kuratoli	505.00	1.73×10^{-3}	3.40x10 ⁻⁸	4.07
Ashkona	358.6	2.27×10^{-3}	7.05x10 ⁻⁸	2.81

Table.5.26Different Well and Aquifer Parameters for Zone 6

Location	Sp. Capacity (m ² /day)	B (day/m ²)	C (day ² /m ⁵)	Skin Factor
Circuit House	398.91	2.165x10 ⁻³	4.65x10 ⁻⁸	· 0.72
Rajarbagh	271.95	3.098x10 ⁻³	6.7x10 ⁻⁸	2.30
Ulon,Rampura	431.98 ·	2.15x10 ⁻³	2.25x10 ⁻⁸	2.56
Goran	389.40	2.12×10^{-3}	6.1x10 ⁻⁸	0.91
Shahajanpur	356.87	2.618x10 ⁻³	2.5x10 ⁻⁸	1.08
Eskaton Gar.	346.44	2.60×10^{-3}	3.9x10 ⁻⁸	0.59
Khilgaon	306.68	2.93×10^{-3}	4.5x10 ⁻⁸	5.37

5.6 Limitations of the Study

Methods for evaluating the pumping test data based on the ideal assumptions have been described in Chapter 4. In practice, such _ideal conditions are rarely encounter in the field. Deviations that occur from the idealized situation can be noted as follows:

From the bore log data, it can be observed that the assumptions of homogeneous and isotropic with uniform thickness of aquifer system are not valid for Dhaka city. The thickness of the aquifer and aquitard layers are found to vary from place to place, while experts differ on describing its configuration. It has been found that the system behaves as a semi-confined composite aquifer with two layers separated by a thin layer of aquitard. In the study area, a large number of wells are competing with each other for the ever decreasing underground water in a close space, therefore, interferences of its zone of influences are obvious. Pumping tests conducted by DWASA are believed to be influenced by other nearby running wells and at this stage it is not possible to separate its influence on the drawdowns obtained for the wells under investigation.

Table. 5.27Different Types of Losses in Zone	1 at an Operating Discharge 4897 m ³ /day (2 cusec)
--	--

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
Jurain	12.34	2.16	12.01	2.49
Mughdapara	12.36	0.92	10.39	2.89
Gopibagh	11.58	1.38	11.03	1.93
Jatrabari	15.65	0.54	13.61	. 2.39
Bangababan	17.14	0.35	15.03	2.46
Sayedabad	12.98	0.78	12.34	1.42
Paterbagh	13.17	1.14	9.78	4.53
Laxmibazar	10.94	1.49	10.21	2.22

Different Types of Losses in Zone 2 at an Operating Discharge 4897 m³ /day (2 cusec) Table. 5.28

 Location 	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
B.D.R. Pil.	10.23	0.42	9.28	1.37
Azimpur	9.35 ·	0.24	6.48	3.11
Hazaribag	9.16	0.66	6.09	3.73
Islambag	9.01	0.98	6.01	3.98
Jagonnath College	10.57	1.32	9.14	2.75
Rajnarayan D.R.	6.95	1.86	5.6 .	3.21
Mitford Hospital	9.45	0.29	6.1	3.64

Г	ab	le.	5.29	D

Different Types of Losses inZone 3 at an Operating Discharge 4897 m³ /day (2 cusec)

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
Central Road	9.4	0.89	8.05	2.24
Dhanmondi R7	8.03	0.84	5.91	2.96
Pisci.M.pur	11.89	1.14	10.22	2.81
Dhaka Lab.S.	9.94	0.89	9.01	1.82
Barabo,Smoli	12.23	0.92	11.06	2.09
Monipuripara	7.59	1.19	6.32	2.46
Bangla Motor	8.42	0.64	7.59	1.47

Table. 5.30Different Types of Losses in Zone 4 at an Operating Discharge 4897 m³ /day (2 cusec)

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
Mirpur-2	15.13	1.32	12.84	3.61
Mirpur-7	10.77	1.68	8.66	3.79
Mirpur-10	9.69	0.49	8.02	3.35
Mirpur- 12 BD	16.69	1.73	15.98	2.44
Mirpur B. C.	12.93	0.59	11.08	2.44
Kallyanpur	15.66	1.42	14.33	2.85
Pallabi	16.45	1.44	14.03	3.86
Kafrul	14.39	2.16	13.14	3.41
Gudaraghat	-	-	-	-

Table. 5.31Different Types of Losses in Zone 5 at an Operating Discharge 4897 m³ /day (2 cusec)

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
Nakhalpara	12.97	1.29	11.11	3.15
Banani	10.72	0.31	9.32	1.71
Uttara	7.54	0.89	5.98	2.45
Shahajadpur	12.07	0.66	9.91	2.82
Kuratoli	8.47 .	0.82	8.02	1.27
Ashkona	11.12	1.69	10.38	2.43

 Table. 5.32
 Different Types of Losses in Zone 6 at an Operating Discharge 4897 m³ /day (2 cusec)

Location	Laminar Loss (m)	Turbulent Loss (m)	Aquifer Loss (m)	Total Well Loss (m)
Circuit House	10.6	1.12	9.85	1.87
Rajarbagh	15.17	1.61	14.51	2.27
Ulon,Rampura	10.53	0.54	9.03	2.04
Goran	10.38	1.46	9.96	1.88
Shahajanpur	12.82	0.59	12.26	1.15
Eskaton Gar.	12.73	0.94	12.02	1.65
Khilgaon	14.35	1.08	10.79	4.64

Chapter 6 Conclusions and Recommendations

6.1 Conclusions

A detailed analysis on the collected data from DWASA wells have been done. From the obtained results, the conclusions are made as follows:

- 1. As all the wells in Dhaka city exhibit non-linear well losses above 0.5 m, Hurr-Worthington's method under the single-well principle is selected as the appropriate method to calculate transmissivity for Dhaka WASA wells.
- 2. The majority of the city area representating transmissivity values ranging from 400 to $500 \text{ m}^2/\text{day}$. The south-western part and north-eastern corner of Dhaka city have higher transmissivity value, i.e., 700-1000 m²/d.
- 3. Under the single-well principle, Papadopulos-Cooper method applicable for confined aquifer is the only option to calculate storativity for the pumping tests conducted in Dhaka WASA wells. The storativity variations are within of the order of one for most of the wells in the Dhaka city. The majority of the city area representating the storativity values which is around $2x10^{-5}$. The south-western part of the Dhaka city gives the highest storativity values which is about $4x10^{-5}$. The north-west corner and the south-east corner of Dhaka city represent the storativity values of $3x10^{-5}$.
- 4. Zones 1, 4 and 6 show aquifer losses higher compared to other zones. Productivity (specific capacity) of most of the wells of zones 2, 3 and 5 are better than the other three zones. Most of the well's skin factor, except few wells, fall in the range between 0.7 and 3.0.

5. The total well losses of Dhaka WASA wells are much higher because of poor construction and development operations.

6.2 Recommendations for Further Study

As an extension of present investigation, the following studies may be recommended:

- (i) In this study program, methods based on single well principle are used due to lack of piezometric readings. Pumping tests with the installation of piezometers can be conducted at few points of Dhaka city to get the aquifer parameters reliably.
- (ii) In the study area, a large number of DWASA and private tubewells are extracting water. So, well interference is obvious. In this study, well interference can not be distinguished from each other. So, further studies can be done by distinguishing these well interferences.
- (iii) Based on the transmissivity values obtained in this study, statistical analysis by stochastic methods may be done to obtain optimal range of transmissivities at different points of Dhaka city.

1.0

References

- 1. Alam, M.K., Hasan, A.K.M.S., Khan, M.R. and Whitney, J.W., 1990, "Geological Map of Bangladesh", Geological Survey of Bangladesh.
- 2. Barker, J.A., Davies, J. and Herbert, R., 1989, "The Pilot Study into Optimum Well Design: 1DA 4000 Deep Tubewell II Project", Volume 4, Well and Aquifer Modelling-Pt 1: A Multi-Layer Model for Long Term Pumping Tests", British Geological Survey Technical Report WD/89/11.
- 3. Bhuiyan, A.B.M.F., 1995, "Three-Dimensional Saturated-Unsaturated Flow Simulation by Galerkin Finite Element Method", M.Sc. Thesis, Dept. of Water Resources Engg., BUET, Dhaka.
- 4. BUET, 1977, "Performance of the Dhaka-Narayangonj-Demra Embankments", Bangladesh University of Engineering and Technology.
- 5. BWDB , 1984, "Hydrogeology of Dhaka District", Bangladesh Water Development Board.
- 6. BWDB, 1984, "Hydrogeology of Dhaka District", BWDB, Water supply paper-446, Ground Water Data Processing and Research Circle, BWDB.
- 7. Chowdhury, Shahin Uddin, 1993, "Evaluation of Aquifer Characteristics of the Dhaka City Using Geophysical Wireline Logs", M.Sc. Thesis, Department of Geology, Dhaka University.
- 8. Davies, J. and Herbert, R., 1990, "Field Determination of Vertical Permeability", British Geological Survey Technical Report WD/90/47R.
- 9. DPHE, 1983, "Note on Well Development on Feryghat, Khulna", DPHE Water Supply and Sanitation Program, Netherland-Bangladesh Development Cooperation Program.
- 10. Domenico, P., 1972, "Concepts and Models in Groundwater Hydrology", McGraw-Hill, New York.
- 11. Hussain M. Monsur, "Stratigraphical and Palaeo Magnetic Studies of Some Quaternary Deposits of the Bengal Basin, Bangladesh", Ph.D. Thesis.
- 12. Jacob, C.E., 1947, "Drawdown Test to Determine Effective Radius of Artesian Well", Trans. Amer. Soc. of Civil Engrs., Vol. 112, Paper 2321, pp. 1047-1064.

- 13. Johnson, E.E., 1966, "Groundwater and Wells", E.E. Johnson, Inc. Saint Pavel, Mains, U.S.A.
- 14. Khan, F.H., 1991, "Geology of Bangladesh", the University Press Limited, Dhaka, Bangladesh.
- 15. Kruseman, G.P. and Ridder, N.A., 1990, "Analysis and Evaluation of Pumping Test Data", Publication 47, International Institute for Land Reclamation and Improvement, Wageningen, the Netherlands.
- 16. Matheron, G., 1965, "des Variables Regionalisees et Leur Estimation", Masson, Paris.
- 17. Matheron, G., 1970, "La Theorie des Variables Regionalisees et ses Applications", Paris School of Mines, Cah. Cent. Morphologic Math., 5, Fontaineblean.
- 18. Matheron, G., 1971, "The Theory of Regionalized Variables and its Applications", Paris School of Mines, Cah. Cent. Morphologic Math., 5, Fontaineblean.
- 19 Marsily de, G., 1986, "Quantitative Hydrology", Groudnwater Hydrology for Engineers, Academic Press, Inc.
- 20. MMI, 1990a, "Completion Report on the Installation 19 Autographic Water Level Recorders. IDA Deep Tubewell Project-II", Working Paper 49, Mott MacDonald International in Assoc. with Hunting Technical Services.
- 21. MMI, 1990b, "Results of Exploratory Drilling in Kapasia Upazilla, IDA Deep Tubewell Project II", Working paper 51, Mott MacDonald International in Assoc. with Hunting Technical Services.
- MMI, 1990c, Yearbook 1989, "Tubewell Construction and Operation Records", Vol. III
 Greater Dhaka, Mott MacDonald International in Assoc. with Hunting Technical Services.
- 23. MMP, 1984, "Well Design and Construction Manual IDA Deep Tubewell II Project", Sir M. MacDonald and Partners in Assoc. With Hunting Technical Services.
- 24. MPO, 1987, "Surface Water Availability", Technical Report NY 10, Master Plan Organisation, Dhaka.
- 25. MPO, 1987, "Geology of Bangladesh", Technical Report no. 4, Master Plan Organization, Dhaka.
- 26. Masud, Salehuddin, 1991, "Subsidence in Dhaka City", M.Sc. Thesis, Dept. of Geology, Dhaka University.

27. Parsons, 1980, "Dhaka Metropolitan Area Water Supply and Waste Water Systems Long Term Development Plan and Feasibility Study", Dhaka WASA, R.M. Parsons International Ltd. and James M. Montgomery Inc.

.

- 28. Sajal Chandra Dhar, 1995, "Deterioration of Yielding Capacity of Water Production Wells in Dhaka", M.Sc. Thesis, Department of Civil, BUET.
- 29. Serajuddin, M., 1990, "Groundwater Wells inside Dhaka City Some Worth Remendable Issues", Presented at Monitoring and Regeneration of Groundwater Wells, UNDP, World Bank.
- 30. Serajuddin, M., 1990, "Ground water Declination inside Dhaka", Journal of the Institution of Engineers, Bangladesh, Vol. 18, No. 2-3, Dhaka.
- 31. Todd, D.K., 1959, "Ground water Hydrology", John Wiley and Sons, New York.
- 32. Told, D.K. 1980, "Groundwater Hydrology", Wiley, New York, 2nd Ed.
- 33. Uffink, G.J.M., 1982, "Richtlijnen Voor Het Uitvoeren Van Putproeven H₂O", Vol. 15, pp. 202-205.
- 34. WASA, Dhaka, 1991, "Dhaka Region Groundwater and Subsidence Study" Addendum Nr-1, February. E.P.C. in association with Sir M. MacDonald & Partners.
- 35. Welsh, J.L., 1977, "Evaluation of Groundwater Data", Dhaka, Bangladesh. Parsons Corporation.

APPENDIX-A

Sample Calculations

Appendix-A

i.

iii.

A. Determination of Transmissivity and Storativity

By Jacob Straight Line Method

From Fig. B-1 (Appendix B) (Eskaton Garden Well)

$$\Delta s = 8.96 - 8.418 = 0.542 \text{ m}$$

O = 3674 m³/day

$$KD = \frac{2.3Q}{4\pi\Delta S} = 2.30 \text{ x } 3674/(4\pi \text{ x } 0.542) = 1240.75 \text{ m}^2/\text{day}$$

ii. By Theis Recovery Method

From Fig. D-1 (Appendix D) (Islambagh Well)

 $\Delta s' = 1.68 - 0.83 = 0.85 \text{ m}$

For Theis Recovery Method,

$$Q_{avg.} = (3674 + 4898 + 6120 + 7348)/4 = 5510 \text{ m}^3/\text{day}$$

 $KD = \frac{2.3Q}{4\pi\Delta S} = 2.30 \text{ x } 5510/(4\pi \text{ x } 0.85) = 1187 \text{ m}^2/\text{day}$

By Papadopulos-Cooper Method

From Fig. C-1, matching with type curve (Appendix C) (Central Road, Dhanmondi Well)

match point, A
$$F(u_w, \alpha) = 3$$

 $s_w = 1.04 \text{ m}$
 $t = 11 \text{ minutes}$
 $1/u_w = 2x10^7$
 $Q = 3657 \text{ m}^3/\text{day}$
 $r_{ew} = 0.2794 \text{ m}$

$$KD = \frac{Q}{4\pi s_w} F(u_w, \alpha)$$

or, KD = $3657 \times 3/(4\pi \times 1.04)$

or, KD = $839.61 \text{ m}^2/\text{day}$

From Eqⁿ. (4.19)

$$S = \frac{4KD \ t \ u_w}{r_{ew}^2}$$

= 4 x 840 x 11/(0.2795² x 2 x 10⁷ x 24 x 60)
= 1.6x10⁻⁵

(iv). By Hurr-Worthington Method

From Appendix E-1 At Time 5 Minute, $s_w = 5.945$ m (B.D.R. Pilkhana) $r_{ew} = 0.2794$ m From Eqⁿ. (4.23), $Q = 3680 \text{ m}^3/\text{day}$ $u_w \mathcal{W}(u_w) = \frac{\pi r \frac{2}{ew}S}{t} \times \frac{s_w}{Q}$ $= (3.14 \text{ x } .2794^2 \text{ x } 9 \text{ x } 10^{-4} \text{ x } 5.945 \text{ x } 24 \text{ x } 60)/(1 \text{ x } 3680)$ = 0.00049

From Fig. 4.5, $u_w = 5.09 \times 10^{-5}$

From Eqⁿ. (4.21),

$$KD = \frac{r_{ew}^2 \times S}{4\pi u_w t}$$

 $= (.2794^2 \times 9.0 \times 10^{-4} \times 24 \times 60)/(4 \times 3.14 \times 5.09 \times 10^{-5})$ = 496.66

Psuedo $KD_1 = 496.66$

Similarly, KD₂, KD₃....in Table 5.E.1

 $KD = Pseudo (KD_1 + ... + KD_3 + KD_{35})/35$

= 581.76

.(v) By Logan Method

From Appendix G-1, Maximum Drawdown, $s_{max} = 11.496 \text{ m}$ Q = 3657 m³/day

$$KD = \frac{1.22 Q}{S_{mw}} = 1.22 \text{ x } 3657/11.496 = 388 \text{ m}^2/\text{day}$$

B. Calculation of Different Types of Losses

From Fig. F-1 (Appendix F) (Dhanmondi Road 7) $B = 1.64x10^{-3}$ $C = 3.5x10^{-8}$

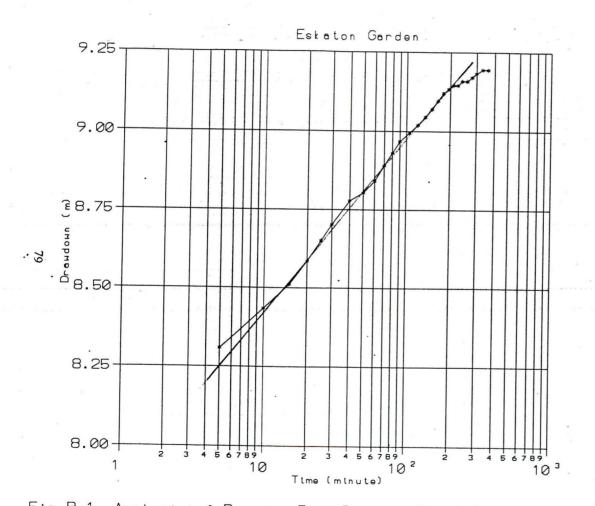
At an operating discharge Q = $7348 \text{ m}^3/\text{day}$ KD = $1042 \text{ m}^2/\text{day}$

Laminar loss (BQ) = 12.05 mTurbulent loss (CQ²) = 1.89 m Aquifer loss $s = \frac{2.3Q}{4\pi KD} \log \frac{2.25 KD t}{r_w^2 S}$ = (2.3 x 7348)/(4 π x 1042) log (2.25 x 1042 x 0.25)/ (0.2794² x 8.3 x 10⁻⁵) = 10.59 m = B₁Q Linear well loss (B₂Q) = laminar loss (BQ) - aquifer loss (B₁Q) = 12.05 - 10.59 = 1.46 m Total well loss = linear well loss + turbulent well loss = 1.46 + 1.89 = 3.35 m Calculation of Specific Capacity and Well Efficiency Total drawdown s = laminar loss + turbulent loss = 12.05 + 1.89 = 13.94 Specific Capacity = $\frac{Q}{s} = \frac{1}{(B_1 + B_2) + CQ}$ = 7348/13.94 = 527 m²/day Well Efficiency = $E_w = \frac{B_1Q}{(B_1 + B_2)Q + CQ^2} * 100 \%$ = (10.59/13.94) x 100% = 76%

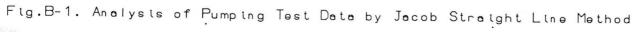
D. Calculation of Skin Factor

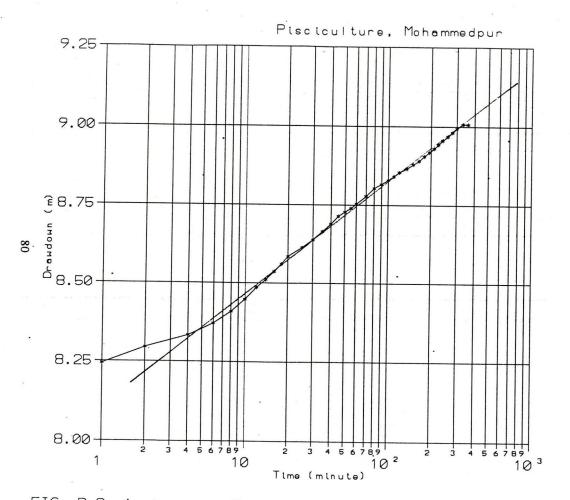
From Eqⁿ. (4.37)

C.

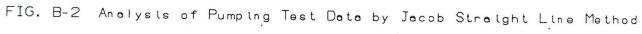

$$\frac{t_{p} + t_{i}}{t_{i}} = \frac{2.25 \text{ KD } t_{p}}{r_{w}^{2}S}$$

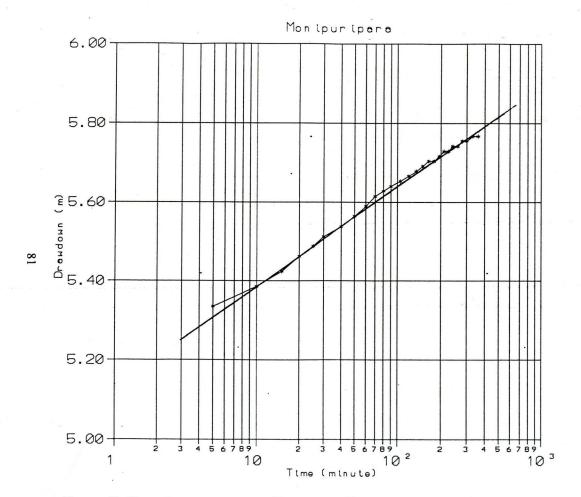
For Uttara well,
From Graph. D-2, $s'_{w} = 8.28$
 $s_{w}(t_{p}) = 11.31$

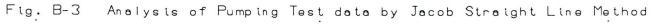

From Eqⁿ. (4.37)

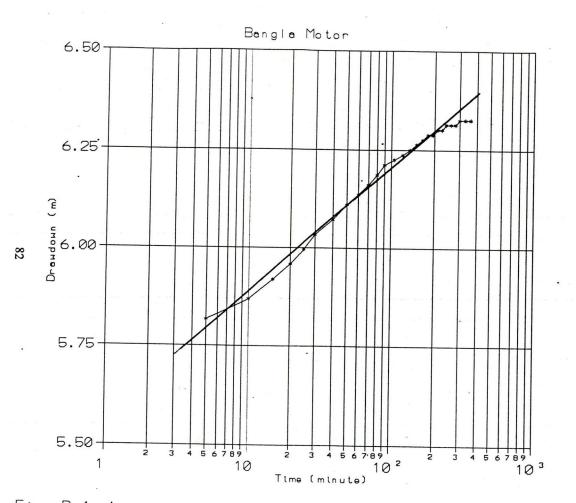

$$skin = \frac{2\pi KD}{Q} \{ s_w(t_p) - s_w' \}$$

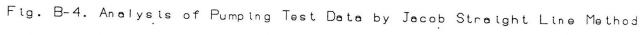
= (2 x 3.14 x 1096(11.31-8.28))/7348
= 2.84

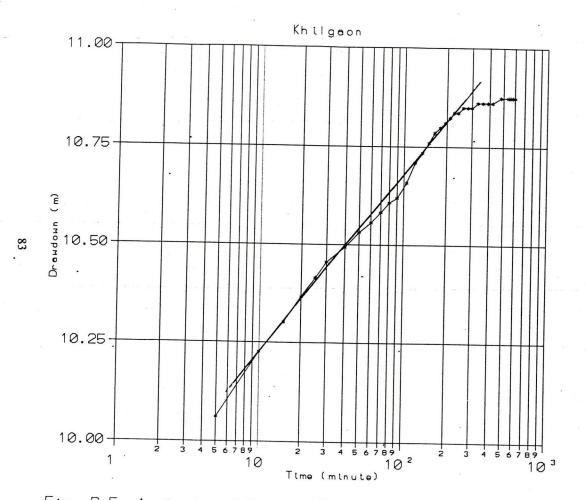

APPENDIX-B


Time-Drawdown Curves for Jacob Straight Line Method

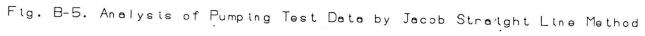




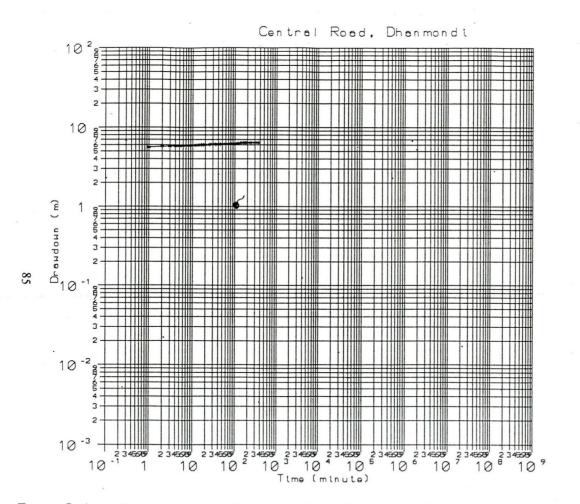


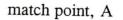


۵.

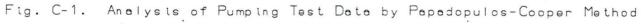


that .

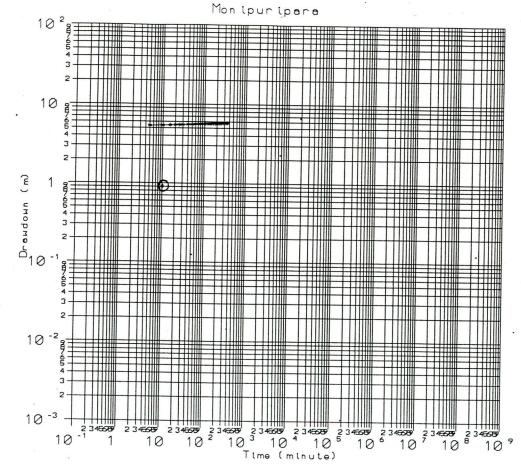

.

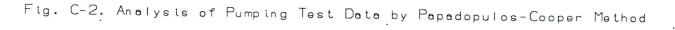


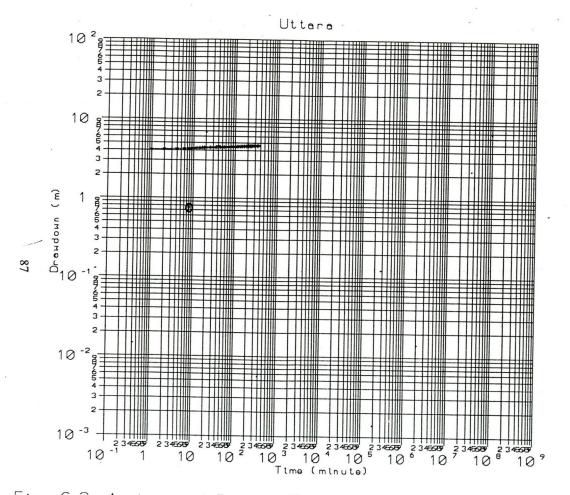
17

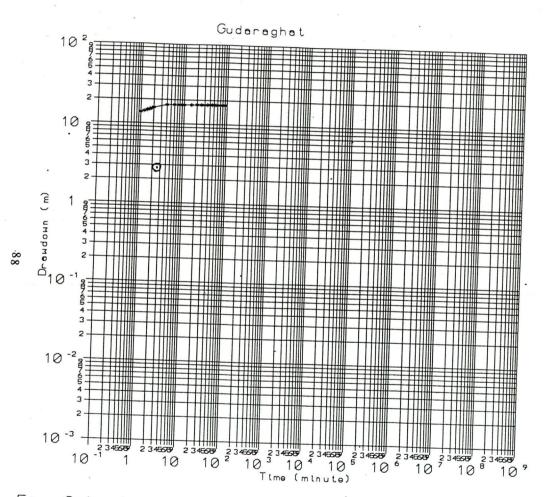

APPENDIX-C

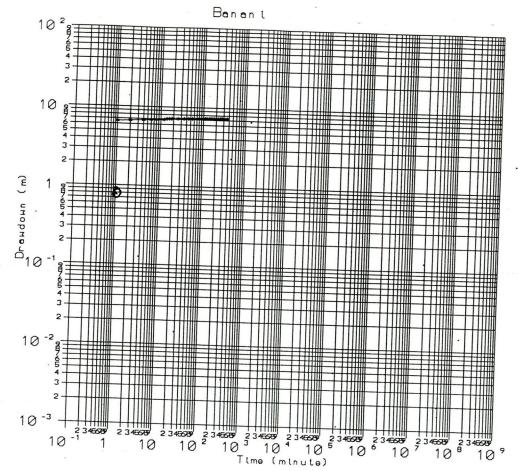
Time-Drawdown Curves for Papadopulos-Cooper Method

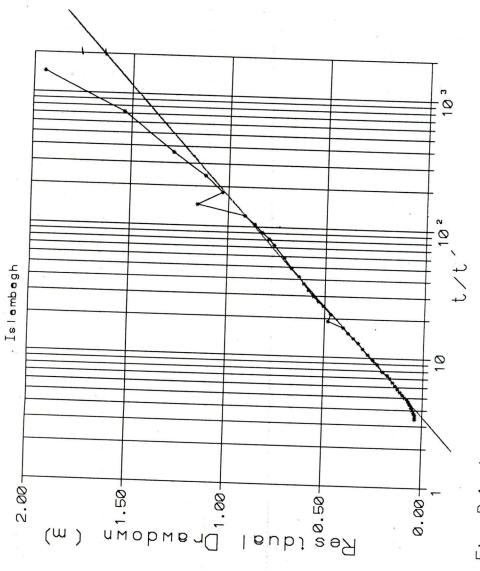


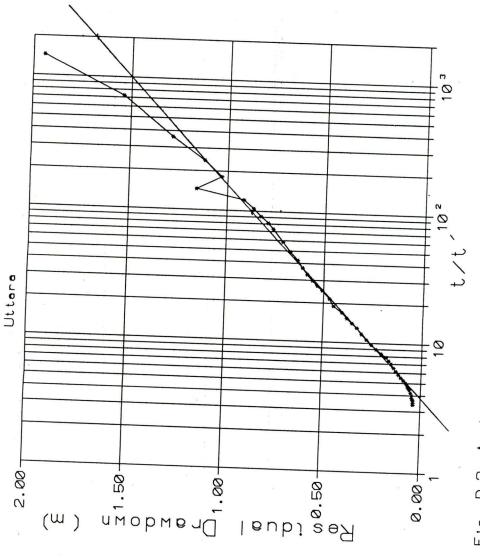



$$\begin{array}{ll} F(u_{w}, \alpha) &= 3 \\ s_{w} &= 1.04 \text{ m} \\ t &= 11 \text{ minutes} \\ 1/u_{w} &= 2x10^{7} \end{array}$$

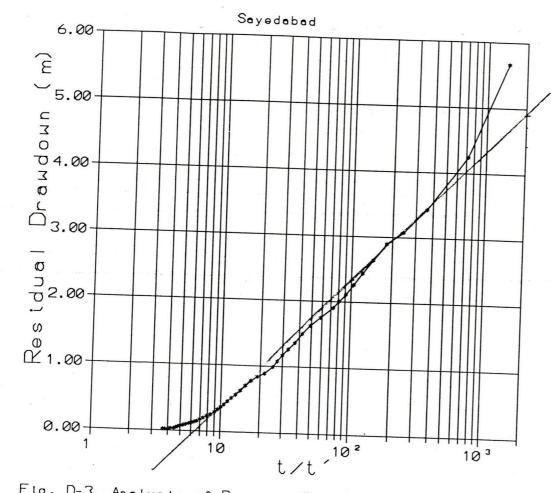

*-

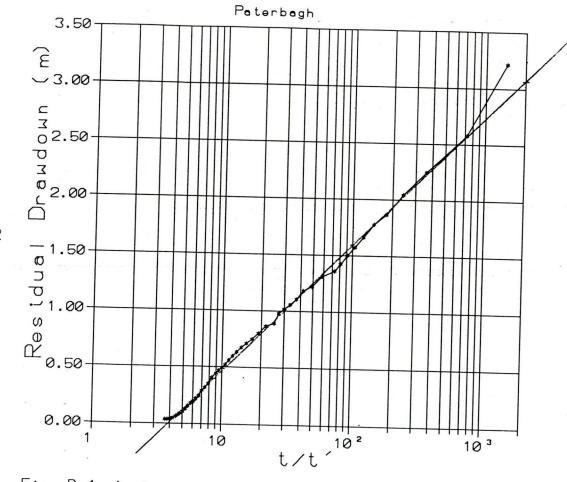




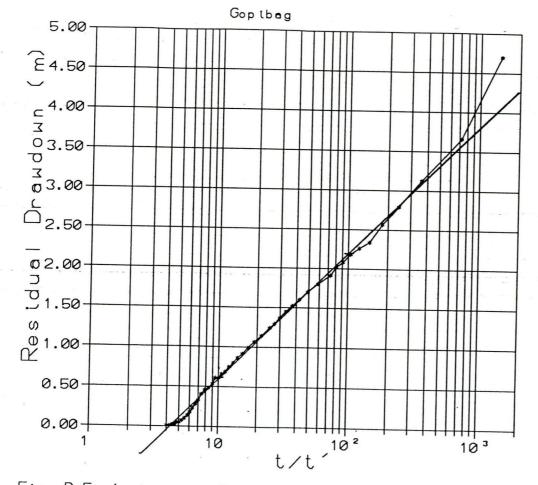


APPENDIX-D


Time-Drawdown Curves for Theis Recovery Method



.



*

94

*

-4

*

95

• .

*

APPENDIX-E

Tables for Determining Transmissivities by Hurr-Worthington Method

Time (min.)	Drawdown (m)	Corr. Drawdown (m)	Uw*W(Uw)	Uw	Pseudo. KD	KD
1	5.945	5.709	0.00049275	5.093E-05	496.65613	
2 .	6.047	5.811	0.00025078	2.469E-05	512.15371	
3	6.146	5.91	0.00017003	1.628E-05	517.80365	* c
4	6.225	5.989	0.00012923	1.213E-05	521.12762	
5	6.275	6.039	0.00010425	9.638E-06	524.83631	
6	6.301	6.065	8.725E-05	7.964E-06	529.3006	
7	6.326	6.09	7.509E-05	6.781E-06	532.82985	0
8	6.352	6.116	6.598E-05	5.904E-06	535.50593	
9	6.377	6.141	5.889E-05	5.227E-06	537.69224	
10	6.402	6.166	5.322E-05	4.689E-06	539.41633	
12	6.441	6.205	4.463E-05	3.883E-06	542.83464	581.7627
14	6.466	6.23	3.841E-05	3.306E-06	546.50837	
16	6.491	6.255	3.374E-05	2.877E-06	549.40351	
18	6.504	6.268	3.006E-05	2.542E-06	552.83209	
20	6.517	6.281	2.711E-05	2.275E-06	555.78931	
25	6.517	6.281	2.168E-05	1.791E-06	564.75437	
30	6.529	6.293	1.811E-05	1.476E-06	571.01736	
35	6.542	6.306	1.555E-05	1.254E-06	576.08897	
40	6.542	6.306	1.361E-05	1.087E-06	581.63183	
45	6.542	6.306	1.209E-05	9.582E-07	586.56522	
50	6.555	6.319	1.091E-05	8.578E-07	589.71076	
60	6.555	6.319	9.09E-06	7.056臣-07	597.47143	
70	6.568	6.332	7.807E-06	5.994E-07	602.78348	
80	6.568	6.332	6.831E-06	5.195E-07	608.58318	
90	6.568	6.332	6.072E-06	4.579E-07	613.74517	×
100	6.58	6.344	5.476E-06	4.098E-07	617.1463	
120	6.58	6.344	4.563E-06	3.371E-07	625.26802	×
140	6.58	6.344	3.911E-06	2.858E-07	632.21816	
160	6.593	6.357	3.429E-06	2.482E-07	636.90225	
180	6.593	6.357	3.048E-06	2.188E-07	642.30445	
200	6.593	6.357	2.743E-06	1.954E-07	647.17569	
250	6.593	6.357	2.195E-06	1.538E-07	657.61485	
300	6.605	6.369	1.832E-06	1.268E-07	664.92388	
350	6.605	6.369	1.571E-06	1.075E-07	672.31482	1
400	6.605	6.369	1.374E-06	9.316E-08	678.78352	

Table 5.E.1 Transmissivity Determined by Hurr-Worthington Method (B.D.R.Pilkhana)

•

Time (min	Drawdown (m)	Corr. Drawdown (m)	Uw*W(Uw)	Úw	Pseudo KD	KD
Time (min.	3.557	3.422	0.0002954	0.0000294	859.56	
<u>1</u>	3.582	3.447	0.0001488	0.0000141	896.34	
2	3.608	3.473	0.0000749	0.0000068	934.47	
4	3.633	3.498	0.0000503	0.0000044	954.67	a.
6	3.659	3.524	0.0000380	0.0000033	966.86	,
8	3.683	3.548	0.0000306	0.0000026	975.34	
10	3:697	3.562	0.0000256	0.0000021	984.01	
12	3.701	3.566	0.0000220	0.0000018	993.76	
14	3.722	3.587	0.0000193	0.0000016	997.02	
16	3.735	3.6	0.0000173	0.0000014	1001.59	
18	3.75	3.625	0.0000156	0.0000013	1001.73	1025.3
20		3.638	0.0000126	0.0000010	1013.99	
25	<u>3.773</u> <u>3.786</u>	3.651	0.0000105	0.0000008	1023.41	
30		3.663	0.0000090	0.0000007	1031.16	
35	3.798	3.676	0.0000079	0.0000006	1037.13	
40	3.811	3.689	0.0000071	0.0000005	1041.98	
45	3.824	3.701	0.0000064	0.0000005	1046.23	1
50	3.836	3.714	0.0000058	0.0000004	1049.46	1
55	3.849	3.714	0.0000054	0.0000004	1052.08	1
60	3.862	3.752	0.0000043	0.0000003	1061.42	1
75	3.887	3.778	0.0000036	0.0000003	1067.46	1.
90	3.913	3.803	0.0000031	0.0000002	1071.72	1
105	3.938	3.828	0.0000028	0.0000002	1074.46	1
120	3.963	3.867	0.0000022	0.0000002	1079.99	1
150	4.002	3.904	0.0000019	0.0000001	1083.10	10
180	4.039	3.904	0.0000016	0.0000001	1087.37	1
210	4.065	3.95	0.0000014	0.0000001	1090.40	· .
240	4.09		0.0000014	0.0000001	1091.95	1
270	4.116	3.981	0.0000013	0.0000001	1092.88	1
300	4.141	4.006	0.0000012	0.0000001	1099.90	1
360	4.166	4.031	0.000010	0.0000001	1000.00	

Table 5.E.2 Transmissivity Determined by Hurr-Worthington Method (Azimpur)

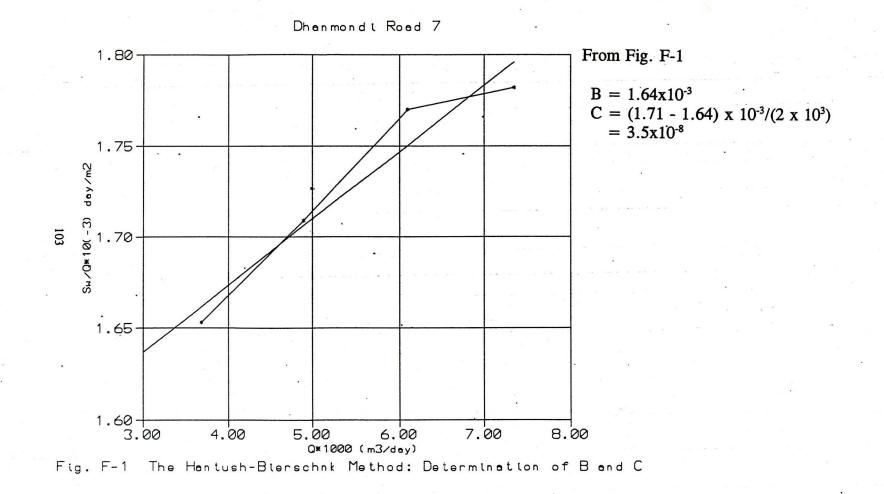
.

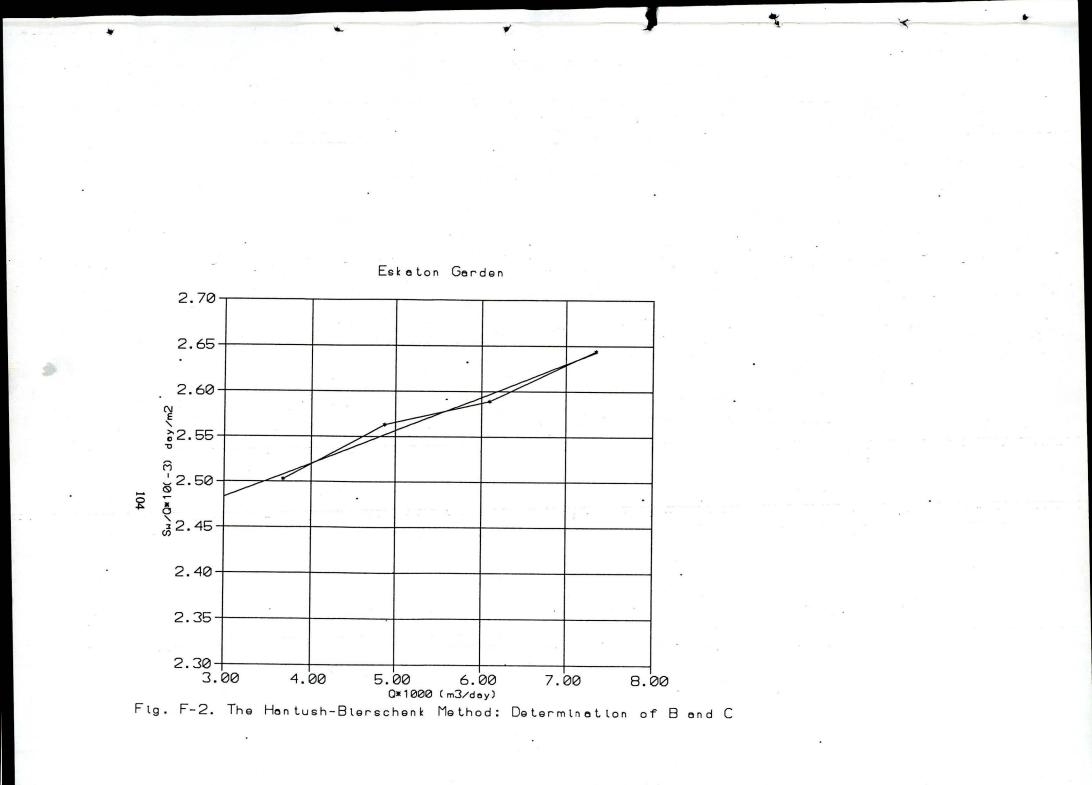
Time (min	Drawdown (m)	Corr. Drawdown (m)	Uw*W(Uw)	Uw	Pseudo KD	KD
1	6.529	6.357	0.000548676	5.7146E-05	442.604	
2	6.631	6.459	0.00027874	2.7655E-05	457.29177	
4	6.732	6.56	0.000141549	1.3378E-05	472.67047	
6	6.796	6.624	9.52869E-05	8.7535E-06	481.57854	
8	6.859	6.687	7.21449E-05	6.4966E-06	486.65444	
10	6.91	6.738	5.81561E-05 [.]	5.1566E-06	490.49411	
12	6.974	6.802	4.89237E-05	4.2845E-06	491.93968	
14	7.061	6.889	4.2471E-05	3.6819E-06	490.67874	
16	7.088	6.916	3.73078E-05	3.2044E-06	493.32738	
18	7.101	6.929	3.32248E-05	2.8301E-06	496.5115	
20	7.114	6.942	2.99584E-05	2.533E-06	499.27308	531.196
25	7.127	6.955	2.40116E-05	1.9982E-06	506.31032	
30	7.139	6.967	2.00442E-05	1.6466E-06	512.02658	
35	7.152	6.98	1.72128E-05	1.3986E-06	516.68468	
40	7.165	6.993	1.50892E-05	1.2146E-06	520.61675	
45	7.177	7.005	1.34357E-05	1.0725E-06	524.06876	
50	7.189	7.017	1.21128E-05	9.5974E-07	527.07559	
55	7.203	7.031	1.10336E-05	8.684E-07	529.55793	
60	7.203	7.031	1.01142E-05	7.9109E-07	532.87249	1
70	7.228	7.056	8.70011E-06	6.7317E-07	536.74998	4
80	7.241	7.069	7.62662E-06	5.8457E-07	540.84635	4
. 90	7.254	7.082	6.79168E-06	5.1626E-07	544.36086	4
100	7.266	7.094	6.12287E-06	4.6197E-07		4
110	7.279 .	7.107	5.57645E-06	4.1794E-07	550.16922	4
120	7.292	7.12	5.1211E-06	3.8147E-07	552.52956	4
135	7.292	7.12	4.55208E-06	3.3623E-07		4
150	7.304	7.132	4.10378E-06	3.0087E-07		-
165	7.304	7.132	3.73071E-06			-
180	7.304	7.132	3.41982E-06			
200	7.317	7.145	3.08345E-06			_
220	7.317	7.145	2.80313E-06			-
240	7.317	7.145	2.56954E-06			_
260	7.329	7.157	2.37587E-06			
280	7.329	7.157	2.20616E-06			
300	7.329	7.157	2.05908E-06			4
330	7.329	7.157	1.87189E-06			-
360	7.341	7.169	1.71878E-06	1.1839E-07	7 593.44121	

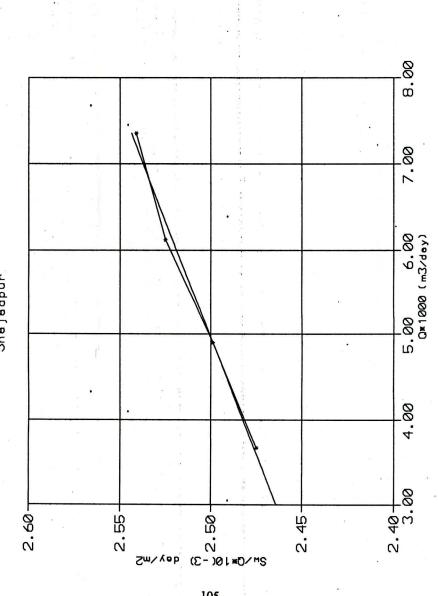
Table 5.E.3 Transmissivity Determined by Hurr-Worthington Method (Banani)

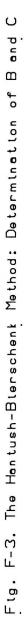
.99

Time (min.	Drawdown (m)	Corr. Drawdown (m)	Uw*W(Uw)	Uw	Pseudo KD	KD
1	5.589	5.09	0.0004393	4.503E-05	561.65839	
2	5.742	5.243	0.0002263	2.212E-05	571.84022	
3	5.779	5.28	0.0001519	1.443E-05	584.29091	
4	5.805	5.306	0.0001145	1.066E-05	593.33802	
5	5.817	5.318	9.18E-05	8.411E-06	601.45087	
6	5.841	5.342	7.685E-05	6.951E-06	606.43249	
7	5.869	5.37	6.621E-05	5.926E-06	609.74746	
8	5.882	5.383	5.808E-05	5.149E-06	614.02098	
9	5.894 .	5.395	5.174E-05	4.549E-06	617.75311	
10	5.907	5.408	4.668E-05	4.074E-06	620.83475	
12	5.932	5.433	3.908E-05	3.368E-06	625.9036	651.0969
14	5.971	5.472	3.374E-05	2.877E-06	628.02808	
16	5.997	5.498	2.966E-05	2.506E-06	630.85767	o - 6
18	6.009	5.51	2.642E-05	2.214E-06	634.72379	
20	6.021	5.522	2.383E-05	1.982E-06	638.0482	
25	6.059	5.56	1.92E-05	1.572E-06	643.59244	
30	6.085	5.586	1.607E-05	1.299E-06	648.81008	
35	6.098	5.599	1.381E-05	1.104E-06	654.38964	
40	6.109	5.61	1.211E-05	9.591E-07	659.2976	
45	6.122	5.623	1.078E-05	8.474E-07	663.24249	
50	6.136	5.637	9.731E-06	7.59E-07	666.49395	1
60	6.146	5.647	8.123E-06	6.255E-07	673.98363	
. 70	6.161	5.662	6.981E-06		679.5406	
80	6.174	5.675	6.123E-06	4.62E-07	684.39462	
90	6.186	5.687	5.454E-06		688.63896	
100	6.199	5.7	4.92E-06	3.654E-07	692.16578	
120	6.263	5.764	4.146E-06	3.042E-07	692.93319	
140	6.352	5.853	3.608E-06	2.621E-07	689.22396	1
160	6.377	5.878 [·]	3.171E-06		692.68403	
180	6.389	5.89	2.824E-06		697.03421	
210	6.389	5.89	2.421E-06		704.78207	1
240	6.389	5.89	2.118E-06			1
300	6.389	5.89	1.695E-06			1
360	6.389	5.89	1.412E-06	9.591E-08	732.55621	

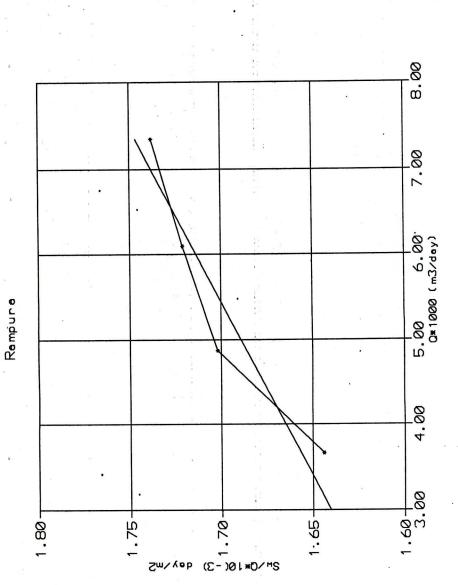

Table 5.E.4 Transmissivity Determined by Hurr-Worthington Method (Central Road)

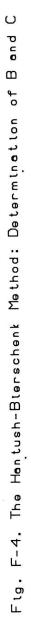

Time (min.	Drawdown (m)	Corr. Drawdown (m)	Uw*W(Uw)	Uw	Pseudo KD	KD
1	11.179	10.37	0.00089504	9.65E-05	261.968162	
2	11.319	10.51	0.00045356	4.66E-05	271.389961	
4	11.395	10.586	0.00022842	2.23E-05	283.026482	
6	11.458	10.649	0.00015319	1.46E-05	289.529518	
8	11.522	10.713	0.00011558	1.08E-05	293.672525	
10	11.573	10.764	9.2905E-05	8.52E-06	296.894561	
12	11.609	10.8	7.768E-05	7.03E-06	299.727284	
14	11.649	10.84	6.6829E-05	5.98E-06	301.86056	
16	11.687	10.878	5.868E-05	5.21E-06	303.624086	
18	11.725	10.916	5.2343E-05	4.61E-06	305.057209	
20	11.751	10.942	4.7221E-05	4.12E-06	306.588097	
25	11.776	10.967	3.7863E-05	3.26E-06	310.772441	300.7762
30	11.788	10.979	3.1587E-05	2.68E-06	314.493437	
35	11.801	10.992	2.7106E-05	2.28E-06	317.586148	
40	11.814	11.005	2.3746E-05	1.97E-06	320.2359	
45	11.827	11.018	2.1133E-05	1.74E-06	322.543783	
50	11.839	11.03	1.904E-05	1.56E-06	324.611051	
55	11.852	11.043	1.733E-05	1.41E-06	326.424935	2
60	11.878	11.069	1.5923E-05	1.29E-06	327.641262	
70	11.903	11.094	1.3679E-05	1.09E-06	330.483142	
80	11.928	11.119	1.1996E-05	9.5E-07	332.858953	
· 90	11.954	11.145	1.0688E-05	8.39E-07	334.843066	
100	12.005	11.196	9.6633E-06	7.53E-07	335.735739	
120	12.055	11.246	8.0887E-06	6.23E-07	338.533538]
130	12.093	11.284	7.4918E-06	5.73E-07	339.253578]
140	12.119	11.31	6.9727E-06	5.31E-07	340.221063	
150	12.144	11.335	6.5222E-06	4.94E-07	341.100359	
165	12.169	11.36	5.9424E-06	4.47E-07	342.629716	
180	12.195	11.386	5.4596E-06	. 4.09E-07	343.930585	
195	12.207	11.398	5.045E-06	3.75E-07	345.520095	
210	12.207	11.398	4.6846E-06	3.47E-07	347.361174	
230	12.219	11.41	4.2818E-06	3.15E-07	349.240555	
250	12.219	11.41	3.9392E-06	2.88E-07	351.335022	
270	12.233	11.424	3.6519E-06	2.66E-07	352.815391	
290	12.233	11.424	3.4E-06	2.46E-07	354.627971	
310	12.233	11.424	3.1807E-06	2.29E-07	356.328019	
330	12.244	11.435	2.9908E-06		357.560153	
360	12.244	11.435	2.7416E-06		359.798155	5

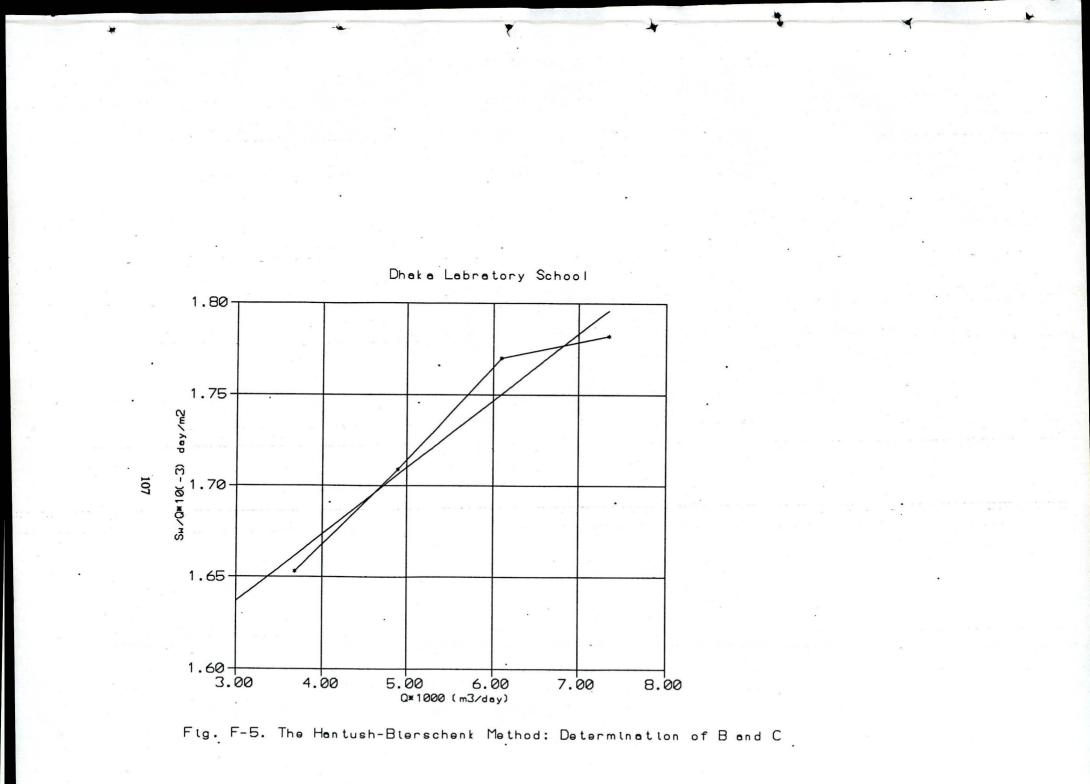

Table 5.E.5 Transmissivity Determined by Hurr-Worthington Method (Pallabi)


APPENDIX-F

Specific Drawdown- Discharge Curves for Hantush-Bierschenk Method







Shejedpur

APPENDIX-G

Pumping Test and Recovery Test Data

.

Name of well: Banani		Name of well:	Circuit House	Name of well:	Central Road	Name of well:	Dhanmondi-7
	September, 89		November, 89	Const. Time:	May, 90	Const. Time:	December, 95
		Discharge: 67		Discharge: 67	72 gpm	Discharge: 67	75 gpm
Discharge: 6			Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
Time min)	Drawdown(m)	(mm)	Drawdown(m)			-	4.776
	0.500	1	6.847	1	5.589	5	4.839
1	6.529	2	6.999	2	5.742	10	4.891
2	6.631	3	7.101	3	5.779	15	4.927
4	6.732	4	7.152	4	5.805	20	
6	6.796	5	7.203	5	5.817	25	4.967
8	6.859	6	7.254	6	5.841	30	5.005
10	6.91	7	7.304	7	5.869	40	5.043
12	6.974		7.329	8	5.882	50	5.069
14	7.061	8	7.355	9	5.894	60	5.094
16	7.088	9	7.381	10	5.907	70	5.119
18	7.101	10	7.431	12	5.932	80	5.132
20	7.114	12		14	5.971	90	5.145
25	7.127	14	7.482	16	5.997	105	5.158
30	7.139	16	7.533	18	6.009 -	120	5.17
35	7.152	18	7.584	20	6.021	135	5.17
40	7.165	20	7.609	25	6.059	150	5.183
45	7.177	25	7.634	30	6.085	165	. 5.196
50	7.189	30	7.66	30	6.098	180	5.196
55	7.203	35	7.685		6.109	195	5.196
60	7.203	40	7.71	40	6.122	210	5.207
70	7.228	45	7.736	45	6.136	225	5.207
80	7.241	50	7.749	50	6.146	240	5.221
90	7.254	. 60	7.787	60	6.161	260	5.221
100	7.266	70	7.813	70	6.174	280	5.221
110	7.279	80	7.838	80	6.186	300	5.232
120	7.292	90	7.851	90		330	5.232
135	7.292	100	7.863	100	6.199	360	5.232
	7.304	120	7.889	120	6.263	000	
150	7.304	140	7.914	140	6.352		
165	7.304	160	7.939	160	6.377		
180	7.304	180	7.965	180	6.389		
200		210	7.976	210	6.389		
220	7.317	240	8.003	240	6.389		
240	7.317	300	8.016	300	6.389		
260	7.329	360	8.003	360	6.389		
280	7.329	300	0.000				
300	7.329						
330	7.329						
360	7.341						

.

Name of well: Uttara		Name of well	Sayedbad		Name of well:	ne of well: Barabo (Shamoli) Name of well: Mitford H.				
		November, 89		February, 90		Const. Time:	September, 89	Const. Time:	May, 79	
			Discharge: 6			Discharge: 67	75 gpm	Discharge: 67	Const. Time: May, 79 Discharge: 675 gpm Time(min) Drawdown(m) 1 2 5.259 4 5.309 6 5.361 8 5.399 10 5.412 12 5.437 14 5.462 16 5.475 18 5.488 20 5.501 25 5.512	
	Discharge: 67	/5 gpm		-				Time(min)	Drawdown(m)	
	Time min)	Drawdown(m)	Time(min)	Drawdown(m)		Time(min)	Drawdown(m).		Biziire ()	
		1.050	1	8.308		1	10.695	1	5 250	
	1	4.052	2	8.486		2	10.849			
	2	4.103	4	8.638		4	10.988			
	4	4.129	6	8.765		6	11.115			
	6	4.166	8	8.841		8	11.217			
	8	4.192	10	8.918		10	11.293			
	10	4.217		8.981		12	11.395			
	12	4.243	12	9.032		14	11.484			
	14	4.268	14			16	11.573			
	16	4.293	16	9.083		18	11.623	18		
	18	4.306	18	9.121		20	11.674	20		
	20	4.317	20	9.159		20	11.725	25	5.512	
	25	4.332	25	9.223			11.763	30	5.526	
	30	4.345	30	9.286		30 35	11.788	35	5.537	
	35	4.357	35	9.337			11.801	40	5.555	
	40	4.371	40	9.388		40	11.814	45	5.564	
	45	4.383	45	9.426		45	11.839	50	5.578	
	45 50	4.383	50	9.451		50	11.852	55	5.578	
	55	4.395	55	9.476		55		60	5.589	
		4.408	60	9.5		60	11.865	70	5.589	
	60	4.421	70	9.553		70	11.865	80	5.589	
	70	4.433	80	9.604		80	11.939	90	5.602	
	80	4.455	90	9.642		90	11.979	100	5.602	
	90	4.469	100	9.679		100	12.029	110	5.602	
	100		110	9.718		110	12.055	120	5.602	
	110	4.471	120	9.756		120	12.081	135	5.615	
	120	4.484	135	9.794		135	12.199		5.615	
	135	4.497	150	9.819		150	12.157	150	5.615	
	150	4.509	165	9.845		165	12.182	165	.5.628	
	165	4.522	180	9.87		180	12.219	180		
	180	4.535	200	9.883		200	12.219	195	5.628	
	195	4.548	200	9.896		220	12.233	210	5.628	
	210	4.56		9.909		240	12.244	225	5.628	
	225	4.56	240	9.921		260	12.244	240	5.634	
	240	4.573	270	9.934		280	12.244	260	5.634	
	260	4.586	- 300	9.934 9.947		300	12.271	280	5.64	
	280	4.586	330			330	12.271	300	5.64	
	300	4.598	360	9.959		000	Contraction of the second s	320	5.652	
	330	4.598						340	5.666	
	360	4.598					a	360	5.666	

Name of Well: Bangababan	Name of Well: Ashkona	Name of Well: Hazaribag Name of Well: Bangla	
Const. Date : September, 90	Const. Date : January, 90	Const. Date : July, 91	Const. Date : February, 96
Discharge: 675 gpm	Discharge: 675 gpm	Discharge: 675 gpm	Discharge: 675 gpm
Time (min.) Drawdown (m)	Time (min. Drawdown (m)	Time (min. Drawdown (m)	Time (min. Drawdown (m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	240 4.662 255 4.675 270 4.675 285 4.675 300 4.675 330 4.675	

Name of well: Azimpur

Const. Time: June, 90

Name of well: B.D.R.Pilkhana

Const. Time: September, 89

Discharge: 67	72 gpm		Discharge: 67	5 gpm			
Time(min)	Drawdown(m)	1	Time(min)	Drawdown(m)			
	Dianacting	-					
1	5.945		1	3.557			
2	6.047		2	3.582			
3	6.146		4	3.608			
4	6.225		6	3.633			
5	6.275		8	3.659			
6	6.301		10	3.683			
7	6.326		12	3.697			
8	6.352		14	3.701			
9	6.377		16	3.722			
10	6.402		18	3.735			
12	6.441		20	3.76			
14	6.466		25	3.773			
16	6.491		30	3.786			
18	6.504		35	3.798			
20	6.517		40	3.811			
20	6.517		45	3.824			
	6.529		50	3.836			
30 35	6.542		55	3.849			
40	6.542		60	3.862			
40	6.542		75	3.887			
43 50	6.555		90	3.913			
60	6.555		105	3.938			
70	6.568		120	3.963			
80	6:568		150	4.002			
90	6.568		180	4.039			
100	6.58		210	4.065			
120	6.58		240	4.09			
140	6.58		270	4.116			
160	6.593		300	4.141			
180	6.593		360	4.166			
200	6.593						
200	6.593						
300	6.605						
350	6.605						
400	6.605						

Name of well: Islambag			Name of well: Jagonnath C.			
Const. Time: (October, 89		Const. Time: F	Const. Time: February, 92		
Discharge: 67	2 gpm		Discharge: 672 gpm			
Time(min)	Drawdown(m)]	Time(min)	Drawdown(m)		
1 ime(min)] I 1 2 4 6 8 10 12 14 16 18 20 25 30 35 40 45 50 55 60 70 80 90 100 110 120 135 150 165 180 200 220 240 260 280	4.713 4.764 4.776 4.827 4.853 4.902 4.916 4.942 4.967 4.979 5.005 5.018 5.03 5.043 5.056 5.056 5.069 5.081 5.1 5.132 5.158 5.17 5.158 5.17 5.183 5.196 5.232 5.284 5.309 5.335 5.335 5.348 5.361		$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 12\\ 14\\ 16\\ 18\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 70\\ 80\\ 90\\ 100\\ 120\\ 140\\ 160\\ 180\\ 210\\ 240\\ 300\\ 360\\ \end{array} $	7.317 7.444 7.546 7.646 7.723 7.799 7.851 7.901 8.256 8.333 8.409 8.435 8.46 8.435 8.46 8.511 8.561 8.585 8.613 8.638 8.651 8.664 8.689 8.714 8.664 8.689 8.714 8.739 8.765 8.791 8.841 8.918 8.968 9.007 9.045 9.07 9.096 9.108		
300 330 360	5.361 5.373 5.386					

1

2

4

6

8

10

12

14

16

18

20

25

30

35

40

45

50

55

60

70

330

12.271

Name of well: Rajarbagh

Name of well: Rajnarayan

Const. Time: November, 90

Discharge: 675 gpm

1

2

4

6

8

10

12

14

16

18

20

25

30

35

40

45

50

55

60

70

80

90

100

110

120

135

150

165

180

195

210

225

240

260

280

300

330

360

4.129

4.129

Const. Time: October, 89 Discharge: 672 gpm Time(min) Drawdown(m) Time(min) Drawdown(m) 9.108 3.468 1 9.463 2 3.506 3 9.693 3.569 4 9.845 3.608 5 6 9.972 3.646 10.048 3.683 7 10.124 3.707 8 10.175 3.722 9 10.226 3.735 10.277 10 3.747 10.353 12 3.759 10.429 14 3.786 10.48 16 3.811 10.506 18 3.836 20 10.531 3.862 10.582 25 3.874 10.658 30 3.884 35 10.734 3.899 40 10.785 3.913 10.836 45 3.938 50 10.887 3.951 60 10.938 3.963 10.988 70 3.976 80 11.014 3.988 11.039 90 4.002 100 11.065 4.002 11.115 120 4.039 140 11.166 4.052 4.062 160 11.217 11.255 4.065 180 11.293 4.068 210 240 11.365 4.078 11.446 300 4.09 11.496 4.09 360 4.09 4.116

Name of well: Shajahanpur Const. Time: June, 95 Discharge: 675 gpm Time(min) Drawdown(m) 10.695 10.849 10.988 11.115 11.217 11.293 11.395 11.484 11.373 11.623 11.674 11.725 11.763 11.788 11.801 11.814 11.839 11.852 11.865 11.865 80 11.939 90 11.979 100 12.029 12.055 110 12.081 120 135 12.119 150 12.157 12.182 165 180 12.219 200 12.219 12.233 220 12.244 240 12.244 260 280 12.244 300 12.271

Name of well: Shajatpur

Const. Time: February, 92

Discharge: 675 gpm

Time(min)	Drawdown(m)
Time(min) 5 10 15 20 25 30 40 50 60 70 80 90 105 120 135 150 165 180 195 210 225 240 260 280 300 330	Drawdown(m) 9.121 9.195 9.248 9.324 9.362 9.388 9.4 9.426 9.476 9.489 9.553 9.578 9.604 9.616 9.616 9.616 9.629 9.642 9.642 9.642 9.642 9.642 9.642 9.654 9.667 9.667 9.679 9.679 9.705

.

1

Name of well:	: Mirpur 12 B- D	Name of well:	Mirpur 10	Name of well:	Mirpur 7	Name of well:	Mirpur 2
Const. Time:	June, 88	Const. Time:	October, 78	Const. Time:	June,73	Const. Time:	October, 78
Discharge: 6	75 gpm	Discharge: 6	72 gpm	Discharge: 2994 gal/hr Discharge: 672 g		72 gpm	
Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
5	11.834	2	5.235	4	5.44	2	6.529
10	11.865	4	5.387	6	5.51	4	6.756
15	11.979	6	5.515	8	5.56	6	7.061
20	12.093	8	5.616	10	5.61	8	7.139
25	12.144	10	5.64	15	5.69	10	7.19
	12.195	14	5.652	20	5.72	12	7.266
30	12.271	16	5.692	25	5.77	14	7.317
35	12.297	18	5.716	30	5.79	16	7.341
40		20	5.744	40	5.87	18	7.355
45	12.322	25	5.78	50	5.89	20	7.366
50	12.348	30	5.805	60	5.92	25	7.431
55	12.373	40	5.82	75	5.95	30	7.469
60	12.398	50	5.845	. 90	6	40	7.52
65	12.424	60	5.857	105	6	50	7.571
70	12.444	70	5.869	120	6.02	60	7.609
75	12.462	80	5.884	140	6.07	70	7.635
80	12.475	90	5.909	160	6.1	80	7.646
90	12.487	100	5.921	180	6.12	90	7.671
95	12.5	120	5.945	210	6.12	105	7.685
100	12.513	140	5.97	240	6.17	120	7.698
105	12.513 12.513	160	5.997	270	6.17	140	7.723
110	12.525	180	6.009	300	6.17	160	7.736
115	12.525	200	6.021	330	6.22	180	7.749
120	12.532	220	6.037	360	6.22	200	7.762
125	12.532	240	6.049			220	7.774
130	12.532	260	6.073		•	240	7.787
135 ⁻ 140	12.538	280	6.085			260	7.799
140	12.538	300	6.098			280	7.799
145	12.538	320	6.11			300	. 7.799
165	12.538	340	6.122			320	7.799
180	12.538	360	6.134			340	7.799
195	12.538					360	7.799
210	12.551						
220	12.551						
230	12.576						
240	12.602						
250	12.627						
260	12.652						
270	12.678						
280	12.703						
285	12.729						
290	12.741						
300	12.749						
310	12.767						
320	12.779						
330	12.779						
340	12.792						
350	12.792		a 1*				
360	12.792						

•

114

.

>

3

Name of well	: Nakhalpara	Name of well	: Monipuripara	Name of well:	Mugdapara	Name of well	Mirpur B.C,
Const. Time:		Const. Time:	June, 95	Const. Time:	July, 95	Const. Time:	November, 80
Discharge: 6		Discharge: 6	75 gpm	Discharge: 6	75 gpm	Discharge: 6	75 gpm
Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
5 10 15 20 25 30 40 50 60 70 80 90 105 120 135 150 165 180	9.096 9.195 9.273 9.337 9.4 9.451 9.515 9.553 9.578 9.604 9.629 9.642 9.667 9.679 9.693 9.705 9.718 9.731	5 10 15 20 25 30 40 50 60 70 80 90 105 120 135 150 165 180	5.335 5.386 5.424 5.462 5.512 5.537 5.564 5.589 5.615 5.628 5.64 5.628 5.64 5.653 5.666 5.678 5.691 5.704 5.704 5.704	5 10 15 20 25 30 40 50 60 70 80 90 105 120 135 150 165 180 195	8.384 8.473 8.585 8.638 8.689 8.753 8.803 8.854 8.89 8.918 8.943 8.943 8.943 8.981 9.032 9.057 9.07 9.096 9.121 9.146	5 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100 110 120 130	8.15 8.29 9 9.04 9.07 9.08 9.09 9.09 9.09 9.1 9.1 9.1 9.1 9.1 9.43 9.81 9.81 9.81 9.81 9.83 9.83 9.83 9.83 9.84
195 210 225 240 260	9.743 9.756 9.768 9.78 9.78 9.78	195 210 225 240 260	5.716 5.729 5.729 5.742 5.742	210 225 240 260 280	9.171 9.184 9.185 9.223 9.235	140 150	9.85 9.85
280 300 330 360	9.794 9.794 9.805 9.805	280 300 330 360	5.755 5.755 5.767 5.767	300 330	9.235 9.248		

.

.

Name of well: Pal	labi	Name of well:	Paterbagh	Name of well:	Pisci,M.pur	Name of well:	Rampura
Const. Time: Aug		Const. Time:	April, 90	Const. Time:	June, 90	Const. Time:	February, 90
Discharge: 675 g	100	Discharge: 6	75 gpm	Discharge: 67	75 gpm	Discharge: 67	2 gpm
		Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
Time(min) Dra	wdown(m)	Time(timi)	Dianaomi(m)				
1	11.179	1	8.803	1	8.244	1	5.132
2	11.319	2	8.866	2	8.295	2	5.284
4	11.395	4	8.905	4	8.333	3	5.386
6	11.458	6	8.943	6	8.371	4	5.462
	11.522	8	8.994	8	8.409	5	5.537
8	11.573	10	9.032	10	8.448	6	5.589
10	11.609	12	9.07	12	8.486	7	5.615
12		14	9.108	14	8.511	8	5.653
14	11.649	16	9.146	16	8.537	9	5.691
16	11.687	18	9.171	18	8.561	10	5.716
18	11.725	20	9.171	20	8.585	12	5.755
20	11.751	25	9.223	25	8.613	14	5.779
25	11.776	30	9.248	30	8.638	16	5.817
30	11.788		9.273	35	8.664	18	5.841
35	11.801	35	9.299	40	8.689	20	5.869
40	11.814	40		45	8.714	25	5.919
45	11.827	45	9.324	50	8.727	30	5.971
50	11.839	50	9.349	55	8.739	35	5.996
55	11.852	55	9.375	60	8.753	40	· 6.021
60	11.878	60	9.4	70	8.778	45	6.047
70	11.903	70	9.439	80	8.803	50	6.059
80	11.928	80	9.476	90	8.816	60	6.085
90	11.954	90	9.489	100	8.829	70	6.109
100	12.005	100	9.54		8.841	80	6.136
120	12.055	. 110	9.566	110	8.854	90	6.146
130	12.093	120	9.591	120	8.866	100	6.161
1.40	12.119	135	9.616	135	8.879	120	6.199
150	12.144	150	9.646	150	8.89	140	6.212
165	12.169	165	9.667	165	8.905	160	6.237
180	12.195	180	9.679	180	0.905	180	6.237
195	12.207	195	9.693	195	8.918	210	6.25
210	12.207	210	9.705	210	8.93	240	6.25
230	12.219	225	9.718	225	8.943		6.263
250	12.219	240	9.718	240	8.956	300	6.263
270	12.233	260	9.731	260	8.968	360	0.203
290	12.233	280	9.743	280	8.981		
310	12.233	300	9.743	300	8.994		
330	12.244	330	9.756	330	9.007		
360	12.244	360	9.769	360	9.007		

2

.

Const. Time: December, 90 Const. Time: October, 95 Const. Time: October, 95 Const. Time: January, 90 Discharge: 675 gpm Discharge: 675 gpm Discharge: 675 gpm Discharge: 675 gpm Time(min) Drawdown(m) Time(min) Drawdown(m) Time(min) Drawdown(m) 1 4 927 5 8.308 1 7.114 1 6.745 2 5.056 10 8.435 2 7.465 2 6.809 3 5.183 15 8.511 4 7.266 4 6.879 4 5.284 20 8.585 6 7.323 8 6.936 5 5.335 25 8.651 8 7.499 10 6.974 7 5.437 40 8.778 12 7.7469 10 6.974 9 5.564 60 8.41 16 7.671 16 7.076 12 5.629 70 8.908 25 7.663 25 7.114 <	Name of well:	Dhaka Lab. S	Name of well:	Eskaton Garden	Name of well	: Gopibag	Name of well	: Goran
Time(min) Drawdown(m) Time(min) Drawdown(m) Time(min) Drawdown(m) Time(min) Drawdown(m) 1 4.927 5 8.308 1 7.114 1 6.745 2 5.056 10 8.435 2 7.495 2 6.809 3 5.183 15 8.511 4 7.266 4 6.899 5 5.335 25 8.651 8 7.333 8 6.936 6 5.399 30 8.702 10 7.469 10 6.974 7 5.437 40 8.778 12 7.546 12 6.999 8 5.488 50 8.803 14 7.622 14 7.025 9 5.564 60 8.841 16 7.671 16 7.055 10 5.602 80 8.933 20 7.799 20 7.085 14 5.676 105 8.994	Const. Time:	December, 90	Const. Time:	October, 95	Const. Time:	October, 95	Const. Time:	January, 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Discharge: 67	'5 gpm	Discharge: 67	'5 gpm	Discharge: 6	75 gpm	Discharge: 6	75 gpm
1 10 8.435 2 7.495 2 6.899 3 5.183 15 8.511 4 7.266 4 6.899 4 5.284 20 8.585 6 7.329 6 6.888 5 5.335 25 8.651 8 7.333 8 6.936 6 5.399 30 8.702 10 7.466 12 6.999 8 5.438 50 8.803 14 7.622 14 7.025 9 5.564 60 8.841 16 7.671 16 7.05 10 5.602 70 8.89 18 7.736 18 7.076 12 5.628 80 8.93 20 7.083 25 7.863 25 7.141 16 5.678 105 9.945 40 8.054 40 7.121 55 7.215 30 5.869 165 9.0	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
2 5.056 10 8.435 2 7.495 2 6.809 3 5.183 15 8.511 4 7.266 4 6.898 4 5.284 20 8.585 6 7.329 6 6.898 5 5.335 25 8.651 8 7.333 8 6.936 6 5.399 30 8.702 10 7.454 12 6.999 8 5.488 50 8.603 14 7.627 16 7.05 9 5.564 60 8.841 16 7.671 16 7.05 12 5.628 80 8.93 20 7.786 18 7.719 14 5.653 90 8.968 2.5 7.863 2.5 7.114 16 5.678 105 8.94 30 7.927 30 7.199 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 <td>1</td> <td>4.927</td> <td>5</td> <td>8.308</td> <td>1</td> <td>7.114</td> <td>1</td> <td>6.745</td>	1	4.927	5	8.308	1	7.114	1	6.745
3 5 183 15 8.511 4 7.266 4 6.859 4 5 284 20 8.565 6 7.329 6 6.888 5 5.335 25 8.651 8 7.393 8 6.936 6 5.399 30 8.702 10 7.469 10 6.974 7 5.437 40 8.778 12 7.546 12 6.999 8 5.488 50 8.803 14 7.622 14 7.025 9 5.562 80 8.93 20 7.799 20 7.088 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.144 16 5.677 135 9.045 40 8.054 40 7.19 20 5.767 135 9.045 40 8.054 40 7.19 20 5.869 165 9.096 50 8.168 50 7.241 <t< td=""><td></td><td></td><td>10</td><td>8.435</td><td>2</td><td>7.495</td><td>2</td><td>6.809</td></t<>			10	8.435	2	7.495	2	6.809
4 5,284 20 8,585 6 7,329 6 6,688 5 5,335 25 8,651 8 7,333 8 6,936 6 5,399 30 8,702 10 7,469 10 6,974 7 5,437 40 8,773 12 7,546 12 6,999 8 5,488 50 8,033 14 7,622 14 7,025 9 5,564 60 8,841 16 7,671 16 7,05 10 5,602 70 8,89 18 7,739 20 7,088 14 5,653 90 8,968 25 7,863 25 7,114 16 5,678 105 8,904 30 7,927 35 7,165 20 5,767 135 9,045 40 8,054 40 7,199 25 5,817 150 9,07 45 8,117 45 7,145 30 5,869 165 9,096 50 8,1			15	8.511	4	7.266	4	6.859
5 5.335 25 8.651 8 7.393 8 6.936 6 5.399 30 8.702 10 7.469 12 6.999 8 5.437 40 8.778 12 7.546 12 6.999 8 5.488 50 8.803 14 7.622 14 7.025 9 5.564 60 8.831 16 7.671 16 7.056 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.663 25 7.114 16 5.677 135 9.045 40 8.054 40 7.191 20 5.767 135 9.045 40 8.054 40 7.1215 30 5.869 165 9.096 50 8.168 50 7.2215 30 5.869 165 9.096 50 8.168 50 7.224 30 5.894 180 9.121 55					6	7.329	6	6.898
6 5.399 30 8.702 10 7.469 10 6.974 7 5.437 40 8.778 12 7.546 12 6.999 8 5.448 50 8.803 14 7.622 14 7.025 9 5.564 60 8.841 16 7.671 16 7.05 10 5.602 70 8.89 18 7.736 18 7.076 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.863 25 7.114 16 5.678 105 8.904 30 7.927 30 7.199 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.275 30 5.869 165 9.096 5 8.168			25	8.651	8	7.393	8	6.936
7 5.437 40 8.778 12 7.546 12 6.999 8 5.488 50 8.803 14 7.622 14 7.025 9 5.564 60 8.841 16 7.671 16 7.05 10 5.602 70 8.89 18 7.736 18 7.076 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.863 25 7.114 16 5.678 105 8.994 30 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.19 25 5.817 150 9.07 45 8.117 45 7.218 30 5.869 165 9.096 50 8.168 50 7.241 40 5.919 195 9.134 60 8.269					10	7.469	10	6.974
8 5488 50 8.803 14 7.622 14 7.025 9 5.564 60 8.841 16 7.671 16 7.05 10 5.602 70 8.89 18 7.736 18 7.736 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.863 25 7.114 16 5.678 105 8.994 30 7.927 30 7.139 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.215 30 5.869 165 9.096 50 8.168 50 7.228 35 5.893 210 9.146 70 8.308 70 7.279 50 5.983 225 9.146 80 8.346 </td <td></td> <td></td> <td></td> <td>8.778</td> <td>12</td> <td>7.546</td> <td>12</td> <td>. 6.999</td>				8.778	12	7.546	12	. 6.999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					14	7.622		7.025
10 5.602 70 8.89 18 7.736 18 7.076 12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.863 25 7.139 16 5.678 105 8.994 30 7.927 30 7.139 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.19 25 5.817 150 9.07 45 8.117 45 7.215 30 5.869 165 9.096 50 8.168 50 7.228 35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.3					16		16	7.05
12 5.628 80 8.93 20 7.799 20 7.088 14 5.653 90 8.968 25 7.863 25 7.114 16 5.678 105 8.994 30 7.927 30 7.139 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.179 25 5.817 150 9.07 45 8.117 45 7.215 30 5.869 165 9.096 50 8.168 50 7.228 35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.279 50 5.983 225 9.146 70 8.384 90 7.324 460 6.034 280 9.171 110 <t< td=""><td></td><td></td><td></td><td></td><td>18</td><td></td><td>18</td><td>.7.076</td></t<>					18		18	.7.076
14 5.653 90 8.968 25 7.863 25 7.114 16 5.678 105 8.994 30 7.927 30 7.139 18 5.704 120 9.019 35 7.997 35 7.165 20 5.767 135 9.045 40 8.054 40 7.19 25 5.817 150 9.07 45 8.117 45 7.228 35 5.869 165 9.0966 50 8.168 50 7.2728 35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.308 70 7.329 50 5.983 225 9.144 80 8.346 80 7.341 60 6.021 260 9.159 90 <								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
25 5.817 150 9.07 45 8.117 45 7.215 30 5.869 165 9.096 50 8.168 50 7.228 35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.308 70 7.279 50 5.983 225 9.146 80 8.346 80 7.304 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 300 9.184 120 8.498 120 7.366 100 6.047 360 9.195 135 8.537 135 7.331 120 6.047 360 9.195 150								
20 5.869 165 9.096 50 8.168 50 7.228 35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.308 70 7.279 50 5.983 225 9.146 80 8.346 80 7.304 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.638 195 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
35 5.894 180 9.121 55 8.219 55 7.241 40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.308 70 7.274 50 5.983 225 9.146 80 8.346 80 7.329 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 120 6.047 360 9.195 155 8.537 135 7.393 140 6.059 165 8.585 165 7.393 160 6.059 195 8.688 195 7.419 240 6.072 210 8.664 210 7.419 300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.228</td>								7.228
40 5.919 195 9.134 60 8.269 60 7.254 45 5.945 210 9.146 70 8.308 70 7.279 50 5.983 225 9.146 80 8.346 80 7.329 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 180 8.613 180 7.406 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 360								7.241
45 5.945 210 9.146 70 8.308 70 7.279 50 5.983 225 9.146 80 8.346 80 7.304 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.466 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 180 8.613 180 7.406 210 6.072 210 8.664 210 7.419 240 6.072 210 8.664 210 7.419 300 6.072 225 8.689 225 7.431 360 6.072 <td< td=""><td></td><td></td><td></td><td></td><td>60</td><td>8.269</td><td>60</td><td>7.254</td></td<>					60	8.269	60	7.254
50 5.983 225 9.146 80 8.346 80 7.304 60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 140 6.059 180 8.613 180 7.419 240 6.072 210 8.664 210 7.419 240 6.072 240 8.702 240 7.431 300 6.072 240 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>7.279</td></td<>							70	7.279
60 6.009 240 9.159 90 8.384 90 7.329 70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 140 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 240 6.072 210 8.664 210 7.431 300 6.072 240 8.702 240 7.457 360 6.072 240 8.714 260				9.146	80	8.346	80	7.304
70 6.021 260 9.159 100 8.422 100 7.341 80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 140 6.059 180 8.613 180 7.419 210 6.072 210 8.664 210 7.419 240 6.072 210 8.664 210 7.431 360 6.072 240 8.702 240 7.457 280 8.727 280 7.459 300 7.457 360 6.072 330 8.739 330 7.482					90	8.384	90	7.329
80 6.034 280 9.171 110 8.46 110 7.355 90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 160 6.059 180 8.613 180 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 360 6.072 280 8.727 280 7.469 300 8.072 240 7.457 280 8.727 300 7.482					100	8.422	100	7.341
90 6.034 300 9.184 120 8.498 120 7.366 100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 160 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.457 360 6.072 280 8.727 280 7.469 300 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 7.469 300 6.072 260 8.714 260 7.469 300 8.727 300 7.482 330					110	8.46	110	7.355
100 6.047 330 9.195 135 8.537 135 7.381 120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 160 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 280 8.727 280 7.469 300 8.072 240 7.457 280 7.469 300 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482 330 8.739 330 7.482						8.498	120	7.366
120 6.047 360 9.195 150 8.561 150 7.393 140 6.059 165 8.585 165 7.393 160 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 2260 8.702 240 7.431 360 6.072 240 8.702 240 7.457 360 6.072 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482						8.537	135	7.381
140 6.059 165 8.585 165 7.393 160 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482 330 8.739 330 7.482						8.561	150	7.393
160 6.059 180 8.613 180 7.406 180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.457 360 6.072 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482						8.585	165	7.393
180 6.059 195 8.638 195 7.419 210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482 330 8.739 330 7.482								7.406
210 6.072 210 8.664 210 7.419 240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 360 6.072 280 8.727 280 7.469 300 8.739 330 7.482					195	8.638	195	7.419
240 6.072 225 8.689 225 7.431 300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482							210	7.419
300 6.072 240 8.702 240 7.431 360 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482								
360 6.072 260 8.714 260 7.457 280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482								
280 8.727 280 7.469 300 8.727 300 7.482 330 8.739 330 7.482								
300 8.727 300 7.482 330 8.739 330 7.482	000	0.072						
330 8.739 330 . 7.482								

1

-

Name of well	l: Jurain	Name of well	: Jatrabari	Name of well	Kafrul	Name of wel	l: Gudaraghat
Const. Time:	February, 90	Const. Time:	April, 90	Const. Time:	January, 90	Const. Time	: May, 89
Discharge: 6	75 gpm	Discharge: 8	95 gpm	Discharge: 6	75 gpm	Discharge: 5	62 gpm
Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
1	8.638	1	14.723	1	9.51	1	13.88
2	8.689	2	14.914	2	9.65	2	15.82
4	8.739	3	14.988	3	9.75	4	17.18
6	8.778	4	15.028	4	9.84	6	17.34
8	8.816	5	15.066	5	9.87	8	17.38
10	8.854	6	15.104	6	9.91	10	17.43
12	8.879	7	15.142	7	9.96	15	17.46
14	8.905	8	15.168	8	9.99	20	17.48
16	8.93	9	15.193	9	10.07	25	17.5
18	8.943	10	15.206	10	10.09	30	17.46
20	8.956	12	15.218	12	10.14	35	17.48
25	8.981	14	15.257	14	10.2	40	17.34
30	9.007	16	15.282	16	10.22	45	17.43
35	9.019	18	15.282	18	10.26	50	17.48
40	9.032	20	15.345	20	10.27	55	17.28
40	9.045	25	15.371	25	10.31	60	17.38
		30	15.42	30	10.37	70	17.43
50	9.057	35	15.473	35	10.39	80	17.47
55	9.07		15.511	40	10.4	90	17.48
60	9.083	40	15.536	45	10.42	50	17.40
70	9.108	45		50	10.42		
80	9.134	50	15.549	60	10.45		
90	9.159	60	15.573	70	10.45		
100	9.186	70	15.597	80	10.48		
110	9.223	80	15.638				
120	9.248	90	15.663	90	10.49		
135	9.286	100	15.689	100	10.5		
150	9.311	120	15.727	120	10.52		
165	9.337	140	15.777	140	10.54		
180	9.349	160	15.816	160	10.59		
195	9.362	180	15.841	180	10.6		
210	9.375	210	15.878	200	10.61		
225	9.388	240	15.902	250	10.62		
240	9.388	300	15.929	300	10.63		
260	9.4	360	15.968	350	10.63		
280	9.413						
300	9.413				·		
330	9.426						
360	9.426						

Name of well	: Kallyanpur	Name of well	: Khilgaon	Name of well	: Kuratoli	Name of well:	Laxmibazar
Const. Time:	September, 82	Const. Time:	April, 97	Const. Time:	February, 90	Const. Time:	December, 89
Discharge: 6	75 gpm	Discharge: 6	75 gpm	Discharge: 6	72 gpm	Discharge: 6	72 gpm
Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)	Time(min)	Drawdown(m)
5	14.33	5	10.061	1	4.065	1	6.682
10	14.68	10	10.226	2	4.243	2	6.834
15	14.79	15	10.302	3	4.318	3	6.961
20	14.98	20	10.366	4	4.345	4	7.037
25	15.19	25	10.415	5	4.369	5	7.114
30	15.37	30	10.455	6	4.395	6	7.189
35	15.57	40	10.493	7	4.408	7	7.266
40	15.65	50	10.531	8	4.421	8	7.317
45	15.75	60	10.556	9	4.433	9	7.366
50	15.88	70	10.582	10	4.446	10	7.444
55	15.98	80	10.607	12	4.484	12	7.495
60	16.11	90	10.619	14	4.509	14	7.546
70	16.16	105	10.658	16	4.522	16	7.571
80	16.21	120	10.709	18	4.535	18	7.597
90	16.28	135	10.734	20	4.548	20	7.622
100	16.34	150	10.759	25	4.586	25	7.646
110	16.36	165	10.785	30	4.611	30	7.671
120	16.39	180	10.798	35	4.637	35	7.698
130	16.41	195	10.81	40	4.662	40	7.723
140	16.44	210	10.823	45	4.675	45	. 7.749
150	16.46	225	10.836	50	4.688	50	7.774
160	16.51	240	10.836	60	4.713	60	7.825
170	16.56	260	10.849	70	4.738	70	7.876
180	16.59	280	10.849	80	4.751	80	7.927
195	16.64	300	10.849	90	4.764	90	7.951
210	16.67	330	10.861	100	4.776	100	7.976
225	16.72	360	10.861	120	4.802	120	8.016
240	16.74	390	10.861	140	4.827	140	8.054
255	16.74	420	10.861	160	4.853	160	8.079
270	16.77	480	10.874	180	4.865	180	8.105
285	16.77	540	10.874	210	4.878	200	8.117
300	16.77	600	10.874	240	4.902	250	8.155
320	16.79	660	10.874	300	4.927	300	8.181
340	16.79	720	10.874	360	4.954	360	8.206
360	16.82						

_

			OVERY TEST DAT	^			
Name of we	ll:Mirpur 12 Block D	Name of wel	l:Bangla Motor	Name of we	ll:Azimpur	Name of well:Ast	nkona
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (r
1	7.825 .	2	1.778	2	1.219	1	3.633
2	5.386	4	1.385	4	0.838	2	3.011
3	5.207	6	1.143	6	0.737	4	2.566
4	4.622	8	1.029	8	0.659	6	7.542
5	3.683	10	0.915	10	0.609	8	2.121
7	3.328	15	0.788	15	0.534	10	1.994
9	3.125	20	0.699	30	0.457	12	1.878
11	2.744	25	0.622	45	0.381	14	. 1.804
13	2.313	30	0.572	60	0.305	16	1.727
15	2.159	40	0.483	75	0.229	18	1.664
20	1.982	50	0.406	90	0.203	. 20	1.613
25	1.809	60	0.354	105	0.178	25	1.601
30	1.703	70	0.305	120	0.152	30	1.397
35	1.626	80	0.254	120	0.127	35	1.321
40	1.384	90	0.234	180	0.102	40	1.244
	1.244	105	0.165	210	0.076	40	1.244
45		105	0.165	210	0.076	50	
55	1.118	120	0.102	240	0.049	50	1.118
60	1.041						
65	0.963	150	0.076	300	0.013	60	1.016
70	0.889	165	0.064	360	0.013	70	0.939
75	0.788	180	0.064		•	80	0.877
80	0.609	200	0.051			90	0.813 ·
85	0.534	220	0.051		· ·	100	0.762
90	0.483	240	0.051			110	0.711
95	0.419					120	0.659
100	0.395					130	0.659
105	0.364					140	0.559
110	0.341					150	0.521
115	0.341					160	0.483
125	0.341 ·					170	0.445
135	0.291					180	0.406
145	0.267					195	0.329
155	0.229					210	0.292
165	0.229					225	0.254
175	0.203					240	0.216
205	0.203					255	0.178
235	0.178					270	• 0.152
265	0.152					285	0.127
295	0.145					300	0.102
325	0.127					• 320	0.089
355	0.114					340	0.089
385	0.102					360	0.089
415	0.102	+				380	0.083
415	0.096					400	0.064
445	0.059				· · · · · · · · · · · · · · · · · · ·	400	0.051
505	0.059					450	0.051
535	0.059					430	0.051
565	0.049						0.001
595	0.038						
	0.038				· · · ·		
625							+
655	0.03						
685	0.03						
715	0.024						
745	0.024						

		RI	ECOVERY TEST DAT	ГА				
Name of w	ell:Gopibag	Name of we	ell: Eskaton Garden	Name of we	ell: Dhaka Lab. S.	Name of we	II: Dhanmondi R-	7
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	
1	4.7	2	3.506	2	2.363	2	1.194	
2	3.659	4	2.718	4	1.753	4	0.851	
4	3.125	6	2.312	6	1.321	6	0.634	
6	2.793	8	1.878	8	1.118	8	0.534	
8	2.566	10	1.499	10	0.963	10	0.457	
10	2.337	15	1.143	15	0.659	15	0.354	
12	2.261	20	0.889	20	0.483	20	0.318	
14	2.183	25	0.8	25	0.354	25	0.292	
16	2.083	30	0.686	30	0.254	30	0.254	
18	2.019	40	0.572	40	0.178	40	0.229	
20	1.913	50	0.495	50	0.076	50	0.195	
25	1.804	60	0.419	60	0.025	60	0.165	
30	1.702	70	0.318	70	0.013	75	0.139	
35	1.601	80	0.241	80	0.013	90	0.114	
40	1.524	90	0.191			105	0.089	
40	1.448	105	0.152			120	0.064	
45 50	1.372	120	0.132			135	0.051	
55	1.296	135	0.089			150	0.038	
	and the second sec		0.076			165	0.038	
60	1.244	150 165	0.078			180	0.035	
70	1.143		0.063			210	0.025	
80	1.067	180	0.031			240	0.025	
90	0.991	200				240	0.025	
100	0.915	220	0.025					
110	0.864	240	0.025					
120	0.8							
130	0.749							
140	0.686							
150	0.659							
160	0.609							
170	0.609				1			
180	0.534							
195	0.483							
210	0.457							
225	0.406							
240	0.329							
255	0.279							
270	0.229							
285	0.178							
300	0.139							
320	0.102							
340	0.076							
360	0.049							
380	0.049							
400	0.024		3				*	
420	0.024							
450	0.012							
480	0.012							

			RECOVERY TEST	T DATA			
Name of we	ell:Barabo (shamoli)	Name of w	ell: Psci. M.pur '	Name of w	ell: Paterbagh	Name of w	ell: Nakhalpara
turne or me					J		
Гіте (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m
1	5.841	1	4.726	1	3.214	2	3.481
2	4.622	2	3.303	2	2.579	4	2.528
4	3.341	4	2.388	4	2.248	6	1.982
6	2.768	6	2.032	6	2.045	8	1.626
8	2.528	8	1.778	8	1.867	10	1.474
10	2.27.4	10	1.601	10	1.778	15	1.359
12	2.083	12	1.474	12	1.664	20	1.169
14	1.931	14	1.359	14	1.573	25	1.016
16	1.753	16	1:268	16	1.499	30	0.877
18	1.626	18	1.194	18	1.423	40	0.686
20	1.549	20	1.131	20	1.359	50	0.559
25	1.397	25	1.004	25	1.308	60	0.445
30	1.244	30	0.902	30	1.219	70	D.368
35	1.143	35	0.8	35	1.181	80	0.305
40	1.042	40	0:749	40	1.105	90	0.254
45	0.991	45	0.686	45	1.054	• 105	0.191
50	0.939	50	0.634	50	1.016	120	0.139
55	0.889	55	0.584	55	0.978	135	0.114
60	0.813	. 60	0.546	60	0.889	150	0.089
70	0.724	70	0.495	70	0.864	165	0.076
80	0.634	80	0.445	80	0.8	180	0.064
90	0.597	90	0.406	90	· 0.749	200	0.064
100	0.559	100	0.381	100	0.711	220	0.051
110	0.521	110	0.354	110	· 0.673	240	0.051
120	0.483	120	0.329	120	0.634		
135	0.445	130	0.305	130	0.597 •		
150	0.406	140	0.279	140	0.559		
165	0.368	150	0.254	150	0.521		
180	0.329	160	0.229	160	0.495		
200	0.292	170	0.203	170	0.47		
220	0.267	180	0.178	180	0.445		
240	0.241	195	0.165	195	0.406		
240	0.241	210	0.152	210	0.354		
280	0.191	225	0.139	225	0.318		
300	0.165	240	0.127	240	0.292		
320	0.139	255	0.114	255	0.241		
340	0.133	270	0.102	270	0.216		
360	0.114	285	0.089	285	0.191		
390	0.089	300	0.076	300	0.178		
420	0.076	320	0.064	320	0.152		
450	0.064	340	0.051	340	0.127		
480	0.05	360	0.044	360	0.102		
540	0.038	390	0.038	380	0.089		
600	0.038	420	0.038	400	0.076		
				420	0.064	•	
				450	0.051		
	-		1	480	0.044		
		•		510	0.038		
	1			540	0.038		

		RE	COVERY TEST DAT	A			
Name of w	ell:Jurain	Name of we	II: Khilgaon	Name of well	: Kuratoli	Name of we	ell: Jatrabari
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m
1	3.76	2	2.566	2	1.804	2	5.716
2	3.201	4	2.019	4	1.499	4	4.243
4	2.845	6	1.753	6	1.143	6	3.608
6	2.439	8	1.563	8	1.042	8	3.214
8	2.083	10	1.448	10	0.991	10	2.959
10	1.778	15	1.308	15	0.788	15	2.488
12	1.702	20	1.194	20	0.711	20	2.183
14	1.347	25	1.118	25	0.659	25	1.931
16	1.219	30	1.042	30	0.609	30	1.753
18	1.092	40	1.016	40	0.584	40	1.499
20	0.951	50	0.877	50	0.483	50	1.296
25	0.864	60	0.762	60	0.432	60	1.169
30	0.788	75	0.687	75	0.354	75	1.016
35	0.711	90	0.622	90	0.305	90	0.963
40	0.659	105	0.572	105	0.267	105	0.788
45	0.609	120	0.521	120	0.229	120	0.711
50	0.559	140	0.457	135	0.203	135	0.634
55	0.534	160	0.406	150	0.178	150	0.584
60	0.508	180	0.343	165	0.165	165	0.534
70	0.457	210	0.254	180	0.152	180	0.521
80	0.406	240	0.216	195	0.139	195	0.457
90	0.368	270	0.165	210	0.127	210	0.419
100	0.329	300	0.165	225	0.127	225	0.381
110	0.292	330	0.165	240	0.114	240	0.354
120	0.267			255	0.114	255	0.329
130	0.241			270	0.102	270	0.305
140	0.216			285	0.089	285	0.279
150	0.191			300	0.089	300	0.254
160	0.165			315	0.076	315	0.241
170	0.152			330	0.076	330	0.229
180	0.139			345	0.076	345	0.216
195	0.127			360	0.076	360	0.203
210	0.114					375	0.191
225	0.102			1		390	0.178
240	0.089					405	0.165
255	0.076					420	0.152
270	0.064						
285	0.051						
300	0.044						
320	0.038						
340	0.032						
360	0.025						
390	0.025						
420	0.025						

÷

		REC	OVERY TEST DA				
Name of well	:Bangababan	Name of we	ell: Sayedabad	Name of we	II: Rajarbag	Name of we	ll: Rampura
	J. J						
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m
1	5.589	1	5.666	2	4.408	2	2.159
2	3.862	2	4.243	4	3.366	4	1.753
4	3.277	4	3.429	6	2.693	6	1.512
6	2.947	6	3.073	8	2.451	8	1.372
8	2.693	8	2.896	10	2.236	10	1.219
10	2.488	10	2.642	15	1.854	15	1.042
12	2.388	12	2.439	20	1.626	20	0.864
14	2.21	14	2.261	25	1.461	25	0.775
16	2.083	16	2.109	30	1.334	30	0.699
18	2.007	18	2.007	40	1.131	40	0.597
20	1.956	20	1.905	50	0.991	50	0.521
25	1.854	25	1.753	60	0.864	60	0.457
30	1.778	30	1.626	75	0.762	75	0.381
35	1.715	35	1.499	90	0.673	90	0.329
40	1.651	40	1.359	105	0.609	105	0.279
45	1.573	45	1.258	120	0.559	120	0.229
50	1.512	50	1.169	135	0.508	135	0.191
55	1.448	55	1.079	150	0.457	150	0.152
60	1.397	60	0.991	165	0.419	165	0.127
70	1.308	70	0.889	180	0.681	180	0.102
80	1.232	80	0.838	195	0.343	195	0.076
90	1.156	90	0.775	210	0.305	210	0.064
100	1.105	100	0.699	225	0.267	225	0.051
110	1.054	110	0.622	240	0.229	240	0.038
120	1.004	120	0.559	255	0.191	255	0.025
130	0.953	130	0.508	270	0.165	270	0.013
140	0.902	140	0.457	285	0.134	285	0.013
150	0.851	150	0.406	300	0.114	300	0.013
160	0.813	160	0.368	315	0.102		
170	0.775	170	0.329	330	0.089		
180	0.737	180	0.292	345	0.076		
195	0.686	195	0.254	360	0.076		
210	0.634	210	0.229	375	0.064		
210	0.597	210	0.203	390	0.064		
225	0.559	240	0.178	405	0.064		
240	0.539	255	0.152	420	0.051		
255	0.334	233	0.139	435	0.051		
270	0.47	285	0.127	450	0.051		
300	0.437	300	0.114	465	0.038		
300	0.381	320	0.102	480	0.038		
320	0.343	340	0.089				
340	0.345	360	0.076				
380	0.303	380	0.064				
400	0.279	400	0.049				
400	0.234	400	0.038				
420	0.229	450	0.038				
430	0.216	480	0.024				
510	0.191	510	0.024		•		
510	0.191	540	0.024			8	
040	0.191	040	0.021				

Name of we	ell:Mirpur 2	Name of we	ell: Mirpur 7	Name of we	ell: Mirpur 10	Name of wel	l:Kallyanpur
Гime (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m) [.]
2	4.24	2	2.363	2	2.412	1	1.878
2		4	1.854	4	1.869	2	1.524
4	2.83	6	1.753	6	1.473	4	1.296
6	2.33	8	1.651	8	1.296	6	1.169
8	1.91	10	1.549	10	1.182	8	1.109
10	1.61			12	1.119	10	0.991
15	1.22	15	1.347	12	0.991	10	0.927
20	0.81	20	1.291		0.887	12	0.877
25	0.77	25	1.245	16	0.799	14	0.838
30	0.71	30	1.09	18		18	0.838
40	0.64	40	0.986	20	0.738	20	0.8
50	0.56	50	0.786	25	0.686		0.749
60	0.5	60	0.635	30	0.609	25	
75	0.36	75	0.412	40	0.509	30	0.659 0.622
90	0.31	90	0.279	50	0.457	35	
105	0.28	105	0.176	60	0.409	40	0.584
120	0.2	120	0.108	70	0.357	45	0.559
140	0.16	150	0.051	80	0.305	50	0.534
160	0.13			90	0.277	55	0.508
180	0.11			105	0.253	60	0.489
200	0.08			120	0.235	70	0.432
220	0.05			135	0.216	80	0.381
240	0.03			150	0.204	90	0.329
270	0.02			165	0.189	100	0.292
300	0.02			180	0.177	110	0.254
				195	0.152	120	0.229
				210	0.137	135	0.203
				240	0.113	150	0.178
				270	0.101	165	0.152
						180	0.139
						200	0.127
				×		220	0.114
					1		

			RECO	VERY TES	T DATA					
			Name of we			Nome of w	ell:Gudaragh	hat	Name of we	oll: Coran
Name of we	ell:Islambag		Name of we		ly I	INAILE OF W	sii.Guuaiagi		INAME OF WE	
Time (min)	Res. Draw.	(m)	Time (min)	Res. Draw	. (m)	Time (min)	Res. Draw.	(m)	Time (min)	Res. Drav
1	1.944		2	0.927		1	7.622		1	3.481
2	1.537		4	0.737		2	4.902		2	2.871
4	1.283		6	0.622		3	2.744		4	2.414
6	1.118		8	0.521		4	2.308		6	2.134
8	1.029		10	0.321		5	1.524		8	1.931
10	1.156		15	0.394		10	1.372		10	1.804
10	0.915		20	0.343		15	1.016		12	1.702
12	0.915		25	0.305		20	0.838		14	1.601
14	0.826		30	0.267		25	0.711		16	1.524
	0.828		40	0.229		35	0.658		18	1.461
18			50	0.223		45	0.457		20	1.41
20	0.762		and the second se	0.203		55	0.466		25	1.258
25	0.711		60	0.178		70	0.400		30	1.258
30	0.673		70			85			35	1.156
35	0.634		80	0.152			0.305		40	1.004
40	0.609		90	0.152		100	0.229			
45	0.584		100	0.139		115	0.203		45	1.016
50	0.559		110	0.139		145	0.178.		50	0.953
55	0.534		120	0.127		175	0.152		55	0.902
60	0.508		130	0.127		205	0.127		60	0.851
70	0.47		140	0.114		237	0.102		70	0.775
80	0.483		150	0.114		285	0.076		80	0.724
90	0.406		160	0.102		345	0.051		90	0.673
100	0.381		170	0.102		405	0.038		100	0.622
110	0.354		180	0.089		465	0.038		110	0.584
120	0.329		195	0.076		525	0.03		120	0.546
135	0.305		210	0.064		565	0.03		130	0.495
150	0.279		225	0.064					140	0.445
165	0.254		240	0.051		· · · · · · · · · · · · · · · · · · ·			150	0.394
180	0.229		270	0.038					160	0.495
210	0.203		300	0.025					170	0.305
225	0.178								180	0.267
240	0.165								195	0.216
260	0.152								210	0.178
280	0.139					1			225	0.152
300	0.127								240	0.127
320	0.114								255	0.102
340	0.102								270	0.089
360	0.089								285	0.076
380	0.076								300	0.064
400	0.069								320	0.064
. 420	0.064								340	0.051
450	0.057								360	0.044
480	0.051								380	0.038
510	0.044						•		400	0.038
540	0.038								420	0.038
570	0.038								450	0.038
600	0.038								480	0.038

		REC	OVERY TEST DA	IA				
					II. Ol a baisantur	Name of wel	Bainaravan D R	
ame of well:Uttara		Name of well: Shajadpur		Name of well: Shahajanpur		Name of well:Rajnarayan D. R.		
			D	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	
ime (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Diaw. (iii)			
*			2 077	2	3.582 •	1	1.878	
1	1.944	2	3.277 2.616	4	3.023	2	1.524	
2	1.537	4	2.338	6	2.668	4	1.296	
4	1.283	6	2.235	8	2.388	6	1.169	
6	1.118	8	2.235	10	2.159	8	1.109	
8	1.029	10	1.942	15	1.931	10	0.991	
10	1.156	15		20	1.753	12	0.927	
12	0.915	20	1.805	25	1.626	14	0.877	
14	0.864	25	1.729	30	1.499	16	0.838	
16	0.826	30	1.668		1.423	18	0.8	
18	0.788	40	1.549	40	1.397	20	0.749	
20	0.762	50	1.473	50	1.219	25	0.699	
25	0.711	60	1.396	60		30	0.659	
30	0.673	70	1.32	75	1.143	35	0.622	
35	0.634	80	1.244	90	1.054	40	0.584	
40	0.609	90	1.207	105	0.991	40	0.559	
45	0.584	105	1.143	120	0.927	50	0.534	
50	0.559	120	1.119	135	0.877	55	0.508	
55	0.534	135	1.067	150	0.813	60	0.489	
60	0.508	150	1.043	165	0.711	70	0.432	
70	0.47	165	1.107	180	0.559	80	0.381	
80		180	0.991	200	0.483	90	0.329	
90	0.406	210	0.966	220	0.229	100	0.292	
100	0.381	240	0.951	240	0.139		0.252	
110	0.354	270	0.939			110	0.234	
120	0.329	300	0.915			120	0.223	
135	0.305	330	0.915			130	0.203	
150	0.279	360	0.89			140		
165	0.254	165	0.254			150	0.152 0.139	
180	0.229	180	0.229			160		
195	0.203	195	0.203			• 170	0.127	
210	0.205	210	0.178			180	0.114	
210	0.165	225	0.165			195	0.102	
	0.152	240	0.152			210	0.089	
240	0.132	260	0.139			225	0.076	
260 280	0.135	280	0.127			240	0.064	
300	0.127	300	0.114			260	0.051	
300	0.102	320	0.102			280	0.038	
320	0.089	340	0.089			300	0.038	
340	0.076	360	0.076			320	0.038	
380	0.069	380	0.069			340	0.038	
400	0.064	400	0.064			360	0.038	
400	0.057	420	0.057			390	0.025	
420	0.051	450	0.051			420	0.025	
	0.044	480	0.044					
480	0.044	510	0.044					
510	0.044	540	0.038					
540 570	0.038	570	0.038					
	0.038	600	0.038					
600	0.050							

						Name of we	II: B.D.R.Pilkhana
Jame of we	II: Central Road	Name of we	II: Circuit House	Name of we	ell: Banani	Name of we	II. D.D.R.FIKIIdila
tarrie or tre						Time (min)	Res. Draw. (m)
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Diaw. (iii)
					3.582	2	1.791
2	1.268	2	1.791	1	2.82	4	1.499
4	0.915	4	1.499	2	2.388	6	1.244
6	0.686	6	1.244	4	1.931	8	1.079
8	0.546	8	1.079	6	1.766	10	0.953
10	0.432	10	0.953	8	1.626	15	0.749
15	0.279	15	0.749	10		20	0.597
20	0.152	20	0.597	12	1.524	25	0.495
25	0.051	25	0.495	14	1.423	30	0.394
30	0.038	30	0.394	16	1.321	40	0.241,
40	0.025	40	0.241	18	1.244	50	0.165
50	0.025	50	0.165	20	1.194	60	0.103
60	0.025	60	0.114	25	1.054	75	0.064
75	0.013	75	0.064	30	0.939	and the second sec	0.038
90	0.013	90	0.038	35	0.851	90	0.038
105	0.013	105	0.025	40	0.788	105	0.025
120	0.013	120	0.025	45	0.724	the second se	0.023
120	0.0.0	135	0.013	50	0.659	135	0.013
		150	0.013	55	0.597	150	0.013
		165	0.013	60	0.546		
				70	0.457		
				80	0.406		
				90	0.368		
				100	0.329		
				110	0.292		
				120	0.254		
·				135	0.216		
				150	0.191		
				165	0.165		
			1	180	0.139		
				200	0.114		
				220	0.089		
				240	0.064		
				260	0.051		
				280	0.032		
				300	0.032		
				330	0.025		
				360	0.025		
				390	0.025		
				420	0.025		
1							

		RECOVERY TEST DATA				
Vame of w	ell:Mirpur B.C.	Name of we	ell: Kafrul	Name of we		
vame or we						
Гіте (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min	Res. Draw. (m)	
1	3.302	2	2.63	1	7.09	
2	2.923	4	2.06	2	5.81	
4	2.784	6	1.83	4	4.05	
6	2.704	8	1.53	6	3.48	
8	2.649	10	1.19	8	2.96	
10	2.604	15	0.84	10	2.63	
12	2.573	20	0.61	12	2.44	
14	2.539	25	0.46	14	2.2	
16	2.512	30	0.36	16	2.05	
18	2.503	40	0.23	18	1.89	
20	2.488	50	0.16	20	1.82	
25	2.476	60	0.08	25	1.6	
30	2.463	75	0.04	30	1.47	ļ
35	2.442	90	0.03	35	1.32	
40	2.436	105	0.03	40	1.18	
40	2.418	120	0.015	45	1.12	
50	2.409	135	0.051	50	1.05	
55	2.396	150	0.015	55	0.98	
60	2.396	165	0	60	0.95	
65	2.378	180	0	70	0.86	
70	2.357			80	0.81	
80	2.348			90	0.76	
90	2.326			100	0.71	
100	2.326			110	0.66	
110	2.326			120	0.62	
120	2.317			130	0.58	
140	2.317			140	0.55	
160	2.317			150	0.53	
180	2.296		-	170	0.5	
200	2.296			190	0.46	
200	2.296			210	0.42	
240	2.262			230	0.38	
240	2.262			250	0.34	
280	2.262			270	0.32	
300	2.241			290	0.29	
320	2.241			310	0.27	
340	2.241			330	0.24	
360	2.222			360	0.2	
380	2.222			390	0.17	
400	2.222			420	0.14	
420	2.221			450	0.11	
440	2.221			480	0.1	
460	2.205			510	0.09	_
480	2.205			570	0.06	
500	2.205			630	0.05	
520	2.205			690	0.04	
540	2.205					
560	2.205					
590	2.205					
620	2.205					
650	2.205					
680	2.205					
710	2.205		- 15 - E			_
740	2.205					
	0.005				1	
770	2.205 2.205					

		REC	OVERY TEST D	ATA			
Name of well:Mugdapara		Name of well: Monipuripara		Name of well: Mitford H.		Name of well: Laxmibaza	
Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m)	Time (min)	Res. Draw. (m
2	2.591	2	1.702	2	2.058	2	3.328
4	1.931	4	1.296	4	1.702	4	3.023
6	1.677	6	1.118	6	1.397	6	2.718
8	1.474	8	0.963	8	1.219	8	2.515
10	1.322	10	0.838	10	1.143 •	10	2.376
15	1.143	15	0.659	12	1.079	15	2.109
20	1.016	20	0.521	14	1.042	20	1.931
25	0.864	25	0.457	16	0.991	25	1.791
30	0.737	30	0.432	18	0.953	30	1.688
40	0.634	40	0.381	20	0.915	40	1.537
50	0.559	50	0.354	25	0.838	50	1.41
60	0.483	60	0.292	30	0.775	60	1.283
70	0.419	75	0.254	35	0.724	75	1.131
80	0.354	90	0.216	40	0.673	90	1.004
90	0.292	105	0.178	45	0.648	105	0.889
105	0.241	120	0.152	50	0.609	13	0.788
120	0.191	135	0.127	55	0.572	135	0.699
135	0.152	150	0.102	60	0.546	150	0.622
150	0.114	165	0.089	70	0.508	165	0.546
165	0.076	180	0.076	80	0.457	180	0.483
180	0.049	200	0.064	90	0.432	195	0.419
200	0.038	220	0.051	100	0.406	210	0.354
220	0.024	240	0.038	110	0.381	225	0.305
240	0.024			120	0.354	240	0.254
				135	0.318	255	0.203
				150	0.279	270	0.165
				165	0.229	285	0.152
				180	0.191	300	0.089
				195	0.139	315	0.064
				210	0.102	330	0.038
		0.0		225	0.064	345	0.025
				240	0.051	360	0.013
				260	0.013	375	0.013
						390	0.013

