Meta-Heuristic Approach to Supply Chain Optimization in an Integrated Hierarchical Production Planning System

A thesis submitted to the Department of Industrial and Production Enginecring in partial fulfillment of the requirements for the degrec of

DOCTOR OF PHILOSOPHY

by
Sultana Parvecn

March, 2009

This thesis titled "Meta-Heuristic Approach to Supply Chain Optimization in an Integrated Hierarchical Production Planning System', submitted by Sultana Parveen, Roll No.: P04030801F, Session: April 2003, to the Deparment of Industrial and Production Enginecring. Bangladesh University of Engineering and Techoology, Dhaka 1000, Bangladesh, has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Doctor of Philosophy on 07 March 2009.

Board of Examiners

1.

Dr. M. Ahsan Akhlar Hasin
Chairman
Professor and Head
Deph. of Industrial \& Production Fingg, BUET, Dhaka
2.

Member
Dr. M. A. Rashid Sarkar
Professor
Dept. of Mechanical Engineering, BUET, Dhaka
3.

Dr. Mu. Kamal Uddin
Professor
Institute of Appropriate lechnology, BUFT', Dhaka
4.

Dr.A.S.M. Latiful Hoque
Associate Professor
Dept. of Computer Science \& Engg, BUET, Dhaka
5.

Member
6.

Sentor Research Engineer

BCSIR, Science Laboratory, Dhaka
7.

Member
Dr. Mokbul Ahmed Khan (Fxtemal)
Former Consultant of World Bank, and
Fonner Visiting Faculty Member, Business School
Otago University, New Lealand

Candidate's Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Contents

Board of Examiners ii
Candidate's Declaration iii
List of Tables vi
List of Figures ix
List of Abbreviations x
Acknowledgement xi
Abstract 1
Chapter 1 Introduction 3
1.1 Background 3
1.2. Objectives of the Research Work 7
1.3. Organization of the Thesis 8
Chapter 2 Aggregate Planning. 9
2.1 Introduction 9
2.2 Disaggregating the Aggregate Plan 11
2.2.1 Master Production Scheduling 11
2.2.2 Matcrial Requirements Planning System 12
2.2 .3 Lot-Sizing Problem 13
2.3 Literalure Study 17
2.3.1 Lot-Sizing Techniques 17
2.3.2 Heuristic Techniques 19
2.4 Development of the Model. 35
2.4.1 Lot-Size Model with Setup Time. 36
2.4.2 Model with the I imited Lot-Size Per Sctup 43
2.5 Computational Results with Real Life Data 52
2.5.1 Results of a Multi-item Single Level Capacitated Lot-sizing Problem 52
2.5.2 Results of Multi-ltem Single Level Capacitated Lot-Sizing Problem with Selup Time 59
2.5.3 Results with the Limited Lot-Size per Setup 62
2.6 Conclusions 68
Chapter 3 Scheduling 69
3.1 Introduction 69
3.2 Literature Sludy 70
3.3 Problen Description 83
3.4 Pareto-Optimal Algorithm 85
3.5 Computational Results with Bench Mark Data 88
3.6 Neighborhood Scarch Algorithm 94
3.7 Computational Rexults with Real Life Data 98
3.8 Neighborhood Search Algorithm 107
3.9 Conclusion 123
Chapter 4 Distribution 124
4.1 Introduction 124
4.2 Multi Criteria Decision Making 125
4.3 Basic Concepts of Analytic Hicrarchy Process (AIIP) 127
4.4 Problern Description 132
4.5 Computational Results 136
4.6 The Transportation Cost. 143
4.6.1 Integrated Logistics: Needs and Variables 143
4.6.2 Materials Flow in Hierarchical Planning System 144
4.6.3 Physical Distribution 146
4.6.4 Operating Arrangements: Anticipatory versus Response-Hased 146
4.7 Transportation Economies 149
4.8 Problem Description 158
4.9 Computational Results 160
4.10 Conclustons 163
Chapter 5 Conclusions and Recommendations 165
5.1 Summary of Findings and Conclusions 165
5.2 Recommendations 170
References 173
Appendix A 183

List of Tables

Table 2.1 Relevant product data for the particular machine 54
Table 2.2 Forecasted demand and capacity of the hypothetical machine 55
Table 2.3 Equivalent demand with the usc of initial inventory, ending inventory and safety stock 56
Table 2.4 Final lot-sizes and forecasted machinc time requirements for Dixon-Silver heuristic 57
Table 2.5 Inventories at the end of each period for all items 57
Table 2.6 Relevant product data for the extended heuristic with setup time 59
Tabic 2.7 Final lot-sizes and forecasted machine time requirements for the extended heuristic with setup time 60
Table 2.8 Inventories for the heuristic with setup time 60
Table 2.9 Time and cost after applying the heuristic algorithm with setup time 61
Table 2.10 Relevant Product data for the heuristic with the limited lot-size per sctup 62
Table 2.11 Demand after considering limitation on the maximum allowable lot-size 63
Table 2.12 Lot sizes for $N^{\prime}=25$ items 65
Table 2.13 Final lot-sizes and forceasted machine time requirements for the heuristic with the limited lot-size per setup 66
Table 2.14 lnventorics for the heuristic with the limited lot-size per setup 66
Table 3.1 The processing time and due dates (in hour) for 9-job problem 88
T'able 3.2 Pareto-optimal schedule, $S_{\left(S P^{p} /(m)\right.}$ 89
Tablc 3.3 Revised schedule $S_{\left(s n^{\prime} \operatorname{Lom}\right.}$ by inserting mainlenance and idle times 89
Table 3.4 Sccond Parcto-optimal schedule, $S_{\text {FDDD/sp }_{\prime}}$ 90
Table 3.5 Revise schedule $S_{(\text {wob/spi) }}$ for scond Parcto schedule 90
Table 3.6 Updated $\bar{d}_{t}=d_{t}+7$ (in EDD order) 91
Table 3.7 Repetition of Steps 5 through 7. 91
Table 3.8 Third Pareto-optimal schedule, S_{l} 92
Table 3.9 Revised schedule S_{1} 92
Table 3.10 All the iterations of the algorithm 93
Table 3.11 A Pareto-Optimal Set 93
Table 3.10 All the iterations of the algorithen 93
Table 3.11 \wedge Pareto-Optimal Set 93
Table 3.12 Solution with a given initial seed, $S:<1-2-3-4-5-6-7-8-9>$ 96
Table 3.13 The processing time and due dates (in minute) for 12 -job problem 98
Table 3.14 Pareto-optimal schedule, $S_{(S P T / E D D)}$ 98
Table 3.15 Revised sehedule $S_{\text {(NisfoD }}$ by inserting maintenance and idle times 99
Table 3.16 Second Parcto-optimal schedule, $S_{\left(r o n s p^{\prime}\right)}$) 99
Table 3.17 Revised schedule $S_{(L D m / S P T)}$ for second Parcto schedule 100
Table 3.18 Updated $\bar{d}_{j}=d_{1}+18$ (in EDD order) 100
Table 3.19 Repetition of Steps 5 through 7 101
Table 3.20 Third Pareto-optimal schedule, S_{t} 102
Table 3.21 Revised schedule S_{1} 102
Table 3.22 Repetition of Steps 5 through 7 103
Table 3.23 Revised schedule S_{2}. 103
Table 3.24 Repetition of Steps 5 through 7 104
Table 3.25 Revised schedule S_{3} 104
Table 3.26 Repetition ol Steps 5 through 7. 105
Table 3.27 Revised schedule S_{4}. 105
Table 3.28 All the iterations of the algorithm 106
Table 3.29 A Parcto-Optimal Set 106
Table 3.30 Solution with a given initial seed, $S:<\mathrm{J}-2-3-4-5-6-7-8-9-10-11-12\rangle$. 108
Table 3.31 Pareto vs Neighborhood: Costs from One Weight Combination ($w_{1}=0.5, w_{2}=0.4, w_{3}=0.1$) 110
Table 3.32 Pareto vs Neighborhood: Costs from all Weight combinations($w_{1}=0.1$ to $0.8, w_{2}=0.1$ to $0.8, w_{3}=0.1$ to 0.8 , and $\left.w_{1}+w_{2}+w_{3}=1.0\right)$.113
Table 3.33 Summary of perfornance measures for all different altemative parameters 121
Table 4.1 Measurement scale 128
Table 4.2 Business variables for MRP-DRP integration 147
Table 4.3 Parameter table for the transportation problem 159
Table 4.4 Parameter table for the transportation problem 162
Table 4.5 Solution table for the transporation problem 162

List of Figures

Figure 1.I Hicrarchical Production Planning and Distribution System 7
Figure 2.1 Twelve models of fixed chairs that have been considered as sample product 53
Figure 3.1 Pareto Optimal; Costs from One Weight Combination 115
Figure 3.2 Neighborhood Search: Costs from Onc Weight Combination 115
Figure 3.3 Pareto vs Neighborhood: Costs from One Weight Combination 116
Figure 3.4 Pareto vs Neighborhood: Costs from One Weight Combination 116
Figure 3.5 Parcto vs Neighborhood: Costs from One Weight Combination 117
Figure 3.6 Pareto Optimal: Costs from All Weight Combinations 117
Figure 3.7 Neighberhood Search: Costs from All Weight Combinations 118
Figure 3.8 Purcto vs Neighborhood: Costs from all Weight combinations 118
Figure 3.9 Pareto vs Neighborhood: Costs from all Weight combinations 119
Figure 3.10 Pareto vs Neighborhood: Costs from all Weight combinations 119
Figure 4.l Model Selection IIierarchy used for Multi-attributc Evaluation 137
Figure 4.2 IIierarchy used for Multi-atuibute Evaluation 138
Figure 4.3 Transportation cost as a function of warchouse locations 15)

List of Abbreviations

AHP	Analytic Hierarchy Process
CLSP	Capacitated Lot-Sizing Problem
COP	Combinatorial Procedure
DISP	Dynamic Lot-Sizing Problem
DRP	Distribution Requirement Planning
EDD	Earliest Due Date
EOQ	Economic Order Quantity
FGSP	Flexible Job-Shop Scheduling Problem
GA	Genetic Algorithm
GPPB	Generalized Par Period Balancing
GSA	Genctic Algorithm With Search Area
LTC	Least Total Cost
LUC	Least Unil Cost
MCDM	Multi Criteria Decision Making
MOEA	Multi Objective Evolutionary Algorithm
MOGA	Multi Objective Genetic Algorithun
MOP	Multi Objective Problem
MPCS	Material Planning and Control Systeın
MPS	Master Production Scheduling
MRP	Material Requirements Planning
NPGA	Niched Parcto Genetic Algorithm
NPGA	Nondeterministic Polynomial
NSGA	Non Dominated Sorting Genetic Algorithon
POQ	Period Order Quantity
PPB	Part Period Balancing
ROR	Re-Order Point
SPT	Shortest Processing Time

Acknowledgments

First of all, the author would like to express her profound gratitude to Almighty Allah, the most gracious and the most merciful, for giving her adequate physical and mental strength for doing this rescarch work.

The author is pleased to express ber heart-felt and most sincere gratitude to Dr. M. Ahsan Akhtar Hasin, Professor, Deparment of Industrial and Production Eingineering, for supervising the research work and subsequently for reading numerous inferior drafts and improving them, for his constructive criticism, valuable adyice and continual encouragement.

The author would like to acknowledge gratefulness to the menbers of doctoral committec, Professor Dr. M. A. Rashid Sarkar, Professor Dr. Md. Kamal Uddin, Dr. A. S. M. Latifuk Hoque, Dr. Nafis Ahmad and Dr. Md. Abdul Gafur for their rigotous monitoring the research progress and valuable suggestions. The author would like to express her utmost gratitude to the external member of the board of examiners, Dr. Mokbul Ahmed Khan for his valuable suggestions.

The author gratefully acknowledges to the authorities of the furniture company for providing data. The author is very much thankful to the authority of BUET for allowing study leave to complete her rescarch work.

Special thanks go to Professor Dr. Md. Abul Kashem Mia, Department of Computer Science and Engincering, BUET and the beloved husband of the author, who has shared in much of her postgraduate life and provided continual emotional support and understanding.

Finally, the author acknowledges with sincere thanks the all out co-operation and services rendercd by the laculty members and staffs of the department she belongs.

Abstract

The total supply chain of any cnterprise is composed of three main sections: backward linkage, forward linkage and inside value-chain. The backward linkage is a function of inward supply management, with its inherent uncertainty. The intemal value chain is basically a hybrid function of several materials management functions. The two most important of these functions are complex issues of uncertain inventory control and NP-hard type production scheduling problem. The forward side is composed of muli-variable interactive system, where variables interact with each other to control market demand. An internal material planning is one of the most complex tasks in an industry. Presence of a large number of variables, operating in uncerlain environment, is the main reason behind such complexity. As a result, optimization in a materials planning system requires a great deal of simplification. A material planning is thus suggested in several levels, starting from long-range aggregate planning, going through disaggregated Master Production Scheduling, individual component planning and finally ending to shop floor scheduling. Each individual level has its own form of complexity. The first level of complexily starts in converting an aggregate production planning system into disaggregated master production scheduling. The master production scheduling is essentially the output of aggregate planning where master production scheduling process drives the material requirements planning (MRP) system. The determination of net requirements is the core of MRP processing. Lot-sizing is a major aspect of the MRP process. A lot-sizing problem involves decisions to delermine the quantity and timing of production for N different items over a horizon of T periods. In the present work, it has been assumed that only onc machine of each type is available with a fixed capacity in cacl period. The objective is to minimize the sum of set-up and inventory carying costs for all items without incurring backlogs. In case of a single item production only an optimal solution algorithm exists. But for medium-size and multi-item problems, oplimal solution algorithms ate not available. It has been proved that even the iwo-item problem with constant capacity is NP-hand (Nondeterministic polynomial-hard). This has increased the importance of searching for good heuristic solutions. In the present research
work, heuristic methods have been developed and implemented to solve the multi-item, single level, limited capacity lol-sizing problem, bypassing parameters to the next step of planning.

Production scheduling is the most complex step in the hicrarchical production planning system. That is why the production scheduling problems have received ample attention from both rescarchers and practilioners, because an efficient production schedule can achieve reduction of production cost and inventory cost, increase in profit and increase in 'on-lime' delivery to customers. A Pareto-optimal algorithen is developed in this rescarch work for a scheduling problem on a single machine with periodic maintenance and non-preenptive jobs. In literature, most of the scheduling problems address only one objective function; while in the real world, such problems are always associated with more than one objective. In this work, both multi-objective functions and multi-maintenance periods arc considered for a single machine scheduling problem. On the other hand, periodic maintenance schedutes are also considered in the model. The objective of the model addressed in this work is to minimize the weighted function of the total job flow time, the maximum tardiness, and the machine idle time in a single machine environment. The parametric analysis of the trade-offs of all solutions with all possible weighted combination of the criteria has been carried out. A neighborhood search heuristic has been developed adso. The computational results have shown that the modified Parcto-optimal algorithm provides a better solution than the neighborhood search heuristic and this shows the efficiency of the modified Pareto-optimal algorithm.

For forward side optimization, distribution system parameters have been identified that affect subsequent marketing. The parameter of distribution for optimization has been sclected with Multi Criteria Decision Making (MCDM) technique. Finally a distribution plan has been optinized using optimization-based 'Transportation algorithm'.

Chapter 1 Introduction

1.1 Background

The supply chain management is an integrated and coordinated process of planning, implementing and controlling eflicient and cost cffective flow and storage of goods, services and related information from the point of origin to the point of consumplion with the ultimate objective of confoming to customer requirements. It begins with raw materials acquisition, continues through internal value-chain operations and ends with distribution of linished goods.

The total supply chain is composed of three main stages: the backward linkage, internal valuc-chain and the forward linkage. The backward linkage is a function of supply management, cenicred on multiplicity of basically operations research-based 'Transportation problem'. The internal materials management is a typical example of NPhard (NP stands for Non-deteministic Polynomial, i.e. the problem cannot be solved optimally in polynomial time) type inventory control and production scheduling problem. The forward linkage is composed of multi-variable interactive system, where variables interact with each other to control market demand. In lact, the forward side again becomes an input to backward linkage, because the market demand again helps in creating aggregate demand. As such, it forms a loop of inlegrated "Production Planning Systern". However, this loop, as a 'system' has never been studied, although discrete studies on single elements have been reported.

Materials planning is one of the most complex tasks in an industry. Presence of a large number of variables, operating in uncertain environment, is the main reason behind such complexity. As a result, optimization in a materials planning system requires a great deal of simplification. Materials planning is thus suggested in several levels, starting from longrange aggregate plarning, going through disaggregated Master Production Schcduling,
individual component planning and finally ending to shop dloor scheduling. Each individual fevel has its own form of complexity. A large majority of these complex planning issues fall in the calegory of either sub-optimization or in totally infeasible solution spacc. Thus, optimization in a hierarchical materials planning is of high level of attention to the researchers, although results obtained so far is not considerable [1, 2]. The noted complexitics in four individual levels of hierarchical planning system are explained below.

The first level of complexity starts in converting an aggregate production planning system into disaggregated master production scheduling. Linearity of cost functions, non-lincarity of demand functions and other operating variables create this complexity. When resource (manpower, machine hours and inventory) availability and constraints are added to this, complexity increases several folds [3, 4]. As a result, the problem becomes a complex one, having conflicting constraints and thus, difficult to achicve objective. The master production scheduling is essentially the output of aggregate planning where master production scheduling process drives the material requirements planning (MRP) system. The determination of net requirements is the core of MRP processing. Iot-sizing is a significant aspect of the MRP process. Lot-sizes generally meet products requirements for one or more periods. Optimizing routines for lot-sizing problem have been shown to be all demanding from a computing stand point in both practical as well as rescarch environment. The multiitem capacitated lot-sizing problem is found to be NP-hard [4]. The problem is even harder from practical point of view, since optimal sotution methods have failed to solve all but very few problem. It has been found that most methods require extensive computational power. Thus their applicability is rather limited. So a heuristic method has been developed to solve the lol-siding problem, bypassing parameters to the next step of planning.

For the inulti-item capacitated lot-sizing problems, the various heuristics, which have been proposed over the years, are classified into a number of classes. Heuristics belonging to the period-by-period heuristic work from period 1 to period H. Consider a period t in the process. One certainly has to produce max $\left\{0, d_{i, k}, l_{i,-1}\right\}$ for all products $;$ in order to avoid stock outs in the current period, where d_{t} is the demand for item i in period t and I_{11} is the
inventory of item i at the end of period t. Infeasibility occurs when the net demand in some period f, i.e. $\sum_{i=1}^{*} \max \left\{0, d_{u n}-I_{, t-1}\right\}$ may exceed available capacity. The lot-sizing problem now can be stated as

Minimize $Z(X)=\sum_{i=1}^{N} \sum_{j=1}^{H}\left(S_{i} \delta\left(x_{i t}\right)+h_{1} I_{n}\right)$
subject to $I_{y}=I_{1, y-1}+x_{1 j}-D_{u} \quad i=1,2, \ldots, N^{\prime}$ and $j=1,2, \ldots, H$

$$
\begin{array}{ll}
I_{10}=I_{t H}=0 & i=1,2, \ldots, N^{\prime} \\
\sum_{i=1}^{N_{i}} k_{i} x_{i j} \leq C_{i} & j=1, \ldots, H \\
0 \leq x_{i y} \leq x_{\max x} & i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H \\
I_{t j} \geq 0 & i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H
\end{array}
$$

where $N^{\prime}=$ number of total items afler meeting the maximum lot-size limitation

$$
=N+\sum_{t+1}^{N} n_{t}, \quad n_{j}=\left\lceil\frac{d_{\max \mathrm{t}}}{x_{\operatorname{muxa}}}\right\rceil-1 . \text { where }
$$

$d_{\text {mux } 1}=$ maximum periodic demand for the ith item.
$x_{\text {max } i}=$ the limited lot-size for item i which cannot be exceeded in any period.
$N=$ The number of original item

Production scheduling is another complex step of hierarchical production planning system, which even in the simplest possible form, may become a difficult task with the possibility of multi-variables, containing constraints and somelimes, conflicting objectives [5]. Its integration can be ensured if a suitably selected planning variable can be passed from upper disaggregation model to this level. Its solvability in real-time is of prime imporance, which ultimately leads to undesirable NP-hardness. Scheduling is a subject in which problems look casy, if not trivial. lhey are, on the contrary, among the hardest in mathematics [6, 7]. According to Baker, "Scheduling is the allocation of resources over time to perform a collection of tasks". A production scheduling specifies the order of assigning of each job to the respective resource (i.e. machine) and also specifies the star and end time of each job in a manufacturing system. Scheduling is a decision-making task and the objective is to find an appropriate schedule in terms of certain performance criteria (for example, minimizing makespan or minimizing flow-time, minimizing tardiness, ctc.) [6]. Production scheduling
problem has received ample atcontion from both rescarchers and practitioners, because an efficient production schedule contributes to reduction of production cost and inventory cost, increase in profit and increase in 'on-time' delivery to customers. The theory of scheduling includes a varicty of techniques that are useliul in solving scheduling problens. Indeed, the scheduling field has become a focal point for the development, application and evaluation of combinatorial procedures (COP), simulation techniques, nework inethods and heuristic solution approaches. The selection of an appropriate technique depends on the complexity of the problem, nature of the model and the clwice of the criterion, as well as other lactors [8]. However, a Iocal search optimization technique or a heuristic can be used, in order to trade-off between time to solve a problem and accuracy of results. This research shows that Pareto optimal solution method provides better solution than even a neighborhood search technique. a local search teclnique. This research aims at applying Pareto optimal technique [9] to select the right schedule. Most studies on production scheduling aim to minimize makespan, that is, the total completion time of all jobs. The objective of this research, in case of scheduling, is to find trade-offs among total completion time $\sum C_{1}$, maximum lateness $L_{\max }$, and total machine idle time I, where $I=\sum_{|n|}^{k} f_{b r}, L_{m a x}=\max _{j}\left\{T_{j}\right\}$ and $T_{j}=$ $\max \left\{0, L_{j}\right\}$ for jobs $j, j=1,2, \ldots, n$ and batch i.

It must be acknowledged that optimization at an individual tevel may end up in a highly sub-optimized and even a non-optimized solution. While heuristics have been suggested by many to solve an independent planning level, solution to an integrated flow or hierarchical materials planning has never been reported so far [10, 11]. This necessitates an integrated solution al several levels of production planning with approprate heuristics, where production planning is a part of total product planning loop.

A limitation of curent rescarch on applying optimization lechnique is the selcetion of unjustilied objective function. Traditionally, it is assumed that a parameter needs to be optimized through right operations management technique [12-14]. However, there is no basis as to why a particular parameter is selected as the objective function. This research provides an idea that AHP can be used to justify selection of the right parameter as the
objective function of an optimization technique. The following Figure 1.1 shows the summary of the research:

Thus, this tesearch aims at optimizing materials planning system in the total supply chain which integrates different levels of planning system.

Figure 1.1 Itierarchical Production Planning and Distribution System

1.2 Objectives of the Research Work

The objectives of the research work have been defined as follows:

1. To configure aggregation-disaggregation of material planning system.
2. To develop mathematical models and heuristics for the optimication of aggregate planning, master production scheduling, material requirement planning through lotsizing technique.
3. To implement. simulate and run the heuristics to minimize the total cost.
4. To identify the production scheduling paranmers that affect subsequent planning steps.
5. To select the balancing paraneter i.e. total completion time, maximum lateness, machine idle time with MCDM (multi critcria decision making) technique.
6. To develop a Parcto optimal algorithm for minimizing total completion time, maximum lateness, and machine idle lime of a production scheduling system.
7. To implement, simulate and run the Parcto optimal algorithm.
8. To identily distribution system parameters that alfect subsequent marketing.
9. To select the parameter of distribution for optimization with MCDM technique.
10. To design and optimize downstream distribution plan, with selected variables.

1.3 Organization of the Thesis

This thesis is organized as follows. The second chapter deals basically with aggregate planning and master production scheduling which have been optimized through lot sizing optimization. This chapler also includes various lot sizing techniques, background of lot sizing problem, heuristic methods of solution of present real life lot sizing problem and computational resules and conclusion. The third chapter deals with production scheduling optimization. This chapler presents a deseription of the multi-criterion scheduling conecpt, Iiterature survey of production scheduling problem, a modified Pareto-optimal algorithm to solve multi-criterion scheduling problem, an algorithn for neighborhood scarch technique, problem settings for a single machine scheduling problems, compulational results of the modilied algorithm and the neighborhood search heuristic and finally the conclusion on the multi-criterion perspective of this problem under consideration. The fourth chapter concentrates on distribution planning optimization. This chapter includes introduction of distribution planning, its background, application of transportation-based optimization technique, analysis of computational results and conclusion. The fifth chapter consists of conclusions and recommendations for future.

Chapter 2
 Aggregate Planning

2.1 Introduction

Aggregate planning is one of the several important functions in a manufacturing organization of today and this would remain so in future. It is the age of manufacturing. The manufacturing industries are now facing a time of intense international competition, which will only become more severe in the days to come. Aggregate planning is also known by such names as production plarning, operation planning. It is an activity that considers the best use of production resources in order to satisly production goals over a certan period named the planning horizon. Production planning typically encompasses three time ranges for decision making: long-term, medium-term and shori-term. The long-term planning ustally focuses is on anticipating aggregate needs and involves such strategic decisions as product, equipment and process choices, facility location and design, and resource planning. Medium-term planuing deals with making decisions on material requirements planning (MRP) and establishing production quantities or lot sizing over the planning period, so as to optimize some perfonmance criteria such as minimicing overall costs, while meeting demand requirements and satislying existing capacity restrictions. The short-lem planning, on the other hand, focuses on day-to-day decision making on scheduling of operations such as job sequencing, controlling etc in a workshop. The rescarch work focuses mainly on medium-term production planning and especially on single-level tot sizing decisions. In the spectrum of production planning, aggregate planning is intermediate-range capacity planning that typically covers a time horizon of 2 to 12 months, although in some companics it may extend to as much as 18 months. It is particularly useful for organizations that experience seasonal or other fluctuations in demand or capacity. Aggregate planning begins with a forecast of aggregate demand for the intermediate range. This is followed by general plan to mect the demand by setting oulput, employment, and finished-goods inventory levels or scrvice capacitics. Managers might consider a number of plans, each of
which must be examined in the light of feasibility and cost. If a plan is reasonably good but has more weakness, it may be revised and improved. Conversely, a poor plan should be discarded and allernative plans be sought considered until an acceptable one is found out. The production plan is essentially the output of aggregate planning.

Aggregate planners are concemed with the quantity and the timing of expected demand. If total expected demand for the planning period is much dilferent from available capacity over that same period, the major approach of planners will be to try to achicve a balance by altering capacity, demand or both. On the other hand, cven if capacity and dernand are approximately equal for the planning horizon as a whole, planners may still be faced with the problem of dealing with uneven demand within the planning interval. In some periods, expected demand may exceed projected capacity, in others expected demand may be less than projected capacity, and in some periods the two may be equal. The lask of aggregate planners is to achicve rough equality of demand and capacity over the entire planning horizon. Moreover, planners are usually concerned with minimining the cost of aggregate plan. Effective aggregate planning requires good information. First, the available resources over the planning period must be known. Then, a forecast of expected demand must be available.

From forecasts and customer orders, production planning determines the requirement of human and material resources to produce efficiently the ouputs demanded. The goal is to eflectively allocate system capacity (plant, equipment, and manpower) over a designated time horizon.

Production plan indicates the organization's strategic position in response to the expected demand for its output. A good production plan with the optimal use of resources should yield such results as (i) be consistent with organizational policy, (ii) meet demand requirements, (iii) be within capacity constraints, and (iv) minimize costs. However, for a conslant demand for a product, the planning activity becomes trivial. But with a stochastic demand, the system must have a sound production planning; and the associated planing problem is said to be dyramic. Some major strategy variables associated with production
planning for stochastic demand are the production rate, the inventory level, the work force size, etc. These variables could be varied, modified or even kept fixed, or be nonexistent in a given organi/ation, depending on its peculiarities and policies.

2.2 Disaggregating the Aggregate Plan

For the production plan to be translated into meaningful terms for production, it is necessary to disaggregate the aggregate plan. The result of disaggregating the aggregate plan is a master schedule showing the quantity and timing of specific end items for a scheduled horizon. A master schedule shows the planned output for individual products rather than an entire product group, along with the timing of production.

2.2.1 Master Production Scheduling

Production planning is an input to the Master Production Scheduling (MPS), where the master production schedule is a staternent of what end items a company plans to produce by quantity and time period. MPS is a disaggregation and implementation ol the production plan. It translates the production plan into specific products or product modules and specilies the time period tor their completion. The master scledule is the hear of production planning and control. The master schedule bas three inputs: the beginning inventory, which is the actual quantity on hand from the preceding period; forccasts for each period of the schedule; and customer orders, which are quantitics already committed to customers. The master scheduling process uses this information on a period-by-period basis to determine the projected inventory, production requirements, and the resulting uncommitted inventory. The master production scheduling process drives the material requirements planning system.

2.2.2 Material Requirements Planning System

The intense global competition in manufacturing has thrown a strong challenge to the management to seek new and more effective ways of managing production to maintain or to achieve a compctitive edge. Therefore, many companics have to imptement computer-based production and inventory control systems. lhe most widely adapted systems are called material requirements planning (MRP) and manufacturing resouree planning.

MRP system is a computer-based information system that translates master schedule requirements for end items into time-phased requirements lor subassemblies, components, and raw materials. Hence, requirements for end items generate requirements for lower-level components, which are broken down by plarning periods so that ordering, fabrication, and assembly can be scheduled for timely completion of ond items while inventory levels are kept reasonably low. Material requirements planning is as much a philosophy as it is a technique, and as much an approach to scheduling as it is to inventory control. MRP begins with a schedule for finished goods that is converted into a schedule of requirements for the subassemblies, components parts, and raw materials needed to produce the finished items in the specified time frame.

The primary inputs of MRP are a bill of materials, which tells the composition of a finished product; a master schedule, which tells how much finished product is desired and when; and an inventory records file, which tells how mucl inventory is on hand or on order. The planner processes this intormation to determine the net requirements for each period of the planning horizon. The materials that a firm must actually acquire to meet the demand generated by the master schedule are the net material requirements. The determination of the net requirements is the core of MRP processing. So there are two major distinguishing teatures of MRP, (1) requirement for items controlled by MRP are calculated based on schedules for higher-levels items as opposed to being forecast, and (2) plans are time phased in the form of lot-sizing showing order teleases and reccipts by tine periods throughout some planning horizon. So lot-sizing is a significant aspect of the materials requirement planuing process and acts as a major component of a balanced MRP operation.

2.2.3 Lot-Sizing Problem

The determination of lot sizes in an MRP system is a complicated and difticult problem. Jot sizes are the product quanlities issued in the planned order receipt and planned order relcase sections of an MRP schedule. For products produced in-house, lot sizes are the production quantitics of batch sizes. For purchased products, these are the quantities ordered from the supplier. Lot sizes generally meet product requirements for one or more periods. Lot sizing decisions give rise to the problem of identilying when and how much of a product to produce such that setup, production and holding costs are minimiced, Making the right decisions in lot sizing will affect directly the system performance and its productivity, which are imporant for a manulacturing fim's ability to compete in the market. Therelore, developing and improving solution procedures for lot sizing problems is very imporant.

Most lot-sizing techniques deal with how to balance the setup or order costs and holding costs associated with meeling the net requirements gencrated by the MRP planning process. In the past few years there have been several activities in computer based production and inventory control dealing with how to select lot-sizes in the face of an cssentially deterministic but time-varying demand pattern. Presently, lot-sizing problem has taken its place as one of the most important functions in an industrial enterprise. However, optimizing routines for lot-sizing prohlems have been shown to be all too demanding from a computing standpoint in both practical as well as research enviromment. The present work would seek for an efficient means of obtaining an optimal multi-item lol-sizing solution to research problems. This would facilitate development of improved heuristics appropriate for practical settings. Research on the relevant fields has yielded several mathematical and heuristic policies which produce oplimal and near optimal results. The ever increasing importance ol this issue therefore calls for further research in this field.

The complexity of lot sizing problems depends on the features taken into account by the model. The following characteristics affect classifying, modeling and the complexity of lot sizing decisions.[15]

Planning Horizon

The planning horizon is the time interval on which the master production schedule extends into the future. The planning horizon may be finite or infinite. A finite-planning horizon is uswally accompanjed by dynamic demand and an in finite planning horizon by stationary demand. In addition, the system can be observed continuously or at discrete time points, which then classifies it as a continuous or discrete-type system. In terms of time period terminology, lot sizing problems fall into the categories of cither big bucket or small bueket problems. Big bucket problems, are those where the time period is long enough to produce multiple items (in muliti-item problem cases), while for small bucket problems the time period is so shor that only onc item can be produced in each time period. Another variant of the planning horizon is a rolling horizon usually considered when there is uncertainty in data. Under this assumption, optimal approaches for cach horizon act as heuristics but cannot guarantee the optimal solution.

Number of Levels

Production systems may be single-level or multi-level. In single-level systems, usually the linal product is simple. Raw materials, aher processing by a single operation such as forging or casting, are changed to final product. In other words, the end item is directly produced from raw materials or purchased materials with no intermediatc subassemblics. Product demands are assessed directly from customer orders or market forecasis. This kind of demand, as will be further discussed later, is known as independent demand. In multilevel systems, there is a parent-component relationship among the items. Raw materials after processing by several operations change to end products. The output of an operation (level) is input for another operation. Therefore, the demand at one level depends on the demand for its parents' level. This kind of demand is named dependent demand. Multi-level problems are more difficult to solve than single-level problems. Multi-level systens are further distinguished by the lype of product structure, which includes serial, assembly, disassembly and general or MRP syslems.

Number of Products

The number of end items or final products in a production system is another important characteristic that affects the modeling and complexity of production planning problenss. There are two principal types of production system in terms of number of products. In single-item production planning there is only one end item (final product) for which the planning activity has to be organized, while in multi-item production planning, there are sevcral end items. The complexity of multi-item problems is much higher than that of single-item problems. van Hoesel and Wagelmans [16] provide theoretical results for the performance of algorithms for the single item capacitated lot sizing problem. (See also Section 4 of this paper.) Resources or capacities in a production system include manpower, equipment, machines, budget, etc. When there is no restriction on resources, the problem is said to be uncapacitated, and when capacity constraints are explicitly stated, the problem is named capacitated. Capacity restriction is important, and directly affects problem complexity. Problem solving will be more difficult when capacity constraints exist.

Deterioration of Items

In the case that deterioration of items is possible, we encounter restrictions in the inventory holding time. This in turn is another characteristic which would affect problem complexity.

Demand

Denand type is considered as an input to the model of the problem. Static demand means that its value does not change over time, it is stationary or even constant, while dynamic demand means that its value changes over time. If the value of demand is known in advance (static or dynamic), it is termed deterministic, but if it is not known exactly and the demand values occuring are based on some probabilities, then it is termed probabilistic. In independent demand cases, ал item's requirements do not depend on decisions regarding another item's lot size. This kind of demand can be seen in single-level production systems.

In multi-level lot sizing, where there is a parent-component relationship among the items, because the demand at one level depends on the demand for their parents (pervious level), it is called dependent. Problems with dynamic and dependent demands are much more complex than problems with static and/or independent demands. Also, problems with probabilistic demand will be more complex than problems with determinislic demand.

Setup Structure

Selup structure is another imporiant characteristic that directly affects problem complexity. Setup costs and/or setup times, are usually modeled by introducing zero-one variables in the mathematical model of the problem and cause problem solving to be more di4cult. Usually, production changcover between different products can incur sctup time and setup cost. There are two types of sctup structure: simple setup structure and complex setup structure. If the setup time and cost in a period are independent ol the sequence and the decisions in previous periods, it is termed a simple setup structure, but when it is dependent on the sequence or previous periods, it is termed a complex setup. Three types of complex setups will now be described. First, if it is possible to continue the production run from the previous period into the current period without the need for an additional setup, thus reducing the setup cost and time, the structure is named setup carry-over. It can also be define a second type of complex setup, family or major sctup, caused by similarities in manufacturing process and design of a group of item(s). An item setup or minor setup also occurs when changing production among items within the same family. If there is sequencedependent setup, item setup cost and time depend on the production sequence; this is the third type of complex setup structure. It is obvious that the complex structures are more awkward in both modeling and solving the lot sizing problems.

Inventory Shortage

Inventory shorage is another characteristic affecting modeling and complexity of problem solving. If shortage is allowed it means that it is possible to satisfy the demand of the current period in future periods (backlogging case), or it may be allowable for demand not to be satisfied at all (lost sales case). The combination of backlogging and lost sales is also possible. Problems with shortage are more difficult to solve than without shortage.

2.3 Literature Study

The imporance of lot-sizing in inventory management has been noteworlly over the years, since it is one of the basic features of the MRP. The MRP on the other hand, has the central importance in manufacturing resource planning and comprehensive MRP system. 'I his has been evident from elforts by researchers from amongest the academics and industrics yielding vast literatures containing abstract mathematical approach as well as highly pragmatic techniques. The literatures have been found places in a large numbers of journals. Section 2.3.1. presents some of the lot-sizing techniques and Section 2.3.2 summarizes the historical background study on the subject. Dixon-Silver heuristic used Silver-Meal heuristic and Wagner and Whitin algorithm. Section 2.3 rigorously describes these two heuristics, since the present work is fundamentally an extension of Dixon-Silver's work.

2.3.1 Lot-Sizing Techniques

The various approaches and techniques of lot-sizing as developed are presented below.

2.3.1.1 Period Order Quantity

The period order quantity (POQ) uses the same type of conomic reasoning as the EOQ (Economic Order Quantity which is for fixed demand or order), but determines the number of periods to be covered by each order rather than the number of units to order. This results
in a fixed order cycle as opposed to a fixed quantity as in EOQ. Total cost per period as a function of t, the cycle time in periods is given by

$$
C(t)=k / t+h(r t) / 2 .
$$

POQ is an improvement over EOQ as it eliminates remnants, and it perforns quite well if demand is relatively stable. However, like EOQ, it does not take full advantage of knowledge of future period-to-period variations in demand. Some other techniques described subsequently outperform POQ when variation in demand is significant [17].

2.3.1.1 Part-Period Algorithm

The part-period algorithm can determine order sizes under conditions of known, but varying, demand rates. While the algorithm does not ensure oplimality, it does approach optimal techniques. It equates the part-period value derived from order and holding costs to the generated part-period value. The generated part-period for an item is the number of parts held in inventory multiplied by the number of time periods over which the parts are held. In calculating the generated number of part-periods, it is assumed that no holding costs are incurred for itoms consumed in the period in which they arrive.

To express order cost and holding cost in par-periods, it is necessary to divide the order cost by the holding cost per part per period. The order cost and holding cost part-periods are relerred to as the derived part-period value. The derived part-period value is the number of par-periods it takes to make order cost and holding cost cqual. A generated part-period value is obtained by accumulating part-periods over the demand time horizons for one or more periods. When the generated part-period value is first greater than the derived partperiod value, an order should be placed. The order quantity will be the accumulated demand up to the time period for the next order [17].

2.3.1.3 Lot-For-Lot

The simplest lot-sizing technique is lot-for-lot. A lot is scheduled in each period in which a demand occurs lor a quantity equal to the net requirement.

Lot-for-lot ordering results in a zero inventory balance each period, but does involve many orders. It is most appropriate where the item has a large carying cost and a sinall ordering cost, such as large assembles with expensive components. Another situation where lot-forIot is appropriate is when demand is very sporadic and one or a few units are needed only occasionally. Lot-for-lot also provides a steadier flow of work than other lot-sicing techniques which produce fewer and larger orders [17].

2.3.2 Heuristic Techniques

The next three techniques are heuristics. They aim at providing a good, although not necessarily optimal solution with a rcasonable amount of computing. All the three techniques use stopping rules. That is, they start fron the first period and lest prospective orders covering the first period, then the first and second periods, then the first, second, and third periods, and so forth, until a stopping criterion is met. An order is scheduled covering demands in all periods up through the stopping period. Then the process is repeated starting at the next period afler the last stopping period.

Least Unit Cost

The first of these rules is called least unit cost (LUC). The unit costs of orders covering successively greater numbers of periods are calculated. The unit cost for each prospective order is obtained by dividing the sum of the ordering and carrying costs by the number of units on the order. The first time cost per unil goes up, the prior period becomes the stopping period.

LUC is widely used in industry, and on the surface appears to be a reasonable approach to lot-sizing. However, closer analysis has raised some serious questions conceming the basic logic of the technique [17].

Least Period Cost

The least period cost melhod [18] was developed by Siiver and Meal and is gencrally referred to as Silver-Mcal. This procedure secks to determine the total costs of ordering and carrying for lots covering successively greater numbers of periods into the future and to select the lot with the least total cost per period covered [17].

Least Total Cost

The idea for the Least Total Cost (LTC) method (also called part-period-balancing), was developed by Matties and Mendoza. The concept stems from the fact that in the basic EOQ model, the inventory carrying cost is equal to the ordering cost at the optimum point. In the LTC procedure. lot-sizes covering successively greater numbers of periods into the fulure are lested until the largest lot is obtained for which the carrying cost is less than or equal to the ordering cost. The Authors presented this method to determine the lot for which the carrying cost was close to the ordering cost. This means that sometimes the carrying cost would be greater than the ordering cost. However, this is not the method presented by the original authors, and moreover it did not perform well because it has a bias toward orders that are too large [17].

Look Ahead/Look Back

Look ahead/look back is a technique used to adjust a schedule of order already obtained by using some other technique. It was originally proposed as a relinement of LTC. However,

Iook ahead/look back can be applicd just as well to adjust schedules produced by other heuristics.

Look ahead/look back has the cffect of moving orders scheduled for periods of low demand into nearly periods of higher demand. This reduces the number of part-periods and, therefore, the carrying cost. Aucamp and l'ogarty have substantially improved and extended the technique. For one thing, their algorithm also takes into account the fact that if an order is moved forward or back to a period in which another order is scheduled, an ordering cost is saved. Their claim is that regardless of what schedule they start with, the end result is virtually optimal.

However, look ahead/look back is not widely used. The reasons are that adding this procedure makes lot-sizing more complex, adds to the amount of computation, and may only improve results marginally if a good lot-sizing procedure has been selected to arrive at the initial lot-sizes [17].

Dynamic Lot-Sizing Problem

The dynamic lot-sizing problem (DLSP) has received considerable attention from both acadenics and industry during the past two decades. Specifically, the problem is that of determining lot-sizes for a single item when demand is deterministic and time varying. Time is discretized into periods (e.g. days, weeks and months) and production can be initiated only at the star of a period. Each time that production is initiated, a set-up cost is incurred. A holding cost is incurred for each unit of inventory that is carried from one period to the next. The objective is to minimize the total of set-up and holding costs, while ensuring that all demand is satislied on time. The dynamic demand, coordinated lot-size problem detemines the time-phased replenishment schedule (i.e., timing and order quantity) that minimizes the sum of inventory and ordering costs for a family of items. A joint shared fixed setup cost is incurred each time one or more items of the product family are replenished, and a minor setup cost is charged for cach item replenished. In addition, a
unit cost is applied to each item ordered. Demand is assumed to be deterministic but dynarnc over the planning horizon and must be met through current orders or inventory. Coordinated lot-size problems are ollen encountered in production, procurement, and transportation planning . The mathematical complexity of the coordinated lot-size problem is NP-complete indicating that it is unlikely that a polynomial bound algorithm will be discovered for its solution. For this reason, a significant literature base detailing alternative mathematical formulations and exact solution approaches for the problem is rapidly evolving in an effor to solve large industry problems.[19] This paper 120] considers the determination of lot sizes lor multiple products that can be jointly replenished. A fixed setup or order cost ΛO (often referred to as a major set-up cost) is incurred whenever any product is ondered or produced, indeperdently of the number or type of products; and an cxtra cost Ai (usually relerred to as a minor or line set-up cost) is added if product is included in the joint order. The demand for each item is discrete, and varies in time, but is known over a given time horizon H. Lincar holding costs are charged on the end-pf-period inventorics and backlogging is nol permitted. The variable unit purchase cost for each product is constant throughout the horizon, so that the purchase cost of any item for total demand in the horizon is invariant of the replenishment policy. The problem is to determine a replenishment schedule for all items that minimizes the total set-up plus inventory holding cost over the horizon. Many dynamic programming solutions exist for this problem, but they are computationally complex. For example, when specialized to the multi-product dynamic lot-size problem Zangwill's method has a computational complexity that is exponential in the number of products, while Veinott's solutions are computationally exponential in the number of time periods. Other solutions that are computationally exponential in the number of products have also been proposed. However these solutions are of no use for practical prohlems, which usually involve many items and many time periods, so efforts have shifted to the development of heuristic solutions. Unfortunately, though these heuristics are relatively simple, when compared with the optimum dynamic programming solutions, they have two major disadvantages. First, they generally depend on the Wagner-Whitin dynamic progranming solution for the single-item dynamic lot-size
problem. Sccond, it is not known how good these heuristics are. Because a typical practical problem involves many items, and managers lind it difficult to understand dynarmic programming solutions, these heuristics are not desirable from a practical standpoint. A heuristic which overcomes these two problems has been given. This relies on a lower bound obtained from decomposing the problem into single-item problems. The decomposition gives an easily computed lower bound. The aim of this paper is (wo-fold: first, it gives two simple heuristics and determines their theoretical worst-case performances, and second it gives an improved version of the heuristic in Atkins and lyogun. All these heuristics are generalized versions of existing single-itern heuristics-the part period balancing (PPB1) heuristic and a variant of PPB1 denoted by PPB2, and the Silver- Meal (SM) heuristic. The generalized Silver-Meal heuristic was shown to perform very well on a wide set of problems. The par-period balancing heuristic is known to perlom well in practice and it is simple, but it has a worst-case performance of $1 / 3$. It will be shown that when this heuristic is generalized to the multi-product dynamic lot-size problem, the worst-case performance of the generalized heuristic cannot be less than $1 / 3$. The other heuristic, PPL2, which is a simple variant of the parl- period balancing heuristic, has a worst-case performance of $1 / 2$. It will be shown also that when this heuristic is generalized to the multiple product problem then the worst-case performance is preserved. The remainder of the paper is organized as follows. The second section gives a briel description of the problem and the lower bound. I he following section describes the two heuristics, the generalized PPB! (GPPBI) and the generalized PPB2 (GPPB2), and establishes their worst-case performances. Considerable recent attention has focused on the "Bullwhip Effect," a term coined by Proctor and Gamble. Dynamic programoning techniques applicd to stock mininization have also been used to quantily the Bullwhip Effect. The availability of an exact solution to the continuous differential inventory equations seemsto have been overlooked [21]. For example, when discussing equations withtime delays, none of the text books on dificrential equations or Laplace transforms point out that such equations can be solved exactly in terms of the Lambert Wfunction (Corless et al , 1996). This paper begins to address this omission. The aim is to solve exactly the equations for a model that has been shown to be practically
valuablc, and that has been sludicd in some delail, Only from analytucal solutions can the precise behavior of a model be carefully assessed over a wide range of conditions. This contributes valuable conceptual information to managers and expert system developers, who depend on behavioral heuristics. Thercfore, a goal of this paper [21] is to provide tools that help guide the exploration of the parameter space with numerical techniques. Since numerical treatments of unstable solutions require more care, such approaches should benelit.

Many optimal and heuristic techniques have been developed for variations of this problem,

Single Item Uncapacitated Lot-Sizing Problem

First the concept of single item comes and there is no capacity restriction. Some of the most widely used heuristics for lot-sizing are: Silver-Meal heuristic [22], least unit cost heuristic [23]. These heuristics are nol directly applicable to the present work on scheduling problem. The reason is that these heuristics made the following assumptions:
(i) no capacity restrictions,
(ii) only one product to be produced, and
(iii) quantity produced to meet demand in only integer number of periods.

The effective use of the available capacity of plant could not be made in these heuristics. But when capacity constraint is realistically imposed in the scheduling problem, the available capacity use becomes necessary. This part of consideration is an important contribution to the present work.

The Silver-Meal heuristic calculates the lot size as the total demand for an integer number of periods that give the minimum total set-up and holding costs per unit time. The least urit cost heuristic calculates the lot-sizes in the same way as the Silver-Meal heuristic. But the exception is that, it minimizes the total costs per unit number of products produced rather than minimizing the total costs per unit time as is done in the Silver-Meal heuristic. For
muitiple products to be produced with no capacity constraints, the above heuristics can be applied to cach of the products independently.

Multi Item Uncapacitated Lot-Sizing Problem

Frequently, multiple items are produced on a single machinc. This machine has finite capacity and it is usually loaded to or near capacity. Most of the existing methods for the multi-item dynamic lot-sizing problem implicitly assume that capacity is unlimited and hence their use will frequently result in excessive over or under loading in some periods. Therefore, in practice. planned lot-sizes may be split into smaller lots with some demand backlogged. This resulted to the orders are not being produced on time and the cconomics of scale of batch production is lost.

Multi Item Capacitated Lot-Sizing Problem

The multi-item capacitated lot-sizing problem (CLSP) is found to be NP-hard when the single-item capacitated dynamic lol-sizing problem is already proven to be NP-hard [2428]. The problem is even harder from practical point of view, since optimal solution methods have failed to solve all but very small problems within reasonable computation times. Morcover, since very few workable techniques have been reported, methods to oblan optimum solutions could not be available casily. It has been found that most methods require extensive computational power, thus, their applicability is rather limited. As a consequance efforts are now being given to develop heuristics for the multi-item capacitated lot-siring problens. The various heuristics, which have heen proposed over the years, are classified into a number of classes. The first group of heuristics falling in a class could be called "common sense" heuristics. The heuristics belonging to this class can be found in Eisenhut [29], Lambrecht and Vanderveken [30], Dixon-Silver [31] etc. Many different variants have been proposed, for these common-sense heuristics, but they can basically be classified into two categories, such as
(i) the period-by-period heuristics, and
(ii) improvenent heuristics.
(i) Period by period heuristic: Heuristics belonging to the period-by-period heuristic work from period 1 to period H. Consider a period t in the process. One cerlainly has to produce max $\left\{0, d_{i}, I_{, r-1}\right\}$ for all products i in order to avoid stock outs in the current period, where $d_{i t}$ is the demand for item i in period t and I_{i} is the inventory of item i at the end of petiod t. The remaining capacity (if any) can be used to produce demand for some future period, in which case future sct-up costs may be saved at the expense of added inventory-holding costs. To indicate the viability of producing demand for a future period in the period under consideration, all heuristics use a priority index. The priority indices used by the heuristics are more sophisticated in that they try to capture the potential savings per time period and per unit demand. Although the exact Priority index may differ from heuristic to heuristic, they all proceed in the same way. Priority indices are calculated for all products and for all future periods. These priority indices are used to include future demands into the current production lot cither until no more with a positive index or until the capacity limit is hit.

Besides the difference in using priority index, the period-by-period heuristics also differ in the way in which they ensure feasibility. Infeasibility occurs when the net demand in some period t, i.e. $\sum_{i=1}^{n} \max \left\{0 . d_{1}-I_{t, t-1}\right\}$ may exceed available capacity. Two different approaches can be used to overcome this problem. The first one is the feedback mechanisin. When an infeasible period is encountered, demand with negative priority indices is shifted from the period to an earlicr period. A second approach, look ahcad mechanism, however, calculates a priority the required cumulative production up to period t (for all t) such that no infeasibility will arise in period $(t+1)$. This pure single-pass heuristics require smaller computation time.
(ii) Improvements heuristics: The sccond category of heuristics called improvements heuristics start with a solution for the entire horizon and then try to improve this solution in cost ellective fashion by going through a set ol simple local improvement steps.

The second group of heuristics is all based on optimum seeking mathematical programming methods which are truncated in some way to reduce computational effort. The Mathematical-programming based heuristics are (i) Relaxation heuristies (ii) Dranch-and-Bound procedure (iii) Lincar programming based heuristics. Heuristics belonging to the class can be found in Wagner-Whitin's algorithm [28], Macs [32] Mixed-integerprogramming formulation etc. In Wagner-Whitin's algorithm capacity constraints are relaxed i,c. the capacity may be infinitc. So the problem decomposes into N number of single-item uncapacitated dynamic lot sicing problems for which it provides an eflective method of solution. The first approach of this type is atributed to Newson (33). Starling from the Wagner-Whitin solutions for each product, the heuristic proceeds as follows.
(i) Select a period in which capacity is violated. For products with a set-up in that period, calculate the next best WW solution (i.c. the best solution for the problem where production in the violated period is foreed to zero).
(ii) Select the next best plan for the product yielding the smallest extra cost per unit capacity absorption, thereby releasing some capacity in the violated period.
(iii) The method proceeds in this way until all infeasibilities are removed.

The above approach has two drawbacks. Firstly, it may end up with no feasible solution at all, and secondly it restricts itself to WW schedules, whereas the optimal solution may not satisfy the WW condition $x_{H} I_{1},-1=0$ at all.

Mathernatical-programming based heuristics are not considered because these methods may not be very transparent to the casual user and these heuristics limit their regular use in industry.

Wagner-Whitin Algorithm

l'he "square toot formula" for an cconomic lot-size under the assumption of a stcady-state demand rate is well known. The calculation is based on balancing of the costs of holding
inventory against the costs of placing an order. When the assumption of a steady-state demand rate is dropped, i.e., when the amounts demanded in each period are known but are different and furthermore, when inventory costs vary from period to period, the square root formula (applied to the overall average demand and costs) no longer assures a minimum cost solution.

The mathematical model may be viewed as a "one-way temporal leasibility" problem, in that it is feasible to order inventory in period t for demand in period $t+k$ but not vice versa. This suggests that the sane model also permits an alternative intepretation as the following "one-way technological feasibility" problem.

Mathematical Model

As in the standard lot sice formulation, one assumption is that the buying (or manufacturing) costs and selling price of the item are constant throughout all time periods, and consequently only the costs of inventory management are of concern. In the t-th period, $t=1,2, \ldots, H$, we let
$d_{t}=$ amount demanded,
$h_{s}=$ holding cost per unit of inventory carried forward to period $t+1$,
$S_{t}=$ ordering (or sct-up) cost,
$x_{t}=$ amount ordered (or manufactured or size of the lot), and
$c_{t}=$ unit variable cost, which can vary from period to period.
Let all period demands and costs are non-negative. The problem is to find a programme $x_{t} \geq 0, t=1,2, \ldots, I$, such that all demands are met at a minimum total cost; uny such program, will be termed optimal.

Of course one method of solving the optimization problem is to enumerate $2^{t /-1}$ combinations of either ordering or not ordering in each period (it has been assumed that an order is placed in the first period). A more efficient algorithm evolves from a dynamic programming characterization of an optinal policy.

Let / denote the inventory entering a period and I_{0} initial inventory; for period t

$$
\begin{equation*}
I=I_{a}+\sum_{j=1}^{t-1} \mathbf{x}_{j}-\sum_{i=1}^{i-1} d_{j} \geq 0 \tag{2.1}
\end{equation*}
$$

The functional cquation representing the minimal cost policy for periods t through H, given inconing inventory l, as

$$
\begin{aligned}
& f_{r}(l)=\min \left[h_{t-1} I+\square\left(x_{t}\right) s_{t}+f_{r+j}\left(I+x_{t}-d_{t}\right)\right] \\
& x_{t} \geq 0 \\
& I+x_{t} \geq d_{i}
\end{aligned}
$$

where

$$
\delta\left(x_{t}\right)= \begin{cases}0 & \text { if } x_{t}=0 \tag{2.3}\\ 1 & \text { if } x_{t}>0\end{cases}
$$

In period H

$$
\begin{align*}
& f_{H}(l)=\min \left[h_{H-1} I+\square\left(x_{H}\right) s_{H}\right] \\
& x_{H} \geq 0 \tag{2.4}\\
& I+x_{H} \geq d_{H}
\end{align*}
$$

Thercby obtaining an optimal solution as I for period 1 is specilied. Assumption 2 below establishes that it is permissible to confine consideration to only $H+2-t, r>1$, values of I at period t.

By taking cognizance of the special properties of the model, an allernative functional equation has been formulated which has the advantage of potentially requiring less than H periods' data to obtain an optimal program; that is, it may be possible without any loss of optimality to narow the progran commitment to a shorter "planning horizon" than $I /$ periods on the sole basis of data for this horizon. Just as one may prove that in a linear programming model it suffices to investigate only basic sets of variables in search of an optimal solution, it is demonstrated that in the model an optimal solution exists among a very simple class of policies.

It is necessary to postulate that $d, \geq 0$ is demand in poriod 1 net of starting inventory. Then the fundamental proposition underlying the approach asserts that it is sulficient to consider prograns in which at period t one does not both place an order and bring in inventory.

Characteristics:

(1) There exists an optimal program such that $I_{x_{t}}=0$ for all t (where I is inventory entering period ().
(2) There exists an optimal program such that for all $t, x_{1}=0$ or $x_{i}=\sum_{j=t}^{k} d$, for some k $t \leq k \leq N$.
(3) There exists an optimal program such that if d_{t} is satisfied by some $x_{l^{* *}} t^{* *}<t^{*}$, then $d_{t}, t=t^{* *}+1, \ldots, t^{*}-1$, is also satisfied by $x_{f^{* *}}$.

For the particular cost structure assumed, it can be shown that an optimal policy has the propenty that $I_{t-\mu} x_{t}=0$, for $t=1,2, \ldots, H$. That is, the requirements in a period are satisfied either entirely from procurement in the period or enticly from procurenent in a prior period.

The property of an optimal solution stated above implies that we need consider only procurement programs where $x_{t}=0$, or $x_{i}=d_{t}+d_{t-t}^{+} .+d_{k}$, for some $k=t, t+1, \ldots, H$. To efficiently investigate such programs, the following algorithm can be used.

Let F_{k} be the minimum cost program for periods $1,2, \ldots, k$, when $I_{k}=0$ is required. Let j be the last period prior to k having an ending inventory of zero. Thus $I_{j}=0, I_{k}=0$, and $I_{i}>0$, for $t=j+1 . j+2, \ldots, k-1$. Therefore, $x_{j+1}=d_{j+1}+d_{j}+2+\ldots+d_{k}$. Deline $M_{j k}$ to be the cost incurred in periods $j+1$ through k. It is

$$
M_{j k}=\mathbf{x}_{s, 1}+C_{i+1} x_{j+1}+\sum_{t=j+1}^{k-1} h_{t} I_{i} .
$$

Since

$$
\begin{aligned}
& I_{i}=x_{t+1}-\sum_{t=+1+1}^{1} d_{i}=\sum_{t=i+1}^{k} d_{i}, \text { for } j<t<k, \text { and } \\
& M_{j k}=x_{i+1}+C_{r+1} x_{i+1} \sum_{t=j+1}^{k-1} h_{t} \sum_{d=j+1}^{k} d_{i} .
\end{aligned}
$$

With this definition of M_{k}, we can write the following recursive equation for F_{k}.

$$
\begin{equation*}
F_{k}=\min \left[F_{j}+M M_{j k}\right], \quad k=1,2, \ldots, H \text { and } 0 \leq j<k, \tag{2.5}
\end{equation*}
$$

where $F_{o}=0$. The logic motivaling equation (2.5) is that for a k-pcriod horizon with zero initial and linal inventories and no shortages allowed. there will be some period where the last procurement is made. Call this period $j+1$, and by the property of an optimal solution, I_{t} $=0$. Assume that we have found the optimal policy, and hence minimun cost F_{t}, for every t $<k$, where assumption is $I_{t}=0$. Thus F_{J} is known and $M_{f k}$ can be computed. The minimum cost for a k-period horizon results from selecting the optimal period for the last procurement. By trying all $j<k$, we can find the value of j, say $j_{k^{*}}$, which minimizes $F_{j}+M_{j k^{*}}$ Last procutement is in period $j_{k^{*+1}}$.

The procedure is to determinc in sequence the values $F_{6}, F_{2}, \ldots, F_{S}$. When F_{H} is 1ound, having the minimum cost value for the $I /$-period horizon and $j_{H^{*}}$ can be used to work backward to extract the optimal lot sizes.

Silver-Meal Heuristic Model

It is a simple heuristic method for selecting replenishment quantilics under conditions of deterministic time-varying demand where replenishment are restricted to the beginning by a period.

It has been wished to select the order quantity Q so as to minimize the costs per unit time over the time period that Q lasts. When there is restriction to replenishments at the beginning of a period the search is restricted to a set of Q lasting for one, two, threc, etc., periods, i.c., searching is on a time variable T which can take on the values of $1,2,3$, etc.

Symbols

Suppose the following symbols have been destgned. $F(j)$ is the demand rate (assumed constant) during the j-th period (where period I is the period immediately following the present moment at which a replenishment decision has to be made).
$T=1,2,3, \ldots$ is the decision variable, the time duration that the curent replenishunent quantily is to last.
R and $G(j)$ are quantities to be used in the algorithm,
S is the ordering cost in the unit of currency,
C is the unit variable cost in the unit of currency per picec,
I is the inventory carrying charge expressed as a decimal fraction per period.
$M=\frac{S}{C I}$.

Algorithrn

The algorithm is as follows:
Step 1: Initialization
Sel $T=1$,
$R=F(1)$, and
$G(1)=M$.
Step 2
Is $T^{2} F(T+1)>G(T)$?
No - go to Step 3
Yes - go to Step 4
Step 3
Set $T=T+1$
Evaluate $R=R+F(T)$, and
$G(T)=G(T-1)+(T-1) F(T)$
go to Step 2

Step 4: Calculation of replenishment quantity
$Q=$ current value of R (because R is defined in such a way that it has accumulated total demand through the end of period τ).

$$
=\sum_{j \times 1}^{l} F(j)
$$

The most complicated operation in the algorithm is seen to be straight multiplication of two terms or the squaring of a number.

Dixon-Silver Model

Onc elass of "common sense" heuristics considered here was initiated by Lisenlut [29] and could be called period-by-period heuristics. Eisenhuts procedure was later extended by Lambrecht and Vander Vaken [30], Dixon and Silver [131]. In Eisenhut heuristic there is no guarantee one will lind a feasible solution when only positive prionity indices are considered, the reason being, that net demand in some period t, i.e., $\sum_{t=1}^{N} \max \left\{0, d_{t t}-I_{1, t-1}\right\}$ may exceed available capacity.

Lambrecht and Vanderveken [28], Dixon and Silyer both are period-by-period beuristic and based on Wagner-Whitin condition. These period-by-period heuristics have the advantages that their computation time is low. Both heuristics use the priority index which is derived from the well-known Silyer-Meal heuristic for the single level uncapacitated dynamic lotsizing problem.

Lambrecht and Vanderveken use a feedback mechanism (Backtracking) when an infeasible period is encountered, i.e. they try to shill excess demand to leftover capacity in previous periods, taking into consideration setup and holding costs, until the infcasibility in period t is removed.

Dixon and Silver, on the other hand, perform a priority (look ahead) computation of the cumulative production requirements up to period t (for all f) such that no infeasibility will arise in period $(t+1)$.

From the comparison study of Maes and Van Wassenhove [32], backtracking procedure creates a lot of additional setups whereas in a look-aheal procedure demand wo be shifted to carlicr periods is incoporated in planned production lots. Indeed, when capacity constraints are tight it may not be possible to shif demand backwards such that it can be added to an already planned production lot. Instead demand may have to be split up and several extra selups may be necessary to fit everything. This explains why rather large dilferences between Dixon and Silver and the other heuristics occur. On the basis of the results of Maes and Van Wassenhove's [32] comparison study it can be concluded that a look ahead procedure such as the one used by Dixon-Silver[31] should be prelerred to a backtracking procedure used by Lambrecht and Vandervaken. However, when a strong trend in demand prevails, one should use a look-ahead procedure to cnswre feasibility rather than relying on a backtracking routine as in Lambrecht and Vandervaken. So a good heuristic should have a look ahead mechanism to ensure feasibility at the outset and period-by-period heuristic take advantage when capacities are tight and dilference in capacity absorption across products are large.

Considering these points as discussed above the Dixon and Silver heuristic is considered for further improvements in the present work.

Dixon-Silver model determines lot-sizes for a group of products that an produced at a single machine. It is assumed that the requirements for cach product are known period by period, out to the end of some common time horizon. For each product there is a fixed sctup cost incursed cach time production takes place. Unit production and holding costs arc assumed linear. The objective of the model is to determine lot-sises so that the total costs are minimized, with no back-logging and having capacity restriction.

The input to the model would include all the costs and product data for each item, such as inventery holding cost, setup cost, selup time, production rate or capacily absorption rate, safety stock, initial inventory and ending inventory. Forecasled demand would be given for cach item in each period. In addition, available capacity would be used period by period as input data. The mathematical model is presented below:

Mathematical model

Minimize $Z(X)=\sum_{i=1}^{N} \sum_{j=1}^{n}\left(S_{r} \delta\left(x_{1}\right)+h_{i} i_{i j}\right)$
Subject to $I_{y}=I_{i, j-1}+x_{y}-D_{4} \quad i=1,2, \ldots, N$ and $j=1,2, \ldots, H$

$$
\begin{array}{ll}
I_{\Delta 0}=I_{\Delta H}=0 & i=1,2, \ldots, N \text { and } j=1,2, \ldots, H \\
\sum_{i=1}^{N} k_{r} x_{y} \leq C_{j} & j=1,2, \ldots, H \\
x_{y y}, I_{u} \geq 0 & i=1,2, \ldots, N \text { and } j=1,2, \ldots, H
\end{array}
$$

where $N=$ the number of items,
$H=$ the time horizon,
$D_{i j}=$ the given demand for item i in period j,
$I_{i j}=$ the inventory of item i at the end of period j (aller period j production and demand satis(lied),
$x_{i j}=$ the lot-size of item i in period j,
$S_{1}=$ the sctup cost for item i,
$h_{\mathrm{s}}=$ the unit holding cost for item i,
$k_{1}=$ the capacity absorption rate for item i,
$C_{1}=$ the capacity in period j,
$\delta\left(x_{n}\right)= \begin{cases}1 & \text { if } x_{i j}>0 \\ 0 & \text { if } x_{y j}=0\end{cases}$
$\delta\left(\boldsymbol{r}_{n}\right)$ is a binary setup variable indicating whether a setup cost must be incured for item i in period j or not.

2.4 Development of the Model

This section deals with the moditication of the Dixon-Silver model with new parameters: setup time and limited lot-size per setup. The modified models are more attractive than the Dixon-Silver model since the sctup time and the limited lot-size per setup would be two impomant parameters from management point of view. In this regard two models have been
formulated. The model with sctup time, its heuristic method of solution has been presented in section 2.4.1. The model with the limited lot-size per setup, its beuristic method of solution, and sample output have been presented in Section 2.4.2.

2.4.1 Lot-Size Model with Setup Time

The lot-size model with selup time included is presented below showing the mathematical model, heuristic and sample calculations. The input to the model would include all the costs and product data for each item, such as inventory holding cost, setup cost, selup time, production rate or capacity absorption rate, safcty stock, initial inventory and ending inventory. Forecasted demand would be given for cach item in each period. In addition, available capacity would be used period by period as input data. The mathematical model is presented below.

Mathematical model

Minimize $Z(X)=\sum_{i=1}^{N} \sum_{j=1}^{H}\left(S_{1} \delta\left(x_{i}\right)+h_{i} I_{y}\right)$
Subject to $I_{y}=I_{r, j-1}+x_{y}-D_{n} \quad i=1,2, \ldots, N$ and $j=1,2, \ldots, H$

$$
\begin{array}{ll}
I_{t 0}=I_{t j}=0 & t=1,2, \ldots, N \\
\sum_{i=1}^{U}\left[k_{t} x_{y}+S t_{d} \cdot \delta\left(x_{k j}\right)\right] \leq C, & j=1,2, \ldots, H \\
x_{f j}, I_{y j} \geq 0 & i=1,2, \ldots, N \text { and } j=1,2, \ldots, H
\end{array}
$$

where $S t_{1}=$ setup time for item i.

Heuristic Method of Solution

Several methods have been proposed for a solution of the multi-itern constrained dynamic lot-sizing problem (DLSP). Most of these techniques have weakness or limitation that either they can not guarantec the generation of a feasible solution or become computationally prohibitive. It has been proved that even the single-item problem with constant capacity is

NP-hard [8-11]. That is, it is in a class of problems that are extremely difficult to solve in a reasonable amount of time. When the selup time would be included, the problem would become strictly NP-hard. Therefore, a simple heuristic has been developed which would guarantee a feasible solution. The heuristic method of solution is presented below in steps.

Step 1 Creation of an equivalent demand matrix:

- Convert the initial demand matrix into cquivalent demand matrix with the use of initial inventory, ending inventory and salety stock.
- Use the initial inventory to satisly as much demand as possible in the first few periods. The net requirements will be that demand not satisfied by the initial inventory. During the calculation of the net demands, the amount of the safety stock should be maintained.

Let $\mathrm{Fin}=$ initial inventory for item i,
lend $=$ ending inventory for item i,
$^{2} e m_{t}=$ remaining initial inventory for item i, and
$S S_{i}=$ safety stock for item i.
$d_{y}=$ equivalent demand for product i in period j.
Initially set $\mathrm{Irem}_{\mathrm{J}}=\mathrm{Kin}-S S_{1}$ and period $j=1$.
Then set $d_{\mathrm{t}}=\left\{\begin{array}{ll}0 & \text { if }^{0} \text { Irem }_{c}>D_{i j} \\ D_{y j}-\text { Irem }_{t} & \text { if } \text { Irem }_{\mathrm{r}} \leq D_{q}\end{array}\right.$.
Compute $^{\text {Irem }}=$ Irem $_{t}-D_{1 y}$.
Sct $j=j+1$ and recycle till $/$ Fem $m_{\mathrm{t}}>0$.

- Since the amount of the safety stock is always maintained, the demand in the last period H would be partially satisfied by the safety stock of the period H-1. If ending inventory is desired, then the requirements in period $/ /$ should be increased by the desired ending inventory. Then

$$
d_{H H}=D_{d H}+\text { Iend }_{t}-S S_{r}
$$

- Compute the net demands for all $i=1,2, \ldots, N$.

Step 2 Check the feasibility of the problem:

Feasibility Condition:

$$
\begin{aligned}
\sum_{i=1}^{H} C R_{1} \leq & \sum_{i=1}^{H} C_{i} \\
\text { where } C R_{j} & =\sum_{i=1}^{N} k_{i} d_{i j} \\
C R_{j} & =\text { demand in terins of capacity unit for period } j_{1} \\
k_{i} & =\text { capacity absorption rate for product } i
\end{aligned}
$$

If the feasibility condition is not satisfied, the problem is infeasible i.e. all demands cannot be met with the available capacity.

Step 3 Use the Dixon-Silver heuristic with inclusion of setup time [through steps 3.1 to 3.12]

Step 3.1

- Start at period l, i.e. set $R=1[R=1,2, \ldots, H]$. When lot-sizing of period 1 is complete, then lot-sizing is started for period 2 up to period H.

Step 3.2

- Initialize lot-size $x_{1 y}$, by equalizing to demand d_{11}, i.e.,

$$
x_{i f}=d_{n} \quad i=1,2, \ldots, N \text { and } j=1,2, \ldots, I / .
$$

Step 3.3

- Initially set the value of the time supply to one i.e., $T_{\mathrm{t}}=1$, where $i=1,2, \ldots, N$.

Time supply (T) denotes the integet number of period requirements that this lot will exactly salisfy.

Step 3.4

- Produce $d_{A_{R}}>0$, in the lot-sizing period R, where $i=\mathrm{I}, 2, \ldots, N$.
- After producing $d_{i R}$ calculate remaining capacity in period R, denoted by $R C_{R}$, by

$$
R C_{R}=C_{R}-\sum_{r=1}^{N} k_{1} d_{J R} .
$$

- Let $\dot{I}_{i j}$ be the amount of inventory at the end of period j for item i, resulting from only the currently scheduled production in period R. Initialize $i_{i j}$ with zero, i.e.,

$$
\dot{I}_{i j}^{\prime}=0, \quad i=1,2, \ldots, N \text { and } j=1,2, \ldots, H .
$$

Step 3.5

- Let $A P_{j}$ be the amount of inventory (in capacity units) resulted from the production of period R that will be used in period j. Then

$$
A P_{:}=\sum_{\mathrm{j}=1}^{N} k_{\mathrm{r}}\left(I_{1, j-1}^{\prime}-I_{\mathrm{r}, \mathrm{j}}^{\prime}\right) .
$$

- Let $C R_{j}$ be the total demand (in capacity units) in period j. Then

$$
C R_{1}=\sum_{t=1}^{N} k_{1} d_{u} .
$$

- The production plan for pcriod R is feasible in and only if the following condition is satisfied for $t=2, \ldots, H$.

$$
\sum_{i=R+1}^{N+1-1} A P_{j} \geq \sum_{j=k+1}^{k+1-1}\left(C R_{j}-C_{j}+S t_{j}\right)
$$

- Determine the carliest period t_{c} at which the above feasibility constraint is not satisfied, i.e.,

$$
t_{c}=\min \left\{t \mid \sum_{r=i l+1}^{k+r-1} A P,<\sum_{j=R+1}^{R+t-1}\left(C R,-C_{,}+S t,\right)\right\} .
$$

To remove inleasibility upto t_{c}, extra amount is to be produced with the use of remaining capacity $R C_{R}$ of period R. If there is no infeasibility, set $t_{c}=H+1$.

Step 3.6

- Consider only iterns i which have
(1) $T_{1}<t_{r}$,
(2) $R C_{R}$ is sufficient to produce $d_{i, R+Y_{1}}$, and
(3) $d_{i ; R+7,}>0$.

To decide the best item (from a cost standpoint) to be produced in period R, calculate the priority index U_{r} for all of these items, where

$$
\begin{align*}
& U_{r^{\prime}}=\frac{A C\left(T_{r}\right)-A C\left(T_{r^{\prime}}+1\right)}{k_{r} d_{l^{\prime}, T_{1}+1}} \text {, and } \tag{3.1}\\
& A C\left(T_{r^{\prime}}\right)=\left\{S_{r^{\prime}+H_{r}} \cdot \sum_{i=R}^{R+T_{i}^{\prime-1}}(j-R) d_{r^{\prime}}\right\} / T_{r^{\prime}}
\end{align*}
$$

Among these find the one, denoted by i, that has the largest U_{t}.

- $U_{\text {, }}$ is the marginal decrease in average costs per unit of capacity absorbed.
- $A C\left(T_{t}\right)$ is average cost per unit time of a lot of item i which will satisfy T_{i} periods' requirements. This is from the Silver-Meal model in which future selup cost may be saved at the expense of added inventory holding cost.

Step 3.7

- Check the valuc of U_{s}.
(a) Ir Ui >0, then it is cconomic to produce ${ }^{d_{1, t}} t_{1}$ in period R.

Increase the value of iot-size $x_{k i}$ and inventory $i_{i j}$ by $d_{1, R+T_{i}}$. i.e.,

$$
\begin{aligned}
& x_{t+1}=x_{1 R}+d_{1, R+T_{1}} \\
& I_{y}^{\prime}=I_{v}^{\prime}+d_{1, R+r_{1}} \quad j=R+1, \ldots, R+T_{4} .
\end{aligned}
$$

Decrease the value of lot-size $x_{i, K+t_{l}}$, demand $d_{t, R+T_{l}}$ and remaining capacity $R C_{R}$ by $d_{i, H 1 T}$, i.c., set

$$
\begin{aligned}
& x_{i, R+Y_{1}}=x_{t, R+Z_{C}}-d_{1, R+7} \\
& d_{1, R+r_{1}}=d_{\mathrm{r}, k+l_{1}}-d_{\mathrm{r}, h r i_{1}}=0 \\
& R C_{H}=R C_{R}-d_{t, k+3,} .
\end{aligned}
$$

- Set $T_{\mathrm{r}}=T_{\mathrm{t}}+1$ and continue from Step 3.5 .
(b) If $U_{1} \leq 0$, then it is nol economic to increase T_{1} of ainy item, because of the increase of the total cost.
- Check the value of t_{c}.
(i) If $t_{c}>H$, then no infeasibilities left and lot-sizing of the current period is complete. Go to Step 3.12.
(ii) If $t_{c}<H$, there are infeasibilities and production of one or more item is to be increased and it is done through Steps 3.8 to 3.11 .

Step 3.8

- Calculate the value of Q, where

$$
Q=\max _{R+t_{c}-1 \leq t \leq H}\left[\sum_{j=R+1}^{\prime}\left(C R_{j}-\left(C_{i}-S t_{j}\right)-A P_{j}\right)\right] .
$$

- Q is the amount of production still needed in the current period to eliminate infeasibilities in the later period because the available capacity is not sufficient to mect the demands of those periods.

Step 3.9

- Consider only items i for which
i. $T_{i}<t_{c}$, and
i. $d_{i, k+\}_{1}}>0$.

To decide the best item (from a cost standpoint) to be produced in period R, calculate the priority index $A_{\text {r }}$, for all of these items, where

$$
\Delta_{i^{\prime}}=\frac{A C\left(T_{i^{\prime}}+1\right)-A C\left(T_{1^{\prime}}\right)}{k_{i^{\prime}} d_{l^{\prime}, J_{i}^{\prime}=1}} .
$$

- Find the one, denoted by i, that has the smallest Δ_{1}.

Step 3.10

- Let $W=k_{1} d_{1, k+T_{1}}$.
- Compare the value of Q with W.
(a) If $Q>W$,

Inerease the value of lot-sise $x_{i f}$, and inventory $\dot{I}_{i j}$ by $d_{, k+r_{1}}$, i.e.,

$$
\begin{aligned}
& x_{\mathrm{D} k}=x_{\Delta R}+d_{, R+r_{0}} \\
& I_{v}^{\prime}=I_{q}^{\prime}+d_{1, R+r_{i}} \quad j=R+I_{2}, \ldots, R+T_{i} .
\end{aligned}
$$

Decrease the value of lot-size $x_{1, R+7,}$, demand $d_{, R+\Gamma, ~}$, and remaining capacity $k C_{R}$ by $d_{, \mathcal{R}^{+}+T_{j}}$, i.e.,

$$
\begin{aligned}
& x_{i, \beta+L_{1}}=x_{i, R+L_{1}}-d_{, R+R+T_{1}} \\
& d_{1, R+\Gamma_{1}}=d_{1, R+C_{1}}-d_{, R+R+T_{2}}=0 \\
& R C_{R}=R C_{R}-d_{1, R+t_{1}} .
\end{aligned}
$$

$\operatorname{Set} Q=Q-W$ and $T_{4}=T_{i}+I$.
Continue from Step 3.9.
(b) If $Q \leq W$,

Sct $I Q=\left\lceil\frac{Q}{k_{r}}\right\rceil$.
Inercase the value of lot-sice $x_{J R}$ and inventory $I_{I I}$ by $I Q$, i.e.,

$$
\begin{aligned}
& x_{n}=x_{l R}+I Q \\
& I_{n}^{\prime}=I_{i n}^{\prime}+I Q .
\end{aligned}
$$

Decrease the value of lot-size $x_{1, k+2 ;}$; and demand $d_{i, N+3,1}$ by $I Q$, i.e.,

$$
\begin{aligned}
& x_{t, R+T_{1}}=x_{1, R+T_{1}^{\prime}}-I Q \\
& d_{1, R * T_{;}}=d_{t, R * J_{c}}-I Q .
\end{aligned}
$$

Step 3.11

- Set $R=R+1$.
- Check the value of R.
(a) If $R<H$, then continue from Step 3.3.
(b) If $R>H$, lot-sizing is complete up to period $/ /$.

Step 3.12

- Calculate the values of
i. Forecasted machine time required/period.
ii. Total expected setup cost.
iii. Total expected inventory holding cost.
iv. Tolal expected safety stock cost.
- Stop.

2.4.2 Model with the Limited Lot-Size Per Setup

The Iot-size model with the limited lot-size per setup is presented below slowing the mathematical model, heuristic and sample calculations. Like the previous model, the input would include all the cost and product data for each item, such as inventory holding cost, setup cost, the limited lot-size per setup, production rate or capacity absorption rate, salety stock, initial inventory and conding inventory. lorecasted demand would be given for each item in cach period. In addition, available capacity would be used period by period as input data. It is to be noted that Dixon-Silver heuristic allows only one setup for each item in each period. But the limitation on lot-size may need more than one setup in a particular period. So should this limitation be incoporated into Dixon-Silver heuristic, each time an item when processed in a now sctup is to be considered a new item. This may call for splitting an
item into several new items in a paricular period. However, the maximum number of the new splitted items will be restricted by the maximum periodical demand of the item. As for example, for the ith item if the maximum periodic demand and the limited lot-sise be respectively $d_{\max ,}$ and $x_{\text {max } 1,}$, the number of new items will be $n_{r}=\left\lceil\frac{d_{\text {max }},}{x_{\text {maxx }}}\right\rceil$. Thus the total number or new items will be $\sum_{i=1}^{N} n_{j}$, where
N is the number of items. So after mecting the Iot-size dimitation, the total number of items to be considered in the model should be $N^{\prime}=N+\sum_{n=1}^{N} n_{1}$.

In view of the above discussions, the model may now be presented as follows.

Mathematical Model

Minmize $Z(X)=\sum_{i=1}^{t i} \sum_{j=1}^{j f}\left(S \delta\left(x_{i j}\right)+h_{1} I_{n j}\right)$
Subject to $I_{i s}=I_{4,-1}+x_{i 4}-D_{i j} \quad i=1,2, \ldots, N^{\prime}$ and $j=1,2, \ldots, H$

$$
\begin{array}{ll}
I_{\mathrm{r} 0}=I_{\Delta H}=0 & i=1,2, \ldots, N^{\prime} \\
\sum_{i=1}^{N^{r}} k_{i} x_{v} \leq C_{j} & j=1, \ldots, H \\
0 \leq x_{u} \leq x_{\max \mathrm{r}} & i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H \\
I_{u} \geq 0 & i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H
\end{array}
$$

where $N^{\prime}=$ number of total items after meeting the maximum fol-si/e limitation

$$
=N+\sum^{\infty} n_{r}, \quad n_{1}=\left\lceil\frac{d_{\max \mathrm{r}}}{\mathbf{x}_{\max \mathrm{x}}}\right\rceil-1 . \text { where }
$$

$d_{\text {max } 1}=$ maximum periodic demand for the ith item.
$x_{\mathrm{max} t}=$ the limited lot-size for jtem i which camot be exceeded in any period.

Heuristic Method of Solution

The original two-item problem with constant capacity is NP-hard. In the present work a new constraint on upper limit of the limited lot-size is considered. With this new constraint the problem is also NP-hard. Therefore, a simple heuristic has been developed which guarantecs a feasible solution.

Step 1 Creation of an equivalent demand matrix:

- Using the same technique of Step 1 of Section 3.2.1, the given $N \times H$ demand Inatrix is converted into an equivalent $N \times H$ demand matrix with the use of initial inventory, ending inventory and safety slock.

Step 2 Check the feasibility of the problem:

- The feasibility of the problem for N ilems is checked using the sume formulas of Step 1 of Section 3.1.2.

Step 3 Convert the multi-setup problem into single setup problem [through steps 3.1 and 3.2]

Step 3.1

- Find the maximum demand $d_{\text {max }}$, for each item i by using the formula

$$
d_{\text {max } 1}=\max \left\{d_{i j} \mid j=1,2, \ldots, H\right\} .
$$

- Find the number ol new items t_{t} to be considered to satisfy demand $d_{\max }$, by using the formula

$$
n_{i}=\left\lceil\frac{d_{\max i}}{x_{\operatorname{tax} / i}}\right\rceil-1
$$

Then the number of total items after limiting the lot-size is

$$
N^{\prime}=N+\sum_{i-1}^{*} n_{i} .
$$

Item i is splited into $n_{t}+1$ items. Let the new items are $i_{0}, i_{1}, \ldots, i_{n_{i}}$.

Initially set $d_{\mathrm{cm} \mid f}=d_{y}$ and $l=0$.
Then set $d_{i, 5}=\left\{\begin{array}{ll}d_{\text {rim }} & \text { if } d_{\text {rem } 1,} \leq x_{\text {max }} . \\ x_{\text {max }} & \text { if } d_{\text {rem } 1 / 4}>x_{\text {max }}\end{array}\right.$.

Set $l=l+1$ and recycle up to $l=n_{l}$.

- Now the equivalent demand matrix $N \times H$ is converted into a new demand matrix $N^{\prime} \times H$

Step 3.2

- Initialize the values of sctup cost, holding cost and capacity absorption rate for the N new items from that of the N items by using the formulas

$$
\begin{aligned}
& S_{t_{n}}=S_{\mathrm{r}_{2}}=\ldots-S_{1_{n}}=S_{i}, \\
& h_{\mathrm{r}_{11}}=h_{\mathrm{t}_{1}}=\ldots=h_{\mathrm{l}_{m}}=h_{t_{1}} \\
& k_{\mathrm{r}_{11}}=k_{\mathrm{r}_{1}}=\ldots=k_{1_{m}}=k_{r} .
\end{aligned}
$$

Step 4 Apply the Dixon-Silver heuristic with inclusion of the limited lot-size per setup |through Steps 4.1 to 4.13]

Step 4.1

- Starl at period 1, i.e. set $R=1 \mid R=1,2, \ldots . ., H]$
- Ater completing the lot-sizing of period 1 , the lot-sizing ol period 2 is started.

Step 4,2

- Initialize lot-size $x_{i j}$ by equalizing to demand $d_{y y}$, l.e.,

$$
x_{n}=d_{\eta} \quad i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, h .
$$

- Calculate remaining allowable amount that can be produced by the following equation.

$$
x_{\mathrm{rcm} y}=x_{\max t}-x_{j} \quad i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H .
$$

where
$x_{\text {rem }}=$ remaining atlowable amount that can be produced if $x_{\text {Ij }}$ is produced at period j for item i.

Step 4.3

- Initially set the value of time supply to one i.e. $T_{i}=1$, where $i=1,2, \ldots, N^{\prime}$.
l'ine supply T_{i} denote the integer number of periods requirements that this lot will exactly satisfy.

Step 4.4

- For each item $i, i=1,2, \ldots, N^{\prime}$, produce $d_{i k}(>0)$ in the lot-sizing petiod R.
- After producing d_{I} calculate remaining capacity in period R, denoled by $R C_{\mu}$, hy

$$
R C_{k}=C_{k}-\sum_{i=1}^{N} k_{t} d_{i z}
$$

- Let I_{7}^{\prime} be the amount of inventory al the cnd of period j for item i, resulting from only the currently scheduled production in period R. Initialise $I_{\text {II }}^{\prime}$ with zero, i.e.,

$$
I_{y}^{\prime}=0, \quad i=1,2, \ldots, N^{\prime} \text { and } j=1,2, \ldots, H .
$$

Step 4.5

- Let $A P_{j}$ be the amount of inventory (in capacity units) resulted from the production of period R that will be used in period j. Then

$$
A P_{f}=\sum_{\mathrm{r}-1}^{N_{1}} k_{(}\left(l_{r, r-\mathrm{i}}^{\prime}-I_{t, j}^{\prime}\right) .
$$

- Let $C R$, be the total demand (in capacity units) in period j. Then

$$
C R_{r}=\sum_{t=1}^{w^{w}} k_{1} d_{v}
$$

- The production plan for period R is feasible if and only if the following condition is satisfied for $t=2, \ldots, H$.

$$
\sum_{t-\beta=\beta=1}^{n+1-1} A P_{t} \geq \sum_{i=R^{2}+1}^{8+1-1}\left\{C R_{J}-C_{j}\right\} .
$$

- Detcrmine the earliest period t_{c} at which the above feasibility constraint is not satisfied, i.c.,

$$
t_{c}=\min \left\{t \mid \sum_{j=\beta+1}^{k+t-1} A P,<\sum_{j=R+1}^{k+i-1}\left(C R,-C_{j}\right)\right\}
$$

To remove infcasibility uplo t_{c}, cxtra amount is to be produced with the use of remaining capacity $R C_{R}$ of period R.

If there is no infcasibility, set $t_{\mathrm{c}}=H+1$.

Step 4.6

- Consider only items i^{\prime} which have
(1) $T_{i}<t_{c}$,
(2) $R C_{R}$ is sufficient to produce $x_{\text {can }}$,
where $x_{\text {can }}=\min \left\{d_{t: R+1, r}, x_{\text {rem } r}\right\}$, and
(3) $x_{c a n}>0$.

By equation (1) find the item, denoted by i, that has the largest U_{i}.

Step 4.7

- Check the value of U_{i}.
(a) If Ui >0, then it is economic to produce xcan in period R.

Increase the value of lot-size $x_{B R}$, inventory $I_{i j}^{\prime}$ and $x_{\text {rem }, R H 7,}$ by $x_{\text {com }}$ i.e., sct

$$
\begin{aligned}
& x_{r R}=x_{\Omega R}+x_{\text {can }} \\
& \dot{I_{y}}=i_{i}^{\prime}+x_{c R n} \quad j=R+1, \ldots, R+I_{i} \\
& x_{\mathrm{rem}, R \vdash r_{\mathrm{r}}}=x_{\mathrm{remm}, K^{+}+\mu}+x_{\mathrm{cam}} .
\end{aligned}
$$

Decrease the value of lot-sice $x_{i, R+1,}$, demand $d_{1, R+\Gamma_{1}}$, remaining capacity $R C_{R}$ and $x_{\text {ren }} / R$ by $x_{\text {can }}$,i.c., set

$$
x_{,, R+l_{,}}=x_{,, R+T_{1}}-x_{c a t h}
$$

$$
\begin{aligned}
& d_{\mathrm{r}, R+T_{1}}=d_{t, \beta+r_{r}}-x_{\text {cur }} \\
& R C_{R}=R C_{R}-x_{\text {can }} \\
& x_{\mathrm{rem}, R}=x_{\mathrm{rem}, R}-x_{\text {cour }} .
\end{aligned}
$$

- Set $T_{i}=T_{i}+1$ and continue from Step 4.5.
(b) If $U_{1} \leq 0$, then it is not economic to increase $T_{\text {, ol any itcm (total cost increases). }}$
- Check the value of t_{c}.
(i) If $t_{c}>H$, then no inleasibilities left and lot-sizing of the current period is complete. Go to Step 4.12.
(ii) If $t_{c}<H$, there are infeasibilitics and production or one or more iten is to be increased and it is done through Steps 4.8 to 4.11 .

Step 4.8

- Calculate the value of Q, where

$$
Q=\max _{R_{1, t}-1 \leq t \leq H}\left[\sum_{j=R+1}^{\prime}\left(C R_{j}-C_{j}-A P_{j}\right)\right] .
$$

- Q is the amount of production still needed in the current period to elininale infeasibilitics in the later period because the available capacity is not sufficient to meet the demands of those periods.

Step 4.9

- Consider only items i for which
i. $T<l_{1}$,
ii. $R C_{R}$ is sufficient to produce $x_{C, 3}$,

$$
\text { where } x_{c u n}=\min \left\{d_{i, k+f_{1},}, x_{n, y n+R}\right\} \text {, and }
$$

iii. $x_{\text {gan }}>0$.

To decide the best item (from a cost standpoint) to be produced in period R, calculate the priority index Δ_{r} for all of these items, where

$$
\mathrm{A}_{i}=\frac{A C\left(T_{i}+1\right)-A C\left(T_{i}\right)}{k_{r} d_{i} T_{i+1}} .
$$

- Armong these find the one, denoted by i, that has the smallest Δ_{1}.

Steps 4.10

- Let $W=k_{1} x_{\text {cap }}$.
- Compare the value of Q with W.
(a) $\operatorname{If} Q>W$,

Increase the value of lot-size $x_{i j}$, inventory l_{t} and $x_{\text {rem } r, h+i, i}$ by $x_{\text {can }}$, l.e., set

$$
\begin{aligned}
& x_{t i f}=x_{i d}+x_{c y m} \\
& I_{i j}^{\prime}=I_{y}^{\prime}+x_{d \omega T} \quad j=R+1, \ldots, R+T_{t} \\
& x_{\mathrm{rem}, ~, R+\pi}=x_{\mathrm{jcm} / R+T i}+x_{\mathrm{Cam}} .
\end{aligned}
$$

Decrease the value of lot-size $x_{t, j+7,}$, demand $d_{1, h+T,}$, remaining capacity $R C_{R}$ and x_{rcm} iR by $x_{\text {carr }}$ i.e., set

$$
\begin{aligned}
& x_{i, R+\gamma_{1}}=x_{d, R+T_{,}}, x_{c a n} \\
& d_{, R+T_{r}}=d_{1, R+T_{,}}, x_{c a n} \\
& R C_{R}=R C_{R}-x_{C A H} \\
& x_{\mathrm{rem} R R}=x_{\text {rem d }}-x_{\text {cur }} .
\end{aligned}
$$

Set $Q=Q-W$ and $T_{t}=T_{i}+1$, and continue from Step 4.9.
(b) If $Q \leq W$,

$$
\operatorname{Set} I Q=\left\lceil\frac{Q}{k_{1}}\right\rceil
$$

Increase the value of lot-size $x_{i n}$, inventory $I_{i /}$ and $\boldsymbol{r}_{\text {rem }} n_{i, R+T_{1}}$ by $I Q$, i.e., set

$$
\begin{aligned}
& x_{t R}=x_{i H}+I Q \\
& I_{H}^{\prime}=I_{i g}^{\prime}+I Q . \quad j=R+1, \ldots, R \mid \cdot T_{i}
\end{aligned}
$$

$x_{\text {rem } d, h+}+T_{i}=x_{\text {remin }, R \mid T_{\mathrm{r}}}+I Q$.

Decrease the value of lot-size $x_{1, R+\tau_{2}}$, demand $d_{t, k+i_{1}}$ and $x_{r e \pi / R}$ by $/ Q$, i.e., set

$$
\begin{aligned}
& x_{\mathrm{r}, R+r_{1}}=x_{\mathrm{r}, R \Omega U_{1}}-I Q \\
& d_{\mathrm{r}, R+T_{1}}=d_{\mathrm{r}, \mathrm{H}+\mathrm{T}_{1}}-I Q \\
& x_{\mathrm{r}: \mathrm{ma}, R}=x_{\mathrm{rcm} / R}-I Q
\end{aligned}
$$

Step 4.11

- Set $R=R+1$.
- Check the value of R.
(a) If $R<H$, then continue from Step 4.3.
(b) If $R>H$, lot-sizing is complete up to period $/ I$ for $N^{\prime \prime}$ itens.

Step 4.12

- Convert the $N^{\prime} \times H$ lot-sizing matrix into $N \times H$ Iot-sicing matrix by applying the formula

$$
x_{t-1}=\sum_{i-0}^{n_{1}} x_{i, t} .
$$

Step 4.13

- Calculate the values of
i. Forecasted machine time tequited/period.
ii. Total expected selup cost.
iii. Total expected inventory holding cost.
iv. Total expected safety stock cost.
- Stop.

2.5 Computational Results with Real Life Data

The algorithm developed by Dixon and Silver [31] to generate feasible solution for multiitem single level capacitated tot-sizing problem was tested by a programming language in PC version. Thus a near optimal solution was obtained. The results are detailed in Section 2.5.1 below. This algorithm has been extended in the present work. The setup time and the upper limit on the lol-size have been included in the original algorithn. Thus the DixonSilver algorithm is separately extended with these two new parameters as deseribed in section 2.4. This section presents the results obtained from the modified models using a programming language in PC version. Section 2.5 .2 shows results with setup time consideration, and Section 2.5 .3 shows the results with upper bound on the limited lot-size.

2.5.1 Results of a Multi-item Single Level Capacitated Lot-sizing Problem

The Dixon-Silver algorithm has been used with real life data. Data has been collected from a renowned fumiture company. The products are fixed chairs. Twelve models of fixed chairs have been considered here, and these models are given in Figure 2.1. It is assumed that the entire production to meet demands is done in the plant and no subcontracting is permissible. Moreover, a furher assumption is made that plant capacity could not be increased.

Figure 2.1 Twelve models of fixed chairs that have been considered as sample product.

Product data

The relevant product data (e.g., holding cost, setup cost, production rate, safety stock, initial inventory and ending inventory) has been depieted in Table 2.1 . The problem size has been restrieted at 12 products and 12 time periods; each time period corresponds to a month.

Table 2.1 Relevant product data for the particular machine.

$\begin{gathered} \text { Item } \\ \text { No } \\ \text { in } \end{gathered}$	Holding Cost $\left(h_{i}\right)$	Setup Cost (S)	Production Rate ($1 / k_{1}$)	Safety Stock (SSi)	Initial lnventory $\left(i n_{j}\right)$	Ending Inventory (fentif)
01	12.0	200.0	6	50	150	90
02	12.0	3000	5	60	100	120
03	12.0	3000	5	50	150	120
04	12.0	250.0	7	100	200	220
05	12.0	300.0	10	130	250	220
06	12.0	300.0	9	150	250	200
07	12.0	250.0	8	100	100	200
08	12.0	200.0	8	60	250	200
09	12.0	200.0	7	100	400	500
10	12.0	200.0	7	150	220	210
11	12.0	250.0	8	90	130	130
12	12.0	200.0	12	70	200	100

2. Product demand plant capacity

Product demands are quite seasonal and the same scasonal indices are used for all the products. Forecasted demand and the capacity of the machine are shown in Table 2.2. It has been assumed that the capacity per month is the total number of hours available per month. In this problem, Period 1 corresponds to the month of January, Period 2 corresponds to the month of February. Thus the machine capacity in Period I is the total production hours in January. There is two shifts (8 hours in each shif) in the factory. There is one hour for rest, tea etc in each shilt. There is six working days in a week. To be on the safe side, it has been assumed that there is some overtime in some month for overproduction due to higher denand. Also there is some holidays in some month for different festival. As for example, the machine capacity in Pcriod 2 is $14 \mathrm{hr} \times 24$ days $=330$ hours. Similarly the machine capacity for the other periods has been calculated.

Table 2.2 Forecasted demand and capacity of the hypothetical machine.

$\begin{gathered} \text { Item } \\ \text { No } \\ \hline \end{gathered}$	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
01	90	60	80	80	90	80	70	75	60	60	50	50
02	80	70	80	80	75	90	90	80	80	60	60	50
03	100	60	60	50	80	80	90	100	90	120	80	150
04	180	165	125	150	200	180	120	150	145	240	220	220
05	200	190	280	260	200	210	200	130	120	240	240	210
06	400	240	245	250	230	200	230	205	145	380	255	190
07	450	350	350	380	340	360	400	450	450	400	450	350
08	200	250	250	200	150	160	190	100	250	100	250	100
09	500	500	450	400	450	500	400	400	700	450	700	110
10	350	250	220	225	120	130	130	145	115	204	200	150
11	300	200	200	100	160	100	130	100	90	140	120	90
12	150	95	95	100	100	90	75	75	60	130	105	90
	Forecasted Machine Requirements (hours)											
	370	330	370	350	370	350	370	370	350	300	350	300

3. Equivalent demand schedule

An equivalent demand schedule is generated such that starting and conding inventory are accommodated. In addition, demands are adjusted such that in the heuristic solution, the inventery at the end of any period never drops below the safety stock level. Table 2.3 depicts the equivalent demand alter considering initial inventory, ending inventory and safety stock.

Table 2.3 Equivalent demand with the use of initial inventory, ending inventory and safety stock.

Item	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
01	0	50	80	80	90	80	70	75	60	60	50	90
02	40	70	80	80	75	90	90	80	80	60	60	110
03	0	60	60	50	80	80	90	100	90	120	80	220
04	80	165	125	150	200	180	120	150	145	240	220	340
05	80	190	280	260	200	210	200	130	120	240	240	300
06	300	240	245	250	230	200	230	205	145	380	255	240
07	450	350	350	380	340	360	400	450	450	400	450	450
08	10	250	250	200	150	160	190	100	250	100	250	240
09	200	500	450	400	450	500	400	400	700	450	700	510
10	280	250	220	225	120	130	130	145	115	204	200	210
11	260	200	200	100	160	100	130	100	90	140	120	130
12	20	95	95	100	100	90	75	75	60	130	105	120
	Forecasted Machine Requirements (huurs)											
	370	330	370	350	370	350	370	370	350	300	350	300

4. Results

Table 2.4 shows the final lot-sizes and forecasted machine hour requirements for each period, and lable 2.5 shows the inventories at the end of each period for all items.

Table 2.4 Final lot-si/es and forceasted machine time requirements for Dixon-Silver heuristic.

$\begin{aligned} & \text { Item } \\ & \text { No } \end{aligned}$	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
01	0	50	80	80	90	80	70	135	60	50	90	0
02	40	70	80	80	75	90	122	188	0	60	110	0
03	0	60	60	50	80	80	90	195	115	80	220	0
04	80	165	125	150	200	180	120	295	240	220	0	340
05	80	190	280	260	200	210	200	130	120	240	240	300
06	300	240	245	250	230	200	230	205	145	380	255	240
07	450	350	350	380	340	360	400	450	450	400	450	450
08	10	250	250	200	150	160	190	100	350	0	250	240
09	200	500	450	400	450	500	400	400	843	309	698	510
10	280	250	220	225	120	130	130	260	204	200	145	65
11	260	200	200	100	160	100	130	190	0	260	0	130
12	20	95	95	100	100	90	75	75	60	130	105	120
	Forecasted Machine Requirements (hours)											
	221.0	318.6	318.0	297.2	291.1	291.3	288.7	3700	350.0	300.0	350.0	300.0

Table 2.5 lnventories at the end of each period for all items.

$\begin{aligned} & \hline \text { Ittun } \\ & \mathrm{Nop} \end{aligned}$	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
01	60	50	50	50	50	50	50	110	110	100	140	90
02	60	60	60	60	60	60	92	200	120	120	170	120
03	50	50	50	50	50	50	50	145	170	130	270	120
04	100	100	100	100	100	100	100	245	340	320	100	220
05	130	130	130	130	130	130	130	130	130	130	130	220
06	150	150	150	150	150	150	150	150	150	150	150	200
07	100	100	100	100	100	100	100	100	100	100	100	200
08	60	60	60	60	60	60	60	60	160	60	60	200
09	100	100	100	100	100	100	100	100	243	102	100	500
10	150	150	150	150	150	150	150	265	354	350	295	210
11	90	90	90	90	90	90	90	180	90	210	90	130
12	70	70	70	70	70	70	70	70	70	70	70	100

Other results are tabulated below:

'Total available machine time ($\sum_{t=1}^{\prime \prime} C_{t}$)	; 4180.0 hour
Total setup time ($\sum_{n=1}^{N} n_{\mathrm{r}} S t_{t}$) where n_{r} is the number of setup for item i.	: 0.0 hour
Total forecasted machinc time	: 3695.9 hour
Total inventory holduingcost, $C_{i n v}=\sum_{\pi-1}^{*} \sum_{*-1}^{\prime \prime}\left(I_{t \prime}-S S_{1}\right): \mathrm{Tk} .49,332.00$	
Total expected safety-stock cost, $C_{s 7}=\sum_{u=1}^{N} S S_{\text {, }}$: Tk. 159,840,00
Total expected setup cost, $C_{\text {sel }}=\sum_{i=1}^{N} n_{i} S$,	Tk. 32,850.00
Total expected cost ($\left.C_{\text {dnv }}+C_{s s}+C_{s e r}\right)$: Tk. 242,022.00

2.5.2 Results of Multi-Item Single Level Capacitated Lot-Sizing Problem with Setup Time

In the real life problem in Section 2.5 .1 machine setup time to produce each product itern is included. Relevant product data including setup time for each iten has been presented in Table 2.6. In the present work setup time has been taken from the factory. Use of the set up time would obviously be a more realistic approach. Forecasted demands and capacities as presented in Table 2.2 are also used in the present case. The equivalent demands after considering initial inventory, ending inventory and safcty stock are also same as presented in Table 2.3. The extended heuristic algorithm as developed in section 2.4 has been applied to the problem. Table 2.7 shows the final lot-sizes and forecasted machine hour requirements for each period, and Table 2.8 shows the inventories at the end of each period for all items.

Table 2.6 Relevant product data for the extended heuristic with setup time.

$\begin{gathered} \text { Item } \\ \text { No } \\ \text { (o) } \\ \hline \end{gathered}$	Holding Cost (b)	Sctup Cost (S)	Setup Time ($\left.\mathrm{S}_{\mathrm{t}_{2}}\right)$	Production Rate $\left(1 / h_{0}\right)$	Salely Stuck (SS_{i})	$\begin{gathered} \text { Initial } \\ \text { Inventory } \\ \left(I n_{i}\right) \end{gathered}$	Ending Inventory (lend)
01	12.0	200.0	0.50	6	50	150	90
02	12.0	300.0	0.50	5	60	100	120
03	12.0	300.0	0.50	5	50	150	120
04	12.0	250.0	0.33	7	100	200	220
05	12.0	300.0	0.25	10	130	250	220
06	12.0	300.0	0.33	9	150	250	200
07	12.0	250.0	0.25	8	100	100	200
08	12.0	200.0	0.50	8	60	250	200
09	12.0	200.0	0.33	7	100	400	500
10	12.0	200.0	0.50	7	150	220	210
11	12.0	250.0	0.50	8	90	130	130
12	12.0	200.0	0.33	12	70	200	100

Table 2.7 Final lot-sizes and forecasted machine time requirements for the extended heuristic with setup time.

$\begin{array}{\|c} \hline \text { Item } \\ \text { No } \\ \hline \end{array}$	Period											
	1.	2	3	4	5	6	7	8	9	10	11	12
01	0	50	80	80	90	80	70	135	60	50	90	0
02	40	70	80	80	75	90	170	140	0	170	0	0
03	0	60	60	50	80	80	163	218	99	0	220	0
04	80	165	125	150	200	180	120	295	240	220	0	340
05	80	190	280	260	200	210	200	130	120	240	240	300
06	300	240	245	250	230	200	230	205	145	380	255	240
07	450	350	350	380	340	360	400	450	450	400	450	450
08	10	250	250	200	150	160	190	100	350	0	250	240
09	200	500	450	400	450	500	400	400	825	325	700	510
10	280	250	220	225	120	130	130	260	204	200	175	35
11	260	200	200	100	160	100	130	190	0	159	101	130
12	20	95	95	100	100	90	75	75	60	130	105	120
	Forceasted Machine Requirements (hours)											
	224.8	323.5	322.9	302.0	296.0	296.1	317.7	369.9	348.0	299.5	349.2	298.9

Table 2.8 Inventories for the heuristic with setup time.

Itanl	Period											
$\mathbf{N} \mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0 1}$	60	50	50	50	50	50	50	110	110	100	140	90
$\mathbf{0 2}$	60	60	60	60	60	60	140	200	120	230	170	120
$\mathbf{0 3}$	50	50	50	50	50	50	123	241	250	130	270	120
$\mathbf{0 4}$	100	100	100	100	100	100	100	245	340	320	100	220
$\mathbf{0 5}$	130	130	130	130	130	130	130	130	130	130	130	220
$\mathbf{0 6}$	150	150	150	150	150	150	150	150	150	150	150	200
$\mathbf{0 7}$	100	100	100	100	100	100	100	100	100	100	100	200
$\mathbf{0 8}$	60	60	60	60	60	60	60	60	160	60	60	200
$\mathbf{0 9}$	100	100	100	100	100	100	100	100	225	100	100	500
$\mathbf{1 0}$	150	150	150	150	150	150	150	265	354	350	325	210
$\mathbf{1 1}$	90	90	90	90	90	90	90	180	90	109	90	130
$\mathbf{1 2}$	70	70	70	70	70	70	70	70	70	70	70	100

The following results have also been found aller applying the heuristic algorithm with setup time.

Table 2.9 Time and cost after applying the heuristic algorithm with setup time.

2.5.3 Results with the Limited Lot-Size per Setup

Kelevant product data including the limited lot-size per setup for cach item has been depicted in Table 2.10. The limited lot-size per setup for each item has been taken arbitrarily. The demands and capacitics are extracted from Table 2.2. The equivalent demands after considering initial inventory, ending inventory and safety stock are extracted From Table 2.3. To illustrate the algorithm a few sample calculations for the period 8 have been shown. Forecasted demand and capacity with limited lot size per setup are depicted in Iable 2.11.

Table 2.13 shows the final lot-sizes and forecasted machine hour requirements for each period, and Table 2.14 shows the inventories at the end of each period for all items.

Table 2.10 Relevant Product data for the heuristic with the limited lot-size per setup.

Itemn No	Holding Cost	Setup Cost	Maxinum Lot-Size	Production Rate	Safery Stock	Initial Inventory	Ending Inventory
$\mathbf{0 1}$	12.0	200.0	150	6	50	150	90
$\mathbf{0 2}$	12.0	300.0	150	5	60	100	120
03	12.0	300.0	150	5	50	150	120
$\mathbf{0 4}$	12.0	250.0	150	7	100	200	220
$\mathbf{0 5}$	12.0	300.0	200	10	130	250	220
06	12.0	300.0	200	9	150	250	200
$\mathbf{0 7}$	12.0	250.0	200	8	100	100	200
$\mathbf{0 8}$	12.0	200.0	200	8	60	250	200
$\mathbf{0 9}$	12.0	200.0	200	7	100	400	500
$\mathbf{1 0}$	12.0	200.0	200	7	150	220	210
$\mathbf{1 1}$	12.0	250.0	200	8	90	130	130
$\mathbf{1 2}$	12.0	200.0	200	12	70	200	100

The maximum periodic demand for itcon 9 is

$$
\begin{aligned}
d_{\max 9} & =\max \left\{d_{1, j} \mid j=1,2, \ldots, H\right\} \\
& =\max \{200,500,450,400,450,500,400,400,700,450,700,510\} \\
& =700
\end{aligned}
$$

The limited lot-size for item 9 is $x_{\max }=200$.

Then the number of new items to $b c$ considered to satisfy demand $d_{\text {max }}$ is

$$
n_{1}=\left\lceil\frac{d_{\max 9}}{x_{\max 9}}\right\rceil-1=\left\lceil\frac{700}{200}\right\rceil-1=4-1=3
$$

Similarly, the number of new items to be considered to satisfy demands $d_{\text {max }}$ are

n_{1}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}	n_{7}	n_{8}	n_{9}	n_{10}	n_{11}	n_{12}
0	0	1	2	1	1	2	1	3	1	1	0

Then the number of total items alter limiting the lot-size is

$$
N^{\prime}=N+\sum_{-121}^{N} n_{t}=12+13=25
$$

Item 9 is spiitted into $n_{1}+1=4$ items. Let the new items are $9_{0}, 9_{1}, \ldots, 9_{3}$.
Continue the same calculation for other demands. From 'Iable 2.3, the new demand matrix for $N^{\prime}=25$ items can be obtained as shown in Table 2,11.

Table 2.11 Demand after considering limitation on the naximum allowable lot-size.

$\begin{array}{\|c} \hline \text { Item } \\ \text { No } \\ \hline \end{array}$	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
Ot_{0}	0	50	80	80	90	80	70	75	60	60	50	90
020	40	70	80	80	75	90	90	80	80	60	60	110
${ }^{03} 3_{0}$	0	60	60	50	80	80	90	100	90	120	80	150
0_{40}	80	150	125	150	150	150	120	150	145	150	150	150
0_{0}	80	190	200	200	200	200	200	130	120	200	200	200
${ }^{06} 0$	200	200	200	200	200	200	200	200	145	200	200	200
${ }^{07} 0$	200	200	200	200	200	200	200	200	200	200	200	200
08_{0}	10	200	200	200	150	160	190	100	200	100	200	200
w_{0}	200	200	200	200	200	200	200	200	200	200	200	200
100	200	200	200	200	120	130	130	145	115	200	200	200
11_{0}	200	200	200	100	160	100	130	100	90	140	120	130
120	20	95	95	100	100	90	75	75	60	130	105	120
0^{031}	0	0	0	0	0	0	0	0	0	0	0	70
0^{04}	0	15	0	0	50	30	0	0	0	90	70	150
042	0	0	0	0	0	0	0	0	0	0	0	40
${ }^{05} 1$	0	0	80	60	0	10	0	0	0	40	40	100
061	100	40	45	50	30	0	30	5	0	180	55	40
${ }^{87} 1$	200	150	150	180	140	160	200	200	200	200	200	200
072	50	0	0	0	0	0	0	50	50.	0	50	50
OS_{1}	0	50	50	0	0	0	0	0	50	0	50	40
${ }^{09} 1$	0	200	200	200	200	200	200	200	200	200	200	200
0^{09}	0	100	50	0	50	100	0	0	200	50	200	110
093	0	0	0	0	0	0	0	0	100	0	100	0
ta_{1}	80	50	20	25	0	0	0	0	0	4	0	10
111	60	0	0	0	0	0	0	0	0	0	0	0

Initialice setup cost, holding cost and production cate for the ilems $9_{0}, 9_{1}, 9_{2}$ and 9_{3} from that of the item 9 as follows.

$$
\begin{aligned}
& S_{9_{0}}=S_{9_{1}}=S_{9_{2}}=S_{9_{3}}=S_{9}=200.0, \\
& h_{9_{0}}=h_{9_{1}}=h_{9_{2}}=h_{9_{3}}=h_{9}=12.0, \\
& k_{9_{0}}=k_{9_{1}}=k_{9_{2}}=k_{9_{3}}=k_{9}=1 / 7 .
\end{aligned}
$$

Similarly set the value of setup cost, holding cost and production rate for the $N^{\prime}=25$ new items from those of the $\mathrm{N}=12$ items.

$\underset{\substack{\text { Item } \\ N_{0}}}{\substack{\text { n }}}$	Holding Cost	Selup Cost	Production Rate
0_{0}	12.0	200,0	6
02_{0}	12.0	300.0	5
${ }^{03} 0$	12.0	3000	5
040	12.0	250.0	7
0_{0}	12.0	300.0	10
0_{0}	12.0	300.0	9
${ }^{07} 0$	12.0	250.0	8
${ }^{08} 0$	12.0	200.0	8
0_{09}	12.0	200.0	7
LO_{0}	12.0	200.0	7
ti_{0}	12.0	250.0	8
12.10	12.0	200.0	12
${ }^{03} 3_{1}$	12.0	300.0	5
${ }^{04} 1$	12.0	250.0	7
04_{2}	12.0	250.0	
051	12.0	300.0	10
0_{1}	12.0	300.0	9
${ }^{07}{ }_{1}$	12.0	250.0	8
0^{07}	12.0	250.0	8
${ }^{08} 1$	12.0	200.0	8
0_{09}	12.0	200.0	7
0_{2}	12.0	200.0	7
093	12.0	200.0	7
${ }^{10} 1$	12.0	200.0	7
11_{1}	12.0	2500	8

Now apply the modified Dixon-Silver heuristic with the limited lot-size for 25 items. The lot sizes for the new items are shown in Table 2.12.

Table 2.12 Lot sizes for $N^{\prime}=25$ items.

$\begin{array}{\|c} \hline \text { Item } \\ \text { No } \\ \hline \end{array}$	Period											
	1	2	3	4	5	6	7	8	9	10	11.	12.
${ }^{010}$	50	150	150	0	150	0	150	0	0	45	90	0
$0^{0} 0$	110	150	150	0	150	0	45	0	150	50	110	0
${ }^{03} 3_{0}$	120	0	50	0	150	150	50	0	150	150	0	140
0^{04}	150	150	150	55	150	150	150	120	150	150	150	145
050	200	200	200	70	200	200	200	130	200	200	200	120
${ }^{06} 0$	200	200	200	200	200	200	200	200	200	200	200	145
${ }^{17} 7_{0}$	200	200	200	200	200	200	200	200	200	200	200	200
$\mathrm{08}_{0}$	10	200	200	200	200	200	200	0	200	100	200	200
${ }^{09} 0$	200	200	200	200	200	200	200	200	200	200	200	200
10_{0}	200	200	200	200	200	200	200	200	40	0	200	200
${ }^{11} 0$	200	200	200	200	200	200	0	200	20	120	130	0
12_{0}	200	110	0	200	0	200	0	0	200	35	120	200
0_{1}	0	0	0	0	0	0	0	0	0	0	70	0
va_{1}	15	0	0	80	0	0	0	0	150	10	150	150
042	0	0	0	0	0	0	0	0	0	0	40	0
05_{1}	0	140	0	0	10	0	0	0	80	0	100	0
$0_{1}{ }_{1}$	200	0	35	0	30	35	0	0	200	75	0	0
${ }^{07}{ }_{1}$	200	200	200	200	200	200	200	200	200	200	0	180
072	50	0	0	0	0	0	50	0	50	100	0	0
${ }^{08} 1$	100	0	0	0	0	0	0	50	0	90	0	0
${ }^{09} 1$	0	200	200	200	200	200	200	200	200	200	200	200
09_{2}	150	0	0	150	0	0	0	200	50	0	200	110
093	0	0	0	0	0	0	0	100	0	100	0	0
${ }^{10} 1$	175	0	0	0	0	0	0	0	4	0	10	0
111	60	0	0	0	0	0	0	0	0	0	0	0

Convert the $N^{\prime} \times H$ lot-sizing matrix into $N \times H$ lot-sizing matrix by applying the fommula $x_{i, j}=\sum_{i=0}^{p} x_{t, i}$.

As an example let us compute $x_{9,8}$.

$$
\begin{aligned}
x_{9,8} & =\sum_{l=0}^{n_{1}} x_{9_{i}, 8} \\
& =\sum_{l=0}^{3} x_{9_{t}, 8} \\
& =x_{9_{0,8}}+x_{9_{1}, 8}+x_{9_{2}, 8}+x_{9_{3}, 8} \\
& =200+200+200+100 \\
& =700 .
\end{aligned}
$$

Table 2.13 Final lot-sizes and forecasted machine time requirements for the heuristic with the limited lot-size per setup.

$\begin{array}{\|c\|} \hline \text { Itrm } \\ \mathrm{No} \\ \hline \end{array}$	Period											
	1	2	3	4	5	6	7	8	9	10	11	12
01	50	150	150	0	150	0	150	0	0	45	90	0
02	110	150	150	0	150	0	45	0	150	50	110	0
03	120	0	50	0	150	150	50	0	150	150	70	140
04	165	150	150	135	150	150	150	120	300	160	340	295
05	200	340	200	70	210	200	200	130	280	200	300	120
06	400	200	235	200	230	235	200	200	400	275	200	145
07	450	400	400	400	400	400	450	400	450	500	200	380
08	110	200	200	200	200	200	200	50	200	190	200	200
09	350	400	400	550	400	400	400	700	450	500	600	510
10	375	200	200	200	200	200	200	200	44	0	210	200
11	260	200	200	200	200	200	0	200	20	120	130	0
12	200	110	0	200	0	200	0	0	200	35	120	200
	Forecasted Machine Requirements (hours)											
	365.1	327.5	318.3	272.3	338.7	299.9	274.6	262.2	346.3	296.5	343.8	288.8

Table 2.14 Inventories for the heuristic with the limited lot-size per sctup.

Item	Period											
$\mathbf{N} \mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0 1}$	$\mathbf{1 1 0}$	200	270	190	250	170	250	175	115	100	140	90
$\mathbf{0 2}$	130	210	280	200	275	185	140	60	130	120	170	120
$\mathbf{0 3}$	170	110	100	50	120	190	150	50	110	140	130	120
$\mathbf{0 4}$	185	170	195	180	130	100	130	100	255	175	295	370
$\mathbf{0 5}$	250	400	320	130	140	130	130	130	290	250	310	220
$\mathbf{0 6}$	250	210	200	150	150	185	155	150	405	300	245	200
$\mathbf{0 7}$	100	150	200	220	280	320	370	320	320	420	170	200
$\mathbf{0 8}$	160	110	60	60	110	150	160	110	60	150	100	200
$\mathbf{0 9}$	250	150	100	250	200	100	100	400	150	200	100	500
$\mathbf{1 0}$	445	395	375	350	430	500	570	625	554	350	360	410
$\mathbf{1 1}$	90	90	90	190	230	330	200	300	230	210	220	130
$\mathbf{1 2}$	400	415	320	420	320	430	355	280	420	325	340	450

The following results have also been found after applying the heuristic algorithin with the limited lot-size per setup.

The results of three models have been summarized below.

Parameter	Dixon \& Silver	With Set up Time	With Limited Lot-sise
Total available machine time	4180.0 hr	4180.0 hr	4180.0 hr
Total forecasted machinc time	3695.9 hr	3748.4 hr	3734.0 hr
Total Sct-up time requirements	0.0 hr	52.5 hr	0.0 hr
Total inventory holding cost	Tk.49,332.00	Tk.53,124.00	Tk.227,208.00
Total safety stock cost	Tk.159,840.00	Tk.159,840.00	Tk.159,840.00
Total selup cost	Tk.32,850.00	Tk.32,500.00	Tk.44,350.00
Total expected cost	Tk.242,022.00	Tk.245,464.00	Tk.431,398.00

The inclusion of setup time will result in machine occupation time to be increased. The consideration of set up time also led to increase in inventory holding cost. This increase in cost could be attributed to increased inventory held for meeting demand of the later period,

Effect of the limitation on the lot-size is dependent on the extent of reduction of the lot-size. It is obvious that the smaller the allowable lot-sice, the greater will be the number of setup which will eventually lead to more splitted items. This in tum led to the increase number of required setups.

Costs due to implementation of this restriction on lot-sice went up quite significantly. Further decrease in lot-size would obviously result in higher costs. But al the lower range of allowable lot-size, there has been a trend of slight increase in setup costs.

2.6 Conclusions

Lot-sizing problem has been recognized to be one of most important functions in industrial units. Thus efforts have been given to develop usable optimizing routines but within limited boundary conditions. Various models have been developed with restricted applications in real-life settings because of their demanding computational enormisty. Thus heuristic models have been evolved. These heuristics have given feasible solutions. The Dixon-Silver heuristic was used in the present work. The heuristic was extended to include two very important parameters such as, (i) plant or machine set up time and (ii) maximum limit of production lot-size from a machinc. From analysis and results, the present wotk has demonstrated that feasible solutions could be obtained with competitive computer usage. The results of the two heuristics developed in the present work, have been discussed in Section 2.5.

Chapter 3 Scheduling

3.1 Introduction

Operations schedules are short-term plans designed to implement the master production schedule. Operations scheduling focuses on how best to use existing capacity, taking into account technical production constraints. Oficn scveral jobs must be processed at one or more workstations. Typically, a variety of tasks can be performed at cach workstation. If schedules are not carefully planned to avoid botllenecks, waiting lines may develop. In poorly scheduled job shops, it is not at all uncommon for jobs to wait for 95 percent of their total production cycle. This results in a long workllow cycle. A schedule is a timetable for performing activities, utilizing resources, or allocating facilities.

Most real-world scheduling problems are naturally multi-criterion. However, due to the lack of suitable solution techniques such problems are usually transformed into a singleobjective problem. A solution is called Pareto-optimal if it is not possible to decrease the value of one objective without increasing the value of the other [34]. The difficulty that arises with this approach is the rise of a set of Parcto-optimal solutions, instead of a single optimum solution.

A Pareto-optimal solution is developed in this research work for a scheduling problem on a single machine with periodic maintenance and non-preemplive jobs. In literature, most of the scheduling problems address only one objective function, while in the real world, such problems are always associated with more than one objective. In this research work, both multi-objective functions and multi-maintenance periods are considered for the machine scheduling problem. To avoid the complexities involved in solving an explicit multiobjective optimization problem, mulliple objective functions anc consolidated and transformed into a single objective function alter they are weighted and assigned proper weighting factors. In addition, periodic maintenance schedules are also considered in the model. The objective of the model addressed in this research work is to minimize the
weighted function of the total job flow time, the maximum tardiness, and the machine idle time in a single machine problem with periodic maintenance and non-preemptive jobs. An algorithm is developed to solve this multiple criterion problem and to construct the paretoset. The parametric analysis of the trade-offs of all solutions with all possible weighted combination of the criterions is analyzed. The result of a neighborhood search heuristic is also provided. Results are provided to explore the best schedule among all the Paretooptimal sets and to compare the result of the modified Parcto-optimal algorithm with the result of the neighborhood search heuristic.

3.2 Literature Study

Most real-world scheduling problems are naturally multi-criterion. However, due to the lack of suitable solution techniques such problems are usually transformed into a singleobjective problem. A solution is called Pareto-optimal if it is not possible to decrease the value of one objective without increasing the value of the other [34]. The difficulty that arises with this approach is the rise of a set of Pareto-optimal solutions, instead of a single optimum solution.

There are several approaches that deal with the multi-objective problems. Traditionally, the most common way is to combine the multiple criterions into a single scalar value by using weighted aggregating functions according to the preferences sel by the scheduler (or decision-makers) and then to find a compromise solution that reflects these preferences |35]. However, in many real scenarios involving multi-criterion scheduling problems, it is prefcrable to present a set of promising solutions to the decision-makers so that the most adequale schedule can be chosen. This has increased the interest in investigating the application of Pareto-optimization techniques to multi-criterion scheduling problems. The aim in Pareto-optimization is to find a sct of compromised solutions that represent a good approximation to the Pareto-optimality [34]. In recent years, several algorithms proposed for Parcto-optimization have been published because multi-objective optimization problems
exist in almost any domain [36, 37]. The job shop scheduling problem (JSP) with a single objective is a widely reseatched problem in the area of production scheduling. In a job shop, several jobs require scheduling, each with different processing times on different machines. Many applications of JSPs in industry have been discussed in the literature. Operations rescarch practitioners, production management experts, management scientists, mathematicians and computer scientists have discussed the scheduling theory. The solution procedure for solving the JSP diflers as the objective of the scheduling differs. Most of the rescarchers conceming the job shop scheduling problem have focused on developing scheduling algorithms for a single objective measure. Much work has been done to solve ISPs by using single objective meta-heuristic procedures like simulated annealing algorithm, genetic algorithm and tabu search algorithon. These algorithms are generic optimization algorithms, i.c. they are intended for use on a wide range of optimization problems [38]. The real-work scheduling problems are multi-objective in nature. In such cases, several objectives are considered simultancously when a schedule is generated. Simultancous consideration of several objectives during scheduling totally modilies the scheduling approach. A scheduler who improves the schedule with respect to one objective may want to know how the schedule performs with respect to the other objectives. Thus the goal is to generate a fcasible schedule that minimizes several objectives. This schedule is called a Pareto optimal solution. A single feasible schedule that minimizes several objectives may not exist. In other words, individual optimal solutions of cach objective are usually different. Under such situations, the scheduler may be interested in having a schedule with weighted combination of several scheduling objectives as the performance measure. It is possible that the weights of various objectives are known before scheduling. This approach [38] permits computing of a unique strict Parcto optimal solution. It is also possible that the decision maker wants to choose a Pareto optimal solution according to the prioritics cxisting at the time of decision making. In that case, a family of best trade-off schedules called the Pareto optimal set is to be found. The set of Pareto solutions is called the Pareto front. Therefore solving a multi-objective scheduling problem is a Parcto optimization problem. Generating the Parcto optimal sel for the scheduling problem can be
computationally expensive and is often infeasible, because of the complexity of the scheduling problem [38]. Moreover, when meta-heuristics are used, there is no gurantee that the Pareto set for a given multi-objective oplimization problem like multi-objective scheduling can be gencrated. However, a sel of non-dominated solutions can be generated close to the Pareto optimal set [38]. Many real-world optimization problems involve multiple (and ofien conflicting) objectives. These problems are relevant in a varicty of engincering disciplines, scientific lields, and various industrial applications. Unlike single objective optimization problens, where one attempts to find the best solution (global optimum), in multi objective optimization problems, there may not exist one solution that corresponds to the best with respect to all objectives. Solving a multi-objective optimization problem consists of generating the Pareto fronticr, the set of non-dominated solutions that represents the irade-off among the objective function values. Different approaches are used to approximate and generate such sets of Parcto optimal solutions. Some interactive approaches incorporate preferences into the optimization procedure to explore a specilic region of the solution space, while other approaches focus on generating diverse sets of Pareto optimal solutions. Such sets of Pareto optimal solutions can be extremely large. which motivates the need for post-optimality analysis for multi objective optinization problems. The area of post-optimality analysis addressed in this paper foctses on obtaining a preferred subset of solutions from a very large set of solutions with weeptable objective function values. The goal in obtaining large sets of Pareto optimal solutions is to provide the decision-maker with a diverse set of such solutions. Although obtaining diverse Parcto optimal solutions is imporant, it is oflen impractical for a human decision-maker to manually examine each such solution, and hence, efficiently identify a good subset of such solutions. Previous research in this area has focused on generalizing the representation of the full set of Pareto optimal solutions with a smaller subset [39]. Such procedures are not post-optimality analysis procedures, but rather, extensions to multi-objective optimization procedures, which are designed to generate diverse sels of Pareto optimal solutions. Another area of rescarch that incorporates preferences into the optimization procedures are interactive methods. These interactive methods provide a decision-maker with better control
over the optimization process, allowing them to explore specilic regions of the search space. However, solutions obtained are quite sensitive towards the prelerences of the decisionmaker. These approaches also require the decision-maker to have a thorough knowledge of the problern. This paper [39] analyzes a discrete optimization problem formulation for obtaining a preferred subset of Pareto optimal solutions from a larger sct. This formulation alleviates the sensitivity of value function approaches, while obtaining a desired size subsct of Pareto optimal solutions [39]. In recent years, several variations of multi objective cyolutionary algorithms (MOEAs) [40] have been developed to handle MOPs [35]. Many of the suggested MOEAs have been employed in a variety of real-world applications [40]. These next generation algorithms have been improved in three dimensions compared to the previous generation of MOEAs introduced in the 1990's, which include the first (origingl) version of the non dominated sorling genetic algorithm (NSGA) of Srinivas and Deb (1994), the niched Pareto genetic algorithm (NPGA) of Nafploitis ct al. (1994) and the multi objective genetic algorithm (MOGA) of Fonseca and Flemming (1993). First, the compulational complexity of the existing MOFAs has been reduced from $O(m N 3)$ of the lirst generation to $O(m N 2)$ of the second generation so that solving larger-sized problems is not as computationally burdensome. [40]. The m and N are the number of objectives and the population size, respectively. Second, some degree of elitism is incorporated in most MOEAs to ensure the propagation of good non dominated solutions for faster convergence. In expensive MOPs, 「ast convergence towards Pareto optimal solutions is a highly desired feature of any promising algorithm. Third, new diversification slrategies that are insensitive to the selection of the sharing factor have been employed. Given the variations of MOEAs, the idea of using dynamic population sizing has not been thoroughly investigated, and to date only a fow studics have exploted this idea. For example, Tan et al. (2001) introduced an increment in MOEA that uses dynamic population sizing based on the online discovered Parcto front and ats desired population distribution density [40]. In another study, Shen and Daskin (2005) suggest a MOEA-based heuristic approach for finding tradeoffs between customer service and cost in an integrated supply chain design using a dynamic population siaing scheme. However, they do not address how the growing poputation size is controlled.

The related work of Farina et al. (2004) addresses dynamic MOPs, where the optimication is time-dependent and the objective functions, the constraints and/or the parameters of the problem, not the MOEA, vary with time (i.e., at each iteration of the optimigation process). In this study [40], considering static MOPs, where optimization using FPGA is performed offline, and the characteristics of the MOP are not time-dependent. The majority of evolutionary multi objective optimization (EMO) studies that propose new MOEAs for solving MOPs evaluate the performance of those algorithms over a large number of generations (or solution evaluations). However, there is now a growing need for designing MOEAs capable of dealing with computationally- and/or linancially-expensiveMOPs. Litle work exists that considers expensive MOPs. Additionally, many real-world problems involve complicated, "black-box" objective functions that can make a large number of solutions evaluations computationally prohibitive [40]. Furlhermore, repeatedly evaluating such complicated objective functions can be demanding on resources. Specifically, the motivation comes from simulation-based optimization research. Computer simulation of real-world systems tends to involve the construction of complicated models that capture the complex, nonlinear interrelationships between independent and dependent variables and can repor the value of several system performance objectives simultancously. These models [40] are used to evaluate candidate system design solutions in search of the best solution (or set of solutions) according to several performance objectives.

A inulti-objective optimization algorithm capable of rapidly finding a diverse set of Pareto optimal solutions would be greatly benclicial in such a situation. The purpose of this research is to propose a multi-objective optimization methodology that finds evenlydistributed Parcto optimal solutions in a computationally-efficient manner. In addition to multiple objectives, periodic maintenance is also considered for this scheduling problem. An uncxpected breakdown will make the shop behavior hard to predict, and thereby will reduce the efficiency of the production system. Maintenance can reduce the breakdown rate with minor sacrifices in production [41].

In literature, there are several approaches for handling multi-criterion problems. Branch and Bound technique is one of those approaches that could obtain a better solution for such problems. Branch and bound technique explores all the possible enumerations to lind the best sequence with minimum value in $O\left(2^{\prime \prime}\right)$ time complexity [42]. Liao and Chen [41] address minimizing the maximun bardiness of jobs in a periodically maintained single machine problem. A branch and bound algorithm is developed to find the optimal solution, and a heuristic solution is also devised for handling the large problem. The larger is the neighborhood, the bether is the quality of the locally optimal solutions, and the greater is the accuracy of the final solution. At the same time, searching larger neighborhoods requires more time at each stage. Because of many runs of a neighborhood search algorithm, longer execution times per run lead to fewer runs within a specified time. For this reason, a larger neighborhood can produce a more effective heuristic algorithm only if the larger neighborhood can be searched in a very efficient manner. A surycy of large-scale neighborhood search algorithms can be found in Ahuja [43]. For the single-machine problem, Adiri [44] assumes two cases of a breakdown, that is, the resumable and nonresumable cases assuming that machine idle time is unknown and follow a probabilistic distribution pattern. Mosheiov [45] solves the minimization of total completion time for two-parallel-machine-scheduling problem by assuming cach machite is available in a specified interval. Lee [46] also studies in this area for other machine configurations including single and parallel machines.

Problem of scheduling on a single machine to minimize total weighted tardiness of jobs can be described as follows: there are n jobs to be processed, each job has an integer processing time, a weight and a due date. The objective is to minimize the total weighted tardiness of jobs. The problem belongs to the class of NP-hard problems. Some new properties of the problem associated with the blocks have been presented and discussed. These properties allow any to propose a new fast local search procedure based on a 'I abu scarch approach with a specific neighborhood which employs blocks of jobs and a compound moves lechnique. A compound move consists in perfoming several moves simulianeously in a
single iteration of algorithm and allows any to accelerate the convergence to good solutions. In the algorithm [47], an idea has been used which decreases the complexity for the search of neighberhood from $\mathrm{O}\left(n_{3}\right)$ to $\mathrm{O}(n 2$). Additionally, the neighborhood is reduced by using some elimination criteria. The method presented in this paper [47] is deterministic one and has not any random element, as distinct from other eflective but non-detemninistic methods proposed for this problem, such as Tabu scarch of Crauwels, H. A. J., Potts, C. N., \& Van Wassenhove, L. N. (1998) Computational experiments on the benchunark instances from OR-Library (http://pcople.brunel.ac.uk/ mastijb/jeb/info.html) are presented and comparcd with the results yielded by the best algorithms discussed in the literature. These results show that the algorithm proposed allows us to obtain the best known results for the benchmarks in a shon time. The presented properties and ideas can be appled in any local scarch procedures [47].

In many manufacturing systems, jobs that are completed carly are held as linishedgoods inventory until their duc-dates, and hence one incurs carliness costs. Similarly, jobs that are completed after their due-dates incur penalty. The objective in such situations would, therefore, be to mect the due-dales of the respective jobs as closely as possible, and consequently minimize the sum of earliness and tardiness of jobs because earliness and tardiness of jobs greatly influence the perfornance of a schedule with respect to cost. In addition, a job incurs holding cost from the time of its arrival until its completion. Most studies on scheduling in such manufacturing systems assume unit earliness cost, unit tardiness cost and unit holding cost of a job. However, in reality such an assumption need not always hold and it is quite possible that there exist different costs of carliness, tardiness and holding for different jobs. In addition, most studies on job-shop scheduling assume that jobs are independent and that no assernbly operations cxist. The study [48] addresses the problem of scheduling in dynamic assembly job-shops (i.e. shops that manufacture multilevel jobs) with the consideration of jobs having dillerent carlincss, tardiness and holding costs. An attempt is made in this paper to present dispatching rules by incorporating the relative costs of earliness, tardiness and holding of jobs in the form of scalar weights. In the
first phase of the study, relative costs (or weights for) carlincss and tardiness of jobs are considered, and the dispatching rules are presented in order to minimize the sum of weighted earliness and weighted tardiness of jobs. In the second phase of the study, the objective considered is the minimization of the sum of weighted carliness, weighted tardiness and weighted flow time of jobs, and the dispatching rules are presented by incorporating the relative costs of carliness, tardiness and flow time of jobs. Simulation studics have been conducted separately for both phases of the current study, the perlomance of the scheduling rules have been observed independently, and the results of the simulation study have been reported. The proposed rules are found to be eflective in minimizing the mean and maximum values of the measures of performance [48].

This paper [49] studjes two models of two-stage processing with flow shop at the lirst stage followed by open shop at the second stage. The first model involves multiple machines at the first stage and two machines at the second stage, and the other involves multiple machines at both stages. In both models, the objective is to minimize the makespan. This problem is NP-complete, for which an efficient heuristic solution algorithm is constructed and its worst-case performance guatantec is analyzed for both models. An integer programming model and a branch and bound algorithm are proposed for model 1 and a lower bound is developed for model 2 as benchmarks for the heuristic algorithms. Computational experiences show that the heuristic algorithms consistently generate good schedule and the branch and bound algorithm is much efficient than the integerprogramming model.

This rescarch [50] presents an interesting scheduling problem common to freight consolidation terminals. 'This previously unstudied problern involves scheduling a set of inbound trailers to a fixed number of unload docks. The objective is to schedule the trailers to the unload docks to minimize the time span of the transfer operation. This study focuses on freight consolidation teminals in the parcel delivery industry. A simulation-based scheduling algorithen that uses a genetic algonithm to drive the search for new solutions is proposed. In addition to the introduction and discussion of the parcel hub seheduling
problem, the contribution of this rescarch is an approach that serves as the initial effor to solve this practical problem.

This work [51] presents the development and implementation of a production scheduling system for an electrical appliance manufacturer. Based on recent advances in optimizationbased scheduling approaches, two different software architectures based on two dillerent scheduling formulations, namely the RTN and the STN, are proposed to integrate information available in the different production units and stages with formal algorithmic tools. Optimization results indicate that signuficant coonomic benelits can be achicved (e.g. minimization of total operating costs) while ensuring full customer satisfaction as oposed to nomal practices followed in the company relying on human cxpertise. The work indicates that it is possible to solve real-life manufacturing problems using oplimizationbased approaches but the integration of information in a timely fashion seems to be a major factor in successfully implementing the system and fully realizing its benefits,

The paper [52] deals with the problen of finding a job sequence that minimizes the makespan in m-machine flow shops under the no-idle condition. This condition requires that each machine must process jobs without any interruption from the star of processing the first job to the completion of processing the last job. Since the problem is NP-hard, we propose a constructive heuristic for solving it that significantly outperforms heuristics known so far.

This paper $\{53\rceil$ considers the n-job, m-machine permutation flow shop with the objective of minimizing the mean flow time. Initial sequences that are structured to enhance the performance of local search lechniques are constructed from job rankings delivered by a trained neural network. The network's training is done by using data collected from optimal sequences obtained from solved examples of llow shop problems. Once trained, the neural network provides rankable measures that can be used to construct a sequence in which jobs are located as close as possible to the positions they would occupy in an optimal sequence. The contribution of these 'neural' sequences in improving the performance of some common local search techniques, such as adjacent pairwise interchange and Tabu search is
examined. Tests using initial sequences generated by different heuristics show that the sequences suggested by the ncural networks are more effective in directing neighborhood search methods to lower local optima.

This paper [54] deals with the production and preventive maintenance control problem for a multiple-machine manufucturing system. The objective of such a problem is to find the production and preventive maintenance rates for the machines so as to minimize the total cost of inventory/backlog, repair and preventive maintenance. A two-level hicrarchical control model is presented, and the structure of the control policy for both identical and non-identical manufacturing systems is described using parameters, refened to here as input factors. By combining analytical formalism with simulation-based statistical tools such as experimental design and response surface methodology, an approximation of the optimal control policies and values of input factors are determined. The results oblained extend those available in existing literalure to cover non-identical machine manufacturing systems. A numerical example and a sensitivity analysis are presented in order to illustrate the robustness of the proposed approach. The extension of the proposed production and preventive maintenance policies to cover large systems (multiple machines, multiple products) is discussed.

This paper [55] deals with the problem of sclecting and scheduling the orders to be processed by a manufacturing plant for immediate delivery to the customer site. Among the constraints to be considered are the limited production capacity, the available number of vehicles and the time windows within which orders must be served. At first the problem has been described as it occurs in praclice in some industrial cnvironnents, and then has been presented an integer progranming model that maximizes the profit due to the customer orders to be processed. A Tabu search-based solution procedure to solve this problem is developed and tested empirically with randomly generated problems. Comparisons with an exact procedure show that the method finds very good-quality solutions with small compulation requirements.

The genctic algorithm with scarch area adaptation (GSA) has a capacity for adapting to the structure of solution space and controlling the tradeoff balance between global and local searches, even if one does not adjust the parameters of the genetic algorithm (GA), such as crossover and/or mutation rates [56]. But, GSA needs the crossover opcrator that has ability for characteristic inheritance ratio control. In this paper, the modificd genetic algorithm has been proposed with search area alaptation (mGSA) for solving the Job-shop scheduling problem (ISP). Unlike GSA, the proposed method does not need such a crossover operator. To show the elfectiveness of the proposed method, numerical experiments have been conducted by using wo benchmark problems. It is shown that this method has better perfornance than cxisting Gas [56].

The effectiveness of the solution method based on simulated anncaling (SA) mainly depends on how to determine the SA-related parameters. A scheme as well as parameter values for defining an annealing schedule should be appropriately determined, since various schemes and their corresponding parameter values have a significant impact on the performance of SA algorithms. In this paper [57], based on robust design a now annealing parameter design method has been proposed for the mixed-model sequencing problem which is known to be NP -hard. To show the effectiveness of the proposed method, extensive computation experiments are conducted. It was found that the robust designed method oulperforms the SA algorithm.

One of the basic and significant problems [58], that a shop or a factory manager is encountered, is a suitable scheduling and sequencing of jobs on machincs. One type of scheduling problem is job shop scheduling. There are different machincs in a shop of which a job may require some or all these machines in some specific sequence. For solving this problem, the objective may be to minimize the makespan. After optimizing the makespan, the jobs sequencing must be carricd out for each machine. The above problem can be solved by a number of different methods such as branch and bound, cutting plane, heuristic methods, ctc. In recent years, rescarches have used genetic algorithms, simulated anncaling, and machine leaming methods for solving such problems. In this paper, a simulation model
is presented to work out job shop scheduling problems with the objective of minimizing makespan. The model has been coded by Visual SLAM which is a special simulation language. The structure of this language is based on the network modeling. Aller modeling the scheduling problem, the model is verified and validated. Then the computational results are presented and compared with other results repored in the literature. Finally, the model outpul is analyzed.

This paper [59] considers the problem of scheduling part families and jobs withn each part lamily in a flow shop manufacturing cell with sequence dependent family setups times where it is desired to minimize the makespan while processing parts (jobs) in each farnily together. Two evolutionary algorithms - a Genetic Agorithm and a Memetic Algorithn with local search - are proposed and empirically evaluated as to their effectivencss in finding optimal permutation schedules. The proposed algorithms use a compact represcntation for the solution and a hierarchically structured population where the number of possible neighborhoods is limited by dividing the population into clusters. In comparison to a Multi-Starl procedure, solutions obtained by the proposed evolutionary algorithms were very close to the lower bounds for all problem instances. Moreover, the comparison against the previous best algorithun, a heuristic named CMD, indicated a considerable performance improvement.

This paper 60] studies the single machine scheduling problem for the objective of minimizing the expected number of tardy jobs. Jobs have normally distributed processing times and a common deteministic due date. A new approach has been developed for this problem that generate near optimal solutions. The original stochastic problem is transformed into a non-lincar integer programming model and its relaxations. Computational study yalidates their effectiveness by comparison with optimal solutions.

This paper [61] considers the evaluation of the worst-case performance ratio between the best solution of the flow shop problem and the permutation flow shop with time delays considerations. It is observed that, even in the restricted case of two machines and unit execution time operations, the two models may generate different optimal values for the
makespan. More specifically, it is shown that, in the two-machine case, the performance ratio between the best permutation schedule and the best flow shop schedule is bounded by 2. When the operations of the n jobs are restricled to be unil exceution time, this ratio is reduced to $(2-(3 / n+2)$) for the two-machine case, and is m for the $n t$-machine case.

In this paper [62], tiltered and recovering bean search algorithms for the single machine earliness/tardiness scheduling problem with no idle time has been presented and compared them with existing neighborhood scarch and dispatch rule heuristics. Filtering procedures using both priority evaluation functions and problem-specific properties have been considered. The computational results show that the recovering beam search algorithms outperform their fillered counterpars, while the priority-based filtering procedure proves superior to the rules-based altemative. The best solutions are given by the neighborhood search algorithm, but this procedure is computationally intensive and can only be applied to small or medium size instances. The recovering beam search heuristic provides results that are close in solution quality and is significantly faster, so it can be used to solve even large problems.

Scheduling for the llexible job-shop [63] is very important in both lields of production management and combinatorial optimization. However, it is quite difficult to achicve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. The combining of several optimization criteria induces additional complexity and new problems. Particle swarm optimization is an evolutionary computation technique mimicking the behavior of flying birds and their means of information exchange. It combines local search (by sell experience) and global scarch (by neighboring experience), possessing high search eliciency. Simulated annealing (SA) as a local search algorithm employs certain probability to avoid becoming trapped in a local optimum and has been proved to be effective for a varicty of situations, including scheduling and sequencing. By reasonably hybridizing these two methodologics, an easily implemented hybrid approach for the multi-objective flexible job-shop sebeduling problem (FJSP) has been developed. The results obtained from the computational study have shown
that the proposed algorithm is a viable and effective approach for the multi-objective FJSP, especially for problems on a large scale.

In this study, a modified Pareto-optinal algorithm (deternining the trade-offs between total completion time and maximum lateness) is developed for the multi-criterion scheduling problen with periodic maintenance. The specific problem considered in this paper is to minimize flow time, maximum lateness and machine idle time. These multiple objectives are transformed into a single objective function, cost function, by using an aggregate weighted sum method. All possible weight combinations are calculated for cach sequence of Pareto-optimal set to present different level of importance of each objective. On the other hand, to generate various scts of Pareto-optimal scquences from different maintenance plans, different values for both time interval between two maintenance periods and amount of time to perform maintenance are computed for the same instance. Various maintenance plans give more flexibility to the scheduler (or decision-maker) to make a decision according to both his preferences and maintenance necessity/availability. A neighborhood search heuristic is also applied to the same instance in order to compare it with the modificd algorithm.

3.3 Problem Description

There are n independent non-preemptive jobs, that is, once a job is started it must be completed to process them on a single machine without interruption. Each job j becomes available for processing at ready time zero and has a due date d_{j}, At every T unit of time, the machine is seized to hold for maintenance. A number of jobs that are grouped together to fit in every T amount of time is a batch. There could be machine idle time, I_{b}, before the maintenance starts afler the last job in a batch is completed. The maintenance period is M which is also a fixed time. The total machine idle time is oblained by adding the idle time of all the batches.

The algorithm presented here for the problem combines all the criterions together in one schedule. The new approach starts with an initially obtained set of Parcto-optimal schedule
for llow time and maximum tardiness minimization problem. It then includes machine idle time I and maintenance time M in cach of these initially found sequences. Once the rescheduling of machine maintenance and ideness period of machine is completed, it then calculates the new values of flow time, matximum tardiness and machine idle time for which the assigned weights are w_{4}, w_{2}, and w_{3}, respectively. All possible weight combinations, satisfying $w_{I}+w_{2}+w_{3}=1$, are assigned for criterions in cach schedule of Pareto-optimal set. The minimum total cost among all the Parcto-optimal sequences according to certain weighted parameters gives the best sequence for the problem. It is clear that the problem is $N P$-hard since the problem that minimizes the maximum tardiness subject to periodic maintenance period and nonresumable jobs is $N P$-hard [41].

For two or more contradictory criterions, cach criterion corresponds to a different optimal solution, but none of these trade-off solutions is optimal with respect to all criterions [35]. Thus, multi-criterion optimization does not try to lind one optimal solution but a set of trade-off solutions. The fundamental difference is that multi-objectuve optimization deals with a set of Parcto-optimal solutions. The best schedule among the set that gives the most promising result for a particular set of weighted criterions is found.

Notation

The following notations are used throughout this work:
$n \quad$ Number of jobs for processing at time zero
$J_{J} \quad$ Job number $j,(j=1,2, \ldots, n)$
$p_{J} \quad$ Processing time of job j
$p_{t r} \quad$ Processing time of job j in batch i
C_{j} Completion time of job j
d. Due date of job j
$L_{j} \quad$ Lateness of job j, where $L_{j}=C_{j}-d_{j}$
$T_{j} \quad$ Tardiness of job j, where $T_{j}=\max \left\{0 ; L_{r}\right\}, L_{\text {max }}=\max _{j}\left\{T_{j}\right\}$
$T \quad$ Time interval between two maintenance periods

M Amount of time to perform one maintenance
$I_{b} \quad$ Machine idle time in batch $i,(i=1,2, \ldots, r)$
I Total machine idle time of a schcdule
$T_{b} \quad$ Tolal processing time for scheduled jobs in batch $i,(i=1,2, \ldots, r)$
$m \quad$ Iteration number.

3.4 Pareto-Optimal Algorithm

When there are multiple objectives, the concept of Pareto-optimality plays a role in scheduling. A schedule is Parcto-optimal if it is impossible to improve on one of the objectives without making at least one other objective worse. The scheduler may want to view a set of Pareto-optimal schedules before deciding which schedule to select, when there are multiple objectives. In this paper, the algorithm of determining trade-offs between total completion time and maximum lateness, initially proposed by Pinedo [34], is modified and extended, which includes periodic maintenance, In addition to the total completion time and the maximum lateness, the machine idle time is also considered as the third objective. A set of Parcto-optimal schedules represent the trade-olfs between total completion time, maximum lateness and machine idle time.

There are many sequencing rules that can be appted to the jobs through the machines in a job shop according to the preferences. Two of those basic sequencing rules, shortest processing time (SPT) and earliest due date (EDD) are adapted in the modifice Parctooptimal algorithm. For explanatory convenience, we define two lerms that are needed in the algorithm. The machine idle time of a batch, I_{b}, is defined as the time by sublracting the total processing time for scheduled jobs in a batch, $\mathcal{T}_{b t}$, from the time interval between two maintenance periods T (i.e., $I_{b r}=T-T_{b i}$). The total machine idle time of a schedule, I, is delined by summing all machine idle time of all batches (i.e., $I=\sum_{t=1}^{k} I_{b t}$).

Pareto-optimal algoritim determincs the trade-offs between total completion time and maximum lateness only as initially presented by Pinedo [34]. A third objective, machine
idle time, is added and the stated algorithm is modified and extended accordingly. The steps of the modified Pareto-optimal algorithm are outlined as follows:

Algorithm 1: Modified Pareto-Optimal Algorithm

Step 1. Set $m=1$ (number of iteration)
a) Schedule the jobs by SPT rule and apply EDD rule to the jobs with same processing time as schedule $S_{S P T / E D D}$
b) Compute $L_{\text {inax }}(S P T / E D D)$
c) Go to Step 8 to find machine idle time in the schedule $S_{S P T / E D O}$ and the revised $S_{S P T / E D D}$ is now called $S^{*} S_{Y T F D D}$ when maintenance time is included.

Step 2. Sct $m=2$
a) First schedule the jobs by EDD rule, and apply SPT rule to the jobs with same due date, as schedulc $S_{\text {FMPSST }}$
b) Compute $L_{\text {max }}(E D D / S P T)$
c) Go to Step 8 to find machine idle time in the schedule $S_{E D D S P T}$ and, on inclusion of maintenance time the revised $S_{\text {EDDSST }}$ is called $S_{\text {EDDNOT }}$.

Step 3. Iteration $m=3$.
Sel $I_{\text {min }}=L_{\text {max }}(E D D)$ and $\bar{d}_{s}=d_{s}+L_{\text {max }}$.
Step 4. Set $k=n, J^{c}=\{1, \ldots, n\}, \tau=\sum_{\mathrm{j}=1}^{\mathrm{n}} p_{\mathrm{J}}$ and $\delta=\tau$.
Step 5. Find j^{*} in J^{c} such that
$\bar{d}_{J^{*}} \geq \tau$, and $p_{J^{*}} \geq p_{i}$ for all jobs l in J^{\prime} such that $\bar{d}_{t} \geq \tau$.
Put job j^{*} in position k of the sequence.
Step 6. If there is no job ℓ such that $\vec{d}_{\varepsilon}<\tau$ and $p_{t}>p_{i}$, go to Step 7.
Otherwise find $j^{\prime \prime}$ such that $\tau-\bar{d}_{j}=\min \left(\tau-\bar{d}_{f}\right)$
For all ℓ such that $\bar{d}_{1}<\tau$ and $p_{r}>p_{p_{\mu}}$, Set $\delta^{*}=\tau-d_{1+\cdots}$.
If $\delta^{* *}<\delta$, then $\delta=\delta^{* *}$.
Step 7 . Set $k \leftarrow k-1$, and $\tau \leftarrow \tau-p_{j}$. Upate the set as $J^{t}=J^{t}-j^{*}$.
If $k \geq 1$ go to $\operatorname{Stcp} 5$.

Step 8. Generate a batch by grouping a set of jobs such that $\sum_{i=1}^{n} p_{j} \leq T$
Repeal grouping of the remaining jobs to form other batches.
Set $b_{i}=$ number of batches in one schedule, where $i=1,2, \ldots, r$.
Find machine idle time for one batch $I_{h t}=T-\sum_{j=1}^{n} p_{p}$
lind machine idle time for one schedule, $I=\sum_{i=1}^{\mu} I_{b l}$
Revise the schedule by adding the amount of time to perform maintenance, M, to the end of each batch.
Compute $\sum_{j-1}^{n} C_{i}^{*}, \dot{L}_{\max }^{*}$, and I^{*}.
Step 9. Set $L_{\text {max }}=L_{\text {max }}+\delta$.
If $L_{\text {max }} \leq L_{\text {max }}(S P T / E D D)$, sct $m=m+1, \bar{d}_{j}=\bar{d}_{1}+\delta$, and go to Step 4.
Otherwise STOP.

In Step 1, the algorithm starts with sequencing the jobs in SPT order, If two jobs have the same processing time, the job with smaller due date is placed earlier. Then $L_{\text {stmax }}(S P T / E D D)$ is calculated for this generated SPT/EDD schedutc. This $L_{\max }(S P T / E D D)$ value indicates when to stop the iterations in the algorithan. For the schedule of SPT/EDD ($S_{S / 7 / E D D}$), batches are generated by grouping scts of jobs according to $\sum_{j=1}^{n} p_{l} \leq T$.

The first Parcto-optimal schedule ($S_{S P T E D D}$) is oblained afler adding the maintenance time to the generated batches in $S_{S P T / E D D}$. The second Pareto-optimal schedule ($S_{\text {EDDSST }}^{*}$) is obtained in Step 2 which is similar to Step 1. The only difference is that instead of starting with SPT order, the procedure starts with EDD order and follows the same idea as in Step 1. In Step 3, due dates of the jobs anc increased by $L_{m a x}(E D D / S P T)$ for the next iteration. Step 4 calculates the total processing time for n jobs and assigns that value to d. Step 5 gencrates a Pareto-optinal schedule that minimizes $\sum_{f=j}^{n} C$, in which job k is scheduled last, if and only if
(i) $\bar{d}_{k} \geq \sum_{j=1}^{n} p_{j}$,
(ii) $j_{\star} \geq p_{t}$ for all jobs ℓ in J^{\prime} such that $\bar{d}, \geq \sum_{r=1}^{n} p_{i}$.

Step 6 determines the minimum increment δ in the $L_{m a r}$ that would allow for a decrease in the minimum $\sum_{j=1}^{n} C_{l}$ from the new generated Parcto-optimal schedule. Maintenance time is included to the generated Parcto-optimal schedule affer fomming the batches in Step 8. Three objective valucs $\left(\sum_{i=1}^{n} C_{j}^{*}, L_{\text {max }}{ }^{,}, I_{m+}^{*}\right)$ are also calculated at this point for all the Parcto-optimal schedules with periodic maintenance.

3.5 Computational Results with Bench Mark Data

Consider a single-machine scheduling problem with nine jobs, as given in Table 3.1, which is taken from Liao and Chen [41]. The time interval between two consecutive maintenances, T, is 8 hours and the amount of time to perform one maintenance, M, is 2 hours. Now, all possible Pareto-optimal schedules are generated to determine average flow time of jobs, \bar{F} $\left(=\sum_{j=1}^{q} C^{*}, / 9\right)$, job tardiness $L_{\text {max }}{ }^{*}$, and machine idle time I^{*} for nine jobs.

Table 3.1 The processing time and due dates (in hour) for 9-job problem*

Jobs	1	2	3	4	5	6	7	8	9
P_{j}	1	5	3	5	2	2	3	4	4
d_{1}	1	13	2	30	10	13	20	12	14

* Lias and Chen (2003).

Step 1 . An initial optimal schedule $S_{(S \mu T / H D D)}:<1-5-6-3-7-8-9-2-4>$ is found by arranging jobs in SPT order and followed by $d_{[j]} \leq d_{[k]}$ if $P_{j}=P_{k}$ and job j and k are adjacent (see Table 3.2). The maximum lateness, $L_{\text {max }}(S P T / E D D)$, cquals to 11 corresponding to job 2. Now Step 8 is applied to find the machine idle time after the insertion of maintenance.

Table 3.2 Parcto-optimal schcđule, $S_{\left(S P_{j i L D D}\right)}$

Jobs	1	5	6	3	7	8	9	2	4
P_{j}	1	2	2	3	3	4	4	5	5
d_{1}	1	10	13	2	20	12	14	13	30
C_{j}	1	3	5	8	11	15	19	24	29
L_{3}	-	-	-	6	-	3	5	11	-

Step 8. A maintenance of 2 hours is inscred into the optimal schedule ol Step 1 cvery 8 hours as shown in Table 3. Thus from the table, $L_{\text {mix }}{ }^{*}(S P T / E D D)=22, \sum C_{j}^{*}=1+3+5$ $+8+13+17+24+35+45=151$ and $I^{*}=0+1+4+3=8$ for the lirst Parcto-optimal schedule $S_{\left(S^{\prime} / L D m\right)}$: <1-5-6-3-7-8-9-2-4 $>$. Another possible Pareto-schedule is now sought in Step 2.

Table 3.3 Revised schedule $S_{\text {cprong, }}$ by inserling maintenance and idle times

Jobs	I	5	6	3	$I_{b 1}$	M_{1}	7	8	$I_{h 2}$	M_{2}	9	I_{03}	M_{3}	2	$I_{b 4}$	M_{4}	4
P_{r}	1	2	2	3	$\underline{0}$	2	3	4	$\underline{1}$	2	4	4	2	5	$\underline{3}$	2	5
d_{j}	1	10	13	2	-	-	20	12	-	-	14	-	-	13	-	-	30
C_{1}	1	1	3	5	8	8	10	13	17	18	20	24	28	30	35	38	40

Step 2. Now instead of finding $S_{\text {[sprsiry }}$, another schedule , $S_{(x y s)}$, ipl) , is obtained by litst applying EDD rule followed by SPT for the jobs with same due dates (not the same processing time as in $S_{\text {spr }}$, msy $)$. These computational results using Table 3.1 are reported in Table 3.4.

Table 3.4 Second Parcto-optimal schedule, $S_{(\text {(LDD/SAM }}$

Jobs	1	3	5	8	6	2	9	7	4
p_{1}	1	3	2	4	2	5	4	3	5
d_{1}	1	2	10	12	13	13	14	20	30
C_{1}	1	4	6	10	12	17	21	24	29
L_{r}	-	2	-	-	-	4	7	4	-

This yields $S_{\text {bobospl }}:<1-3-5-8-6-2-9-7-4>$ and $L_{\max }(E D D / S P T)=7$. As in the previous iteration, maintenance and machine idle times are considered for this Parcto-schedule in the next step.

Step 8. As beforc, after inserting the maintenance time with appropriate idle time into Table 3.4, the revised schedule is shown in Table 5 in which $L_{\max }{ }^{*}\left(E D D S S^{\prime}\right)=20$ corresponding to job $9 ; \sum C_{j}^{*}=1+4+6 \div 14+16+25+34+37+45=182$, and $I^{*}=2+2+3+1=8$ for the second Pareto-oplimal schedule, $S_{\text {tom }}^{*}{ }^{\prime \prime}:=\langle 1-3-5-8-6-2-9-7-4\rangle$.

Table 3.5 Revised schedule $S_{(F H \mu / S P T)}$ for second Pareto schedule.

Jobs	1	3	5	$I_{b 1}$	M_{1}	8	6	$I_{b 2}$	M_{2}	2	$I_{b j}$	M_{3}	9	7	$I_{b 4}$	M_{4}	4	
J_{r}	1	3	2	$\underline{2}$	2	4	2	$\underline{2}$	2	5	$\underline{3}$	2	4	3	1	2	5	
d_{j}	1	2	10	-	-	12	13	-	-	13	-	-	14	20	-	-	30	
C_{j}	1	1	4	6	8	10	14	16	18	20	25	28	30	34	37	38	40	45
L_{j}	-	2	-	-	-	2	3	-	-	12	-	-	20	17	-	-	15	

Step 3. $L_{\text {max }}=L_{\text {max }}(E D D / S P T)=7$ from Step 2 since $L_{\text {max }}(E D D / S P T) \leq L_{\text {max }}(S P T / E D D)$ always. Therefore the duc date is updated as $\bar{d}_{j}=d_{j}+7$ to get the third Pareto-optimal schedule according to \bar{d}_{3}. This is reported in Table 3.6.

Table 3.6 Updated $\bar{d}_{j}=d_{j}+7$ (in EDD order)

Jobs	1	3	5	8	6	2	9	7	4
d_{j}	1	2	10	12	13	13	14	20	30
\bar{d}_{j}	8	9	17	19	20	20	21	27	37

Step 4. Here, $f^{\prime}=\{1,2,3,4,5,6,7,8,9\}$, the tolal number of jobs, $k=\left|J^{\prime}\right|=9$, and total processing time of the remaining jobs, $\tau=\sum p_{s}=29$ and set $\delta=\tau=29$ (at the beginning). Step 5. J_{t} satisfies condition $\bar{d}_{r} \geq t(=29)$ and the corresponding f_{4} is 5. So J_{4} is scheduled as the last job in the sequence, $S_{t} \ll \ldots \quad 4>$.

Slep 6. None of the remaining jobs satisfies the conditions $\bar{d}_{p}<\tau$ and $p_{\mathrm{r}}>p_{j}$.
Step 7. The set statistics is updated as $J^{t}=\{1,2,3,5,6,7,8,9\}, k=\left|J^{c}\right|=8$, and $\tau=29-5=$ 24.

Since the Steps 5 to 7 are repeated likewisc in order to get the third Pareto-optimal schedulc, the results of this repeated search are summarized in Table 3.7, and the last search results in $S_{f}:<1,5,6,3,8,2,9,7,4>$ which, in tum, yiedds the thind Pareto optimal schedule as in lable 3.8. The maximum lateness for the third Pareto-optimal sehedule is $L_{\text {tud }}\left(S_{1}\right)=7$.

Table 3.7 Repetition of Steps 5 through 7

Job (i)	Processing lime (P)	Schedule (S)		δ	τ
4	5	$<\ldots$	$4>$	29	24
7	3	$<\ldots$	$7,4>$	3	21
9	4	$<\ldots$	$9,7,4>$	1	17
2	5	$<\ldots$	$2,9,7,4>$	1	12
8	4	$<\ldots$	$8,2,9,7,4\rangle$	1	8
3	3	$<\ldots$	$3,8,2,9,7,4\rangle$	1	5
6	2	$<\ldots, 6,3,8,2,9,7,4\rangle$	1	3	
5	2	$<\ldots, 6,3,8,2,9,7,4\rangle$	1	1	
1	1	$<1,5,6,3,8,2,9,7,4>$	1	0	

Table 3.8 l'hird Pareto-optimal schedule, S_{t}

Jobs	1	5	6	3	8	2	9	7	4
p_{j}	1	2	2	3	4	5	4	3	5
d_{3}	1	10	13	2	12	13	14	20	30
C_{j}	1	3	5	8	12	17	21	24	29
L_{j}	-	-	-	6	-	4	7	4	-

Step 8. So for S^{*} : $<$ 1-5-6-3-8-2-9-7-4> in Table 8, insertion of both mantenance and machine idle times lead to $L_{\text {max }}{ }^{*}\left(S_{1}\right)=20, \sum C_{1}^{2}=1+3+5+8+14+25+34+37+45=172$, and $I^{*}=0+4+3+1=8$. The revised schedule is shown in Tablc 3.9.

Table 3.9 Revised schedule S_{1}

Jobs	1	5	6	3	$I_{b 1}$	M_{1}	8	$I_{b 2}$	M_{2}	2	I_{61}	M_{3}	9	7	$I_{t 4}$	M_{4}	4	
p_{t}	1	2	2	3	0	2	4	4	2	5	3	2	4	3	$\underline{1}$	2	5	
$d_{,}$	1	10	13	2	-	-	12	-	-	13	-	-	14	20	-	-	30	
C_{t}	1	1	3	5	8	8	10	14	18	20	25	28	30	34	37	38	40	45
L_{1}	-	-	-	6	-	-	2	-	-	12	-	-	20	17	-	-	15	

Step 9. At this step, set $L_{\text {max }}=L_{\text {max }}+j=7+1=8$. Since $L_{\text {max }}=8<$ $L_{\text {nux }}(S P T / E D D)=11$, continue to the next iteration for another schedule. Table 3.10 summarizes the results of all the iterations to get a set of Parcto-optimal schedules.
rable 3.10 All the itcrations of the algorithm

Iteration \rightarrow	Schedule	Parcto-Optimal Sequence	$\sum_{j-1}^{\mathrm{n}} C_{j}, L_{\max } \cdot I_{\mathrm{m}}$	Cursent $d_{s}+\delta$	δ
1	SPT/EDD	$<1-5-6-3-7-8-9-2-4\rangle$	151, 22, 8	$30,20,14,13,13,12,10,2,1$	-
2	EDD/S ${ }^{\text {PT }}$	$\langle 1-3-5-8-6-2-9-7-4\rangle$	182, 20, 8	$30,20,14,13,13,12,10,2,1$	7
3	S_{1}	$<1-5-6-3-8-2-9-7-4\rangle$	172, 20, 8	37, 27, 21, 20, 20, 19, 17, 9, 8	1
4	S_{2}	<1-5-6-3-8-9-2-7-4>	137, 12, 0	38,28,22, 21, 21, 20, 18, 10,9	2
5	S_{3}	<1-5-6-3-7-8-2-9-4>	151,20,8	40, 30, 24, 23, 23, 22, 20, 12,11	1
6	S_{4}	$\langle 1-5-6 \times 3-7-8-9-2-4>$	151, 22,8	$41,31,25,24,24,23,21,13,12$	Stop

Afier generating all possible Pareto-optimal schedules with respect to job completion time \bar{F}^{+}, job tardiness $L_{\text {max }}{ }^{*}$, and machine idle time \dot{I}^{*} for nine jobs, the total weighted function, $c\left(\bar{F}^{*}, L_{\max }^{*}, \dot{H}^{*}\right)=w_{1}\left(\sum_{j=1}^{9} C_{1}^{*} / 9\right)+w_{2} L_{\max }^{*}+w_{3} I^{+}$, where $w_{1}=0.5, w_{2}=0.4, w_{3}=0.1$ (arbitrarily chosen) for 6 schedules is calculated [see Table 3.11]. The minimum-weighted schedule is $\left.S^{*}=S_{2}:<1-5-6-3-8-9-2-7-4\right\rangle$ corresponding to $c\left(\bar{F}^{*}, L_{\text {max }}, I^{*}\right)=12.411$.

Table 3.11 A Parcto-Optimal Set

Itcration, m	Schedule	Pareto-Optimal Sequence	$\sum_{j=1}^{9} C_{j}^{*}, L_{\text {man }}{ }^{*}, I_{m p}^{*}$	$c\left(\bar{F}^{*}, L_{\operatorname{axax}}{ }^{*}, I^{*}\right)$
1	SPT/EDD	$\langle 1-5-6-3-7-8-9-2-4\rangle$	151, 22, 8	17.989
2	EDD/SPT	<1-3-5-8-6-2-9-7-4>	182, 20, 8	18.91 t
3	S_{1}	$<1-5-6-3-8-2-9-7-4>$	172,20,8	18.356
4	S_{2}	<1-5-6-3-8-9-2-7-4>	137, 12, 0	12.411*
5	S_{3}	$<1-5-6-3-7-8-2-9-4>$	151,20,8	17.189
6	S_{4}	$<1-5-6-3-7.8-9-2-4\rangle$	151, 22, 8	I7.989

[^0]
3.6 Neighborhood Search Algorithm

As a second approach to the multi-criterion scheduling problem, a neighborhood scarch technique is considered. Many discrete optimization problems of practical interest cannot be solved optimally in the reasonable time. A practical approach to these problems is to use heuristics which do not guarantee the optimality of the solution, but near-optimal solutions can be obtained in a tolerable time limit. Neighborhood search starts with a feasible schedule and iteratively tries to improve the solution. At cach stage, it searches the "ncighborhood" of the current solution to find an improved solution. The search terminates when it finds a solution that is at least as good as any of its neighbors; such a solution is called a locally optimal solution. Typically, multiple runs of the neighborhood scarch are performed with different starting schedules called seeds, and the best locally optimal solution is selected. A comprehensive discussion of neighborhood search can be found in Ehrgott and Klamroth [64].
A method of taking one sequence as a seed and systematically crating a collection of related sequences is the generating mechanism. In this work, the single adjacent pairwise interchange opetation serves as a generating mechanism for the example. The neighborhood of the seed scquence is a list of $(n-1)=9-1=8$, distinct sequences for this particular generating mechanism. The single adjacent painvise interchange is $O\left(n^{2}\right)$ in size (Baker, 1998). The search is illustrated on the numerical example. The performance measure of all the neighborhood sequences that is evaluated with respect to the initial seed is the weighted function. The same weight combinations, as given earlier, are used to evaluate the objectives (See Tables 3.12, 3.13 and 3.14). The following steps of neighborhood search, initially presented by Baker [42], are applicd to the numerical example.

Algorithm 2: Neighborhood Search

Step 1.Obtain a sequence to be an initial seed and evaluate it with respect to the perfomance measure.

Step 2. Generate and evaluate all the sequences in the neighborhood of the seed. If none ol the sequences is better than the seed with respect to the perlonnance measure, stop. Otherwise proceed.

Step 3. Select one of the sequences in the neighborhood that improved the performance measure. Let this sequence be the now seed. Return to Step 2.

The single adjacent pairwise interchange mechanism is applied to the initial seeds, and the performance measure (weighted function) of each seed is compared with the perfornance measure of its neighborhood. Instead of generating all the sequences in the neighborhood of the seed, when a neighborhood gives an improved performance measure, the search stops, and that sequence becomes the new seed for the next stage. When a search of the new neighborhood produces no improvement, the search procedure leminates. The details of three seeds with their neighborhood sequences and their performance measures are presented in Tables 3.12, 3.13, and 3.14.

Table 3.12 Solution with a given initial seed, S: <1-2-3-4-5-6-7-8-9>

	Schedule	$\sum_{j=1}^{9} C_{r}, I_{\operatorname{mock}}, I_{a A}$	$0.5 \bar{F}^{2}+0.4 L_{\max }{ }^{*}+0.11^{2}$
Stage 1			
Seed:	1-2-3-4-5-6-7-8-9	183, 24, 3	20.067
Neighborhood:	2-1-3-4-5-6-7-8-9	187, 24, 3	20.289
	1-3-2-4-5-6-7-8-9	231,34, 11	27.533
	1-2-4-3-5-6-7-8-9	185,24,3	20.178
	1-2-3-5-4-6-7-8-9	201, 30, 7	23.867
	1-2-3-4-6-5-7-8-9	183, 24, 3	20.067
	1-2-3-4-5-7-6-8-9	184, 24, 3	21.122
	1-2-3-4-5-6-8-7-9	182, 23, 2	19.511* sclection
Stage 2			
New Sced:	1-2-3-4-5-6-8-7-9	182, 23, 2	19.511
Neighborhood:	2-1-3-4-5-6-8-7-9	186, 23, 2	19.733
	1-3-2-4-5-6-8-7-9	230, 33, 10	26.978
	1-2-4-3-5-6-8-7-9	184, 23, 2	19.622
	1-2-3-5-4-6-8-7-9	202, 30, 7	23.922
	1-2-3-4-6-5-8-7-9	182, 23, 2	19.511
	1-2-3-4-5-8-6-7-9	184, 23, 2	19.622
	1-2-3-4-5-6-7-8-9	183, 24, 3	20.067
	1-2-3-4-5-6-8-9-7	183, 20, 2	18.367* sclection
Stage 3			
New Seed:	1-2-3-4-5-6-8-9-7	183, 20, 2	18.367* selection
Neighbortood:	2-1-3-4-5-6-8-9-7	187, 20, 2	18.589
	1-3-2-4-5-6-8-9-7	240, 30, 10	26.333
	1-2-4-3-5-6-8-9-7	185,20,2	18.478
	1-2-3-5-4-6-8-9-7	202, 24, 6	21.422
	1-2-3-4-6-5-8-9-7	183, 20, 2	18.367* selection
	1-2-3-4-5-8-6-9-7	185, 20, 2	18.478
	1-2-3-4-5-6-9-8-7	183, 22, 2	19.167
	1-2-3-4-5-6-8-7-9	182, 23, 2	19.511

Search terminates with weighted functional value $=18.367$

To compare the modified Pareto-optimal algorithm with the neighborhood search heuristic in case of bench mark data, the same instance with parameters $T=8, M=2, w_{1}=0.5, w_{2}=$ 0.4 and $w_{3}=0.1$ is used. The neighborhood scarch heuristic gives the best near-optimal schedule as S : <I-5-6-3-7-2-8-9-4> with the mimimum weighted function equals to 18.367. On the other hand, the modified Pareto-optimal algorithm gives the best neat-optimal schedule as $\mathrm{S}:<1-5-6-3-8-9-2-7-4\rangle$ with the minimum weighted function equals to 12.410 . It can be coneluded that the modified Pareto-optimal algorithm provides a better result than the neighborhood scarch heuristic for this instance.

3.7 Computational Results with Real Life Data

Consider a single-machine scheduling problem with twelve jobs, as given in Figure 2.1, which is taken from a fumiture company. The time interval between two consecutive maintenances, T, is 25 hours and the amount of time to perform one maintenance, M, is 4 hours. Now, all possible Pareto-optimal schedules are generated to determine average flow time of jobs, $\bar{F}^{*}\left(=\sum_{j=1}^{y} C_{j}^{*} / 12\right)$, job tardiness $L_{m a x}$, and machine idle time I^{*} for nine jobs.

Table 3.13 The processing time and due dates (in minute) for 12-job problen*

Jobs	1	2	3	4	5	6	7	8	9	10	11	12
p,	10	12	12	9	6	5	7	7	8	8	7	5
d,	30	85	70	55	15	10	20	25	20	45	50	25

Step 1. An initial optimal schedule $S_{\left(S m^{\prime} / t i 00\right)}:<6-12-5-7-8-11-9-10-4-1-3-2>$ is found by arranging jobs in SPI order and followed by $d_{[j]} \leq d_{[k]}$ il $P_{1}=P_{k}$ and job j and k are adjacent (sce Table 3.14). The maximum lateness, $L_{\text {mux }}(S P T / E D D)$, equals to 42 corresponding to job 1 . Now Step 8 is applicd to find the machine idle time after the insertion of inaintenance.

Table 3.14 Pareto-optinal schedule, $S_{\left(s N^{\prime} /(m) m\right)}$

Jobs	6	12	5	7	8	11	9	10	4	1	3	2
P_{1}	5	5	6	7	7	7	8	8	9	10	12	12
d_{5}	10	25	15	20	25	50	20	45	55	30	70	85
C_{1}	5	10	16	23	30	37	45	53	62	72	84	96
L_{s}	0	0	1	3	5	0	25	8	7	42	14	11

Step 8. A maintenance of 4 hours is inserted into the optimal schedule of Step 1 every 25 hours as shown in Table 3.15 Thus from the table, $L_{\text {nax }}{ }^{\prime}(S P T / E D D)=67, \sum C_{f}^{*}=5+10$ $+16 \div 23+36+43+51+66+75+97+109+128=659$ and $I^{*}=2+3+8+3=16$ for
the lirst Parcto-optimal schedule $S_{\left(\mathrm{w}^{\prime} / \boldsymbol{m}_{1}\right)}:<6-12-5-7-8-11-9-10-4-1-3-2>$. The Cost $=$ 55.86. Another possible Pareto-schedule is now sought in Step 2.

Table 3.15 Revised schedule $S_{\text {sprptop }}$ by inserting maintenance and idle times

| Jobs | 6 | 12 | 5 | 7 | $I_{b 1}$ | M_{1} | 8 | 11 | 9 | $I_{b 2}$ | M_{2} | 10 | 4 | $I_{b 3}$ | M_{3} | 1 | 3 | $I_{b 4}$ | M_{4} | 2 |
| :---: |
| p_{j} | 5 | 5 | 6 | 7 | 2 | 4 | 7 | 7 | 8 | 3 | 4 | 8 | 9 | 8 | 4 | 10 | 12 | 3 | 4 | 12 |
| d_{1} | 10 | 25 | 15 | 20 | - | - | 25 | 50 | 20 | - | - | 45 | 55 | - | - | 30 | 70 | - | - | 85 |
| C_{1} | -5 | 10 | 16 | 23 | 25 | 29 | 36 | 43 | 51 | 54 | 58 | 66 | 75 | 83 | 87 | 97 | 109 | 112 | 116 | 128 |
| L_{j} | - | - | 1 | 3 | - | - | 11 | - | 31 | - | - | 21 | 20 | - | - | 67 | 39 | - | - | 43 |

 applying EDD rule followed by SPT for the jobs with same due dates (not the same processing time as in $S_{\text {(arm mon }}$). These computational results using Table 3.13 are reported in Table 3.16.

Table 3.16 Second Pareto-optimal schedule, $S_{\left(f, p o s, s^{p}\right)}$

Jobs	6	5	7	9	12	8	1	10	11	4	3	2
$p_{,}$	5	6	7	8	5	7	10	8	7	9	12	12
d_{1}	10	15	20	20	25	25	30	45	50	55	70	85
$C_{,}$	5	11	18	26	31	38	48	56	63	72	84	96
$L_{,}$	0	0	0	6	6	13	18	11	13	17	14	11

 previous iteration, maintenance and machine idle times are considered for this Paretoschedule in the next step.

Step 8. As before, afict insering the maintenance time with appropriate ide time into Table 3.16, the revised schedule is shown in Table 3.17 in which $L_{\text {max }}{ }^{*}(E D D S P T)=43$
corresponding to job $2 ; \sum C_{i}^{*}=5+11+18+37+42+49+68+76+83+96+108+128$ $=721$, and $I^{*}=7+5+0+4=16$ for the second Pareto-optimal schedule, $S_{\text {HRDNSTI }}$: $<6-5$ -7-9-12-8-1-10-11-4-3-2>. The Cost $=48.84$

I able 3.17 Revised schedule $S_{\left(10, s^{\prime} P^{\prime \prime}\right)}$ for second Parcto schedule.

Jobs	6	5	7	I_{61}	M1	9	12	8	I_{62}	M_{2}	1	10		$I_{b 3}$	M	4	3	$I_{b 4}$	M4	2
P,	5	6	7	7	4	8	5	7	5	4	10	8	7	0	4	9	12	4	4	12
d,	10	15	20	-		20	25	25	-		30	45	50	-		55	70			85
C^{\prime}	5	11	18	25	29	37	42	49	54	58	68	76	83	83	87	96	108	112	16	128
I_{3}	-	-	-	-	-	17	17	24	-	-	38	31	33	-	-	4	38	-	-	43

Step 3. $L_{\text {max }}=I_{\text {mux }}(E D D / S P T)=18$ from $\operatorname{Stcp} 2$ since $L_{\text {max }}(E D D / S P T)$ $\leq L_{\text {prax }}(S P T / E D D)$ always. Therefore the due date is updated as $\bar{d}_{j}=d_{t}+18$ to get the third Parcto-optimal schedule according to \bar{d}_{3}. This is reported in Table 3.18 .

Table 3.18 Updated $\bar{d}_{1}=d_{1}+18$ (in EDD onder)

Jobs	6	5	7	9	12	8	1	10	11	4	3	2
d,	10	15	20	20	25	25	30	45	50	55	70	85
\bar{d},	28	33	38	38	43	43	48	63	68	73	88	103

Step 4. Here, $J^{c}=\{1,2,3,4,5,6,7,8,9,10,11, I 2\}$, the total number of jobs, $k=\left|J^{c}\right|=12$, and total processing time of the remaining jobs, $\tau=\sum p_{j}=96$ and sct $\delta=\tau=96$ (at the beginning).

Step 5. J_{2} satislies condition $\bar{d}_{j^{*}} \geq \tau(=96)$ and the corresponding p_{2} is 5 . So J_{2} is scheduled as the last job in the sequence, $S_{j:<}$... $2>$.

Step 6. None of the remaining jobs satisfics the conditions $\bar{d}_{i}<\tau$ and $p_{,}>p_{j *}$.

Step 7. The set statistics is updated as $J^{c}=\{1,3,4,5,6,7,8,9,10,11,12\}, k=\left|J^{c}\right|=11$, and $t=$ $96-12=84$

Since the Steps 5 to 7 are repeated likewise in order to get the third Pareto-optimal schedule, the results of this repeated scarch are summarized in Table 3.19, and the last search results in $S_{f}:<6,12,5,7,8,9,1,11,10,4,3,2>$ which, in turn, yields the third Pareto optimal sehedule as in Table 3.20. The maximum lateness for the third Pareto-optimal schedule is $L_{\max }\left(S_{1}\right)=18$.

Table 3.19 Repetition of Steps 5 through 7

Job (j)	Processing Time (P_{j})	Schedule (6)	δ	t
2	12	<.........................2>	96	96
3	12	<.......................3,2>	96	84
4	9	<......................4,3,2>	96	72
10	8	$\langle\ldots10,4,3,2\rangle$	24	63
11	7	< $\ldots \ldots \ldots \ldots \ldots . . .11,10,4,3,2\rangle$	15	55
1	10	< $\ldots \ldots \ldots \ldots . .1,11,10,4,3,2>$	7	48
9	8	<,9, 1, 11, $10,4,3,2>$	7	38
8	7	$<\ldots \ldots8,9,1,11,10,4,3,2\rangle$	7	30
7	7	< $\ldots \ldots . . .7,8,9,1,11,10,4,3,2>$	7	23
5	6	< $\ldots . .55,7,8,9,1,11,10,4,3,2>$	7	16
12	5	$<\ldots 12,5,7,8,9,1,11,10,4,3,2\rangle$	7	10
6	5	$<6,12,5,7,8,9,1,11,10,4,3,2\rangle$	7	5

Table 3.20 Third Pareto-optimal schedule, S_{1}

Jobs	6	12	5	7	8	9	1	11	10	4	3	2
p_{3}	5	5	6	7	7	8	10	7	8	9	12	12
d_{j}	10	25	15	20	25	20	30	50	45	55	70	85
$C_{,}$	5	10	16	23	30	38	48	55	63	72	84	96
L_{j}	0	0	1	3	5	18	18	5	18	17	14	11

Step 8. So for S^{*} : <6-12-5-7-8-9-1-11-10-4-3-2 $>$ in Table 3.21, insertion of both maittenance and machine idle times lead to $L_{\text {max }}{ }^{*}\left(S_{1}\right)=29, \sum C_{j}^{*}=5+10+16+23+36+$ $44+54+65+73+82+99+111=618$, and $I^{*}=2+0+1=3$. The Cost $=37.65$. The revised schedule is shown in Table 3.21.

Table 3.21 Revised schedule S_{1}

Jobs	6	12	5	7	I_{61}	M_{1}	8	9	1	I_{62}	M_{2}	11	10	4	I_{53}	M_{3}	3	2
p_{1}	5	5	6	7	2	4	7	8	10	-	4	7	8	9	1	4	12	12
d_{j}	28	43	33	38	-	-	43	38	48	-	-	68	63	73	-	-	88	103
C_{5}	5	5	10	16	23	25	29	36 44 54 54 58 65 73 82 83 87 99	111									
L_{J}	-	-	1	3	-	-	11	24	24	-	-	15	28	27		-	29	26

Step 9. At this step, set $L_{\text {max }}=L_{\max }+\delta=18+7=25$. Since $L_{\operatorname{mux}}=25<L_{\max }(S P T / E D D)=$ 42, continue to the next iteration for another schedule.

Table 3.22 Repetition of Steps 5 through 7

Job (j)	Processing Time $\left(P_{j}\right)$	Schedule (S)	δ	τ
2	12	<.........................2>	96	96
3	12	<..........3,2>	96	84
4	9	<......................4,3,2>	96	72
10	8	<..,10,4,3,2>	17	63
1	10	<...............1,10,4,3,2>	8	55
9	8	< $\ldots . \ldots \ldots \ldots9,1,10,4,3,2\rangle$	8	45
11	7	<,..........11,9,1,10,4,3,2>	8	37
8	7	< $\ldots \ldots . \ldots . .8,11,9,1,10,4,3,2>$	8	30
7	7	< $\ldots \ldots \ldots . .7,8,11,9,1,10,4,3,2>$	8	23
5	6	$<\ldots \ldots .5,7,8,11,9,1,10,4,3,2>$	8	16
12	5	<...12,5,7,8,11,9,1,10,4,3,2>	8	10
6	5	$:\langle 6,12,5,7,8,11,9,1,10,4,3,2\rangle$	8	5

Fourh Pareto-optimal schedule, S_{2} by inscrting maintenance and idle time:
Table 3.23 Revised schedule S_{2}

Jobs	6	12	5	7	I_{61}	M_{1}	8	11	9	$J_{\text {b } 2}$	M_{2}	1			$I_{6} 3$	N		4	3		M_{4}	2
$p_{\text {j }}$	5	5	6	7	2	4	7	7	8	3	4	10			7			9	12	4	4	12
d)	35	50	40	45	-		50	75	45			55		0				80	95			110
C^{\prime}	5	10	16	23	25	29	36	43	51	54	58	68		6	83	87		96	108		116	128
L,	-		1	3	-	-	11	-	31	-	-	38		1	-			41	38		-	43

So for $\mathrm{S}_{2}{ }_{2}$: <6-12-5-7-8-11-9-1-10-4-3-2> in Table 3.23, insertion of both maintenance and machine idle times lead to $L_{\max }{ }^{*}\left(S_{2}\right)=43, \sum C_{j}{ }^{*}=5+10+16+23+36+43+51+68$ $+76+96+108+128=660$, and $I^{*}=2+3+7+4=16$. The Cost $=46.30$.

At this step, set $L_{\max }=L_{\max }+\delta=25+8=33$. Since $L_{\max }=33<L_{\operatorname{mux}}(S P T / E D D)=42$, continue to the next iteration for another schedule.
lable 3.24 Repetition of Steps 5 through 7

$\begin{aligned} & \text { Job } \\ & \text { (i) } \end{aligned}$	Processing Time $\left(P_{i}\right)$	Schedule (S)	δ	τ
2	12	<...............2>	96	96
3	12	<.......................3,2>	96	84
4	9	<.....................4,3,2>	96	72
1	10	<........1,4,3,2>	9	63
10	8	$\langle\ldots \ldots \ldots \ldots \ldots \ldots . .10,1,4,3,2\rangle$	9	53
9	8	<...............9,10,1,4,3,2>	9	45
11	7	< $\ldots11,9,10,1,4,3,2\rangle$	9	37
8	7	$\langle\ldots \ldots \ldots . .8,11,9,10,1,4,3,2\rangle$	9	30
7	7	<,........7,8, $11,9,10,1,4,3,2>$	9	23
5	6	$\langle\ldots \ldots . .5,7,8,11,9,10,1,4,3,2\rangle$	9	16
12	5	< $\ldots .12,5,7,8,11,9,10,1,4,3,2>$	9	10
6	5	: $\langle 6,12,5,7,8,11,9,10,1,4,3,2\rangle$	9	5

Fiflh Pareto-optimal schedule, S_{3} by inserting maintenance and idle time:
Table 3.25 Revised schedule S_{3}

Jobs	6	12	5	7	$I_{b 1}$	M	8	11	9	$l_{b 2}$		10	1	I_{63}	M_{3}	4	3		M_{4}	2
p,	5	5	6	7	2	4	7	7	8	3	4	8	10.	7	4	9	12	4	4	12
d	43	58	48	53	-		58	83	53	-		78	63	-		88	103	*		118
C^{\prime}	5	10	16	23	25	29	36	43	51	54	58	66	76	83	87	96	108			128
L,	-	-	1	3	-		11	-	31	-		21	46	-		41	38	-	-	43

So for $\mathrm{S}^{* 3}$: $\langle 6-12-5-7-8-1$ 1-9-10-1-4-3-2 \rangle in Table 325, insertion of both mantenance and machine idle times lead to $L_{\max }{ }^{*}\left(S_{3}\right)=43, \sum C_{1}^{*}=5+10+16+23+36+43+51+66+$ $76+96+108+128=658$, and $I^{*}=2+3+7+4=16$. The $\operatorname{Cost}=47.42$.

Al this step, sct $L_{\max }=L_{\max }+\delta=33+9=42$. Since $L_{\max }=L_{\text {pax }}(S P T / E D D)=42$, So, Slop

Table 3.26 Repetition of Steps 5 through 7

Job (j)	Processing Time $\left(P_{j}\right)$	Schedulc (S)	δ	τ
2	12	<.......................2>	96	96
3	12	<........................3,2>	96	84
1	10	<4,3,2>	96	72
4	9	<...................1,4,3,2>	9	63
10	8	<10, 1,4,3,2>	9	53
9	8	<..............9,10,1,4,3,2>	9	45
11	7	< $\ldots11,9,10,1,4,3,2>$	9	37
8	7	$<\ldots \ldots8,8,11,9,10,1,4,3,2\rangle$	9	30
7	7	<,.......7, $7,11,9,10,1,4,3,2\rangle$	9	23
5	6	< $\ldots \ldots . .5,7,8,11,9,10,1,4,3,2\rangle$	9	16
12	5	< $\ldots .12,5,7,8,11,9,10,1,4,3,2\rangle$	9	10
6	5	: $\langle 6,12,5,7,8,11,9,10,1,4,3,2\rangle$	9	5

Sixth Pareto-optimal schedule, S_{\uparrow} by inserting maintenance and idle time;
Table 3.27 Revised schedule S_{4}

| Jobs | 6 | 12 | 5 | 7 | $I_{b i}$ | M_{1} | 8 | 11 | 9 | $I_{b 2}$ | M_{2} | 10 | 4 | $I_{b 3}$ | M_{3} | 1 | 3 | $I_{b 4}$ | M_{4} | 2 |
| :---: |
| p_{1} | 5 | 5 | 6 | 7 | 2 | 4 | 7 | 7 | 8 | 3 | 4 | 8 | 9 | 8 | 4 | 10 | 12 | 3 | 4 | 12 |
| d_{1} | 52 | 67 | 57 | 62 | - | - | 67 | 92 | 62 | - | - | 87 | 97 | - | - | 72 | 112 | - | - | 127 |
| C_{1} | -5 | 10 | 16 | 23 | 25 | 29 | 36 | 43 | 51 | 54 | 58 | 66 | 75 | 83 | 87 | 97 | 109 | 112 | 116 | 128 |
| L_{j} | - | - | 1 | 3 | - | - | 11 | - | 31 | - | - | 21 | 20 | - | - | 67 | 39 | - | - | 43 |

So for S_{4}^{*} : $\langle 6$-12-5-7-8-11-9-10-4-1-3-2 \rangle in Table 3.27, insertion of both maintenance and machine ide times lead to $L_{\max }{ }^{*}\left(S_{4}\right)=43, \sum C_{j}{ }^{\prime}=5+10+16+23+36+43+51+66$ $+75+97+109+128=659$, and $\Gamma^{*}=2+3+8+3=16$. The Cost $=55.86$.

Table 3.28 All the itcrations of the algorithm

Iteration m	Scheduie	Pareto-Optima! Sequence	$\begin{aligned} & \sum_{j=1}^{12} C_{j}^{\prime} \\ & L_{\max }^{\prime}, I_{m}^{\prime} \end{aligned}$	Current $d_{j}+\delta$	δ
1	SPTIEDD	<6-2-5-7-7-11-9-10-4-1-3-2>	659, 67, 16	10, 25, 15, 20, 25, 50, 20, 45, 55, 30, 70, 85	-
2	ECDSPT		F2, 1, 43, i6	10, 15, 20, 20, 25, 25, $00.45,50,55,70,85$	18
3	S,	< $6-12-5-7-8 \cdot 9-1-11-10-4-3-2\rangle$	618.29, 3	28, 43, $33,38,43,38,48,68,63,73,88,103$	7
4	S_{7}	< 6-12-5-7-8-11-9-1-10-4.3-2>	660, 43, 16	35, 50, 40, 45, 50, 75, 45, 55, 70, 80, 95, 110	8
5	S 3	< $6-12-5-7 \cdot 8 \cdot 11-9 \cdot 10 \cdot 1-43-2>$	658,46, 16	43, 58, 48, 53, 58, 83, 53, 78,63, 88, 103, 118	9
6	Ss	$\langle 6-12-5-7-8-11-9-10-4-1-3-2\rangle$	659,67, 16	$52,67,57,62,67,92,62,87,97,72,112,127$	Stop

Alter generating all possible Pareto-oplimal schedules with respect to job completion time \bar{F}^{*}, job tardiness $L_{\text {mata }}{ }^{*}$, and machine idle time I^{*} for twelve jobs, the total weighted function, $c\left(\bar{F}^{*}, L_{\text {mas }}{ }^{2}, I^{2}\right)=w_{1}\left(\sum_{i=1}^{12} C_{i}^{2} / 12\right)+w_{2} L_{\text {llax }}+w_{3} I^{*}$, where $w_{l}=0.5, w_{2}=0.4, w_{3}=0.1$ (arbitrarily chosen) for 6 schedules is calculated [sce Table 3.28]. The minimum-weighted schedule is $S^{*}=S_{l}:<6-12-5-7-8-9-1-11-10-4-3-2>$ corresponding to $c\left(\bar{F}^{*}, L_{\max }, I^{*}\right)=$ 37.65.

Table 3.29 A Pareto-Optimal Set

Iterallon m	Schedule	Pareto-Opplimal Sequence	$\sum_{j=1}^{12} C_{j}{ }^{\prime}, L_{\text {max }}{ }^{\text {a }}$, $I_{\text {mit }}$	$c\left(\bar{F}^{*}, L_{\text {max }}{ }^{*}, I^{*}\right)$
1	SPT/EDD	<6-12-5-7-8-11-9-10-4-1-3-2>	659, 67, 16	55.86
2	EDDISPT	<6-5-7-9-12-8-1-10-11-4-3-2>	721, 43, 16	48.84
3	s_{1}	< 6-12-5-7-8-9-1-11-10-4-3.2>	618, 29, 3	37.65
4	S_{2}	<6-12-5-7-8-11-9-1-10-4-3-2 >	$660,43,16$	46.30
5	S_{3}	<6-12-5-7-8-11-9-10-1-4-3-2>	$658,46,16$	47.42
6	S_{4}	<6-12-5-7-8-11-9-10-4-1-3-2>	659, 67, 16	55.86

[^1]
3.8 Neighborhood Scarch Algorithm

As a second approach to the multi-criterion scheduling problem, a neighborhood scarch technique is considered. Many discrete optimization problerns of practical interest cannot be solved optimally in the reasonable time. A practical approach to these problems is to use heuristics which do not guarantee the optimality of the solution, but near-optimal solutions can be obtained in a tolerable time limit. Neighborhood search starts with a feasible schedule and iteratively trics to improve the solution. At each stage, it scarches the "neighborhood" of the current solution to find an improved solution. The search terminates when it finds a solution that is at least as good as any of its neighbors; such a solution is called a locally optimal solution. A method of taking one sequence as a seed and systematically creating a collection of related sequences is the generating mechanism. In this work, the single adjacent pairwise interchange operation serves as a generating mechanism for the example. The neighborhood of the seed sequence is a list of $(n-1)=12-1$ $=11$, distinct sequences for this paricular generating mechanism. The single adjacent pairwise interchange mechanism is applied to the initial seed, and the performance measure (weighted function) of each seed is compared with the pertomance measure of its neighborhood. Instead of generating all the sequences in the neighborhood of the seed, when a neighborhood gives an improved perfomance measure, the search stops, and that sequence becomes the new seed for the next stage. When a search of the new neighborhood produces no improvement, the search procedure terminates. The delails of the secd with their neighborhood sequences and their perfonnance measures are presented in Tables 3,30. Search terminates with weighted functional value $=68.917$

Table 3.30 Solution with a given initial seed, $S:\langle 1-2-3-4-5-6-7-8-9-10-11-12\rangle$

	Schedule	$\sum_{j=1}^{12} C^{\prime}{ }^{\prime}$	$L_{\text {max }}$	$I_{\text {m }}$	Cost
	Stage 1				
Seed: Neighborhood:	$\begin{aligned} & <1-2-3-4-5-6 \cdot 7 \cdot 8-9-10-11-12> \\ & <2-1-3-4-5-6 \cdot 7-8-9-10-11-12> \\ & \langle 1 \cdot 3-2-4-5-6 \cdot 7-7-9-10-11-12> \\ & <1-2-4-3-5-6-7-8-9-10-11-12> \end{aligned}$	$\begin{aligned} & 844 \\ & 846 \\ & 844 \\ & 841 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{r} 74.467 \\ 74.550 \\ 74.467 \\ 74.342^{*} \\ \hline \end{array}$
Stage 2					
New Seed: Neighbohood:	$\begin{aligned} & <1-2-4-3-5-6-7-8-9-10-11-12> \\ & <2-1-4-3-5-6-7-8-9-10-11-12> \\ & <1-4-2-3-5-6-7-8 \cdot 9-10-11-12> \\ & <1-2-3-4-5-6-7-8-9-10-1112> \\ & <1-2-4-5-3-6-7-8-9-10-1112> \\ & <1-2-4-3-6-5-7-8-9-10-11-12> \end{aligned}$	$\begin{aligned} & \hline 841 \\ & 843 \\ & 844 \\ & 844 \\ & 898 \\ & 840 \end{aligned}$	96 96 96 96 103 96	$\begin{gathered} \hline 9 \\ 9 \\ 9 \\ 9 \\ 16 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 74.342 \\ 74.425 \\ 74.467 \\ 74.467 \\ 80.217 \\ 74.300 * \end{gathered}$
Stage 3					
New Seed: Neighborhood:	<1-2-4-3-6-5-7-8-9-10-11-12> <2-1-4-3-6-5-7-8-9-10-11-12> <1-4.2-3-6-5-7-8-9-10-11-12> <1-2-3-4-6-5-7-8-9-10-11-12> <1-2-4-6-3-5-7-8-9-10-11-12> <1-2-4-3-5-6-7-8-9-10-11-12> <1-2-4-3-6-7-5-8-9-10-11-12> <1-2-4-3-6-5-8-7-9-10-11-12> <1-2-4-3-6-5-7-9-8-10-11-12> <1-2-4-3-6-5-7-8-10-9-11-12> <1-2-4-3-6-5-7-8-9-11-10-12>	$\begin{aligned} & 840 \\ & 842 \\ & 843 \\ & 843 \\ & 899 \\ & 841 \\ & 841 \\ & 840 \\ & 880 \\ & 840 \\ & 899 \end{aligned}$	$\begin{gathered} \hline 96 \\ 96 \\ 96 \\ 96 \\ 103 \\ 96 \\ 96 \\ 96 \\ 103 \\ 96 \\ 96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 16 \\ 9 \\ 9 \\ 9 \\ 9 \\ 16 \\ 9 \\ 9 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 74.300 \\ & 74.383 \\ & 74.425 \\ & 74.425 \\ & 80.258 \\ & 74.342 \\ & 74.342 \\ & 74300 \\ & 79.717 \\ & 74.300 \\ & 74.258{ }^{*} \\ & \hline \end{aligned}$
Stage 4					
New Seed: Neighborhood	<1-2-4-3-6-5-7-8-9-11-10-12> <2-14-3-6-5.7-8-9-11-10-12> <1-4-2-3-6-5-7-8-9-11-10-12> <1-2;-4-6-5-7-8-9-11-10-12> <1-2-4-6-3-5-7-8-9-11-10-12> <1-2-4-3-5-6-7-8-9-11-10-12> <1-2-4-3-6.7-5-8-9-11-10-12> <1-2-4-3-6-5-8-7-9-11-10-12> <1-2-4-3-6-5-7-9-8-11-10-12> <1-2-4-3-6-5.7-8-11-9-10-12>	839 841 842 842 900 840 840 839 887 838	$\begin{gathered} \hline 96 \\ 96 \\ 96 \\ 96 \\ 104 \\ 96 \\ 96 \\ 96 \\ 104 \\ 96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \\ 9 \\ 9 \\ 9 \\ 17 \\ 9 \\ 9 \\ 9 \\ 17 \\ 9 \\ \hline \end{gathered}$	74258 74.342 74.383 74.383 80.800 74.3010 74.300 74.258 80.258 74.217 *
Stage 5					
New Seed: Neighborhood:	$\begin{aligned} & <1-2-4-3-6-5 \cdot 7-8-11-9-10-12> \\ & <2-1-4-3-6-5 \cdot 7-8-11-9-10-12> \\ & <1-4-2-3-6-5-7-8-11-9-10-12> \\ & <1-2-3-4-6-5-7-8-11-9-10-12> \\ & <1-2-4-6-3-5-7-8-11-9-10-12> \\ & \langle 1-2-4-3-5-6-7-8-11-9-10-12> \end{aligned}$	$\begin{aligned} & 838 \\ & 840 \\ & 841 \\ & 841 \\ & 899 \\ & 839 \end{aligned}$	$\begin{aligned} & \hline 96 \\ & 96 \\ & 96 \\ & 96 \\ & 104 \\ & 96 \end{aligned}$	9 9 9 9 17 9	$\begin{aligned} & 74.217 \\ & 74.300 \\ & 74.342 \\ & 74.342 \\ & 80.758 \\ & 74.258 \end{aligned}$

To compare the modified Pareto-optimal algorithm with the neighborhood search heuristic in case of real life data, the same instance with parameters $T=25, M=4, w_{t}=0.5, w_{2}=0.4$ and $w_{3}=0.1$ is used. The neighborhood search heuristic gives the best near-optimal schedule as $\mathrm{S}:<1-2-4 \cdot 3-6-5 \cdot 7-11-6-9-12-10\rangle$ with the mininum weighted function equals to 68.917. On the other hand, the modified Pareto-optimal algorithm gives the best nearoptimal schedule as $\mathrm{S}:<6-12-5-7-8-9-1-11-10-4-3-2\rangle$ with the minimum weighted function equals to 37.65. It can be concluded that the modified Pareto-optimal algorithm provides a better result than the neighborhood search heuristic for this instance.

The same inslance shown in the example of real life data is repeated for nineteen levels of T $(12,13, \ldots, 30)$ and five levels of $M(4,5,6,7,8)$ to show the performance of various sets of Pareto-optimal schedules for different maintenance plans. Table 3.31 shows the costs of Pareto-optimal algorithm and neighborhood search method for a paricular weight combination and Table 3.32 shows for the all possible weight combinations. In both cases

Pareto-optimal algorithm gives better results than that of neighborhood search method. Also these have been shown in Figures 3.1, .., 3.10.

As the time to petform maintenance, M increascs, both the completion time and the maximum lateness increases too. On the other hand, as the time interval between two maintenance periods, T changes, all three objectives are changing as well because of forming different batches.

Table 3.31 Pareto vs Neighborhood: Costs from One Weight Combination ($w_{1}=0.5, w_{2}$ $=0.4, w_{3}=0.1$)

M	T	Parcto	Neighborhood
4	12	67.22	83.38
	13	72.34	79.62
	14	65.20	75.56
	15	58.85	80.57
	16	6064	85.59
	17	53.04	90.61
	18	56.29	72.57
	19	60.42	70.07
	20	48.65	71.34
	21	51.98	69.61
	22	55.40	67.72
	23	40.88	66.33
	24	43.59	68.97
	25	37.65	68.92
	26	39.73	61.70
	27	41.86	63.03
	28	43.98	57.16
	29	46.11	63.04
	30	38.21	60.82
	12	72,82	89.28
	13	77.86	84.82
	14	70.02	79.88
	15	63.11	84.89
	16	64.73	89.91
	17	56.61	94.93
	18	59.82	75.82
5	19	63.94	73.40

M	T	Pareto	Neighborhood
7	22	64.15	75.65
	23	47.81	73.06
	24	50.43	76.10
	25	43.13	75.39
	26	45.21	67.80
	27	47.33	69.13
	28	49.46	61.72
	29	51.58	68.77
	30	42.51	65.34
8	12	89.62	119.15
	13	94.41	100.79
	14	84.50	92.83
	15	75.88	97.84
	16	77.01	103.26
	17	67.31	108.68
	18	70.39	85.57
	19	74.52	83.40
	20	60.32	82.91
	21	63.65	82.28
	22	67.07	78.29
	23	50.03	75.70
	24	52.74	78.74
	25	44.95	77.95
	26	47.03	69.83
	27	49.16	71.17
	28	51.28	63.23
	29	53.41	70.68
	30	44.21	67.25

Table 3.32: Pareto vs Neighborhood: Costs from all Weight combinations ($w_{1}=0.1$ to 0.8 , $w_{2}=0.1$ to $0.8, w_{3}=0.1$ to 0.8 , and $\left.w_{1}+w_{2}+w_{3}=1.0\right)$

Pareio Optimal: Coste from One Weight Combination (wi=0.5, w2=0.4, w $3=0.1$)

Figure 3.1 Pareto Optinal: Costs from One Weight Combination.

Neighborhood Search: Costs from One Woight Combination (w1=0.5, w2=0.4, $w 3=0.1$)

Figure 3.2 Neighborhood Search: Costs from One Weight Combination

Pareto vs Neighborhood: Costs from One Weight Combination

 ($\mathbf{w} 1=0.5, \mathrm{w} 2=0.4, \mathrm{w} 3=0.1$), and Maintenance Time $\mathrm{M}=4$
ligure 3.3 Pareto vs Neighborhood: Costs from One Weight Combination

Pareto vs Neighborhood: Cosis from One Weight Combination ($\mathbf{w} 1=0.5, w_{2}=0.4, w^{3}=0.1$), and Maintenance Time $M=6$

Figure 3.4 Pareto vs Neighborhood: Costs from One Weight Combination

Pareto vs Neighborhood: Costs from One Weight Combination

 ($\mathbf{w} t=0.5, \mathrm{w} 2=0.4, \mathrm{w} 3=0.1$), and Maintenance Time $\mathrm{M}=8$

Figure 3.5 Pareto vs Neighborhood: Costs from One Weight Combination

Figure 3.6 Pareto Optimal: Costs from All Weight Combinations

Neighborhood Search: Costs from All Weight Combinations ($w 1=0.1$ to $0.8, w 2=0.1$ to $0.8, w 3=0.1$ to 0.8 , and $w 1+w 2+w 3=1.0$)

Figure 3.7 Neighborhood Search: Costs from All Weight Combinations

Figure 3.8 Parelo vs Neighborhood: Costs from all Weight combinations.

Pareto vs Neighborhood: Costs from All Weight Combinations ($w 1=0.1$ to $0.8, w 2=0.1$ to $0.8, w 3=0.1$ to 0.8 , and $w i+w 2+w 3=1.0$), and Waintenance Time $\mathrm{M}=6$

Figure 3.9 Pareto vs Neighborhood: Costs from all Weight combinations.

Pareto vs Neighborbood: Costs from All Weight Combinations ($w 1=0.1$ to $0.8, w 2=0.1$ to $0.8, w^{3}=0.1$ to 0.8 , and $w 1+w 2+w 3=1.0$), and Maintenance Time $\mathrm{M}=8$

Figure 3.10 Parcto vs Neighborhood: Costs from all Weight combinations.

Various maintenance plans give more flexibility to the scheduler (or decision-maker) to make a decision according to the prelerence and available maintenance altematives. Moreover, to transform multiple objectives into a single objective optimization problem, a weighted combination is considered. The weights may be time or situation dependent and sum of the weights must be equal to 1 . Typically, a sclueduler may not know the exact weights and may want to perform a parametric analysis to get a feeling for the trade-offs. In this work, all possible weight combinations of three objectives are perlormed to calculate the weighted function. lhese possible combinations for each schedule of Pareto-optimal set are also presented. The reason of presenting all the possible weight-combinations is that the imporance level of each objective can be diflerent according to the scheduler. These results are summarized in Appendix A. Appendix A provides cost of Pareto-optimal schedules which is dependent on total completion time, maximum Jaleness, and machine idle time for each combination of T and M for the all possible weight combinations. Table 3.29 only provides Pareto-optimal schedules with one possible weight combination (i.c., $w_{1}=0.5, w_{2}=$ $0.4, w_{3}=0.1$), while Appendix A provides information on the all possible weight combinations of thre objectives $\left(\bar{F}^{*}, L_{\text {max }}{ }^{*}, I^{*}\right)$. Also the sum of the costs of each Paretooptimal schedule for all the weight combinations is calculated in order to give an overall result of certain Pareto-optimal schedule. A schedule with the minimum sum of the costs is the best schedule within the set of Pareto-optimal schedules for a certain maintenance plan. Table 3.33 presents the sum of the costs of each Pareto-optimal schedule for all the weight combinations according to a certain maintenance plan. It also provides the Pareto-optimal schedule which gives the minimum cost for each maintenance plan. A decision maker can decide which Parcto-optimal schedule and which combination ol weights he/she wants to use according to an available maintenance plan (i.c., T and M values). It can be concluded that the objective $c\left(\bar{F}^{*}, L_{\text {nux }}{ }^{*}, I^{*}\right)$ is depended on T and M, and his shows the importance of a good mantenance plan. The minimum cost is 1002.00 for $\mathrm{T}=25$ and for $\mathrm{M}=4$.

Table 3.33 Summary of performance measures for all different alternative parameters

T	M	SPT/EDD	SPT/EDI	S[1]	S[2]	S[3]	S[4]
I2	4	2709.00	2014.00	2457.00	2457.00	2517.00	2709.00
	5	2860.00	2170.00	2632.00	2632.00	2656.00	2860.00
	6	3011.00	2326.00	2807.00	2807.00	2807.00	3011.00
	7	3162.00	2482.00	2982.00	2982.00	2982.00	3162.00
	8	3313.00	2638.00	3157.00	3157.00	3157.00	3313.00
13	4	2473.00	2264.00	2245.00	2245,00	2269.00	2473.00
	5	2603.00	2419.00	2399.00	2399.00	2399.00	2603.00
	6	2733.00	2574.00	2553.00	2553.00	2553.00	2733.00
	7	2863.00	2729.00	2707.00	2707.00	2707.00	2863.00
	8	2993.00	2884.00	2861.00	2861.00	2861.00	2993.00
14	4	2208.00	2527.00	2507.00	2004.00	2004.00	2208.00
	5	2319.00	2682.00	2661.00	2139.00	2139.00	2319.00
	6	2430.00	2837.00	2815.00	2274.00	2274.00	2430.00
	7	2541.00	2992.00	2969.00	2409.00	2409.00	2541.00
	8	2652.00	3147.00	3123.00	2544.00	2544.00	2652.00
15	4	2415.00	1758.00	1758.00	2235.00	2235.00	2415.00
	5	2526.00	1877.00	1877.00	2370.00	2370.00	2526.00
	6	2637.00	1996.00	1996.00	2505.00	2505.00	2637.00
	7	2748.00	2115.00	2115.00	2640,00	2640.00	2748.00
	8	2859.00	2234.00	2234.00	2775.00	2775.00	2859.00
16	4	2041.00	1961.00	1925.00	1885.00	1885.00	2041.00
	5	2132.00	2080.00	2042.00	2000.00	2000.00	2132.00
	6	2223.00	2199.00	2159.00	2115.00	2115.00	2223.00
	7	2314.00	2318.00	2276.00	2230.00	2230.00	2314.00
	8	2405.00	2437.00	2393.00	2345.00	2345.00	2405.00
17	4	1684.00	2164.00	1597.00	1573.00	2084.00	1684.00
	5	1759.00	2283.00	1698.00	1673.00	2199.00	1759.00
	6	1834.00	2402.00	1799.00	1773.00	2314.00	1834.00
	7	1909.00	2521.00	1900.00	1873.00	2429.00	1909.00
	8	1984.00	2640.00	2001.00	1973.00	2544.00	1984.00
18	4	1831.00	1725.00	1723.00	1725.00	1723.00	1831.00
	5	1906.00	1824.00	1822.00	1824.00	1822.00	1906.00
	6	1981.00	1923.00	1921.00	1923.00	1921.00	1981.00
	7	2056.00	2022.00	2020.00	2022.00	2020.00	2056.00
	8	2131.00	2121.00	2119.00	2121.00	2119.00	2131.00
19	4	1978.00	1896.00	1894.00	1896.00	1894.00	1978.00
	5	2053.00	1995.00	1993.00	I995.00	1993.00	2053.00
	6	2128.00	2094.00	2092.00	2094.00	2092.00	2128.00
	7	2203.00	2193.00	2191.00	2193.00	2191.00	2203.00
	8	2290.00	2292.00	2290.00	2292.00	2290.00	2290.00
20	4	2125.00	1434.00	2065.00	2067.00	2065.00	2125.00
	5	2200.00	1516.00	2164.00	2166.00	2164.00	2200.00
	6	2275.00	1598.00	2263.00	2265.00	2263.00	2275.00
	7	2362.00	1680.00	2362.00	2364.00	2362.00	2362.00
	8	2461.00	1762.00	2461.00	2463.00	2461.00	2461.00
21	4	1719.00	1576.00	1667.00	1574.00	1612.00	1719.00
	5	1777.00	1658.00	1740.00	1656.00	1670.00	1777.00
	6	1835.00	1740.00	1813.00	1738,00	1740.00	1835.00

* Mitiomum sum of the cost for each maintenance plan

3.9 Conclusion

A multi-criterion non-preemptive scheduling that reduces the total cost of the problem is considered in this sludy. Three criterions are considered; reduction of flow time, maximum tardiness, and machine idle time in a periodically maintained single machine problcm. The trade-olfs betwen the flow time and maximum tardiness is comparatively simple, but the trade-ofl between minimum flow time, maximum tardiness and machine idle time is a complex problem. In this study a new kind of approach that allows the use of weighted aggregation of the criterions is presented. The new approach started with an initially obtained set of Pareto-optimal schedule for flow time and maximum Lardness minimization problem. It then introduces machine idle time and maintenance time in each of these initially found sequences. Once the rescheduling of machine maintenance and idleness period of machine is completed, it then calculates the new values of flow time, maximum tardiness and machine idle time. All possible weight combinations for the criterions are computed. The search for the minimum total cost among all the Parcto-optimal schedules with the assigned weights on crterions is obtained. Finally, a promising sequence is chosen that gives the minimum total cost for a particular set of weights on the criterions.

A modified Pareto-oplimal algorithm for such technique has been devised and several properties associated with problem have also been investigated. An algorithm for neighborhood search technique has been proposed to provide the near-optimal solution for the problem. The performance of the modified Pareto-optimal algorithm has been cvaluated by comparing its solution with the solutions derived by the neighborhood scarch heuristic. Results have shown that the modified Pareto-optimal algorithm provides a better solution than the neighborhood scarch heuristic, and this shows the efficiency of the modified Parcto-optimal algorithin

Chapter 4 Distribution

4.1 Introduction

Supply-chain management seeks to synchronize a firm's processes and those of its suppliers to match the flow of matcrials, services, and information with customer demand. Supplychain management has strategic implications because the supply system can be used to achieve important competitive priorities. It also involves the coordination of key processes in the firm stech as order placement, order fulfillment, and purchasing, which are supported by marketing, finance, engineering, infomation systems, operations and logistics.

Successful supply-chain management requires a high degree of lurctional and organizational integration. The interconnected set of linkages between suppliers of matcrials and services that spans the transfomation of raw materials into products and services and delivers them to a firm's customers is known as the supply-chain. The value of supply-chain management becomes apparent when the complexity of the supply-chain is recognized. The performance of numerous suppliers deternines the inward flow of materials. The performance of the firm's marketing, production, and distribution processes determines the outward flow of products. Traditionally, organizations have divided the responsibility for managing the flow of materials and services among three deparments: purchasing, production, and distribution.

Distribution is the management of the flow of materials from manufacturers to customers and from warehouses to retailers, involving the storage and transportation of products. It may also be responsible for Itnished goods inventories and the selection of transportation service providers. Typically, firms are willing to undergo the rigors of developing integrated supply-chain progress through a series of phases. The starting point for most fims, external suppliers and customers are considered to be independent of the firm. Relations with this
entities are formal, and there is litle sharing of operating information and costs. Internally, purchasing, production, and distribution act independently, each optimiaing its own activities without considering other entitics. Traditionally, it is assumed that a parameter needs to be optimized through right operations management technique. However, there is no basis as to why a particular parameter is selected as the objective function. This research provides an idea that AHP which is a technique of MCDM (Multi Critcria Decision Making) tcehnique can be used to justify selection of the right parameter as the objective function of an optimization technique.

Afier determining where the demand for goods and services is greatest, management must select a location for the facility that will supply that demand. For warehousing and distribution operations, transporation costs and proximity to markets are extremely important. With a warehouse nearby, many fims can hold inventory closer to the customer, thus reducing delivery time, transportation cost and promoting sales.

4.2 Multi Criteria Decision Making

In many real world situations, there are many, often conflicting, objectives. For instance, if there are multiple potential suppliers requiting evaluation with conflicting criteria, such as quality of material, timely delivery, price, quickness of delivery, manatging sudden ordering, etc., then it requires a solution [65, 66]. Or, in selecting the right communication system, several conflicting criteria, such as speed of communication, cost, reliability of transaction, maintainability, ctc. becomes important, which requires a combination of qualitative and quantitative solution [67]. As another instance, a multi criteria solution is required when a selecting the right manufacturing system or material handling system out of many available ones [68]. In an advertising campaign, there might be a number of diflerent market segments to reach. In lire station problem, there might be two types of objectives: minimizing response time and minimizing service cost. The models discussed herc,
however, only allow one objective. How can they be adapted to handle multiple objectives? This requires Multi Critcria Decision making (MCDM) [69].

However, there arc a number of fundamental problems when there are multiple objectives. For instance, in case where there are a number of decision makers. cach with a preference ordering over a number of alternatives. The goal is to choose the "fair" alternative that aggeregates the preferences of the decision makers. This is an example of multiple criteria decision making (each decision makers represents one criteria), and it is required to balance those objectives in a fair way. The field of study that addresses these problems is called MCDM, and is filled with pessimistic results [65].

These issues of aggregating views about allematives are difficult cven with a single decision maker (or a group trying to reach consensus). Imagine trying to locate an "obnoxious facility", like a waste disposal plant. There are many factors that go into such a decision. These might include distance from highly populated arcas, transportation costs, land costs, geological stability, and so on. Is there any organized way that one might think about deternining the relative importance of these factors and then go about comparing alternative sitcs? One technique that is nsed is the Analytic Hiercrehy Process (AHP), which uses very simple calculations to try to put numerical values on factors and alternatives $[70,71]$.

Finally, a logical question follows as to how these models be used in more complicated situations, where the choice is not just a number of alternatives, but rather an entire decision set, say represented by a linear program. Obviously, a lincar programming approach to such situations will at least theoretically provide beter solutions. But it has been proved in many situations that MCDM, more specifically AIIP, can offset the benefits of more fine-tuncd optimality over possibility of getting a solution in a realistic time period [72].

4.3 Basic Concepts of Analytic Hierarchy Process (AHP)

Developed by Thomas Saaty, AHP provides a proven, effective ineans to deal with complex decision making and can assist with identifying and weighting selection criteria, analyzing the data collected for the criteria and expediting the decision-making process [70-72]. A large number of situations, with varieties of variables, have been analyzed using AHP method [73-74].

AHP helps capture both subjective and objective evaluation measures, providing a useful mechanism for checking the consistency of the evaluation measures and alkematives suggested by the leam thus reducing bias in decision making. Combined with meeting autumation, organizations can minimize common pitlalls of team decision making process, such as lack of focus planning, participation or ownership, which ultimalely are costly distractions that can prevent teams from inaking the right choice.

The first step is for the team to decompose the goal into its constituent parts, progressing from the general to the specilic. In its simplest form, this structure comprises a goal, criteria and alternative levels. Each set of alternatives would then be lurther divided into an appropriate level of detail, recognizing that the more critcria included, the less important each individual criterion may become.

Next, a relative weight is assigned to each onc. Each criterion has a local (immediate) and global priority. I'he sum of all the criteria beneath a given parent critcrion in cach ticr of the model must equal one. Its global priority shows its relative importance within the overall model

Finally, after the criteria are weighted and the information is collected, put the information into the model. Scoring is on a relative basis, not an absolute basis, comparing one choice to another. Relative scores for cach choice are computed within each leal of the hicrarchy. Scores are then synthesised through the model, yielding a composite score for cach choice at every tier, as well as an overall score.

Theoretical Details of AHP

Analytic hierarchy is a framework for solving a problem. I he analytic hierarchy process is a systematic procedure for representing the elements of any problem. It organices the basic rationality by breaking down a problem into its smaller constituents and then calls for pairwise comparison judgents, to develop prioritics in cach level.

The analylic hicrarchy process provides a comprehensive framework to cope with intuitive, rational, and irrational factors in making judgments at the same time. It is a method of integrating perceptions and purposes into an overall synthesis. The analytic hietarchy process does not require that judgments be consistent or even transitive. The degree of consistency (or inconsistency) of the judgment is revealed at the end of the analytic hicrarchy process.

People making comparisons use their feelings and judgment. Both vary in intensity. To distinguish among different intensities, the scale of absolute numbers in the table is usefith.

Table 4.1 Measurement scalc

Intensity of relative importance	Explanation
1 (equal importance)	Two activities contribute cqually to the obicetive
3 (slight importance of one over another)	Experience and judgment sligbtly favor one activity over another
5 (essential or strong importance)	Experience and judgnent strongly favor one activity over another
7 (demonstrated importance)	An activity is strongly lavored and its dominance is demonstrated in practice
9 (absolute importance)	Ihc cvidence favoring one activity over another is of the highest possible order of affirmation
$2,4,6,8$ (internediate values between the two adjacent judgments)	When compromise is needed
Reciprocals of above nonzero numbers (if an activity has one of the above numbers assigned to it when compared with second activity, the second activity has the reciprocal value when compared to the first)	

The analytic hicrarchy process can be decomposed into the following steps. Particular steps may be emphasized more in some situations than in others. Also as noted, interaction is genetally uscful for stimulation and for representing different points of view.

1. Define the problern and determine what knowledge is sought.
2. Structure the hicrarchy from the top (the objectives from a broad perspective) through the intermediate levels (criteria on which subsequent levels depend) to the lowest level (which usually is a list of the alternatives).
3. Construct a set of pair-wise comparison matrices for cach of the lower levels, one matrix for each element in the level immediately above. An element in the higher Level is said to be a governing element for those in the lower level since it contributes to it or affects it. In a complete simple hierarchy, every element in the lower level alfects every element in the upper level. The elements in the lower level are then compared to each other, based on their effect on the governing element above. This yiclds a square matrix of judgments. The pair-wise comparisons are done in terms of which clement dominates the other. These judgments are then expressed as integers according to the judgment values in the table. If element A dominates element B , then the whole number integer is entered in row A , column B , and the reciprocal (fraction) is cntered in row B, column A .
4. There are $n(n-1) / 2$ judgments required to develop the set of matrices in step 3 , where n is the number of elements in the lower level.
5. Having collected all the pair-wise comparison data and entered the reciprocals together with n unit entries down the main diagonal, the eigenvalue problem $A w=$ $\lambda_{\text {mux }} w$ is solved and consistency is tested, using the departure of $\lambda_{\text {max }}$ from n (see below).
6. Steps 3, 4, and 5 are performed for all levels and clusters in the hicrarchy.
7. Hierarchal composition is now used to weigh the eigenvectors by the weights of the criteria, and the sum is taken over all weighted cigenvector entries corresponding to those in the lower level of the hicrarchy.
8. The consistency ratio of the entire hicrarchy is found by multiplying each consistency index by the priority of the corresponding criterion and adding them together. The result is then divided by the same type of expression, using the random consistency index corresponding to the dimensions of each matrix weighted by the priorities as before. The consistency ratio should he about 10% or less to be acceptable. If not, the quality of the judgments shoutd be improved, perhaps by revising the manner in which questions are asked in making the pair-wise comparisons. If this should lail to improve consistency, it is likely that the problem should be more accurately structured; that is, similar elements should be grouped under more meaningful criteria. A return to step 2 would be required, allhough only the problematic parts of the hictarchy may need revision.

The main advanlage of this method is its ability to handle a complex problem to prepare a hicrarchy of choice and reasons of choices through decomposition and synthesis. It can compare different alternatives and atlibutes using a scale of relative importance.

The numerical results of atributes are presented to the decision maker to assign relative importance according to a predefined scale. Now a judgment matrix is prepared. It is an ($n \times$ n) matrix. From the judgment matrix, nomalized weights are calculated as follows.

$$
\left[\begin{array}{cccccc}
1 & a_{12} & \cdots & a_{1 k} & \cdots & a_{1 n} \\
a_{21} & 1 & \cdots & a_{2 k} & \cdots & a_{2 n} \\
a_{k 1} & a_{k 2} & \cdots & 1 & \cdots & a_{k n} \\
a_{n 1} & a_{n 2} & \cdots & a_{n k} & \cdots & 1
\end{array}\right] \xrightarrow{\text { Germmetric mean }}\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{k} \\
b_{n}
\end{array}\right] \xrightarrow{\text { Normalized weights }}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{k} \\
x_{n}
\end{array}\right]
$$

where, i and j are the altenatives or attributes to be compared. $a_{y g}$ is a value which represents comparison between alternatives / altributes i and j.

The above judgment matrix may be consistent if $a_{y j}, a_{j k}=a_{i j}$ for all values of i, j, k.
In the above matrix, sum of all elements in a column is

$$
y_{k}=\sum_{j=1}^{j=n} a_{j}
$$

where $k=1,2, \ldots n$ and $j=1,2, \ldots n$.

Gcometric mean is calculated from the clements of rows as follows

$$
b_{k}=\left[\left(a_{k 1}\right),\left(a_{k 2}\right) \ldots\left(a_{k n}\right)\right]^{1 / n}
$$

where $k=1,2, \ldots n$.

Nomalized weights are calculated as follows

$$
X_{k}=\frac{b_{k}}{\sum_{k=1}^{k=n} b_{k}}
$$

Saty's measure of consistency is done in temas of consistency index (C.1)

$$
\text { C.I }=\frac{\lambda_{\text {max }}-n}{n-1},
$$

where $\lambda_{\text {tnax }}=y_{1} x_{1}+y_{2} x_{2}+\cdots+y_{k} x_{k}+\cdots+y_{n} x_{n}=\sum_{k=1}^{k=n} y_{k} x_{k}$

$$
=\text { largest Eigen value of matrix of order } n \text {. }
$$

Now, some randomly generated consistency index (R.I.) values are as follows:

n	1	2	3	4	5	6	7	8	9	10
R.I.	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

Acceptability of altemative or attribute is measured in terms of Consistency Ratio (C.R.).

$$
\mathrm{C}, \mathrm{R}=\frac{C I}{R . I}
$$

If C.R. $\leq 10 \%$, then the altemative or attribute is considerable; otherwise, the altemative or attribute is rejected. The over-all consistency may also be measured to justify the validity of selection.

Use of AHP in this Research

It has been applied in complex material planning system. For instance, many organizations keep thousands of items in their warchouses, which at times may be in excess of 50% of all
the company's expenses. Each item typically possesses its own unique characteristics, since these are typically sourced from different suppliers. Under these circumstances, it may not be rational or economical to deal with each item via a gencric material control system (either push or pull system). A multi-criteria approach that utilizes the Analytic Hierarchy Process (AHP) has been reported in an occasion. The paper proposes a modificd AIIP, such that it is able to classify the materials and components for dilferent Material Planning and Control Systems (MPCS), i.e. Kamban, MRP, hybrid, and Re-Order Point (ROP) Systems. This modified AHP is better at rising to the challenge of diversity of material characteristics in deriving an optimal decision for MPCS system selection [75]. This research aims at utilizing this concept in evaluating a different situation of material planning, where the right parameter needs to be selected through AHP. Traditionally, it is assumed that a parameter needs to be optimized through right operations management technique. However, there is no basis as to why a particular parametcr is selected as the objective function. This rescarch provides an idea that AIIP can be used to justify selection of the right parameter as the objective function of an optimization technique.

4.4 Problem Description

Manulacturing firms rarely sell directly to the ultimate customer. Some buyers are manufacturing firms that buy products and serviecs and incorporate them into their own output. Other buycrs are wholesalers, retailers and distribution firms who buy the products and then distribute them further down the chain towards the ultimate customers.

What difference does it make whether the firms acts as the buyer from supplicrs or a suppliers to other buyers? Buyers talk about such things as schedules, lot sizes, costs, lead times, and just-in-time delivery. Firms often take this as a given when finding suppliers who comply with their demands. Schedules sent to the firm by their customers may not fit their schedules. The just-in-time deliveries that the firms demand from their vendors may not be compatible with, for example, their job-shop production.

The principles of MRP can also be applied to distribution inventories, or stocks of items held at retailers and distribution centers. Consider the distribution system of which the top level represents retail stores at various locations through the country. The middle levels are regional distribution centers that replenish retail store inventories on request. The bottom level consists of one or more plants that supply the distribution centers.

The distribution planning is an inventory control and scheduling technique that applies MRP principles to distribution inventories. An inventory record is maintained for each item at each location. Use of distribution plaming requires an integrated information systern. If the manufacturcrs operates its own distribution centers and retail stores, called fixed quantity model or self distribution, gathering demand information and relaying it back to the plants is casy. If the manufacturer does not own the distribution centers and retail stores then it is called fixed time period model or contacted distribution. In this research work three models are considered.

1) Fixed -quantity model or Self distribution model $\left(\mathrm{M}_{1}\right)$,
2) Fixed- lime period model or Contracted distribution model $\left(\mathrm{M}_{2}\right)$,
3) Partly self and parly contracted distribution or Mixed model $\left(\mathrm{M}_{3}\right)$.

The basic distinction is that fixed-order quantity models are "event triggered" and fixedtime period models are "time triggered." That is, a lined-order quantity model initiates an order when the event of reaching a specified reorder level occurs. This event may take place at any time, depending on the demand for the items considered, i.e. it is under hirm's control. In contrast, the fixed-lime period model is limited to placing orders at the end of a predetermined period; only the passage of time triggers the model. To use the fixed-order quantity model which places an order when the remaining inventory drops to a predetermined order point, the inventory remaining must be continually monitored. Thus, the fixed-order quantity model is a perpetual system, which requires that every time a withdrawal from inventory or an addition to inventory is made, records must be updated
to ensure that the reorder point has or has not been reached. In a fixed-time period model counting takes place only at the revicw period.

In this research work it has been assumed that there are four criteria that are being used to evaluate distribution model. Four criteria are management effort, cost, integration, reliability. Further, it has been assumed that there are three distribution models ($\mathrm{M}_{1}, \mathrm{M}_{2}$. M_{3}).

Management effort: The idea is to apply a total system approach to managing the flow of information, materials, and services from raw material suppliers through factorics and warehouses to the end customer. Recent trends such as outsourcing and mass customication are forcing companies to find flexible ways to meet customer demand. The focus is on optimizing those core activities to maximize the speed of response to changes in customer expectations.

For many years, lew companies regarded the operating processes of a firm as a source of competitive advantage. The goals of the lim relating to operations were cost reduction and improved labor utilization. Decisions were made on narrow, tactical grounds. This was the domain of the technically oriented engineering specialists. Little attention was paid to how the processes, which deliver the goods and services of the firm, fit with its strategy. To regain a competitive position, western managers realized that major change wás required. Operations had to become an integral part of the corporate strategy. This corporate strategy had to be responsive to the needs of the firm's customers. Companies learned how different eustomers had different priorities. The old idea that cost minimization was always the goal was shatlered. A new field called operations strategy emerged.

Operations strategy offers a new perspective about opcrations problems, as well as a new set of concepts and techniques. The new perspective relates to the context within which decisions are made. This context considers the needs ol customer together with the overall strategy of the firm. A company that is considered to be world class recognizes that its ability to compete in the market place depends on developing an operations strategy that is properiy aligned with its mission of serving the customer.

Cost: Within every industry, there is usually a segment of the market that buys strictly on the basis of low cost. To successfully compete in this niche, a firm must be the low-cost producer, but even doing this does not always guarantee profitability and success.

Products sold strictly on the basis of cost are typically commodity like in nature. In other words, customers cannot distinguish the products of one lirm from those of other, as a result, customers use cost as the primary determinant for making a purchase.

However, this segment of the market is frequently very large, and many companics are lured by the potential for significant profits, which they associate with the large unit volumes of product. As a consequence, competition in this segment is fierce and so is the failure rate. After all, there can only be one low cost producer, which usually establishes the selling price in the market.

Integration: Successful supply-chain management requires a high degrec of functional and organizational integration. Such integration does not happen ovemight. The firm initiates internal integration by creating a materials management deparment. Materials management is concenced with decisions about purchasing materials and services, inventories, production levels, staffing patterns, schedules, and distribution. The focus is on the integration of those aspects of the supply-chain directly under the firm's control to create an internal supplychain. Firms in this phase utilize a seamless information and materials control system from distribution to purchasing, integrating marketing, finance, accounting, and operations. The internal supply chain is extended to embrace suppliets and customers, thereby linking it to the external supply-chain, which is not under the direct control of the firm. The firm must change its focus from a product or service orientation to a customer orientation.

Reliability: Another dimension of quality related to product design is reliability, which refers to the probability that the product will he functional when used. Products offen consist of a number of components that all must be operative for the product to perform as intended. Suppose that a product has a number of subsy stems, each with its own reliability
measure. The reliablity of each subsystem contributes to the quality of the iotal system. Distribution reliability relates to the abjlity of the firm to supply the product to the customer on or before a promised delivery duc date.

4.5 Computational Results

There are four criteria that are being used to cvaluate the models are management effort, cost, reliability, and integration. Further, assume that models M_{1}, M_{2}, M_{3} are being considered. The measurement scale and hierarchy for this application are shown. For analysis purpose, primary data and information have heen collected from several national and international logistics companies operating in Bangladesh.

The firm must now develop a set of pait-wise compatisons to define the importance of the criteria. If the firm believes that cost is cqually to moderately more important than reliability, a value of 2 expresses this judgnent. If reliabilty is moderately more important scrvice, a value of 3 is appropriate.

However, as previously mentioned, judgenents are not always perfectly consistent. Suppose that, for example, cost is judged moderately to strongly more important than management eftor, so a value of 4 is appropriate. Continaing with this process, the decision maker had decided that cost is moderately more imporlant than integration i.e. a value of 2 . These six judgments complete the pair-wise comparisons that are needed at this stage; this information is entered in a pair-wise comparison matrix shown in Exhibit. The other entrics in the matrix are along the diagonal and reciprocals of the six judgments as previously discussed.

Measurement Scale

Pcople making comparisons use their feelings and judgment. Both vaty in intensity. To distinguish anong different intensitics, the scale of absolute numbers in Table 1.I is useful.

It is also called "Scale of relative imporance".

Model Selection Hicrarchy

Figur 4.I Model Sclection Hierarchy used for Multi-altribute Evaluation.

On the basis of calculated results and above theoretical discussions, judgment matrices are prepared. The "scale of relative importance" is used for pait-wise comparison. On the basis of expert opinion, the following judgment matrices are prepared at each level of hictarchy.

Figure 4.2 Hierarchy used for Multi-altribute Evaluation

Pair-Wise comparison Matrix and Computations: Evaluation criteria

Altributes	Elfor	Cost	Reliabilly	Integration
Effort	1.00	0.25	0.50	0.33
Cost	400	100	3.00	2.00
Reliability	200	0.33	1.00	050
Integration	300	0.50	2.00	1.00
y_{1}	1000	2.08	6.50	3.83

Geometric mean, b	Normalized weights, x
0.45180	0.09529506
221336	0.46684856
0.75984	0.16026656
1.31607	0.27758982
474107	

$\lambda_{\text {mala }}$	4.03138	
N	4	
C.I.	0.01046	
R.I.	0.9	For $n=4$
C.R	1.1622%	

Since C.R. $<10 \%$. So acceplable.

Model Comparisons

With respect to Management Effort

Alternatives	FTP Model	FQ Model	Mixed Model
FTP Model	1.00	4.00	3.00
FQ Model	0.25	100	050
Mixed Model	0.33	2.00	100
y_{1}	1.58	7.00	4.50

Geometric mean, b	Normalized weights, x
228943	062501
0.50000	013650
0.87358	0.23849
3.66301	

$\quad \lambda_{\text {Iadax }}$	3.01829
N	3
C.I.	0.0091474
R.L.	0.58
C.R	$\mathbf{1 5 7 7 1 3 \%}$

Since C.R. $<10 \%$, So acceptable.

With respeet to Cost

Alternatives	FTP Model	FQ Model	Mlxed Model
FTF Model	100	0.25	0.50
FQ Model	4.00	1.00	200
Mixed Model	2.00	0.50	100
y_{1}	700	175	3.50

Geometric mean, b	Normalized weights, x
0.50000	0.14286
2.00000	057143
1.00000	0.28571
3.50000	

$\lambda_{\max }$	3.00000
N	3
C.I.	0
R.I.	0.58
C R	0

Since C.R. $<10 \%$, So acceplable.

With respect to Reliability

Alternatives	FTP Model	Mixed Model	Mixed Model
FTP Model	1.00	0.33	050
FQ Model	300	1.00	200
Mixed Model	200	0.50	1.00
y_{1}	6.00	183	3.50

Geometric mean, b	Normalized weights, x
0.55032	0.16342
181712	0.53961
1.00000	0.29696
3.36744	

$\quad \lambda_{\text {max }}$	300920
N	3
C.I.	0.0046014
RI.	0.58
C.R.	0.79334%

Since C.R. $<10 \%$, So acceptable.

With respect to Integration

Alternatives	FTP Model	FQ Model	Mixed Model
FTP Model	1.00	033	0.50
FQ Model	3.00	100	2.00
Mixed Model	2.00	050	1.00
Y_{1}	6.00	1.83	350

Geometric mean, b	Normalized weights, x
0.55032	016342
181712	0.53961
100000	029696
3.36744	

$\lambda_{\text {max }}$	3.00920
N	3
C.I.	00046014
R:	0.58
C.R.	079334%

Since C . R $<10 \%$, So acceptable.

On the basis of the above matrices, an over-all evaluation is performed using the calculated weights of the alternatives and four criteria. The composite weights of the three alternatives are calculated. On the basis of these composite weights, the alternative models are ranked. These are given in the following table.

Overall Lvaluation: Comparison of model alternatives

Alternatives	Attributes and their weights					
	Effort 0.09530	Cost 0.46685	Rellabshty 0.16027	Integration 027759	Composite weights	Overall Ranking
	062501	0.14286	0.16342	0.16342	0.19781	3
FQ Model (M1)	0.13650	0.57143	0.53961	0.53961	051605	1
Mixed Model (M3)	0.23849	0.28571	0.29696	029696	0.28514	2

The data in the matrix can be used to gencrate a good estinate of the criteria weights. I he weights provide a measure of the relative importance of each criterion. The $\Lambda \mathrm{HP}$ allows individuals to use their own personal psychometric scale for making the requred pair-wise comparisons. Mcasuring the consistency of one's judgments allows a cross-check on how well that scale is being followed. As long as the scale is applied consistently by cach individual, the AHP can correctly process their judgments. Computations of the consistency ratio are somewhat more involved, but they are performed with a spreadshect package such as Microsodi Excel.

The three models must be compared pair-wise for each criterion. This process is virtually identical to the procedure that was used to develop the critcria comparison matrix. The only difference is that there is a model comparison matrix for each criterion. Therefore, the decision maker compares each pair of models with respect to the management effort criterion. This is repcated for the three other criteria.

The final step of the AHP analysis is summarized in overall evaluation table. This table shows how the overall formulation scores are computed. This procedure can be cxplained as a simple weighted average technique. For a given model, four weights are computed. one for each of the four evaluation critcria. These four weights are multiplied by the apptopriate criteria weights in meeting the goal of the hicrarchy and the results of the four multiplications are added together to compute the model score. Fach model score represents the estimated total benefits to be obtained from selecting this model. In this problem, according to the results obtained, the FQ model (M1) with a score of 0.51605 is ranked 1 i.c. judged to be best. Bused on the solution, model MI is selected. In this problem cost among all of the criteria is critical. So cost i.c. transportation cost should be minimized.

4.6 The Transportation Cost

The transportation problern, received this name because many of its applications involve determining how to optimally transport goods. Transportation costs play an important mole in location decisions. These can stem from the movement of either raw materials or finished goods. If a facility will be the sole source or destination of shipments, the company can include the transportation costs in a locational cost-volume analysis by incorporating the transporation cost per unit being shipped into the variable cost per unit.

When a problem involves shipment of goods from inultiple sending points to multiple receiving points, and a new location (sending or recciving point) is to be added to the system, the company should underake a separate analysis of transportation. In such instances the transportation model of linear programming is very helpful. It is a specialpurpose algorithm used to determine the minimum transportation cost.

4.6.1 Integrated Logistics: Needs and Variables

The conceptualization of integrated logistics can be delined as a 'unil', composed of various major functions of a supply chain systern. Logistics is viewed as the competency that links an enterprise with its customers and suppliers. Information from and about customers flows through the enterprise in the form of sales activity, forecasts, and orders |76|. The information is refined into specific manufacturing and purchasing plans. As products and materials are procured, a value-added inventory flow is initialed that ultimately results in ownership transfer of finished products to customers [77]. Thus, the process is viewed in tems of two interrelated eflors, inventory flow and information flow. Prior to diseussing each llow in greater detail, two observations are important. Firstly, an integrated operation is a must in hierarchical plaming system, or value-chain system, or smply a supply chain system. Sccondly, optimization in distribution network is necessary for not only cost mimimuation, but also other qualitative and quantitative variables $|78|$.

While such integration is prerequisite to success, it is not sulficient to guarantee that a firm will achicve its performance goals. Obviously, a related issue is how to achicve the goal and how to measure the performance. Possibly, operations rescarch, especially in the form of local search algorithm, is the only feasible solution, although it is true that global search algorithms may theorctically provide a better solution, however, at the expense of infeasibility and NP-lardness [79-80].

To be fully effective in today's compelitive environment, firms must expand their integrated behavior to incorporate customers and suppliers in the hieratchically integrated system. This extension, through external integration, is referred to as valuc-added supply chain management systern [81].

Second, the basic process is not restricted to for-profil business, nor is it unique to manufacturing lirms. The need to integrate requirements and operations occurs in all businesses as well as within public sector organizations. lor example, retailing or wholesaling firms typically link physical distribution and purchasing, since traditional manufacturing is not required. Neverheless, retailers and wholesalers must complete the Iogistics value-added process. The same is true for all public sector organizations that manufacture products or provide other services. In fact, that is the essence of hierarchical materials planning system.

4.6.2 Matcrials Flow in Hierarehical Planning System

The operational management of hicrarchical materials planning system has many components: materials itself, logistics to integrate materials flow, information flow and many others. This research is concentrated on physical integration issues, concerning materials and business logistics. It may be mentioned that business logistics is concemed with movement and storage of materials, finished products and associated service. Logistical operations start with the initial shipment of a material or component part from a supplier and are linalized when a manufactured or processed product is delivered to a
customer. Here, optimization would mean some objectives: materials flow al the shorest possible time and information passing from one stage of planning to the other, such that certain degree of intcgration is achieved. This rescarch aims both.
l-rom the initial purchase of a material or component, the logistical process adds value by moving inventory when and where needed. Providing all gocs well, a material gains value al each sicp of its transformation into linished inventory. In other words, an individual part has greater value afler it is incorporated into a machine. Likewise, the machinc has greater value once it is delivered to a buyer. This value addition should be maximum, if optimization is achieved from several dimensions, leading a multi-objective optimization, which is desired, but inost of the times not achicvable because of computational problems. This rescarch solves the problem of multi-criteria optimization using linear programming and multicriteria technique in two steps.

To support manufacturing, work-in-process inventory must be moved to support final assembly. The cost of each component and its movenent becomes part of the value-added process. The final or meaningful value that is added oceurs only with final ownership transler of products to customers when and where specilied [82]. For a large manufacturer, logistical opcrations may consist of thousands of movements, which ultimately culminate in the delivery of products to an industrial user, retailer, wholesaler, dealer, or other customer, which constitute the complex distribution network. For a large retailcr. logistical operations may commence with the procurement of products for resale and may terminate with consumer pickup or delivery. For a service organization, like a hospital, logistics start with procurement and end with full support of patient surgery and recovery. The significant point is that regardless of the size and type of enterprise, integrated logistics is essential for hicrarchical materials planning system and requires continuous management attention. For better understanding it is useful to divide logistical operations into three areas: physical distribution, manufacturing suppon, and procurement. These components constilute the center of the combined logistics operational units of an enterprise.

4.6.3 Physical Distribution

The area of physical distribution concems the last step of distribution network operations, which involves movement of a finished product to customers in shortest possible time and minimum possible cost. In physical distribution, the customer is the final destination of a markeling channel. The availability of the product is a vital part of each channel participant's marketing elfort. Even a manufacturer's agent, which typically does not own inventory, must depend on inventory availability to perform expected marketing responsibilities. Untess a proper assorment or products is efficiently delivered when and where needed, a great deal of the overall marketing effort can be jeopardized. It is through the physical distribution process that the time and space of customer service become an integral part of marketing. Thus physical distribution links a marketing channel with its customers. To support the wide varicty of marketing systems that exists in a highly commercialized nation, many dilletent physical distribution systems are utilized. Alt physical distribution systems have one common feature: they link manufacturers, wholesalers, and retailers into matketing channels that provide product availability as an integral aspect of the overall markeling process [83].

4.6.4 Operating Arrangements: Anticipatory versus Response-Based

The fundamental difference in anticipatory and response-based logistical arrangements is timing. Anticipatory arrangements are traditional and reflect the best practice developed durng a period prior to widespread availability of information technology. In contrast, response-based arrangements rellect strategies to exploit the potential of time-based logistics. Time-based logistics provide the basis for optimization.

This question again raises another derived question regarding Anticipatory-driven value chain against Response-driven value chain. Obviously, an anticipatery-driven value chain is desired at any manufacturer's network. However, this would require market driven forecast, originating from distribution network. If this is achicved. only then a true materials planning integration is achieved. However, this would require an integrated MRP (Matcrial

Requirements Planning) and Distribution Requirements Planning (DRP). Curnently, this integration is absent. As such, total Manufacturing Resource Planning (MRPI) is not yet realized. This research provides integration between MRP and DRP at the planning level. The following table shows the variables operating at different levels for such integration.

Table 4.2 Business variables for MRP-DRP integration.

Anticipatory-driven hicrarchical inaterials planning chain	Response-driven hierarchical materials planning chain
Manufacturing level	
Stochastic forecast	Deterministic forecast
M12-DRP planning	MRP-DRP planning
Anticipatory inventory including stochastic salety stock	Definitive inventory with optional salety stock
Multi-item dispatching with stochastic inventory at the downstrean	Multi-item dispatching with delinitive inventory at the downstream
Intermediate Distribution network pipeline	
Stochastic forecast and inventory build-up as per : An integration with "Multi-itern dispatching from the upper manufacturing level".	Deterministic requirement-based inventory planning, as per MRP of MRPII system
Inventory speculation as per statistical distribution patten	Inventory postponement and flow through turn-over
Selection waves through fixed replenishment schedule	Selection waves bascd on requirements from MRPIl system.
Profit center philosophy	Service center philosophy
Sales Point / Relailer	
Model stock (ROP, Safety stock)	Model stock (ROP)
Stochastic demand based replerishment	Scheduled replenishment

Table 4.2 illustrates contrasting priorities and practices that managers can be expected to employ with logistics-related activities at each stage of the supply chain. Even a casual review of the detailed paradigms illustrates the stark differences between the two operating arrangements. especially during planning integration.

Anticipatory practices were developed during a lime period when business was primarily conducted on a transactional basis. Because information was not shared frecly and technology was not available to facilitate such sharing, firms tended to operate on the basis of long-term forecasts, which is highly stochastic in nature. It must be noted and remombered that the longer the (materials) planning period, the more stochastic the plan is. Thus, the operational goal becomes to build and push inventory with laigher degree of uncertainty to the next level in the channcl. Because of high cost and risk associated with anticipatory practices, the prevailing relationship between trading partsers was typically adversarial, Each pary to the transaction needed to look out and deal with uncertainty for its own sell-interest.

Response-based arrangements stress cooperation and information sharing. Because of channel-wide data concerning requirements, timely point-of-sale experience can be substituted for total reliance on forecasts. When all members in a marketing channel synchronize their operations, opportunities exist to reduce total supply chain inventory and eliminate duplicate practices that increase cost without gencrating customer value. Ilowever, this would require optimization and integration in the overall materials planning system. This research aims at that purpose.

The reality of today's best practice logistics is that it does not reflect the extrome of either an anticipatory or a response-based arrangement. Many well-established belicfs and practices tend to preserve conformance to anticipatory paradigms. Perhaps the greatest barrier to adopting response-based arrangements is the need for publicly held corporations to appropriately project sales volume to financial indices. Financial indices act as the base-ine cconomic accountability factor, which means that financial goals must be reflected in operating plans and forecasts. Such goais often encourage promotional strategics to "load the channel" in order to create timely sales volume. The financial burden to "deload" the channel in order to create a response-based environnent is never timely. 'Ihis deloading occurs, for example, every year in many retail stores right after celebration-based saleshikes (c.g. Christmas, Lid festivals, etc). Stores promote heavily to sell their remaining
stock before the end-of-the-ycar inventory is counted to help reduce the expense of taking inventory and to lower inventory cost. This overflow secnario is opposite to normally prevailing backlog situation in many stores downstream.

A second barricr to implemenling response-based operations is the fact that it is easicr to manage on an adversarial relation on power-dominated basis than to develop and leverage cooperative relationships. Cooperative relationship requires strong synchronized supply chain network. Most business managers simply do not have training or experience for instituting cooperative arangements designed to share both benefits and risks. While logistics managers report a high degrec of belief in the long-term potential for responsebased alliances, they report considerable frustration in how to get the job done.

For the foresecable future it appears that most firms will be simultancously involved in various combinations of anticipatory and response-based logistical arrangements. The trend toward increased involvement in response-based relationships with specific customers and suppliers appears to be well established and will continue to expand. This need for lirms to participate in a variety of different delivery arrangements has placed new performance demands on logistical strategy.

4.7 Transportation Economies

From the preceding discussion, it is clear that warchouses enter a logistical system only when a differential advantage in service or cost results from their inclusion between manufacturing and customers. From the viewpoint of transportation economies. cost advantage is accomplished by using the warehouse to achicve maximum consolidation of [reight [84]. The next discussion illustrates the cconomics of transportation consolidation that justify establishment of a warehousc, in comparison to direct shipment without intermediary warehouse. Then the chapter focuses on transporation cost minimization across a network of warehouses.

Cost-Based Warehouse Justification

The basic economic principle justifying establishment of a warchouse is transporation consolidation. A manufacturer typically setls products over a broad geographical market area. If customer orders tend to be small, then the potential to consolidate may provide economic justification for establisbing a warchouse.

Transportation Cost Minimization

It is a matter of question whether adding a warchouse in the distribution channel helps minimizing cost. As a general rule, warchouses would be added to the logistical system in situations, where -

$$
\sum \frac{P_{\bar{v}}+T_{\bar{v}}}{N_{\bar{x}}}+W_{\bar{x}}+L_{\bar{x}} \leq \sum P_{\bar{x}}+T_{\bar{x}},
$$

where
$P_{\overline{0}}=$ Processing cost of volume shipment
$T_{\bar{v}}=$ Transportation cost of volume shipment
$W_{\gamma}=$ Warehousing cost of average shipment
$L_{\bar{x}}=$ Local delivery of average shipment
$N_{\overline{3}}=$ Number of average shipments per volume shipment
$P_{\vec{X}}=$ Processing cost of average shipment
$T_{\bar{x}}=$ Direct freight cost of average shipment

The only limitation to this generalization is that sulficient shipment volume must be available to cover tbe lixed cost of each warchouse facility. As long as the combined cost of warchousing and local delivery is equal to or less than the combined cost of shipping direct to customers, the establishonent and operation of additional warchouse facilities would be economically justified.

The generalized relationship of transportation cost and consolidation location is illustrated in Figure 4.1. Total transportation cost will decrease as consolidation locations are added to
the logistical network. In actual operation, consolidation locations can be transportation break bulk or cross-dock facilitics. It is not necessary to stock inventory to achicve the lowest transporlation cost. The reduction in transport cost results from consolidated volume shipments to the break bulk location, coupled with shor-haul small shipments to final destination. The cost of shipping small orders direct from manulacturing to customers is at the extreme upper leff of the cost curve illustrated in Figure 4-1. Al the low point near the middle of the transportation cost curve, the number of facilities required to achieve maximum consolidation is indicated; and thus, the lowest transportation cost is identified.

Figure 4.3 Transportation cost as a function of warehouse locations.

If tacilities are expanded beyond the maximum consolidation point, total cost witl increase, because the inbound volume capable of being consolidated to each facility decreases. The increased frequency of smaller inbound shipments results in a higher rate per hundredweight shipped into the facility. In other words, the frequency of small inbound shipments inereases and total transportation cost begins to increase.

Inventury Economies

Inventory level and velocity are directly related to the location structure of a logistical system. The framework for planning inventory deployment is the performanee cycle. Athough one element of the performance cycle is transportation, which provides spatial
closure, the key lactor in inventory economics is time. The forward deployment of inventory in a logistical system improves service response time. Such deployment also increases the overall system inventory requirements, resulting in greater costs and risk. In the following discussion, the impact of inventory on service response capability is initially presented, followed by a review of the impact of increasing the number of warehouses on total system inventory requirements.

Service-Based Warehouse Justification

The use of warchouses can be a vital part of the logistics stralegy of a firm engaged in national distribution. To achicve essential economy of scale, firms are often required to sell over broad geographical areas. These manufacturing cconomics of scale often compel firms to locate plants where low production costs can be realized.

The dynamies of spatial competition enter an industry when products begin to gain customer acceptance in other than prime markets or ncar manulacturing locations. The enterprise may find it desirable to deploy inventory to suppor marketing. In highly competitive industries, the policy may be to locate a warehouse in a particular market area even if operation of the facility increases total cost. The availability of a local inventory offers the potential to provide high levels of customer service. For customers, this means faster replenishment and an overall reduction of inventory. Thus, the enterprise that commits to establishing a warchouse may be viewed as having a differential advantage.

The inventory required to support a warehouse consists of transit, base, and walety stock. This research considers the various inventory components, including MPS-type linished goods (base inventory), pipeline (transit) inventory, distribution inventory, cte. and describes how each relates to average inventory level.

Adding warchouses to a logistical system increases the number of performance cycles. The impact on transit inventory and safety stock can be significant. In contrast, the impact on base stock by adding inventory is not significant. The base stock level within a logistical
system is determined by manufacturing and transportation lot sizes, which do not change as a function of the number of warchouses [85]. The combination of maintenance and ordering cost, adjusted to take into consideration volume transportation rates and parchase discounts, determines the replenishment EOQ and the resultant base stock. In just-in- time procurement situations, base stock is determined by the discrete order quantity required to support the planned manufacturing run or assembly. In either situation, the base stock determination is independent of the number or warehouses included in the logistical system. Transit inventory is important to logistical system design because it requires capital commitnent. As more performance cycles are added to a logistical network, the expected result is that existing cycles will experience a reduction in transit inventory. This reduction oceurs because the total transit days in the system are reduced. It should be noted that the sccond warchouse does not create additional performance cycles on the physical distribution side of the logistics flow. However, on the inbound side, each product stocked in the new warchouse requires a replenishment source. Assuming a full product line at each warehouse, the number of performance cycles required to replenish the system will increase each time a new warehouse is added [86].

Despite the increased need for inventory replerishment, the average in-transit inventory for the total systen drops as new warchouses are added because of a reduction in days required to service customers. Thus, even if multiple plant-to-warehouse replenishment cycies were added to the logistical system. the average transit time reduces because of the reduction in total replenishment days.

In summary, the addition of facilities will generally have the net effect of reducing total intransit days and, thus, inventory level. This result will vary in accordance with the particulars of each situation. Each network of Iocations inust be carefully analyzed to determine the exact impact on average transit inventory. The key to understanding the impact of increasing warchouses on transit inventory is to remember that total transit days are reduced even though the number of required performance cycles increases. A qualification is that while an increase in the number of performance cycles typically reduces
transit days, it may also increase overall lead time unectainty. As the number of performance cycles is increased, the possibility of breakdowns leading to potential service failures also increases.. This potential impact is treated under salety stock.

From the viewpoint of safety stock, the expected result of adding warehouses will be an increase in average system inventory. The impact of sales and perfomance-cycle uncenainty on inventory must be evaluated using two independent frequency distributions. The purpose of Safety stock is to protect against unplanned stock-out during inventory replenishment. Thus, if safety stock is predicted to increase as a function of adding warehouses, then the overall system uncertainty must also be increasing.

The addition of warehouses to the logistical system impacts uncertainty in two ways. First, since perfonnance-cycle days are reduced, the variability in sales during replemshment and the variability in the cyele are both reduced. Therefore, reducing the length of the performance cycle relieves to some degree the need for salety slock to protect against variability.

Ite second impact of adding locations has a direct and significant effect on average inventory. Each new performance cycle added to the system creates the need lor additional safety stock. The introduction of an additional warehouse to service a specific markel arca reduces the applicable size of the demand database used to detennine salety stock requirements. In effect; the sis of the market area serviced by a given facility is reduced without a corresponding reduction in uncertainty [87]. For example, when the demand of several markets is aggregated to a single warehouse, the variability of demand is averaged across markets. This allows peaks in demand in one market to be offset by low demand in another. In essence. the use of probability allows the idle stock of one market to be used to meel salcty stock requirements of other markets.

The impact of adding warehouses on system safety stock is reaily vital in complete supply chain management. The imponant point to understand is that the increase in salety stock results from an inability to aggregate the uncertainty across a large markel area. As a consequence, separate safety slocks must accommodate all local demand variation.

Inventory Cost Minimization

The overall inpact on average inventory of increasing the number of warchouses in a logistical system is of vital importance. A reduction in average transit inventory is obvious The assumption is that a linear relationship exists between average transit inventory and the number of warehouses in the network.

The actual inventory increases at a decreasing rate since the net increase for each facility is limited (the added safety stock required to accommodate uncertainty is related only to demand assigned to that warchouse less the reduction 'in safety stock required for less lead time uncertainty resulting from a shorter replenishment cycle). Thus, the incremental inventory required to maintain customer service performance diminishes for each new warchouse location added to the system. The average inventory represents the combined impact of safety stock and transit inventory. The signilicant obscryation is that the salety stock dominates the impact of transit inventory reduction. For the overall system, the average inventory is the safety stock plus half ol the order quantity plus transit inventory. Thus, given the same demand and customer service goals, total inventory increases at a decreasing rate as the number of warehouses used in a logistical system increases.

Least Total Cost Design

As noted earlier, the identilication of the least-total-cost system dosign is the goal of logistical integration. The basic total cost for the overall logistical system is composed of minimum holding and ordering cost, as well as transit and safety stock. As a result, average inventory commitment increases with each additional warchouse. For the overall system, the lowest total cost network is a function of tocations. In fact, a trade-off relation exists among number of warehouses, amount of inventory and overall distribution cost.

The identification of the least-total-cost design of warehouses in the network may be illustrated by a trade-of between cost-generating activities. The minimal total-cost point for the system is not at the point of least cost for either transportation or inventory. This is the
hallmark of integrated logistical analysis. In actual practice, a great many problems must be overcome to cffectively examine total cost. l'oremost among them is that many absumptions must be made to operationalize the logistical system analysis. A second concern is the fact that a two-dimensional analysis, although may provide a less trade-off, such system does not encompass the complexity of total cost integration. Each of the critical assumptions and associated implementational problems are matter of concern.

Some Assumptions and Limitations

This tescarch assumes an average projected level of sales volume across a planning horizon. Transportation requirements are represented by one average-size shipment. In actual operations, neither of these simplifying assumptions would be valid. Jirst, the nature of logistical network design is not a shor-term planning problen. When lacility decisions are involved, the planning horizon extends across several years and must accommodate a range of different anmual sales projections. Second, actual shipment and order sizes will vary substantially around an average. In fact, the assumption that shipments must be serviced through a warehouse must be relaxed to accommodate high-volume customer-direct truckload or container distribution. A realistic approach to planning must incorporate a range of shipment sizes suppored by altemative logistical methods to salisly customer service requirements [89]. In actual operation, alternative modes of transportation are employed, as neccssary, to upgrade the speed of deli very

Significant cost trade-ofls exist between inventory and transportation. Inventory cost as a function of the number of warehouses is directly related to the desired level of inventory availability. If no safety stock is maintained in the system, the total inventory requirement is limited to base and transil stock. Under a no-safety-stock situation, the total least cost for the systen would be at or near the point of lowest transportation cost. Thus, assumptions made with respect to the desired inventory availability and fill rate are essential to trade-olf andysis and have a significant impact on the least-total-cost design solution.

The locational selection aspect of logistical network plànning is far more complex than simply deciding how many facilities to choose from a single array of locations. A linm engaged in nationwide logistics has wide latitude in choice of where to locate warehouses. In a large market, there may be as high as filty regions within which one or more distribution warchouses could be located. Assuming that the total allowable warchouses for a logistical system carnot exceed fifty and that locations are limited to a maximum of one in each region, there are 1.1259×1015 combinations of warchouses to be evaluated in the selection of a least-total-cost network.

To overcome some of the above noted simplifying assumptions. variations in shipment size and transportation alternatives need to be introduced. Extending the analysis to a more complete treatment of variables typically demands the use of computer planning inodels and lechniques. Application of lincar programming may provide an optimal point for a trade-off. Such refinement requires linkage of a full range of variables [90]. At least three critical ones to be considered are shipment size, transportation mode, and location altcrnatives. The constants are level of inventory availability, performance- cycle duration, and the specific warehouse locations being evaluated.

In constructing a more comprehensive analysis, shipment size can be grouped in tems of frequency of occurrence and transportation mode economically justificd handling each shipment size within the specified performance-cycle time constrants. For each shipment size. a tutal-cost relationship can be identificd. The result is a wo-dimensional analysis for each shipment size and appropriate transpontation mode. Next, the individual twodimensional protiles can be linked by joining the ponts of leasi cost to make a planning curve. In a technical sense, this is an envelope curve that joins the low total-cost points of individual shipment sise-transport mode relationships.

A compromise is required to select the final warehouse network. lnitially, the time duration of the perfomance cycle and inventory availability assumptions should be held constant. The service availability and performance-cycle duration serve as parameters to help isolate an initial least-cost approximation. At a later point in strategy formulation, these parameters
can bc relaxed and subjected to semsitivity analysis. The fit of the least-cost planning curve requires marginal cost analysis for cach shipment size transportation mode combination for the stipulated network.

4.8 Problem Description

The transportation problem involves linding the lowest-cost plan for distributing stocks of goods or supplies from multiple origins to multiple destinations that demand the goods. For instance, a firm might have some factories, all of which are capable of producing identical units of the same products, and some warehouses that stock of demand those products. 'lhe transportation model can be used to determine how to allocate the supplies avalable from the various factories to the warehouses that stock the demand of those goods, in such a way that total shipping cost is minimized (i.e. the optimal shipping plan).

The shipping (supply) points can be factorics, warchouses, departments, or any other place from which goods are sent. Destinations can be factories, warchouses, deparments, or any other points that receive goods. To describe the genetal model for the transporation problem, it is needed to use tems that are considerably less specific than those for the components of the prototype examples. In particular, the general transportation problem is concened with distributing any commodity from any group of supply centers, called sources, to any group of receiving centers, catled destinations, in such a way as to mintimize the total distribution cost. The model for a transportation problem makes the following assumption about supplies and demands.

1. Each source has a fixed supply of units, where this entire supply must be distributed to the destinations. Let s_{1} denote the number of units being supplied by source i , for $i=\mathrm{I}, 2$, m. Similarly, cach destination has a fixed demand for units, where this entire demand must be recerved from the source. Let d_{j} denote the number of units being received by destination j , for $\mathrm{j}=1,2 \ldots \ldots, n$.
2. A transportation problem will have feasible solutions if and only if

$$
\sum_{i=1}^{m_{2}} s_{i}=\sum_{j=1}^{\mathrm{H}} d_{j} .
$$

3. The cost of distributing units from any particular source to any paricular destination is directly proportional to the number of units distributed. Therefore, this cost is just the unit cost of distribution times the mumber of units distributed. Let ε_{y} denote this unit cost for sourec I and destination j .

The only dala needed for a transporation problem model are the supplies, demands, and unit costs. 'lhese are the parameters of the model. All these parameters can be summarized conveniently in a single parameter table as shown below.

Table 4.3 Parameter table for the transportation problem

Source	Cost per unil distribuled				Supply
	Destination				
	1	2	\ldots	n	
1	c_{11}	c_{12}	...	$c_{\text {m }}$	s
2	c_{21}	c_{22}	\cdots	$c_{2 n}$	s_{2}
:		:		:	:
M	$c_{m l}$	$c_{m 1}$	\ldots	$c_{\text {ny/ }}$	$s_{n t}$
Demand	d_{1}	d_{2}		d_{n}	

'l he problem lits the model for a transportation problem if it can be described completely in terms of a parameter table like table and it satisfies the assumptions mentioned above. The objective is to minimize the total cost of distributing the units. All the parameters of the model are included in this parameter table. Thercforc, formulating a problem as a transportation problem only requires filling out a parameter table in the format of table.

Let Z be the total distribution cost and $\lambda_{1 j}(i=1,2, \cdots, j=1,2, \cdots, n)$ be the number of units to be distributed from source ito destination j, the linear programoning formulation of this problem is

Minimize

$$
Z=\sum_{j=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j},
$$

Subject to

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=s_{1} & \text { for } \mathrm{i}=1,2, \cdots, m, \\
\sum_{i=1}^{m} x_{i j}=d_{j} & \text { for } \mathrm{j}=1,2, \cdots, n, \text { and } \\
x_{i j} \geq 0, & \text { for all } \mathrm{i} \text { and } \mathrm{j} .
\end{array}
$$

4.9 Computational Results

The product of this research problem is a fixed chair of twelve models manufactured in a local renowned furniture company. The product is manufactured at three workcenters (Dhaka, Bogra, and Chiltagong) and then shipped by truck to nine distributing warchouses (Gazipur, Narayangang, Tangail, Rajshahi, Kustia, Khulna, Comilla, Cox-Bazar, Feni). Hecause the shipping costs are a major expense, management is initiating a study to reduce them ay much as possible. An estimate has been made of the output from tach workeenter, and each warchousc has been allocated a certain anount from the total supply of products. This information (in units of truckloads), along with the shipping cost per truckload for cach workenter-warchouse combination, is given in table. Thus, there are a total of 320 truckloads to be shipped. The problem is now to determine which plan for assigning these shipments to the various workenter-warehouse combinations would minimive the total shipping cost.

The problem is actually a linear programing problem of the transportation problem type. To tommulate the model, let Z denote total shipping cost, and let $x_{i j}(i=1,2,3 ; j=1,2,3,4$,
$5,6,7,8,9$) be the number of truckloads to be shipped from workeenters i to warehouse j. Thus the objective is to choose the values of these decision variables $\left(x_{y j}\right)$ so as to

$$
\begin{aligned}
\text { Minimize } \quad Z= & 1000 x_{14}+800 x_{12}+2000 x_{13}+5000 x_{14}+4000 x_{15}+7000 x_{16}+3000 x_{17}+ \\
& 8000 x_{18}+4000 x_{19}+4500 x_{21}+5500 x_{22}+3000 x_{27}+1000 x_{24}+3000 x_{25}+ \\
& 5000 x_{26}+6000 x_{27}+12000 x_{28}+6500 x_{29}+6000 x_{31}+5000 x_{32}+6500 x_{33} \\
& 10000 x_{34}+9000 x_{35}+12000 x_{36}+3000 x_{37}+1000 x_{38}+2000 x_{39}
\end{aligned}
$$

Subject to constraint

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14}+x_{15}+x_{16}+x_{17}+x_{18}+x_{19}=120 \\
& x_{21}+x_{22}+x_{23}+x_{24}+x_{25}+x_{26}+x_{27}+x_{28}+x_{29}=125 \\
& x_{31}+x_{32}+x_{33}+x_{34}+x_{35}+x_{36}+x_{37}+x_{38}+x_{39}=75 \\
& x_{11}+x_{21}+x_{31}=20 \\
& x_{12}+x_{22}+x_{32}=40 \\
& x_{13}+x_{23}+x_{33}=20 \\
& x_{14}+x_{24}+x_{24}=55 \\
& x_{15}+x_{25}+x_{35}=50 \\
& x_{16}+x_{26}+x_{36}=45 \\
& x_{17}+x_{27}+x_{37}=20 \\
& x_{13}+x_{28}+x_{38}=50 \\
& x_{19}+x_{29}+x_{39}=20
\end{aligned}
$$

Table 4.4 Parameter table for the transporation problem

Source	Destination									Supply
	Gazipur	Narayan gang	Tangail	Rajshahi	Kustia	Khulna	Comilla	$\begin{aligned} & \text { Cox- } \\ & \text { Bazar } \end{aligned}$	Feni	
	Unit cost Per Truck load(TL) in Tk.									
Dhaka	1000	800	2000	5000	4000	7000	3000	8000	4000	120
Bogra	4500	5500	3000	1000	3000	5000	6000	12000	6500	125
Chittagong	6000	5000	6500	10000	9000	12000	3000	1000	2000	75
Demand (TL)	20	40	20	55	50	45	20	50	20	

Table 4.5 Solution table for the transportation problem

Applications of the transporation problems tend to require a very large number of constraints and variables, so a straightforward computer application of the simplex method may require an exorbilant computational effor. Therefore, it is imporant to become sufficiently familiar with this special type of problems that one can recognize then when they arise and apply the proper computational procedure.

A major part of the study revolved around formulating and solving transponation problems for individual product categories. For each option regarding the plants to keep open, etc., solving the coresponding transporation problem for a product category shows what the
distribution cost would be for shipping the product calegory from those plants to the distribution centers and customer \%ones.

Any problem fits the model for a transporation problem if it can be described completely in tems of a parameter table like table 4.3 and it satisfies both the requirements assumption and the cost assumption. The objective is to minimice the total cost of distributing the units. All the parameters of the model are included in the parameter table 4.4.

To formulate and solve a transportation problem using Excel Solver, two separate tables need to be entered on a spreadsheet. The first one is the parameter table. All the parameters of the model are included in the parameter table 4.4. The second is the solution table 4.5, containing the quantities to distribute from cach source to cach destination. Spreadsheet software, such as Excel Solver, is a popular tool for analysing and solving linear programminy problems. The main feature of the linear programming noodel, including all its parameter, can be casily entered onto a spreadsheet. However, spreadshect software can do much more than just display data. In addition, the Excel Solser can quickly apply the simplex method to find an optimal solution for the model. For transpontation problems where every s, and $d_{\text {, }}$ have an integer value, all the basic variables (allocalions) in every basic feasible solution (including an optimal one) also have integer valucs. The solution procedure deals only with basic feasible solutions, so it automatically will obtain an integer solution for this case. The optimal total cost and distribution quantities have been shown in the solution table 4.5 .

4.10 Conclusions

Distribution is the management of the ftow of materials from manufacturers to customers and from warchouses to retailers, involving the storage and transportation of products. It may also be responsible for finished goods inventories and the selection of transportation service providers. This research provides an idea that AHP which is a technique of MCDM
(Multi Criteria Decision Aaking) technique can be used to justify selection of the right parameter as the objective function of an optimization technique

The AHP can also accommodate uncertain and subjective information, and allows the application of experience, insight, and intuition in a logical manner. This forces the decision maker to seriously consider and justify the relevance of the criteria. The AJP allows individuals to use their own personal psychometric scale for making the required pair-wise comparisons. In this research work, according to the resuths oblained, the FQ model (M1) with a score of 0.51605 is ranked 1 i.e. judged to be best. In this problem cost among all of the criteria is critical. So cost i.e. transportation cost should be minimized.

The transportation problem involves finding the lowest-cost plan for distrituling stocks of goods or supplies from multiple origins to multiple destinations that demand the goods. For instance, a firm has some factories, all of which are capable of producing identical units of the same products, and some warehouses that stock or demand those products. The transportation model can be used to determine how to allocate the supplies available from the various factorics to the warchouses that stock the demand of those goods, in such a way that total shipping cost is minimized (i.e. the optimal shipping plan). The problem is now to determine which plan for assigning these shipments to the various workcenter-warehouse combinations would minimize the total shipping cost. The problem is actually a linear programming problem of the transpontation problem type. Spreadshect soliware, such as Excel Solver. is a popular tool for analyzing and solving linear programming problems. The solution procedure deals only with basic feasible solutions, so it automatically obtains an integer solution for this case. The optimal total cost and distribution quantities have been shown in the solution table 4.5 .

Chapter 5

Conclusions and Recommendations

5.1 Summary of Findings and Conclusions

It is the age of coordinated inanufacturing and distribution. The manufacturing industries are now facing a time of intense international competition, which will only become more severe in the days to come. For manufacturing companies, the danger lies in lower costhigher quality producers taking an increasing share of both domestic and foreign markets. The opporunity lics in new technology that can enable a company to improve both productivity and quality, and obtain a competitive edge.

The new technology can be divided into two categories: (1) the automation of production activitics using computer-aided design and manufacturing, robotics, or flexible manufacturing systems and (2) computer-based production and inventory control. Computer-based production and inventory control embodies powerful tools for the use of new and better planning and control concepts and techniques

The research work focuses on production planning and distribution system of total supply chain. In this research work the production plaming and distribution system of a product (chair) of a furniture company have been optimized.

Lot-Sizing

Internal matcrials planning or Production planning is an activity that considers the hest use of production resources in order to satisfy production goals (satisfying production requirements and anticipating sales opportunities) over a certain period named the planning horizon. Production planning typically encompasses three time ranges for decision making:
long-term, medium-term and short-term. In long-tern planning usually the focus is on anticipating aggregate needs. Medium-term planning often involves making decisions on material requirements planning and establishing production quantitios or lot sizing over the planning period, so as to optimize some performance criteria such as minimizing overall costs, while mecting demand requirements and satisfying existing capacity restrictions. In shor-term planning, decisions usually involve day-10-day scheduling of operations such as job sequeticing or control in a workshop.

Lot sizing is one of the nost imporant and also one of the most difficult problems in production planning. Lot sizing decisions give rise to the problem of identifying when and how much of a product to produce such that setup, production and holding costs are minimized. Making the right decisions in lot sizing will affect directly the system performance and its productivity, which are imporant for a manufacturing lims ability to compete in the market. Therefore, developing and improving solution procedures for lot sicing problems is very important. Due to their importance in industry and mathematical complexity, deterministic, dynamic demand lot-sizing problems are frequently studicd. This research work develops specialized formulations and solution procedures for each particular lot-sizing prohlem elass. This work synthesizes the research on this imporant problem class updating the survey to consider recent modeling and algorithmic advancenents. 'Fhis work complements the recent reviews on the multi-item single level capacitated lot-sizing problem 115 J to provide a complete pieture of state-ol-the-ar research in anyone conducting research in the deterministic dynamic demand capacitated lot-sizing field.

Considering the comparison study of Maes and Van Wassenhove [14] and other points as discussed in literature study the Dixon and Silver heuristic has been considered for firther improvenents in the present work. The heuristic was extended to include two very important parameters such as, (i) plant or machine set up time and (ii) maximum limit of production lot-size from a machine. From analysis and results, the present work has
demonstrated that feasible solutions could be obtaned with competitive computer usage. The consideration of set up time also led to increase in inventory holding cost. This inerease in cost could be attributed to increased inventory held for meeting demand of the later period. Available machine time, inventory holding cost were found to be highly sensitive to the change in setup time. However, setup cost was not found to be signilicantly influenced by the setup time.

Effect of the limitation on the lot-size is dependent on the extent of reduction of the lot-size. It is obvious that the snaller the allowable lot-size, the greater will be the number of setup which will ceventually lead to more splitted items. This in turn led to the increase number of reguired setups.

Costs due to implementation of this restriction on lot-size went up quite significantly. Further decrease in lot-size would obviously result in higher costs. But at the lower range of allowable lot-size, there has been a trend of slight increase in setup costs.

The applicability of these problems arises commonly in operations such as lorging and casting and in industries which consist of a single production process. or where all production process can be considered as a single operation, such as some medical or chemical industries.

Production Scheduling

In short-term planning, decisions usually involve day-to-day scheduling of operations such as job sequencing or control in a workshop. Most real-world scheduling problems are naturally multi-criterion. There are several approaches that deal with the multi-objective problems. Traditionally, the most common way is to combine the multiple criterions into a single scalar valuc by using weighted aggregating functions according to the preferences set by the scheduler (or decision-makers) and then to find a compromise solution that rellects
these preferences However, in many real scenatios involving multi-criterion scheduling problems, it is preferable to present a set of promising solutions to the decision-makers so that the most adequate schedule can be chosen. This has increased the interest in investigating the application of Pareto-oplimization techniques to multi-criterion scheduling problems. A Parcto-optimal algorithm is developed in this paper for a scheduling problem on a single machine with periodic maintenance and non-premptive jobs. In literalure, most of the scheduling problems address only one objective function, while in the real world, such problems are always associated with more than one objective. In this work, both multiobjective functions and multi-maintenance periods are considered for the machine scheduling problem. A multi-critcrion non-preemptive scheduling that reduces the total cost of the problern is considered in this study. Three criterions are considered: reduction of flow time, maximum lardiness, and machine ide time in a periodically maintained single machine problem. The trade-off between minimum flow time, maximum tardiness and machine idle time is a complex problem. The objective of the model addressed in this work is to minimice the weighted function of the total job flow time, the maximum tardiness, and the machine idle time in a single machine problem with periodic maintenance and nonpreemplive jobs. An algorithm is developed to solve this mulliple criterion problem and to construct the pareto-set. In this study a new kind of approach that allows the use of weighted aggregation of the criterions is presented. All possible weight combinations for the criterions are computed. The search for the minimum total cost among all the Parctooptimal schedules with the assigned weights on criterions is oblained. Finally, a promising sequence is chosen that gives the minimum total cost for a particular sct of weights on the criterions. The parametric analysis of the trade-offs of all solutions with all possible weighted combination of the criterions is analyzed.

A nenghborhood scarch heuristic is also developed to provide the near-optimal solution for the problem. Results are provided to explore the best schedule among all the Pareto-optimal
sets and to compare the result of the modified Pareto-optimal algoritlim with the result of the neighborhood search heuristic. The perfomance of the modified Pareto-optimal algorithm has been evaluated by comparing its solution with the solutions derived by the neighbothood scarch heuristic. Results have shown that the modilied Pareto-optimal algorithm provides a betler solution than the neighborhood search heuristic, and this shows the efficiency of the modilied Pareto-optimal algorithen. Direct application of this study may be applied to the industrics where performance of machine maintenance is a routine work and worthwhile as well. Chemical processing equipments. boilers, fumaces, mechanical machineries ete. are the examples of such implications.

Distribution Planning

Distribution is the management of the flow of materials from manufacturers to customers and from warchouses to rebilers, involving the storage and transportation of products. It may also be responsible for finished goods inventories and the selection of transportation service providers. After determining where the demand for goods and services is greatest, management must sclect a location for the facility that will supply that denand. For warchousing and distribution operations, transportation costs and proximity to markets are extremely important. With a warchouse nearby, many firms can hold inventory closer to the customer, thus reducing delivery time, transportation cost and promoting sales. The transporation problem, receved this name because many of its applications involve determining how to optimally transport goods. When a problem involves shipment of goods from mulliple sending points to multiple receiving points, and a new location (sending or receiving point) is to be added to the system, the company should undertake a separate analysis of transponation. In this work the transporation model of linear programming has been used. It is a special-purpose algorithm used to detemine the minimum transportation cost.

Applications of the transportation problems tend to require a very large number of constraints and variables, so a straightforward computer application of the simplex method requires an exorbitant computational elfort For each option regarding the plants solving the coresponding transportation problem for a product category shows what the distribution cost would be for shipping the product category from those plants to the distribution centers and customer zones. The optimal total cost and distribution quantities have been shown in the solution table of distribution chapter.

5.2 Recommendations

Suceessful supply-chan management requires a high degree of functional and organizational integration. The interconnected set of linkiges between suppliers of materials and services that spans the transformation of raw materials into products and services and delivers them to a firm's customers is known as the supply-chain. The value of supply-chain management becomes apparent when the complexity of the supply-chain is recognized. The performance of numerous suppliers determines the inward flow of materials. The performance of the firm's marketing, production, and distribution processes detembines the outward llow of products. Traditionally, organizations have divided the responsibility for managing the flow of materials and services among three departments: purchasing, production, and distribution. In this research work integration of internal production planning and distribution has been considered. Purchasing can be included as a luture work.

In case of aggregate planning and lot sizing though some practical and real-life situations have been incorporated in the Dixon-Silver model, there are plenty of scope of improvement of the model. Following recommendations can be made for further development:

1. The Dixon-Silver model was extended through inclusion of setup time and placing limitation on the maximum allowable lot-size. In the present work these two conditions were considered separately. Further work can be performed combining the two situations to develop a uniform model.
2. A restriction of the heuristic lies with number of production stages. Single production stage has been considered in the present work. Development of a heuristic for multiple production stages could be a significant contribution.
3. Setup costs and setup time have been considered independently. Realistically larger setup time would lead to increased setup costs. Linking of these two parameters in the heuristic would be clearly a more realistic approach.
4. Back-logging was not considered in this model. Heuristic with back-logging could be developed as further work
5. Other promising rescarch arcas are available. While genetic algorithons, tabu search and capacitated network llow models are successfully applied to solve other lot-size problems, their potential to solve CI.SP is unknown. Researeh examining sensitivity analysis of dynamic lot-sizing heuristics within the context of CLSP is also worhwhite. Finally, extending the CLSP problem representation to capture the impact of equipment downtime on capacity during item changeover and multiple product lamilies are important rescarch areas.

In case of scheduling, alfough some practical and real-life situations have been incorporated in the Parcto-Optimal algorithm and neighborhood search method, there are plenty of scope of improvernent in the model. Hollowing recommendations can be made for further development:

1. The performance of the modilied Pareto-optimal algorithm has been cvaluated by comparing its solution with the solutions derived by the neighborhood search heuristic.

The perfomance of the modified Parcto-optimal algorithon can be compared with other local search methods.
2. There are many sequencing rules that can be applied to the jobs through the machines in a job shop according to the freferences. Two of those basic sequencing rules, Shorlest Processing Time (SPT) and Earliest Due Date (EID) have been adopted in the modified Parcto-optimal algorithm. Additional priority rule, such as Critical Ratio can also be adopted in future.
3. In the modified Parcto-optimal algorithm single production stage has been considered Pareto-optimal algorithm can be developed for multiple production stages.

In case of distribution system beside the ifansportation method other linear programming methods can be applied for optimization.

References

1. Anh, T and Mosih, F., "A hierarchical materials planning system: sub-optimication behavior". International Journal ol' Systems Engincering. Vol. 5, No. 2, pp 55-61, 2006.
2. Farel, Y., "A heuristic-based optimization algorithm for disaggregating demand", Journal of Production Science, Vol. 8, No. 2, pp 72-80, 2006.
3. Chowdhury, S. and farrel, Y., "Non-linear cost dunction for disaggregation", Journal of Production Science, Vol. 8, No. 3, pp 151-162, 2006.
4. Yu, H. and Liang, W., "Neural network and genetic algorithm-based hybrid approach to expanded job-shop scheduling", Computers and Industrial Engineering, Vol. 39. pp 337-356, 2001.
5. Thou, H., Feng, Y., Han, L., "The hybrid heuristic algorithm Jor job shop scheduling", Computers and Industrial Engineering, Vol. 40, pp 191-200, 2001.
6. Zhu, Z., and Heady, R. B., "Minimizing the sum of carliness /tardiness in multimachine scheduling: a mixed integer programming approach ${ }^{-1}$, Computers and Industrial Liggineering, Vol. 38, pp 297-305, 2000.
7. Huang, M.. Chang, P. and Chou, Y., "Forward recursive scheme with improved marginal analysis heuristic for machine expansion scheduling in a new job shop", Computers and Industrial Engineering, Vol. 50, Issue 1-2, PT 148-160, 2006.
8. Moghaddam, R. T. and Mehr, M. D., "A computer simulation model for job shop scheduling problems minimiang makespan", Computers and Industrial Engineering, Vol. 48, Issue 4, pp 8[1-823, 2005.
9. Sarkar, Bhaba, R., Yu, J., Mungan, D., Rahman, M. A. A. and Parveen. S., "Paretooptimal solution of a scheduling problem on a single machine with periodic maintenance and fon-prc-cmptive jobs", 1CME 2007, ME deparment, BUET, 2007.
10. Watanabe, M., lda, K. and Gen, M., "A genetic algorithm with modiljed crossover operator and search area adaptation for the job shop scheduling problem', Computers and Industrial Engineering, Vol. 48, Issue 4, pp 743-752, 2005
11. Xia, W. and Wu, Zhiming, "An effective hybrid optimizalion approach for multiobjective flexible job-shop scheduling problems", Computers and Industrial Lingineering, Vol. 48, Issue 2, pp 409-425, 2005.
12. Razmi, Jafar and Ahmed, P. K., "Use of a modified anatylic hicrarchy process in selecting push, puli or hybrid systems for material control", Intcrnational Journal of manufacturing Technology and Management, Vol. 5, No. 3, 2003, pp 262-278.
13. Hasin, M. A. A., Alam, Noor-E, and I.ipi, Tahmina F., "Supplier evaluation program with fusfy revised ΛH^{\prime} ", Proceedings of the $4^{\text {th }}$ Intemational Mechanical Enginecring Conference, 29-31 December 2004, Dhaka, pp 362-366.
14. Alam, Noor-E, Hasin, M. A. A. Sharifullah, A. M. M., "Supplier cvaluation with GDbased multi criteria decision making", International Journat of Industrial and Systems Eingituecring, Vol. 3, No. 4, 2008 (wailing for publication).
15. Karimi, B., Fatemi, S.M.T., Ghomi, J.M. Wilson, "The capacitated lot sizing problem: a review of models and algorithms", The Intemational Journal of Management Science, Omega 31, 2003, 365-378.
16. Van. Hoesel C.P.M., Wagelmans A.P.M.., ${ }^{\text {th Fully polynomial approximation schemes }}$ for single-item capacitated economic lot-sizing problems", Mathematics of Operations Rescarch, 2001, 26(2):339-57.
17. Smith, S. B., "Computer-based production and inventory control", Prentice Hall, Englewood Cliffs, pp. 2, 19, 108, 258-265.
18. Vollmann, T. E., Berry, W. L., Whybark, D. C., "Manufacturing Planning and Control Systems", Galgotia Publications Pvt. Ltd., pp. 35.
19. Powelt Robinson, Arunachalam Narayanan, Funda Sahin, "Coordinated deterministic dynamic demand lot-sizing problem: Arcvicwof models and algorithms", The International Journal of Management Science, Omega 37 (2009), 3-15.
20. Parveen, Sultana and Haque, A.F.M. Anwaml, " A heuristic solution of multi-item single level capacitated dynamic lot-sizing Problem", Journal of Mechanical Engineering, sol. ME38, Dec. 2007, 1-7, Transaction of the Mech. Eng. Div., The Inslitution of Engineers, Bangladesh.
21. Roger, D.H. Warburton, "An exact analytical solution to the production inventory control problem", Int. J. Production Economics 92 (2004) 81-96.
22. Silver, E. A., and Meal, H., "A Heuristic for selecting lot-size quantities for the case of a deterministic time varying demand rate and discrete opportunities for replenishments", Production and Inventory Management, Vol. 12, No. 2 (1973), pp. 64-74.
23. Bitran, G.R., Magnanti. T.L., and Yanasse, H.H., "Approximation methods for the uncapacitated dynamic lot-size problem", Monagement Science, vol. 31 (1984), pp. 1121-1 140.
24. Daker, K. R., Dixon, P.. Magazine, M. J., and Silver, E. A., "An algorithm for the dynamic lot-size problen with time varying production capacity constraints", Management Science, Vol. 24, No. 16. (December 1978), pp. 1710-1720.
25. Florian, M., and Klein, M., "Deterministic production planning with concave costs and capacity constraints", Management Scrence, Vol. 18, No. 1 (September 1971), pp. 12-20.
26. Florian, M., and Robillard, P., "An implicit enumoration algorithm for the concave cost network how problem", Monagement Science, Vol. 18, No. 3 (November 1971).
27. Florian, M., Lenstra, J. k., and Rinnomy Kan, A.H.G., "Deterministic production planning: Algorithms and complexity", Management Science, Vol. 26, No. 7 (July 1980) , pp. 669-679.
28. Wagner, H. M. and Whitin, T.M., "Dynanic version of the economic lot-size model", Management Scrence, Vol. 5, No. I (October 1958), pp. 89-96.
29. Eiscnhut, P.S., "A dynamic lot-sizing algorithm with capacity constraints", AIIE Transactions, Vol. 7, No. 2. (June 1975), pp. 170-176.
30. Lambtrecht. M. R. and Vanderveken, H., "Heuristic procedure for the single operation multi-item loading problem", AIIE Transactons, Vol. 11, No. 4 (December 1979), pp. 319-326.
31. Dixon, Paul S., and Silver, Fdward A., "Heuristic solution procedure for the multiitem. single-level, limited capacity, lot-sizing problem', Journal of Operatons Management, Vol. i, No. 1 (October 1981), pp. 23-38.
32. Maes, Johan, and Wassenhove, Luk Van, " Multi-iten single-level capacitated dynamic lot-sizing heuristics: a general review", Operatonal Research Society Lid., Vol. 39, No. 11 (1988), pp. 991-1004.
33. Newson, E.I.P., "Multi-item lot-size scheduling by heuristic, Part: with fixed resources", Managemen Science, Vol. 21, No 10 (June 1975), pp. 1186-1193.
34. Pinedo, M., Schedulng, Theory, Algorithms, and Sysfems (2nd cdition), 2002, Prentice Hall, Inc., Upper Saddle River, New Jersey.
35. Kalyanmoy, K. Deb, Multi-objective Optimization using Evolutionary Algorithms, John Witey, Inc., 2001, London, England.
36. Kaspraak, E.M, and Lewis. K.E., "Pareto analysis in multiohjective optimization using the colinearity theorem and scaling method", Soructural and Muffidisciphonary Optimization, 22(3), 2001, pp. 208-218.
37. Gupta, A. K. and Sivakumar, A. I., "Simulation based multiobjective schedule optimization in semiconductor manufacturing". Proceedings of the 2002 Winter Simulation Conference, Singapore, 2002, 1862-1870.
38. R.K. Suresh, K.M. Mohanasundarain, "Pareto archived simulated annealing for job shop scheduling with multiple objectives", Int J Adv Manuf Technol (2006) 29: 184196.
39. Gio K. Kao, Sheldon H. Jacobson, "Finding preferred subsets of Pareto optinal solutions", Comput Optim Appl (2008) 40: 73-95.
40. Hamidreza Eskandari, Christopher D. Geiger, "A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems", J Heuristics (2008) 14: 203-241
41. Liao. C.J. and Chen, W.J. (2003), "Single-machine scheduling with periodic maintenance and nonresumable jobs", Computers \& Operations Research, 30, 2003, pp. 1335-1347.
42. Baker, K. R., Eloments of Sequencing and Scheduling, John Wiley, 1998, lnc., NY.
43. Ahuja, R.K., Ergun, O., Orlin, J.B., and Punnen, A.P. "A survey of very layge scale neighborhood scarch tcchniques*, Discrete Applied Mathematics, 123, 2002, pp. 75102.
44. Adiri, I., Frostig. E., and Rinnooy, A. H. G. K., "Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs", Naval Research Logistics 38, 1991. pp. 261-71.
45. Mosheiov, G., "Minimizing the sum of job completion times on capacitated parallei machines", Mathematical and Computer Modeling. 20(6), 1994, pp. 91-99.
46. Lec, C.Y. "Two-machine fow shop scheduling with availabilhty constraints", European Journal of Operational Research, 114, 1999, pp. 420-429.
47. Wojciech Bosejko, Józel' Grabowski and Mieczyslaw Wodecki, "Block approach Tabu search algorithon for single machine total weighted tardiness problem".
48. Computers and Industrial Enginecring Joumal, Volume 50. Issues 1-2, May 2006, Page 1-14.
49. S. Thiagarajan and Chandrasckharan Rajendian, "Scheduling in a Dynamic Assembly Job Shops to Minimize the Sum of Weighted Earliness, Weighted Tardiness and Weighted Flow Time ol Jobs", Compaters and Industrial Engineering, Vol. 49, Issuc 4, 2005, pp. 463-503.
50. Ling-Huey Su, Fuh-Der Chou, and Wei-Ching Ting, "Minimizing Makespan in a Two-stage System with Flow shop and Open Shop", Computers and Industrial Engincering, Volume 49, lssue 4, 2005, pp. 520-536.
51. Douglas L. McWitliams, Paul M. Stanficld and Christopher D. Geiger, "The Parallel Hub Scheduling Problem: A Simulation-based Solution Approach", Computers and Industrial Enginecring, Vol. 49, No. 3, 2005, pp 393-412.
52. Michael C. Gcorgiadis, Aaron A. Levis, Panagiotis Tsiakis, Foannis Sanidiotis, Constantinos C. Pantelides and Lazaros G. Papageorgiou, Optimi/ation-based Scheduling: A Discrete Manufacturing Case Compulers and Industrial Ling. Vol. 49, lssuc 1, 2005, pp. 118-145.
53. Pawel Jan Kalcrynski and Jerzy Kanburowski, "A Heuristic for Minimizing the Makespan in No-Idle Permutation Flow Shops", Computers and Industrial Eng. Vol. 49, Issue 1, 2005, pp. 146-154.
54. Ahmed El-Pour1, Subramaniam Balakrishnan and Neil Popplewelt," A Neural Network to Enhance Local Search in the Permutation Flow Shop", Computers and Industrial Eng, Vol. 49, Issue 1, 2005, pp. 182-196.
55. Gharbi and J.-P. Kenne, :- Maintenance Scheduling and Production Control of Multiple-machine Manufacturing Systems",Computers and Industrial Eng. Vol. 48, Issue 4, 2005, एp. 693-707.
56. J.M. Garcia and S. Lozano", Production and Delivery Scheduling Problem With Time Windows", Computers and Industrial Eng. Vol. 48, Issue 4, 2005, pp. 733-742.
57. Masato Watanabe, Kenichi Ida and Mitsuo Gen, "A Genctic Algorithm with Modified Crossover Operator and Search Arca Adaptation for the Job Shop Scheduling Problem. Computers and Industrial Eng.Vol. 48, Issuc 4, 2005, pp. 743-752.
58. Hyung-Soo Cho, Chun-Hyun Paik, Hang-Mook Yoon and Ho-Gyun Kim, "A Robust Design of Simulaled Annealing Approach for Mixed-Model Sequencing, "Computers and Industrial Eng.Vol. 48, Issue 4, 2005, pp.
59. R. Tavakkoli-Moghaddam and M. Dancshmand-Mehr," A Computer Simulation Model for Job Shop Scheduling Problems Minimizing Makespan", Computers and Ind. Eng.Vol. 48, Issue 4, 2005, pp. 811-823.
60. Paulo M. França, Jatinder N.D. Gupta, Alexandre S. Mendes. Pablo Moscato and Klaas J. Veltink, " Evolutionary Algorithms for Scheduling a Flow shop Manufacturing Cell With Sequence Dependent Family Sctups", Computers and Industrial Ling. Vol. 48, Issue 3, 2005, pp. 491-506.
61. Dong K. Seo, Cerry M. KIcin and Wooscung Jang, " Single Machine Stochastic Scheduling to Minimize the Expected Number of Tardy Jobs Using Mathematical Programming Models ${ }^{21}$, Computers and Industrial Enginecring, Vol. 48, Issue 2, 2005, pp. 153-161.D. Rebaine, "Flow Shop vs. Permutation Shop with Time Delays", Computer and Industrial Engineering, Vol. 48, Issuc 2, 2005, pp. 357-362.
62. Jorge M.S. Valente and Rui A.l.S. Alves, " Filtered and Recovering Beam Search Algorithms for the Early/Tardy Scheduling Problem With No Idle Time",Compulers and Industrial Engineering, Vol. 48, Issuc 2, 2005, pp. 363-375.
63. Weijun Xia and Chiming Wu, "An Effective Hybrid Optimization Approach for Multi-Objective Flexible Job-shop Scheduling Problems", Computers and Industrial Engincering, Vol. 48, Issuc 2, 2005, pp. 409-425.
64. Elirgolt, M, and Klamroth, K., "Connectedness of efficient solutions in multiple critcria combinatorial optimization", European Journal of Operafonal Research, 97, 1997, pp. 159-166.
65. IIasin, M. A. A., Alam, Noor-E, and Lipi, Tabrnina F., Supplier Evaluation Program with Fuzzy Revised AHP, Procecdings of the $4^{\text {th }}$ International Mechanical Engineering Conference, 29-31 December 2004, Dhaka, pp. 362-366.
66. Nlam, Noor-E, IIasin. M. A. A. Sharifullah, A. M. M., Supplier Evaluation with GDbased Multi Criteria Decision Making, Intemational Journal of Industrial and Systems Enginecring, Vol. 3, No. 4, 2008 (waiting for publication).
67. Shameem, K. Hasin, M. A. A. and Alam, Noor-l, Multi-criteria Evaluation of Networking Different Centers of Power Development Board, Proccedings of the International Conference on Manufacturing, ICM 2002, 9-11 August. 2002, Dhaka. pp. 414-421 (Vol.2).
68. Hasin, M. A. A., Multi-attribute Evaluation of Flexible Manufacturing Systems (IFMS) Through Sinulation, Procecdings of the 1st Intemational Conference (WORKSIMS'94) on Simulation, Bangkok, November 9-11, 1994, pp. 203-207.
69. Hasin, M. A. A., An MCDM Approach to Manulacturing System Optimization, Procecdings of the International Conference on Manufacturing Systems, 22-24 August, 2006, 1 hailand, pp. 172-180.
70. Saaty, Thomas, L.., The Analytic Hierarchy Process, 1980, McGraw-lill Co., New York, NY.
71. Sady, Thomas, L., "How to Make a Decision: The Analytic Hierarchy Process", European Journal of Operations Reseatch, Vol. 48, 1990, pp 9-26.
72. Saaty, L. Thomas and Vargas, Luis González ${ }_{11}$ Models, Methods, Concepts \& Applications of the Analytic Hicratchy Process, Springer, ISBN 0792372670, New Yotk, USA, 200 I .
73. Duke, Joshua M. \& Aull-Hyde, Rhonda, "Identifying public preferences for land preservation using the analytic hierarchy process," Ecological Liconomics, Elsevier, vol. 42, No. 1-2, August. 2002, pp. 131-145.
74. Sinuany-Stem, 7. Isracli, Y., Bar-Lili, M., Application of the analytic hicrarchy process for the evaluation of basketball leams, international Journal of Sport Managenent and Marketing, Vol. 1, No. 3, 2006, pp. 193-207.
75. Razmi, Jafar and Ahmed, P. K., Use of a modified analytic hierarchy process in selecting push, pull or hybrid systems for material control, International Journal of manufacturing Technology and Management, Vol. 5, No. 3, 2003, pp. 262-278.
76. Wanke, P. and Zinn, W., Strategic logistics decision making, International Joumal of Physical Distribution \& Logistics Management, Vol. 34, No.6, pp.466-478, 2004.
77. Fawcett, S.E. and Fawceth, S.A., The firm as a valuc-added system: integrating logistics, operations and purchasing, International Journal of Physical Distribution \& Logistics Management. Vol. 25, No.5, pp.24-42, 1995.
78. Jonathan, Ray, Distribution optimization in product marketing, Joumal of Distribution System, Vol. 2, No.3, 2006.
79. Abrahamsson, M. and Aronsson, H., Mcasuring logistics structure, International Journal of Logistics: Research and Application, Vol. 2, No.3, pp.263-284, 1999.
80. Wh, Yen-Chun Jim and Chou, Ya Huci, A new look at logistics business performance: intellectual capital perspective, The International Journal of Logistics Management, Vol. 18. Issue 1, pp. $41-63,2007$.
81. Angulo, A., Nachtmann, H. and Waller, M.A., Supply chain information sharing in a vendor managed inventory parmership, Journal of Business Logistics, Vol. 25, No.1, pp.101-120, 2004.
82. Baker, P , An exploratory framework of the role of imentory and warehousing in international supply chains, The International Joumal of Logisties Management, Vol. 18, Issue 1, pp. $64-80,2007$.
83. Cooper, J., Browne. M., and Peters, M., European L.ogistics: Markets, Management and Strategy, Blackwell, Oxford, UK, 1991.
84. Stank, T. and Goldsby, T., A framework for transportation decision making in an integrated supply chain, Supply Chain Management: An International Joumal, Vol. 5, No.2, pp.71-77, 2000.
85. Flesseh, E. and Tellkamp, C., Inventory inaccuracy and supply chain performance: a simulation study of a retail supply chain, International Journal of Production Lconomics, Vol. 95, No.3, pp.373-385, 2005.
86. Haozhe, Chen, Daniel D., Maltioda, Patricia J., Daugherty, J., Firm-wide integration and limm perlomance, Intemational Joumal of Logistics Management, Vol. 18, Issue 1, пр. 5-21, 2007.
87. Mattsson, Iars-Gunnar and Johanson, J., Discovering market networks, European Journal of Marketing, Vol. 40, Issue 3/4, pp. 259-274, 2006.
88. Palrick K., Fung, O., Ivy S.N. C., Leslie S., and Yip, C., Relationships and performance of trade internediaries: an exploratory study, European Journal of Marketing, Vol. 41, Issue 1/2, pp. 159-180, 2007.
89. Vannieuwenhuyse, B., Gelders. L., and Pintelon, L., An online decision suppor system for transportation mode choice, Logistics Information Management, Vol. 16, No.2, pp.125-133, 2003.
90. Winston, W., Operations Research Applications and Algorithms, 4th ed., Thomson Leaming, Boston, MA, USA, 2004.

Appendix A.

Table A. 1 Perfomance of schedules at different weights and maintenance alternatives.

T	M	W1	W2	W/3	SPT/EDD	EDPISPT	\$1]	S[2]	S[3]	S[4]
12	4	0.1	0.1	08	47.775	33 5B3	45.675	45.675	46175	47775
		01	¢ 2	07	54975	38283	50775	50775	51.775	54975
		01	03	0.6	62.175	42983	55875	55.875	57.375	62175
		0.1	0.4	05	69.375	47683	60.975	60.975	62.975	69375
		01	05	04	76575	52.383	66075	66075	68.575	76575
		01	06	03	83775	57.083	71175	71175	74.175	83.775
		0.1	07	02	90975	E1.783	76.275	76275	79.775	90975
		0.1	08	01	9 B 175	66483	81.375	81375	85 375	g8 175
		02	0.1	07	52350	38.467	50.250	50.250	50.750	52350
		02	02	0.6	59550	43.167	55350	55.350	56350	59550
		02	03	0.5	65750	47.867	60450	60450	61950	66750
		02	04	0.4	73.950	52.567	65550	¢5.550	67.550	73950
		02	0.5	03	81.150	57267	70650	70650	73.150	61.150
		D 2	06	0.2	88.350	61967	75750	75.750	78.750	88350
		[2	0.7	01	95.550	66667	80850	80850	84350	95550
		03	01	0.6	56925	43350	54825	54.825	55325	56.925
		03	02	05	64125	4 B 050	59.925	59.925	60925	64125
		03	0.3	04	71325	52750	65.025	65.025	66525	71325
		03	0.4	03	78525	57450	70.125	70.125	72125	78525
		03	05	02	85.725	62.150	75225	75.225	77725	85725
		¢ 3	06	0.1	92.925	66.650	80325	80 325	83325	92925.
		04	01	05	61.500	48.233	59.400	59406	59900	61500
		0.4	02	04	68.700	52.933	64.500	64506	65500	施.700
		G 4	03	03	75.900	57.63 .3	69.600	69600	71100	75900
		04	04	02	83100	62333	74.700	74700	76700	83100
		0.4	05	01	90300	67033	79.800	79.800	82.300	90300
		05	01	04	66.075	53117	63.975	63975	64475	66075
		05	02	0.3	73275	57.817	69075	69075	70075	73.275
		05	¢ 3	0.2	80475	的 517	74175	74175	75675	80 475
		05	04	0.1	87.675	67.217	79.275	79275	81275	87675
		06	01	03	70650	58000	68.550	68.650	69050	70650
		06	02	02	77.850	62.700	73650	73650	74650	77850
		06	03	01	85050	67400	78750	78750	80250	85050
		07	0.1	0.2	75225	62883	73125	73125	73625	75.225
		0.7	0.2	01	82425	67583	78225	78225	79225	82.425
		D. 8	0.1	01	79800	67767	77700	77700	78200	79800
SUM					270900	2014.00	2457.00	245700	251700	2709.00

T	M	Wh	W2	W3	SPTIEDD	EDDISPT	\$[1]	S[2]	S[3]	S[4]
12	5	01	01	0.8	49.033	34.883	47133	47.133	47333	49.033
		01	02	07	57033	40.483	53233	53233	53633	57033
		01	0.3	06	65033	46.083	59.333	59.333	59.933	65033
		01	04	0.5	73.033	51683	65433	65433	66233	73033
		01	0.5	04	81.133	57283	71533	71.533	72.533	611.033
		0.1	06	03	89.033	62883	77633	77.633	78.833	89.033
		01	07	02	97033	68483	B3 733	83733	85.133	97.033
		0.1	08	01	605033	74083	B9.833	89833	91.433	105.033
		0.2	0.1	07	54.067	40167	52.167	52167	52367	54.067
		02	0.2	06	62.067	45,767	58267	58267	58667	62.067
		02	03	05	70067	51.367	64367	64367	64967	70.087
		02	04	D 4	78067	56967	70.467	70.467	71267	78067
		0.2	05	03	86067	62567	76567	76567	77567	86.067
		0.2	0.6	02	04067	68167	82667	82667	83 867	91.067
		02	0.7	0.1	102.067	73767	88767	88767	90.167	102067
		0.3	01	06	59.100	45450	57.200	57200	57.400	59100
		03	0.2	0.5	67.100	51.050	63300	63300	63700	67100
		0.3	0.3	0.4	75100	56650	69400	69.400	70000	75100
		0.3	04	03	83100	62250	75500	75500	76300	83.100
		03	05	02	91.100	67.850	81.600	81600	82600	91100
		03	¢ 6	0.1	99100	73450	87700	87.700	88.900	99100
		04	0.1	05	64133	50733	62.233	62233	62433	64133
		C 4	02	04	72133	56333	68.333	68333	69.733	72.133
		04	03	03	80133	61.933	74433	74.433	75.033	80133
		64	D 4	02	88133	67533	80.533	80533	81333	88133
		04	05	0.1	96133	73133	86 633	86 的3	87633	96.133
		0.5	01	0.4	69167	56.177	67267	67267	67487	69167
		0.5	02	03	77.167	61.617	73.367	73367	73767	77.167
		05	03	02	85167	67.217	79.467	79.467	80067	85167
		05	04	0.1	93.167	72817	85567	85567	86367	93167
		06	0.1	03	74200	61300	72300	72300	72500	74200
		06	02	D 2	B2 200	66900	78400	78400	78800	92.200
		06	03	01	90200	72.500	84500	84500	85100	90200
		0.7	01	W2	79233	66.583	77333	77333	77.533	79.233
		07	02	01	87.233	72.183	83.433	E3 433	83833	87.233
		08	0.1	01	94.267	71.867	82.367	82367	82567	84267
SUM					286000	2170.00	263200	263200	2656 ¢0	286000

T	M	W1	W2	W3	SPTJED	EDDISPT	S[1]	S 2]	S[3]	S[4]
12	6	01	01	08	50292	36183	48592	48.592	48592	50252
		01	02	07	59092	42683	55.692	55692	55692	59092
		0.1	0.3	06	67.892	49.183	62.792	62792	62792	67.892
		01	04	0.5	76692	55683	69892	69892	69892	76692
		0.1	0.5	0.4	85492	62,183	76992	76992	76992	85492
		01	06	03	94.292	68683	84092	84092	84.092	94.292
		01	07	0.2	103092	75183	91192	91192	91192	103.092
		0.1	0 B	01	115.892	81683	98.292	98292	98292	111.892.
		02	0.1	0.7	55.783	41.867	54,08.3	54.083	54083	55.783
		0.2	02	06	64583	42367	61183	61183	61.183	64583
		02	03	05	73383	54.867	68283	68283	68283	73383
		02	04	04	82183	61367	75.383	75.383	75.393	92.183
		02	05	03	90983	67867	82483	82.483	82483	90983
		0.2	06	0.2	99.783	74367	89583	89.583	89583	99783
		02	07	01	108563	80867	96683	96683	96.683	108.583
		03	01	06	61275	47550	59.575	59.575	59.575	61.275
		03	02	0.5	70075	54050	66.676	66675	66675	70076
		03	03	04	78.875	60550	73.775	73775	73.775	76875
		03	04	03	37675	67.050	80875	80375	80875	87,676
		03	0.5	02	96475	73550	87.975	87.975	87.975	96.476
		03	06	01	105275	80.050	96075	95.075	95075	105.275
		04	0.1	05	66.767	53233	65067	65067	65067	66.767
		04	02	04	75567	59733	72167	72167	72167	75567
		0.4	03	¢3	84 367	66233	79267	79267	79.267	84367
		0.4	04	¢2	93167	72733	86367	86367	86367	93167
		04	05	01	101.967	79233	93467	93467	93.467	101967
		05	0.1	04	72,258	58.917	70.558	70558	70558	72.258
		05	02	03	81058	65.417	77658	77688	77.658	\$1.058
		05	03	0.2	99.858	71,917	84.758	84,758	84.758	89.859
		05	04	01	98658	78417	91858	91.858	91858	98658
		05	0.1	03	77750	64600	76050	76050	76050	77750
		05	02	02	86550	71100	83.150	83150	83150	86550
		06	03	01	95350	77.600	90250	90.250	90.250	95.350
		07	01	02	83.242	70.283	81.542	81.542	81.542	83242
		07	02	0.1	92042	76783	88642	88.642	88.642	92.042
		0 B	01	0.1	88733	75967	87033	87033	87033	88.733
SUM					301100	2326.00	280700	2907.00	2807.00	301100

T	H	W1	W2	W3	SPTJEDD	EDDISPT	S[${ }^{\text {d }}$]	S[2]	S[3]	S 41
12	7	0.1	0.1	08	51550	37.493	50050	50450	50.050	51.550
		01	02	07	61150	44883	58150	58150	58.150	61150
		0.1	03	06	70750	52.283	66250	65250	66250	70750
		0.1	04	0.5	80350	59683	74.350	74.350	74350	80.350
		0.1	05	0.4	89950	67083	82450	82.450	82.450	89950
		01	06	0.3	9 5 50	74 483	93550	90550	90550	99550
		01	07	02	109.150	81883	98650	98650	98650	109.150
		0.1	08	01	118.750	89283	106.750	106.750	106750	118.750
		0.2	01	07	57.500	43567	56.000	56.060	56000	57.500
		0.2	0.2	06	67.100	50967	64,100	64.140	64100	67.100
		02	0.3	05	76700	58367	72.200	72200	72200	76.700
		02	0.4	04	B6 300	65.767	80.300	80.300	80300	86.300
		02	05	0.3	55900	73 t67	88.400	88400	88450	95900
		02	06	0.2	105500	8 867	96500	96500	96500	105500
		02	D 7	01	115100	87.967	104600	124 600	104600	115100
		03	01	06	63450	49.650	61.950	61.950	61.950	63.450
		03	02	65	73050	57050	70.050	70050	70.050	73050
		03	03	0.4	82650	64450	78150	78.150	78.150	82650.
		03	04	0.3	92250	71850	86250	86.250	86.250	92250
		0.3	05	02	101850	79250	94,350	94350	94.350	101850
		0.3	06	0.1	111450	89.550	102450	102453	102.450	111.450
		0.4	01	0.5	67.400	55.733	67900	67900	67.900	69400
		04	02	04	79000	63133	76.000	76.00\%	76000	79.600
		04	03	03	88600	70.533	84.100	84100	84100	88600
		04	04	02	98200	77.933	92200	92200	92200	98.200
		D 4	05	01	107.800	85333	100300	106300	100300	107.800
		D 5	01	04	75.350	61.817	73850	73850	73850	75.350
		D 5	02	03	84950	69.217	81.950	81950	81950	84950
		05	03	02	94550	76617	90.050	90.050	90050	94550
		0.5	0.4	0.1	104150	84017	98150	98150	98. 150	104.150
		06	G 1	03	81.300	67.900	79800	79800	79800	81.300
		06	02	02	90900	75300	87.900	87900	87900	90900
		Q6	03	01	100500	82.700	96.000	96000	96000	100500
		07	01	02	87.250	73983	85.750	85.750	85750	87.250
		07	02	0.1	96850	81.383	93850	93850	93850	96.850
		08	01	0.1	93200	80 067	91.700	91700	91700	93200
SUM					316200	2482.00	2982.06	298200	2982.00	316200

T	M	W1	W2	W3	SPTIEOO	EDDISPT	S[1]	S[2]	$5[3]$	5[4]
12	8	01	01	0.8	52808	38783	51508	51.50 B	51.508	52,808
		01	02	0.7	63208	47083	60608	60.688	60608	63.208
		01	03	06	73608	55.383	69708	69.708	69708	73608
		[1	0.4	05	84008	63693	78.809	78808	78808	84008
		0.1	0.5	0.4	94408	71983	87908	B7.906	87.908	94.408
		01	06	03	104808	80.283	97.008	97.008	97.908	104808
		01	D 7	02	115208	88.583	106.108	106.108	106108	115208
		0.1	08	01	125.608	96.883	115.208	115208	115.208	125608
		02	01	0.7	59217	45.267	\$7.917	57917	57.917	59217
		0.2	0.2	06	的617	53567	67617	67017	67017	69617
		02	03	05	80017	61867	76117	76117	76117	80017
		02	04	04	90417	70.107	B5.217	85217	85217	90.417
		0.2	0.5	03	100817	78467	94317	94317	94317	100.817
		02	06	02	111217	86767	103417	103417	103.417	111.217
		0.2	0.7	0.1	121.617	95067	112517	112517	112517	121.617
		03	01	06	65625	51.750	64.325	64325	64325	65625
		03	02	0.5	76.025	60.650	73.425	73.425	73.425	76.025
		0.3	03	[4	86425	68.350	82.525	82.525	82.525	86.425
		03	04	D 3	96825	76 65	91.625	91625	91.625	96.82 .5
		03	05	02	107.225	84.956	100.725	100725	100725	107.225
		03	06	D 1	117.625	93.250	109825	109825	109825	117.625
		0.4	0.1	05	72033	58233	70733	70.733	70733	72033
		0.4	0.2	0.4	82.433	66533	79833	79833	79833	82433
		0.4	0.3	0.3	92833	74833	88933	88.933	88933	92833
		0.4	04	0.2	103233	83133	98033	98.033	98633	103233
		04	05	01	1.3633	91433	107133	107.133	107133	113633
		05	01	04	78442	84.717	77.142	77.142	77142	78442
		0.5	02	0.3	88842	73017	86.242	86242	86242	$88 \mathrm{B42}$
		05	0.3	62	99242	81317	95342	95342	95342	99242
		05	0.4	01	109642	89617	104442	104.442	104.442	109.642
		06	0.1	93	84850	71.200	$83.5 \$ 0$	83550	83550	84850
		0.6	02	02	95260	79500	92650	92656	92.650	95250
		06	03	01	195650	87800	101750	101.750	101.750	105.650
		07	0.1	6. 2	91258	77.683	89.958	89.958	89958	91258
		07	02	01	101658	85983	99058	99.058	99058	101.658
		0.8	0.1	01	97667	84167	96367	96367	96367	97.667°
SUH					331300	2638.00	3157.60	315700	3157.00	331300

T	M	W1	W2	W3	SPTJEDD	EDDISPT	S［1］	\＄［2］	\＄［3］	S［4］
13	4	01	01	0.8	43700	41967	41808	41.808	420088	43708
		01	02	07	50308	46667	46508	46.508	46908	50308
		01	03	06	56908	51367	51.208	51208	51803	56908
		01	04	05	63508	56067	55.908	55908	56708	53508
		0.1	D． 5	04	70108	60767	60608	60608	61.608	70.108
		01	06	03	76708	65 467	65.306	65308	6650B	76708
		01	07	02	83．35B	70．167	70.008	70008	71.408	83.308
		01	D8	01	89908	74867	74708	74.708	76.398	89．96B
		02	01	0.7	47.817	46.233	45917	45917	46.117	47.817
		02	$\bigcirc 2$	06	54417	50.933	50617	50617	51.017	54.417
		02	03	05	61.017	55633	55317	55317	55917	61.017
		02	0.4	0.4	67.617	60333	60.017	60017	60817	67617
		0.2	05	03	74217	65.033	64717	64.717	65717	74，213
		02	06	02	80817	69733	69417	69417	70.617	80817
		02	07	01	87.417	74433	74.117	74.117	75517	87497
		03	0.1	0.6	51.925	50500	50.025	50025	50225	51925
		0.3	0.2	05	58.525	55200	54.725	54725	55125	58525
		0.3	0.3	10^{4}	65.125	59900	59425	59425	60025	65125
		0.3	0.4	D 3	71725	64．600	64.125	64125	64925	71.725
		0.3	0.5	［2	7 B 325	59.300	68.825	6B825	69825	78.325
		0.3	0.6	01	84925	74000	73.525	73525	74725	84.925
		04	0.1	0.5	56033	54767	54.133	54133	54333	56.033
		04	02	04	62.633	59467	58833	58833	59.233	62 633
		04	03	03	69233	64.167	63.533	63.533	64133	69.233
		04	0.4	0.2	75833	68867	68233	68．233	69033	75833
		04	0.5	0.1	82433	73567	72933	72.933	73933	82433
		0.5	0.1	04	60142	59033	58．242	58242	58.442	60142
		0.5	02	03	66742	63733	62942	62942	63342	66.742
		05	03	62	73.342	68 433	67642	67642	68242	73．342
		0.5	0.4	01	79942	73133	72.342	72342	73142	79942
		06	01	03	64250	63300	623.50	62350	62550	64250
		06	02	02	70850	68000	67050	67050	67.450	70.850
		06	03	0.1	77.450	72.700	71.750	71750	72.350	77450
		0.7	01	0.2	68.359	67.567	66458	66458	66.658	68358
		0.7	02	61	74958	72.267	71158	71158	71558	74．958
		08	01	4.1	72467	71.833	70567	70.567	70767	72.467.
SUM					247300	226400	22450	224500	226900	2473.00

T	W	W1	W2	4.3	SPTJEDV	EDD／SPT	S［1］	5［2］	S［3］	5［4］
13	5	01	01	0 B	44.792	43266	43.592	43092	43.092	44752
		0.1	02	0.7	52.092	48858	48692	48692	48692	52452
		01	63	06	59.392	54458	54292	54292	54.292	59392
		01	64	05	66.692	60056	59892	59892	59.892	66692
		01	65	04	73.992	65658	65452	65492	65.492	73992
		0.1	06	03	81292	71.258	71，092	71092	71092	81.292
		01	07	02	88592	76.858	76692	76692	76692	88.592
		0.1	0.8	$\square .1$	95 892	82458	82292	82292	82.292	95892
		02	01	07	49.283	47.917	47.583	47583	47583	49283
		0.2	0.2	06	56583	53517	53183	53183	53.193	56.583
		0.2	03	0.5	63883	59117	58.783	58783	58783	63.883
		02	04	04	71.183	64717	64.383	64.383	64383	71.183
		0.2	0.5	0.3	78483	70.317	69.983	69.983	69983	78．483
		02	0.6	02	25.783	75.917	75．583	75.583	75.583	85.783
		42	07	0.1	93083	61.517	81.183	81183	81183	93083
		0.3	0.1	06	53.775	52.575	52.075	52.075	52075	53.775
		0.3	0.2	05	68.075	58.175	57.675	57.675	57.675	61075
		0.3	0.3	04	68.375	63.775	63275	63 275	63 275	6 B 375
		0.3	04	03	75675	69.375	68875	68 675	68．875	75675
		03	0.5	12	B2．975	74.975	74475	74.475	74475	82975
		03	06	01	90275	81575	80075	80675	80.075	90.275
		0.4	0.1	0.5	58.267	57.233	56567	$55^{5} 57$	56.567	58267
		0.4	02	04	65.567	62，933	62.167	62.167	62167	65.567
		0.4	0.3	03	72.867	68.433	67767	67.757	白 767	72867
		0.4	04	02	80.167	74.033	73367	73.367	73367	80167
		04	05	0.1	87．467	79.633	78967	78967	78.967	97．467
		0.5	0.1	04	62.758	61892	61058	61.058	它1．05宫	62758
		05	02	03	70．058	67492	68．658	66658	66658	76．058
		0.5	03	02	77.358	73092	72.258	72.258	72258	77358
		0.5	01	0.1	B4．658	7B692	77.858	77.858	77858	84658
		0.6	01	03	67.250	66550	65550	65550	65.550	67250
		0.6	0.2	02	74.550	72.150	71150	71.150	71.150	74550
		0.6	0.3	0.1	81.850	77.756	76750	76350	76.750	81850
		0.7	0.1	02	71.742	71.24 B	70042	70.42	70.042	71742
		0.7	0.2	0.1	79642	7689 B	75642	75642	75.642	79042
		08	0.1	01	76233	75867	74533	74533	74．533	76.233
SUM					2603．00	241900	2399.6	239900	235900	260300

T	M	WY	W2	W3	SPTIEDD	EDDISPT	\$(1)	\$[2]	S[3]	S[4]
13	6	01	0.1	08	45875	44550	44375	44375	44.375	45.875
		01	02	07	53875	51050	50875	50875	50.875	53875
		0.1	03	0.6	61875	57550	57375	57.375	57375	6.1875
		0.1	0.4	0.5	69.675	64050	63875	63.875	63875	69.875
		0.1	05	0.4	77.875	70550	75375	70.375	70375	77.875
		0.1	06	03	85.875	77.050	76875	76875	76875	85875
		0.1	07	02	93875	83.550	83.375	83375	83.375	93875.
		01	08	01	101875	90050	89.875	89.675	89875	109875
		0.2	0.1	0.7	50750	49600	49250	49250	49250	50.750
		02	0.2	0.6	58.750	56100	55750	55750	55750	58.750
		02	03	0.5	66.750	62.600	62250	62250	62250	66.750
		02	04	0.4	74.750	69100	68750	68.750	68.750	74.750
		02	05	03	82.750	75600	75.250	75250	75250	82.750
		02	06	02	90750	82.100	81.750	81750	81750	90750
		02	07	0.1	98750	88.600	88.250	88250	88250	98750
		03	01	0.6	55625	54.650	54.125	54125	54125	55625
		03	02	05	63625	61.150	60.625	60625	60625	63625
		0.3	03	0.4	71.625	67650	67.125	67.125	67125	71625
		03	04	03	79.625	74.150	73625	73625	73.625	79.625
		03	05	02	87.625	80550	80.125	80125	80125	87625
		03	06	0.1	95.625	87.150	86.625	86.625	86625	95.625
		04	01	05	50500	59.700	59.000	59000	59000	60500
		0.4	02	04	68.500	66.200	65.500	65500	65500	68500
		0.4	03	0.3	76500	72700	72000	72000	72.000	76500
		04	0.4	02	84500	79200	78500	78500	78.500	84500
		04	0.5	0.1	92.500	85.700	85.000	85000	85.000	92500
		05	01	04	65375	84750	63875	63875	63975	65.375
		05	02	03	73375	71.250	70.375	70.375	70375	73375
		05	03	02	81375	77.750	76.875	76.875	76.875	81.375
		05	0.4	0.1	89.375	84.250	83.375	83.375	83375	89375
		0.6	0.1	0.3	70250	698800	68750	68.750	68.750	70250
		0.6	0.2	02	78250	76300	75250	75250	75250	78250
		06	03	01	86250	82800	81.750	81750	81750	B6.250
		4	01	02	75125	74850	73625	73.625	73.625	75.125
		0.7	02	0.1	83125	Bt. 350	80.125	80.125	80.125	83.125
		0 B	01	01	80000	79900	78500	78.500	78.500	80000
		SUM			273300	257403	2553.00	255300.	2553.00	273300

T	M	W1	W2	W3	SPTIEDD	EDDISPT	S[1]	S[2]	\$[3]	S[4]
13	7	0.1	0.1	08	46.958	45842	45658	45658	45658	46958
		01	02	07	55658	53.242	53.058	53058	53.058	55.658
		01	03	06	64358	60642	60458	60458	60458	64358
		0.1	D 4	05	73058	688042	67858	67858	67.958	73058
		0.1	05	04	81758	75442	75258	75258	75.25B	81.758
		09	0.6	0.3	90.458	92.842	82653	82658	82658	90458
		01	07	02	99158	90242	90058	90058	90 058	99158
		01	0.8	01	107.858	97.642	97.458	97,459	97458	107.858
		02	01	07	52217	51.283	50917	50.917	50917	52.217
		02	02	0 古	¢0917	58683	58317	58317	58317	60.917
		02	03	05	69617	66.083	65.717	65717	65.717	69617
		0.2	0.4	0.4	78.317	73483	73117	73.117	73117	78317
		02	05	03	87.017	80883	80.517	80517	80517	87017
		02	06	02	95.717	88.283	87.917	87517	87917	95717
		02	0.7	01	104417	95683	95317	95317	95317	104417
		03	0.1	¢6	57475	56725	56175	56175	56175	57475
		03	02	0.5	66175	64125	63575	63.575	63575	66.175
		03	03	04	74.875	71525	70975	70975	70975	74.875
		03	04	03	83.575	78.925	78.375	78.375	78375	83.575
		0.3	05	02	92275	86325	85775	85.775	85775	92275
		03	06	01	100975	93725	93175	93.175	93175	100975
		04	0.1	0.5	62.733	62.167	61.433	61.433	51.433	62.733
		0.4	D2	0.4	71433	69567	68833	68.833	68833	71433
		0.4	03	03	80133	76967	76.233	76233	76233	80133
		04	04	0.2	88.833	84367	83.633	83633	83633	89.833
		04	0.5	0.1	97.533	91,767	91.033	91,033	91.033	97633
		05	01	04	67992	67608	66692	66692	66.692	67992
		05	02	03	76692	75008	74.092	74092	74.092	76692
		0.5	03	02	85392	82408	81.492	81.492	81.492	85.392
		0.5	04	01	94092	89808	88.892	88 892	88.892	94092
		0.6	01	03	73250	73050	71.950	71.950	71.950	73.250
		0.6	02	02	81950	80450	79350	79350	79.350	81950
		0.6	03	0.1	90650	87850	86.750	B6.750	86750	90650
		0.7	01	02	78508	78492	77208	77208	77.208	78508
		07	02	01	87208	85892	84608	84608	84608	87208
		08	0.1	0.1	83767	83.933	82,467	82467	82.467	83767
SUM					286300	272900	2707.00	2707.00	2707.00	286300

T	M	W1	W2	W3	SPTJEDD	EDDFSPT	S[1]	\$ [2]	S[3]	S[4]
13	8	01	01	0.8	48042	47.133	46.942	46.942	46942	48, 042
		0.1	02	07	57.442	55.433	55242	55242	55.242	57.442
		01	03	06	66842	63733	63542	63542	63542	66.842
		0.1	04	05	76242	72033	71842	71.842	71 B42	76242
		01	0.5	0.4	85.642	80.333	80.142	80.142	80.142	85642
		01	0.6	03	95042	88 ¢ 8^{8}	88.442	88442	88.442	95.042
		0.1	07	¢ 62	104442	96933	96742	96742	96742	104.442
		01	08	01	113842	105233	105042	105042	105042	113.842
		0.2	0.1	0.7	53.683	52.967	52.583	52.593	52.583	53683
		02	02	06	63083	61267	60883	60883	60883	63083
		02	03	05	72483	69567	69.183	69.183	69.183	72483
		02	04	0.4	81.883	77.867	77.483	77483	77483	84.883
		62	05	0.3	91.283	86167	B5783	85783	85.783	91.283
		02	06	02	100683	94487	94083	94.083	94.083	100.693
		0.2	07	01	110083	102.767	102.383	102.383	102.383	110083
		03	01	06	59325	58800	58225	58225	58.225	59.325
		${ }_{6} 3$	02	05	68725	67100	65525	66525	驼 525	68725
		03	03	04	7B125	75400	74825	74.825	74825	78125
		03	04	[3	87525	83700	83125	B3 125	83125	87525
		0.3	0.5	0.2	96925	92.000	91.425	91.425	91425	96925
		0.3	06	0.1	106.325	100.300	99.725	99.725	99.725	106.325
		04	01	65	64967	64633	$63 \mathrm{B67}$	63867	63.867	64967
		0.4	[2	04	74367	72933	72167	72167	72167	74367
		0.4	03	03	83767	81233	80467	80467	80 467	83.767
		0.4	04	02	93167	89533	88767	88767	88767	93.167
		04	05	01	102567	97833	97067	97067	97067	102.567
		05	0.1	0.4	70.508	70.467	E9508	69.509	59.509	$70.60{ }^{\circ}$
		05	02	03	30008	78.767	77.808	77803	77808	80008
		05	03	02	89408	87.067	B6108	86.108	86108	89.408
		0.5	04	01	98808	95367	94.408	94.408	94,40白	98.808
		06	01	03	76250	76300	75150	75150	75150	76.250
		06	0.2	02	B5 650	84600	83450	83.450	83450	85650
		06	0.3	01	95050	92900	91750	91.750	91750	95050
		0.7	01	0.2	81.892	82.133	80.792	80792	80.792	81.892
		07	02	01	91292	90433	89092	89092	89092	91292
		0.8	[1	0.1	87533	87967	86433	86433	86.433	87533
SUM					299300	288400	2861.00	2861.00	286100	299300

T	H	Wit	WY2	W3	SPTJEDD	EDDISPT	\$[1]	S[2]	\$[3]	5[4]
14	4	01	01	08	38900	50458	50292	36300	36300	32000
		01	02	0.7	44000	55158	54.992	40600	40600	44.000
		0.1	0.3	0.6	50 OPO	59858	59692	44900	44900	50000
		0.1	04	05	56000	64.558	64392	49.200	49.200	55000
		01	05	04	62.000	69.258	69092	53500	53500	62000
		01	0.6	03	68000	73958	73792	57.8 CO	57800	68000
		01	0.7	02	74000	78558	78492	62.100	62100	74000
		01	08	01	80000	83358	83192	66.480	66400	80.000
		02	0.1	07	42000	54297	53883	40.300	40300	42000
		02	02	0\%	48000	54. 917	54, 583	44600	44.680	48000
		02	03	¢ 5	54000	63.617	63283	48900	48.900	54000
		02	04	0.4	60.000	68317	67983	53200	53200	60000
		Q2	65	03	66800	73.177	72683	57500	5750×3	66000
		02	66	02	72000	77717	77 3B3	61800	61800	72.000
		02	07	0.1	78000	82417	820.63	66100	66100	78090
		03	01	0.6	46000	57.975	57.475	44300	44300	46.000
		03	¢2	0.5	52.000	62675	62.175	48600	48600	52000
		03	03	04	58.000	$67 \$ 75$	68975	52,900	52.900	58.000
		03	04	03	64000	72075	71575	57.200	57200	64.000
		03	0.5	0.2	70.000	76.775	76.275	61.500	61500	70.000
		0.3	06	01	76000	81475	80975	65800	65 900	76.000
		04	01	65	50000	61733	61067	48.300	48300	50000
		0.4	02	04	56000	68433	65.767	52.600	52.500	56.000
		0.4	D 3	63	62000	71133	70467	56900	56.900	62000
		04	0.4	02	68.000	75833	75167	612004	61.200	68000
		04	0.5	01	74.000	80533	79 B67	65500	65.500	74000
		05	0.1	04	54000	65492	64658	52300	52.300	54000
		05	02	03	60 D00	70192	69358	56.600	56600	60000
		05	03	02	661300	$74 \mathrm{EP2}$	74058	60900	60.900	66050
		05	04	01	72,000	79592	78,758	65.200	65.200	72.000
		06	01	03	58.800	69250	66250	56.300	58.300	58.000
		06	02	02	64000	73950	72.960	60.600	80.600	64000
		0.6	0.3	0.1	70.000	78.650	77.650	64.900	\$4.900	70000
		07	0.1	0.2	62.000	73.008	71.842	60300	50300	62.000
		07	02	01	68.900	77708	76542	64600	64600	68000
		08	01	01	66500	76767	75433	64300	64306	66.090
SUM					220800	252700	250700	2004.00	200400	220800

T	M	W1	W2	W3	SPTJEDD	EDDISPT	S［1］	S．2］	S［3］	S［4］
14	5	01	01	08	38.925	51.750	51.575	37.425	37425	38925
		0.1	0.2	0.7	45525	57350	57175	42525	42525	45.525
		0.1	03	06	52125	62950	62.775	47，625	47.625	52.125
		0.1	04	0.5	58725	68.550	68375	52，725	52.725	58． 725
		0.1	D 5	0.4	65.325	74.150	73.975	57.825	57 B25	65325
		01	06	03	71.925	79.750	79575	62.925	62925	71925
		01	67	02	78525	85350	85.175	68025	68025	78525
		01	08	01	85125	90950	90.775	73.125	73.125	85125
		¢ 2	0.1	07	43250	55900	55550	41750	41.750	43.250
		02	02	06	49850	61.500	61150	46850	46850	49850
		02	03	05	56450	67100	66750	51.950	51950	56450
		¢2	04	04	63050	72700	72.350	57050	57．050	あ3050
		02	05	03	69.650	78300	77.950	62150	62150	69.650
		02	06	02	76250	83.900	83.550	67．250	67250	76250
		02	07	01	82850	89500	89150	72350	72350	82856
		03	01	06	47575	60.050	59.525	46.075	46075	47575
		03	0.2	0.5	59.175	65 ¢50	65125	51.175	51175	54．175
		03	0.3	0.4	60.775	71250	70725	56275	56275	60.775
		0.3	0.4	0.3	67375	76850	76325	61.375	61.375	67375
		03	05	02	73975	82.450	81.925	66475	66475	73975
		03	0.6	0.1	80.575	88050	87525	71575	71．575	80.575
		0.4	0.1	0.5	51.900	64200	63500	50400	50.400	51.900
		04	02	04	58.500	69.800	69.190	55500	55.500	58500
		04	03	03	65.100	75400	74.700	60600	60600	65.100
		04	04	02	71.700	81.000	80300	65700	65700	71700
		04	0.5	01	78300	86600	85900	70800	708.00	78300
		65	0.1	04	56225	68.350	67475	54725	54725	56.225
		05	02	03	62825	73.950	73075	59825	59.825	62825
		0.5	03	02	69425	79550	78.675	64.925	64.925	69425
		05	04	01	761325	85150	84275	70.025	70025	76025
		06	01	03	60550	72500	71.450	59.050	59050	60.550
		06	02	02	67.150	78.100	77.050	它4．150	64150	67.150
		0.6	03	01	73.750	83.700	82.650	的 250	69250	73750
		07	01	02	64875	76.650	¢5 425	63.375	63375	64.875
		07	0.2	0.1	71.475	82250	81025	68475	68.475	71475
		0.8	0.1	0.1	69200	80800	79400	67.700	67.700	69200
SUM					231900	268200	266100	2139.00	2139.00	231900

T	H	W	W2	W3	SPTJEDD	EDDISPT	\＄［1］	S［2］	S［3］	S［4］
14	6	0.1	01	0.8	39850	53042	52， 0 ¢， 5	38.550	38550	39850
		0.1	02	07	47050	59.542	59358	44．450	44450	47.050
		0.1	0.3	0.6	54250	65042	65858	50360	50.350	54250
		0.1	04	B 5	61.450	72542	72.358	56250	56250	61450
		01	0.5	0.4	68650	79042	78856	62.150	62150	68.650
		0.1	06	03	75830	85542	85.358	68.950	68050	75850
		01	07	02	83050	92 ［42	91.858	73950	73950	83050
		01	08	01	90． 250	98542	58.358	79.850	79850	90250
		0.2	01	07	44500	57.583	57217	43.200	43200	44500
		0.2	02	06	51700	64.083	63717	49.100	49100	51.700
		02	0.3	05	58900	70.583	70.217	55000	55000	58900
		02	04	04	66.100	77.083	76717	60500	60900	66.100
		02	65	G． 3	73300	83.583	83217	66800	66800	73.300
		0.2	06	02	80500	90.083	89717	72700	72.700	80.500
		0.2	07	01	87700	96583	96217	78680	78.600	87．700
		0.3	0.1	06	49150	62125	61.575	47.950	47850	49150
		03	02	0.5	\＄5 360	58625	68075	53750	53.750	56350
		03	03	0.4	63560	75.125	74575	59650	59650	63550
		0.3	04	03	70750	88.625	81075	55.550	65550	70.750
		03	05	02	77.950	88.125	87575	71．450	71450	77.950
		03	66	01	85150	94625	94075	77 350	77.350	85150
		04	Q 1	b 5	53.800	66667	65933	52500	52500	53500
		04	02	04	61.000	73167	72.433	58400	58.4130	61000
		0.4	03	03	68200	79667	78.933	64.300	64.300	68200
		0.4	0.4	02	75400	86167	85433	70200	70200	75400
		0.4	05	01	82600	92667	91.933	76100	76100	82600
		05	01	04	58450	71208	70292	57.150	57150	58450
		05	02	03	65650	77.708	76792	63050	63 D50	65.650
		05	03	02	72850	84.208	93.292	68950	68.950	72850
		0.5	04	01	8 ED 050	90.708	89792	74.850	74.850	80050
		06	0.1	0.3	63100	75750	7465	61.800	61800	63100
		0.6	02	02	70300	82250	81150	67，700	67.700	70300
		06	03	0.1	77.500	88.750	87650	73600	73．60	77.500
		07	01	02	67.750	80292	73008	56450	66450	67.750
		07	02	01	74950	86.792	85508	72.350	72.350	74950
		08	01	0.1	72.400	84833	83367	71.100	71.100	72400
SUM					243000	283700	281500	2274．00	2274.00	2430.00

T	M	W11	W2	W3	SPTIEDD	EDDISPT	S[1]	S[2]	S[3]	S[4]
14	7	01	01	09	40.775	54333	54.142	39675	39675	AD 775
		D 1	0.2	07	48.575	61.733	61.542	46375	46375	48575
		0.1	0.2	0.6	56 375	69.133	68942	53075	53075	56.375
		01	04	0.5	64175	76.533	76342	59775	59.775	64.175
		01	05	04	71975	83.933	83742	66475	66475	71.975
		0.1	06	03	79775	91.333	91.142	73175	73.175	79.775
		01	07	02	87.575	98733	98542	79.875	79875	87575
		01	0.8	01	95.375	106133	105942	86575	86.575	95375
		02	0.1	07	45.750	59267	58 B83	44650	44650	45750
		02	02	06	53 550	66.667	66283	51350	51.350	53.550
		02	03	05	61.350	74.067	73683	58050	56050	61.350
		02	04	0.4	69150	81.467	81083	64750	64750	69.150
		G2	0.5	03	76950	88.867	88483	71.450	71450	76.950
		02	06	02	84750	96267	95883	78150	78150	84750
		0.2	07	0.1	92551	103667	103.283	B4 850	84850	92550
		0.3	01	0.6	50.725	64200	63.625	49625	49625	50725
		0.3	02	05	58.525	71.600	71025	56325	56325	58525
		0.3	03	04	66.325	79000	78425	63025	63025	6 6 325
		0.3	04	03	74.125	86.400	85825	69725	69725	74.125
		0.3	05	02	81.925	93.800	93225	76425	76425	81.925
		0.3	06	0.1	89.725	104.200	100625	83125	83125	89725
		04	0.1	05	55.700	69133	68367	54.600	54600	55700
		04	0.2	04	63.500	76533	75767	61.300	61300	63500
		0.4	03	03	71300	83933	83167	68000	68000	71300
		0.4	04	0.2	79100	91.333	90567	74700	74,700	79100
		04	05	0.1	86500	98933	97.967	81400	81.400	86.900
		05	0.1	0.4	60.675	74067	73.108	59575	59575	60.675
		0.5	02	0.3	68.475	81467	80.508	65275	66275	68.475
		0.5	0.3	0.2	76275	88.867	87.908	72.975	72975	76.275
		0.5	0.4	01	84075	96.267	95309	79.675	79675	84.075
		06	0.1	$\bigcirc 3$	65.650	79000	77850	64.550	64550	65650
		06	12	02	73450	86400	85250	71.250	71250	73450
		06	D 3	01	B1 250	938001	92.650	77950	77950	81.250
		0.7	D 1	02	70.625	83.933	B2.592	69525	69.525	70625
		07	02	0.1	76425	91.333	8.992	76225	76225	78.425
		0.8	01	01	7560	88867	B7.333	74500	74.500	75600
SUM					2541.00	259200	2969	240900	240900	2541.03

7	M	W1	W2	WY3	§FTIEDD	EDDISPT	S［1］	S［2］	\＄［3］	S14］
15	4	01	0.1	0，8	45325	29350	29350	43825	43825	45325
		0.1	02	07	51125	33250	33250	48.125	48125	51125
		01	03	0.6	56.925	37150	37.150	52.425	52425	58.925
		0.1	04	05	62725	41．050	41050	56.725	56725	62725
		0.1	0.5	04	68525	44．950	44950	61025	61.025	6 E 525
		01	0.6	03	74325	48.850	48850	65.325	65．325	74325
		0.1	0.7	02	84125	52.750	52．750	69625	69.625	80125
		01	0.6	0.1	85925	56.650	56.650	73.925	73925	85.925
		02	01	07	48.850	33800	33800	47350	47350	48850
		0.2	02	06	54，650	37.700	37700	51.650	51.650	54650
		0.2	0.3	05	60450	41600	41．600	55950	55950	60.450
		02	0.4	0.4	66250	45500	45.500	60250	60.250	66.250
		02	0.5	0.3	72050	49400	49.400	64550	64.550	72.050
		02	06	0.2	77.850	53300	53300	68.850	68.850	77 B50
		02	07	0.1	83650	57200	57.200	73.150	73．15D	83650
		0.3	0.1	06	52375	38250	38.250	50875	50875	52.375
		03	02	05	58175	42.150	42150	55175	55175	\＄8．175
		03	03	0.4	¢ 6.975	46050	46050	59.475	59.475	63975
		0.3	04	03	69775	49.950	49.950	63775	63775	69，775
		03	05	02	75575	53850	53850	68.075	68.075	75.575
		03	0.6	0.1	B1．375	57.750	57.750	72.375	72375	81.375
		04	01	0.5	55.900	42700	42.700	54．400	54400	55.900
		0.4	0.2	04	51，700	46600	46500	59.700	58700	65.700
		04	0.3	03	67.500	50500	50500	63.000	63000	67.500
		04	0.4	02	73300	54.400	54400	67300	67.300	73700
		0.4	0.5	0.1	79100	58300	58.300	71.600	71600	79100
		0.5	0.1	04	59425	47.150	47.150	57.925	57925	59425
		05	02	0.3	65225	51.050	51.050	62225	62.225	65225
		05	D 3	0.2	71．025	54.950	54.950	66525	66525	71.025
		05	D 4	0.1	76825	58850	58.850	70825	70825	76.825
		06	01	03	62.950	51.600	51.600	61450	61450	62.950
		06	¢ 2	02	68750	55.500	55.500	65750	65.750	68，750
		06	0.3	01	74550	59400	59400	70050	70050	74.550
		07	01	02	66475	560.50	560.50	64975	64975	65475
		07	02	01	72275	59.950	59.950	69275	69.275	72.275
		18	01	0.1	70000	60.500	60500	施．500	68500	70.000
S゙もH					2415.00	175800	1758.00	223500	223500	24150

T	＂M	W1	W2	W3	SPTFEDD	EDDISPT	S［1］	S［2］	S31	\＄ 41
15	5	0.1	0.1	08	46250	30342	30.342	44950	44.950	46250
		－ 1	${ }^{6} 2$	07	52650	34.942	34942	50.950	50.050	52650
		0.1	03	06	59050	39542	39.542	55150	55150	59050
		6． 1	0.4	0.5	65.450	44142	44142	60250	60.250	65450
		01	05	04	71850	48.742	18742	65350	65350	71.850
		0.1	06	03	78250	53342	53342	70450	70450	78250
		0.1	07	02	84650	57942	57.942	75.550	75550	84650
		0.1	08	01	91050	62.542	62542	80650	80650	91.050
		0.2	0.1	07	50100	35083	35083	48800	48．800	50100
		02	02	06	56500	39.583	39.683	53.900	53900	56500
		02	0.3	0.5	62，900	44283	44283	59000	59．000	62900
		02	04	04	69300	48.883	48．8官3	64.100	64.100	69300
		02	05	03	75.700	53483	53.483	69200	69.200	75.700
		02	05	0.2	82.100	58083	58.083	74.300	74．300	82100
		02	07	01	88500	62683	62．引83	79400	79400	88500
		03	01	06	53950	39 B 25	39.825	52，650	52.650	53950
		03	0.2	05	60350	44425	44425	57．750	57.750	60350
		0.3	03	04	66750	49.225	49025	62.850	62.850	66750
		03	04	03	73150	53625	53625	67950	67.950	73.150
		03	05	02	79.550	\＄8225	58225	73050	73050	79.550
		03	06	0.1	85.950	$62 \mathrm{B25}$	62825	7 B 150	78.150	85.950
		04	01	05	57.800	44567	44567	56500	56.500	57.800
		04	02	0.4	64，200	49167	49167	61600	61.500	64200
		04	03	03	70600	53767	53.767	66700	66.700	70600
		04	04	02	77000	58.367	\＄9367	71800	71800	77000
		04	05	01	83400	62967	62967	76900	76.900	9．3400
		05	01	04	61650	49.308	49．308	60350	60.350	61650
		05	02	03	58.050	53．808	53908	65450	65.450	68.050
		05	03	0.2	74．460	58508	58508	70550	70550	74450
		05	04	01	80850	6\％．108	63106	75650	75650	80.850
		06	01	03	65500	54050	54 D50	64200	64200	85．500
		06	02	02	71900	58650	58．650	69.300	69300	71500
		06	03	01	78300	63250	63.250	74，400	74.400	78300
		07	01	02	69350	58792	59.792	68050	68050	69350
		07	0.2	0.1	75.750	63392	63392	73.150	73.150	75.750
		08	01	01	73.200	63533	63533	71900	71.900	73200
SUW					252600	1877.00	1877.00	237000	237000	252600

T	M	W1	W2	W3	SP＇TED	EDDISPT	S［1］	S［2］	S［3］	\＄［4］
15	6	0.1	01	68	47175	31.333	37333	46075	46075	47175
		01	0.2	07	54175	36.633	36633	51975	51.975	54175
		0.1	03	06	61175	41.933	41933	57875	57.975	61175
		01	04	05	68.175	47233	47233	63.775	63775	68175
		01	05	04	75175	52533	52.533	69675	69.675	75175
		01	06	03	82.175	57833	57．833	75575	75575	82175
		0.1	07	02	89175	63.133	63133	81475	B1．475	89.175
		01	08	01	96175	68.433	68433	87375	87.375	96175
		02	01	07	51350	36367	36367	56 250	50250	\＄1，350
		02	02	06	59350	41667	41667	56．150	56.150	58350
		02	03	05	65350	46967	46967	62.050	62050	65350
		02	04	0.4	72350	52.267	52267	67950	67.950	72350
		02	05	0.3	$7{ }^{7} 350$	57567	57.567	73850	73850	79350
		02	06	0.2	86350	62867	的 667	79.750	79750	86350
		0.2	07	01	93350	68.167	68167	85650	85.650	93350
		0.3	0.1	0.6	55525	41.400	41.460	54425	54425	55.525
		0.3	0.2	0.5	62525	46700	46700	60325	6 B 325	62525
		0.3	03	0.4	69525	52000	52.000	66225	66225	69525
		0.3	0.4	03	75525	67．300	57.300	72125	72125	76525
		0.3	05	02	83525	62600	62.600	781225	78025	83 525
		03	0.6	0.1	90525	67.900	67.900	83.925	93．925	90.525
		04	01	05	59706	46433	46，4．33	56.600	58600	$5970 \square$
		W 4	02	0.4	86．700	51.733	51733	64．590	64500	66700
		0.4	0.3	03	73700	57033	57033	70400	70400	73700
		04	04	02	80700	62333	62.333	76300	76300	80700
		04	05	61	87700	67.633	67.633	82200	32200	87700
		65	91	04	83．875	51.467	\＄1467	62775	62775	63875
		05	02	03	70.875	56.767	56.767	68675	66675	70.875
		05	03	62	77875	62067	62．067	74575	74575	77875
		0.5	04	0.1	84875	67367	67367	80.475	80.475	84.875
		06	0.1	0.3	68.050	56500	56500	66.950	66950	68.050
		06	02	02	75050	61.800	61.800	72.650	72850	75 D50
		06	03	01	82050	67.100	67.100	78750	78750	82050
		07	0.1	02	72225	61533	的．533	71.125	71.125	72225
		0.7	0.2	01	79225	66833	E6833	77.025	77.025	79225
		08	01	0.1	76400	的 567	66557	75300	75300	76400
SUM					2637.00	199600	1996，00	250500	250500	2637．00

T	M	W1	W2	W3	SPTIEDD	EDDISPT	S［1］	$5[2]$	S［3］	S［4］
15	7	01	01	¢ 8	48100	32325	32325	47.200	47．200	48100
		01	02	07	55700	38325	38.325	53900	53900	56．700
		01	03	06	53300	44.325	44.325	60600	60600	633005
		01	04	05	70900	50.325	50.325	67.300	67.300	70900
		0.1	05	04	78.500	56325	56325	74.000	74.000	78.500
		01	06	03	86100	62325	82．325	80700	80700	86100
		0.1	07	02	93700	68.325	68.325	87.400	37400	93700
		01	08	01	101300	74325	74325	94.100	94.100	101300
		02	01	07	52800	37650	37650	51.700	51.700	52.600
		02	02	06	60200	43650	43650	58400	58400	60.200
		02	03	05	67800	49650	49650	65108	65100	67．800
		02	0.4	04	75400	55650	55.650	71.800	71.800	75.400
		0.2	05	03	83000	61.650	81，650	78500	78.500	23 000
		02	06	02	90600	67650	67650	85204	85.200	90600
		0.2	0.7	01	98200	73.650	73.650	91．900	91.900	98200
		03	01	06	57．100	42975	42975	56200	56200	57.100
		0.3	02	0.5	64.700	48975	48975	62900	62900	64700
		03	03	04	72300	54．975	54.975	69600	69600	72.300
		03	04	0.3	79.900	00.975	60975	76300	76300	79.900
		0.3	D． 5	02	87.500	66.975	66.975	83000	83000	87．540
		0.3	06	0.1	95100	72.975	72.975	89700	89700	$95.10{ }^{10}$
		04	01	05	61.600	48.300	48300	60700	66700	61．600
		04	02	04	69200	54.300	54.300	67.400	67400	69208
		04	03	03	76800	60.300	60300	74100	74100	7680
		04	04	02	84400	65.300	66300	80.800	80800	84.40 F
		D4	05	01	92．000	72.300	72.300	87.500	87.500	92000
		05	01	04	65100	53625	53625	65200	65200	66105
		05	0.2	03	73700	59625	59625	71.900	71900	73.700
		05	03	02	81.300	65625	65625	78．600	78600	81.300
		05	04	01	88.905	71625	71.625	85300	85300	88960
		06	01	03	70.600	58.950	58950	69700	69.700	7 D 600
		0.6	02	0.2	78200	64.950	64.950	76400	76400	78.200
		06	03	0.1	85.800	70.950	70.950	83100	83100	85800
		07	0.1	0.2	75100	64275	64275	74.200	74200	75.100
		07	02	01	82.700	70275	70275	80900	80900	82700
		08	01	01	79600	69600	69600	78700	78.700	79600
SUM					274800	211500	2115.00	264000	264000	2748.00

F	M	W1	W/2	W/3	SPTJEDD	EDD/SPT	S[1]	S[2]	5[3]	$5[4]$
15	8	01	0.1	08	49025	33317	33317	48325	48325	49.025
		0.1	02	0.7	57.225	40.017	40017	55825	$55 \mathrm{B25}$	57.226
		0.1	03	06	65.425	45717	46.717	63325	63.325	65425
		0.1	04	0.5	73.625	53.417	53.417	70.825	76825	73625
		0.1	05	D. 4	81.825	60.117	60.117	78325	78.325	81.825
		0.1	06	03	90025	66.817	66817	85825	85825	90.025
		0.1	07	02	98225	73.517	73.517	93325	93325	98225
		01	(1) 8	01	104 425	80.217	B0 217	100825	100825	106425
		02	01	07	53850	38.933	38933	53150	53150	53850
		02	D 2	06	62050	45633	45633	60650	60650	62050
		02	03	[5	70250	52.333	52.333	68150	68, 150	70250
		02	04	04	78450	59033	59033	75650	75.650	78450
		02	05	03	B6 650	65733	65733	83150	83.160	86650
		02	D 6	02	94.850	72.433	72.433	90650	90650	94850
		02	07	D1	103050	79133	79.133	98150	98150	103050
		03	01	06	58675	44.550	44550	57.975	57.975	58675
		03	02	05	66875	51.250	51250	65475	65.475	66.875
		03	03	04	75075	$57.95\}$	57950	72975	72975	75075
		03	04	03	83275	64650	64.650	80475	80475	83275
		03	05	02	91475	71.350	71.353	87.975	87.975	91.475
		03	06	01	99675	78050	78050	95475	95475	99675
		W 4	01	05	63504	50167	50.167	62800	62 BOO	63.500
		$\bigcirc 4$	02	04	71700	56867	56867	70300	70300	71.700
		$\bigcirc 4$	0.3	03	79906	53567	63567	77.800	77800	79900
		Q 4	04	0.2	88100	7 D 267	70267	85300	85300	88100
		W 4	65	01	96300	76967	76967	92.900	92 BOO	96300
		05	01	04	68325	55783	55783	67.625	67625	68325
		05	02	[13	76525	62.483	62483	75125	75.125	76525
		05	0.3	02	84725	69193	69183	82.625	82.625	84725
		65	04	0.1	92925	75883	75883	90125	90125	92.925
		66	01	0.3	73150	61.406	51.400	72.450	72450	73150
		06	0.2	02	81.350	68100	68100	79950	79.950	81.350
		06	03	01	89550	74.800	74.800	87.450	87450	89550
		07	0.1	02	77.975	67.017	67.017	77.275	77275	77.975
		0.7	02	01	86 175	73.717	73717	84775	84.775	86.175
		08	61.	01	B2800	72,633	72633	82100	82.100	82800
SUM					285900	223400	2234,00	277500	277500	2859.00

T	M	W1	W2	W3	SPTíEDD	EDDISPT	S[1]	S[2]	S[3]	S[4]
16	4	01	01	08	36.609	35942	35642	35308	35308	3660 B
		01	02	07	41.808	39,842	39542	39208	39208	4180 B
		0.1	0.3	06	47008	43.742	43442	43.108	43108	4700 B
		01	04	0.5	52208	47642	47.342	47.008	47.00.8	52208
		01	05	0.4	57408	51542	51.242	50.908	50.908	57.408
		01	06	0.3	62608	55442	55142	54.808	54808	62.608
		0.1	07	02	67808	59.342	59.042	58.708	58.708	67808
		01	0 B	01	73.009	63242	62.942	62608	62.608	73008
		02	01	0.7	40017	39983	39383	38717	38717	40017
		02	02	06	45217	43883	43283	42617	42617	45217
		02	03	0.5	50417	47.783	47.183	46517	66517	56417
		02	04	04	55617	51.683	51.093	50417	50417	55617
		02	05	03	60.817	55.583	54.983	54317	54.317	60817
		02	06	02	66017	59.483	58883	58.217	58217	66.017
		02	0.7	01	71217	63383	62.783	62.117	62117	71217
		03	0.1	06	43425	44.025	43125	42.125	42125	43425
		03	02	05	48625	47.925	47.025	46025	46.025	48625
		03	03	04	$53 \mathrm{B25}$	51825	50925	49.925	49925	53825
		03	04	0.3	59.225	55.725	54825	53.825	53.825	59 D25
		03	0.5	0.2	64225	59625	5B 725	57.725	57725	64225
		03	06	0.1	69.425	63.525	62625	61.625	61.625	69425
		04	01	0.5	46.833	48067	46867	45533	45.533	46833
		04	02	04	52033	51967	50767	49.433	49433	52 D 33
		04	03	03	57233	55867	54.667	53.333	53333	57233
		04	04	02	62433	59767	58.567	57233	57233	62433
		04	05	01	67.633	63667	62467	61133	61.133	67633
		05	01	0.4	50242	52108	50608	49.942	48942	50242
		05	02	03	55442	56008	54.508	52842	52842	55442
		05	03	02	60642	59908	58.408	56742	56742	60642
		05	04	01	65842	63808	52.304	60642	60642	65842
		06	01	03	53650	56150	54.350	52.350	52350	53650
		06	02	02	58.850	80050	58250	56250	56250	59.850
		06	03	01	64050	63950	62.150	60150	60150	64050
		07	01	0.2	57058	6 C 192	58092	55.758	55758	57058
		0.7	02	0.1	62258	64092	61992	59.658	59658	62258
		08	01	0.1	60467	64233	61833	59167	59.167	60467
		SUN			2041.00	1961.0	192500	1885.00	188500	2041.00

T	M	W1	W2	W3	SPT／EDD	EDDISPT	S［1］	S［2］	S［3］	S［4］
16	5	0.1	01	0.8	37.367	$3{ }^{6} 933$	36617	36267	36267	37.367
		01	02	07	43067	41533	41217	40.867	40．867	43067
		01	03	06	48767	46133	45817	45467	45．467	48.767
		01	04	05	54467	50733	50.417	50.067	50.067	54，467
		01	05	04	60167	55333	55.017	54667	54667	60167
		0.1	0.6	0.3	85.867	59．93．3	59.617	59267	59267	65 267
		0.1	07	02	71567	64533	64217	63867	63867	71567
		01	0 B	01	77267	69133	68817	5B467	68467	77.267
		02	01	07	41033	41.267	40．633	39933	39 勺33	41.033
		0.2	0.2	0.6	46.733	45867	45233	44533	44.533	46733
		0.2	0.3	0.5	52.433	50467	49833	49133	49133	52433
		02	04	04	59.133	55.067	54．433	53.733	53733	58133
		0.2	05	0.3	63.833	59667	59033	58333	58333	63.833
		02	0.6	0.2	䄪 533	64.267	63633	62.933	62.933	69.533
		02	0.7	0.1	75233	68.867	68.233	67533	67533	75.233
		0.3	0.1	06	44，700	45600	44.650	43600	43600	44.700
		03	02	0.5	50400	50.200	49250	48200	48.200	50400
		0.3	03	04	5 5 .100	54.800	53.850	52.600	52.800	56.100
		03	0.4	03	61.800	59.400	58.450	57.400	57.400	61.800
		¢ 3	05	02	67500	64000	63050	62000	62.000	67.500
		0.3	0.6	0.1	73.200	¢8．60¢	67．650	66.600	66．600	73.200
		04	0.1	05	48367	49933	48667	47267	47.267	48367
		04	02	04	54067	54533	53267	51867	51.867	54067
		0.4	03	0.3	59.767	59.133	57.867	56.467	55467	59．767
		04	04	02	65467	63733	62467	61067	61.067	65467
		04	05	01	71167	68333	67067	65667	65667	79167
		05	0.1	04	52033	54.267	52683	50.933	50933	52.033
		05	02	03	57733	58867	57．283	55533	55533	57.733
		0.5	0.3	0.2	63433	53487	51.883	60133	60133	砛433
		05	04	01	69.133	68.067	66.483	64733	64733	69133
		06	01	03	55.700	58.600	56.700	54600	54600	55700
		06	02	02	61.400	63200	61.300	59.200	59.200	61.400
		06	03	01	67.100	67800	65900	63800	63800	57.100
		07	01	D 2	59.367	62933	6 E 717	58267	58267	59367
		0.7	0.2	0.1	65.067	67.533	65.317	62967	62.867	65.067
		0.8	0.1	0.1	63.033	67267	64.733	61.933	61.933	63033
SUM					213200	2080 00	204200	2400.00	200000	213200

T	M	W1	W2	W3	SPTJEDD	EDOISPT	S［1］	S［2］	S［3］	S［4］
16	6	0.1	0.1	08	38.125	37.925	37592	37225	37225	38.125
		0.1	02	0.7	44.325	43.225	42.892	42．525	42，525	44325
		01	03	06	50525	48525	48192	47825	17825	50.525
		01	0.4	05	56725	53825	53.492	53125	53125	56725
		0.1	0.5	0.4	62925	59.125	58.792	58425	58.425	62.925
		0.1	06	0.3	69.125	64.425	64.092	63725	63725	69125
		01	07	02	75.325	69.725	69392	69625	69 D25	75325
		D 1	08	D 1	81.525	75025	74692	74.325	74325	81525
		ß 2	01	07	42050	42550	41883	41.150	41.150	42.050
		02	02	06	48250	47， 650	47，183	46.450	46.450	48.250
		62	03	45	54450	53150	52483	51.750	51，750	54，450
		02	04	04	66.650	58.450	57783	57050	57.050	60650
		02	05	03	66 B50	63750	63083	62350	62.350	66 B50
		0.2	0.6	02	73.050	69.050	68383	67650	67.650	73050
		02	07	01	79，250	74.350	73.683	72，950	72．950	79250
		0.3	0.1	0.6	45975	47175	46175	45075	45075	45975
		03	02	05	52175	52475	51475	50.375	50375	52.175
		03	03	04	56.375	57.775	56775	55.675	55.675	58375
		03	D 4	03	64.575	63.075	62.075	60975	60975	64.575
		03	05	02	70775	68.375	67375	66275	66275	70775
		0.3	0.6	0.1	76975	73675	72.675	71.575	71.575	76975
		0.4	0.1	0.5	49500	51.800	50467	49000	49000	49.900
		04	02	04	56100	57100	55767	54.390	54300	56100
		04	03	03	62300	62400	61067	59.600	59600	62300
		04	O4	02	68，500	67700	66.367	64.900	64．900	68500
		04	05	0.1	74，700	73.000	71.667	70200	70200	74．700
		05	0.1	0． 4	53825	56425	54758	52925	52.925	53825
		05	02	03	69025	61725	60.058	58225	58.225	60025
		05	03	02	66．225	67025	65.358	63.525	63525	$6{ }_{6} 225$
		05	04	01	72425	72325	70658	68825	68825	72.425
		06	0.1	0.3	57.750	61．050	59.050	56850	56.850	57.750
		0.6	0.2	02	63950	66350	64.350	62150	62150	63950
		06	03	01	70150	71.650	69650	67450	67450	70.150
		0.7	0.1	0.2	51.675	65 675	63342	60775	60.775	61675
		0.7	0.2	0.1	67.875	70.975	68642	65.075	66.075	67.875
		08	0.1	0.1	65.640	70.300	67633	64700	64，700	65600
SUM					222300	21990	215900	2115．00	211500	2223 O6

T	M	WH1	W2	W3	SPTJEDD	EDD／SPT	S［1］	S［2］	S［3］	S［4］
16	7	01	01	0.8	38883	38.917	38567	38.183	39.183	38883
		01	02	07	45583	44917	44567	44.183	44.183	45583
		0.1	0.3	0 O	52.283	50917	50567	50.183	50183	52283
		01	04	05	58983	56.917	56.567	56.183	56183	58.983
		01	05	0.4	65．1393	62917	62567	62.183	Б2．183	65683
		01	0.6	0.3	72383	68917	68567	68183	63183	72383
		0.1	0.7	02	79083	74917	74．567	74183	74183	79083
		0.1	0.8	0.1	85.783	86917	80567	80.183	80183	85783
		02	01	0.7	43.067	43833	43133	42367	42.367	43067
		02	02	06	49.767	49.833	49133	48367	48.367	49.767
		0.2	03	05	56467	55 B33	55.133	54.367	54.367	56467
		02	04	0.4	6.3167	61833	61133	60367	60367	63.167
		02	05	03	69.667	67.833	67.133	66367	66367	69.867
		02	06	0.2	76567	73.833	73.133	72367	72367	76.567
		0.2	07	01	83267	79.933	79.133	78367	78367	B3．267
		0.3	0.1	06	47.250	48.750	47，700	46550	46550	47.250
		0.3	02	05	53.950	54，750	53.700	52550	52550	53.950
		0.3	0.3	04	60650	60.750	59.700	58550	58550	60650
		0.3	0.4	0.3	67.350	66750	65.700	\＄64．550	64，550	67350
		0.3	0.5	0.2	74.050	72.750	71.700	70550	70.550	74050
		0.3	06	0.1	80.750	78.750	77.700	76550	76550	80750
		04	01	0.5	51.433	53667	52267	50.733	50733	51.433
		04	0.2	0.4	58133	59667	58267	56733	56733	58133
		0.4	0.3	0.3	64833	65667	64267	62733	E2733	64，833
		0.4	0.4	0.2	71533	71667	76267	68733	68733	71.53 .3
		0.4	0.5	0.1	78.233	77．667	76267	74.733	74733	78.233
		05	0.1	0.4	55.617	58.583	56833	54917	54917	55617
		05	02	03	62.317	64.583	62.833	60.917	60.917	62317
		05	03	02	89017	70.583	68.833	66.917	66917	69017
		05	04	01	75717	76.583	74.833	72.917	72.917	75717
		06	01	03	59 BDO	63500	61400	59.100	59.100	59800
		06	02	02	66500	69500	67400	65.100	65100	66500
		06	03	01	73200	75.500	73.400	71.100	71.100	73200
		07	01	02	的 983	官客，417	65967	63283	63283	63983
		07	02	01	70683	74417	71.967	69283	69283	70.683
		08	0.1	0.1	68167	73.333	70.533	67.457	67，4．77	68167
		SUM			2314．00	231800	227600	2230．00	223000	231400

T	m	W1	W2	W3	SPTIEDD	EDDISPT	S［1］	S［2］	$5[3]$	5［4］
16	d	01	01	08	39642	39.908	39542	39142	39142	39642
		0.1	0.2	0.7	46682	46608	46242	45842	45842	46842
		01	03	0.6	54.042	53.309	52.942	52.542	52542	54042
		01	04	05	61242	60808	59642	59.242	59242	61.242
		0.1	05	04	68442	66708	66342	65.942	65942	68.442
		01	06	03	75.642	73.409	73.042	72542	72.642	75642
		0.1	0.7	02	82342	80.108	79742	79342	79.342	$82 \mathrm{BA2}$
		01	08	01	90042	86208	86442	86042	86042	90×42
		0.2	0.1	0.7	44．083	45.117	44.383	43583	43593	44083
		02	02	06	51283	51817	51083	50283	50283	51.283
		0.2	0.3	05	58483	58517	57.783	56.983	56.983	58483
		0.2	04	0.4	\＄5．683	¢5 217	64483	63683	63683	65.683
		02	0.5	0.3	72883	71917	71.183	70383	70383	72.883
		0.2	0.6	0.2	80083	78617	77．8B3	77083	77083	80.083
		02	0.7	0.1	87.283	85317	84.583	83.783	83.783	87.283
		0.3	01	06	48525	50325	49225	48.025	48.025	48.525
		D3	02	05	55.725	57.025	55.925	54725	54.725	55.725
		03	03	04	62.925	63.725	62625	61425	61425	62925
		03	04	D 3	70.125	70.425	69.325	68125	68.125	7 D 125
		0.3	0.5	0.2	77.325	77.125	76025	74825	74825	77325
		0.3	0.6	0.1	84525	83825	82725	81525	81525	84525
		0.4	0.1	0.5	52967	55533	54067	52467	52467	52967
		0.4	0.2	04	60.167	62233	60767	59.167	59167	68167
		04	03	03	67367	68 933	67467	65867	65.867	67．367
		04	04	02	74567	75633	74．167	72.567	72.567	74667
		04	05	0.1	81.767	82.33	80867	79.267	79267	81767
		05	0.1	94	57408	60742	58.908	56908	56.908	57．409
		05	02	0.3	64，609	57.442	65609	63608	63608	64，608
		05	03	02	71808	74142	72308	70.308	70308	71808
		05	04	01	79008	80842	79009	77.008	77.008	79.008
		06	01	03	61850	65.950	63.750	61，350	61.350	\＄1．850
		06	02	02	69.050	72.650	70.450	68.050	68050	69050
		06	03	01	76250	79.350	77.150	74．750	74．750	76250
		07	01	02	66292	71158	68.592	65.732	65.792	66.292
		0.7	02	01	73492	77858	75292	72.492	72482	73492
		0.8	0.1	0.1	70.733	76367	73433	70233	70233	70733
SUM					240500	2437.00	2393.00	2345.00	234500	2405．00

$006 \mathrm{CL1}$	006612	00＇E191	008691	00 Eazz	006521	WกS				
49049	006－99	E¢9 25	00¢ 的	000＇レL	290＇ 29	レ0	10	日 0		
80815	92L99	Z62 29	0GL 95	Gく912	808 29	10	20	$\angle 0$		
为諙 29	92179	26159	099＇09	S10＇29	80日＇ZS	20	10	$\angle 0$		
力SS＇89	09189	09699	002 89	OSE ZL	09989	10	E0	90		
0¢5¢¢	09\％＇¢9	098＇79	001＇ts	0Gじく9	OGG＇£9	Z0	20	90		
OSS 时	啲的	092． V_{6}	00009	O¢1 E9	QSS＇9\％	$\varepsilon 0$	60	90		
Z6Z 69	çs 69	809－99	05919	GZ0＇EL	て6Z＇6S	10	¢ 6	50		
C62 p_{5}	S26 +9	$805{ }^{\circ} \mathrm{ZS}$	O5S ES	Sてt－89	こ6でじら	乙0	80	50		
こ6こ6\％	92e＇09	8068	OSt 6b	¢Z8 ¢9	て6で67	\＆ 0	20	50		
て心Z＇ロ	92l＇G9	90E bt	OGSGV	GZZ 69	てもで切	± 0	10	90		
E¢O O9	00602	192 99	00125	004 EL	EEOOG	10	50	$\nabla^{\circ} 0$		
ECO Sc	008 99	291． ZS	400＇ES	00169	EEO＇SG	20	$\dagger 0$	50		
EcO 05	00219	［90］ 8	00685	00559	¢c0 09	80	80	± 0		
Ecd GV	加ト＇29	196＇8b	008 tb	00669	Eco ct	± 0	20	50		
ECOOb	00525	49868	0020\％	00E SS	CEOOt	50	10	$\bigcirc 0$		
GL2＇09	它くでもく		OSc＇ss	GLE＇VI	SLL＇09	L＇0	90	E＇¢		
SLLSS	51919	SZB LS	0St 79	SL269	GLL SS	20	50	EO		
SLLOS	910 c9	¢くたぐ	6SE 8t	92L 59	9LL OG	$\varepsilon 0$	10	E0		
9LL 9t	¢Lt＇89	¢つ¢＇¢	0Sて＇0\％	SLG＇09	922＇别	00	E＇0	$\varepsilon \cdot 0$		
SLEOt	GL8＇EG	GZ9＇6§	OGl＇Ot	GL6＇GG	GLIOD	G＇0	Z＇0	ε		
91L＇GE	GLZ 60	GZt GE	090＇98	GLE＇LG	GLI＇GE	$9{ }^{\prime} 0$	L＇0	80		
L＇s＇ts	09962	E8S＇G5	000＇95	090＇SL	L49＇19	10	10	2＇0		
LLG＇99	09069	CEt＇LS	006＇15	OSt＇0L	L19＇99	20	90	2＇0		
LIS LS	OSt 79	ERE $2 t$	008.5	0＇s＇99	LIS LS	£＇0	90	20		
LIS 9t	09865	を日こ を\％	DOL E $\%$	OSC 19	2159	$\dagger 0$	¢0	20		
LIS 16	OSZ SS	と¢1－6E	00968	35995	く！9しゃ	90	E0	20		
LLS 9E	OS9 0	E80 ¢	0095 C	O50 2S	く1宁9	90	2＇0	20		
21玺しを	09090	を86＇0	00\％＇LE	$0 \cdot 6{ }^{\circ} \mathrm{L}$	LLE＇LE	10	10	20		
852 29	SZO St	てtz Ss	05tsc	GELGL	ダでて9	10	80	10		
的で29		でじしら	OSE＇19	Gそし＇12		20	20	10		
8sでひs	S28 S9	2tolt	OSで 27	gz5 99	9¢でてg	50	90	10		
8Gで2t	GZZ L9	こち6で	05じを	SC6I9	852 \downarrow	50	50	60		
8らでで	92995	26988	05円6E	SZE＇LS	8Sて てt	50	$\checkmark 0$	10		
85でLE	S20 75	CtL pE	096 \downarrow ¢	92L 29	㚈て 5	90	E0	10		
89己 てE	Sてt 2 V	で9＇0s	OS8 OE	gで＇8\％	¢¢も゙で	20	20	10		
8Sでして	G78 25	でF＇9\％	OGL9Z	¢ZS＇¢	89でして	80	10	1.0	g	L1
［t］${ }^{\text {c }}$	［E］S	［ $]$ S	［l］S	LdSrang	－9케d	EM	2 M	1 M	W	1

00 9891	$00 \downarrow 802$	00\％ELS	002651	D0 0912	001889	WกS				
298 bc	£¢9 29	L9L S5	29295	29619	C98	＋＇0	1.0	$8 \cdot 0$		
¢¢t ¢ $¢$	299 ¢9	8Stbs	BGS S5	ECZ 89		10	20	10		
EE¢＇0s	299＇69	95609	8G¢ 29	EEctry	EEAOS	20	10	co		
00095	009＇rs		OSE＇bs	ODS 99	00095	10	¢0	90		
OOP＇LS	00909	$0 ¢ \mathrm{COg}$	OGb＇LG	009189	000 Is	20	20	90		
008＇90	004．99	$0 ¢ 196$	$0 G 62 \mathrm{~F}$	00209	008：96	80	10	90		
296＇99	cet ¢9	z60 \＆s	2bots	19289	19599	10	50	50		
196	عES 15	2－56 6	でStos	296＊	496＇${ }^{\circ}$	20	E0	g＇0		
29\％\％	E¢9＇LS	てが9力	2 O 2 L	10609	198\％ $2 ⿰$	C0	20	50		
192\％	E¢L ¢G	2DS てt		19025	L9L 2 L	－0	10	90		
とEL－29	29899	Ece 29	¢¢5¢g	880 69	¢81＇29	$1 ' 0$	g＇0	${ }^{+} \mathbf{0}$		
Eç\％	L9t 79	を¢9 \％	¢ ¢9 6t	Ect＇g9	を¢c＇zs	て＇0	\bigcirc	＋0		
EE6 2 t	19585	EE¢ 5	をとし 9t	Eezirs	¢ ¢ 6.2		\＆＇0	to		
をโE \＆t	29985	と¢8け	E¢9 てt	£ ¢ $\angle 5$	¢ ¢ ¢ ¢	\checkmark	20	to		
£ 21.85	29409	ECE 㫙	\＆EL 6E	EEt ES		G＇0	L＇0	to		
002 29	O0E：29	¢Z9＇Ls	922＇てg	OOE 69	00125	10	90	¢0		
001 §S	005 ¢9	SZI 日b		00\％＇59	001＇¢	でO	90	80		
0098	00569	geg to	czz cb	00919	005 时	c＇0	± 0	$\varepsilon 0$		
006 Et	00959	9でした	çitb	00929	006 Et	$\checkmark 6$	E0	$\varepsilon 0$		
00E 68	002\％ 19	9zg＇28	szて＇e¢	002 EG	DOE 68	50	20	$\varepsilon 0$		
002 28	008 $2 ⿰$	GZt「く	gziobe	008＇66	OOL $\angle 8 \mathrm{E}$	90	10	$\varepsilon 0$		
298 89	cez 89	2L巨＇OS	LECLG	29969	L92 09	10	40	z＇o		
499＇Es		いがっ	21821	29959	49989	20	90	z＇0		
290＇6\％	£ebog	2168	LLEtb	192 19	190＇60	$\varepsilon \cdot 0$	G 0	20		
L90 7 b	EES 95	2V0\％	21800	298.19		± 0	± 0	20		
19368	عE9 て	46698	LLELE	496¢S	19868	50	\％ 0	20		
29\％ 98	と $¢ 1.8$	2LDE	LLBEE	1900	L9Z9¢	90	z＇0	20		
29908	E¢a＇by	216.62	くど0	2915	29908	20	10	20		
¢ ¢ \％ 9	491．69	20Z DG	$80 \% 05$	cee 6	ces 89	1.0	80	10		
とยで的	492＇99	8029	80697	EE6 59	¢¢で力の	20	20	1.0		
¢ ¢ 96	298＇19	802 Et	80ヶ ¢ ¢	¢80＇29	を¢9＇6 ${ }^{\text {b }}$	E 0	90	10		
¢EO ¢ \downarrow	190＇29	602＇6	80668	Eとし 89	¢EO＇50	$\nabla^{\prime} 0$	90	10		
\＆Eb 0	29685	90298	80\％＇98	¢¢で \downarrow ¢	£EtD	50	± 0	1.0		
¢c8＇ce	1996	BOL 28	2062%	Ec\＆ 09	Ecg c ε	9 D	E O	10		
E¢EIE	29\％＇st	80268	80 tc 6		をくて＇しદ	10	20	10		
£¢9 9z	198＇L6	80192	805 cz	£と¢ CH	عcs＇9z	a＇0	10	10	\dagger	21
［t］s	［15	［2］ 5	［1］S	IdSraug	－ablds	EM	2 M	LM	H	1

00＇6061	006208	098L8	00006	00＇LてS\％	00＇6061	WITS				
296－19	ES60L	49929	29859	49012	296＇s9	1.0	10	80		
8G9゙で	261＇¢L	656＇29	¢\＆G＇tg	9¢S＇8L	Q¢¢＇Z9	10	20	40		
89L 99	て61＇49	6G9＇， 9	をくて＇69	8SG2Z	251．95	z＇0	10	$\angle 0$		
099＇89	OSb＇92	098.69	$002 巾 9$	OSO 08	0¢9 ¢	10	E0	90		
0S日＇L9	05ヶ69	DSO 日S	0076 6	050 pt	OSB L5	＜0	70	90		
OSO ZS	05\％ 89	95t 65	加卜＇p	09089	090＇ちs	E＇0	10	90		
Z 7 ± 69	80¢゙LL	Cv 29	498 \％	てヤS 1日	ごく	10	± 0	90		
276日G	802L	Zヤt＇8G	L99 69	ZヤG GL	で685	20	¢0	50		
で1旳	80159	てカレ ¢¢	L9Z VG	で599	でも゙をG	80	20	50		
でら，	60169	Zレー＇tb	19685	20ccs	こbc゙2b	$\dagger 0$	10	G00		
EES G9	2966 2	Eとし 79	EEOS9	EEOES	EEB＇ç	60	50	± 0		
EEO 09	196 Et	£E\％ 95	EELGS	EEOLL	EEOOF	で0	$\bigcirc 0$	$t 0$		
EEZ 6 S	29649	EES ES	EEy゚゙g	CEO 14	EEC ts	E0	\％	$\rightarrow 0$		
Eto av	296．19	£とで别	を¢し＇6\％	EEOGg	を¢\％ 8 p	$\bigcirc 0$	20	$\bigcirc 0$		
Eヒロ゙で	49695	ES6 \downarrow	E¢B Et	Cco fis	EE9 こt	50	10	$\bigcirc 0$		
926＇99	GZZ＇2G	GZG＇P	OOZ＇99	¢2G＇ti	926＇99	1 ＇0	90	E＇0		
Gくし19	SZZ 92	sZ2 69	00665	575 82	SZ1． 19	20	50	50		
GZE SG	9ZZ OL	526 E5	009 \％ 9	975 2L	乌で柠	50	$\bigcirc 0$	E0		
STS 6t	Sてでし9	5298	00E 6\％	97599	975 6t	$\bigcirc 0$	\％ 0	E0		
SZ」ど	9くでgs	SてE Ep	000 to	929 0		50	と0	E0		
526 28	SZZ゙てS	S20 \％	002 88	979 狺	926 $2 \boldsymbol{1}$	90	10	E0		
21089	を昞加	266 59	19859	21098	＜1689	10	10	20		
く1でて	C日t 21	LL9 6G	29009	21008	L12 29	Z0	90	己0		
41799	C日Vで	LLEVG	L91 vg	410 V	く1t95	E0	50	Z0		
L19＇0	CSp 99	1106\％	29\％6\％	21089	11905	市0	¢0	Z D		
218 \％	cgto 09	LUEを	LS +7	21079	L18 \dagger	50	$\varepsilon 0$	70		
L1068	E8V PG	th\％	19880	L1099	LID＇6̂	90	20	z＇0		
くしてEE	580＇8\％	〈レ＇を號	L9G＇$¢$	210＇05	LIZ＇E	10	10	z＇0		
80169	で2 98	80 s 9	ECS S9	80526	B0169	10	80	10		
80 ¢9	てもく吅	800	をとこ＇09	80¢＇18	80 ¢ 89	二0	10	10		
80515	で 272	80479	EEGVG	$80{ }^{\circ} \mathrm{F} 2$	80家 19	\％ 0	90	10		
00L＇LS	ごぢ89	COV＇施	¢59＇6t	80969	$80 L^{\circ} 19$	± 0	90	10		
B0E G\％	でL＇Z9	80レ $\dagger t$	ともぐヤ	8¢5\％9	9065\％	50	＋0	50		
96\％${ }^{\circ}$	でく 9G	80888	EED＇6E	$805^{\circ} 5$	80じ0t	90	$\varepsilon 0$	10		
90¢゙ヤ¢	ZbL0G	20G ¢ $¢$	EELEE	80515	80E＂te	20	20	50		
g0G 82	でったtb	$80 Z \mathrm{BZ}$	¢Et 8Z	80s ct	80582	80	100	10	t	L1
tpls	［E］S	代姩	［i］	ldsiogl	qugiddS	EM	ZM	LM	1 N	1

00 ¢¢81	00ゅİż	00．8L1	006621	00 でゆって	00＇reg3	WกS				
492＇69	191－89	00109	E¢¢ L9	¢ 20% ¢	49265	10	10	80		
cisl ${ }^{\text {ct }}$	C6669	GZ109	2ヶ9＇t9	41＇g 2	£8109	10	z0	10		
cg 2 ps	¢ 89 tg	gzt 9s	24G＇95	218＇69	E8L＇vg	20	10	10		
D01 19	008 12	05109	09\％ 19	00で92	001.19	＋＇0	$\varepsilon \cdot 0$	90		
00295	0099	Ost $0^{\text {cs }}$	0stigs	D06＇0L	DOLSG	20	20	90		
00¢ 05	00 C 19	05t0s	$050 \mathrm{Z5}$	00959	00209	$\varepsilon 0$	10	90		
$40 \mathrm{Z9}$	くト9を	9くt 09	6̧z＇19	SBE＇LL	210＇79	10	${ }^{\circ} \mathrm{O}$	G＇0		
2t9＇ss	218＇89	GLD Gg	89595	E86 WL	L1995	20	$\varepsilon 0$	90		
ぐてし5	Ll0 59	GLLCO9	858	E69 99	くよでしg	50	z＇0	G＇0		
A1895	L1245	920 gt	85120	¢6E＇L9	218 ¢	$\checkmark 0$	10	90		
EE6Z9		00209	290＇19	29832	EE689	10	¢0	± 0		
£Ec゙29	紤＇0L	$00 ¢ \mathrm{Gq}$	29899	290\％ 2	¢eg＇2c	20	$\downarrow 0$	to		
¢ELZS	Ec8 tg	00805	1990＇19	292\％ 29	とくしてら	80	$\varepsilon 0$	＋0		
cect 9	E¢5 6G	0015	19696	19629	¢EC＇St	\＄0	20	\＄0		
EEE゙ip	Etて	00ャ゙㖪	29Z Ct	291．29	EとE゙した	cio	10	50		
0¢8 ¢9	DGZ 12	szZ 09	SIE 09		OS8＇E9	＇0	90	EO		
OGV 8 C	GG6 LLI	çs cs	Sil 99	OSL＇v 2	OSb＇ss	でO	90	\＆＇0		
090＇Es	099＇99	cza＇0s	git is	09889	OS¢ ES	CO	$\square 0$	\＆＇0		
0592	O9E＇19	9Z1＇9b	GLL 9b	OGS Eg	099 2	$\bigcirc 0$	E 0	¢0		
098%	080.95	GZt しt	GLO Ct	05z 85	OSZ で	90	60	$\varepsilon{ }^{\prime} 0$		
¢98＇98	OSLOS	çice	SLE LE	09625	098＇s	90	＇0	\＆＇0		
292＇69	49062	DSC 69	¢ 8909	EcS 08	292．09	$1{ }^{1} 0$	20	$2 \cdot 0$		
LSC 69	29282	OS＇Gs	£ $86 . \mathrm{GG}$	EEL＇GL	49869	20	90	Z0		
296＇s5	29089	OS8 0	¢82 LS	ع¢6 69	496 ¢5	80	90	2＇0		
2958	L91－E9	OSt 9	Ets＇90	¢\％9＇v9		t＇0	± 0	20		
	1980	OSがゆ	E88 16	¢¢E 65	L91 EV	90	80	て＇0		
191．2\％	L9S 29	0519 C	E81LE	EEO 比	c96\％	90	20	zo		
L98＇そ¢	292 5	050ze	¢8゙っで		L9E＇2¢	L＇0	10	20		
ع69＇¢9	88808	SLZ 09	26t 69	く69＇Lg	¢69 99	10	80	10		
C8Z＇09	ع8s＇ch	GLS Gg	26499	LtEg	E8Z 09	20	40	10		
CB8 6 －	娒 02	SL8＇09	26019	LL0＇LI	c880ヶ¢	E0	90	10		
88t＇60	¢ 26 b		268．9p	21699	c8t 66	50	5	10		
EBO＇b	E89＇65	SLD＇ロ	26917	14009	を时加	90	\＄0	10		
¢8988	88E $\dagger 5$	S $2 \angle 95$	26698	1いGg	E89 8E	90	¢0	10		
¢日乙 ¢	c80 6t	SLO 2 を	て¢Z 2 Cc	LLB6 ${ }^{\text {\％}}$	¢ $¢ \mathrm{C}$ ¢ ε	10	とO	10		
EGB 12	E8LEb	GLE $\angle Z$	26912	LLG゙ゆt	E8E $\angle Z$	80	10	10	9	4
［ t$]$ ］	［ ε ］S	［2］	［1］	1dsiode	003IIdS	EM	LM	LM	W	1

T	9	W9	W2	W3	SPTJEDD	EDDISPT	S[1]	\$[2]	S[3]	S[4]
17	8	0.1	0.1	08	29133	46500	29275	29042	45700	29 133
		01	0.2	07	35333	53200	35.175	34.942	52400	35333
		0.1	03	06	41533	59.900	41075	40842	59100	41.533
		0.1	04	05	47733	66.600	46.975	46742	65800	47.733
		0.1	05	04	53933	73.306	52.875	52.642	72500	53.933
		01	06	03	60.133	80.000	58.775	58542	79200	60.133
		01	0.7	02	耴. 333	86.706	E4 675	64442	85900	6 6. 333
		01	0.8	0.1	72.533	93.400	70.575	70342	92600	72.533
		0.2	0.1	0.7	34067	51.300	34.650	34183	49700	34067
		0.2	02	06	40267	58.0006	40550	40083	58.40'	40, 267
		02	03	0.5	46.467	64.700	46450	45983	63.100	46467
		02	04	0.4	52.667	71.400	52.350	51883	59.800	52667
		0.2	05	03	58.867	78.100	58250	57.783	76.500	58867
		0.2	06	02	65067	B4.806	64.150	63683	83200	65.067
		02	07	01	71.267	91.500	70050	69.583	89900	71.267
		0.3	01	D6	39000	56.100	40025	39.325	53.700	39000
		03	02	0.5	45200	62800	45.925	45.225	60400	45.200
		03	03	04	51400	69500	51.825	51.125	67100	51.400
		03	04	0.3	57600	76200	57725	57.025	$73 \mathrm{B00}$	57.600
		03	05	02	63800	82900	63 625	62.925	80500	63800
		03	06	B1	70000	89.600	69525	68.825	87.200	70000
		04	01	W5	43.933	60900	45400	44467	\$7.700	43933
		04	$\bigcirc 2$	04	50.133	67600	51300	50367	64400	50133
		D 4	03	03	56333	74300	57.200	56267	71100	56333
		04	04	0.2	62533	81000	63.100	62.167	77800	62.533
		04	0.5	01	68733	87700	69.000	68.067	84500	68.733
		05	01	0.4	48867	65700	50.775	49608	61700	48867
		05	02	0.3	55067	72400	56 施5	56.508	68400	55067
		05	03	02	61.267	79100	62575	61.408	75100	61267
		05	[) 4	01	67.467	85800	68.475	67.308	81.800	67467
		06	0.1	03	53800	70.500	56150	54.750	65.700	53800
		0.6	02	02	60000	77.200	62.550	60.650	72.400	60000
		0.6	03	01	65200	83.900	67.950	66550	79100	66.200
		0.7	0.1	02	58733	75300	61.525	59892	69700	58.733
		0.7	02	0.1	64933	82000	67.425	65792	76400	64933
		0.8	01	01	63667	80100	66.900	65033	73.700	63667
		SUM			1984.00	264000	200100	1973.00	254400	1984,00

T	M	W!	W2	W3	SPTIED	EDDISPT	S(1)	S[2]	S[3]	$514]$
$1{ }^{1}$	4	01	01	08	32058	31.175	31158	31175	31.158	32.058
		01	02	07	36.458	34675	34658	34675	34658	36458
		01	0.3	05	40.858	38175	38158	38175	38.158	40858
		01	04	05	45258	41.675	41658	41675	41656	45.258
		01	05	04	49658	45.175	45158	45175	45156	49.658
		01	06	03	54058	48675	48.658	48675	48658	54058
		01	0.7	02	58.458	52.175	52158	52175	52.158	58458
		0.1	0.8	0.1	62858	55.575	55.658	55675	55658	62858
		0.2	0.1	0.7	35717	34.850	34.817	34850	34817	35717
		0.2	0.2	0.6	40.117	38.350	36317	38350	38317	40.117
		02	0.3	05	44.517	41.850	41.817	41.850	41.817	44.517
		02	04	0.4	48.917	45.350	45.317	45350	45317	48.917
		02	05	03	53317	48950	48.817	488850	48.817	53.317
		02	06	02	57.717	52.350	52.317	52,350	52317	57717
		02	07	01	62.117	55.850	55817	55850	55817	62117
		03	01	0.6	39.375	38.525	38.475	38525	38.475	39375
		0.3	0.2	05	43775	42025	41.975	42.025	41975	43775
		03	03	04	48175	45525	45475	45525	45475	48175
		0.3	04	03	52575	49025	48.975	49025	48975	52575
		03	05	02	56975	52.525	52475	52525	52475	56.975
		03	06	01	61375	56.025	55975	56025	55975	81.375
		04	01	05	43033	42200	42.133	42200	42133	43033
		04	02	04	47433	45700	45633	45700	45633	47.433
		0.4	03	03	51833	49200	49.133	49200	49133	51833
		0.4	0.4	02	56233	52700	52.633	52.700	52633	56233
		0.4	05	01	60633	56200	56.133	56200	56133	60633
		0.5	0.1	04	46692	45875	45.792	45.875	45792	46692
		0.5	02	03	51092	49375	49.292	49.375	49292	51092
		0.5	03	02	55492	52.875	52792	52875	52792	55.492
		0.5	04	01	59892	56375	\$6.292	56375	56292	59.892
		0.6	01	03	50.350	49550	49450	49550	49450	50.350
		0.6	0.2	0.2	54750	53050	52950	53.050	52950	54750
		0.6	0.3	01	59150	56550	56.450	56550	56.450	59150
		07	01	02	54008	53.225	\$3.108	53225	53.168	54.009
		07	02	01	58.408	56725	56608	56725	56508	58408
		08	01	01	57.667	56.900	56767	56900	56.767	57.667
		SLiM			1831 D0	1725.00	172300	172500	172300	183100

001861	001261	00 £ 261	00126	00EZ61	90＇1861	WHS				
19029	L9519	加ぐ1家	$299^{\circ} \mathrm{L9}$	W02L9	49029	10	10	80		
851－89	89\％ 69	912＇Z9	8SI 79	GLZ 79	官1＇89	10	20	10		
8它＇15	EGt LS	S $15^{\prime \prime} 4$	8gt 49	GLE＇LS	85629	20	10	10		
0 cc 109	092 zg	OGB 29	OSL 79	058 ＜9	0¢で时	10	E 0	90		
OFO＇6S	05085	05189	が施＇日G	OS1 EG	05065	20	2 ＇0	90		
OS9 ES	OSE ES	$0 \mathrm{O}+6$.	OSE ES	05t c5	－99＇EG	$\varepsilon 0$	10	90		
てVC59	で「它	Gで「と	てレC89	9で §	ZセE＇G9	10	$\leqslant 0$	c 0		
でレ＇09	2b98G	S2L 旳	で59＇89	92L 89	でレロ	\％0	E0	50		
ごO゙切	ごも6¢S	520 ¢	ご65S	9COt ${ }^{\text {c }}$	こち6 \＄9	E0	20	S0		
ござ而	でで6゙	92E 67	でで＇6b	SCE 6t	でん 所	$\checkmark 0$	10	50		
とct 99	EE6「9	000＇69	E¢6 ¢9	000 \％ 6	¢cた＇99	10	50	$\leqslant 0$		
£くて！g	EEZ 65	00\％＇65	¢¢乙 6G	OOE 65	セeで！ 9	20	50	－0		
¢c099	¢EG゙ロs	009 \＄5	を枵けS	009 ts	EEO 99	EO	E＇0	0		
cc8＇09	¢¢867	OD6 6\％	をC8＇6\％	00667	EEG OS	\bigcirc	20	10		
¢ ¢9 ¢	EEIGも	002 5\％	どと 5	OOZ＇Gb	EE9 St	50	10	θ		
S29 49	97S 69	Gts b9	929 \％		SCS 29	$1 \cdot 0$	90	E0		
9て§＇そ9	cza 69	ci865	92869	920＇69	STE 29	¢0	50	$E 0$		
9ZL＇LS	cZl 55	51159	¢で＇G9	S1L cs	GZし 49	ED	90	E0		
SC615	¢で09	91t0s	GLV OS	S1POS	¢Z5＇Is	$\bigcirc 0$	80	¢0		
92L゙9t	cRL St	92LGy	9zL 5\％	GLL＇St	SZL9t	50	30	\＆ 0		
S2S し	gて0＇レ	GLO＇し\％	sZolt	9201\％	GZGit	90	10	ε		
119＇89	1い159	OSt 99	く1し「9	05159	21989	－6	20	20		
しん\％c9	2t＊ 09	OGt 09	くんا 09	0¢＊D	1689	20	90	20		
41789	LLEGG	OSLSS	41259	OGL＇GG	L1ट85	E0	50	と0		
41059	1LO＇IS	0SO LS	410＇5	0GOLG	LLOES	10	0	20		
218 27	118゙9\％	95c 9r	4189	OSE St	二1色L	90	¢0	20		
119 て	1．9゙し	059 しV	く191t	0596	く19で	$9{ }^{\prime} 0$	20	20		
41ザ 5 ¢	L169E	¢G6 9E	L16＇9E	09698	こ1ヤLE	S＇0	10	Z0		
802＇69	80259	çL 99	602＇c9	921 99	80269	10	80	10		
80979	800.19	52019	800 19	920＇19	805 \％	亿0	L＇0	10		
60869	$805^{\text {899 }}$		$80 ¢$	SZE 95	80 ES	E D	90	10		
801．59	80915	52919	209＇5	GZ9 LS	801．99	60	90	10		
\＄066t	80697	s26 9b	gos＇9\％	926＇9b	8068	90	0	10		
802 ct	80ごで	GZZ Z	80Z ל \downarrow	9でで	$8028 t$	90	50	10		
80988	80815	SZS $2 ¢$	80S 2 E	¢ZG＇t¢	80588	10	60	10		
90E E	\＄08 Z¢	ço ce	加宜で，	¢ても＇てを	80E \＆	80	10	10	9	目
11／5	［i］	［ $]$ ］	［l］S	上dsjody	미키d	EM	ZM	$1 / \mathrm{M}$ ．	W	1

00＇906！	00 Z゙Z81	が㲸く！	00＇z28L	00 bc 89	00＇9061	Wn\％				
49865	491＇69	O0E65	29169	00¢＇69	49865	10	10	80		
E8409	¢日E＇6G	OES 65	88c＇69	DOG 69	88209	10	Z0	10		
886 9 9	¢9z＇cs	Weps 5	を放＇与s	OOt ¢G	886 55	zo	10	10		
00219	00969	00265	00965	002＇65	00219	1.0	c＇0	90		
00695	0059	009 gc	00955	009＇59	00695	20	20	90		
0012\％	00619	ORS 15	00t＇b	DOS 15	00178	$\varepsilon 0$	10	90		
119 29	218＇69	00669	210＇69	006＇69	41989	1.0	$\checkmark 0$	90		
LIa 29	LLCS9	008＇g	L1259	008.59	118.5	z0	$\varepsilon 0$	g＇0		
L10Eg	219゙9	002＇LS	21915	002 15	40 EG	E0	＜ 0	g＇0		
くで时	115 $2 ⿰$	009＇29	L1G 27	00925	4で和	ヤ0	10	90		
E\＆S Eg	ع6009	00108	¢ ¢ 09	001＇09	E¢G E9	10	90	to		
E $£ 18 \mathrm{BS}$	Ec6\％s	00008	E¢659	000＇99	£ 218	20	＋0	to		
¢¢6 ¢5	¢c6 2 s	006 ls	ع¢в	006＇LG	ع¢6 Є5	80	$8 \cdot 0$	$\triangleright 0$		
Eとト 施	¢¢ $¢ 2 \square$	00814	E¢L＇Lb	008 Lt	ع¢5＇b＇	P0	20	± 0		
を它氻	とegrt	00LEV	¢¢9 ¢ \downarrow	002 \％	£とE＇加	50	10	$\checkmark 0$		
0¢tpo	09で09	ODE 09	OSZ 09	008.09	OSt $\mathrm{P9}$	10	90	80		
05965	ost＇gs	002 95	09199	00295	05965	20	G0	¢0		
058	09029	00175	090＇zs	OOL Z¢	OS8	$8 \cdot 0$	$\bigcirc 0$	E0		
05005	OS6 $2 t$	0008	096＇5b	000 日b	0 SO 05	to	¢0	¢0		
DSZ ¢f	0988	0068	0¢8＇¢	006 E ¢	0cz 5\％	9 g	70	$\varepsilon \square$		
	09268	00868	05 268	00\％＇68	OSt 0	90	10	$\varepsilon 0$		
29899	29509	00909	29t 09	009＇09	L9E 59	10	10	20		
299＇09	19699	O0t 99	L9899	00t 95	49909	20	90	20		
2925 5	49239	00E 75	292＇29	00E ZS	4SL＇S	$\varepsilon 0$	50	20		
$2960{ }^{6}$	491＇8t	ORE ${ }^{\text {a }}$	291＇8t	002 Bt	296＇0．	$\bigcirc 0$	$\square 0$	20		
29195	490 to	001 切	$290 \cdot 0$	001 \dagger \％	4S1．9\％	90	¢ 0	20		
29E to	496＇68	9000	L96．6E	000 0t	L98＇LO	90	20	20		
29998	19958	00¢ 9	29858	00695	29998	$\angle 0$	＇0	20		
\＆8z＇99	ع9909	00609	¢89 09	00109	88299	10	80	10		
catiog	ع日5＇99	009＇9s	¢89 9\％	009 9c	¢8t 19	$2{ }^{2}$	10	10		
E89 95	cob $z ¢$	OOS 25	を明で	005 ZS	¢89＇9G	¢ 0	90	1 ＇0		
689	c8c\％${ }^{\text {co }}$	OOt 8	をac＇er	00t 87	£8a＇Lc	$\checkmark 0$	90	1.0		
c80 27	c8Z＇t	OOE 站	caて＇to	00e＇v\％	£80 26	50	To	10		
c8Z で	881＇07	002 0 \％	cal $0 t$	00200	cse zb	90	$\varepsilon^{\prime} 0$	10		
¢8t $2 ¢$	¢ 80.9 E	00198	¢80 9\％	001＇98	と8t 18	10	20	10		
¢ $89 \mathrm{Z} \mathrm{\varepsilon}$	¢65＇	000 z	¢86 18	000＇z\％	889 2 E	80	1.0	10	5	92
［t］s	［8］5	［2］s	［［］	Lds／ag	GG3IIdS	EM	2 M	L／M	N	1

T	M	W1	W2	W3	SPTEEDD	EDDISPT	\$1]	S[2]	S[3]	S[4]
18	7	0.1	0.1	0.8	33933	33.656	33633	33.650	33533	33933
		0.1	02	0.7	39.533	38.950	38933	38.950	39.933	39533
		0.1	0.3	06	45133	44250	44233	44250	44233	45.133
		0.1	0.4	0.5	50.733	49550	49533	49550	49533	50.733
		0.1	0.5	0.4	56.333	54.850	54633	54850	\$4.833	56.333
		0.1	06	0.3	61.933	60.150	60.133	60150	60.133	61933
		0.1	0.7	0.2	67.533	65.450	65433	65450	E5 433	67533
		0.1	0.8	0.1	73.133	70750	70733	70750	70733	73.133
		02	0.1	0.7	38.267	38000	37.967	38000	37.967	38267
		02	02	06	43.867	433007	43267	43.300	43267	43867
		02	03	0.5	49.467	48600	4 B 567	48600	48567	49.467
		0.2	04	04	55.067	53900	53867	53900	$53 \mathrm{B67}$	55.067
		0.2	05	03	60.667	59200	59.167	59200	59167	60.667
		02	0.	02	66267	64.500	64467	54.500	64467	66.267
		02	07	01	71.967	69800	69.767	69800	69.767	71867
		03	0.1	0	42600	42.350	423001	42.350	42300	42600
		0.3	D2	05	48200	47.650	47600	47.650	47600	48.200
		03	03	04	53800	52.950	52.900	52.950	52.900	53800
		03	04	03	59400	58250	58200	58250	58200	59400
		03	05	02	65000	63550	63500	63550	63500	65.000
		0.3	06	D1	70.500	6 B 850	58800	68850	68 BOO	70600
		04	01	05	46.933	46700	46633	46700	46633	46.933
		04	02	04	52533	52.000	51933	52.000	51933	52533
		D 4	03	0.3	58133	57.300	57233	57.300	57.233	58133
		D 4	04	02	63733	62600	62.533	62 6¢0	62533	63.733
		OA	05	Q 1	69.333	67900	67833	67.940	67833	69.333
		05	$\bigcirc 1$	© 4	51.267	51050	50967	51.050	50967	51.267
		05	$\bigcirc 2$	¢ 3	56867	56.350	56267	56.350	56267	58887
		05	03	02	62.467	61650	61567	61.650	61567	62467
		05	W 4	01	68.067	66950	66867	66950	66867	88067
		06	01	0.3	55600	55400	55300 60600	55.400 60.700	55300 60600	55.600 61.200
		0.6 0.6	0.2 03	02	61200 66800	10.700 66.000	60600 65900	60.700 66000	60600 65.900	61.200 66.800
		07	01	02	59933	59750	59633	59750	59633	59.933
		07	02	0.1	65533	65050	64.933	65050	64933	65533
		08	01	0.1	64267	64100	63.967	64100	63.967	64.267
SUM					205600	2022.00	2020.00	2022.00	2020.00	205600

T	M	W1	W2	W3	SPTJEDD	EDDISPT	S[1]	\$[2]	\$53]	S[4]
18	8	01	0.1	0.8	34558	34.475	34,458	34475	34458	34.558
		01	0.2	0.7	40558	40375	40.358	40375	40.358	40.558
		01	03	06	46.558	46275	46258	46275	46258	46558
		0.1	04	05	52558	52.175	52158	52175	52158	52558
		0.1	0.5	04	58558	58.075	58058	58075	58.058	58.556
		01	06	03	64558	63.975	63956	63975	63.958	64 565
		01	07	02	70558	69.875	69 85\%	69875	69.85B	70.558
		01	08	01	76558	75775	75758	75.775	75.758	76558
		02	0.1	07	39117	39050	39017	39050	39.017	39117
		02	0.2	06	45117	44.950	44917	44950	44917	45117
		02	03	05	51117	50.850	50817	50.850	50817	51117
		02	04	04	57117	56750	56.717	56.750	56717	57117
		02	05	03	63117	62650	52.617	62650	62617	63117
		02	06	02	69117	68.550	68517	68.550	6 5 517	69.117
		0.2	0.7	01	75117	74450	74.417	74,450	74417	75117
		03	01	06	43675	43625	43575	43.625	43575	43.675
		03	0.2	05	49675	49525	49475	49.525	19475	49675
		03	03	0.4	55675	55425	55375	55.425	55.375	55.675
		03	04	0.3	61.675	61325	61.275	61325	61.275	61.675
		03	05	02	67.675	67225	67.175	67225	67.175	67.675
		03	06	0.1	73675	73125	73075	73.125	73075	73675
		04	01	05	48233	48200	48133	48.200	48133	48.233
		04	02	04	54233	54.100	54.033	54100	54033	54.233
		04	03	03	60.233	60000	59933	60000	59933	60233
		04	04	02	66233	65900	65833	65.900	65833	66.233
		04	05	01	72233	71.800	71.733	71800	71.733	72.233
		05	01	04	52.792	52775	52692	52775	52.692	52.792
		05	02	0.3	58792	58675	58592	58.675	58592	58.792
		05	03	0.2	64792	64575	54492	64.575	64492	64.792
		0.5	04	01	70792	70475	70392	70475	70.392	70792
		06	01	0.3	57350	57350	57250	57.350	57.250	57350
		0.6	0.2	02	63350	63250	63.150	63250	63150	63350
		0.6	0.3	01	69350	69150	69.050	69.150	69050	69350
		07	0.1	02	61908	61925	61.808	61,925	61808	61908
		07	0.2	101	67.908	67825	67.708	67.825	67708	67908
		08	01	01	66467	66.50	65.367	66500	66367	66.467
		SUM			213100	212100	2719.00	2121.00	211906	213100

T	W	W $\mathbf{W} 1$	W2	W3	SPT/EDD	EDOWPT	S[1]	S[2]	S[3]	S[4]
19	4	01	01	08	37.483	36800	36783	36.800	36783	37483
		01	02	0.7	41683	45300	40283	40300	40283	41683
		01	$\bigcirc 3$	06	45883	43.800	43783	43806	43.783	45.883
		01	04	05	50093	47.300	47283	47300	47.283	50.083
		01	05	04	54283	50.800	50.783	50800	50.783	54,283
		01	06	03	58.483	54.300	54283	54300	54283	58.483
		01	07	02	62. 693	57.800	57783	57800	57.783	62.683
		01	68	01	68883	61.300	61,263	61300	61.283	66.883
		02	01	0.7	40767	40.100	40.667	40106	40.067	40767
		0.2	0.2	06	44967	43600	43.567	43.600	43.567	44967
		02	03	0.5	49.167	47100	47067	47.100	47.067	49167
		02	04	04	53.367	50.600	50567	50500	50567	53367
		02	05	03	57567	54100	54.067	51100	54067	57.567
		0.2	06	02	61767	57600	57.567	57.600	57567	61.767
		02	07	01	65967	61100	E1.067	61.100	61067	65.967
		0.3	01	06	44050	43400	43350	43.400	43350	44050
		03	02	05	48250	46900	4 E .850	46900	46850	4 B 250
		03	03	04	52.450	50400	50.350	50400	50350	52.450
		¢ 3	04	03	56650	53900	53.850	53.900	53.650	56650
		03	0.5	0.2	60850	57.400	57.350	57400	57350	60850
		03	06	01	65050	60.900	60.850	60950	60.850	65.050
		04	01	0.5	47.3 .33	46700	46.633	46.700	46633	47.333
		D 4	02	04	51533	50.200	50.133	50.200	50133	51533
		D 4	03	03	55733	53.700	53.633	53.740	53633	55733
		04	04	02	59933	57200	57.133	57.200	57.133	59933
		0.4	05	01	64133	60700	60.633	60.700	60633	64133
		0.5	0.1	04	50617	50.000	49917	50000	49917	50.647
		0.5	0.2	0.3	54.817	53500	53417	53500	53.417	54.817
		0.5	0.3	0.2	59017	57000	56.917	57000	56.917	59.017
		0.5	0.4	01	63217	60500	60417	60500	60.417	E63.217
		0.6	01	03	53900	53300	53200	53300	53.200	53.900
		06	02	02	58100	56800	56700	56800	56700	58100
		06	03	01	62300	60300	60.200	60.300	60.200	62.300
		07	01	02	57183	56600	56483	56.600	56.483	57.183
		07	02	0.1	61.383	50.100	59.983	60100	59983	61.383
		08	0.1	01	60467	59900	59.767	59900	59767	60.467
SUM					197800	189600	1894,00	189600	189400	197800

T	M	W1	W2	W3	SPTIEDO	EDDISPT	S[1]	S[2]	S[3]	S[4]
19	5	D. 1	01	08	38.108	37625	37608	37.625°	37608	38.108
		0.1	02	07	42.708	41725	41708	41.725	41708	42.708
		0.1	0.3	0.6	47308	45825	45808	45.825	45808	47308
		01	04	05	51.908	49.925	49.908	49925	49.908	51908
		01	05	04	56508	54.025	54,008	54,025	54008	56508
		01	06	0.3	61.109	58.125	58108	58125	58.108	61108
		01	07	02	65708	62225	62208	62.225	62208	65.708
		01	¢88	01	70308	66.325	66308	66325	66308	70308
		02	01	07	41617	41150	41.117	41.150	41.117	41.817
		02	-2	0.6	46.217	45250	45217	45250	15217	46.217
		02	03	0.5	50.817	49.350	49317	49.350	49317	50.817
		02	0.4	04	55417	53450	53417	53450	53417	55.417
		0.2	05	0.3	60017	57550	57.517	57550	57517	60.017
		0.2	0.6	0.2	64617	61650	61.617	61650	51617	64617
		0.2	0.7	0.1	69217	65750	65717	65750	65717	69217
		0.3	0.1	0.6	45.125	44.675	44.625	44675	44625	45.125
		03	02	05	49.725	48.775	48.725	48775	48725	49725
		$\bigcirc 3$	03	04	54.325	52.875	52825	52875	$52 \mathrm{B25}$	54325
		0.3	0.4	0.3	58.925	56975	56,925	56.975	56.925	58925
		03	0.5	0.2	63.525	61.075	61.025	61.075	61.025	63.525
		0.3	0.6	01	68125	65175	65125	65.175	65.125	68.125
		0.4	0.1	0.5	48.633	48.200	48.133	48200	48133	48633
		04	02	04	53233	52300	52233	52.300	52233	53233
		04	03	03	57833	56400	56333	56400	56333	57.833
		0.4	0.4	0.2	52.433	80.500	60.433	60500	$6{ }_{6} 433$	62433
		04	05	01	67033	64600	64533	64600	64.533	67.033
		0.5	0.1	0.4	. 52.142	51.725	51.642	51.725	51.642	52.142
		05	02	03	56742	55325	55742	55825	55.742	56742
		05	03	02	61342	$59 \mathrm{S25}$	59842	59925	59.842	61342
		05	04	0.1	65.942	64.025	63.942	64025	63942	\$5 542
		0.6	0.1	0.3	55.650	55.250	55.150	55.250	55150	55650
		0.6	0.2	02	50250	59350	59250	59350	59250	60250
		06	03	01	89.850	63450	63350	63450	63350	64.850
		0.7	0.1	0.2	55.158	58775	58658	58.775	58658	59158
		0.7	0.2	0.1	63.758	62.875	62758	62.875	62758	63758
		08	01	01	62667	62.300	62.167	62.300	62.167	62,667
SUM					205300	1995.00	1993.00	199500	199300	205300

T	内	W1	W2	W3	\＄PTPEDD	EDDISPT	S］ 1	S［2］	S［3］	S［4］
19	6	D 1	01	08	38.733	38450	38433	38450	38433	38.733
		Q1	02	07	43.733	43154	43133	43150	43133	43733
		01	03	06	48733	47850	47833	47.850	47833	48．733
		0.1	04	65	53733	52.550	52533	52.550	52.533	53733
		01	0.5	0.4	5 5 733	57250	57.233	57.250	57233	58.733
		01	0.6	0.3	63733	61950	61933	61.950	61933	63733
		01	07	0.2	68733	66650	66633	66.650	66633	68.733
		01	0 B	01	73.733	71350	71333	71.350	71.333	73733
		02	0.1	0.7	42467	42200	42.167	42，200	42.167	42467
		0.2	02	0.6	47467	46．900	46867	46900	46887	47．467
		02	03	0.5	52，4施	51600	51567	51600	51.567	52467
		0.2	04	0.4	57467	56.300	56．267	56300	56267	57.467
		0.2	05	03	62467	61．000	60.967	61000	60967	放．467
		0.2	06	02	67467	65．70	65667	65700	65667	67．467
		02	07	01	72467	70.400	70367	70400	70367	72167
		0.3	01	06	46200	45.950	45900	45950	45.900	46200
		0.3	02	05	51200	50.650	50.600	50650	50600	51.200
		0.3	03	04	56200	55.350	55.300	55350	55300	56200
		Q 3	0.4	0.3	61200	60050	E0000	60.050	60000	65.200
		03	05	02	66.200	64750	64700	64750	64.700	66.200
		03	06	01	71.200	69.450	69400	69450	69.400	71，200
		04	01	05	49933	49.700	49633	49700	49533	49.933
		04	02	0.4	54933	54.400	54.333	54.400	54333	54933
		01	03	0.3	59.933	59.100	59033	59.100	59033	59933
		0.4	04	0.2	64.933	63800	63.733	63800	63733	64933
		0.4	05	01	69933	68500	68433	68500	68433	69.933
		05	01	04	53.66 .7	53.450	53367	53.450	53317	53667
		05	02	03	58667	58.150	58.067	58150	58.067	5 6 67
		05	03	02	63667	62850	62767	62850	62.767	63667
		0.5	04	01	68667	67.550	67467	57.550	67，467	68667
		0.6	01	03	57.400	57200	57.100	57.200	57100	57400
		0.6	02	02	62400	61900	61.800	61.900	61800	62400
		0.6	03	01	67406	66600	66500	66.600	66500	67400
		07	01	0.2	61.133	60.950	60833	60.950	60.833	61.133
		07	02	01	66133	65.650	65.533	65650	65533	66133
		0.8	0.1	0.1	64867	64700	64567	64700	64.567	64867
SUM					212800	209400	209200	209400	209200	212800

T	M	W1	$1+2$	7 N 3	SPTJEDD	EDDISPT	S［1］	S［2］	\＄［3］	S［4］
19	7	0.1	0.1	0.8	39.358	39275	39258	39275	39258	3.358
		0.1	0.2	0.7	44758	44575	44558	44575	44558	44，758
		0.1	03	06	56158	49875	49.858	49.875	498.58	50158
		01	04	05	55558	55175	55.158	55175	55158	55558
		0.1	0.5	04	60.958	60475	60458	60475	60458	60．958
		01	06	03	66358	65775	65.758	55.775	65758	66358
		0.1	07	02	71．758	71075	71.058	71075	71058	71.758
		0.1	08	0.1	77158	76375	76.358	76.375	76358	77．158
		0.2	01	0.7	43.317	43250	43217	43250	43217	43.317
		0.2	02	06	48.717	48550	48517	48550	48517	48717
		02	0.3	05	54.117	53850	53.817	53 B50	53817	54.117
		0.2	04	0.4	59.517	59150	59.117	59150	59117	59.517
		02	0.5	0.3	64.917	64.450	64417	64．450	64417	64.917
		0.2	06	0.2	70.317	69750	69.717	69750	69717	70317
		0.2	07	0.1	75.717	75050	75017	75050	75017	75717
		0.3	01	06	47275	47.225	47.175	47.225	47175	47275
		03	0.2	0.5	52.675	52.525	52.475	52.525	52475	52675
		03	03	04	58075	57825	57775	57.825	57775	58.075
		03	0.4	03	63475	63125	63075	63125	63075	63.475
		03	05	02	68875	68．425	68.375	68.425	68375	68875
		0.3	0.6	0.1	74275	73725	73675	73.725	73675	74275
		04	01	05	51233	51200	51133	51.200	51.133	51 233
		04	02	04	56633	56.500	55.433	56500	56433	56.633
		0.4	0.3	03	62033	61800	61733	61.800	61.733	62.033
		04	04	02	67433	67100	67033	67.100	67．033	67433
		04	65	01	72833	72.400	72.33 .3	72.400	72333	72833
		05	01	04	55192	55175	55.092	56175	55992	55192
		05	42	03	60592	60.475	60.392	60475	60392	60592
		05	6． 3	02	65992	65.775	65.692	65.775	65692	65.992
		05	04	01	71392	71075	70992	71075	70.392	71.392
		06	01	03	59150	59150	59050	59150	59050	59.150
		06	02	02	64550	64450	64.350	64．450	64.350	64550
		06	03	01	69.950	69750		69750	69.650	69.950
		07	61	02	63.108	63125	63.008	63125	63，008	63.108
		0.7	02	01	68508	68.425	68308	68.425	68308	68508
		08	0.1	0.1	67.067	67．100	66967	67.100	66967	67067
SUM					22.0300	219300	2191.00	219300	2191.00	2203.00

T	M	W1	W2	W/3	SPTIEDD	EDDISPT	S[1]	S[2]	S[3]	\$[4]
19	B	0.1	0.1	08	40 (1)3	40100	40083	40100	40.683	40083
		01	02	0.7	45.983	46000	45.983	46.000	45.983	45983
		01	03	0.6	51.883	51900	51.883	51.900	51883	51883
		01	04	0.5	57.783	57.800	57783	57.800	577 73	57.783
		0.1	D 5	0.4	63683	63700	63.683	63.700	63.683	63.683
		0.1	D6	D3	69583	69600	69593	69.600	69583	69.583
		01	0.7	02	75483	75.500	75483	75.500	75483	75483
		01	0.8	01	81383	81.400	81383	81.400	81383	81383
		02	0.1	07	44267	44.300	44267	44.300	44267	44287
		0.2	02	06	50167	50200	50167	50200	50167	50.167
		02	03	05	56067	56100	58067	55100	56087	56.067
		02	0.4	04	61967	62.00	61967	62.000	\$1 867	61967
		02	0.5	03	67.8安7	67900	67.867	67900	67867	67.867
		02	06	0.2	73767	73800	73.767	73800	73,767	73767
		62	0.7	01	79667	79.700	79667	79.700	79667	79667
		63	0.1	06	48450	48.500	48.450	48500	48450	48.450
		93	02	0.5	54350	54.400	54350	54400	54.350	54350
		03	03	0.4	60250	60300	60.250	60300	60.250	60250
		03	04	03	66.150	66200	66150	66200	66150	66.150
		03	05	0.2	72050	72.100	72.050	72100	72.050	72050
		03	06	01	77.950	78000	77.950	78000	77950	77.950
		04	0.1	05	52 官33	52.700	$52 \mathrm{B33}$	52.700	52633	52 b 33
		04	02	0.4	58533	58.500	58.533	58600	58533	58533
		04	03	0.3	64433	64500	64.433	64.500	64433	64.433
		04	4.4	02	70.333	70400	70.333	70400	70.333	70.333
		04	05	0.1	76233	76300	76.233	76300	76.233	76233
		05	0.1	04	56817	56.900	56817 62717	56900 62800	56.817 62.717	66817 62717
		0.5	02 63	03 02	62717 $\$ 8.617$	62800 68700	62717 68.617	62.800 68700	62,717 68617	62717 68.617
		05	04	0.1	74517	74600	74.517	74.600	74.517	74517
		96	0.1	0.3	61000	61.100	61000	61.100	¢1.000	61000
		0.6	02	02	66900	67.000	66900	67.000	66900	66900
		0.6	03	01	72800	72.900	72800	72.900	72800	72800
		0.7	0.1	02	65183	65.300	65183	65300	65183	65183
		0.7	0.2	41	71083	71.200	71083	71.200	71083	71083
		08	0.1	0.1	69367	69500	69367	69500	69.367	69367
SUM					2290.00	2292.00	229000	2292 ch	2290.00	22900

T	M	W1	W2	W3	SPTIED	EDDISPT	S[1]	S[2]	5[3]	S[4]
20	4	01	01	08	42.908	23150	42408	42.425	42408	42.908
		01	02	07	46.908	26250	45.908	45.925	45908	46.908
		01	03	0.6	50908	29350	49.408	49.425	49408	50908
		01	04	0.5	54908	32450	52.909	52.925	52.908	54908
		0.1	05	04	58.908	35550	56.408	56425	55 403	58.908
		01	06	0.3	62908	38650	59909	59925	59908	62.908
		01	07	02	66.908	41750	63 408	63425	63 408	66.908
		01	08	0.1	70.908	$44 \mathrm{B50}$	66.908	66925	66908	70.909
		02	01	07	45817	27200	45.317	45.350	45317	45817
		02	02	06	$49 \mathrm{B17}$	30300	48.817	48.850	48817	49.817
		02	03	05	$53 \mathrm{B17}$	33.400	52317	52.350	52.317	53.817
		02	04	04	$57 \mathrm{B17}$	36.500	55817	55.850	55817	57.817
		0.2	05	03	61817	39600	59.317	59.350	59317	61.817
		02	06	0.2	65817	42.700	62.817	62850	52817	65.817
		0.2	07	0.1	69817	45 B00	66.317	66350	66.317	89.817
		03	01	0.6	48725	31.250	49225	48275	48225	49.725
		03	0.2	0.5	52725	34.350	51725	51775	51.725	52,725
		0.3	0.3	04	56.725	37450	55225	55.275	55.225	56725
		03	0.4	03	60725	40550	58725	58.775	58.725	60725
		03	0.5	02	64725	43650	82.225	62275	62225	64725
		03	06	01	68.725	46750	65725	65.775	65.725	68725
		04	01	0.5	51633	35300	51133	51,200	51.133	51633
		0.4	02	04	55633	39.400	54633	54700	54833	\$5633
		0.4	03	03	59633	41.500	58133	58200	58.133	59633
		04	04	02	63633	44600	69633	61.700	61.633	63633
		04	05	01	67.633	47700	65133	65.200	65.133	67633
		05	01	04	54.542	39350	54042	54.125	54042	54542
		05	02	03	58542	42450	57542	57625	57.542	58.542
		05	03	02	62542	45.550	61542	61125	61.042	62542
		05	04	01	66542	48650	64.542	64625	64.542	66.542
		0.6	0.1	03	57450	43400	56950	57050	56.950	57.450
		06	02	02	61.450	46500	60450	60550	60450	61.450
		06	03	0.1	65.450	49680	63950	64050	63950	65.450
		07	0.1	02	60.358	47450	59.858	59.975	59858	50.358
		0.7	02	01	64.35	50.550	63358	63475	63358	64.358
		03	01	01	63267	51.500	62767	62900	62.767	63267
		sum			212500	1434.00	20550	206700	206500	2125.00

T	H	W \mathbf{W}	W2	W3	SPT/EDD	EDDISPT	\$[1]	S[2]	\$[3]	S[4]
		D 1	01	0.8	43533	23833	43233	43250	43233	43533
		01	02	0.7	47933	27.433	47.333	47350	47.333	47933
		01	0.3	06	52333	31.033	51433	51450	51.433	52333
		01	04	0.5	56733	34633	55.533	55550	55.533	56.733
		01	05	0.4	61133	38233	59.633	59650	59.633	61133
		01	0.6	0.3	65533	41 B33	63.733	63750	63.733	6.5633
		0.1	0.7	02	69933	45.433	67833	67850	67.933	69933
		01	0.6	0.1	74333	49033	71.933	71950	71.933	74333
		02	0.1	0.7	46667	28067	46.367	46406	46.367	46.667
		02	0.2	0.6	51067	31667	50.467	50500	50.467	51.067
		02	03	0.5	55.467	35267	54.567	54600	54.567	55.467
		02	04	04	59.867	38667	58667	58.700	58667	59867
		02	05	03	64267	42,467	62767	62.800	62767	B4 267
		0.2	06	02	68667	46.067	66867	66900	66.867	68667
		02	07	01	73067	49.667	70867	71000	70.967	73.067
		0.3	01	06	49800	32.300	49500	49550	49.500	49.800
		0.3	02	05	54200	35.900	53600	53650	53.600	54.20D
		03	03	04	58600	39.500	57.700	57750	57.700	58.600
		03	04	03	63000	43100	61800	61.850	61800	63000
		03	05	02	67.400	46700	65900	6.5 .950	65900	67.400
		03	08	01	71800	50300	70000	70.050	70000	71.800
		04	01	- 5	52933	36533	52.633	52700	52633	52933
		04	02	04	57333	40133	56733	56.800	56733	57.333
		04	03	0.3	61733	43.733	60833	60900	60833	61.733
		04	04	02	66133	47.333	64.933	65.000	64933	66.133
		04	0.5	01	70.533	50933	69.033	69.100	69033	70.533
		05	01	0.4	56067	40.767	55.767	55850	55.767	56.067
		05	02	0.3	60467	44.367	59.867	59.950	59867	60467
		05	03	02	64.867	47.967	63967	64.050	63967	64867
		05	04	01	69.267	51.567	68067	68150	68067	69267
		0.6	0.1	0.3	59200	45.060	$58.96 \bigcirc$	59.000	58900	59200
		0.6	0.2	02	63600	43.600	$63.0 ¢ \bigcirc$	63.100	53.000	63.600
		0.6	0.3	01	68000	$52.20{ }^{\text {¢ }}$	$67.10 \square$	67.200	67100	68000
		07	01	02	62.333	49.233	62.033	62150	62033	62333
		07	02	01	66.733	52833	66.133	66250	66133	68.733
		0.8	01	01	65487	53467	65167	65300	65.167	65467
SUM					220000	1516.00	216400	2166.00	216400	2200.00

7	M	WH1	W2	W3	SPTIEDD	EDDISPT	S[1]	S[2]	\$ 31	S[4]
20	6	0.1	01	08	44158	24517	44.058	44.075	44058	44.158
		0.1	0.2	07	4B958	28617	48.758	48.775	48758	48958
		01	03	0.6	53.758	32717	53458	53475	53458	53758
		01	0.4	05	58558	36.817	58158	58175	58158	58.558
		0.1	0.5	04	63358	40917	62.858	62975	62 B58	63358
		01	06	0.3	68.158	45017	67558	67.575	67558	68158
		01	07	0.2	72.958	49117	72258	72.275	72.258	72958
		01	0.8	0.1	77759	53217	76958	75975	76958	77758
		02	0.1	0.7	47517	28.933	47417	47450	47417	47.517
		02	02	0.6	52.317	33 033	52117	52150	52.117	52.317
		02	0.3	05	57117	37.133	58.817	56850	56.817	57117
		0.2	0.4	0.4	61917	41233	61517	61.550	61.517	61917
		02	05	03	66717	45333	68.217	66250	66.217	66717
		02	06	02	71.517	49.433	70917	70950	70.917	71.517
		0.2	0.7	0.1	76317	53533	75617	75.650	75617	76317
		0.3	01	06	50875	33350	50.775	50825	50775	50.875
		0.3	0.2	05	55675	37.450	55.475	56525	55475	55675
		03	03	04	60.475	41.550	60175	60225	60175	施.475
		03	04	03	65275	45650	64,875	64925	64875	65275
		0.3	0.5	02	70.175	49750	69.575	69.625	69575	70.675
		0.3	0.6	0.1	74875	53850	74275	74,325	74.275	74875
		0.4	0.1	0.5	54,233	37767	54133	54200	54.133	54233
		0.4	02	04	59.033	41.867	58.833	58.900	58833	59.033
		04	03	0.3	63833	45 S 67	63533	63600	63.533	63833
		04	04	0.2	68.633	50.197	68233	68300	68.233	68633
		0.4	0.5	0.1	73433	54167	72933	73.000	72.933	73433
		05	01	04	57592	42.183	57.492	57575	57492	57.592
		05	02	03	62.392	$4{ }^{4} 283$	62.192	62275	62192	62.392
		05	0.3	02	67.192	50.383	66892	66975	66892	67.192
		05	04	¢1	71.992	54.483	71592	71.675	71592	71.992
		06	0.1	0.3	60.950	46 60以	60850	60.950	60.350	60950
		06	02	0.2	65.750	50.700	65550	65650	65550	65750
		06	0.3	0.1	70550	54.800	70250	70350	70250	70.550
		0.7	0.1	0.2	64308	51.017	64208	64.325	64208	64.308
		0.7	02	0.1	69.108	55.117	68.908	69.025	68.909	69.10 B
		08	01	01	67.667	55433	67567	\$7.700	67567	67.667
SUM					227500	1598.00	226300	226500	2263.03	227500

T	H	W 1	W2	W3	SPTREDD	EDDISPT	S［1］	S［2］	S［3］	S［4］
20	7	W1	01	08	44.893	25.200	44883	44900	44.883	44883
		01	02	07	50．18．3	29800	50183	50200	50.163	50183
		0.1	0.3	0.6	55483	34400	55.483	$55 \$ 00$	55483	55483
		0.1	04	05	60783	39000	的． 783	60800	60783	64783
		01	05	04	66083	43600	66.083	66100	66.083	66.083
		0.1	06	03	71.383	48200	71383	71400	71.383	71.383
		0.1	0.7	0.2	76.683	52．800	76683	76700	76.683	76.683
		01	0.8	0.1	81.983	57．400	81983	82000	81.983	81.983
		02	01	0.7	48.467	29800	48467	48500	48487	48.467
		02	02	06	53.767	34．400	53767	53800	53767	53.767
		02	03	05	59067	39.000	59.067	59100	59067	59.057
		02	04	04	64367	43.600	64367	64400	64367	64.357
		02	05	0.3	69667	48200	69667	69．700	69667	69.667
		0.2	06	02	74967	52.800	74967	75000	74，967	74.967
		0.2	0.7	0.1	80267	57．400	80.267	80300	80267	80267
		0.3	0.1	0.6	52.050	34.400	52.050	52100	52050	52.050
		0.3	02	0.5	57.350	39000	57.350	57400	57350	57.350
		0.3	03	04	62.650	43.600	62650	62700	62.650	62，650
		03	04	03	67.950	48.200	67950	58000	67.950	67950
		03	05	02	73250	52800	73.250	73300	73250	73250
		03	06	01	78550	57400	78550	78600	78550	78.550
		04	01	05	55633	39000	55633	55700	55.633	55.633
		04	02	04	60933	43600	50.933	61.000	60933	60833
		W 4	03	03	66233	48.200	66.233	66300	66233	66233
		W 4	04	02	71533	52.800	71.533	71.600	71533	71533
		04	05	01	76833	57.400	76.833	76900	76833	76833
		05	01	04	59217	43.600	59.217	59.300	59217	59217
		05	02	03	64517	48200	64517	64．600	64.517	64517
		0.5	0.3	02	69817	52800	69817	69900	69.817	69.897
		05	04	0.1	75.117	57.400	75117	75200	75.117	75117
		06	01	03	62 B00	48.200	62.800	62.900	62.800	62 BDO
		06	02	02	68100	52 BDO	68100	$\$ 8.200$	68.100	68100
		0.6	03	01	73400	57400	73400	73500	73400	73400
		0.7	01	0.2	66.383	52 BOO	66383	66500	65383	68.383
		07	02	01	71683	57400	71683	71800	71.693	71683
		08	01	01	69967	57400	69967	70.100	69 967	69967
SLMM					2362.00	1580.00	2362 00	236400	236204	236200

T	H	W1	W／2	W3	SPTJEDD	EDDISPT	S［1］	S［2］	S［3］	S［4］
20	8	0.1	0.1	0.8	45.708	25.883	45.708	45.725	45.708	45708
		01	D 2	07	51.608	30.983	51.608	51.625	51.608	51608
		01	03	0.6	57.508	36.083	57．508	57525	57.508	57.508
		01	04	05	63408	41.183	63．408	63425	63408	63408
		D 1	05	04	69.308	46283	69.308	69.325	69308	69308
		0.1	0.6	0.3	75208	51.383	75208	75225	75208	75.208
		0.1	0.7	02	81108	56483	81 168	81.125	81.108	81.108
		0.1	0.8	0.1	87008	61583	87008	87025	87008	87.008
		02	01	0.7	49517	36667	49517	49550	49517	49.517
		62	02	06	55417	35767	55417	55450	55.417	55.417
		02	03	05	61.317	40.867	61.317	\＄1．350	61317	61317
		0,2	04	04	67217	45967	67217	67.250	67217	67.217
		02	05	03	73117	51067	73.117	73150	73117	73117
		02	06	02	79017	56167	79017	79050	79.017	79017
		02	07	01	84.917	61.267	84.917	84950	8．917	84917
		0.3	0.1	06	53.325	35450	\＄3 325	53375	53325	53325
		03	02	05	59225	40550	59225	59275	59225	59225
		0.3	0.3	04	65125	45650	65125	65175	65.125	65.125
		0.3	0.4	0.3	71025	50750	71.025	71.075	71．025	71.025
		0.3	0.5	0.2	76925	55850	76.925	76.975	76.925	76.925
		0.3	0.6	0.1	82825	50950	B2825	82875	82.825	82.825
		04	0.1	0.5	57133	40233	57.133	57200	57133	57.133
		04	0.2	0.4	63633	45333	63.033	63100	63033	63.033
		04	03	03	68.933	50433	68.933	69 DOO	68.933	68.933
		0.4	04	02	74833	55533	74833	74.900	74．833	74833
		0.4	05	0.1	80.733	60.633	80.733	80.800	80.733	80733
		0.5	0.1	0.4	50.942	45017	60.942	61.025	60.942	60942
		05	02	0.3	站． 942	50.117	66842	66925	66842	65842
		05	03	02	72.742	55217	72.742	72825	72742	72742
		05	0.4	0.1	781842	6D 317	78642	78725	78642	78642
		06	01	0.3	64.750	49.800	64750	64850	64.750	64.750
		06	02	02	70850	54.900	70．650	70750	70650	70650
		06	03	0.1	76.550	60000	76.550	76650	76.550	76550
		0.7	0.1	02	施．558	54.583	68.558	68675	68558	68558
		07	02	0.1	74458	59．683	74．458	74575	74458	74458
		08	0.1	0.1	72367	59367	72367	72500	72367	72367
SUM					2461．00	1752．00	2451．00	2463.00	2461.00°	2461.00

T	M	W1	W/2	W3	SPTJEDD	EDDISPT	S[1]	S[2]	\$ ${ }^{\text {2] }}$	S[4]
21	4	0.1	0.1	号	29.025	27.833	29.592	27.817	28133	29.025
2		0.1	02	0.7	33.325	3 3 933	31892	30.917	31533	33325
		01	0.3	06	37.625	34.033	35192	34.017	34933	37.625
		0.1	0.4	0.5	41.925	37.133	38492	37.117	38333	41.925
		0.1	0.5	0.4	46225	40.233	41792	40217	41.733	46225
		0.1	06	0.3	50.525	43.333	45092	43.317	45133	50525
		01	07	02	54825	46.433	48392	46417	48533	54825
		0.1	08	01	59125	49533	51.692	49517	51.933	59.126
		02	0.1	07	32.750	31567	32883	31.533	31867	32.750
		02	02	06	37050	34667	36.183	34633	35267	37.050
		0.2	03	0.5	41350	37.767	39483	37733	38.667	41.350
		02	04	0.4	45650	40867	42783	41833	42.067	45650
		0.2	05	03	49950	43967	46083	43933	45.467	49.950
		02	06	0.2	54250	47.667	49.383	47033	48.867	54250
		02	0.7	01	58550	50167	52.683	50133	52267	58.550
		03	0.1	06	35.475	35300	37175	35.250	35600	36475
		0.3	02	05	40.775	38400	40475	38.350	35000	40775
		03	03	0.4	45075	41500	43.775	41450	42.400	45075
		03	0.4	03	49.375	44600	47.075	44550	45.800	49.375
		0.3	0.5	62	53.675	47700	50375	47.650	49.200	53675
		0.3	06	0.1	57975	50.800	53675	50750	52.600	57975
		0.4	01	05	40.200	39033	41467	38.967	39.333	40.200
		04	0.2	04	44.500	42133	44.767	42067	42.733	44.500
		04	03	0.3	48800	45.233	48067	45167	46133	48 BOO
		0.4	04	02	53.100	48333	51.367	48267	49.533	53.100
		0.4	05	01	57.400	51433	54.667	51367	52.933	57.400
		05	0.1	13 4	43925	42767	45.758	42683	43067	43.925
		05	02	0.3	48225	45.867	49058	45.783	46467	48225
		D 5	03	02	52525	48967	52358	48.883	49867	52525
		05	0.4	01	56825	52067	55658	51.983	53.267	56825
		06	D 1	03	47.6.50	46500	50.050	46.400	46800	47.650
		06	02	0.2	51.950	49600	53350	49.500	50200	51.950
		0.6	03	01	56250	52.700	56650	52600	53 mbO	56250
		07	01	02	51.375	50.233	54. 342	50117	50533	51.375
		07	02	01	55.675	53.333	57.642	53.217	53933	55.676
		08	01	01	5510 Cb	53967	58633	53.833	54267	55.100
SUM					17190	157600	1667.00	157400	161200	171900

T	M	W1	W2	W/3	SPT/EDD	EDDISPT	S[1]	\$[2]	S[3I	S[4]
21	5	0.1	01	08	29.508	28517	29200	28.500	28.617	29.508
		0.9	02	07	34.108	32.117	32.900	32.100	32317	34.108
		01	03	0.6	38708	35.717	36600	35700	36.017	38708
		01	04	0.5	43308	39317	40300	39300	39.717	43.30 B
		01	0.5	0.4	47.908	42917	44.000	42900	43.417	47.908
		01	0.6	03	52508	46517	47.700	46500	47117	52.508
		01	07	02	57108	50117	51.400	50100	50817	57.108
		01	0.8	01	61,708	53717	55100	53700	54517	61.708
		02	01	07	33417	32433	33700	32,400	32533	33417
		02	0.2	06	38.017	36033	37.400	36000	36233	38.017
		02	03	05	42617	39.633	41100	39.600	39933	42.517
		02	04	04	47.217	43233	448000	43200	43633	47.217
		0.2	05	03	51.817	46833	48500	46800	47.333	51.817
		02	06	02	56417	50433	52200	50400	51033	56.417
		0.2	07	01	61.017	54 ¢33	55.900	54000	54.733	61.017
		0.3	0.1	06	37.325	36350	38200	36300	36450	37.325
		03	02	05	41.925	39950	41.900	39900	40.150	41925
		03	0.3	04	46525	43550	45600	435004	43850	46525
		03	04	03	51125	47.150	49300	47100	47.550	51125
		0.3	06	02	55.725	50750	53.000	50700	51.250	55725
		0.3	06	01	60.325	54350	56.700	54300	54.950	60325
		04	01	0.5	41233	40.267	42700	40.200	40.367	41.233
		04	0.2	04	45833	43867	46.400	438006	44.057	45833
		04	0.3	03	50433	47.467	50100	47.400	47767	50.433
		04	04	0.2	55033	51.067	53800	51.000	51467	55033
		04	0.5	0.1	59633	54667	57.500	54.600	55.167	59633
		05	01	04	45142	44183	47.200	44.100	44.283	45142
		05	02	D3	49742	47.783	50900	47.700	47983	49742
		05	03	02	54342	51.383	54600	51300	51683	54342
		05	04	0.1	58.942	54.983	58300	54.900	55383	58942
		06	D. 1	0.3	49050	48100	51700	48000	48200	49050
		06	02	02	53.650	51.700	55400	51600	51900	53650
		06	0.3	0.1	58250	55300	59.100	55200	55.600	58250
		0.7	01	02	52.358	52.017	56200	51900	52.117	52.958
		0.7	0.2	0.1	57.558	55617	59.900	55500	55.817	57.55 B
		09	0.1	0.1	56.867	55933	60700	55800	56033	56867
		SUM			1777.00	1658 6D	174000	1656.00	167000	177700

T	相	W1	W2	W3	SPTJEDD	EDDISPT	S［1］	$5[2]$	$5[3]$	S［4］
21	6	01	0.1	08	29.992	29.200	29808	29183	29200	29992
		01	02	07	34892	33.300	33.908	33.283	33300	34892
		01	03	06	39792	37.400	38.098	37.383	37400	39792
		01	0.4	0.5	44.692	41.506	42.108	41483	41500	44.692
		01	05	0.4	49592	45606	46．20B	45.583	45600	49.592
		0.1	06	03	54492	49.700	50.308	49683	49.700	54.492
		0.1	0.7	0.2	59392	53806	54，408	53783	53800	59.392
		0.1	08	0.1	64.292	57.906	58508	57.883	57900	64.292
		02	01	0.7	34.083	33306	34.517	33.267	33300	34.083
		0.2	0.2	06	38983	37.400	38617	37367	37400	3 B 983
		02	0.3	05	43883	41.500	42717	41467	41.500	43883
		0.2	0.4	04	48783	45.600	46.817	45567	45600	4 B 783
		02	05	03	53683	49700	50.917	49667	49700	53683
		0.2	06	§2	58583	53800	55017	53.767	53800	5B583
		02	07	01	63493	57906	59117	57.867	57900	63.483
		$\bigcirc 3$	01	9．方	38175	37400	39.225	37.350	37400	38.175
		03	02	0.5	43075	41500	43.325	41.450	41500	43.075
		0.3	03	04	47975	45.600	47425	45550	45.600	47975
		0.3	04	03	52875	49.700	51525	49.650	49700	52875
		0.3	05	§ 2	57775	53.800	55625	53.750	53.600	57775
		03	06	01	62675	57.900	59725	57.850	57.900	62675
		0.4	0.1	05	42267	41.500	43933	41.433	41.500	42267
		04	0.2	0.4	47167	45600	48.033	45.533	45600	47．167
		04	03	03	52.067	49700	52133	49633	49700	52067
		0.4	0.4	02	56967	53.800	56233	53.733	53800	56.967
		0.4	0.5	01	61867	57900	60.333	57833	57900	61.867
		05	0.1	0.4	46358	45600	48.642	45517	45600	46.358
		05	0.2	0.3	51258	49700	52.742	49617	49700	51.258
		0.5	0.3	62	56158	53 B00	56.842	53717	53800	56158
		0.5	04	01	61058	57.900	60.942	57817	57.900	61058
		06	6． 1	03	50.450	49.700	53350	49600	49700	50450
		96	02	0.2	56350	53800	57．450	53.700	53.800	55350
		06	0.3	0.1	60250	57900	61.550	57800	57900	60.250
		0.7	0.1	02	54542	53800	58.058	53.683	53800	54.542
		0.7	0.2	01	59442	57.900	62.158	57.783	57.900	59.442
		08	0.1	0.1	58633	57.900	62.767	57.767	57900	58.633
SUM					183500	174000	181300	1738．00	174000	1835.00

T	M	W1	W2	W／3	SPTJEDD	EDDISPT	S［1］	\＄［2］	S［3］	S［4］
21	7	0.1	01	08	30475	29883	30517	29867	29883	30475
		0.1	02	07	35 ¢75	34，483	35117	34467	34.483	35675
		0.1	0.3	06	40875	39.083	39717	39067	39083	40875
		01	0.4	05	46.075	43683	44317	43667	43683	46.075
		0.1	0.5	04	51275	48.283	48917	48267	48283	51275
		01	06	03	56475	52.883	53517	52867	52.883	56475
		01	07	02	61675	57.483	58117	57467	57.483	611．675
		01	08	0.1	66875	62083	62717	62.067	62.083	68875
		02	0.1	07	34750	34.167	35433	34133	34.167	34．750
		02	02	06	39.950	38767	40.033	38733	38.767	39950
		02	0.3	05	45150	43367	44.633	43333	43.367	45150
		02	04	04	50350	47967	49.233	47933	47.967	50350
		02	0.5	0.3	55550	52567	53.833	52533	52.567	55.550
		0.2	0.6	0.2	60750	57.167	58.433	57133	57.167	60.750
		02	07	0.1	65950	61.767	¢3 033	61.733	61767	65950
		03	01	06	39.025	38450	40350	38.400	38.450	39.025
		03	02	05	44.225	43050	44950	43000	43.050	44225
		03	03	04	49.425	47650	49550	47600	47.650	49125
		03	D 4	0.3	54.625	52.250	54150	52200	52250	54.626
		0.3	05	02	59825	\＄6850	58.750	56800	56.850	59.825
		03	06	0.1	65.025	61.450	63350	61．400	61450	65.025
		04	01	05	$43.30 円$	42.733	45267	42667	42733	43.300
		0.4	02	04	48．500	47.333	49867	47.267	4 4 333	48.500
		04	03	0.3	53.700	51.933	54.467	51867	51.933	53，700
		04	04	02	58.900	56.533	59067	56467	56533	58.900
		04	05	0.1	64.100	61.133	63.667	61.067	61.133	64.100
		05	01	04	47.575	47.017	50.183	46933	47017	47.575
		05	02	03	52.775	51.617	54.783	51533	51617	52.775
		05	03	02	57.975	56217	59.383	56133	55.217	57.975
		0.5	04	01	63175	60817	63.983	60.733	60817	63175
		06	0.1	03	51850	51.360	55100	51.200	51.300	51.850
		06	02	0.2	57.050	55900	59730	55800	55900	57050
		06	03	0.1	62250	60500	64300	60400	60500	62.250
		0.7	0.1	0.2	56.125	55583	60017	55.467	55.583	54125
		07	02	0.1	61325	60183	64617	60067	60.183	61325
		0.8	0.1	01	60400	59857	64933	59733	59867	60．400
SUM					1893 DD	182200	189800	1820.00	1822．00	199300

T	M	W1	W2	W3	SPTIEDD	EDDISPT	S[1]	\$[2]	$5[3]$	S[4]
21	8	01	01	08	30958	30567	31225	30.550	30567	30.958
		01	02	0.7	36458	35667	36325	35650	35.667	35458
		0.1	0.3	0.6	41.958	40.767	41.425	40750	40767	41958
		01	0.4	0.5	47.458	45867	45525	45850	45867	47.4.58
		01	0.5	0.4	52959	50.967	51.625	50.950	50967	52.958
		01	06	03	58458	56067	56.725	56.050	56067	58.458
		01	07	0.2	63 958	61.167	61.825	61.150	61.167	63958
		01	08	01	69.458	65.267	66925	66250	66267	69 458
		0.2	01	07	35417	35033	16350	35000	35033	35.417
		02	02	06	40.917	40133	41.450	40100	40133	40.917
		02	03	05	46.417	45233	46550	45200	45.233	46417
		02	04	04	51.917	50333	51650	50300	50333	51917
		02	05	03	57.417	55433	56.750	55.400	55433	57.417
		02	D 6	02	62.917	60533	61850	60.500	60533	62.917
		02	D 7	01	68417	65633	66.950	65.600	65633	68.417
		03	01	D6	39875	39500	41475	39.450	39500	39.875
		03	0.2	05	45.375	44.600	46575	44.550	44.600	45375
		0.3	03	0.4	50.875	49700	51.675	49650	49700	50.875
		03	04	03	56375	54800	56775	\$4.750	54 BOO	56.375
		03	05	0.2	61.875	59900	61.875	59850	59.900	61875
		0.3	06	01	67.375	65000	66975	64950	65.000	67375
		0.4	01	05	44.333	43.967	46600	43900	43.967	44333
		0.4	02	0.4	49833	49067	51.700	49.000	49.067	49.6837
		04	03	03	55333	54.167	55800	54.100	54.167	55333
		04	04	02	60833	59.267	61900	59.200	59.267	61833
		0.4	05	0.1	65333	64367	67.000	64.300	64367	66.333
		05	D. 1	04	48792	4 B 433	51.725	48.350	48433	48.792
		05	02	03	54292	53.533	56825	53450	53.533	54292
		05	03	02	59.792	58633	61925	58.550	58633	59792
		05	04	01	65292	63733	67.025	63650	63733	65292
		06	D 1	03	53250	52900	56850	52.800	52500	53250
		06	02	02	58750	58000	61.950	67,900	58 DDO	50750
		06	D 3	0.1	64250	63.109	67050	63.000	63100	64250
		07	0.1	02	57.708	57367	61975	57.250	57.367	57708
		07	02	0.1	63208	62467	67.075	62350	62467	63.208
		08	01	01	62.167	61833	67100	61.700	61833	62167
		SUM			1951.00	1974.09	198300	190200	1904 D0	195100

T*	m	W1	W2	W3	SPTİEDD	EDDISPT	S[1]	\$[2]	5[3]	S[4]
22	4	01	01	0.8	33508	32517	32.517	32.500	32617	33.509
		0.1	02	07	37608	35.617	35617	35600	35817	37.608
		0.1	03	06	41708	38.717	38717	38.700	39017	41708
		01	04	05	45.809	41817	41817	41.800	42217	45808
		01	05	0.4	49.903	44917	44.917	44900	45417	49908
		01	0.6	0.3	54008	48017	48.017	48000	48617	54.D09
		01	07	0.2	58108	51117	51117	51,100	51.817	58108
		0.1	0.8	01	62208	54217	54,217	54200	55017	62.208
		0.2	01	07	36.917	35933	35933	35.900	35033	36917
		0.2	02	06	41017	39.033	39033	39000	39233	41017
		02	03	05	45.177	42.133	42133	42100	42.433	45117
		0.2	04	04	49217	45.233	45233	45200	45.633	49217
		0.2	0.5	03	53317	48333	48.333	48300	48833	53.317
		0.2	0.6	02	57417	51.433	51.433	51400	52.033	57.417
		0.2	0.7	01	61547	54533	54.533	54500	55.233	61.517
		0.3	0.1	06	40325	39350	39.350	39300	39.450	40.325
		03	02	05	44425	42.450	42450	42400	42.650	44425
		03	0.3	0.4	48525	45550	45550	45.500	45.850	48525
		0.3	0.4	0.3	52625	48.650	48.650	48600	49.050	52625
		03	05	02	56725	51.750	51750	51700	52.250	56.725
		03	06	0.1	50.825	54850	54 BSO	54800	55.450	60825
		04	0.1	0.5	43733	42767	42.767	42700	42.867	43733
		0.4	02	04	47833	45.867	45867	45800	46067	47.833
		0.4	03	03	51933	48.967	48967	48.900	49267	51933
		0.4	04	02	56033	52.067	52067	52000	52.467	\$6.033
		04	05	01	60 133	55167	55167	55100	55667	60133
		0.5	01	04	47142	46.183	46183	46100	45283	47142
		05	02	03	51242	49.283	49283	49200	49463	51.242
		05	03	02	55342	52.383	52383	52300	52.683	55.342
		05	04	01	59442	55.483	55483	55400	55883	59.442
		06	01	03	50.550	49600	49600	49.500	49700	50.550
		06	02	02	54.650	52.700	52700	52800	52900	54650
		0.6	0.3	01	56750	55.800	55800	55.700	56100	58.750
		0.7	01	02	53958	53017	53017	52900	53117	53.958
		07	02	01	581058	56117	56117	56000	56317	58058
		08	01	01	57367	56433	56433	56300	56.533	57367
		SUM			183700	171800	1718.00	1716.00	1730.00	183700

T	M	W/1	W2	W3	SPTIEDD	EDDISPT	S[1]	S[2]	S[3]	S[4]
22	5	01	01	0.8	33992	33200	33.200	33183	33200	33992
		0.1	02	0.7	38.392	3680	36.800	36.783	36800	36,392
		01	03	0.6	42,792	40400	40400	40383	40400	42792
		0.1	04	05	47.192	44.000	44000	43.983	44000	47192
		01	05	0.4	51592	47600	47600	47583	47600	51592
		01	06	0.3	55.992	51200	51.200	\$1,183	51200	55.992
		01	07	02	60392	54.860	54800	54.783	54800	60.392
		0.1	08	01	64792	58.400	58400	58383	58.400	64792
		02	01	07	37.583	36800	36800	36.767	36800	37.583
		02	02	06	41.983	40400	40.400	40367	49400	41.983
		0.2	0.3	05	46383	44.000	44000	43967	44000	46383
		02	0.3	0.4	50783	47.600	47.600	47567	47.600	50783
		0.2	0.5	0.3	55.183	51.200	51.200	51.167	51.200	55123
		0.2	06	0.2	59.583	54.800	5-4800	54767	\$4800	59583
		0.2	0.7	0.1	63.983	58.400	58400	56.367	58400	63983
		03	01	06	41.175	40400	40400	40.350	40400	41.175
		03	02	05	45575	44000	44.000	43.950	44000	45.575
		0.3	03	04	49.975	47.600	47.600	47.550	47600	49.975
		03	0.4	03	54.375	51.200	51200	51.150	51200	54.375
		03	05	02	58.775	54800	54.800	54.750	54800	58.775
		03	0.6	01	63175	58400	58.400	58.350	58400	63.175
		D 4	61	05	44767	44000	44000	43933	44,000	44767
		04	0.2	04	49167	47600	47.600	47.533	47600	49.167
		04	03	0.3	53567	51200	51.200	51.133	51200	53567
		04	04	02	57.967	54800	54800	54733	54.800	57967
		04	95	01	62.367	58400	58.400	58333	58.400	62367
		05	01	0.4	48358	47600	47600	47.517	47.600	48358
		05	02	03	52758	51.200	51.200	51117	51.200	52758
		05	03	0.2	57.158	54800	54800	54.717	54800	57158
		0.5	0.4	01	61558	58400	59.40\%	58317	58400	61558
		06	01	03	51950	51.200	51.200	51100	51.200	51.950
		06	02	02	56.350	54800	54800	54700	54.800	56350
		06	03	01	60750	58400	58400	58306	58400	60750
		07	01	42	55542	54,800	54800	54683	54.800	55.542
		0.7	02	01	59942	58.400	58.400	58283	58.400	59942
		08	01	0.1	59133	58400	58400	58.267	58400	59133
		SUM			1895.00	180300	180000	1798.00	180000	189500

T	M	W1	W2	W3	SPTJEDD	EDDISPT	S[1]	S[2]	S[3]	\$[4]
22	6	01	0.1	08	34475	33883	33883	33.867	33883	34.475
		01	0.2	07	39175	37983	37.983	37967	37983	39.175
		01	03	06	43875	42 ¢В3	42083	42.067	42083	43.875
		0.1	04	05	48575	46183	46183	46.167	46183	48.575
		0.1	0.5	0.4	53275	50283	50283	50267	50283	53275
		0.1	06	0.3	57.975	54383	54.383	54367	54383	57.975
		0.1	07	02	62.675	58483	58.483	58467	58483	62.675
		01	08	01	67.375	62.583	62.583		62583	67375
		02	01	07	38250	37.667	37.667	37633	37667	38.250
		02	0.2	0.5	42.950	41.767	41.767	41733	41.767	42,950
		02	03	05	47.650	45867	45867	45.833	45867	47650
		0.2	0.4	04	52.350	49.967	49.967	49.933	49967	52350
		02	0.5	0.3	57.050	54067	54067	54033	54.067	57.050
		02	06	02	61750	58.167	58167	58.133	58167	61.750
		02	07	01	66450	62267	62.267	62233	62267	66450
		03	01	06	42025	41450	41.450	41.400	41450	42025
		03	02	05	48725	45.550	46.550	45500	45550	46725
		03	03	0.4	51.425	49650	49650	49600	49650	51.425
		03	0.4	0.3	56.125	53750	53750	53700	53750	56.125
		03	0.5	02	60325	57850	57.850	57.900	57850	60325
		03	0.6	0.1	65.525	61950	61950	61.900	61950	65.525
		04	0.1	05	45800	45233	45.233	45.167	45233	45800
		04	0.2	0.4	50500	49333	49333	49267	49333	5050
		0.4	03	03	55200	53433	53.433	$53 \$ 67$	53433	55200
		0.4	0.4	02	59900	57.533	57.533	57.467	57533	59900
		04	45	01	64600	61.6	61633	61.567	61633	64500
		05	61	04	49.575	49.017	49.017	48.933	49.617	49.575
		65	¢ 2	03	54.275	53.117	53.117	53.033	53117	54275
		05	03	02	58975	57.217	57.217	57.133	57,217	58975
		05	0.4	0.1	63675	61397	61317	61.233	61.317	63675
		0 O	0.1	0.3	53.350	52.800	52800	52.700	52800	53350
		06	02	02	58050	56900	56900	56.860	56900	58.050
		06	03	01	62.750	61.000	61000	60.900	61000	62750
		07	01	02	57125	56.583	56.583	56467	56583	57125
		67	0.2	0.1	61.82 .5	60683	60683	60567	50683	61.825
		08 B	0.1	0.1	60.900	60367	60367	60233	60367	50.900
SUM					195300	1882.00	188200	1880.00	188200	195300

¢	M	W1	W2	W3	SPTKED	EDDISPT	S[1]	S[2]	S[3]	\$[4]
22	7	01	01	08	34.958	34567	34,567	34550	34567	34.958
		0.1	02	07	39.958	39167	39167	39150	39.167	39958
		01	0.3	06	44958	43.767	43767	43750	43.767	44958
		01	0.4	05	49958	49.367	48367	48350	48367	49958
		0.1	0.5	[6. 4	54958	52.967	52967	52.950	52.967	54958
		0.1	06	03	59.958	57567	57567	57.550	57.567	59958
		01	07	02	64,958	62167	62167	62, 150	62.167	64958
		01	0 B	01	69.958	66767	66767	66.750	66.767	59958
		02	01	07	38.917	38533	38533	38.500	38533	38917
		02	02	06	43917	43.133	43133	43100	43.133	43917
		02	03	05	48917	47733	47.733	47,700	47733	48917
		02	04	04	53917	52333	52333	\$2.300	52333	53917
		02	05	03	58917	56933	56933	56.900	56933	58.917
		02	06	0.2	的 917	64.533	61.533	61500	61.533	63917
		02	0.7	0.1	68917	66.133	66.133	驼100	66.133	68.917
		0.3	0.1	06	42.975	42.50 ¢	42.500	42.450	42,500	42875
		03	02	05	47.875	$47.10 \square$	47.100	47.050	47100	47.875
		03	03	0.4	52.875	51.700	51.700	51650	51700	52.875
		03	0.4	0.3	57.875	$55_{6.300}$	56.360	56250	56300	57.675
		0.3	0.5	0.2	62.875	60.900	60.901]	60850	60.900	62875
		03	06	01	67.875	65.500	65506	¢5 450	6.5 .500	67875
		0.4	01	05	46833	46467	45467	46400	46.467	46833
		0.4	02	04	51.833	51067	51067	51.090	51067	51.833
		04	03	03	568.33	55667	55667	55600	55067	56.83 .3
		04	04	© 2	61833	¢0.267	60267	60.200	60267	61833
		D 4	05	01	66833	64.867	64.867	64800	64.867	
		0.5	01	04	50792	50433	50.433	50350	50433	50792
		0.5	0.2	03	55792	55033	55033	54.950	55033	55 792
		0.5	0.3	02	60792	59633	59633	59.550	59633	60792
		05	0.4	0.1	66.792	64233	64233	64150	64.233	65.792
		06	01	0.3	54.750	54400	54400	54300	54400	54.750
		06	0.2	0.2	59750	59000	59000	58.900	59000	59750
		0.6	0.3	0.1	64750	63600	63600	63.500	63600	64750
		07	01	02	58.708	58367	58.367	58250	58.367	58708
		07	02	0.1	6.7 .708	62967	62567	62850	62.967	63,708
		0.8	0.1	01	62667	62333	62333	62200	62.333	62667
SUM					201100	1964.00	1964.00	1982.00	1964.00	201100

1	\%	W1	W2	W\%	SPTJEDD	EDDFSPT	S[1]	S[2]	S[3]	S[4]
22	8	01	01	08	35.442	35250	35250	35233	35250	35.442
		01	02	07	40742	40350	40.350	40333	40350	40.742
		01	0.3	06	46.042	45450	45450	45433	45450	46042
		01	0.4	05	51342	50550	50.550	50533	50550	51.342
		0.1	05	0.4	56.642	55650	55.650	55633	55.650	56.642
		0.1	D6	0.3	61.942	60750	60.750	60733	60750	51942
		0. 1	07	02	67.242	65850	65950	Б5 833	65850	67242
		01	18	01	72542	70950	70.950	70933	70.950	72542
		02	01	07	35583	39400	39.400	39367	39.40'	39593
		02	02	06	44883	44500	44500	44.467	44500	44883
		02	0.3	05	50183	49600	49600	49567	49.600	50183
		$\bigcirc 2$	04	04	55483	54,700	54700	54.667	54700	55483
		02	0.5	03	60783	59800	59806	59.767	59.800	50.783
		$\bigcirc 2$	06	02	66083	64.900	64.900	64.867	64900	66.063
		02	07	01	71.383	70.000	70000	69.967	70.050	71383
		03	01	0.6	43.725	43550	43550	4350 [43.550	43725
		0.3	0.2	0.5	49.025	48650	48650	48600	48.650	49.025
		03	03	0.4	54.325	53750	53750	53700	53.750	54325
		03	04	0.3	59625	58.850	58.850	58.000	58850	59625
		63	05	62	64925	63950	63950	63.900	63.950	64925
		0.3	0.6	0.1	70225	69050	69550	69000	69050	70.225
		0.4	01	0.5	47.867	47.700	47700	47633	47.700	47.887
		0.4	02	0.4	53167	52 BOO	52800	52733	52800	53167
		04	03	03	58467	57900	57900	57.833	57.900	58467
		04	04	62	63767	63000	63.000	62.933	63.000	63767
		04	05	01	69.067	68.100	68100	68033	68.100	69.667
		05	0.1	0.4	52,008	51850	51850	51767	51.850	52.008
		05	02	03	57308	56 g 50	56950	56.867	55.950	57308
		05	03	02	62.509	62.050	62.050	61.967	62 050	626 CB
		05	04	01	67.908	67150	67150	67067	67.150	67.908
		0.6	01	03	56150	56000	56000	55900	56000	56150
		06	02	02	61450	61100	61100	61.000	61100	61.450
		06	03	01	66750	66.200	66200	66.100	66200	66.750
		07	01	02	60292	60150	60.150	60.033	60.150	60292
		07	0.2	0.1	65592	65.250	65250	65.133	65.250	65.592
		08	01	01	64433	64300	64.300	64167	64300	64433
SपW					206904	2046.0.0	2046.09	2044.00	204500	206900

009091	00997 L	$00^{\circ} \mathrm{LOZL}$	009185	00＇2ヶ6ロ	04 90S1	WกS				
00009	EC6 $1 \$$	49G＇ct	EEL 6G	29809	00009	10	10	80		
05015	26697	80190	19969	と日19	－90＇L9	10	20	20		
0965	26E Et	800＇st	290＇99	895゙く9	Q¢b gt	で0	50	LO		
00179	05090	099 v\％	00209	08519	OOL＇ZS	10	80	90		
009\％	0St で	0¢S＇t	00999	006\％ 29	0099\％	20	20	90		
00601	0988 cc		00085	005゙サら	0060 O	80	10	90		
05185	8015	26l ct	EEL 09	11819	OS1－をS	10	－0	50		
O5920	$809 \downarrow$	2600%	¢§ト2G	1．285	955 $2 ⿰$	20	50	$\mathrm{c}_{5} 0$		
OG6 LV	3064Σ	266＇9¢	EESES	119\％9	OG5゙引	80	20	90		
DSE GE	80¢＇5¢	26日 £	ES6 6t	210＇LG	OSc－98	70	10	50		
002 05	191．to	CEL した	492゙19	EELZG	90 でャ9	10	90	70		
009＇日y	49500	EE9 ${ }_{\text {c }}$	299＇19	EES 8S	0098	20	$\dagger 0$	$\dagger 0$		
0001 e	49698	と禹ら「	29069	EE6゙ロS	00080	¢ 0	80	$\dagger 0$		
DOt Le	LSE EE	を¢ってく	29605	EEE LG	00\％＇28	$\bigcirc 0$	20	$t 0$		
008 LE	49262	ECE 6 C	4989	¢EL20	008 1E	50	10	$\nabla^{\prime} 0$		
OSZ 5s	9てで施	çZ Ot	00819	05%	OSZ SG	10	90	$\varepsilon 0$		
$0996 t$	929 6E	92tie	002 85	058 85	Of9 6\％	20	50	$\varepsilon 6$		
OGO \％	52098	920 tc	009159	052 95	OFO＇VO	80	¢ 6	$\varepsilon \square$		
DGVEE	Sご てE		000 LG	05915	O5t 㬉	t＇0	E0	\＆ 0		
0582 LE	¢こも 82	928 22	006＇2t	650 8\％	058 て	90	20	¢ 0		
$09 Z \angle Z$	sこて 5己	92L＇tz	008 ct	¢5が守	OSZ＇2z	90	10	80		
00895	c82 Ct	4188E	¢ccz 9	19479	OOE 9S	10	≤ 6	20		
00295	敋928	$\angle 1 \angle \mathrm{GE}$	ECL 85	191．69	OOL OS	20	90	20		
ODi＇Gb	¢80 58	$\angle 1928$	EEL GG	29S SS	0019	¢＇0	G^{\prime}	20		
OOS 5E	¢8t＇$\stackrel{\text { c }}{ }$	くLG＇6Z	EES゙LS	196\％${ }^{\circ}$	OOS＇68	$\dagger 0$	$t 6$	20		
ODGEE	¢89＇ど	くlv92	EEG\％ $2 ⿰ ⿺ 乚 一 匕$	29887	00688	90	と＇0	z＇0		
00882	敋で吃	LLE EZ	EEC晈	192\％	00¢ 82	90	20	20		
60L てZ		LICOZ	ESt 0	291\％	00t 27	10	10	20		
OSE＇29	でじい	¢SEtE	49629	ERO－59	95E 49	10	80	10		
OGL LS	でっLLE	¢sも゙饾	19265	CRt 69	OSLIG	20	10	10		
05190	ごい昒	8SL1E	19999	¢68 99	OSt「9t	$\varepsilon 0$	90	10		
0scor	ZたS DE	890＇82	19075	EBZ Z9	$0 ¢ 907$	¢0	50	10		
OS6＇6	でロ 9	㓪6が	49t8t	E日S＇8t	OSE゙ち	90	$t 0$	10		
058 62	ごぐとて	89\％して	198゙も	E80 9t	95c－62	90	ε	10		
OGLEZ	てもくらも	39281	192゙した	E8r＇L	OGL CZ	10	20	10		
0S！日l	Cot9！	85951	$\angle 992 E$	E88＇2	OS181．	80	10	10	G	EZ
［ $\%$ ］	E］s	［z］3	［1］	1dSraga	003／1dS	EM	2M	1 M	H	1

00857	00 かてZ1	00 でャレ	00 Scab	（1）0981	00＇¢¢ち！	WกS				
299 时	009＇9\％	¢Eか9\％	EEC 29	00689	1958t	10	10	80		
8St60	009 St	LLE $\dagger t$	200＇2G	00685	85＊的	10	Z0	10		
EGI时	002 CH	＋191t	でぐから	00899	6GL゙切	200	10	20		
0ç 05	009\％\％	009 Zt	45929	$000^{\circ} 8$	OGEOS	6	¢ 0	90		
09056	002 16	006＇6E	6S5゙『9	0089	950 St	で0	20	90		
彨 2 的	009＇28	002 28	$05 \% 19$	004 ZG	95E6E	$\varepsilon 0$	10	90		
でて 15	009＇¢	c日日 0\％	858 29	00609	でで15	10	¢0	90		
てt6 Sb		col 8 C	－5L109	00899	て66－9\％	20	EO	90		
で90\％	008 號	890 S8	85915	002\％9	て690\％	$\varepsilon 0$	20	90		
でだGE	00\％¢ ¢	E日C゙で	8 gc 8	0096	ぞFE9	± 0	10	50		
EE！ CS	009で	19165	19069	00689	ECF＇ZS	10	90	± 0		
Eeg 9\％	002＇68	19698	196 Fs	00859	ES89\％	Z＇0	\％0	± 0		
E¢S 1\％	00858	4928E	298 LS	001＇29	EEG＊ 7	$\varepsilon 6$	ε	± 0		
E¢Z 9E	00t c¢	49018	2928	909＇60	EEZ 9E	¢0	20	± 0		
¢¢6＇OE	00062	49¢＇RZ	299 5t	O0＇900	¢EG OE	59	10	± 0		
GZO EG	009 ！\downarrow	0¢\％゙2	St2 85	O06 ${ }^{\text {g }}$	GZO ES	10	90	$\varepsilon 0$		
52L ${ }^{\text {d }}$	002＇88	052bc	GLI＇GG	008 SS	92tit	z＇0	50	$\varepsilon 0$		
ぶっです。	00日 $\downarrow \mathrm{C}$	OSO てE	St0 ZS	004 29	Gでで	$\varepsilon 0$	$\forall 0$	¢＇0		
GZ1 28	00\％18	0GE6Z	526 8b	0096	SZl＇2e	± 0	E＇0	\＆0		
ç8 LE	000＇82	059.92	¢L8＇gb	0059	9Z家 18	90	20	$\varepsilon 0$		
çs 9\％	009＇も己	0c6＇cz	SLLで	00t ¢\％	¢ZS＇9\％	90	10	$\varepsilon 0$		
1168	00900	EEESE	E它昭	00685	くもの＇®乌	10	≤ 0	20		
4198	00で2	EEOEE	cose＇s	00855		20	90	20		
LIEEV	008 捾	cecos	ESZてS	00125	く6E ¢\％	80	50	20		
47088	00\％ 0 ¢	ceg 2	8816	009＇60	210 日E	$\nabla^{\circ} 0$	t0	20		
くんして¢	009 LZ	E¢ら゙って	88097	D0S＇90	L！LZE	S＇0	80	20		
く！ 1 L	009 CZ	とEでてZ	〔86＇ZV	00t tb	くもちくて	90	20	20		
こい1 乙て	00202	EEc゙6l	C榢6E	OOE Ob	く11で	≤ 0	10	20		
808 bs	00968	1LOVC	で¢9＇9	00685	608＇Vs	10	80	10		
80967	00で96	LLE゙1E	269＇94	$008 \mathrm{S5}$	80官60	20	≤ 0	10		
BOZ to	008＇乙¢	14988		002 ZS	80で院	80	90	10		
B06 8c	90v＇6z	L169	て．¢¢＇6V	009 6r	$806{ }^{\prime} 88$	t ¢	90	10		
B09 E¢	00092	$\angle 1 乙$ ¢ χ	2629y	009 gr	$6098 E$	90	\％ 0	10		
¢0E＇8Z	00922		261 E\％	OD\％E\％	BOE 8 C	90	80	10		
800 EZ	00261	21815	260 0V	00¢ 0	800 cz	10	20 10	10		
802LI	008 ¢1	く1！51．	－Z66＇9E	002 28	B0L21	80	10	10	p	$\varepsilon 乙$
［t］S	［C］	［z］S	［L］ 5	1．dS「吅当	Gajulds	EM	2 M	L／M	1	1

7	M	W1	W/2	W3	SPTJEDD	EDDJSPT	S[1]	S[2]	S[3]	S[4]
23	6	0.1	0.4	0.8	18592	38567	38.342	16200	16.483	18592
		0.1	02	0.7	24492	42.667	42.442	19700	20283	24492
		0.1	03	06	30392	46767	46542	23200	24083	30392
		0.1	0.4	0.5	36.292	50867	50642	26700	27.883	36.292
		0.1	0.5	0.4	42.192	54967	54.742	30200	31.683	42.192
		01	0.6	0.3	48092	59067	58.842	33700	35.483	48.092
		01	0.7	02	53,992	63167	62.942	37200	39.283	53.992
		0.1	0.8	0.1	59892	67.267	67.042	40700	43.083	59892
		02	0.1	0.7	23283	42033	41583	20900	21167	23.283
		02	02	06	29.183	46133	45683	24,400	24967	29.183
		¢ 2	03	0.5	35083	50.233	49783	27900	28.767	35083
		02	04	04	40983	54333	53.883	31400	32567	40.983
		02	0.5	03	46.883	58433	57983	34.900	36367	46883
		02	06	02	52.783	62533	62083	38.400	40167	52783
		0.2	07	01	58.683	68633	66183	41.900	43967	58683
		03	01	06	27.975	45500	44.825	25600	25850	27975
		03	0.2	0.5	33.875	49500	48.925	29100	29.650	33.875
		03	0.3	04	39.775	53700	53025	32.600	33.450	39775
		0.3	0.4	6	45.675	57800	57.125	36100	37.250	45.675
		03	0.5	02	51575	61900	61.225	39600	41.050	51.675
		03	0.6	01	57.475	66000	65325	43.100	44850	57.475
		04	$0 . t$	05	32.667	48967	48.067	30.300	30533	32.667
		04	0.2	04	3B 567	53067	52.167	33.800	34.333	38.567
		04	0.3	03	44467	57167	58267	37.350	38133	44,467
		04	0.4	02	50367	61267	60.367	40800	41933	50.367
		04	05	01	56267	65367	64467	44.300 35000	45733 35217	56267 37.358
		05	01	04	37.358 43258	52.433 56.533	51308 55.408	35900 38500	39.017	43.258
		0.5 05	02	0.3	43258 49158	66.531 60633	52.408 59.508	42.000	42817	49168
		05	04	0.1	55058	64.733	63.608	45500	46.617	55058
		06	01	0.3	42.050	55.960	54.550	39700	39900	42.050
		0.6	02	02	47.950	60 OWO	58650	43200	43700	47.950
		06	03	01	53850	64100	62.750	46700	47.500	53850
		07	01	0.2	46742	59.367	57792	44,400	44583	46742
		0.7	02	01	52.642	63467	61892	47.900	48383	52642
		08	01	01	51.433	62.833	61.033	49.100	49267	51433
SUM					155900	202400	199700	1272.00	130606	1659.00

7	M	W91	W2	W3	SPT/ED	EDDISPT	S[1]	S[2]	S[3]	S[4]
23	7	0.1	01	08	19033	39250	39017	16742	16825	19.033
		01	02	0.7	25233	43.850	43617	20.642	20.825	25233
		0.1	03	0.6	31433	48.450	48217	24.542	24825	31433
		01	04	0.5	37633	53.050	$52 \mathrm{B17}$	28442	28.825	37633
		01	0.5	04	43833	57.650	57417	32342	32.825	$43 \mathrm{B33}$
		0.1	06	0.3	50033	62.250	62017	36242	36825	50.033
		0.1	07	02	56.233	66850	66.617	40.142	40.825	56233
		01	08	0.1	62.433	71450	71217	44.042	44825	62.433
		02	01	0.7	23367	42900	42433	21.583	21650	23.867
		02	02	06	30067	47500	47033	25483	25650	30067
		02	03	0.5	36267	52100	51633	29383	29650	36.267
		02	04	04	42467	56700	56233	33283	33650	42467
		0.2	05	03	48667	61300	60833	37183	37650	48.687
		02	06	0.2	54867	65900	65433	41.083	41650	54867
		02	07	01	61067	7 D 500	70033	44983	45650	61067
		03	0.1	06	28700	46.550	45950	26425	26.475	28700
		03	02	05	34900	51.150	50450	30325	30475	34900
		0.3	03	64	41.100	55.750	5505 D	34225	34,475	41100
		03	54	03	47.300	60350	59.650	38125	38475	47.300
		03	0.5	02	53.500	64.950	64.250	42025	42475	53500
		0.3	0.6	0.9	59.700	69550	68950	45925	46.475	59.708
		04	0.1	05	33533	50200	49267	31.267	31300	33.533
		04	02	04	39733	54.800	53867	35.167	35300	39733
		04	03	0.3	45933	59.400	58467	39.067	35300	46.933
		0.4	04	02	52.133	64000	63.067	42967	43305	52133
		0.4	05	01	58.333	68600	67.667	46867	47.300	58333
		05	0.1	04	38367	53850	52683	36108	36125	38367
		05	0.2	0.3	44567	58.450	57283	40008	40.125	44567
		05	0.3	02	50767	63.050	61883	43.908	44.125	50.767
		05	04	0.1	56967	67.650	66483	47.808	48125	56.967
		06	01	03	43200	57500	55.100	40.950	40950	43200
		06	02	02	49400	62.100	60700	44850	44960	49.400
		0.6	03	0.1	55600	$6 ¢ .700$	65.300	48750	48950	55600
		07	01	02	48033	61.150	59517	45792	45775	48033
		07	02	01	54233	\$5 750	64117	49692	49775	54.233
		08	01	01	52.867	64800	62.933	50663	50500	52867
		SUM			161200	210600	207800	1337.00	134700	1612.00

00 bGGL	$00 \mathrm{ELE1}$	00 ģ゙，	$00^{\circ} 0991$	（00） 989	000 ± 551	WกS				
00t＇09	¢EE 8t	496\％	29095	00849	00705	10	10	80		
09tic	こ6E゙く	80S90	£どちら	0 㿟99	OSt゙LS	10	20	10		
092＇9t	26ヶ゙リ	008 5	c¢t CS	096＇EG	OSZ 96	$2 ' 0$	10	$\angle 0$		
00529	$0 ¢ 096$	WSO 5\％	008＇物	001．gs	D09＇z＇	$1 \cdot 0$	$\varepsilon 0$	90		
00c\％ $2 \downarrow$	OGZ＇Ep	OSE てt	－08＇19	00L ES	OOE＇ $2 t$	20	\％	9 S 0		
001 Zt	050 \％p	09968	0088	OOL＇09	00レ てt	E＇0	10	90		
OGG＇EG	80S 50	Z6S＇¢も	29169	QGZ Ģ	05589	－0	± 0	5%		
OSE Gy	80 Ct	2680	291＇LS		0588	20	£＇0	50		
OG1Et	gol Ec	26185	4918\％	OGZ 6b	656゙を	E＇0	20	50		
OG6． 28	80658	26598	295 St	OSZ＇9t	O56 LE	$\bigcirc 0$	10	50		
00969	L9G $\dagger \downarrow$	とぐでV	ESGES	006＇析	00965	10	90	± 0		
00t 6\％	19¢！	Etroc	E¢G 0¢	OOt ls	OOt 6\％	20	∇°	t0		
002 5%	191．88	EELGE	ESS \downarrow	D0t 时	002＇bor	80	¢ 0	ヤO		
00068	496＇tc	EEO FE	Scs＇bo	00t 5\％	00068	70	20	$\checkmark 0$		
008 Ec	192゙も	ESE LE	ESG Lt	00t CH	009 EE	S0	10	70		
dS9＇99	Gく9「も	92900	00625	OGS E\％	$0 ¢ 9 \mathrm{GS}$	10	90	80		
OGVOS	Sで0t	GL6＇LE	00667	OSS＇QS	0st DS	乙 0	90	E 0		
OGC St		GLZ GE	0065	OGG t t	OSC 5\％	§＇0	$\square 0$	E 0		
0500 t	cto ri	StS 2	006 Et	OSS \dagger	0900	70	E0	E0		
	G280E	54862	00607	OSS［t	098＇饮	50	20	¢＇0		
05962	9z家2己	$c: 12 Z$	006 九它	0 GG 88	09982	90	10	E0		
00199	¢99 Cb	ごて6E	49Z＇Z9	00 ± 25	002＇99	10	40	\％0		
O05 19	E日も 65	LIG9E	1926	002 6 F	OOG＇LG	20	90	20		
00E 9\％	ERZ 9\％	LIGEE	L9\％9t	002＇9b	OOE 9t	E0	40	20		
00し「け	E日0 ¢	く11しを	49て غt	00 02 L	001 Et	V＇0	$t 0$	20		
006 SE	E88 62	比时	19才 Dt	OOL $0 t$	0065	G＇0	E0	20		
00L OE	¢899\％	LbLS	192＇L¢	00128	OOLO	90	20	20		
00 Sc 2	ESt Ct	C10 EZ	192tc	002 0 ¢	005 ¢	10	10 80	20 10		
OGELG	でくじ	89\％ 28	EE9 19	OS日＇IG	OSL29	10 20	80 20	10 10		
OSG7S	でG 98	EGO＇G8	E¢98\％	OGQ＇8t	OS5 29	10 20	10 90	10 100		
OSE＇2t OGIZ	でぐgに	895 89868	を699t	OGEGt	OGE＇Lt	80 00	90 90	100 100		
OG698	くた6 日	89692	EES 6 ce	O¢G6¢	05698	90	$\bigcirc 0$	10		
OGL＇LE	でくらも	8sて＇ゆて	EES9E	09898	05cle	90	¢0	10		
OGG9Z	でG て己	89G！Z	EESEE	OFE CE	OS5＇92	20	20	60		
65¢ して	ZゆE＇GL	858 81	Ec90	95808		60	10	10	t	吅
［6］	［E］S	［7］s	［1］S	Id500	QaヨコdS	EAM	ZAM	LA	W	1

0109991	00\％006	00 Z0ヶt	OO＇GGLZ	Cis8lz	00＇G991．	Whis				
	Eco ${ }^{\text {c }}$		EES $\dagger 9$	29C＇99	$008{ }^{\text {b }}$	10	10	80		
¢ 2899	49 Lc	を即しら	20EC99	E60\％9	g ze cs	10	20	$\angle 0$		
SZE 6b	490 Lb	E8t＇Lt	2bで19	ECEC\％	¢で「\％	20	10	≤ 0		
osc： 29	O02＇09	00805	058.49	ORE＇69	OSERS	10	\％ 0	90		
OGE OG	00t90	0099	OSLです	OセZ®¢	05809	で0	20	90		
OSE゙け	DOL Zt	OOでで	05929	00169	95EV	$\varepsilon 0$	10	90		
G4889	E¢O OS	LH＇OS	8SE 69	19902	SL8 85	10	$\bigcirc 0$	50		
SLEZG	£ $¢ 2 \mathrm{ct}$	2189\％	6GZ ゆ9	19099	GLEZS	20	$\varepsilon 0$	90		
cas gb	とくt ！	2にずも	日cl 69	49809	¢ 28 St	$\varepsilon 0$	20	50		
GLE＇68	£ ¢ 18	んしでくを	Bco bS	L929s	SLE 6E	± 0	10	50		
O0t＇09	2906 6	¢¢0 6t	29802	¢68．L2	D0t 09	10	50	$\checkmark 0$		
006 ES	490	ceb5t	［54＇99	EEL 99	006＇s	20	$\bigcirc 0$	TO		
00t Lt	49c＇0t	ECS Or	499.09	$8 ¢ 919$	$00{ }^{\circ} 15$	¢0	co	$\square^{\circ} 0$		
008＇00	19\％98	¢Es 9 ¢	495 55	cis es	0060	T＇0	20	± 0		
00t＇se	291－28	EEZZE	29tos	Eet LS	00t ret	50	10	${ }^{\circ} \mathrm{O}$		
cz6 19	002 施	OSts	¢LEVL	00181	¢でじ19	10	90	$\varepsilon \cdot 0$		
¢Zヤ59	OOb bt	OSt	GLZ 29	000＇89	¢Zヤ SS	20	90	$\varepsilon 0$		
52685	00 l	05108	cLl 29	0086	¢Z6 8	\＆0	${ }^{\text {¢ }}$	$\varepsilon 0$		
ç゙もで	00898	05898	9L0 29	00815	GZb Cb	$\checkmark 0$	$\varepsilon \cdot 0$	$\varepsilon 0$		
92658	$009^{\prime} 18$	OSS LE	GL6 LG	002＇t5	GZE SE	50	20	¢0		
92668	$00 z^{\circ} \mathrm{Lz}$	gGz $\angle 己$	9L8＇9b	00925	9\％か＇62	90	L＇o	80		
O¢ロ＇¢	EEORt	49080	C88 EL	298bt	0 ¢tes	10	$\angle 0$	20		
096＇99	¢ELEt	L92＇8y		49869	0＇s＇99	20	90	20		
OSt 09	Ectocis	29t 68	¢89 E9	L91＇09	OSt 05	$8 \cdot 0$	G0	20		
OS6 ct	cet ce	29198	¢89 89	290＇69	096 ¢t	\checkmark	± 0	20		
OSt 28	¢E8 0 ¢	29808	E8t EG	L96＇s	OSt 28	$9{ }^{\prime} 0$	E0	Z0		
056 OE	¢E9 9 L	29990	¢8E 8t	$4 \mathrm{SO}_{6} 6 \mathrm{p}$	05608	$9{ }^{\prime} 0$	Z0	$\checkmark 0$		
	¢¢Zzz	L9Z 26	cal et	492 tp	05t \downarrow ¢	40	10	20		
SL6 $\quad \mathrm{tg}$	298%	58c＇Lb	26E 5L	EE9 GL	926.19	$1 \cdot 0$	80	10		
SLE 99	290 EP	¢80＇ED	26z＇04	EES 02	GLV＇GS	20	20	10		
SL6＇19	292 日E	¢82 BE	281＇99	¢¢¢ 59	G16 15	80	90	10		
SLV Gt	29t \dagger ¢	$\varepsilon 8 \downarrow \downarrow \downarrow$	26009	Ece 09	GLv 5	50	50	L＇0		
9 26.88	L32 Os	E81 $\mathrm{DE}^{\text {c }}$	26.6 ± 9	cez 99	SL6 8 E	$9{ }^{\text {c }}$	$\checkmark 0$	10		
SLD 2 C	L989z	¢88 cz	26867	cel 09	SLP ZE	90	ع00	10		
92692	299＇L2	E85 L	265	¢EO 9	GL6 9Z	20	で0	1.0		
SLくら5	L9Z Ll	と日で！	26965	EC5 50	GLb 6b	80	10	10	8	ε
［t］s	［Els	［2］	［1］	IdS「OUE	OOGILdS	EM	ZM	LM	W	1

000991	005681	0がc8Eし	00 96L1	00 サと时	000991	WกS				
192 ¢5	000＇19	8eO！G	ESG 69	00t19	192 ¢9	10	10	80		
ESG $\downarrow 5$	SLl OS	て60 09	498＇6G	00019	EES V＇	10	20	＜ 0		
ECS时	919 9t	76598	［99＇59	00225	E¢8 87	20	10	L6		
00099	0¢E 6t	0 GI 6	D02 65	00909	00095	10	80	99		
OOZ DS	旳LGV	099＇sp	OOt GG	00895	00265	20	20	90		
00\％\downarrow	OStで	0%＇ど	009＇ts	000 ec	00ヶ \downarrow	E0	1.0	90		
49849	¢ぐ家	602＇6t	ceo 69	00209	L9E LS	10	$\dagger 0$	90		
29519	ç6 tb	80212	¢¢Z GG	00t＇99	29G LS	乙0	E0	50		
29C9\％	らでした	602＇to	E¢vig	009 乙S	29 25	E0	Z0	G0		
49658	¢ZL2E	802 28	EE9 $2 t$	0088	49668	± 0	10	90		
¢¢L SG	00220	c9Z $\angle t$	29839	00865	Eとぐ家	10	G＇0	\％＇0		
EE6゙てG	004 tr	292 Et	19099	000＇99	EE6 ZS	Z0	$\dagger 0$	± 0		
をどろも	009＇06	4920\％	292 bs	00Z 25	をとしくt	E0	E＇0	$\nabla^{\prime} 0$		
EEE゙けt	DOE 9E	$\angle 9 \angle 98$	49% t	加比的	EEE＇L	\％ 0	z0	$\downarrow 0$		
ECS ¢	OOE＇EE	192＇¢¢	1998t	$009 \% \%$	E®S 58	90	10	$\dagger 0$		
001＇09	G189\％	çE 9b	00185	00t 65	001 09	10	90	$\mathrm{c}^{\prime} 0$		
00¢ ts	GLZ Et	çe ct	006 \＄5	009 55	加と＇ヶ它	20	G＇0	\＆＇0		
0098 t	G296E		0015	0081	009＇8\％	E＇0	$V^{\prime} 0$	E＇0		
00」で	GLO 98	GZQ SE	00 E ¢	000 日	002 己t	± 0	ED	E0		
00698	GLP＇Z¢	૬Z\＆＇రీ	OOS Et	002 bt	00698	G D	Z0	E0		
COL 5	918゙とう		OOL＇6E	006\％6\％	OOL LE	90	10	E0		
29619	¢S0 5\％	ERE GV	¢¢G＇gG	00069	L9\％ 19	10	$\angle 0$	20		
19959	0Gb で	C8S LV	EEL＇下G	OOZ＇SG	29999	20	90	20		
4908	¢G8＇8t	ces 88	EE6 GS	00t 15	29865	E0	90	20		
人的时	Qçics	C88 DE	ECI 17	W09 $2 巾$	190比	$\geqslant 0$	b＇0	z＇0		
29\％日6	059 L¢	と日E 1E	EEE EV	008 E\％	29\％98	90	¢0	20		
L9t C ¢	ゆGQ＇日Z	とลษ＇LZ	EES 6E	00007	19t てE	90	20	20		
299＇92	0Gtrz	88E tて	EELGE	ODZ ${ }^{\text {O }}$	29992	$\angle 0$	10	20		
ES8 29	5Z2 5\％	でけが	49E85	00989	Ecs 29	10	80	10		
ESO 49	它ご＇t	でotot	29s＇bs	$008{ }^{\circ}$	EED 29	20	$\angle 0$	${ }^{\prime}$		
EEZ LS	52088	でV 2 E	L920S	000.15	をモで！	ع－0	90	1.0		
EEbらt	¢゙も pe	ですぐ，	19690	$00 \% 27$	¢¢\％G\％	$\square^{\circ} 0$	G0	$1 \cdot 0$		
¢E968	S28 ©e	でVOE	く91を	00\％Et	E¢96¢	50	10	10		
CES E	9ZZ LZ	で6 9Z	49068	04 Cb 6	E¢E EC	90	EO	10		
	૬Z¢＇¢z	でャ ¢	19958	008 58	EEO \＄2	$\angle 0$	20	10		
EEZ てZ	¢てO＇0\％	です61	L9LIE	00028	EEZ 己て	80	10	1＇0	9	$\square 乙$
［\＄］5	［C］S	［2］${ }^{\text {c }}$	［l］	1dSiO03	－0ヨ／1dS	EM	3 M	WM	W	1

00＇2091	00 D9¢5	0002 za	$00 \mathrm{BCL1}$	00 95 4	00.2091	WกS				
عeq＇ts	199＇6b	005 63	$0082{ }^{\text {c }}$	009＇6s	ع¢8 LS	10	10	80		
ZtO Ec	EBL8t	OOE 6	00tes	GLG＇Gg	ZtOES	10	20	20		
ですく	E8E\％	ODZ＇Sb	000 vg	SLS Sc	でG 2	zo	10	20		
OFS ${ }^{\text {b }}$	006%	001 Lt	000 L5	OSE 85	Ofers	10	80	90		
092＇6t	00ctot	000 比	009 Es	0 ¢ $6^{\prime \prime}$	OGL＇GV	20	20	90		
OGZ Et	001\％	0060	OLZ 09	DGG LS	DSZ EP	$\varepsilon 0$	10	90		
85t 55	20\％	O06 90	009＇9G	GZL 25	85t 95	10	\％0	50		
BG6 6t	L198t	008 CD	002＇\＆	Gzebs	BC6 6t	20	\＆ 0	50		
8らも切	LUCOt	002\％68	009＇65	9Z6 OS	㫙けも	$\varepsilon 0$	zo	90		
8¢6．8¢	L6 98	909 9e	00t＇9r	gzc＇Lb	BG6 8E	$\dagger 0$	10	50		
299＇99	¢¢ 9 p	00t	POZ 95	00129	29999	10	50	50		
291 15	celzb	009\％ 17	00825	OOLCs	191＊	20	to	\％ 0		
49995	EEE 6E	0058 c	00t＇60	OOCOG	2995	$\varepsilon 0$	$\varepsilon 0$	－ 0		
2910\％	$\varepsilon ¢ 6 ¢ ¢$	00\％ 5 c	$000 \% 0$	006\％ 9	2960\％	50	zo	\％ 0		
499＇0t	¢¢G Z	OOE 乙	009%	O0F ${ }^{\circ}$	199\％\dagger ¢	50	5	vo		
428．29	OGZ ¢b	OOS \＆\downarrow	00899	GLD 9G	G28－29	10	90	$\varepsilon 0$		
GLE＇ZS	058	00tot	000＇89	GLOEG	SLE 29	20	50	E0		
St3 96	DGt 8E	¢0¢ 28	00068	91965	928 gr	60	$\checkmark 0$	E0		
GLELV	OGO＇GE	OOC \downarrow ¢	009 St	9LZ $\mathrm{gb}^{\text {c }}$	GLELt	$\checkmark 0$	80	E0		
GLE ¢ ¢	$0 ¢ 9$ LE	00118	00でも	GLG Zt	SLB SE	50	20	¢0		
GLE OE	OGZ 日Z	00082	00888	GLt 68	SLE OE	90	10	E0		
E80 69	L98 $\square^{\text {b }}$	00¢ で	000 GG	OGB cs	¢80 69	10	$\angle 0$	20		
¢ $¢ ¢$	L960\％	002＇68	000 Zs	OSP 29	¢8G＇¢	20	90	20		
¢ 8085	29518	001．98	$0098 \downarrow$	05066	c80 8\％	$\varepsilon 0$	50	Z0		
と日G Zt	291 ver	000 E ¢	002 ct	0 Gg ¢t	E日g zt	$\checkmark 0$	$\bigcirc 0$	Z0		
890\％ 28	2920E	0068 C	008＇も	OGC Z	E80 2ε	9.0	$\varepsilon 0$	60		
Eas 1E	L9E＇2z	00898	00t 8 8	098＇6E	¢ag LE	90	20	z＇0		
¢90 92	$1968 Z$	00L＇ 2	000 Sc	05\％5 ¢	E80＇92	10	10	z0		
26209	¢8t $\underbrace{\text { ct }}$	00115	000＇59	çZ cs	26809	$1{ }^{1} 0$	80	10		
26L \dagger ¢	c80 OV	OOO 日E	00915	928＇19	26L t ¢	20	20	10		
2626b	¢89\％	OOG＇6E	0028	「ごす＊	ZGZ 68	¢0	90	1＇0		
Z62 ¢ $\square^{\text {b }}$	¢日でを	008＇LE	008 \％	¢20＇5\％	26L ¢0	¢0	50	10		
26\％ 88	¢88\％ 6	00， 8 \％	00t 1.	929＇し＊	262 日e	50	$\checkmark 0$	10		
Z62 28	¢8\％ 92	0098	00088	¢zz＇的	262 2 E	90	80	10		
ででさz	¢ 80 ¢ 2	$009 z z$	009＇ve	cz8 18	262．2\％	20	20	10		
26L＇IZ	E8961	00t\％		くでいしを	26212	80	10	10	．	¢2
［t］s	錞	Izs	［l］s	Ldsiadg	0931］dS	EM	ZM	LM	W	1

009921	O『＇ELSb	Q0 Slal	00 Z861	00 Z961	00.9941	3NกS				
E¢1． 99	296゙¢	001 19	000 cg	加O＇G9	EE195	10	10	日 0		
1F\％ 29	旳官を的	St9 Es	OOE E9	090＇59	21日 59	10	20	$\angle 0$		
UV＇！	8Gで67	5¢E＇6\％	00289	05\％${ }^{\text {¢ }}$	L1も＇G	C0	10	≤ 0		
00969	OSL゙¢G	OSZ ES	009 ¢9	001．59	D0S＇69	10	E 0	90		
OOL ES	－4588	056 时	00065	009＇09	OOL ES	20	20	90		
$00<97$	OS5゙詻	OG9 to	00\％$\downarrow 9$	006＇59	0029t	E＇0	10	90		
	Cbtzs	らでです	006 E9	0¢159	¢81＇L9	10	± 0	$G^{\prime} 0$		
¢8L＇ゆG	こちザgt	¢ZS＇80	00865	OSS＇09	E8L tr	20	E＇O	G 0		
Esc＇eb	でっ゙け	GてZ＇Vも	$001 \% 5$		E8E 旳	$\varepsilon 0$	20	90		
E86 bt	てbs 60	GZ6 66	0010	09E＇LS	886	10	10	50		
L98＇Z9	EECZS	ODV＇ZG	$002 \% 9$	002 59	19829	10	90	$\nabla^{\prime} 0$		
49799	CED 80	901 8p	D09 㛡	00909	49795	$2 \cdot 0$	70	¢0		
49009	EEt゙をt	008 8\％	000＇GG	00095	49009	¢0	E 0	± 0		
1998t	EET6E	OOS 6E	00t 0G		2998t	$\forall 0$	$2 \cdot 0$	t0		
L9Z 28	6¢	902 SE	009＇50	0089	192 LS	$9^{\prime} 0$	10	$\checkmark 0$		
OSS 79	G76\％LG	51615	dos＇rg	09259	OSG 99	1.0	90	ED		
OSL \＄9	g29＇」t	52916	00669	09909	0SL 69	20	50	ED		
OGLIS	9ZE ¢6	G2AEF	00¢ 99	OSO 99	09215	\＆＇0	0	E0		
OSE Gt	G20 6E	SLO＇6S	00205	OSサ＇L9	OGE Gt	70	E0	E0		
096＇86	çtivi	¢Ll． 0 S	OOL 9t	0S安9\％	OF6 88	50	20	E＇O		
OS5 乙	¢ですく	C1tos	OOG＇ı	OSC $2 t$	0¢S＇Z¢	90	10	EO		
EEZ99	L19＇LG	OS5 15	008＇巾9	00E g9	比的	10	50	Co		
EE8 的	2Lこ $1 t$	OSZ 16	007＇09	00109	£と8＇的	20	90	70		
ECt ¢S	2L6 Ct	056 $\mathrm{Cb}^{\text {b }}$	009 GS	00195	¢¢V＇¢9	E0	50	20		
ECOLt	LL98E		009 IS	00519	CEO＇tb	$\$ 0$	50	20		
CES Ot	21808	OSE PE	00t 9t	006＇9t	EE9 Ot	90 90	60	20 20		
¢¢て	2100E	05008 $0 ¢ 258$	00¢ 0 L	O0E Ct		90	20 10	20 20		
	80b	¢く，LG	00159	OS¢ ¢9	21649	$1-0$	80	10		
11919	8099	GZ89t	00509	092＇09	LLS Ig	20	10	10		
2ll9g	805 zr	5て9 てV	00655	09199	LLI SS	E\％	90	10		
ムじ8t	802 昭	GZ2 8¢	008－19	OSG＇IG	LLC ${ }^{\text {b }}$	$\checkmark 0$	50	10		
ニLEで	b06ec	966＇¢	00LC 9t	OS6＇9t	LLEて	90	$\downarrow 0$	10		
21言9¢	80982	529＇6己	00レても	OGE゙で	11698	90	$\varepsilon 0$	10		
1156Z	8089	SZE ¢も	00G＇L	OSL゙2	2LG6Z	$\angle 0$	20	10		
1LLCL	B00＇レて	GZOLZ		OG1．EE	レレレをて	80	10	10	8	$\downarrow 2$
［㿾5	［ $¢$ ］S	［］ 5	［t］S	IdS／003	－0ヨ1 1 dS	EM	ZM	LA	H	1

00¢L2L	00＇日もゆ	00＇0gpt	00 ＋996	00＇6691	00 Cl 21	Wins				
0025	と¢も 25	29 CG	297＇19	0 OZ ¢9	002 ± 9	10	10	80		
SZ2 95	4．92＇LG	ع8日 6	¢¢¢ ${ }^{\text {cto }}$	geosg	9で99	10	でO	10		
9ziog	298 27	¢86 $4 t$	\＆EL＇LG	52889	gzt 0s	20	10	10		
Ogit 29	001 Ls	00\％＇19	00619	09689	0G225	10	$\varepsilon 0$	90		
oss 15	002 2	00 E	$002<9$	OG9 85	05919	20	20	90		
gcs ct_{5}	008＇¢ ${ }^{\text {d }}$	00t $\mathrm{Cb}^{\text {b }}$	000 \＆¢	$0 ¢ \downarrow$－	Osc sb	80	10	90		
G LZ 65	Ectoc	LLS OS	490＇19	ci929	GLZ 65	10	＋0	90		
SLL ES	¢cG $9 t$	2199\％	29 LS	SLt 89	GLL ¢G	20	ε	90		
GLO 2 V	\＆c9＇z	くいです	2908G		920.20	$\varepsilon 0$	20	$9{ }^{\circ} \mathrm{O}$		
G26 0t	E $¢ 1.8 \varepsilon$	LLE 8E	1988	920 OS	g26 07	$\checkmark 0$	10	50		
00809	2916 6	cee 6 t	EES 19	00929	00809	10	G0	$\dagger 0$		
002＇ts	4985	をef＇g	EEE 19	COE B9	00t＇rs	20	$\dagger 0$	$\square 0$		
009 旳	496＇tb	EEDてt	¢EL＇¢G	OOL 6 S	009＇86	$\varepsilon 0$	$\varepsilon 6$	to		
005 Z	49088	¢ELRE	CEG＇80	0066	009＇2b	$\checkmark 0$	20	$\mathrm{t}^{\prime} 0$		
00t 98	LSく＇の	とEZ VC	EEL＇tr	0025	00t＇si	50	10	$\nabla^{\prime} 0$		
sてを 79	001＇6t	0¢ド6t	009＇19	¢ZE 79	¢ 2 ＇z9	10	90	$\varepsilon \cdot 0$		
52895	002 Gb	osでg	00t 29	521的	9ZZ 95	20	9.0	$\varepsilon 0$		
çios	OOE It	CsE゙レ	OOZ ES	g\％beg	S2105	$8 \cdot 0$	${ }^{\circ} \mathrm{O}$	$\varepsilon 0$		
GzO \＄	00゙く过	0 Cb LE	000＇6s	çL 68	cza＇or	$\checkmark 0$	$\varepsilon \%$	$\varepsilon{ }^{\text {c }}$		
gz6 18	oos Ec	OSce	009＇06	SZS ¢	GZ6 2 E	50	z＇0	\＆0		
cza 18	00962	05962	00900	çELV	GZ8 LE	90	1＇0	$\varepsilon 6$		
OS8 89	cet 8 t	L96的	4991.9	09129	0¢8 E9	L＇o	10	20		
OS 229	ECGbt	L95	L9t 25	$06^{6} / 29$	OS 215	20	90	20		
$0 ¢ 9$ ¢g	¢c90t	L9900	$\angle 9 Z E G$	OSLes	OS9 L5	$\varepsilon{ }^{6} 0$	$\mathrm{G}^{\prime} 0$	20		
OGs ¢	¢ 1298	L9498	4906	099＇60	DSS 5	bo	± 0	20		
OSt 68	¢¢6＇z¢	298 Z	L98 6	$0 \delta^{\prime} 5$	O¢t 68	9.0	$\varepsilon^{\prime} 0$	z0		
OGE E	¢ ¢ 682	29688	L9900	OSL 16	OSE＇6E	90	z＇0	30		
092＇ 2	EcD gz	690 ç	tst＇98	O9698	Osz＇lz	10	10	$2{ }^{\prime}$		
SLE 99	1920	8822y	E¢L LS	94619	5LE 99	10	80	L＇0		
SIZ 65	498 ct	888 ¢p	¢EG 45	52L＇LS	ctz 65	20	10	10		
SLL ¢G	29665	886 68	¢EE ES	SLG＇E	GLl ES	$8 \cdot 0$	90	10		
SLO 2 t	290＇98	C80 98	Cel $6 \downarrow$	5LE 6\％	G20 26	± 0	96	しわ		
SL6 0 t	L9128	ع81 28	Ec6 $\dagger t$	GLL＇so	9260\％	90	$\bigcirc 0$	10		
g 28 ＇v	19288	¢ BL^{\prime}＇日Z	EEL $0 t$	GL6 6 b	¢ $\angle 8.08$	90	$\varepsilon 0$	$1{ }^{\prime} 0$		
GLI 8 L	49\％\downarrow 2	cas bz	E¢G＇ 98	$92 \angle \mathrm{PE}$	GEL＇日Z	40	z＇0	10		
549 Z	L9toz	cotoz	ELE 乙¢	¢LS＇ze	SL9 ZV	a＇0	10	10	t	切
［1］5	［ह］S	［z］s	［1］s	1 dsiogl	－0．314	EM	Z．th	LAM	W	\perp

T	M	W1	W2	W3	SPTfEDO	EDDISPT	S[1]	S[2]	\$[3]	S[4]
25	4	0.1	01	08	24.992	23108	10450	22600	22.883	24.992
		0.1	02	07	30.092	25808	13.050	25300	25883	30092
		01	03	06	35192	28508	15.650	28006	28.883	35192
		01	0.4	05	40292	31208	18. 250	30705	31883	40.292
		01	05	0.4	45392	33.908	20850	33.400	34883	45.392
		01	06	0.3	5D 492	36.608	23450	36100	37883	50.492
		01	07	02	55592	35308	26050	38800	40.883	55592
		01	08	0.1	60692	42008	28650	41.50 ${ }^{\text {c }}$	43883	60692
		02	0.1	07	28 883	27.517	15300	25500	26767	28883
		0.2	02	06	33.983	30217	17.900	29200	29.767	33983
		02	03	05	39083	32917	20500	31.906	32.767	39083
		02	0.4	04	44183	35.617	23100	34.600	35767	44.183
		02	05	© 3	49283	38317	25700	37.30 Fb	38767	49283
		02	0.6	02	54383	41017	28300	40005	41767	54.383
		02	07	B1	59493	43717	30900	$42.70{ }^{4}$	44767	59483
		03	01	06	32775	31.925	20150	30.400	30650	32.775
		03	D2	05	37875	34625	22,750	33.100	33.650	37875
		03	03	D 4	42.975	37325	25.350	35.800	36650	42975
		0.3	0.4	03	48.075	40.025	27950	38.500	39650	48.075
		0.3	05	02	53.175	42725	30550	41.200	42.650	53175
		0.3	06	0.1	58275	45425	33150	4390	45650	58.275
		0.4	01	05	36.667	36333	26000	37.360	34.533	36667
		04	02	04	41.767	39033	27.600	37.060	37.533	41767
		04	03	03	46867	41.733	30206	39700	40533	46867
		04	04	02	51.967	44,433	32800	42.400	43533	51.967
		04	05	01	57.067	47133	35400	45100	46533	57.067
		0.5	01	04	40.558	40742	29850	38200	38417	40558
		05	02	03	45658	43442	32450	40200	41417	45 ¢5\%
		05	03	02	50.758	46142	35.050	43680	44.417	50758
		0.5	04	0.1	55858	48842	37650	46300	47.417	55858
		06	0.1	03	44.450	45.150	34.700	42100	42.300	44450
		0.6	0.2	02	49.550	47.850	37.300	44880	45.300	49550
		06	03	0.1	54650	50.550	39.900	47500	48300	54650
		07	01	0.2	48342	49.558	39.550	46000	46183	48.342
		0.7	0.2	0.1	53442	52258	42.150	48700	49.183	53442
		08	0.1	0.1	52233	53.967	44400	49900	50.067	52233
Sum					1555 ¢0	142900	1002.00	136800	140200	165500

T	M	W1	W2	W3	SPTPED	EDDISPT	S[1]	S[2]	S[3]	$5[4]$
25	5	0.1	0.1	08	25433	23.667	10875	23142	23225	25433
		0.1	02	0.7	30.833	26.767	13.775	26242	26.425	36833
		0.1	03	0.6	36233	29867	16.675	29.342	29625	36233
		0.1	04	0.5	41.633	32.967	19.575	32.442	32825	41.653
		01	05	04	47.033	36.067	22475	35542	36025	47033
		0.1	06	03	52.433	39167	25.375	38642	39225	52433
		0.1	07	02	57.833	42.267	28 275	41742	42.425	57833
		0.1	08	0.1	63.233	45.367	31.175	$44 \mathrm{B42}$	45.625	63233
		0.2	01	07	29487	28.233	15.850	27.183	27250	29467
		02	02	06	34.867	31.333	18.750	30.283	30450	34867
		02	03	05	40.267	34.433	21.650	33383	33650	40267
		02	04	0.4	45.667	37.533	24.550	36483	36.850	45667
		02	0.5	03	51.067	40633	27.450	39583	40.050	51.067
		0.2	0.6	02	56467	43.733	30.350	42683	43.250	56467
		02	0.7	0.1	61.867	45833	33.250	45783	46.450	61867
		0.3	0.1	0.6	33500	32800	20.825	31.225	31275	33500
		0.3	02	0.5	38.900	35900	23.725	34.325	34475	38900
		0.3	03	0.4	44.300	39000	25625	37425	37.675	44300
		03	0.4	0.3	49.700	42.100	29.525	40525	40.875	49700
		0.3	0.5	02	55100	45.200	32.425	43625	44075	55100
		03	06	01	60500	48300	35.325	46725	47.275	60.500
		04	01	0.5	37.533	37.367	25850	35267	35300	37533
		04	02	04	42933	40467	28700	38367	38.500	42.933
		0.4	03	03	48333	43567	31.600	41.467	41700	48.333
		04	04	02	53.733	46667	34500	44.567	44900	53.733
		04	0.5	01	59133	49.767	37.400	47.667	48100	59.133
		05	0.1	04	41567	41.933	30775	39308	39325	41567
		05	02	0.3	46967	45033	33675	42408	42.525	46.967
		05	03	02	52.367	48133	36.575	45508	45725	52.367
		0.5	0.4	01	57.767	54.233	39475	48608	48925	57767
		0.6	0.1	0.3	45600	46.506	35750	43.350	43350	45600
		06	02	02	51000	49.600	38.650	46.450	46550	51.000
		06	0.3	01	56400	52.700	41550	49.550	49.750	56.400
		07	0.1	02	49633	51.067	40725	47.392	47.375	49633
		07	02	0.1	5503.3	54167	43625	50492	50575	55033
		08	01	0.1	53667	55633	45.700	51433	51.400	53667
		Súm			1708.00	149600	1053.00	143300	144300	170800

T	M	W1	W2	W／3	SPTJEDD	EDDISPT	S［1］	\＄［2］	S［3］	S［4］
25	6	0.1	01	0.8	25.875	24225	11300	23.683	23.667	25875
		01	02	07	31.575	27.725	14500	27.183	27.167	31575
		01	03	06	37275	31.225	17700	30683	30.667	37275
		01	0.4	05	42.975	34725	20.900	34183	34167	42975
		01	05	0.4	48675	38225	24.100	37.683	37667	48.675
		01	06	03	54375	41.725	27305	41183	41.167	54.375
		01	0.7	D 2	60075	45225	30500	44683	44667	60075
		［1	08	01	65.775	48725	33.700	48183	48167	65.775
		02	01	07	30.050	28950	16．40以	27.867	27833	30.050
		02	02	06	35.750	32.450	19．60b	31367	\＄1 333	35.750
		62	0.3	05	41459	35.950	$22.80 \square$	34867	34833	41450
		02	04	［4	47.150	39450	26000	36367	38333	47．1．50
		02	05	03	52.850	42950	29200	41.867	41 B33	52850
		02	06	0.2	58550	46450	32400	45367	45.333	5 E 550
		0.2	07	B1	64250	49950	35600	48867	48833	64250
		0.3	01	『6	34225	33675	21500	32.050	32 DOO	34225
		03	§ 2	05	39.925	37175	24700	35550	35500	39.925
		63	03	04	45625	40 675	27.900	39.050	39000	45.625
		03	04	03	51.325	44175	31.100	42.550	42500	51.325
		03	》 5	0.2	57025	47.675	34.300	46.050	46000	57.025
		03	06	01	62.725	51175	37500	49550	49500	62.725
		04	01	D 5	3 B 400	38400	26601	36233	36.167	38400
		D 4	02	04	44.100	41.900	29800	39733	39667	44．103
		04	03	Q3	49.800	45400	33000	43233	43167	49.800
		04	0.4	02	55500	48.900	36200	$4{ }^{4} 733$	46.667	55500
		04	0.5	01	61200	52.400	39400	50.233	50.167	61200
		05	01	04	42575	43125	31.700	40417	40333	42575
		0.5	02	03	48275	46.625	34900	43.917	43.833	48.275
		05	03	02	53.97 .5	50125	38100	47.417	47333	53975
		05	0.4	0.1	59675	53625	41.300	50.917	50.833	59675
		0.6	01	03	46750	47．850	36800	44600	44．500	46.750
		06	02	02	52，450	51350	40000	48100	48000	52450
		06	03	0.1	58150	54850	43.200	51600	51500	50.150
		07	01	0.2	50925	52575	41.500	46783	48567	50925
		07	02	0.1	56625	56075	45.100	$522 \mathrm{B3}$	52167	56625
		08	0.1	01	55． 100	57300	47000	52967	52 B 33	55100
SUM					1761.00	155300	1104.00	1498，00	149600	1761.00

T	M	प＋1	W2	W13	SPTHEDD	EDDISPT	S［1］	S［2］	S［3］	S［4］
25	7	01	0.1	0.8	26317	24783	11.725	24.225	24208	26.317
		01	0.2	07	32317	28． 683	15.225	28.125	28108	32.317
		［0． 1	03	0.6	38317	32583	18725	32，025	32008	38．317
		01	04	0.5	44．317	36483	22225	35925	35908	44317
		01	0.5	0.4	50317	46383	25725	39825	39808	50317
		01	0.6	0.3	56317	44283	29225	43725	43708	56317
		01	07	02	62.317	48163	32725	47.625	47608	62317
		01	08	01	68317	52.083	36225	51.525	51508	68.317
		02	01	0.7	30533	29667	16950	28550	28517	30633
		0.2	02	06	36.633	33567	20．450	32.450	32417	36.633
		02	03	05	42.633	37467	23.950	35350	36317	42633
		02	04	0.4	48.633	41367	27450	40.250	40217	48633
		02	05	03	54.633	45267	30950	44.150	44.117	54633
		02	06	02	60.633	49167	34450	48.050	48.017	60633
		02	07	01	66633	53.067	37950	51950	51.917	66.633
		0.3	01	06	34950	34.550	22.175	32875	32.825	34.950
		03	02	05	40950	38.450	25.675	36775	36.725	40.950
		03	0.3	04	46950	42.350	29175	40675	40.625	46．950
		0.3	0.4	0.3	52950	46.250	32675	44575	44.525	52．950
		0.3	0.5	02	59950	50150	36175	48475	48425	58950
		¢ 3	06	01	64950	54050	39.675	b2 375	52.325	64950
		0.4	0.1	05	39.267	39 433	27400	37200	37.133	39267
		04	02	04	45267	43.333	30900	41100	41033	45.267
		04	03	03	51，267	47233	34400	45.000	44933	51267
		04	04	¢ 2	57267	51133	37.900	48900	48.833	57267
		04	05	01	63267	55.033	41400	52809	52.733	63267
		05	01	04	43583	44.317	32625	41525	41.442	43.583
		05	02	03	49583	48.217	36125	45425	45342	49.683
		05	03	02	55583	52.117	39625	49325	49242	55.583
		05	04	0.1	61583	56017	43125	53.225	53142	61583
		06	01	0.3	47900	49200	37850	45650	45750	47900
		06	02	0.2	53900	53100	41350	49750	49650	53900
		06	03	0.1	59900	57000	44 B50	53.650	53550	59900
		07	01	0.2	52217	54083	43.075	50.175	50058	52217
		0.7	02	01	58217	57983	46.575	54075	53958	58.217
		08	01	01	56533	58.967	48300	54500	54367	55.533
SUM					181400	163000	1155.00	156300	156100	181400

T	0	W1	W22	Wiv	\$PTIEDD	EDDSPT	S]1]	S[2]	S[3]	S[4]
25	8	0.1	02	0.7	\$3 058	29.642	15950	29067	29.050	33058
		0.1	03	66	39.358	33.942	19750	33367	33350	39358
		0.1	04	0.5	45.658	38.242	23550	37667	37.650	45658
		01	05	0.4	51.958	42,5-42	27.350	41967	41.950	51.958
		01	06	0.3	58258	46842	31.150	46267	46250	58.258
		01	0.7	02	64.559	51142	3*950	50567	50.550	64.558
		0.1	08	01	70.858	55442	38750	54.867	54.850	70858
		02	0.1	0.7	31217	30.383	17500	29233	29.200	31217
		02	0.2	06	37517	34683	21.300	33533	33500	37517
		02	0.3	05	43817	38983	25.100	37833	37.800	43817
		02	0.4	04	50117	43283	28.900	42.133	42.100	50117
		02	05	0.3	56417	47.583	32700	48433	46400	56.417
		0.2	06	02	62717	51883	36500	50.733	50700	62.717
		0.2	0.7	W1	69.017	56183	40.300	55033	55000	69.017
		0.3	01	06	35.675	35425	22,850	33.700	33650	35 的5
		0.3	0.2	05	41.975	39725	26.650	38.090	37.950	41975
		0.3	03	04	48.275	44025	30.450	42.390	42.250	48275
		03	04	0.3	54575	48325	34250	46600	46550	54.575
		03	05	02	60875	52625	3 O 050	50800	50850	60875
		03	06	01	67.175	56925	41.850	55200	55.150	67175
		04	01	05	40133	40467	28200	38167	38100	40133
		0.4	02	04	46433	44.767	32.000	42467	42400	46.433
		0.4	03	03	52.733	49067	35800	46.767	46700	52.733
		0.4	04	02	59.033	53367	39600	51.067	51000	59.033
		0.4	05	01	65.333	57.667	43400	55.367	55300	65.333
		0.5	0.1	04	44.592	45.508	33.550	42633	42550	44.592
		05	0.2	03	50892	49.808	37.350	46933	46850	50.892
		05	0.3	02	57.192	54.108	41.150 44.950	51233 55533	51.150 55.450	57.992 63.492
		05	0.4	0.1	63492	58.40 B 50.550	44.950 38900	47100	57.450 47.000	63.492 49.050
		0.6 06	-1	03 02	49050 55350	50.550 54950	38900 42.700	51.400	47.000 51300	55.350
		06	03	01	61650	59.150	46.500	55.700	55600	61.650
		07	01	02	53508	55.592	44250	51567	51450	53508
		07	02	01	59808	59892	40050	55 Bb 7	55750	59808
		08	01	01	57967	60633	49600	56.033	55900	57.967
SUM					189700	169700	120600	162800	152600	186700

T	H	W1	W2	W3	SPTJEDD	EDDISPT	S 11	S[2]	\$[3]	S[4]
26	4	01	01	08	28633	13267	13275	26.342	26425	28633
		01	02	07	33633	15.867	158.75	29.042	29225	33633
		01	03	06	38633	18.467	18475	31.742	32025	38633
		01	04	05	43633	21067	21075	34442	34825	43633
		01	05	04	48633	23.667	23675	37142	37625	40633
		01	06	03	53633	26.267	26275	39.842	40425	53.633
		01	07	02	58.633	28 BE7	28.875	42542	43225	58633
		01	09	01	63633	31.457	31475	45.242	46.025	63.633
		02	01	07	32267	17.933	17950	29983	30.050	32267
		02	02	06	37267	20533	20550	32693	32.850	37.267
		02	03	05	42.267	23133	23150	35383	35.650	42.267
		02	04	04	47267	25.733	29750	38083	38.450	47267
		02	05	03	52267	28.333	28350	40.783	41.250	52.267
		02	06	02	57267	30933	30.950	43483	44050	53267
		0.2	07	01	62267	33533	33550	46183	46850	62.267
		0.3	01	06	35.900	22600	22.625	33625	33675	35900
		03	02	0.5	40900	25.200	25.225	36.325	36.475	40900
		03	0.3	04	45900	27.800	27325	39025	39.275	45900
		0.3	0.4	4	50900	30400	30425	41.725	42.075	50.900
		0.3	0.5	02	55900	33.000	33025	44.425	44.875	55900
		0.3	06	01	60900	35600	35.625	47.125	47.675	60.900
		04	0.1	05	39533	27.267	27300	37.267	37300	39533
		04	02	0.4	44533	29.867	29900	39.967	40.100	44533
		04	03	0.3	49533	32467	32.500	42.667	42.900	49533
		04	14	02	54533	35067	35.100	45.367	45.700	54533
		04	05	D1	59.533	37667	37.700	48.067	48500	59533
		05	01	04	43.167	31.933	31.975	40.908	49.925	43167
		05	02	03	48.167	34.533	34575	43608	43.725	48167
		05	03	0.2	53.167	37.133	37.175	45309	46525	53.167
		05	04	D. 1	58.167	39733	39775	49008	49.325	58167
		06	01	0.3	46800	36.600	36650	44.550	44550	46.800
		06	02	02	51.800	39200	39.250	47.250	47350	51.800
		06	03	01	56800	41800	41.850	49.950	50150	56.800
		07	0.1	- 2	50433	41.267	41.325	48.192	48175	50.433
		07	0.2	01	55433	43.667	43925	50.692	50.975	55.433
		\$, 8	01	01	54.067	45933	46.000	51833	51.800	54067
SUM					175600	108800	108500	1481.00	149100	175600

002981	006095	OW゙しL．96	00 LЕしト	000614	002981	Whs				
を86＇95	L9L゙ちら	006 Hg	009 ${ }^{2}$	EES $8 t$	¢ ¢ 699	10	10	80		
21989	BGEt5	GLt p_{5}	988＇9t	14日 96	21985	10	$z 0$	$\angle 0$		
LLOEG	B98 65	9460	GL9 ¢	L19¢t	L6＇\＆9	20	10	L0		
00809	056 Es	090＇09	OGb st	0069\％	00¢ 09	10	$\varepsilon 0$	90		
O0205	OGtog	oss 05	056	006.16	cotbs	で0	CO	90		
0026	096＇9b	0co 2 t	OSL 8 E	00188	00165	$\varepsilon 0$	10	90		
E86 19	209＇s	G29 ¢¢	cztep	EBE EO	¢66．19	10	± 0	90		
¢SC＇g	Z N$) \mathrm{OS}$	Szt．09	gzz＇00	celot	EBC9 9	20	\％0	90		
¢82＇0G	てゆら9t	9zg＇sp	¢̧0＇2E	E869E	c8L 09	80	20	G0		
๕81＇Gp	Z CO ¢ t	SZtet	G28＇E®	EALEE	Est 9b	Fo	1＇0	90		
29989	E¢L £	002 ¢	002 しb	299 L｜	［99＇¢9	1.0	50	$\checkmark 0$		
$\angle 9089$	عe9 6t	00260	OOS 日E	29t 88	49085	20	¢0	$\checkmark 6$		
L9t 29	EEL．9t	00290	$00 ¢ \mathrm{Sc}$	L92 58	29\％＇29	E＇0	¢0	$\checkmark 6$		
4989	とくgで	002 zb	DO1 CE	L90 こ¢	298＇90	$\dagger 0$	z0	$\square 0$		
く92 した	と¢168	OOZ 68	00682	49888	298＇しb	90	10	$\checkmark 5$		
0¢E cg	szezs	GLLCS	G $\angle 668$	05688	05c． 59	10	90	$\varepsilon 0$		
OGL 69	szz 6 t	$9_{L L} 60$	GLL 98	05298	0926 6	20	90	$\varepsilon 0$		
OSl ts	GZL ¢t	9 26 gb	GL9 EE	OSS EE	0＇tios	$8 \cdot 0$	$\bigcirc 0$	$\varepsilon 0$		
0 GGP	szz てt	gLz＇zo	GLE 0E	OSE OE	0¢98\％	＋0	$8 \cdot 0$	¢0		
056 てt	GzL ${ }^{\text {为 }}$	GLEaE	SLLEZ	091 22	0s6＇z	50	20	80		
	922 Sc	GLZ＇GE	ct6ez	09618	DGE LE	90	10	¢0		
EEO＇L9	LLEZS	OSEZg	Dgz＇ec	E\＆Z 8 C	ع¢0 19	10	10	20		
cet 19	46\％	0 S 8 8	OSO SE	¢ ¢cose	E¢D 19	20	90	20		
eca＇cs	LLESt	OSç\％	Dsa＇Le	¢ 8818	¢ع8 95	80	G＇0	20		
CEZ 05	く18゙t\％	$0 ¢ 817$	059 昩	E¢9 87	E¢COG	$t 0$	$\checkmark 0$	20		
EE9＇\％	LIE 8E	0sc\％e	Ost＇g\％	£ ¢ \dagger＇GZ	ces tb	90	80	20		
cea＇6e	218 \downarrow ¢	OSE $\dagger ¢$	OSでてz	£¢Z てZ	Ec0 6 E	90	20	20		
EEt＇¢E	21818	OSE LE	050＇61	E¢O6し	¢¢っ ¢	40	1＇0	$2{ }^{\prime}$		
［1／29	806 LS	SZ6＇19	¢zs x	LLS 96	LLC 89	10	80	10		
くんて＇と9	80t 8 t	Sで $3 \downarrow$	¢ZE ¢¢	LLE EE	24.69	20	10	10		
219＇29	806	926	GZ1 0¢	Lい0を	－16．4c	¢＇0	90	10		
46 LG	80t し	gzrit	9Z692	LL69\％	4L6＇LS	¢0	50	10		
Lに＇9y	80628	St6 4 ¢	¢zL \＆z	2l⿺尢	LLE90	9.0	b0	10		
41200	80ヶ \downarrow ¢	Sてb $\downarrow \mathrm{E}$	¢Zs OZ	2LGOZ	LLL 4	90	$\varepsilon 0$	10		
U1＇ge	80608	9Zb OE	GZE 16	くしどこし	LH 98	40	20	10		
41962	80t $2 乙$	GEFL	g 21	しい	LLF6\％	80	10	10	9	92
［b］	［c］s	［2］s	［i］s	1dsfage	00．jlds	EM	zM	1 M	H	1

006081	00 あら！	D0＇9pgl	00＇0ヵしい	006815	00＇6081	WIS				
005 gS	¢¢Z＇¢	298	008 くt	8¢でLD	OOS ¢S	10	10			
92026	29575	c89 25	008 ct	でだらも	920 LS	10	20	$\angle 0$		
92Lits	29t 6 ¢	E8G 64	00s＇zt	でゅで	gZL＇L言	20	10	≤ 0		
Osc＇ss	006 IS	00025	00¢＇ct	09t ¢ t	OGG 89	$1 \cdot 0$	$\varepsilon 0$	90		
O¢\％¢¢	0088	006 旳	009＇00	OSG Dt	092 cis	z＇0	zo	90		
0S6 4	00290	008 ct	$0022 \angle$	09928	05627	$\varepsilon 0$	L＇0	90		
92009	EEC LG	LELG	$0091 \downarrow$	899 5	920＇09	10	$\bigcirc 0$	90		
GLL＇pG	ECl ${ }^{\text {b }}$	L32 8\％	001．88	89985	GLL＇p9	20	E0	50		
SLt 6 b	E¢OGO	215 5	00815	8GL GE	SLt 6t	$\varepsilon \cdot 0$	Z＇0	50		
Sさん \ddagger	E¢G］	210 己t	006 乙	898＇ze	GLL tot	± 0	L＇0	G＇0		
0096	49908	ces DS	002 $6 ¢$	49968	00919	10	9.0	to		
OLE 95	190＇20	EqG Lb	00 98	492＇98	00895	20	$\forall 0$	＋0		
00075	498＇0	と¢t ${ }^{\text {¢ }}$	$006 \varepsilon \varepsilon$	499＇¢¢	00015	E 0	$\varepsilon 0$	50		
00L9	L9z＇L5	と¢Eしゃ	00018	Lag Of	0025t	＋0	z＇0	$\downarrow 0$		
OOS＇0t	29185	E¢Z BE	001＇82	49082	－	90	10	$\checkmark 0$		
Gzl ¢9	0066	DS6＇6t	$008 \angle 8$	9LL＇2¢	GZ1 E9	10	90	$\varepsilon^{\prime} 0$		
Sz8＊9	008＇90	0989	006 ヶ¢	GLE 吃	S28 29	z＇0	s＇0	$\varepsilon \square$		
Sくg てg	00280	OSLE	000 ZE	926 18	gze＇zs	$8 \cdot 0$	0	$\varepsilon 0$		
9とでし	0090	0590	00l＇6z	SL0 62	çでくt	$\bigcirc 0$	¢0	$\varepsilon 0$		
¢でった	OOG 2 E	oss＇ce	00292	SLl 9Z	¢て6＇しb	95	z 0	$\varepsilon 0$		
58950	OOt te	DSt 7	$00 \chi^{\prime}$ ¢	SLZ CZ	929＇98	90	10	$\varepsilon 0$		
05979	¢ $¢ 66$	292 bt	00695	¢咟 $5 ¢$	099＇9	10	$\angle 0$	20		
OGE GG	をEL90	49197	000 琯	¢86 己¢	OSE 65	20	90	20		
050 ± 9	EEOEt	L90＇Et	001 0¢	ع80＇0¢	090 ¢c	$\varepsilon 6$	9.0	20		
OSL＇St	EE6 68	L96＇68	002 $2 z$	£b1＇z	OSL Bb	$\bigcirc 0$	$\checkmark 0$	20		
ostet	¢¢8 9E	L98＇98	OOE 㲸	ESZ \downarrow C	Octict	50	\＆0	20		
OG1＇ 8 c	EELCE	292	000 L2	E8E L	091＇88	90	20	20		
0 gez	ES9 08	2990\％	00581	E80 81	DG8 乙	40	10	z＇0		
92l＇99	2958	Eş＇sp	000 汉	Z65＇£	GL1 99	10	80	10		
GLP 09	19t 9b	£8t cb	001%	て60＇L	52869	20	10	10		
SLS S9	298＇20	c8E で	00で的	261 BZ	5LG＇gs	$\varepsilon 0$	90	10		
glz 09	29268	cse 68	00¢＇cz	26Z 52	¢LZ＇OS	$\downarrow 0$	50	10		
SL6 tt	29198	E8b 9E	000 zZ	26E z2	9L6＇by	co	$\downarrow 0$	10		
9 2968	290 EE	ced $2 ¢$	OOS 61	26ガあ！	GL9 6E	90	¢0	10		
9LE＇t¢	49662	ces＇6z	00991	269＇91	GLE \dagger ¢	40	$2 \prime 0$	10		
9L0 62	29892	889 9\％	00 2 ¢1	269＇81	92062	80	10	10	G	92
［ t$]$ S	InIs	［z］s	［1］	1d5／093	00310	EM	LM	LM	W	1

T	H	W1	W2	W3	SPT/EDD	EDDISPT	S[1]	S[2]	S[3]	S[4]
26	7	01	0.1	0.8	29958	14.542	14550	27.967	27950	29.958
		0.1	02	0.7	35858	18042	18 0.50	31.867	31.850	35858
		0.1	03	06	41.758	21.542	21550	35767	35.750	41.758
		0.1	04	05	47.65B	25.042	25.050	39667	39.650	47.658
		0.1	05	04	53.558	28.542	28.550	43.567	43.550	53.558
		0.1	0.6	03	59458	32042	32050	47467	47450	59458
		01	07	02	65358	35542	35.550	51.367	51.350	65.358
		01	08	01	71.258	39.042	39.050	55267	55.250	71258
		0.2	01	0.7	34017	19583	19600	32033	32.040	34.017
		02	02	0.6	39917	23 D83	23.100	35.933	35900	39917
		02	0.3	0.5	45817	26.583	26.600	39833	39.800	45817
		02	0.4	0.4	51.717	30.063	30.100	43733	43.700	51717
		02	0.5	03	57.617	33.663	33.600	47633	47600	57617
		02	0.6	02	63517	37.083	37.100	51.533	51500	63517
		02	07	0.1	69417	40583	40600	55433	55.400	69417
		03	01	06	38075	24625	24650	36.100	36.050	38.075
		03	02	05	43975	28125	28150	40.100	39.950	43.975
		0.3	03	0.4	49.875	31.625	31.650	43900	43850	49.875
		03	0.4	0.3	55775	35.125	35150	47800	47750	55775
		03	05	0.2	61.675	38.625	38.550	51700	51650	61.675
		03	06	0.1	67.575	42.125	42.150	55600	55.550	67.575
		04	01	05	42.133	29667	29.700	40167	40100	42.133
		04	02	04	48033	33167	33200	44067	44,000	48033
		0.4	03	03	53933	36667	36700	47.967	47.900	53933
		0.4	04	02	59833	40.167	40.200	51867	51809	59833
		04	05	01	65733	43.667	43700	55767	55.700	65733
		05	0.1	04	46.192	34708	34750	44233	44150	46.192
		05	0.2	03	52.092	38.208	38250	48133	48.050	52.092
		05	0.3	0.2	57.992	41.708	41750	52033	51950	57.992
		05	0.4	0.1	63892	45.208	45250	55.933	55850	63.892
		06	0.1	03	50.250	39.750	39800	48.300	48200	50250
		06	02	02	56150	43.250	43.300	52.200	52100	56,150
		06	03	61	62050	46750	46.800	56100	56000	62050
		07	01	0.2	54308	44792	44850	52367	52250	54.308
		07	02	01	60208	48292	48350	56.267	56150	60.208
		08 01 0.1			58367	49833	49900	56433	56300	52367
SUM					121500		124200	1676.00	167400	191500
					SPTIEDD			1 5]2]		
T	M	W1	W2	W3		ERODISPT	S[1]		S[3]	S[4]
26	8	01	01	08	30400	14967	14975	28508	$\begin{aligned} & 28492 \\ & 27005 \end{aligned}$	
		0.1	02	0.7	36600	18767	18775	32.808		
		0.1	03	0.6	42 BDO	22567	22.575	37108	$\begin{aligned} & 32.792 \\ & 37.092 \end{aligned}$	36800 42.800
		01	0.4	05	49,900	26.367	26375	41408	41.392	49.000
		01	05	04	55.200	30167	30175	45708	45692	55.200
		01	06	03	61400	\$3 967	33.975	5000 B	49992	61.40067600
		0.1	07	02	67600	37767	37775	54.308	54292	
		01	08	0.1	73800	41567	41575	58608	58592	7380034600
		02	0.1	0.7	34.500	20133	20150	32.717	32683	
		0.2	02	06	40800	23.933	23950	37017	36.983	40.80047.000
		02	03	0.5	47000	27733	27.750	41317	41283	
		02	04	0.4	53200	31533	31.550	45617	45.583	$\begin{aligned} & 47.000 \\ & 53200 \end{aligned}$
		02	0.5	03	59400	35333	35350	49.917	49883	59400
		02	0.6	© 2	65600	39.133	39.150	54.217	54183	65.600
		0.2	0.7	D 1	71.806	42.933	42.950	58.517	58.483	71.800
		0.3	01	D. 6	38800	25.300	25.325	36.925	36875	3880045000
		0.3	0.2	05	45000	29100	29125	41.225	41175	
		03	03	0.4	51.200	32900	32925	45.525	45475	$\begin{aligned} & 45000 \\ & 51,200 \end{aligned}$
		0.3	04	0.3	57.400	36.700	36725	49.825	49775	57.40063600
		03	0.5	0.2	63600	40500	40525	54,125	54075	
		03	06	01	69800	44.300	44325	58425	58375	63600 69800
		04	01	05	43000	30467	30.500	41133	41067	$\begin{aligned} & 43000 \\ & 49200 \end{aligned}$
		04	02	04	49200	34257	34300	45433	45367	
		0.4	03	03	55400	39.067	38100	49.733	49.667	5540 g
		04	04	02	61600	41867	41.900	54033	53967	61. 600
		04	0.5	01	67.800	45667	45700	58333	58.257	6780047200
		05	01	04	47200	35.6す3	35675	45342	45.258	
		05	G2	0.3	53406	39,433	39475	49642	49.658	$\begin{aligned} & 47200 \\ & 53400 \end{aligned}$
		05	03	0.2	59600	43233	43275	53942	53858	59600
		D. 5	04	01	65.80 C	47.033	47.075	58242	58.158	65800
		06	0.1	03	51400	40800	40850	49550	494.50	51400
		0.6	02	02	57600	44600	44650	53850	53750	57600
		06	0.3	01	63.800	48.400	48450	58150	58050	$\begin{aligned} & 63 \mathrm{BOO} \\ & 55600 \end{aligned}$
		07	0.1	02	55.600	45967	46025	53.758	53642	
		07	0.2	0.1	61,800	49.767	49825	58058	57.942	$\begin{aligned} & 55600 \\ & 61.806 \end{aligned}$
		48	0.1	01	59800	51133	51,200	57.967	57833	59800
		SUM			196800	1292.00	129300	174100	173900	196800

T	M	W1	W2	W/3	SPTJEDD	EDDISPT	S[1]	S[2]	S[3]	S[4]
27	4	01	01	$0 \cdot 1$	18517	16.092	16109	16942	17625	18517
		0.1	02	07	23.517	18692	18700	20142	21725	23517
		0.1	0.3	06	28517	21.292	21.300	23.442	25.825	28 517
		0.1	04	05	33517	23892	23900	26742	29.925	33517
		01	05	04	38517	26492	26500	30042	34025	38. 517
		0.1	06	03	43517	29.092	29.100	33342	38.125	43517
		01	0.7	02	48.517	31.692	31700	36642	42225	18517
		01	08	0.1	53.517	34292	34300	39542	46325	53517
		02	01	07	23033	20.583	20.600	213 B 3	22.150	23033
		02	02	06	28033	23183	23200	24.683	26250	28033
		02	03	0.5	33033	25793	25800	27983	30350	33033
		D 2	04	0.4	34033	28393	28400	31283	34450	38033
		02	05	03	43033	30983	31000	34583	38.550	43033
		02	06	02	48033	33583	33600	37883	42.650	48033
		02	07	0.1	53033	36183	$5620 ¢$	41.183	46750	53033
		03	01	06	27 556	25.075	25100	25925	26675	27550
		03	02	05	32550	27.675	27700	29225	30775	32550
		03	03	04	37.550	30275	30300	32525	34875	37.550
		03	[4	03	42550	32875	32.900	35825	38975	42550
		03	[5	02	47.550	35475	35.500	39125	43075	47550
		03	66	01	52550	38075	38100	42425	47175	52550
		04	01	05	32.067	29567	29.600	30.467	31200	32.067
		0.4	02	[4	37067	32167	32200	33767	35300	37067
		04	03	¢ 3	42063	34.767	34800	37.067	39.400	42067
		D 4	04	0.2	47067	37367	37.400	40.367	43500	47067
		D 4	05	01	52.067	39967	40.000	43.657	47600	62.067
		05	01	C 4	35583	340.58	34100	35008	35725	35583
		05	02	03	41583	36.658	35704	38308	$39 \mathrm{B25}$	41.583
		0.5	03	02	46583	39.258	39300	41.608	43925	46.583
		0.5	04	01	51583	41.858	41900	44.908	48025	51.583
		06	01	03	4150	38.550	38600	39550	40250	41.100
		06	02	0.2	46100	41150	41.200	42.850	44350	46.100
		06	0.3	01	51100	43750	43800	46.150	48450	51100
		0.7	01	92	45617	43.042	43100	44092	44775	45617
		0.7	0.2	0.1	50.617	45642	45700	47.392	48875	50.617
		0.8	01	01	50.133	47533	47600	48633	49300	5013.3
SUM					146600	1175.00	117600	126500	135900	146600

T	M	W1	W2	W3	SPTIED	EDDISPT	S 11	S[2]	\$[3]	S(4]
27	5	01	01	60	18.842	16517	16525	17.167	17.950	78842
		01	02	07	24042	19.417	19425	20.667	22.250	24042
		01	0.3	06	29242	22.317	22.325	24167	26550	29.242
		01	04	0.5	34442	25217	25225	27667	30.850	34442
		01	05	04	39642	28117	28125	31.167	35.15D	39642
		01	06	03	44 642	31017	39.025	34667	39.450	$44 \mathrm{EA2}$
		01	07	0.2	50.042	33917	33925	38. 167	43750	50042
		01	D8	0.1	55242	36.817	36825	41667	48050	55.242
		02	07	07	23343	21133	21150	21.833	22600	23483
		02	0.2	0.6	28683	24,033	24050	25333	26.900	28.583
		02	03	05	33883	26.933	26950	28833	31205	33883
		02	04	0.4	39043	29833	29850	32333	35500	39 ¢83
		02	05	0.3	44.283	32.733	32.750	35833	39800	44.283
		0.2	0.6	02	49463	35633	35650	39333	44100	49483
		02	07	0.1	54683	38.533	36550	42833	48400	54.683
		03	01	06	28.125	25750	25775	26500	27250	28125
		03	02	05	33325	28.650	28675	30.000	31550	33325
		[3	D3	04	38525	31.550	31.575	33500	35.850	38525
		03	D 4	D 3	43725	34450	34.475	37000	40.150	43725
		03	¢5	D 2	48925	37.350	37.375	40500	44.450	48.925
		03	D6	01	54, 125	40250	40.275	44000	48.750	54.125
		04	01	0.5	32.767	30.367	30.400	31.167	31900	32.767
		04	02	D 4	37967	33287	33300	34667	36200	37.957
		04	03	0.3	43.167	36.167	36205	38.167	40.500	43.167
		04	0.4	02	48367	39067	39100	41667	44800	48367
		04	05	01	53567	41.967	42.000	45167	49.100	53567
		05	01	04	37.408	34.983	35025	35.833	36550	37.408
		05	02	0.3	42.60日	37883	37.925	39333	40850	42.608
		05	0.3	02	47.808	40783	40825	42 E 33	45150	47.808
		05	04	01	53.008	43683	43725	46.333	49450	53008
		06	01	0.3	42.050	39600	39650	40.500	41200	42.050
		06	02	02	47250	42.500	42550	44.900	45.500	47250
		0.6	03	01	52450	45.400	45.450	47.500	49800	52.450
		07	0.1	0.2	46692	44217	44275	45.167	45850	46692
		07	02	0.1	51,892	47117	47175	48667	50150	51892
		08	01	01	51.333	49833	48 SOO	49833	50500	51.333
		SUM			150500	1226 b0	1227.00	1304.00	139800	1505.00

00＇E85 1	00－92\％！	00 ZSEL	00 BZEL	008282	DOECgi	WITS				
$\underline{E} L E S$	006	¢EZZG	00515	Cど 15	ELCLEG	10	＇0	80		
てが比	002 29	HでG	çi＇0s	290 OS	てttros	10	20	$\angle 0$		
で8 时	00025		cze 9t	4 Cg ＇9p	2⿰⿺乚一匕⿱㇒日勺十 8	と＇0	10	$\angle 0$		
OSL 55	OOG ZG	00208	0S 28 b	00L＇Et	091．${ }^{\text {ch }}$	10	80	90		
OGG 6b	008\％	$008^{\circ} 9$	OSZ ¢t	002 ct	OSS	20	20	90		
056 Et		00t＇zo	OS2け	002＇t	096＇sb	¢0	1.0	90		
898 cc	00EZ9	8816\％	GLE $2 t$	¢ce $2 t$	898＇ç	10	30	$¢ 0$		
89\％＇09	009\％\％	caz 5	GLeqt	Ecest	8SZ 09	20	E＇0	G0		
899＇t	0062	E8¢	gic＇ot	Eetot	859 tt	\＆＇0	20	9.0		
850 EE	OOZ8E	86t2c	928＇98	E¢\％ 9 C	39068	$\checkmark 0$	10	50		
L4599	00125	L91＇80	00056	1969t	299＇99	10	50	50		
29605	00t 21	く9で物	0045	190で	290＇09	200	P0	$\$ 0$		
1965	002＇20	49800	00066	2968E	298 9b	co	80	$\square 0$		
49268	00088	$\angle 90^{\circ} \mathrm{Sc}$	00c 98	$29 力 \mathrm{SE}$	29164	± 0	20	± 0		
L91比	008 5	LgS 28	000＇z¢	29618	29150	90	10	$\vdash 0$		
SL2 29	006 ls	OSt 20	cz9 ${ }^{\text {¢ }}$	0091	$512<5$	10	90	$\Sigma 0$		
Gta＇LG	002 Lt	－¢	9で＇じ	00115	gL9＇Lg	20	g＇0	$\varepsilon 0$		
¢ $20.9 p$	OOS 2 t	098゙80	Gz9 28	009＇28	SLO 9\％	ع＇0	¢0	80		
5to 0	00日 28	O¢力 ¢E	5でもく	0018	¢ぐ0	$\bigcirc 0$	¢0	ε＇0		
G28＇0E	00l $\frac{1}{}$ ¢	OGc＇te	ces＇0¢	00908	928 y	90	で0	E 0		
GLZ 62	O0\％ 82	0592 L	9 c	001 LZ	GLZ 6Z	90	10	E0		
E86 25	O0L＇ 19	ECL 9b	OGZ Et	عEZ＇を	E86 LS	10	$\angle 0$	20		
£8¢＇z	O0\％ 2 C	EEZ P	092 68	EELEE	¢8E 25	\％ 0	90	20		
ESL 95	00¢ zo	¢EE ๕E	OSZ＇98		cgl 96	80	90	20		
	009\％2	¢¢ャワを	092＇乙§	¢ $¢ \perp$ て	と日じ	¢0	± 0	20		
枸G＇GE	006て¢	¢cg oc	OGZ EL	EEL 62	¢ ¢ ¢ ¢	50	E0	20		
¢ 8662	OOZ 82	Ecg gz	OGL Gz	£ ¢ L＇gz	89662	90	20	70		
¢ac＇tz	005%	\＆eLzz	osz＇zz	£とZ てひ	と日c゙って	40	10	z0		
26989		くいらす	¢28け	＜98＇1t	Z69\％9	10	80	10		
260 ¢9	0089	2゙くしか	SLE\％	2968 8	$260{ }^{-89}$	20	40	10		
26\％ 26	0012%	L1E LE	S1att	298 吃	26tit	¢0	90	10		
268\％	OOD 28	くも゙く	SLE゙1E	29816	268゙け	± 0	90	10		
Z 6298	002 28	LLE 62	9LSLZ	29812	26898	50	$\square^{\prime} 0$	10		
てE908	000 BC	L19 9z	GLE＇tz	$298 \downarrow$ ¢	269 0E	90	E 0	10		
26092	008 ¢	2以して	GL80Z	L9802	260 gz	10	20	10		
て6t 61	00918	218゙く	5LE11	69826	て6trot	80	10	10	L	$L Z$
［t］S	［غ］s	［2］	［1］S	1dSioce	Ggarlds	EM	2．4	LM	W	1

00 やすら	00＇Leti	00 Etel	00 －123	002ん2上	00＇VbGI	Wns				
EES＇ZG	002＇19	EEO IS	ODZ 09	E¢ト＇OG	£ç＇z9	10	1＇0	80		
L9185	get is	20660	099＇8b	265 时	291 EG	L＇0	20	10		
29120	52695	でて 9\％	OSt St	26E 5b	492．2\％	20	10	$\angle 0$		
008＇g	¢¢1．29	Ocs 8	OOL 2	090＇L	008 \＆ 9	10	¢0	90		
00サ＇8\％	0s9\％9t	OSt 5	0065	058 ¢	00\％${ }^{\circ}$	$2 \cdot 0$	20	$9{ }^{\prime} 0$		
000＇¢	05： 20	OSt し	O020	09900	000 Eb	$\varepsilon 0$	10	$9{ }^{\prime} 0$		
cob＇vs	ge8 0 ¢	85 2 Lb	OGg ¢b	cos＇sp	Ect po	10	$\bigcirc 0$	G 0		
๕co bt	GLE 90	850 pt	OGE Zt	80E＇Z	ع60 50	20	co	G0		
£ ¢ ¢ ¢	G 28 ip	$8 S^{\circ} \mathrm{C}$	OSl 68	801 6E	¢ ¢ ¢ ¢	ع00	20	50		
£ ¢ ¢ $¢$	G $£ \varepsilon 18$	89998	OSE＇s¢	89698	EEZ 3E	$\checkmark 0$	10	to		
$\angle 90 \cdot 9$	00909	2995	000 ${ }^{\circ}$	4968	49099	t＇0	50	$\checkmark 0$		
1986	00198	496 てt	0080t	4920t	29960	20	P0	± 0		
292 tb	0091\％	29268	009 LE	＜9G2 2	L9\％to	$\varepsilon 0$	¢0	$\checkmark 0$		
29888	Dol＇28	295	ORT 比	498 比	298 ac	± 0	20	± 0		
19\％ $\mathrm{E}^{\circ} \mathrm{E}$	009 己	49818	002 18	191＇L6	29\％E¢	90	10	± 0		
0025s	9Z¢＇0G	S＜s 9b	O5t で	GZt $\downarrow t$	00LGs	10	90	$\varepsilon 0$		
00¢09	¢て8＇ct	SLE＇V	BGZ 68	GZZ 6E	00805	20	Gor	$\varepsilon 0$		
006	GZE し	92688	OGO 9E	520＇9	DO6＇tr	$\varepsilon 6$	＇0	¢0		
00568	9Z898	Gくtトた	OS＇ 28	cz8 て¢	00568	＋＇0	¢ 0	\＆ 0		
001＇ve	gzéze	SLL OE	DS9 6z	9Z9 6z	001 加	9.0	20	$8 \cdot 0$		
002＇62	Sziz2	S $\angle 0 \angle Z$	OSt 92	çt 9\％	002 82	90	10	¢0		
EEE 99	05009	cat \dagger	00605	¢880t	Ece＇gc	10	10	20		
Ec6 09	OSc\％	C8L Op	002 28	$\varepsilon 8928$	CE6 OG	20	90	z＇0		
¢¢G ¢t	050＇L	ceo LE	$00 \mathrm{~S} \downarrow \mathrm{E}$	¢8ャ \downarrow ¢	EEG ¢	80	50	で0		
¢EL Ot	OfS 98		O0¢ 18	¢日C 18	EELOt	$\checkmark 0$	50	20		
とEL゙ゆ¢	Ofoze	£89 6Z	00182	c80＇sz		50	$\varepsilon 0$	20		
とEč6z	OSS 12	E86 cz	00672	¢8日 $\dagger 2$	¢¢E 6Z	90	20	20		
¢ ¢ ¢ ¢	DSOEZ	£gZ <2	00642	88912	¢ع6 ¢Z	20	10	20		
2969s	5LL＇tb	26E E°	05c．6¢	でど6e	29699	10	80	10		
L9＇5G	¢ \angle て＇Gb	26968	65698	でじ9¢	295＇19	20 80		10		
$294^{\prime} 9$	SLLOD	26658	056て¢	で6でく	29695	80 $\square 0$	90			
1920	¢LŻ＇98	26己 てE	加 68	で2 62	2920%	8	\bigcirc	10		
L9E58	GLIIE	26 c 8 8	OGG 9Z	Zヤ¢9Z	20\％5\％	90	80	10		
49662	GLでしZ	Z68 t	0¢c¢\％	でと＇¢z	296.62	90	8	10		
499＇pz	GLE＇Z	261して	OSLOZ	てカレ＇0z	29572	20	10	10 10 10	9	$\angle 2$
2916	Gtで81	26p 21	0 GG 5	Zヤ696	$\underline{49161}$	80	2M		N	－
［t］s	［¢］$]$	［z］s	［l］5	1dSt00	003lds	E．h	cm	m	N	1

7	M	W1	W2	W3	SPTIEDD	EDDISPT	S[1]	S[2]	S[3]	$5[4]$
27	8	0.1	0.1	0.8	19.817	17.792	17800	18142	18925	19817
		0.1	02	0.7	25617	21.592	21600	22242	23825	25617
		0.1	03	0.6	31.417	25392	25400	26342	28725	31417
		0.1	0.4	0.5	37217	29192	29200	30442	33.625	37.217
		01	0.5	04	43017	32992	33.000	34.542	38525	43017
		01	06	03	48.817	36792	36800	38.642	43425	48.817
		0.1	07	0.2	54617	40592	40.600	42.742	48325	54617
		01	08	01	60417	44.392	44.400	46842	53.225	60417
		02	01	07	24833	22.783	22.800	23183	23950	24833
		02	02	06	30633	26.583	26.600	27283	28.850	30.633
		02	03	05	36433	30383	30,400	31383	33.750	36433
		02	04	04	42.233	34183	34200	35483	38650	42.233
		02	0.5	03	48.033	37.983	38.000	39583	43550	44.033
		02	06	02	53833	41.783	41800	43.683	48450	$53 \mathrm{B33}$
		0.2	07	0.1	59633	45583	45600	47.783	53350	59633
		0.3	01	0.6	29850	27775	27.800	28225	28975	29850
		03	02	0.5	35650	31575	31,600	32.325	$33 \mathrm{B75}$	35650
		0.3	03	0.4	41.450	35375	35400	36425	38775	41450
		03	04	03	47.250	39.175	39200	40525	43675	47250
		03	05	0.2	53050	42.975	43000	44625	48575	53050
		03	06	0.1	56850	46.775	46.800	48725	53475	58850
		0.4	0.1	0.5	34867	32767	32800	33.267	34.000	34.867
		0.4	0.2	04	40.667	36567	36600	37367	38.900	40667
		04	0.3	03	46467	40367	40400	41467	43800	46467
		04	0.4	02	52267	44.167	44200	45567	48700	52.267
		04	05	01	58067	47957	48.000	49667	53600	58.067
		05	01	$0 \cdot 4$	39883	37758	37.800	38.308	39025	39883
		05	02	03	45683	41558	41600	42.408	43.925	45683
		05	03	02	51.483	45.358	45400	46508	48826	51483
		0.5	04	01	57283	49150	49200	50608	53.725	57.293
		06	01	0.3	44900	42750	42.800	43350	44.050	44900
		06	0.2	02	50.700	46550	46600	47.450	48950	50700
		06	03	01	56.500	50350	50400	51,650	53850	56500
		07	01	02	4997	47742	47.800	48392	49075	49917
		07	02	0.1	55717	51542	51.600	52.492	53975	55717
		0.8	01	01	54933	52.733	52800	53.433	54.100	54933
		SUM			1622.00	1379.00	138000	142100	151500	1622:00

T	M	W1	W2	W3	SPTIEDD	EDDISPT	S[]	\$[2]	5[3]	S[4]
28	4	0.1	01	08	21242	18.917	18925	19567	20.350	21242
		01	02	07	26142	21.517	21525	22767	24.350	25142
		0.1	03	0.6	31.042	24.117	24.125	25967	28.350	31042
		01	04	0.5	35.942	26717	25.725	29167	32.350	35.942
		01	05	04	40842	29.317	29325	32.367	36350	40842
		01	05	[3	45742	31.917	31.925	35567	40350	45.742
		01	0.7	02	50642	34.517	34.525	36767	44350	60.642
		0.1	03	01	55.542	37.117	37125	41967	48.350	55542
		02	01	07	25583	23.233	23.250	23.933	74.700	25583
		02	02	06	30.483	25833	25.850	27133	28.700	30.483
		0.2	03	05	35383	28433	28450	30.333	32.700	35383
		0.2	04	0.4	40283	31033	31.050	33.533	36.700	40283
		02	0.5	0.3	45.183	33633	33650	36733	40700	45.183
		02	06	02	50.083	36233	36.250	39933	44700	50.063
		02	07	01	54983	$38 \mathrm{B33}$	38.850	43133	46700	54.983
		03	01	06	29925	27550	27.575	28.300	29050	29925
		03	0.2	05	34825	30150	30.175	31.590	33050	34.825
		03	0.3	04	39.725	32750	32.775	34.700	37050	39725
		03	04	03	44.625	35350	35.375	37.900	41050	44.625
		0.3	05	02	49525	37.950	37975	41.100	45050	49525
		0	06	0.1	54425	40550	40575	44.300	49.050	54425
		04	0.1	05	34267	31867	31,900	32667	33400	34.267
		0.4	02	0.4	39167	34467	34500	35867	37.400	39.167
		04	03	03	44067	37067	37.100	39067	41400	44.067
		04	0.4	02	48967	39667	39.700	42.267	45400	48.867
		04	05	01	53867	42267	42.300	45467	49400	53.867
		05	01	04	38.608	38.183	36.225	37033	37750	38.608
		05	02	03	43.508	38.783	38.825	40.233	41750	43508
		05	03	0.2	406408	41.383	41.425	43.433	45750	48408
		0.5	04	0.1	53308	43983	44.025	46633	49.750	53308
		06	01	0.3	42950	40500	40550	41400	42.100	42950
		06	02	02	47850	43100	43150	44600	46.100	47.250
		06	03	01	52750	45700	45.750	47800	50.100	52750
		07	01	5.2	47292	44.817	44875	45767	46450	47292
		07	02	01	52.192	47417	47,475	48967	50450	52.192
		08	01	01	51,633	49133	49200	50133	50800	51.633
		SUM			1541.00	126200	1263.00	1340.00	143400	1541.00

00＇6191	00 こ151	00日しって	00 ¢9¢．	00＇6981	00619	WกS				
EEOtS	902ES	EtS＇Z9	008 IS	EEL＇19	CEO＇tS	10	10	80		
でも \downarrow ¢	000 ES	LLG＇G	Sてtos	L9E 09	でじけS	10	20	10		
でぢ6\％	0096	216\％	¢で2\％	291\％	2to60	z＇0	10	10		
O5\％＇gs	009＇Z9	00505	0¢の＇60	0006	OSt GS	1＇0	$\varepsilon 0$	90		
Ostos	00t 8 b	0069	0985	D085	OSt 09	20	20	90		
$0 ¢ 8 \pm$	000 to	OES Et	OGS 27	Dos CV	098＇p\％	$\varepsilon 0$	10	90		
QG1 9G	009 てS	¢8\％ 0	SLS 26	E¢S ${ }^{\text {co }}$	85195	10	$\nabla^{\circ} \mathrm{O}$	50		
89808	002 8\％	86850	SLt pt	¢c0＇to	859 DS	て0	80	G0		
B9950	000＇ど	EBZ Cb	らしてしか	£と己 しt	8G9 5t	E＇0	C0	90		
892＇0\％	0016 6E	E89 8¢	G10 9	ECO 88	8sZ＇0t	$\geqslant 0$	10	40		
19895	00679	29力＇日V	00 Eb	49790	29999	10	50	$\nabla^{\prime} 0$		
L9915	000＇86	$\angle 98$ tb	001．8p	1908%	L9G L	て＇0	$\bullet 0$	$\geqslant 0$		
4929	009 ct	L92 16	006.68	198＇68	292 9t	E0	50	$\geqslant 0$		
1960	002 68	29918	001 䗆	499＇98	290 0	\％ 0	20	＊0		
4995	$000{ }^{\circ} \mathrm{D}$	190㠶	OOS＇EE	19\％ع 5	199 5	50	10	10		
g $25 \angle 5$	$00 \mathrm{O}^{\prime} \mathrm{ZS}$	0ct 20	¢26 0	006＇㠸	GLG 25	10	90	$¢ 0$		
GLZ Z9	908 Lt	098＇\％	çıbt	00に1t	Gıて 29	2゙0	50	¢0		
9169 9	の0\％をt	OSZ＇00	GZG 8E	0058 C	94697	80	$\rightarrow 0$	$\varepsilon 0$		
919＇1t	90060	0 cs＇9\％	GCE G¢	OOE SE	929.17	70	80	\％0		
GLE 9E	9 OSOE	捾の＇に家	GZL 2 E	001 乙E	GLE 9\％	co	20	50		
SLOEE	00208	OGt＇6Z	SZ5 82	006＇92	GLOIE	90	10	E0		
E8Z 89	000125	をどもの	095 をt		を日C 89	10	10	20		
と的を枵	009 Lt	こと8で	加どロt	EEE Ot	¢06 己9	20	90	20		
¢39 $4 t$	002 EV	EEZ＇68	OGV $\angle E$	を比tを	C日g	50	50	20		
と的を	0088 E	Ec9 5s	O¢6＇E	EE6 ¢¢	CBE Z	$\nabla 0$	50	Z0		
880 $\angle 5$	なったもく	ERO＇Z	O51 OE	ECL OE	800＇28	50	80	20		
E8L5	00008	ECt BZ	0¢G＇LZ	EEG $2 乙$	¢8LLE	90	20	20		
	00958	ESE゙ちZ	OGE＇tz	EEE $\dagger Z$	¢8t9\％	$\angle 0$	10	＜0		
266 89	008＇19	LltG\％	GLL Zt	49トで	Z66 89	10	80	10		
269 E9	$000 \cdot 20$	218し\％	SL6 8E	498＇日	Z69 ES	Z0	≤ 0	10		
26E＇8	000\％	2lて＇会	914．GE	29158	Z6E 8\％	ع＇0	90	10		
260 ct	0098	$419+8$	SLS $Z E$	195 乙8	260 \＆\％	－ 0	90	10		
262t5	90で比	く10＇レ8	SLE 6Z	19¢＇62	Z62 28	90	00	10		
て6t＇で	00662	Lbt $\angle C$	GLL 92	19192	こ6も こ¢	90	EO	10		
Z61 LZ	00\％ 92	118Eて	5L6＇も己	196 ZZ	て6し＇ご	≤ 0	C0	10		
て6日 して	00012	$\triangle 1 Z O Z$	SL261	49261	26日 6	$8 \cdot 0$	10	10	9	2？
［is	tels	［て］${ }^{\text {c }}$	［म］	Ldsicas	－03／idS	EM	ZMh	6／h	W	1.

00＇0691	$00 \varepsilon \angle \square 1$	00\％ 28.	00－0181	00 ＇zLEL	000851	WกT				
£Ea＇ZG	000 ZS	¢E¢＇LG	OOS DS	Eとb＇OS	£E\％乙S	10	10	80		
t9t Es	gesis	2b2 Of	0568	26885	29t cs	10	20	$\angle 0$		
29E 8b	gzcilt	で¢ 9 ${ }^{\text {¢ }}$	090＇9b	2665t	498＇6 ${ }^{\text {d }}$	¢0	10	20		
DOL	OG\％ 19	OSt 69	00b＇Lb	OSE $2 ⿰ ㇒ ⿻ 土 一 ⿱ 一 𫝀$	001＇vg	10	¢0	90		
000＇6	OSでしt	OSL 94	OLS＇to	OSt ${ }^{\text {ot }}$	000＇6t	20	Z0	90		
00618	OGOEt	OSどで「	009 しt	$0 ¢ 9$＇\downarrow	006 Eb	$\varepsilon 0$	＇0	90		
EEL 9 ¢	926	850 旳	OGE Gb	80日 5	¢ 2.7 bc	10	$\checkmark 0$	90		
Ec9 6b	926＇9b	899	096＇z	806 Zt	Ec9＇6	て 0	E O	G＇0		
EES ${ }^{\text {b }}$	9LLCV	BGZ Lis	090＇0\％	800 Dt	を¢¢\％	$\varepsilon 0$	Z	9.0		
¢¢t＇6を	GLEs 8 E	698＇2¢	OSL 2 E	801．28	¢Et 6Σ	V＇0	10	G 0		
290 59	00609	296＇9\％	OOE $\dagger \square$	49z＇por	t9E cs	10	90	$\bigcirc 0$		
t92 05	00496	299 Ef	00t しt	49E14	49209	Z0	V0	$\square 0$		
2915t	OECOL	L910\％	00¢＇s¢	29088	L91．gb	¢0	E0	to		
29000	ODE 大	29298	00998	L95 58	290 Ot	$\nabla 0$	20	$\square 0$		
296 \dagger ¢	00t $0 \times$	L9EEC	0042\％	29928	L9S＇0	50	10	t＇0		
000 gs	g 2909	5185	OGL＇Z \downarrow	SZL	00099	10	90	$\varepsilon 0$		
006＇09	Sで96	Sくでで	OGE6E	gz8＇68	00605	でロ	G 0	E0		
008 c ¢	sてzても	GIO＇6E	09698	926 98	0085	¢0	± 0	$\varepsilon \square$		
00206	Szo 8 ¢	G29 ce	050 pc	$920 \downarrow$ 切	002．00	\square_{0}	E0	$8 \cdot 0$		
00958	¢ze＇c¢	cız 28	Os卜＇t\％	SZ1 18	009 Gc	50	でO	E0		
00soc	sza 6\％	G 28 BL	0sz＇8z	szz 82	OOG OE	90	10	¢0		
¢69 99	Ofe 09	ç2＇tb	002 －	çl 10	E¢9＇9\％	10	10	20		
	0 cc 9	cee＇to	ODE 8 E	c8\％ 88	Etc＇rg	द0	90	20		
c¢t 95	OS6 L	ع 26 LE	00t 58	¢8¢ ¢¢	とEャ $9 t$	$\varepsilon{ }^{\prime} 0$	¢ 0	20		
EEE！${ }^{\text {ct }}$	05L2L	E8s	005 己	¢ ¢ \dagger C $¢$	¢とE しt	10	0	20		
¢¢己 9E	Oct 6 ct	¢81 LE	00962	Eas 62	¢¢己 9¢	50	¢ 0	20		
£ど＇に	O5E 62	CRLLZ	00598	899 gz	と¢1＇に	90	20	Z0		
E00 g\％	OGl gz	888＇vz	008 Ez	¢ $8<\varepsilon Z$	£ 2092	40	10	20		
49Z 29	G 2005	Z69＇§	0G9 6E	26968	29Z＇L9	10	80	10		
291－z9	$9 \angle 8 \mathrm{~Gb}$	C6Z＇0ヶ	OGL 98	20298	29129	20	$\angle 0$	10		
2902\％	GLa＇L	268 9	OGB E ε	2 LE ¢	1904	¢0	90	10		
296\％	¢ $\angle \square \pm E$	ことザ¢气	0560 0	20600	29614	± 0	50	10		
29898	GEZEE	CSO＇0\％	OSb 82	20082	29898	G0	$\checkmark 0$	10		
290＇18	St0 62	Z69＇9Z	091 9z	ztl sz	29E1E	90	ε	10		
19992	528 比	Z62 82	OGでてz	でて て	19992	40	20	10		
499＇Lを	52902	26861	09865．	でぐぐく	19512	60	10	10	9	㫜
［0］s	［E］s	［žs	［1］	IdSidoz	0031近S	2M	ZM	LM	W	1

T	M	W1	W/2	W/3	SPT/EOD	EDDISPT	S[1]	S[2]	S[3]	S 141
28	7	01	01	08	22217	20.192	20200	20542	21325	22217
		01	0.2	07	27.717	23.692	23700	24342	25925	27.717
		01	0.3	06	33217	27.192	27200	28142	30525	33217
		01	04	05	38717	30692	30.700	31942	35125	38717
		0.1	05	0.4	44217	34192	34200	35.742	39.725	44217
		01	0.6	03	49.717	37692	37700	39542	44.325	49717
		01	0.7	02	5.5217	41.192	41200	43342	48.925	55.217
		01	08	01	60717	44,692	44.700	47142	53.525	60717
		0.2	01	0.7	26.933	24883	24.900	25.283	26050	26.933
		0.2	02	0.6	32433	28383	28.400	29.083	30650	32433
		0.2	03	0.5	37933	31883	31.900	32.883	35250	37933
		0.2	04	04	43433	35383	36.400	36683	39850	43433
		02	05	03	48933	38.883	38900	40.483	44.450	48933
		02	0.6	02	54.433	42383	42400	44.283	49,050	54.433
		02	0.7	01	59.933	45883	45900	48083	53.650	59.933
		03	0	06	31650	29575	29600	30025	30.775	31650
		03	Q 2	0.5	37.150	33075	33.100	33.825	35375	37.150
		03	03	0.4	42650	36575	36600	37.625	39975	42.650
		03	0.4	03	48150	40075	40.100	41.425	44.575	48.150
		0.3	0.5	02	53650	43575	43.600	45225	49.175	53.650
		0.3	06	0.1	59.150	47.075	47.100	49 625	53775	59.150
		04	0.1	05	36.367	34.267	34.300	34767	35500	36.367
		04	0.2	04	41.867	37.767	37800	38567	40106	41.867
		0.4	0.3	0.3	47.367	41.267	41.300	42367	44700	47,367
		04	04	02	52.857	44767	44800	46.167	49300	52867
		04	05	01	58.367	48267	48300	49967	53.900	58367
		05	01	04	41.083	38.958	39600	39508	40225	41 DB3
		05	0.2	03	46.583	42458	42500	43.308	44825	46583
		05	0.3	02	52.083	45958	46,000	47.108	49.425	52083
		05	04	01	57583	49458	49.500	50909	54.025	57.583
		0.6	01	03	45 EDO	43.650	43700	44250	44.950	45 B00
		0.6	0.2	02	51.300	47.150	47200	48050	49550	51300
		06	0.3	01	56.800	50.650	50700	51850	54150	56800
		0.7	0.1	02	50.517	48342	48400	48.992	49675	50.517
		07	0.2	01	56.017	51 B42	51900	52.792	54275	56017
		0.8	0.1	0.1	55.233	53.033	53100	53.733	54400	55233
SUM					165800	1415.00	141600	145700	155100	165¢.00

T	M	W1	W2	W3	SPTIEDO	EDDISPT	S $[1]$	$\mathbf{S}[2]$	S[3]	\$[4]
28	8	01	0.1	08	22.542	20617	20625	20867	21650	22,542
		01	0.2	07	28.242	24417	24425	24867	26450	28242
		01	03	0.6	33942	28217	28.225	28867	31250	33942
		0.1	04	05	39642	32017	32025	32,867	36050	39642
		01	0.5	04	45.342	35817	35825	36.867	40850	45.342
		01	0.6	03	51042	35617	39625	40867	45650	51.042
		0.1	07	0.2	55.742	43417	43.425	44867	50450	56.742
		0.1	08	01	62.442	47.217	47.225	48.867	55250	62442
		02	01	0.7	27.383	25433	25450	25.733	26500	27.383
		02	02	06	33.083	29.233	29250	29.733	31.300	33083
		0.2	0.3	05	38783	33033	33050	33733	36.100	38783
		02	04	0.4	44483	36833	36850	37733	40.900	44.483
		02	05	03	50.183	40633	40650	41.733	45.703	50.183
		0.2	06	0.2	55883	44433	44450	45739	50.500	55883
		02	0.7	0.1	51.583	48233	48250	49733	55.300	61.583
		03	0.1	06	32225	30.250	30275	30.600	31.350	32225
		03	02	05	37.925	34050	34.075	34600	36.150	37925
		03	03	04	43625	37850	37875	38.600	40.950	43625
		0.3	0.4	03	49325	41650	41675	42.600	45.750	49.325
		0.3	0.5	02	55025	45450	45475	46.600	50.550	55.025
		03	0.6	01	60.725	49250	49275	50600	55350	60.725
		04	0.1	05	37067	35067	35.100	35.467	36.200	37067
		04	02	0.4	42767	38.867	38.900	39.467	41.000	42767
		04	03	0.3	48467	42.667	42700	43467	45800	48467
		0.4	04	02	54167	46.467	46500	47.467	50,600	54.967
		04	05	0.1	59867	50.267	50300	51.467	55400	59867
		05	01	04	41908	39883	39.925	40333	41.050	41908
		05	02	03	47.508	43683	43725	44333	45850	47.608
		05	03	02	53308	47.483	47.525	48333	50.650	53.30 B
		05	04	01	59008	51.293	51,325	52.333	55450	59008
		06	01	D3	46.750	44.700	44750	45200	45900	46750
		06	0.2	0.2	52450	48500	42550	49.200	50.700	52.460
		06	03	0.1	58150	52.300	52350	53200	55500	58150
		07	01	02	59592	49517	49.575	50067	50.750	51592
		07	02	01	57.292	53317	53.375	54.067	55550	57.292
		08	0.1	01	56.433	54333	54400	54.933	55600	56433
		SUM			1697.00	1465.00	146700	1496.00	159000	1697 D0

00 çs	0087c！	00 ¢らtb	00．1001	0000．0．	005595	W 1 S				
Eee \dagger ¢	009 Eg	¢¢8＇Zg	00125	Eco ${ }^{\circ}$	EとEV気	1.0	10	80		
2PDG9	00e＇§s	L18＇19	52106	49965	2togs	$1{ }^{\prime} 0$	20	10		
2500s	002 6t	$\angle 150$	$928<6$	2920 20	2 bOOS	20	10	10		
OSLSg	OOL ES	00809	OSE＇6\％	008＇6 ${ }^{\text {b }}$	OSLS 5	10	E＇0	90		
OStos	000＇6p	$00 c^{\circ} \mathrm{L}$	OSt $\mathrm{gr}^{\text {b }}$	00\％ 9	OSLOS	20	2 D	90		
c5 35	006＇t	00でか	DSG Et	009＇cp	OGL＇Gb	$\varepsilon 0$	10	90		
B5t 98	006＇z9	¢ 816 b	ct6 $2 t$	Ec6 L°	89t 95	10	$\square 0$	90		
85\％し¢	008＇8 ${ }^{\text {d }}$	¢Bt 9\％	St0 5b			20	E0	90		
89t\％	002 \ddagger	EBL Et	54t Cb	Ecl＇zo	8St 9 b	E0	20	90		
BSt it	0090 t	¢68 68	GL2 68	$\varepsilon \varepsilon 268$	85t \downarrow	$\forall 0$	L＇0	90		
29145	00428	292\％	009 gb	49590	491．4s	10	$G 0$	$\checkmark 0$		
L91＇2G	00985	29\％ 5 ¢	002 E\％	2包包	291．2s	zo	± 0	¢0		
29314	009 tt	191＇zo	00800	2920p	4914	\＆＇0	$\varepsilon 0$	\square^{0}		
2912\％	00v＇0t	19885	006 LE	49828	291＇2\％	$\bigcirc 0$	z0	$\checkmark 0$		
29128	00E 98	L9598	000 98	296＇s¢	29128	50	10	± 0		
54825	009 己s	052\％	czz sb	00256	SLB LS	10	90	$8 \cdot 0$		
ct8 $¢ 5$	00t 8 t	OStoto	çe zi	00E て \dagger	528 Z	z＇0	¢0	80		
ç8 $2 ⿰$	00E $\dagger t$	OG5＇レ\％	çt＇6¢	00t ¢ ¢	S 28 Lt	80	$\forall 0$	\＆＇0		
G28 Z	00 Ot	$098{ }^{\circ} \mathrm{LE}$	SCs＇98	00G 98	S 28 Z	± 0	$\varepsilon \cdot 0$	80		
GLa 2 E	001．98	OS5゙ビ		009 EE	GL8 28	90	20	80		
GL8＇z8	000 乙	osでィ	52208	0020	GL8 2 E	90	10	8%		
¢69＇89	00 ZS	EEC． 97	0捾＇も	¢ ¢＇¢	¢ \％\％	10	\angle－	20		
ERS 的	00\％＇6\％	cebst	OG6 06	عc6 6 ¢	E8s＇¢5	2＇0	90	20		
Egs 8	001 \＄	cel Ob	OGO EE	ع¢0 8 㫜	Esc＇or	$8 \cdot 0$	c＇0	20		
EGS ¢ 6	000＇00	cers 98	QSI SE	CE！SE	Ess＇Er	50	$\checkmark 0$	20		
EB5 疑	OOG＇GE	$\varepsilon \varepsilon G \varepsilon \varepsilon$	OCZ ZE	とこどてく	ERG 8 E	50	$\varepsilon 0$	20		
$\varepsilon \in 9^{\circ} \mathrm{E}$ ¢	00818	$\varepsilon \subset Z 0 ¢$	OSE 62	£ce＇6z	CSS EE	90	20	z0		
885 87	D0， 22	¢E6 9Z	65t9\％	CEv＇9z	E8G 82	$\angle 0$	10	20		
Z62 69	D01 29	21290	GLt 2 p	$29 t 2 t$	262 65	＋0	80	10		
262 kG	000 旪	くけで	GLG 6E	29568	262 b	20	10	10		
Z6Z 68	0068	くLV6	S 299 S	299 ge	と放60	$\varepsilon 6$	90	10		
て6Z 㖇	008＇ts	Lt89	GLLEE	1928 E	てEz	¢0	50	10		
Z62 6E	00258	L19 Z	G28 0e	19806	26Z＇68	90	$\bigcirc 0$	10		
て6でにく	00915	ぐで6Z	9L6 2 C	19612	こ6で切	90	$\varepsilon 0$	10		
て6で 62	OOSLZ	41658	9LO 9z	290 cz	Z62＇62	10	20	10		
26Z +2	DOF＇¢	119 zz	Sくlでて	19187	26でもて	80	10	1.0	¢	62
［t］	［ह］S	［2］s	［l］s	1 dSTO	00．jids	SM	2M	LA	W	1

00 9691	00\％6051	$00 ¢ \underline{y c}$	000581	00＇6さを4	0096191．	WnS				
	00829	¢ ¢ ${ }^{\text {cis }}$	00808	¢ELOG	EEL ¢ ${ }^{\text {c }}$	10	＇0	80		
492．Es	GZOZS	2ts $0 ¢$	OSで的	Z6L 6	L9185	10	20	20		
496．60	g2t 9b	てtt 20	099 9p	26G 9b	2968	20	＇0	$\angle 0$		
00t oc	05t5	0\％\％＇大	002 $2 t$	059 t	00009	L＇0	EO	90		
00965	058 Lb	OSc＇9t	0015	OGO 5	009＇6力	20	C0	90		
008 \＄	056	OSZ Et	005 Zt	OGVても	008 to	E0	10	90		
¢ \％O＇S	GLtic	BSE $\square^{\text {b }}$	0st＇9b	801 9b	EEOSg	\％	\checkmark	G 0		
£ C＇ $0 ¢$	SLC＇Lb	8SZ 5＊	OSG＇ t ¢	$8058 t$	Ece $\mathrm{DF}^{\text {c }}$	2＇0	¢0	50		
¢¢t ¢b	G 19 ¢ ¢	651で	09600	806.06	\＆とb＇sb	E 0	zo	90		
¢c9 0	GLCE 6	Ect 68	OSE 88		Ecgot	$\rightarrow 0$	10	g＇0		
499 cc	002\％	29220	009%	L99 pt	499＇cg	1.0	50	V＇0		
498＇09	00c：2t	L9！tr	000＇で	296 し	$\angle 9809$	20	$\checkmark 0$	$\square D^{\circ}$		
L90＇9\％	00\％$¢ t$	290 lb	001＇6E	49868	2909\％	8＇0	80	$\square 0$		
492 it	00 S 6	296＇LE	00898	L92＇9s	29216	± 0	20	＋0		
LSt゙9s	009 GE	19806	002＇VE	L91 08	49b＇9§	G0	10	\pm－0		
DOE 95	S7609	GLI 9b	0so＇sp	czo et	00 e 9	1＇0	90	E0		
00915	92002	GL0 ¢b	OSt or	9Zt＇ob	00915	20	90	E®		
002＇90	çl $\square^{\text {b }}$	SL6＇60	098＇28	gzg 28	002＇90	80	$\checkmark 0$	$\varepsilon 0$		
OOC＇L	scze6E	9 289	OGZ $¢ ¢$	cze se	006＇L	¢ D	80	80		
00128	GZEsE	GLL＇E¢	059 Ze	宛g＇tE	001 28	90	z＇0	$\varepsilon \cdot 0$		
008 z\％	ço＇te	SL9 0E	DCODO	czo 0e	00¢＇z	90	10	E0		
¢¢6． 99	0g9 09	EROGO	005 26	と号じ	¢ ¢ $9 ¢$	10	20	20		
Eとt＇zs	0SL 9t	CEG＇LO	006 㫙	cese ${ }^{\text {es }}$	£ $¢ 1$ Z¢	20	9.0	2＇0		
Ece $2 \square$	098 で	¢68 88	00 Ec	$\varepsilon 8298$	¢¢¢ \angle	80	90	20		
Ecg z	0568	cetcs	002 Ec	£89＇¢E	E¢S ${ }^{\text {¢ }}$	± 0	$\square{ }^{\circ}$	20		
¢ 2 L $2 ¢$	OSO SE	C89＇Z8	001 LE	E80＇LE	ECLLE	90	80	zo		
とこどて¢	OGLIE	¢8962	OOS 8 E	Cspor	E¢G 78	90	z＇0	20		
をとし＇的	OGZ 2 L	Cut 97	006 sz	E88 9z	¢¢1 $\mathrm{EZ}^{\text {c }}$	20	${ }^{\prime} 0$	20		
L9G 29	SLéOS	266\％	056＇5E	てセ6 6E	299＇25	10	80	10		
494． 29	SLt 96	2680	DSE LE	2ヵ¢2E	L926 6	$2 \cdot 0$	40	10		
L96＇Lt	GLG Z t	乙 62.2 C	OGLtE	でで吠	49625	¢0	90	10		
L91Et	\＄2968	269\％	OGI＇RE	でI てe	4948	70	50	1.0		
L9E明		Z65＊	09962	2t5 6\％	L9888	50	± 0	10		
L9S $8 ¢$	92808	26t88	0\％6＇92	2ち69\％	499＇8t	90	E0	10		
29282		乙be gl	0sc＇oz	でさ ちて	294＇82	20	20	10		
$\underline{4968}$	G 20 Cl	Z6Z ZZ	OFL＇LZ	こせさして	296＇zz	80	10	10	\dagger	62
tis	［ $¢$ ］	［ 7 ］．	［L］	1dS／403	GOJj1dS	EM	ZM	LM	w	1

T	M ${ }^{\text {l }}$	W1	W2	W3	SPTIEDD	EDDJSPT	S[1]	S[2]	S[3]	ST4]
29	6	01	0.1	0.8	24.617	22.592	22.600	22.542	23725	24617
		0.1	0.2	07	29817	25.792	25.806	26442	28.025	25.817
		0.1	03	06	35017	28.992	29000	29942	32325	35017
		0.1	04	0.5	40217	32.192	32.200	33442	36625	40217
		0.1	0.5	0.4	45.417	35392	35400	36942	40925	45417
		01	06	0.3	50617	38.592	36600	40.442	45225	50.617
		0.1	07	0.2	55817	41.792	41.800	43942	49.525	55817
		0.1	08	01	61017	44.902	45000	47.442	53825	69017
		0.2	0.1	07	29.033	26.983	27 E00	27.363	28150	29.033
		02	0.2	0.6	34.233	30183	30200	30883	32.450	34233
		02	03	0.5	39433	33383	33400	34.383	36750	39433
		0.2	04	0.4	44633	36.583	36800	37.883	41050	44.633
		0.2	0.5	03	49833	39.783	39800	41383	45350	49833
		0.2	0.6	02	55033	42983	43.000	44883	49650	55.033
		0.2	07	01	60.233	46.183	46.260	48.363	53950	60233
		03	01	06	33.450	31.375	31.400	31.825	32575	33450
		03	02	0.5	38.550	34.575	34.600	35325	36875	38650
		03	0.3	0.5	43.850	37.775	37.800	38825	41.175	43.850
		03	04	03	49.050	40.975	41.000	42.325	45475	49050
		03	06	02	54250	44.175	44200	45.825	49775	54.250
		03	06	0.1	59450	47375	47.400	49325	54.075	59.450
		04	01	0.5	37.867	35767	35800	36267	37.000	37.867
		04	02	04	43.067	38.967	39.000	39767	41.300	43.067
		0.4	03	¢3	48.267	42.167	42200	43267	45800	48267
		04	0.4	$\bigcirc 2$	53467	45367	45400	46.767	49900	53.467
		04	05	0.1	58.667	48567	48.600	50267	54.200	58.667
		0.5	01	04	42.283	4 1 158	40200	40,708	41425	42.283
		0.5	02	03	47.493	43358	43.400	44.208	45725	47.483
		0.5	03	02	52683	46558	46600	47.708	50025	52.683
		0.5	04	01	57883	49758	49800	51.208	54325	57.883
		0.6	01	03	46700	44550	44600	45.150	45850	46700
		06	62	0.2	51900	47750	47.800	48650	50150	51.900
		06	0.3	01	57100	50.950	51000	52150	54.450	57.100
		0.7	0.1	02	51117	48942	49000	49.592	50275	51.117
		0.7	62	0.1	56.317	52142	52.200	53092	54575	56.317
		08	01	0.1	55533	53333	53.400	54.933	54700	55.533
इण़M					169400	1451.00	145200	149300	1597.00	1694 \%

1	M	W1	W2	W3	SPTJED	EDDISPT	S[1]	S[2]	S[3]	S[4]
29	7	0.1	0.1	08	24942	23017	23025	23.267	24050	24.942
		01	0.2	0.7	30342	26517	26.525	26.967	28550	30342
		01	03	0.6	35.742	30.017	30025	30667	33050	35742
		0.1	04	05	41142	33.517	33525	34367	37.550	41142
		0.1	0.5	04	46542	37.017	37.025	38.067	42050	46.542
		0.1	06	03	51942	40.517	40.625	41.767	46550	51.942
		0.1	0.7	02	57342	44.017	44.025	45.467	51050	57.342
		01	08	01	62.742	47.517	47525	49.167	55550	62742
		0.2	01	07	29483	27.533	27550	27.433	28600	29.483
		02	02	06	34.883	31.033	31050	31.533	33100	34883
		02	03	05	40283	34.533	34550	35.233	37600	40.283
		02	04	04	45.683	38033	38050	38.933	42.100	45683
		0.2	0.5	03	51.883	41.533	41 550	42633	46600	51.083
		02	0.6	0.2	56483	45.033	45 CSO	46333	51.100	56483
		0.2	0.7	0.1	\$1.883	48533	48550	50.033	55600	61883
		0.3	0.1	$00 \cdot$	34.025	32050	32075	32.400	33150	34 D 25
		0.3	0.2	05	39.425	35550	35575	36500	37.650	39425
		03	03	0.4	44825	39050	39075	39800	42.150	44825
		03	04	D 3	50225	42.550	42575	43500	45650	50.225
		03	05	02	55.625	46.050	46075	47200	51.150	55.625
		03	06	0.1	61.025	49.550	49575	50900	55.650	61.025
		0.4	01	0.5	38567	36567	36600	36967	37.700	38.567
		0.4	02	0.4	43967	40067	40100	40.667	42.200	43967
		04	03	0.3	49367	43567	43.600	44367	46.700	49.367
		04	04	0.2	54.767	47067	47100	48.067	51.200	54767
		04	0.5	0.1	60.167	50567	50.600	51767	55.700	60167
		05	0.1	0.4	43108	41.083	41125	41533	42250	43.108
		0.5	02	0.3	48.508	44.583	44625	45233	41950	48508
		05	0.3	02	53.908	48083	48125	48.933	51.250	53908
		0.5	04	0.1	59.308	51583	51625	52.633	55750	59308
		06	0.1	0.3	47650	45600	45650	45100	46800	47650
		06	0.2	0.2	53050	49100	49.150	49800	51.300	53.050
		0.6	0.3	0.1	58450	52600	52.650	53500	55.8 .90	58450
		0.7	0.1	02	52.192	50117	50175	50667	51.350	521192
		0.7	D 2	0.1	57.592	53617	53675	54367	55850	57.592
		08	01	01	56.733	54633	54.700	55233	55.900	56.733
SUM					173300	1502.00	150300	1532.00	1626.00	173300

T	M	W/1	W2	W3	SPTPEDO	EDDISPT	S[1]	S[2]	S[3]	S[4]
29	8	0.1	01	08	25.267	23442	23.450	23.592	24375	25.267
		0.1	02	07	30.869	27242	27.250	27.492	29.075	30867
		01	0.3	06	36.467	31.042	31.050	31392	33.775	36467
		01	0.4	0.5	42.067	34.842	34.850	35.292	38.475	42067
		01	0.5	0.4	47,667	38.642	36650	39.192	43175	47.667
		01	06	0.3	53.267	42.442	42.450	43.092	47875	53.267
		0.1	07	0.2	58867	46.242	46.250	46992	52.575	58867
		01	08	01	54467	50042	50050	50892	57.275	64467
		0.2	01	07	29.933	28.083	28.190	28.288	29050	29933
		02	02	06	35533	31.883	31.900	32183	33750	35533
		02	03	0.5	41,133	35683	35700	36.083	38.450	41.133
		02	04	04	46733	39483	39500	39.983	43150	46733
		02	05	0.3	52333	43.283	43300	43883	47850	52.333
		02	06	02	57.933	47.083	47.100	47783	52550	57.933
		02	07	01	63.593	50.883	50.900	51683	\$7.250	63533
		0.3	0.1	06	34.600	32.725	32.750	32975	33.725	34.600
		03	02	05	40200	36.525	36.550	36875	38425	40200
		03	03	0.4	45800	40.325	40.350	40.775	43125	45.801
		0.3	04	03	51.400	44.125	44.150	44.675	47825	51.400
		0.3	0.5	02	57000	47.925	47.950	48575	52.525	57.000
		0.3	0.6	01	62.600	51.725	51.750	52475	57.225	62600
		0.4	0.1	05	39.267	37.367	37.400	37667	38.400	39.267
		04	0.2	04	44.867	41.167	41.200	41567	43100	44867
		0.4	03	03	50.467	44.967	45000	45467	47.800	50467
		0.4	04	0.2	56.067	48.767	48800	49367	52.500	56.067
		04	05	0.1	61.667	52567	52600	53.267	57200	61.667
		0.5	0.1	04	43933	4200 H	42.050	42.358	43075	43933
		05	02	03	49.533	45808	45850	46258	47.775	49533
		05	03	02	55133	49608	49650	50.158	52475	55133
		05	04	01	60733	53408	53.450	54058	57175	60.733
		06	D 1	03	48.600	46650	46700	47.050	47750	48.600
		06	D 2	02	5-4.200	50450	50500	50950	52450	54.200
		06	D 3	01	59800	54259	54300	54.850	57150	59800
		07	01	02	53.267	51292	51350	51.742	52425	53267
		07	02	01	58367	55.092	55150	55642	57.125	58867
		08	01	0.1	57.933	55.933	56000	56433	57100	57933
SUW					177206	1553.00	155400	1571 D0	168500	177200

T	H	W1	W2	W3	SPTIEDD	EDPISPT	S[1]	S[2]	\$[3]	S[4]
30	4	01	01	08	25392	12.983	12975	12.942	24.500	25392
		W \downarrow	02	0.7	29292	15283	15475	15442	27500	29292
		W1	03	0.6	33192	17583	17.975	17.942	30500	33.192
		01	0.4	0.5	37092	19883	20.475	20.442	33500	37.092
		01	95	다 4	40992	22183	22975	22.942	36500	40.992
		01	46	03	44.892	24483	25475	25442	39500	44892
		01	6.7	안	48.792	26783	27975	27.942	42500	48792
		01	08	0.1	52.692	29083	30475	30442	45500	52692
		0.2	0.1	07	28883	17.667	17.450	17.383	28000	28883
		02	0.2	0.6	32783	19967	19.950	19883	31000	32.783
		0.2	0.3	0.5	36683	22 267	22.450	22.383	34000	36.663
		02	04	0.4	40583	24567	24950	24883	37000	40583
		62	05	0.3	44483	26867	27450	27.383	40600	44483
		02	0.6	0.2	48383	29167	29.950	29883	43.0100	48383
		0.2	07	01	52283	31.467	32.450	32383	46.000	52.2 BP
		03	01	06	32375	22.350	21925	21825	31.500	32.375
		03	02	0.5	\$6 275	24650	24425	24.325	34.500	36275
		0.3	0.3	04	40.175	26.950	26.925	26825	37.500	40.175
		03	0.4	03	44075	29.250	29425	29325	40500	44075
		03	0.5	0.2	47975	31550	31.925	31.825	43500	47975
		0.3	0.6	01	51 B75	33.850	34425	34325	46500	51.875
		0.4	01	05	35867	27.033	26.400	26267	35000	35867
		04	02	04	39.767	29333	28900	28.767	38000	39767
		0.4	03	03	43.6施	31633	31400	31.267	41.000	43667
		04	04	0.2	47.567	33933	33900	33.767	44.000	47567
		04	05	01	51.467	36233	36400	36.267	47.000	51467
		0.5	01	04	39359	31.717	30.875	30708	38500	39358
		05	0.2	0.3	43258	34017	33.375	33208	41.500	43.258
		05	0.3	0.2	47158	36317	35.875	35.708	44.500	47.158
		¢ 5	0.4	0.1	51.058	38617	38 375	38208	47500	51.058
		0.6	01	03	42850	36400	35350	35150	42.000	42850
		66	02	0.2	46750	38700	37.850	37.650	45000	46.750
		06	0.3	0.1	56650	41000	40.350	40.150	48000	50.650
		0.7	01	02	46342	41.003	39825	39592	45500	46342
		0.7	02	01	50.242	43363	42325	42.092	48500	50242
		0.8	01	01	49833	45767	44300	44033	49000	49833
SUM					1535.00	105400	1053.00	1949.06	1428 00	1535.00

T	中 10	W1	W2	W3	SPT/EDO	EDDISPT	S[1]	S[2]	S[3]	5[4]
30	5	01	01	08	25700	13.392	13275	13.242	24808	2.5.700
		01	0.2	0.7	29800	15.992	15.975	15942	28008	29800
		01	0.3	06	33.960	18592	18.675	18642	31208	33900
		D 1	D 4	05	38000	21192	21375	21.342	34.408	38.000
		01	0.5	D 4	42100	23792	24075	24.042	37608	42.100
		0.1	06	03	45200	26.392	26775	26742	40808	46.200
		0.1	07	02	50300	28992	29475	29442	44.008	50.300
		01	08	0.1	54400	31592	32175	32.142	47.208	54400
		02	01	07	29.300	18.183	17850	17783	28417	29.300
		02	02	06	3.3 .400	20.783	20550	20483	31.617	33400
		02	0.3	05	37500	23383	23250	23.183	34.817	37500
		02	04	04	41600	25983	25.950	25883	38017	41600
		02	05	03	45.700	28583	28650	28583	41217	45.700
		02	06	0.2	49.800	31183	31.350	31283	44.417	49800
		02	0.7	01	53960	33783	34050	33983	47.617	53900
		03	0.1	06	32900	22975	22425	22.325	32025	32.900
		03	02	0.5	37050	25.575	25125	25.025	35.225	37.000
		03	03	04	41.100	28.175	27.825	27.725	38.425	41.100
		03	0.4	03	45200	30.775	30.525	30425	41.625	45200
		03	05	0.2	49300	33.375	33225	33125	44825	49.300
		0.3	D6	0.1	53400	35975	35.925	35825	48025	53406
		04	D 1	05	36.505	27.767	27.000	26867	35.633	36500
-		04	02	04	40606	30367	29700	29567	38.833	40600
		04	03	03	44700	32967	32400	32.267	42.033	44700
		04	04	b 2	48800	35567	35100	34,967	45233	48800
		04	05	01	52.900	38167	37800	37667	48433	52900
		0.5	01	0.4	40100	32558	31575	31408	39.242	40.100
		05	02	03	44200	35.158	34.275	34108	42.442	44200
		05	03	0.2	48300	37756	36975	36808	45642	48300
		0.5	04	0.1	52400	40358	39675	39508	48842	52.400
		06	01	0.3	43700	37350	36150	35950	42850	43700
		06	02	02	47 BOO	39950	38850	38.650	46050	47.800
		06	03	01	51900	42550	41550	41350	49250	51900
		07	01	02	47.300	42.142	40725	40492	46458	47300
		07	02	01	51.400	44,742	43125	43192	49658	51.400
		08	01	0.1	50900	46.933	45300	45.033	50067	50900
SUM					1572.00	110300	1089.00	108500	146500	157200

T	市	W\%	W2	W/3 ${ }^{-1}$	SPTJEDD	EDDJSPT	S[4]	5[2]	S[3]	S[4]
30	6	01	01	03	26008	13800	13575	13542	25117	26008
		01	0.2	07	30308	16700	16475	16442	23517	30.309
		01	03	06	34608	19600	19.375	19342	$31 \$ 17$	34608
		01	04	0.5	38.908	22.500	22.275	22242	35317	38908
		01	05	04	43208	25400	25175	25.142	38717	43208
		01	06	03	47508	28300	28075	28042	42117	47508
		01	0.7	02	51808	31200	30.975	30942	45.517	51.808
		0.1	08	01	56,108	34100	33875	33842	48917	56108
		02	01	07	29717	18700	18250	18.183	28833	29717
		02	02	06	34017	21600	21150	21083	32233	34017
		02	© 3	05	38317	24500	24050	23983	35633	38317
		02	04	04	42617	27.400	26950	26883	39033	42.617
		02	05	03	46.917	30300	29850	29.783	42.433	46917
		02	06	02	51.217	33200	32.750	32683	45833	51217
		02	07	01	$55 \$ 17$	36100	35650	35.583	49233	\$5 517
		03	01	06	33425	23600	22925	22.825	32550	33425
		03	02	45	37725	26500	25825	25.725	35950	37725
		$\square 3$	03	0.4	42.025	29.400	28.72 .5	28.525	39350	42.025
		03	04	03	46325	32300	31625	31525	42750	46.325
		03	05	02	50625	35200	34525	34.425	46150	50525
		03	06	¢ 1	\$4.925	38.100	37.425	\$7.325	$49 \$ 50$	54.925
		04	01	05	37133	28500	27600	27467	36267	37133
		04	02	04	41433	31400	30500	30367	39667	41433
		04	0.3	03	45733	34300	33400	33267	43067	45733
		04	04	02	50033	37200	36300	36167	45467	50033
		04	05	01	54333	40.100	39200	39.067	49.867	54.333
		05	01	04	40842	33400	32275	32.108	39.983	40842
		0.5	0.2	0.3	45142	36350	35175	35008	43383	45142
		05	03	02	49442	39200	38075	37.908	46.783	49.442
		05	04	01	53742	42.100	40975	40,808	50.183	53.742
		06	01	03	44550	38300	36950	36750	43700	4455 D
		06	02	02	48850	41200	39850	39650	47100	48850
		06	03	0.1	53150	44100	42750	42550	50500	53150
		07	01	0.2	48.258	43200	41.625	41.392	47.417	48.258
		07	02	01	52558	46100	44525	44292	50.817	5255 B
		08	01	01	51967	48100	46300	46033	51133	51967
		SUM			160900	115200	112500	7121.00	150200	160900

（k） 889	00925	00＇LIZL		0160971	008891	1403				
001 \％9	492 ES	E¢Z Et	0059	cetos	001 \＄9	10	10	日 0		
¢LB \％	ES1 ES	て的9\％	SZ1 $4 t$	二比部	52日 75	10	CO	10		
G1L＇OS	を¢E67	ごEECV	¢ 29 ¢	LLE＇g\％	GLLO	乙 0	10	$\angle 0$		
OF9＇G9	000 \＆	059＇¢	0stct	DOE＇ 2	啲奴	10	ED	90		
$0 \mathrm{Ob}^{6} 0$	0026 6	0 950	092	002 EV	05605	20	20	90		
OSZ＇90	OOb＇9\％	Oj¢ 98	OSL＇9E	DOでor	0¢て 96	¢0	10	90		
Sで 95	298 25	90で比	SLE＇tr	ESG＇sy	¢てか＇9s	10	＋0	50		
GZLTG	290＇如	9040\％	g 280	EBO Ct		20	$\varepsilon 0$	co		
SZO゙ち	L9Z St	80でしE	SLE LE	E89 8E	sZ0＇2t	£＇0	z＇0	C00		
GくごでV	く的じ	901．${ }^{\text {c }}$	G2息EE	c80 98	9でです	50	10	50		
00Z＇25	ESLITG	29日＇ご	000%	4068	00でし9	1.0	它口	－0		
009 29	EE68\％	19C68	00950	2960\％	005 ZS	200	50	to		
008 26	E¢F＇G\％	498 C8	00098	29698	0008	$E 0$	EO	to		
	を䋁しト	49E CE	005 乙¢	L9\％¢	001．8t	10	20	to		
008＇88	ESG2E	298＇枵	00062	29662	00ヶ88	50	10	to		
5 26.6	00978	c75 b	ç96t	OSE 乙	S16 29	10	90	E＇0		
GLZES	00 P 8 8	960 8E	GZ゙＇8¢	098＇88	GLてES	こ＇0	50	E0		
CHS 日b	000 Gb	G29 に	GZ9＇ロ	098＇5	GLG＇8t	$8 \cdot 0$	10	E0		
GLBCV	00でしt	920 L¢	SZ゙＇LE	Of8 LE	¢L8E	$\dagger 0$	ED	¢ 0		
GLI＇6E	OOv＇ 2 \％	$9 せ 5 ゙ L Z ~$	¢たら2己	O5E 日	「ご6E	50	20	$\varepsilon 0$		
515゙ヒく	009 EC	920 tZ	Gで㲸	OSS＇tz	Gttri	90	10	\％ 0		
OSE8S	19t ZS	ESL＇0t	OGE OV	EEL゙OV	05189	10	6	己		
090＇69	4998	¢89 58	95198	EEでくを	950 ${ }^{\text {c }}$	20	90	20		
0¢¢＇6も	299＇明	嗾し館	加でと¢	EELを¢	QSE＇6\％	80	50	20		
099 tb	190 l\％	68962	0SL62	Ecziot	OS9＇㠸	40	\bigcirc	$\checkmark 0$		
096 的	$492 \angle E$	E8t 92	OSC 92	E¢ 192	05668	50	E0	20		
OSZ 58	19ヶ¢ 8	c89＇Z2	0GL＇Zも	とぐとこ	0¢Z ¢ ¢	90	＜0	20		
DSG DE	49962	ERI 6L	0SC＇6l	EEL＇6L	OGG＇0E	2.0	10	20		
GEG＇69	EEEGS	Zロ官88	\＄29＇的	くりト它	52965	10	80	10		
SZ8 15	EEc\％\％	てbe SE	GLE＇GE	LIg＇SE	9て8＇Vi	こ＇0	20	10		
çi 99	¢CL $\dagger \square$	でぐ1E	G18＇L	L17E	¢くし OS	\％ 0	90	10		
cこt＇Gb	を边0t	でを\％8	SLE 日Z	く19白己	らでらけ	$t 0$	90	10		
GLL QF	をとし 2	でロ゙ャZ	S 18 ヤC	LlIGZ	G240\％	90	＋0	10		
S6098	£EE EE	こだにく	GLEして	L19＊V	G20＇9E	90	C－0	$1 \cdot 0$		
GRE＇LE	E¢S＇6U	て切くも	SL8＇2l	さいじ8．	GくE＇I\＆	40	20	10		
979 ¢Z	c¢ 1 ç	でE $\ddagger 1$	SLE゙も1	119゙っ！	92992	80	10	$1 \cdot 0$	它	tr
［b］5	［を］S	［z］S	ไj］	EdS／003	－0．311 15	C．MA	CM	Wh	W	1

00 9t9	006851	00\％6915	00＇¢ ¢	Do＇LOZ	009091	Wก15				
عEO＇¢S	00でてS	CELく	0075	492 68	ceots	10	10	$\mathrm{a}^{\prime} 0$		
LLE¢S	966＇19	265\％${ }^{\text {\％}}$	928 gr	89t $2 \boldsymbol{P}$	LL／EG	10	20	20		
LLC 6b	GLe＇eb		¢zg＇z	6sで比	4LC 6	20	10	40		
OOt ES	DGLIG	OG0＇b	OGZ＇t	OGS＇g	00\％ 6	10	¢0	90		
0066	OS1 8t	0Gษ゙Dt	0901%	Ostiz	$006{ }^{\circ} 6$	zo	20	90		
00ヶ5 5	DSS bt	05928	958．28	$0 ¢ 0 ゙ 68$	00\％9\％	$\varepsilon 0$	5	90		
¢80 cs	GZG＇LG	80G＇で	929\％	2re ¢t	¢00 95	10	$\bigcirc 0$	50		
¢ $8 \mathrm{C}^{\prime} 05$	gz6＇2b	808.6ε	92060	2109 $0 t$	ces 05	20	EO	50		
c60＇9b	gzitb	801＇98	9LZ 9¢	でも $2 ¢$	¢00 96	¢0	20	90		
Ess＇し＞	getob	806.78	940 EE	でで坞	\＆\％¢ 1	¢0	10	50		
292＇gs	00¢19	2960 P	001 15	ع¢0 で	＜9259	10	Sb	$\square 0$		
292＇Lg	002\％	29L2 2	006 LE		202 Ls	20	$\square 0$	± 0		
2949p	OOL tot	295゙比	D02 tE	EE9 SE	29290	$\varepsilon 0$	$\varepsilon 0$	$\checkmark 0$		
292＇zr	OOS Ot	29\％ 12	DOS LE	と¢っても	L9Z $2 t$	± 0	20	± 0		
292\％	00698	4918 L	ODE 日C	EEZ 6Z	L9E2E	50	10	$\square 0$		
Osios	910＇LS	9 SV^{-68}	9ZS 6e	9ZZ Ot	OSt ${ }^{\text {cos }}$	10	90	80		
oss ${ }^{\circ}$	ctrit	$\mathrm{Gz2} 9 \mathrm{E}$	¢ZE＇¢	S 2012ε	OG5＇19	\％ 0	90	\％0		
0ctit	928Et	Szo ce	szlec	SZ8 \＆	Ost2t	$\varepsilon 0$	$\checkmark 0$	E0		
0967	S $\angle Z Z^{\circ} 0 \times$	978 6z	9z66z	9Z90¢	096 Zt	$\% 0$	E\％O	co		
OSb 8 ¢	S 29.98	cza＇9z	GZE＇92	$9 Z 0^{\circ} \mathrm{Cz}$	$0 \mathrm{~Gb} \mathrm{~B}^{\text {c }}$	G＇0	20	E＇0		
OS6 $¢ ⿷$	SLOEE	ç゙もとて	sZs＇$¢$	szでも	OS6 68	90	10	E 0		
EEL $2 S$	OS8 OS	E88 26	$056 \angle \varepsilon$	21ヶ8¢	EEL 45	10	$\angle 0$	CO		
¢ ¢9 29	のらでぐ	E89－	OS $\angle \downarrow$ V	LVZ 5E	£ ¢9 乙c	20	90	Z 0		
とELB	0sget	EBt Le	DSS に	く10 ze	を¢1时	¢0	so	20		
£と9を\％	0500t	c8z＇gz	0¢8＇8Z	$48^{\prime} 88$	๕๕9＇\＆	$\checkmark{ }^{\circ}$	to	20		
ع¢1＇6E	05\％＇98	880＇sz	OS1＇g	419．sz	£ 2168	9.0	$\varepsilon \cdot 0$	20		
Eeg of	OSE ze	crs＇に	$00_{6} \mathrm{LC}$	ぐけで	Ec9 ⿺乚一C	90	20	20		
Ect 0	09\％ s_{2}	¢89\％	OGL Bt	LIZ 6b	Ect 0e	40	10	20		
21815	S29 0s	creme	SLE 98	80998	418 LS	10	80	10		
LE＇Eg	G20：\％	Zbles	GLL E¢	80ャ E E	LIEES	z0	10	10		
2188		で662	SL6 62	80208	2咟时	¢ 0	90	10		
LIE ${ }^{\text {b }}$	SZB＇6E	で292	SLL 92	$800 \angle Z$	LLE $\square^{\text {¢ }}$	± 0	90	10		
41968	sczige	でG ¢	SLG ¢z	20\％\＆	4 18 ＇ 6 ¢	g＇0	\square°	10		
LE Ge	¢ 29% ¢	で¢ ¢Z	GLE OZ	80908	Lど「㹸	90	\＆＇0	L＇0		
2180E	¢ $20 \% 68$	でった6	SLL＇L1	80 r 21	L18＇0¢	40	20	し0		
4 C 92	¢	でも6も	SL6 61	802＇pl	6LE9Z	80	10	10	L	DE
［p］	［E］S	［】］s	hls	1dsiog	OOP1／dS	EM	ZM	LM	W	1

[^0]: * Ihe best schedule with the minimum weighted function

[^1]: * The best schedule with the ninimum weighted function

