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Abstract

Most network applications such as pervasive computing, grid computing, P2P etc. can be viewed as

multi-agent systems which are open, anonymous and dynamic in nature. Due to such nature multi-

agent systems present potential threats in ensuring secured communication. One of the key feasible

ways to minimize threats is to evaluate the trust and reputation of the interacting agents. Many trust

models have done so, but they fail to properly evaluate trust when malicious agents behave in an

unpredictable way. Besides that they are also ineffective in providing quick response to a malicious

agent’s oscillating behavior, i.e., they are unable to assess the true nature of an opportunistic agent.

To cope with the strategically altering behavior this thesis presents a dynamic trust model called

SECTrust where we analyze the different factors related to the trust of an agent and then propose a

comprehensive model for evaluating trust. In our trust model we have considered various factors in

computing the trust of agents which includes recent trend, historical trend, sudden deviation of trust,

confidence factor and decay of trust. We have also tuned our trust model for the different parameters

that we have considered to get the best possible results. Simulations show that our model compared to

other existing models can effectively cope with the strategic behavioral change of an agent and at the

same time efficiently isolate the malicious ones. So, our trust model is more robust and effective in

preventing attacks from opportunistic malicious agents and can thus ensure secured communication

among the participating agents.
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Chapter 1

Introduction

Security and privacy have become critically important to society with the fast expansion of informa-

tion communication systems. The scope of associated challenges and applications are broadening

accordingly, leading to new requirements and approaches. Challenges arise as information systems

evolve into distributed systems that are open in the sense that they do not pre-identify a set of known

participants and are dynamic in a way that the participants change regularly, not just due to occa-

sional failures. Such systems include peer-to-peer networks, grid computing environments, ad hoc

networks, web services, pervasive computing spaces and multi-agent systems. Now, every security

system depends on trust in one form or another among the agents of the system. Trust issues influence

not only the specification of security policies but also the techniques needed to manage and imple-

ment security policies for systems. This trust is often evaluated through a trust model and as a result

researchers have long been devoting their efforts in devising threat resistance robust trust models.

1.1 Motivation

In a multi-agent system, agents interact with each other to achieve a definite goal that they cannot

achieve alone [15] and such systems include P2P [29], grid computing [9], the semantic web [5],

pervasive computing [26] and so on. Multi-agent Systems (MASs) are increasingly becoming popular

in carrying valuable and secured data over the network. Nevertheless, the open and dynamic nature

of MAS has made it a challenge for researchers to operate it in a secured environment for information

transaction. Malicious agents are always seeking ways of exploiting any existing weakness in the

network. This is where trust and reputation play a critical role in ensuring effective interactions among
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the participating agents [8,23]. Researchers have long been utilizing trust theory from social network

to construct trust models for effectively suppressing the malicious behavior of participating agents.

Trust issues have become more and more popular since traditional network security approaches such

as the use of fire-wall, access control and authorized certification cannot predict the agent’s behavior

from the viewpoint of trust.

Now most of the existing global trust models can successfully isolate malicious agents when the

agents behave in a predictable way. These models, however, suffer greatly when agents start to show

dynamic personality, i.e., when they start to behave in an unpredictable way. These models also fail

to adapt to quick change in agent’s behavior and as a result suffer when agents alter their activities

strategically. Moreover, some of the models show little effect in dealing with more complex attacks

such as dishonest or unfair rating and collusion.

With this research problem in mind, we propose a dynamic trust model named SECTrust which

can effectively detect sudden strategic alteration in malicious behavior. SECTrust considers variety

of factors in determining the trust of an agent such as recent and historical trend, decay of trust and

deviation in trust. We have also used a novel policy of utilizing exponential averaging function to

reduce storage overhead in computing the trust of agents.

1.2 Preliminaries

1.2.1 Agents

Philosophically an agent means an entity which is capable of doing action. However, the term ‘agent’

is difficult to define as agents are described as entities with attributes that are considered useful in a

particular domain. Different researchers have given different definitions about ‘agents’ and some of

these definitions are given below-

• “Most often, when people use the term ’agent’ they refer to an entity that functions continuously

and autonomously in an environment in which other processes take place and other agents

exist.”-(Shoham, 1993).

• “An agent is an entity that senses its environment and acts upon it”-(Russell, 1997).

• “The term agent is used to represent two orthogonal entities. The first is the agent’s abil-

ity for autonomous execution. The second is the agent’s ability to perform domain oriented
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reasoning.”-(the MuBot Agent).

• “Intelligent agents are software entities that carry out some set of operations on behalf of a user

or another program, with some degree of independence or autonomy, and in so doing, employ

some knowledge or representation of the user’s goals or desires.”-(the IBM Agent).

• “An autonomous agent is a system situated within and a part of an environment that senses that

environment and acts on it, in pursuit of its own agenda and so as to effect what it senses in the

future.”-(Franklin, Gasser, 1997).

• “An agent is a hardware or (more usually) a software-based computer system that enjoys the

following properties: autonomy - agents operate without the direct intervention of humans or

others, and have some kind of control over their actions and internal state; social ability - agents

interact with other agents (and possibly humans) via some kind of agent-communication lan-

guage; reactivity: agents perceive their environment and respond in a timely fashion to changes

that occur in it; pro-activeness: agents do not simply act in response to their environment, they

are able to exhibit goal-directed behavior by taking initiative.”- Wooldridge and Jennings (1995)

So, in brief we can say that an agent refers to an intelligent, autonomous entity which observes and

acts upon an environment and directs its activity towards achieving a defined goal. There are different

types of agents like-Mobile Agents (e.g. Voyager, Grasshopper), Learning Agents, Autonomous

Agents (e.g. robots), Planning Agents, Simulation agents, Distributed Agents and Software agents.

However, in our research work we are referring to only software agents i.e., agents that constitute of

computer programs or computer applications.

1.2.2 Multi-Agent Systems

A multi-agent system (MAS) is a loosely coupled network of software agents that interact to solve

problems that are beyond the individual capacities or knowledge of each agent [19]. In other words,

multi-agent systems are computational systems in which several agents interact or work together to

perform some set of tasks or satisfy some set of goals.

The main characteristics of MASs are [30]-

¦ Each agent has incomplete information or capabilities for solving the problem and, thus, has a

limited viewpoint.
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¦ There is no global control system.

¦ Data are decentralized.

¦ Computation is asynchronous.

Typically multi-agent systems research refers to software agents. However, the agents in a multi-

agent system could equally well be robots, humans or human teams. A multi-agent system may

even contain combined human-agent teams. Multi-agent systems can manifest self-organization and

complex behaviors even when the individual strategies of all their agents are simple.

The advantages [3] of using a multi-agent approach over a single agent or centralized approach

are:

• An MAS distributes computational resources and capabilities across a network of intercon-

nected agents, whereas a centralized system may be plagued by resource limitations, perfor-

mance bottlenecks, or critical failures. An MAS is decentralized and thus does not suffer from

the ”single point of failure” problem associated with centralized systems.

• An MAS allows for the interconnection and inter-operation of multiple existing legacy systems.

By building an agent wrapper around such systems, they can be incorporated into an agent

society.

• An MAS models problems in terms of autonomous interacting component-agents, which is

proving to be a more natural way of representing task allocation, team planning, user prefer-

ences, open environments, and so on.

• An MAS efficiently retrieves, filters, and globally coordinates information from sources that

are spatially distributed.

• An MAS enhances overall system performance, specifically along the dimensions of computa-

tional efficiency, reliability, extensibility, robustness, maintainability, responsiveness, flexibil-

ity, and reuse.

Multi-agent systems include a wide range of computer communication networks such as-

1. Peer-to-Peer Network

2. Grid computing environments
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3. MANETs

4. Internet Web services

5. Pervasive computing spaces

Applications of multi-agent research cover a variety of domains, including aircraft maintenance,

electronic book buying coalitions, military demining, wireless collaboration and communications,

military logistics planning, supply-chain management, joint mission planning, financial portfolio

management etc.

Figure 1.1: A simple illustration of multi-agent system.

1.2.3 Threats in Multi-Agent Systems

A multi-agent system is faced with numerous threats due to its open and dynamic nature. These threats

can severely affect the performance of multi-agent system. The most common types of threats [6]

encountered in an MAS are:

• Whitewashing attack: The attacker resets a poor reputation by rejoining the system with a

new identity. Systems that allow for easy change of identity and easy use of new pseudonyms

are vulnerable to this attacks.

• Sybil attack: The attacker creates multiple identities (sybils) and exploits them in order to

manipulate a reputation score.
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• Impersonation and reputation theft: One entity acquires the identity of another entity (mas-

querades) and consequently steals its reputation.

• Denial-of-reputation: Attack designed to damage an entity’s reputation (e.g. in combination

with a sybil attack or impersonation) and create an opportunity for blackmail in order to have

the reputation cleaned.

• Unfair or dishonest rating: Reporting of false reputation score to give a false impression about

a given agent.

• Collusion: Multiple users conspire (collude) to influence a given reputation.

• Repudiation of data and repudiation of transaction: An entity can deny that a transaction

happened, or the existence of data for which he was responsible.

• Recommender dishonesty: The voter is not trustworthy in his scoring.

• Dynamic personality: Entities show oscillating personality like-milking reputation after build-

ing it. Entities alternate between building and milking reputation.

In this thesis work we are concentrating on developing techniques to address threats like-unfair/dishonest

rating, collusion, recommender dishonesty and dynamic personality.

1.2.4 Trust and Reputation

Security of any system depends on trust issues and trust policies [6,35] i.e., the security of any system

depends on trust in one form or another among the agents of the systems.

Trust is defined as firm belief in the competence of an agent to act dependably, securely and

reliably within a specified context. It is the belief that an entity has about another entity from its

past experience and knowledge about the entity’s nature. The belief expresses an expectation of the

entity’s behavior in future and hence it implies uncertainty and risk. Moreover, trust is a personal and

subjective phenomenon that is based on various factors or evidence i.e., trust is a cognitive process

and as a result it is fuzzy and imprecise in nature.

Now, the concept of reputation is closely linked to that of trustworthiness but there is a subtle

difference [17, 32]. Reputation is what is generally said or believed about a person’s or thing’s char-

acter or status. So, reputation can be considered as a collective measure of trustworthiness (in the
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sense of reliability) based on the referrals or ratings from members in a community. Reputation based

systems [24] help participants to evaluate trustworthiness of each other and predict future behaviors

of participants based on the community feedback about the participants’ past behavior. By harnessing

the community knowledge in the form of feedback, these systems help agents decide who to trust,

encourage trustworthy behavior, and deter dishonest participation. Reputation based systems mini-

mize risks by collecting and aggregating feedback about participants’ past behavior. These systems

provide a way for participants to share their experiences and knowledge so that they can estimate the

trustworthiness of other participants with whom they may not have any personal experiences and thus

can avoid participation from malicious agents to reduce risk.

So, in order to get a better view of the real nature of an agent both trust and reputation should be

considered. In other words, both trust and reputation play a critical role in determining the degree of

confidence an agent has upon other agents.

1.2.5 Trust Model

Trust models represent trust quantitatively through various trust metrics. A trust metric is a measure-

ment of the degree to which members of a group is trusted by each other. So, trust models provide

us with a means to determine the approximate trust value of an agent in the system. Trust models

consider a numbers factors such as direct/local trust, indirect/referral trust, credibility and similarity

in determining the value of trust.

Now, the network at present is highly dynamic and the agents in the network themselves show

dynamic personality. As a result the trust model has to consider all these dynamism and adapt to the

new requirements and challenges that arise. In other words, the agents in the system must have the

abilities to monitor and respond to the current situation and act accordingly. Trust models that adapt

to these dynamism are known as dynamic trust models.

1.3 Scope of Work

The main objective of this thesis work is to provide a dynamic trust model for effectively evaluating

the trust of agents even in the presence of highly oscillating malicious agents. The work comprises

the following studies-

• A thorough analysis of the different factors related to computing the trust of an agent.
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• Detailed investigation about different types of malicious behavior conducted by agents.

• Designing a comprehensive trust model for effectively isolating malicious agents.

• Comparison study with the existing trust model.

1.4 Thesis Organization

The rest of the chapters are organized as follows-

Chapter 2 represents a review of the most recent works done on trust model. A detailed description

along with the limitations of the trust models have also been discussed in this chapter.

Chapter 3, the main chapter of this thesis, illustrates our proposed trust model and the different

factors considered in developing the trust model. A through analysis and description of the mathe-

matical expressions used for the different factors have also been presented in this chapter.

Chapter 4 contains the simulation results of our proposed model and a comparative study against

other existing trust models under different scenarios. The details of the simulation setup and the

behavioral pattern of agents are also discussed in this chapter.

Chapter 5 concludes by describing the key contributions of this thesis followed by some sugges-

tion for future research work related to this topic.



Chapter 2

Related Works

Dynamic trust model is relatively a new approach in the domain of network security research. The

main objective of any trust model is to provide a threat resistance policy for selecting agents in case

of providing services. The main challenges arise as agents in the system start to behave unpredictably

i.e., when malicious agents alternate the activities strategically with the intent to rip benefits for them-

selves. Most complex malicious activities include providing false rating, forming collusive groups

and strategically altering nature (e.g., becoming malicious after attaining high reputation) with the

view to not getting noticed by others. In this chapter we will discuss some of the most recent and well

known works done on trust model and review their approaches to solving the threats that exist in a

multi-agent system.

2.1 Introduction

A reputation based trust model [24] collects, distributes, and aggregates feedback about participants

past behavior. These models help agents decide whom to trust, encourage trustworthy behavior, and

discourage participation by agents who are dishonest. Reputation based trust models are mainly

divided into two categories: local trust models and global trust models. Local trust models [1, 7, 21]

aggregate feedback from some predetermined neighbors through local broadcasting. In case of global

trust models [18, 20, 25, 28, 35] an agent aggregates feedback from all the agents who ever interacted

with the target agent i.e., in global trust models an agent has a view of the network which is wider than

its own experience. So local trust models only have a partial view of the network and as a result cannot

compute the trust of an agent accurately. On the other hand global trust models utilize the experience
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gained by others in computing the trust of an agent and therefore can properly reflect the actual nature

of an agent. So, we will discuss the key ideas of the following global trust models: Bayesian network

based trust model [32], EigenTrust [18], FIRE [13], PeerTrust [35, 36], FCTrust [12], SFTrust [39],

recommendation trust model provided by Wang et al. [31], trust model provided by Li et al. [20] and

trust model proposed by Wen et al. [34].

2.2 Bayesian Network-Based Trust Model

The Bayesian network based trust model [32] believes that trust is multi-dimensional and agents

need to evaluate trust from different aspects of an agent’s capability. The agents needs are different

in different situations and depending on the situation, an agent may need to consider its trust in

a specific aspect of another agent’s capability or in a combination of multiple aspects. Bayesian

networks provide a flexible way to present differentiated trust and combine different aspects of trust.

A Bayesian network is a relationship network that uses statistical methods to represent probability

relationships between different agents.

In the Bayesian network-based trust model every agent develops a naive Bayesian network for

each service provider that it has ever interacted with. Each Bayesian network has a root node T,

which has two values, “satisfying” and “unsatisfying”, denoted by 1 and 0, respectively. p(T = 1)

represents the value of agents overall trust in the service provider’s competence in providing good

services. It is the percentage of interactions that are satisfying and measured by the number of satis-

fying interactions m divided by the total number of interactions n. p(T = 0) is the percentage of not

satisfying interactions.

p(T = 1) =
m

n
(2.1)

p(T = 1) + p(T = 0) = 1 (2.2)

The leaf nodes under the root node represent the service providers capability in different aspects.

Each leaf node is associated with a conditional probability table (CPT). This conditional probability

is calculated by using the Bayes rule [11].

p(h|e) =
p(e|h) ∗ p(h)

p(e)
(2.3)

where p(h) is the prior probability of hypothesis h, p(e) is the prior probability of evidence e, p(h|e)
is the probability of h given e and p(e|h) is the probability of e given h. Agents calculate conditional
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probability for all the aspects of the service provider that it thinks is relevant. So, with the Bayesian

networks, agents can infer trust in the various aspects that they need from the corresponding probabil-

ities. After each interaction, agents update their corresponding Bayesian networks. If an interaction

is satisfying, m and n are both increased by 1 in formula 2.1. If it is not satisfying, only n is increased

by 1.

The main problem with this approach is that different agents have different requirements and as

result the architecture of the Bayesian network may be different for different agents. Moreover, the

probabilities are calculated based on the agent’s own subjective judgement and this may vary from

agent to agent i.e., the measures are not unique rather it is biased by the agent calculating it.

In this trust model agents also aggregate recommendation from other agents. When other agents

receive recommendation requests, they will check their trust-representations, i.e. their Bayesian net-

works, to see if they can provide answers such requests. The requesting agent might receive sev-

eral such recommendations at the same time, which may come from the trustworthy acquaintances,

untrustworthy acquaintances, or strangers. The agent first discards recommendations from untrust-

worthy agents and then combines the recommendations from trustworthy references and unknown

references to get the total recommendation for the service provider:

rij = wt ∗

k∑
l=1

tril ∗ tlj

k∑
l=1

tril

+ ws ∗

g∑
z=1

tzj

g
, where wt + ws = 1 (2.4)

rij is the total recommendation value for the jth service provider that the ith agent gets. k and g

are the number of trustworthy references and the number of unknown references, respectively. tril is

the trust that the ith user has in the lth trustworthy reference. tlj is the trust that the lth trustworthy

reference has in jth service provider. tzj is the trust that the zth unknown reference has in jth service

provider. wt and ws are the weights to indicate to what extent the user values the importance of

the recommendation from trustworthy references and from unknown references. The agent should

weight the recommendations from its trustworthy acquaintances higher than those recommendations

from strangers as trustworthy acquaintances share similar preferences and viewpoints.

However, this model assumes that all the agents are truthful in providing their evaluations. This

is not realistic as malicious agents will not provide true feedback to others rather it will provide high

ratings for other malicious agents and low ratings for good agents.

After each interaction an agent updates the trust it has upon the recommenders according to the
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following reinforcement learning formula-

trn
ij = α ∗ tro

ij + (1− α) ∗ eα (2.5)

where trn
ij denotes the new trust value that the ith agent has in the jth reference after the update and

tro
ij denotes the old trust value. α is the learning rate which is a real number in the interval [0, 1]. eα

is the new evidence value and it is defined as shown below-

eα =





1, if recommendation value is greater than a given threshold θ and

the interaction with the service provider afterwards is satisfying

−1, if recommendation value is greater than a given threshold θ and

the interaction with the service provider afterwards is unsatisfying

(2.6)

This trust model also provides a way for an agent to determine the trustworthiness of another

agent. This is done by a direct comparison between the two agents Bayesian networks relevant to an

identical service provider. However, in comparing the Bayesian networks the authors have assumed

that all the agents have identical network structure but as discussed earlier agents tend to have different

requirements and as a result the Bayesian network for one agent may differ from that of another

agents.

Another aspect that this trust model forgot to handle is the decay of trust with elapse of time.

2.3 EigenTrust

EigenTrust [18] aggregates the local trust values of all peers/agents to calculate the unique global

trust value of a given peer. The global reputation of each peer i is calculated by the local trust values

assigned to peer i by other peers, weighted against the global reputations of the assigning peers.

Local trust value is calculated as the sum of the ratings of the individual transactions that peers

perform. Local trust value is defined by the following equation-

sij =
∑

all transactions

trij (2.7)

where sij denotes the local trust value that peer i has about peer j and trij represents the transaction

rating (which lies in the range [−1, 1]) the peer i assigns for the service provided by peer j. Equiva-

lently, each peer i can store the number satisfactory transactions it has had with peer j, sat(i, j) and
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the number of unsatisfactory transactions it has had with peer j, unsat(i, j). Then, sij can be define

as

sij = sat(i, j)− unsat(i, j) (2.8)

In order to aggregate local trust values, EigenTrust normalizes the local trust values. Local trust

values are normalized according to the following function-

cij =





max(sij ,0)∑
j max(sij ,0)

, if
∑

j max(sij, 0) 6= 0

pj, else
(2.9)

where cij represents the normalized trust value and pj represents the probability of choosing a pre-

trusted peer (peers that are fully trusted by all peers in the system) . In other words, if peer i does

not know anybody or does not trust anybody (i.e.,
∑

j max(sij, 0) = 0) then it will choose to trust

the pre-trusted peers. For this purpose in Eigentrust the exists a set of pre-trusted peers (P ) where the

probability of choosing any of these pre-trusted peers is pj = 1/|P |.
However, the manner in which local trust is normalized in equation 2.9 has some drawbacks. For

one, the normalized trust values do not distinguish between a peer with whom peer i did not interact

and a peer with whom peer i has had poor experience. Also, these cij values are relative, and there is

no absolute interpretation i.e., if cij = cik, we know that peer j has the same reputation as peer k in the

eyes of peer i, but we do not know if both of them are very reputable, or if both of them are mediocre.

Another flaw of EigenTrust is its dependency on some pre-trusted agents for trust calculation because

the selection of these pre-trusted agents is difficult in real life.

After normalizing local trust value, EigenTrust aggregates the normalized local trust values. In

a distributed environment, one common way to do this is for a peer to ask its acquaintances (rec-

ommenders) about their opinions regarding some target peer. In taking opinions from others, their

opinions are weighted according to the trust that the inquiring peer assigns to them. So, the global

trust is calculated according to the following function-

tik =
∑

j

cijcjk (2.10)

where tik represents the trust that peer i places in peer k based on asking his friends. From equation

2.10, we see that credibility of any recommender is a function of the normalized trust value of that

peer i.e., feedback from trustworthy peers were considered more credible and, thus, weighted more

than those from untrustworthy peers. So, here it has been assumed untrustworthy peers are more

likely to submit false or misleading feedback in order to hide their malicious intent while trustworthy
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peers are more likely to be honest on the feedback they provide. However, a honest peer might not

necessarily provide honest feedback to its competitors.

The trust model proposed by Dou et al. [33] is similar to EigenTrust, but it does not consider the

use of pre-trusted agents in the calculation of trust. Dou’s model reduces iteration cost and punishes

malicious behavior, but doesn’t consider the punishment of dishonest recommenders. Moreover nei-

ther [18,33] address as critical aspect of trust which the decay of trust value in absence of interaction.

2.4 FIRE: An Integrated Trust and Reputation Model for Open

Multi-Agent Systems

The FIRE model [13, 14, 16] believes that most of the trust information source can be categorized

into the four main sources: direct experience, witness information, role based rules and third party

references.

• Direct experience: The evaluator uses its previous experiences in interacting with the target

agent to determine its trustworthiness. This type of trust is called interaction trust (IT).

• Witness information: Assuming that agents are willing to share their direct experiences, the

evaluator can collect experiences of other agents that interacted with the target agent. Such

information will be used to derive the trustworthiness of the target agent based on the views of

its witnesses. Hence this type of trust is called witness reputation (WR).

• Role-based rules: Besides an agents past behaviors (which is used in the two previous types

of trust), there are certain types of information that can be used to deduce trust. These can

be the various relationships between the evaluator and the target agent. For example, an agent

may be preset to trust any other agent that is owned, or certified, by its owner; or it may trust

another agent if it is a member of a trustworthy group. Such settings or beliefs (which are

mostly domain-specific) can be captured by rules based on the roles of the evaluator and the

target agent to assign a predetermined trustworthiness to the target agent. Hence this type of

trust is called role-based trust (RT).

• Third-party references provided by the target agents: In the previous cases, the evaluator needs

to collect the required information itself. However, the target agent can also actively seek
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the trust of the evaluator by presenting arguments about its trustworthiness. In this approach,

such arguments are references produced by the agents that have interacted with the target agents

certifying its behaviors. However, in contrast to witness information which needs to be collected

by the evaluator, the target agent stores and provides such certified references on request to gain

the trust of the evaluator. Those references can be obtained by the target agent (assuming the

cooperation of its partners) from only a few interactions, thus, they are usually readily available.

This type of trust is called certified reputation (CR).

FIRE integrates all four sources of information and is able to provide trust metrics in a wide

variety of situations. The reliability value bases on the rating reliability and deviation reliability to

counteract the uncertainty due to instability of agents.

However, WR and CR components depend on third-party information (witness experiences and

references) and, therefore, they are susceptible to dishonesty and unfair rating. Since agents in an open

MAS are self-interested, they may provide false ratings to gain unwarranted trust for their partners.

In FIRE authors have not considered the problem of lying and dishonesty. They have assumed that

all agents are honest in exchanging information which is completely unrealistic. Moreover, for trust

computation each agent stores a maximum number of the latest ratings given to another agent and

this causes storage overhead. Last of all this model did not consider the attenuation of trust with the

elapse of time.

2.5 PeerTrust

In PeerTrust [35,36], a peer’s/agent’s trustworthiness is defined by the evaluation that the peer receives

in providing service to other peers in the past. Such reputations reflect the degree of trust that other

peers in the community have on the given peer based on their past experiences. In PeerTrust Xiong et

al. defined five factors in computing the trustworthiness of peers. The factors are-

1. the feedback a peer obtains from other peers.

2. the feedback scope, such as the total number of transactions that a peer has with other peers.

3. the credibility factor for the feedback source.

4. the transaction context factor for discriminating mission-critical transactions from less or non-

critical ones.
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5. the community context factor for addressing community-related characteristics and vulnerabil-

ities.

As we can see the first three of these factors are basic trust parameters while the remaining two are

adaptive factors.

Then Xiong et al. combined these parameters to present a general trust metric as shown below-

T (u) = α ∗
I(u)∑
i=1

S(u, i) ∗ Cr(p(u, i)) ∗ TF (u, i) + β ∗ CF (u) (2.11)

where I(u) denotes the total number of transactions performed by peer u with all other peers, p(u, i)

denotes the other participating peer in peer u’s ith transaction, S(u, i) denotes the normalized amount

of satisfaction peer u receives from p(u, i) in its ith transaction, Cr(v) denote the credibility of the

feedback submitted by v, TF (u, i) denote the adaptive transaction context factor for peer u’s ith

transaction, and CF (u) denote the adaptive community context factor for peer u. Here, α and β

denote the normalized weight factors for the collective evaluation and the community context factor.

As we can see from equation 2.11 that the metric consists of two parts. The first part is a weighted

average of amount of satisfaction a peer receives for each transaction. The weight takes into account

the credibility of feedback source to counter dishonest feedback, and transaction context to capture

the transaction-dependent characteristics. The second part of the metric adjusts the first part by an

increase or decrease of the trust value based on community-specific characteristics and situations.

The α and β parameters can be used to assign different weights to the feedback-based evaluation and

community context according to different situations.

Now, considering only the basic trust parameters: the feedback, the number of transactions, and

the credibility of feedback source i.e., if we turn off the transaction context factor (TF (u, i) = 1) and

the community context factor (α = 1 and β = 0) then equation 2.11 reduces to

T (u) =

I(u)∑
i=1

S(u, i) ∗ Cr(p(u, i)) (2.12)

In PeerTrust Xiong et al. defined two credibility measures. In the first one they used a function of

the trust value of a peer as its credibility factor i.e., feedback from trustworthy peers were considered

more credible and, thus, weighted more than those from untrustworthy peers. Credibility function

used is defined below-

Cru(v) =
T (v)∑I(u)

j=1 T (p(u, j))
(2.13)
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where Cru(v) denotes the credibility measure of peer v from peer u’s perspective. However, this

solution is based on two assumptions. Firstly, untrustworthy peers are more likely to submit false

or misleading feedback in order to hide their own malicious behavior. Secondly, trustworthy peers

are more likely to be honest on the feedback they provide. It is widely recognized that the first

assumption is generally true, but the second assumption may not be true at all time. For example, it is

possible (though not common) that a peer may maintain a good reputation by performing high quality

services, but send malicious feedback to its competitors. In this extreme case, using a function of trust

to approximate the credibility of feedback will generate errors.

The second measure that Xiong et al. defined uses a personalized similarity measure to rate the

credibility of another peer. This definition uses a similarity measure which is calculated according to

the following function-

Sim(u, v) = 1−

√√√√√
∑

x∈IJS(u,v)

(∑I(x,u)
i=1 S(x,i)

I(x,u)
−

∑I(x,v)
i=1 S(x,i)

I(x,v)

)2

|IJS(u, v)| (2.14)

where IJS(u, v) denotes the common set of peers that have interacted with both peer u and peer v,

and I(u, v) denotes the total number of transactions performed by peer u with v. The second form of

credibility measure defined by Xiong et al. is shown below-

Cru(v, w) =
Sim(v, w)∑I(u)

j=1 Sim(p(u, j), w)
(2.15)

Here, Cru(v, w) denotes the credibility measure of peer v from peer w’s perspective where peer w is

computing the trust value of peer u and peer v is one of the recommenders providing recommendation

to peer w. Using personalized credibility measure provides great deal of flexibility and stronger

predictive value as the feedback from similar raters are given higher weight than those that are less

similar. It also act as an effective defense against potential malicious collusion.

The main limitations of PeerTrust is that it has to retrieve all the transactions within the recent

time window (I(u), which may contain a large number of transactions) to compute the trust of an

agent. So the process is expensive from both computational and spatial point of view. Moreover,

all the transactions in the window is given equal significance but recent transactions should be given

higher weight than past transactions.

PeerTrust also does not consider sudden fluctuation of trust, but malicious peers tend to strategi-

cally fluctuate their between building and milking reputation. Another aspect that PeerTrust does not

address is the decay of trust with time in absence of interaction.
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2.6 P2P Recommendation Trust Model

In computing the global trust of any agent, the recommendation model provided by Wang et al. [31]

combines both local trust calculated from the agent’s own experience and recommendation provided

by other agents in the system.

This model calculates local trust by taking the ratio of successful transaction over the total number

of transactions as shown below-

Pij =





Sucij

Totalij
, if Totalij > 0

0, else
(2.16)

where Pij represents the local trust calculated by agent i regarding agent j, Sucij denotes all the

successful transactions between agent i and j while Totalij represents the total number of transactions

between i and j. However, this formulation of local trust fails to reflect the trend and relative time

significance of the transactions.

Recommendation is obtained by considering both recommendation value provided by recom-

menders and their credibility. It is calculated according to the following equation-

Rij =

|W |∑
k=1

Cik ∗ (Tkj + λ)

|W | (2.17)

Tij =





2∗Sucij−Totalij
|W |∑
k=1

Suckj

, if 2 ∗ Sucij − Totalij > 0

0, else

(2.18)

where Rij denotes the recommendation value received by agent i about agent j, Cij represents the

credibility of j from i’s respective and Tij represents the recommendation value (shown in eqn 2.18)

that i has about j. W corresponds to the recommenders set and λ is a user defined constant which

signifies the default recommendation value in the initial stage of the network when recommenders

have not interacted with the respective target agent. The value of λ becomes zero as the network

enters into a stable state i.e., when a significant number of transactions have occurred. However, no

specification is given as to who are included in the recommendation membership set.

The credibility (reputation) of any agent is updated according to a reward and punishment policy.

Credibility is updated using the following function-

Cij =





Cij + 0.1, if own evaluation and feedback are nearly the same
Cij

2
, else

(2.19)
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However, as we can see from the above expression there is no specification of the threshold of differ-

ence between own evaluation and feedback provided by recommenders.

Global trust is calculated from the combination of local trust and recommendation according to

the following equation-

Gij = α ∗ Pij + (1− α) ∗Rij (2.20)

where Gij represents the value of global trust and α represents the contribution of local trust. How-

ever, the value of α is fixed and does not change dynamically. So the model cannot accommodate the

experience gained over time by the agent or recommenders.

Another limitation of this model is that it has not considered any time decay model i.e., trust value

does not change over time in absent of transaction. Nonetheless, trust values should attenuate with

time to signify the dynamic nature of agents behavior.

2.7 FCTRust: Feedback Credibility Based Trust Model

FCTrust [12] uses transaction density and similarity measure to define the credibility of any recom-

mender as opposed to [18, 33] which use the global trust as the weight of the quality of feedbacks.

In other words, FCTrust has pointed out the fact that the role of any agent in providing feedbacks in

different from that of providing services to others.

FCTrust defines local trust as the normalized value of local satisfactory transactions. Local trust

value is calculated according to the following function-

Dij =





∑m
k=1 f(i,j)

m
, if m 6= 0

0, else
(2.21)

where Dij denoted the direct trust calculated by agent i about agent j, f(i, j) represents satisfaction

degree evaluation function between agent i and j, and it is defined as follows-

f(i, j) =





1, if transaction totally satisfactory

0, if transaction totally unsatisfactory

e ∈ (0, 1), else

(2.22)

The main problem with the formulation of direct/local trust is that FCTrust stores all the transaction

performed within a time frame which might be a significantly long period and this results in storage

overhead. Moreover, the simple averaging function defined in equation 2.21 fails to reflect the trend

and relative time significance of the transactions.
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FCTrust defines credibility through two factors: transaction density and similarity. Transaction

density signifies the transaction frequency where higher frequency means higher credibility. Transac-

tion density is defined as follows-

TNumij =
m

n
∗ β1/m, β ∈ (0, 1)

⋂
m 6= 0 (2.23)

where m denotes the transaction number between agent i and j, and n denotes the total transaction

number of agent i with others. If m = 0 then TNumij = 0. However, according to equation 2.23 if

n >> m then the value of TNumij will be very small even if agent j makes a significant number (m)

of cooperative transactions and since TNumij is directly used in the calculation of credibility, it will

result in a low value of credibility for j irrespective of it’s cooperative behavior.

FCTrust defined similarity according to the following equation-

TSimij =





TSimij +
1−TSimij

2
∗ (1− TDifij

θ
), if TDifij < θ

TSimij − TSimij

2
∗ (1− θ

TDifij
), else

(2.24)

where TDifij represents the difference in rating between agent i and j over the common interaction

set of agents. θ denotes the maximum deviation that agent i allows for agent j. From equation 2.24

we can see that FCTrust assigns equal degree of reward and punishment in computing similarity but

the degree of punishment should be greater than that of incentive.

Credibility is then calculated from transaction density and similarity as follows

Crij = TNumij ∗ TSimij; (2.25)

Again, FCTrust does not address the issue of decay of trust with the elapse of time in absence of

interaction.

2.8 SFTrust: A Double Metric Based Trust Model

SFTrust [39] is a double trust metric model. It separates service trust from feedback trust with the

view to take full advantage of all the agents’ service abilities even in the presence of fluctuating

feedbacks. In SFTrust each agent maintains two lists namely transaction list and neighbor list. For

each neighbor it maintains a service record and a credibility record.

SFTrust defined direct/local trust by an iterative update function which stores only one value in

the system and as a result reduce storage overhead. The iterative update function for direct trust (DT)
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is defined as follows-

DT n+1
ij =

DT n
ij(1− λn) + λn+1(1− λ)Sn+1

ij

(1− λn+1)
(2.26)

where DT n
ij represents the direct trust of the past n transactions, Sk

ij represents the satisfaction degree

of the k th service/transaction and λ represents the fading factor (0 < λ < 1) that can be changed

dynamically depending on the system.

SFTrust also considers taking recommendation from neighbors. Recommending trust (RT) is

defined as follows-

RTij =

m∑
k=1

FTik ∗ fkj

m∑
k=1

FTik

(2.27)

where fij denotes the feedback that agent i provides about agent j according to the service trust

of j. Now, in SFTrust an agent blindly forwards request to all it neighbors (k = 1, 2, ...,m) for

recommendation. The agents receiving the request can then forward it to their neighbors and so on.

TTL field is used to limit the broadcast. However, aggregating information through this kind of local

broadcasting can be time consuming. Moreover, recommendation should come from agents that have

first hand experience [4, 22, 27] with the respective target agent.

Service trust (ST) is calculated by combining direct trust and recommending trust as shown below-

STij = δ ∗DTij + (1− δ)RTij (2.28)

where δ (0 ≤ δ ≤ 1) represents the contribution of direct trust in computing service trust. However,

the value of δ is fixed and does not change dynamically. So the model cannot accommodate the

experience gained over time by the agent or recommenders.

SFTrust uses similarity measure (Sim) in defining feedback trust (credibility measure). SFTrust

uses a cosine similarity measure as defined below-

Sim(i, j) =

∑
k∈CS(i,j) fik ∗ fjk√∑

k∈CS(i,j) f 2
ik ∗

√∑
k∈CS(i,j) f 2

jk

(2.29)

where CS(i, j) denotes the common set of agents that have interacted with both agent i and agent j.

SFTrust updates feedback trust (FT) by comparing the computed similarity measure (eqn 2.29) with

the similarity threshold (Simθ) according to the following function-

FTij =





FTij + η ∗ (1− FTij), if Simi,j > Simθ

FTij, if Simi,j = Simθ

FTij − θ ∗ (1− FTij), if Simi,j < Simθ

(2.30)
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where η, θ ∈ [0, 1] represent the degree of reward and punishment respectively. However, the punish-

ment function is wrongly defined because it fails to limit FTij within the interval [0, 1] as claimed.

Once again, SFTrust does not address decay of trust in absence of interaction but trust values

should decay with elapse of time.

2.9 Dynamic Trust Model for Multi-agent Systems

The trust model provided by Li et al. [20] addresses different aspects in determining the trust of an

agent such as recent trust, historical trust, expected trust and confidence in trust for other agents. They

have also given a method to filter out inaccurate reports submitted by recommenders. Our main focus

is on this trust model.

This model defines direct trust/local trust (DT) by averaging the satisfaction level of all the trans-

actions as shown below-

DTi(a, o) =





∑m
i=1 Si(a,o)

m
, if m 6= 0

0, else
(2.31)

where m denotes the total number of interaction between agent a and agent o, and Si(a, o) represents

the degree of satisfaction for the i-th transaction between agent a and agent o, and its defined as-

Si(a, o) =





1, if transaction totally satisfactory

0, if transaction totally unsatisfactory

e ∈ (0, 1), else

(2.32)

However, this simple averaging function defined in equation 2.31 fails to reflect the trend and relative

time significance of the transactions.

Indirect trust or reputation is built from other agents’ experience and Li et al. have defined repu-

tation according to the following function-

Repi(a, o) =

∑
w∈W Crei(a, w) ∗DTi(w, o)∑

w∈W Crei(a, w)
(2.33)

where W denotes the set of witnesses that have interacted with the target agent o and Crei(a, w)

represents the credibility of witness w(w ∈ W ). As we can see from the above equation that in taking

recommendation from witnesses the credibility of the witness is also considered.

Li et al. then combined direct trust and reputation to define recent trust (RT) which reflects the



2.9. Dynamic Trust Model for Multi-agent Systems 23

recent trend in an agent’s behavior. Recent trust is defined as follows-

RTi(a, o) =





η ∗DTi(a, o) + (1− η)Repi(a, o), if n < N

DTi(a, o), else
(2.34)

where η determines the weight of direct trust and it depends on the number of own interactions.

Here, n denotes the number of own interaction in the i-th interval and N represents the threshold

of interaction number. So, when n < N the value of η equals n/N and when n ≥ N , η equals 1.

However, agent should never rely totally on own experience as a malicious agent can intentionally be

honest to a given agent while it may be acting maliciously with other agents in the system. By taking

recommendation from other agents that have interacted with the given target agent we can identify its

actual nature.

Li et al. also defined historical trust (HT) which is built from pervious experiences and it reflects

the long term behavioral pattern of an agent. They have defined historical trust by storing the recent

trust value of the target agent up to a certain number of intervals (maxH). Historical trust is defined

as follows-

HTi(a, o) =

∑
k=1

maxHρk−1 ∗RTi−k(a, o)

∑
k=1

maxHρk−1
(2.35)

where ρ (0 ≤ ρ ≤ 1) represents the forgetting factor i.e., with 0 ≤ ρ ≤ 1, HTi(a, o) gives higher

weight to recent values and lower weight to older values. However, the main problem with this

formulation of historical trust is that it requires the storage of previous values and this results in

storage overhead.

Li et al. combined recent trust with historical trust to define expected trust (T) which reflects the

expected performance of the target agent. They defined expected trust by the following function-

Ti(a, o) =





default value, if neither RT nor HT available

RTi(a, o), if only RT available

HTi(a, o), if only HT available

min(RTi(a, o), HTi(a, o)), if both RT and HT available

(2.36)

However, in case of both RT and HT being available taking min of these two values does not allow

an agent to improve its trust value after any set back. In other words, suppose an agent suffered

from some programming malfunction (e.g., programming bug or virus) and as a result could not

provide effective service which ultimately reduced its reputation to others. Now, in the recent interval

it has solved it problem and is behaving in a cooperative manner, so its recent trust has increased
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significantly. However, if we consider the min of recent and historical trust then we will not be

able to give any credit to its recent honesty but we should encourage agents to behave honestly and

cooperatively.

In calculating credibility Li et al. first determined similarity and then used the similarity measure

to define credibility. In order to determine the similarity with a given witness (w ∈ W ), the evaluating

agent (a) compares its direct trust for the target agent (o) with the direct trust experienced by the

witness. Similarity (V) is defined as follows-

Vi(a, w) =





1− abs(DTi(a, o)−DTi(w, o)), if abs(DTi(a, o)−DTi(w, o)) < τ

0, else
(2.37)

where τ(0 < τ < 1) represents the inaccurate tolerance threshold. So we see that the smaller the

difference the higher the similarity. This similarity rating calculated at each interval is then stored and

used to calculate credibility. Credibility (Cre) is defined according to the following function-

Crei(a, w) =

maxH∑
k=1

ρk−1 ∗ Vi−k(a, w)

maxH∑
k=1

ρk−1

(2.38)

where ρ (0 ≤ ρ ≤ 1) represents the forgetting factor. So, we can see that in order to calculate

credibility we have to store the similarity measure for the last maxH intervals and this causes storage

overhead.

Unlike some of the trust models the trust model given by Li et al. also considered calculating

a confidence factor which reflects the reliability of the trust value computed. For this purpose they

defined three reliability factors: reliability in recent trust (Rrt), reliability in historical trust (Rht)

and deviation reliability (DR). The main theme behind confidence factor is that as the number of

interactions increase and as lower deviations are observed the more confident we become about the

calculated trust value.

Reliability in recent trust in based on the number of interactions that were considered in the cal-

culation of recent trust (RT). As this number of interaction grows the reliability in recent trust also

increases until it reaches the highest attainable value of 1 (when the number of interaction exceeds a

user defined threshold maxN ). Reliability in recent trust is defined as follows-

Rrti(a, o) =





sin(Π
2
∗ (

Ni(a,o)+α
∑

w∈W Crei(a,w)∗Ni(w,o)

maxN
)),

if Ni(a, o) + α
∑

w∈W Crei(a, w) ∗Ni(w, o) < maxN

1, otherwise

(2.39)
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where Ni(x, y) represents the number of interactions between agent x and agent y within the i-th

interval, and α(0 ≤ α ≤ 1) is used to discount the weight of the witness’ interaction experience in

calculating reliability in recent trust.

Reliability in historical trust is similarly based on the number of interactions that were considered

in the calculation of historical trust (HT). Li et al. computed reliability in historical trust by storing

Rrt values for the last maxH intervals and then used the following averaging function to compute Rht

value.

Rhti(a, w) =

maxH∑
k=1

Rrti−k(a, o)

maxH
(2.40)

However, the main problem with this approach is not only does this function requires us to store

previous values which adds to storage requirement but also it assigns equal weight to all the values.

Logically recent values should receive higher weight than historical values.

Deviation reliability is used to signify the degree of deviation that is tolerated i.e., lower deviation

means higher reliability. Deviation reliability is calculated from another metric named accumulated

misused trust (AT) which keeps track of trust fluctuation and it is defined as follows-

ATi(a, o) =





ATi−1(a, o) + HTi(a, o)−RTi(a, o), if RTi(a, o)−HTi(a, o) < −ε

ATi−1(a, o), otherwise
(2.41)

where ε represents the tolerated margin of error in the evaluation of trust. From equation 2.41 we

see that accumulated misused trust (AT) only considers sudden fall of trust but sudden rise should

also be considered as malicious agents tends to strategically oscillate between building and milking

reputation. Deviation reliability is defined as follows-

DRi(a, o) =





0, if ATi(a, o) > maxAT

1− sin(Π
2
∗ ATi(a,o)

maxAT
), otherwise

(2.42)

So from the above equation we can see that deviation reliability becomes zero when accumulated

misused trust (AT) exceeds a given threshold maxAT . The main problem with this function is that

the declination rate is higher in the initial stage and lower in the latter stage but realistically it should

be the reverse i.e., in the initial stage there is small amount of deviation so the declination rate should

be smaller and as more and more deviations occur the declination rate should increase significantly.

Finally Li et al. combined the reliability factors to define the confidence factors as shown below-

Ci(a, o) = (Rrti(a, o) + Rhti(a, o)) ∗DRi(a, o) (2.43)
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The final trust value is compute by combining expected trust with confidence factor as shown

below-

Trusti(a, o) = Ti(a, o) ∗ Ci(a, o) (2.44)

An agent uses this value to select the target agent with the highest value.

Like the previous models this trust model also does not address decay of trust in absence of

interaction but trust values should decay with elapse of time in absence of interaction.

2.10 Users’ Behavior Dependent Trust Model

Wen et al. [34] proposed a trust model which considers both direct and referral credibility. In case of

referral credibility it uses the transitive law of trust. This model computes global trust by combining

direct trust and indirect trust.

In case of direct trust they considered a set of attributes (taking into account the user’s behavior

or subjective aspect) for determining the satisfaction of a transaction. They defined direct trust by the

following equation-

Tu =
∑

wai
∗Ri (2.45)

where Tu denotes the direct trust computed about agent u, a1, a2, ..., an represents the set of attributes

signifying the quality of a transaction and Ri denotes the rating of attribute ai where Ri ∈ (0, 1). The

relative importance assigned to each attribute is modeled as a weight wai
where

∑
wai

= 1.

Now, the attribute rating Ri is dynamically changed after each interaction according to the follow-

ing equation-

Ri =





Rold
i + (Rnew

i −Rold
i ) ∗ β(Rnew

i −µ+1/n), if Rnew
i > µ

Rold
i + (Rnew

i −Rold
i ) ∗ β(Rnew

i −µ), if Rnew
i < µ & Rnew

i < Rold
i

Rold
i + (Rnew

i −Rold
i ) ∗ β(Rnew

i −Rold
i ), if Rold

i < Rnew
i < µ

(2.46)

where Rold
i and Rnew

i denote the original and new values respectively. β (0 < β < 1) is the subjective

factor which controls the how quickly or slowly direct trust rises and falls. µ denotes the critical

value of the trust i.e., trust values larger than µ are trustworthy and the smaller ones are distrustful. n

denotes the number of the interactions.

Unlike the previous models discussed this trust model considers decay of trust value with the

elapse of time in absence of interactions. The decay function that they incorporated is defined as
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follows-

T̂u =
Tu

∆t1/k
(2.47)

where T̂u represents the value of trust after decay and ∆t means the interval between the current

interaction and the last interaction. k is a controlling factor and has different values in different

networks. So we can see that, with ∆t increasing, a trustworthy user may become an untrustworthy

one in the trustworthy network. However, the main problem with this function is that the decay rate

is initially high and it tends to saturate as time elapses but realistically the decay rate should be small

at the initial stage and should increase as time elapses.

In case of calculating indirect trust this model considers both direct and indirect recommenders.

As a result two types of credibility have been defined namely direct credibility and referral credibility.

They have defined direct credibility for recommenders that have directly interacted with the desired

target agent and it is defined by the following function-

cnew
i = cold

i + θ ∗ (1− d
1/s
i − cold

i ) (2.48)

where, cnew
i and cold

i are the new and original evaluations of the recommender i respectively. s is a

strictness factor which is used to control the curve. θ is an impact factor, and its defined as-

θ =
e|1−d

1/s
i −cold

i | − 1

e + 1
(2.49)

where di is the deviation between the true trust value of the user and trust value given by recommender

i, and it reflects the accuracy of the credibility evaluation. However, equation 2.48 fails to limit cred-

ibility within the stated range of [0, 1] in some special cases. For example, in the experimental setup

of [34] the strictness factor has been set to 1 and the initial value of credibility for any recommender

has been set to 0.4 and since di denotes the deviation between the true trust value of the user and trust

value given by recommender i, it can take any value between [−1, 1]. For worst case scenario we

assume that di = −1 (i.e., the recommender totally disagrees with the user about a given target agent)

then |1− d
1/s
i − cold

i | = 1.6 and θ = 1.063 which causes cnew
i to be set to 1.7 > 1.

For referral credibility this model has used the transitive law of trust i.e., if ‘A’ trusts ‘B’ and ‘B’

trusts ‘C’ then ‘A’ will also trust ‘C’. In order to illustrate the evaluation of the referral credibility ,

an example is shown in Fig. 2.1, where user i can interact with the trustworthy network and user j is

the recommender of the evaluated user and the other nodes are the intermediate users for the referral

of credibility. As we can see from the figure there are k paths from i to j. If ck denotes the credibility
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Figure 2.1: Referral credibility.

computed along path k then ck is computed using the transitive law of trust according to the following

function-

ck = ci1 ∗ c12 ∗ ... ∗ cmj (2.50)

where cxy is the credibility of agent y from the viewpoint of agent x. So the total credibility of the

recommender j can be obtained as follows:

cnew
j =

1

k

k∑
i=1

ck (2.51)

However, in case of the referral credibility there exists the possibility of erroneous/false credibility

propagation as we are multiplying the credibility of the intermediate agents and any one of the inter-

mediate agents can act maliciously. Moreover, net credibility is computed by assigning equal weight

to all the possible routes and then averaging them but longer the path the more possibility of that a

malicious agent lies in it. So longer paths should not be given same weight as smaller paths.

Indirect trust is then calculated using the following equation-

T̃ =
1

m

m∑
i=1

cnew
i ∗ Ti→a (2.52)

where Ti→a represents the direct trust computed about agent a from agent i’s perspective and m is the

number of recommenders.

Wen et al. combined direct trust and indirect trust to define global trust according to the following

function-

T = w ∗ T + (1− w) ∗ T̃ (2.53)

where w represents the weight of direct trust and it changes dynamically based on the agent’s own

interaction count. In other words, as the number of own interaction increases the weight of direct trust
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also increases. w is calculated as follows-

w = αk/n, 0 < α < 1 and k ∈ {1, 2, 3, ...} (2.54)

where n is the number of interactions that agent i has performed and α is the parameter that controls

the curve. So from the above equation we see that as n increases so does w. However, the main

problem with this formulation is that instead of considering the total number of interactions with the

given target agent, Wen et al. have considered the total number of interactions the evaluating agent

performs. Now, suppose agent i performs 0 transaction with agent x while it performs 100 interactions

with agent y and then n = 100 which causes the value of w to be high (near 1). So, even though agent

i has no experience about agent x still it will assign high weight to direct trust (own experience)

according to equation 2.54 and this is a major drawback.

2.11 Decay Model

As discussed before the models defined in [12,18,20,31–33,35,39] do not address a critical aspect of

trust which is the decay of trust value with time. Since the network present today is highly dynamic

and unpredictable, trust values should decay with the elapse of time. Some models [34,38] have their

own decay functions. However, their decay functions fail to properly simulate the decay process i.e.,

their decay functions have a high declination rate in the initial stage and a low declination rate at the

latter stage. Realistically it should be the reverse that is the declination rate should be smaller in the

earlier stage while it should be higher in the latter stage or it could even have a uniform decay rate

and we have incorporated such a decay function.

2.12 Summary

The main concept behind developing a reputation based trust model is to combine both own expe-

rience and experience gained by others in the network. In considering experience from others their

credibility must also be considered otherwise malicious agents will flood the network with false and

inaccurate feedback. Another aspect that is important in assessing the nature of agents is their histori-

cal trend. Many models keep record of all the transactions that an agent performs but this approach is

costly from spatial point of view. Moreover these models assign equal significance to all the previous
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transactions which is not logical as recent transactions should be given higher significance than his-

torical transactions. Finally, most of the trust models ignore the decay of trust with the elapse of time

in absence of interactions but this is a critical aspect as agents nowadays show dynamic personality

and we cannot just rely on their present nature.



Chapter 3

SECTrust:Our Trust Model

In this chapter we formally introduce our trust model SECTrust. A detailed description and analysis

of the different parameters considered in computing the trust of an agent are discussed. The logical

definition and mathematical expression used for each parameter/component are also presented in this

chapter. We have also proposed an algorithm for filtering out dishonest recommenders from the

recommendation membership set.

3.1 Introduction

The main objective of this thesis work is to provide a dynamic trust model for effectively evaluating

the trust of agents even in the presence of highly oscillating malicious agents. A number of parame-

ters have been considered in our trust model for computing the trust of an agent. Now, many of these

parameters have been previously discussed in [12, 20, 31, 34, 35, 39] but none of these models can

fully cope with the strategic adaptations made by the malicious agents. These strategic adaptations

include- behaving maliciously after attaining high reputation, altering between cooperative and mali-

cious nature with the intent of not getting noticed by other agents and so on. The mathematical and

logical definitions used for these parameters also cannot reflect the true scenarios faced in real life.

Moreover none of the models have considered all the parameters that we have considered. In the fol-

lowing sections we will redefine the mathematical expressions used for some of the parameters and at

the same time define some new ones and then finally combine all of the parameters to present our new

trust model called SECTrust. For the following sections we assume that agent a (called evaluator)

needs to calculate the trustworthiness of agent o (called the target agent).
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3.2 Schematic Flow Diagram of SECTrust

In this section we will show and briefly discuss the schematic flow of trust calculated from various

components. As we can see from Fig. 3.1 that in computing trust an agent first computes direct trust

from its own experience and then computes indirect trust from the recommendation of other agents.

In computing direct trust it considers the credibility of the target agent (the agent being evaluated)

and similarly in taking recommendation from other agents the evaluating agent also takes in account

the recommending agent’s credibility. Combining direct and indirect trust the agent calculates recent

trust and this recent trust is used to compute historical trust as transactions proceed. Finally recent

trust and historical trust is combined to define expected trust i.e., the trust that an agent places upon

another agent to behave properly (or even maliciously).

Figure 3.1: Schematic diagram of trust calculation.

After each transaction the evaluating agent updates the credibility of each recommender based

on the satisfaction it receives from the transaction. Credibility is calculated from similarity which is

computed from difference in satisfaction rating over the common set of interacting agents. This is

shown in Fig 3.2.

Last of all we compute the level of confidence an agent has on the calculated trust value for an-

other agent. The confidence factor is calculated from three components namely- reliability in recent

trust, reliability in historical trust and deviation reliability. The philosophy behind computing relia-

bility in recent trust and historical trust is that as more and more interactions occur an agent becomes

more confident about its measured value. So, interaction count and credibility are used to define reli-
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Figure 3.2: Schematic diagram of credibility calculation.

Figure 3.3: Schematic diagram of confidence factor calculation.

ability in recent trust and this values are used to calculate reliability in historical trust as interactions

continue. Deviation reliability is used to measure trust fluctuation to prevent malicious agents from

oscillating strategically. Here difference in recent trust and historical trust is used to calculate devia-

tion reliability. Details of each of the components discussed are elaborately explained in the following

sections.

3.3 Satisfaction

Satisfaction function keeps record of the satisfaction level of all the transactions an agent makes

with another agent. However, instead of storing all of the transaction history we have defined an

exponential averaging update function to store the value of satisfaction. This greatly reduces the
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storage overhead and at the same time assigns time relative significance to the transactions. Let,

Si
t(a, o) represent the amount of satisfaction agent a has upon agent o based on its service up to i

transactions in the t-th time interval. The satisfaction update function is defined as follows-

Si
t(a, o) = αScur + (1− α)Si−1

t (a, o) . (3.1)

S0
t (a, o) = Slast

t−1 (a, o) and S0
0(a, o) = 0. Here, Scur represents the satisfaction value for the most

recent transaction and we have used a binary feedback system where an agent rates other agents with

either 1 or 0 based on whether the transaction is satisfactory or not.

Scur =





0, if recent transaction is not satisfactory

1, if recent transaction is satisfactory
(3.2)

The weight α changes based on the accumulated deviation ξi
t(a, o).

α = threshold + c
δi
t(a, o)

1 + ξi
t(a, o)

(3.3)

δi
t(a, o) = |Si−1

t (a, o)− Scur| (3.4)

ξi
t(a, o) = cδi

t(a, o) + (1− c)ξi−1
t (a, o) (3.5)

ξ0
t (a, o) = ξlast

t−1(a, o) and ξ0
0(a, o) = 0. Here c is a user define constant which controls to what

extent we will react to the recent error (δi
t(a, o)). So, if we increase the value of c then we give more

significance to the recent deviation than the accumulated deviation and vice versa. The threshold is

used to prevent α from saturating to a fixed value. For example if α ever becomes 0 then it will totally

ignore the satisfaction level of the current transaction (Scur) and as a result Si
t(a, o) (from eqn 3.1)

will always remain constant irrespective of whatever kind of transactions follow. Initial value of α is

set to 1 and threshold is set to 0.25.

3.4 Similarity

To compute similarity we have first determined personalized difference rating Di
t(a, o) between agent

a and agent o. Then we use Di
t(a, o) to define the dynamic similarity update function. Let, PS(a) rep-

resent the set of agents with whom agent a has made interaction. Then CIS(a, o) = PS(a)
⋂

PS(o)

denotes the set of agents with whom both agent a and agent o have interacted.

Di
t(a, o) =

√∑
x∈CIS(a,o)(S

i
t(a, x)− Si

t(o, x))2

|CIS(a, o)| (3.6)
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To measure the similarity between agent a and agent o (Simi
t(a, o)), agent a compares Di

t(a, o)

with the similarity deviation constant (τ ) and then updates similarity according to the following

function-

Simi
t(a, o) =





Simi−1
t (a, o) +

1−Simi−1
t (a,o)

µ
, if Di

t(a, o) < τ

Simi−1
t (a, o)− Simi−1

t (a,o)

ψ
, else

(3.7)

where µ represents rewarding factor and ψ represents punishment factor and both of them can be

changed dynamically depending on the system. In equation (3.7) we see that when the difference

rating is less than τ similarity increases and otherwise it decreases. Here µ, ψ ∈ < and we must make

sure that that µ > ψ because the degree of punishment should be greater than that of incentive. By

doing so, we incorporate the principle of “slow rise and quick decline”. If however, |CIS(a, o)| = 0

then Di
t(a, o) = 0 and Simi

t(a, o) = 0.5 (default value).

3.5 Credibility

Credibility is used to measure the degree of accuracy of the feedback information that the feed-

back/recommending agent provides to the evaluator. During trust evaluation, the feedbacks provided

by agents with higher credibility are trustworthier, and are therefore weighted more than those from

agents with lower credibility. Credibility is a critical measure to filter out inaccurate report from mali-

cious agents since malicious agents very often provide dishonest or unfair feedback. Now, the nature

of credibility is to gradually build and move towards the highest attainable value. So, it emulates a

logarithmic curve and for this purpose we have used a logarithmic curve to define credibility. Let,

Crei
t(a, o) present the credibility of agent o from agent a’s perspective.

Crei
t(a, o) =





1− ln(Simi
t(a,o))

ln θ
, if Simi

t(a, o) > θ

0, else
(3.8)

where θ = 0.01 represents the lowest allowed value of similarity. As we can see from equation (3.8)

that credibility is a direct logarithmic function of similarity which means that the credibility of agents

will slowly rise towards it highest attainable value as similarity increases. So, the “slow rise and quick

decline” principle is also incorporated in the credibility function.
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3.6 Direct Trust

Direct trust also known as local trust represents the portion of the trust that an agent computes from its

own experience with the target agent. Let, DT i
t (a, o) represent the direct trust that agent a has upon

agent o up to i transactions in the t-th interval. We have used the satisfaction measure along with the

credibility of the target agent to define direct trust.

DT i
t (a, o) = Si

t(a, o) ∗ Crei
t(a, o) (3.9)

where Crei
t(a, o) represents the credibility of agent o from agent a’s perspective. Here credibility is

being considered as malicious agents may intentionally try to be honest towards certain agents while it

may be acting maliciously with other agents in the system. Now, since credibility is calculated based

on similarity and similarity is computed from the difference in satisfaction rating over the common

set of interacted agents, malicious agents will not be able to fool the evaluating agent if its credibility

is considered. Thats why we are considering credibility in computing direct trust.

3.7 Indirect Trust

Indirect trust is computed from the experience of other agents in the system. When there is no or

even little interaction with the target agent, an agent has to depend on the experience gained by other

agents to make a fruitful decision. Indirect trust is computed by considering recommendation from

other agents along with the credibility of the recommender. Let, IT i
t (a, o) represent the indirect trust

that agent a computes about agent o.

IT i
t (a, o) =

∑
x∈W−{a} Crei

t(a, x) ∗DT i
t (x, o)∑

x∈W−{a} Crei
t(a, x)

(3.10)

Here W = IS(o), represents the set of agents who have ever interacted with agent o. If |W−{a}| = 0

then IT i
t (a, o) = 0.

3.8 Recent Trust

Recent trust reflects only the recent behaviors. We have defined recent trust as a weighted combination

of direct and indirect trust. Direct trust is given higher weight as more and more interactions occur

with the target agent, that is, the evaluator becomes more confident about its own experience than
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taking recommendation from others. Let, RT i
t (a, o) represent the recent trust that agent a has upon

agent o.

RT i
t (a, o) = βDT i

t (a, o) + (1− β)IT i
t (a, o) (3.11)

where β represents the weight of direct trust which can be dynamically calculated as follows-

β =
It(a, o)

It(a, o) + Mt(a, o)

Mt(a, o) =

∑
x∈W−{a} It(x, o)

|W − {a}|

Here W = IS(o), represents the set of agents who have ever interacted with agent o and It(a, o)

represents the number of interactions agent a has conducted with agent o in the t-th interval. So,

Mt(a, o) represents the mean number of interactions that other agents (agents other than a) have

conducted with agent o. As we can see from the above equation that as It(a, o) increases compared

to Mt(a, o) the contribution of direct trust to recent trust also increases i.e., as the evaluating agent’s

own experience exceeds the mean experience gained by the recommenders, the evaluating agent relies

more on its own experience in calculating trust. However, if |W − {a}| = 0 then Mt(a, o) = 0 and if

It(a, o) + Mt(a, o) = 0 then β = 0.5 (default value).

3.9 Historical Trust

Historical trust is built from past experience and it reflects long term behavioral pattern. We have

defined historical using exponential averaging function. Let, HT i
t (a, o) represent the historical trust

that agent a has about agent o.

HT i
t (a, o) =

ρ ∗HT i−1
t (a, o) + RT i−1

t (a, o)

2
(3.12)

where ρ(0 ≤ ρ ≤ 1) is the forgetting factor (discounting older experiences) and HT 0
0 (a, o) = 0. As

we can see from the above expression recent value (RT i−1
t (a, o)) is given higher weight than the past

value (HT i−1
t (a, o)). With historical trust present malicious agents cannot suddenly forget their past

and start behaving good. In other words, as we are storing an agent’s historical trend it cannot just fool

other agents by suddenly behaving in a cooperative manner. For a malicious agent to be considered

as a good agent it must behave in a cooperate manner for a significantly large number of transactions

so that it’s recent trend can replace most of it’s historical trend.
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3.10 Expected Trust

Expected trust reflects expected performance of the target agent and it is deduced from both recent

and historical trust. Let, ET i
t (a, o) represent the expected trust of agent o from agent a’s perspective.

Expected trust is calculated for the following cases-

Case 1 : If agent a has not gained either recent or historical trust regarding agent o then expected

trust is defined as follows:

ET i
t (a, o) = 0.

Case 2 : If agent a can gain only recent trust about agent o then expected trust is defined as follows:

ET i
t (a, o) = RT i

t (a, o).

Case 3 : If agent a can gain only historical trust about agent o then expected trust is defined as

follows:

ET i
t (a, o) = HT i

t (a, o).

Case 4 : If agent a can gain both recent and historical trust about agent o then expected trust is

defined as follows:

ET i
t (a, o) = ηoRT i

t (a, o) + (1− ηo)HT i
t (a, o).

where ηo represents the contribution of recent trust.

Initially ηo is set to 0.5 but ηo adjusts dynamically based on the difference of recent and historical

trust (deviation factor ε). Here we are allowing an agent with the scope of improving its expected

trust through cooperative interaction i.e., we are rewarding the benevolent behavior of agents in the

recent interactions by increasing ηo when recent trust exceeds historical trust by a given threshold (ε).

ηo =





ηo + 0.1, if RT i
t (a, o)−HT i

t (a, o) > ε

ηo − 0.1, if RT i
t (a, o)−HT i

t (a, o) < −ε

ηo, if −ε < RT i
t (a, o)−HT i

t (a, o) < ε

(3.13)

As we see from the above mathematical expression that when recent trust exceeds historical trust

by ε the value of η increases by 0.1 and as a result the contribution of recent trust to expected trust

increases i.e., the expected trust reflects more of the recent trust than the past trust. By controlling the

value of ε we can determine how quickly an agent can recover from its historical trend. However, the

value of ε should not be set very small as malicious agents might then try to exploit this by quickly

recovering from their past mischiefs.
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3.11 Decay Model

Due to easy access and abundant resource agents today are highly unpredictable and as a result their

trust value should decline in absence of interaction. In other words, if an agent does not make a

transaction with the network for a long period, its trust value will gradually degrade with the lapse of

time. Since in our model direct trust depends on satisfaction and indirect trust is calculated from the

direct trust of recommenders we apply a decay function on satisfaction metric. The decay function is

given as follows-

Ŝi
t(a, o) = Si

t(a, o)e−λ∆t (3.14)

∆t = tcurrent − tprevious (3.15)

where Ŝi
t(a, o) represents the value of satisfaction after decay. Here, λ is the decay constant and its

controls how quickly the value will diminish to zero. ∆t(∆t ≥ 0) represents the interval between

the current interaction and the last interaction. So as ∆t increases a trustworthy agent becomes

untrustworthy in the network. By including the time decay model we establish the principle “the

more recent the transaction the more reliable it is”.

3.12 Confidence Factors

Confidence is the metric that reflects the reliability of the trust calculated by an agent. Li et al. [20]

have define some confidence factors. We address some of the shortcomings that their metrics have and

at the same time redefine them to overcome the shortcomings. Confidence factor has three component-

reliability in recent trust, reliability in historical trust and deviation reliability.

3.12.1 Reliability in Recent Trust

Reliability increases as more and more interactions occur and agents’ behavior becomes more and

more evident. So reliability in recent trust is based on the number of interactions which have been

considered during the computation of RT i
t (a, o). While considering the interaction count of any

recommender its credibility is also taken into account i.e., recommenders with higher credibility are

given more weight than lower credible recommenders. Let, Nt(a, o) represent the total number of
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interactions (both direct and indirect) considered during the computation of RT i
t (a, o).

Nt(a, o) = It(a, o) +
∑

x∈W−{a}
Crei

t(a, o) ∗ It(x, o) (3.16)

Reliability in recent trust increases as Nt(a, o) increases until it reaches a user defined threshold

(maxN ), where it saturates to the maximum value 1. Let, RRT i
t (a, o) represent the reliability in

recent trust computed at agent a about agent o.

RRT i
t (a, o) =





sin(Π
2
∗ (Nt(a,o)

maxN
)), if Nt(a, o) < maxN

1, otherwise
(3.17)

The value of the parameter maxN is application dependent and RRT 0
0 (a, o) = 0.

3.12.2 Reliability in Historical Trust

Reliability in historical trust is based on the number of interactions considered during the computation

of HT i
t (a, o). Since HT i

t (a, o) is computed from past recent trust RT k
t (a, o) (0 ≤ k < i), reliability

in historical trust is also computed from previous reliability in recent trust RRT k
t (a, o) (0 ≤ k < i).

Previously, Li et al. [20] stored a number of past recent reliability to compute reliability in historical

trust, but as mentioned earlier this causes storage overhead. Moreover they assigned equal weight to

all the values, but recent values should be given higher weight than past values. To minimize storage

overhead we use an exponential averaging function for this purpose. Let, RHT i
t (a, o) represent the

reliability in historical trust that agent a has about agent o.

RHT i
t (a, o) =

ρ ∗RHT i−1
t (a, o) + RRT i−1

t (a, o)

2
(3.18)

where ρ(0 ≤ ρ ≤ 1) is the forgetting factor (discounting older experiences) and RHT 0
0 (a, o) = 0.

From the above equation we can see that previous value are given lower weight than recent values.

3.12.3 Deviation Factor

Deviation reliability is a measure of how much deviation we are willing to tolerate. Malicious agents

sometimes strategically oscillate between raising their trust and milking the reputation which seri-

ously affects the performance of the network. So, some kind of measurement is required to handle

such scenario. Deviation reliability handles such trust fluctuation. To record the sudden misuse of
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trust by agents, we introduce the component accumulated misused trust (denoted as AT i
t (a, o)).

AT i
t (a, o) =





AT i−1
t (a, o) +

RT i
t (a,o)−HT i

t (a,o)

ω
, if RT i

t (a, o)−HT i
t (a, o) > ϕ

AT i−1
t (a, o) + HT i

t (a, o)−RT i
t (a, o), if RT i

t (a, o)−HT i
t (a, o) < −ϕ

AT i−1
t (a, o), otherwise

(3.19)

where ϕ represents the tolerated margin of error in the evaluation of trust and ω (ω > 1) represents

the punishment factor for sudden rise in trust. From equation (3.19) we see that we are considering

both sudden rise and fall of trust by agents whereas Li et al. [20] considered only sudden fall of trust.

However, we are penalizing lesser for sudden rise since we are encouraging agents to raise their trust

through benevolent interactions. This is evident from the above equation because with ω > 1 the

contribution to accumulated misused trust will be less than RT i
t (a, o) − HT i

t (a, o) for sudden rise

where it is exactly HT i
t (a, o)− RT i

t (a, o) for sudden fall. Initial value of accumulated misused trust

is AT 0
0 (a, o) = 0.

Deviation reliability uses the accumulated misused trust metric to measure the deviation in agent

behavior. Deviation reliability (denoted DRi
t(a, o)) is defined by the following equation-

DRi
t(a, o) =





0, if AT i
t (a, o) > maxAT

cos(Π
2
∗ AT i

t (a,o)

maxAT
), otherwise

(3.20)

where maxAT represents the maximum tolerable misused trust. So from equation 3.20 we can see

that when the accumulated misused trust exceeds a given threshold the deviation reliability becomes

zero and when there is no misused trust the deviation reliability equals 1. We have used a cosine

function for defining deviation reliability since the cosine function has a low degradation rate in the

initial stage and as more and more trust fluctuation occur the degradation rate increases. Here, the

initial value of deviation reliability DRi
t(a, o) = 1.

The overall confidence is defined by using the above three reliability factor as shown below-

Ci
t(a, o) = (RRT i

t (a, o) + RHT i
t (a, o)) ∗DRi

t(a, o) (3.21)

Here we are combining recent and historical reliability and then multiplying it by the deviation relia-

bility. So, if an agent fluctuates between building and milking reputation its deviation reliability will

degrade and eventually its confidence factor will fall.
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3.13 Trust Metric

The trust metric is the actual value used in prioritizing all agents. It is computed from expected trust

and confidence. Let, T i
t (a, o) represent the final trust value agent a places upon agent o.

T i
t (a, o) = ET i

t (a, o) ∗ Ci
t(a, o) (3.22)

So we can see that for an agent to attain a high trust value it must not only have a high trust value but

also it’s confidence factor must be high. An agent will use equation (3.22) to select the target agent

with the highest T value.

3.14 Filtering Out Dishonest Recommenders

In this section we discuss a methodology to filter out dishonest recommenders from the recommenda-

tion membership set (shown in Algorithm 1). In computing indirect trust (IT ) about a certain target

agent we consult other agents that have interacted with the target agent, but malicious agents often

provide false feedback to obscure the true nature of the target agent. This type of false feedback can

lead to wrong interpretation about an agent’s capability and hence hinder effective communication.

In equation 3.10 we have taken feedback from every agent who has ever interacted with the target

agent. However, the evaluating agent might not have interacted with many of these recommenders as

a result, the evaluating agent has no way of knowing how much credible they are and thus has to take

the risk of relying on unknown recommenders. So we propose the following algorithm for filtering

out dishonest recommenders.

Let, W represent the set of recommenders giving feedback to the evaluating agent u about the

target agent v. Firstly, agent u will compute W = PS(u)
⋂

IS(v) i.e., the set of agents who have

interacted with agent v and with whom agent u has made transactions. If |W | = 0 then agent u will

set W = IS(v) i.e., the set of agents who have interacted with agent v and thus has to take the risk of

relying on some unknown recommenders. Then agent u will discard recommenders with credibility

less than γ. The pseudo-code of the algorithm is given as follows.
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Algorithm 1 compute recommender set(u, v)

Input: Evaluating agent u and target agent v

Output: Set of Recommenders W

set W = PS(u)
⋂

IS(v)

if W = ∅ then

set W = IS(v)− {u}
end if

if W 6= ∅ then

for each x ∈ W do

if Cre(u, x) < γ then

W = W − {x}
end if

end for

end if

return W

3.15 Summary

To summarize, our trust model considers a wide variety of factors in calculating the trust of an agent.

All these factors are accumulated to define a single value which represents the trust that an agent

has upon another agent. In our trust model we have introduced some new parameters in computing

trust like- satisfaction and deviation of trust while at the same time we have refined most of the

other parameters to address their former shortcomings. We have also applied a novel policy of using

exponential averaging function to reduce storage overhead in computing trust. Moreover, we have

described an algorithm to prevent dishonest recommenders from providing false recommendation.



Chapter 4

Experimental Evaluation

This chapter evaluates SECTrust’s performance and shows its robustness and effectiveness in sup-

pressing malicious activities. For this purpose we have conducted several experiments from different

point of view like- parameter tuning, error calculation, comparative study and statistical analysis. All

these experiments are elaborately explained in following sections.

4.1 Introduction

Simulation has been used extensively for evaluation of real-world systems including those used in

communications and networking. Any practical research work needs to be verified under real world

scenarios before it can be established. However, having access to ready-to-use test bed infrastructures

is not feasible in most cases and this is where simulation programs or applications paly a vital role.

Simulation provide us with a means to determine how the proposed system or scheme will act in

real-life scenarios without actually deploying the system. In other words, the performance tests of the

proposed schemes through simulations normally create the foundation and confidence for applying

them in real-world environments. Therefore, simulations have become a integral part of most research

work.

We have carried out our simulations to achieve three main objectives. Firstly, we evaluate our

trust model’s accuracy in terms of trust computation in the presence of malicious agents. Secondly,

we assess how quickly it adapts to strategically oscillating behavior. Lastly, we demonstrates the

effectiveness of SECTrust compared to other existing trust models under different scenarios.
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4.2 Simulation Setup

We have developed our simulation in java language using JBuilder [2] and from the hardware point

of view we used a Pentium-4(P4) 3.00 Ghz processor with 2GB RAM. This section describes the

general simulation setup, including the environment setting, agent’s behavioral pattern, transaction

setting and performance evaluation index.

4.2.1 Environment Setting

Our simulated environment contains N agents. In one experiment we have varied the value of N to

show the scalability of the trust model. The experiment showed that the variation in N did not affect

the performance of the trust model and as such N was set to 100 for most of the experiments. The

agents are mainly two types- good and malicious. Good agents cooperate in providing both good

service and honest feedback. In contrast, malicious agents are opportunistic in the sense that they

cheat whenever it is advantageous for them. Malicious agents provide both ineffective service and

false feedback. The percentage of malicious agents in the environment is denoted by the parameter

mal which is varied in different experiments.

4.2.2 Agent’s Behavioral Pattern

The behavioral pattern of good agents is quite easy to simulate as the provide good service and honest

feedback. However, it is a challenging task to simulate agent’s malicious behavior realistically. We

mainly study three behavioral pattern namely- noncollusive, collusive and strategically altering set-

ting. In noncollusive setting malicious agents cheat during transaction and give false feedback to other

agents i.e., they rate good agents poorly while giving high ratings to malicious agents. The collusive

setting is similar to the noncollusive setting with one additional feature that malicious agents form

a collusive group and deterministically help each other by performing numerous fake transactions to

boost their own rating. We use the parameter cm rate to control the percentage of malicious agents

forming a collusive group. In the strategically altering setting a malicious agent may occasionally

decide to cooperate in order to confuse the system. We use the parameter mres to model the rate of

dishonest feedback by a malicious agent. In this case, other agents are commonly fooled into thinking

that the malicious agent is actually a good agent.
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4.2.3 Transaction Setting

Two types of transaction setting are simulated, namely, random setting and trust prioritized setting.

In the random setting, agents randomly interact with each other. In the trust prioritized setting an

agent first initiates a transaction request. Against each request certain percentage of agents respond.

The response percentage is controlled by the parameter res rate. The initiating agent then sort the

responders based on their trust value and select the agent with the highest trust value to performing

the desired transaction.

Table 4.1 summarizes the the different parameters related to the environment setting and trust

computing. The table also lists the default value of the different parameters used. These default

values have been empirically tuned.

Table 4.1: Simulation parameters settings.
Parameter Description Default value

N # of agents in the system 100

Environment mal % of agents malicious in the system 40%

Setting mres % of time a malicious agents gives false feedback 100%

res rate % of agents who respond to a transaction request 5%

cm rate % of malicious agents forming a collusive group 0%

α contribution factor for recent satisfaction 1

threshold minimum threshold of α 0.25

c user defined constant 0.9

β weight of direct trust in computing recent trust 0.5

ρ forgetting factor 0.9

η weight of recent trust in computing expected trust 0.5

Trust ε deviation factor for expected trust 0.2

Computation µ reward factor for similarity 20

Setting ψ punishment factor for similarity 4

τ similarity deviation 0.25

θ lowest allowed value of similarity 0.01

λ decay constant or decay rate 0.1

maxN threshold for designated number of interaction 10

ϕ tolerated margin of error 0.25

ω punishment factor for sudden rise in trust 2

maxAT threshold for accumulated misused trust 10

γ credibility threshold for filtering out inaccurate recommenders 0.8
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4.2.4 Performance Evaluation Index

We are mainly using two types of evaluation performance index namely: Trust Computation Error

and Successful Transaction Rate (STR). Trust computation error is calculated by taking the root-

mean-square (RMS) of the computed trust value of all the agents against their binary rating which is

1 for good agents and 0 for malicious agents. To compare the performance of SECTrust with other

existing trust models we use successful transaction rate (STR). STR is described as the ratio of the

number of successful transactions to the total number of transactions. Since the computed trust values

are different for the different trust models, other evaluation index such as trust computation error is

not suitable for comparison because it really doesn’t matter what range of trust value we assign to an

agent, what matters is how efficiently the model can filter out malicious agents based on the calculated

trust value. In other words, the relative ranking of agents based on their trust value is comparable and

thats why we only compute STR for comparison with other models. We determine STR against the

variation of mal, mres and cm rate. All the experimental results are averaged over 30 runs of the

experiment.

4.3 Tuning Different Parameters of the Trust Model

In this section we will tune the different parameters used in our trust model to obtain the best con-

figuration. For this purpose we are computing the trust computation error against the variation of

percentage of malicious agents (mal) under different values of the corresponding parameter. The fol-

lowing set of figures (Figs. 4.1-4.5) show the impact of the variation of the parameter values. We

select the parameter value for which the trust computation error is lowest.

4.4 Trust Computation Accuracy

The objective of this set of experiments is to show the effectiveness and robustness of SECTrust

against various malicious behavior. The experiments starts as agents randomly start interacting with

each other. After each agent performs an average of 500 transactions a good agent is randomly

selected to compute the trust value of all the other agents. The experiments are performed under both

noncollusive and collusive setting as described in the previous section. The trust computation error is

computed by taking the root-mean-square (RMS) of the computed trust value of all the agents against
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Figure 4.1: Trust computation error with respect to percentage of malicious agents(mal) for different values of

c.

Figure 4.2: Trust computation error with respect to percentage of malicious agents(mal) for different values of

threshold.

the actual likelihood of the agents performing a satisfactory transaction, which is 1 for good agents

and 0 for malicious agents. The more lower the error the more accurate the model is.

In the first experiment we vary the percentage of malicious agents (mal) in the system while setting

mres to 100% (i.e., malicious agents give false feedback in every interaction). Fig. 4.6 represents the
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Figure 4.3: Trust computation error with respect to percentage of malicious agents(mal) for different values of

forgetting factor ρ.

Figure 4.4: Trust computation error with respect to percentage of malicious agents(mal) for different values of

deviation factor ε.

trust computation error with respect to mal in the two settings. In the noncollusive (cm rate set

to 0%) setting in Fig. 4.6(a) we see that SECTrust remains more effective in the presence of large

percentage of malicious agents. The reason behind this is that the credibility measure effectively

filters out the dishonest feedback submitted by malicious agents. In the collusive setting in Fig. 4.6(b)
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Figure 4.5: Trust computation error with respect to percentage of malicious agents(mal) for different values of

similarity deviation factor τ .

we set cm rate to 100% and vary mal. Again we see that our model efficiently discards the dishonest

feedback provided by the collusive group. This proofs that our similarity measure appropriately

computes the credibility of the recommenders providing recommendation.

In the second experiment we vary mres while setting mal to 40%. Fig. 4.7 represents the trust

computation error in both noncollusive and collusive setting. In the noncollusive setting (Fig. 4.7(a))

we see that the error is slightly high when mres varies from 35% to 50% signifying that malicious

agents can confuse the system a little when they oscillate between good and malicious nature equally.

For collusive setting (Fig. 4.7(b)) where cm rate is set to 100%, we see even a better result in the

presence of collusion. This signifies that SECTrust can successfully discard false rating provided by

collusive groups.

In the third experiment we vary cm rate while setting mal to 40% and mres to 100%. Again from

Fig. 4.8 we see that or trust model can effectively discards the impact of the collusive interaction due

to the sensitive credibility measurement.

4.5 Handling Dynamic Personality of Agents

So far, we have considered more or less fixed personality of agents. The objective of this experiment

is to show how SECTrust handles dynamic change in agent behavior. We have already showed SEC-
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Figure 4.6: Trust computation error with respect to percentage of malicious agents for (a) noncollusive setting

and (b) collusive setting.

Trust’s effectiveness against filtering out dishonest feedback submitted by malicious agents, so in this

experiment we concentrate on altering behavior of malicious agents. Here we simulate the pattern

where a malicious agent first builds up its reputation and then milks the built reputation and finally

again tries to build its reputation back i.e., the agent oscillates between building and milking repu-

tation. For testing such scenario we simulate a environment which contains all good agents except
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Figure 4.7: Trust computation error with respect to percentage of malicious response by malicious agents for

(a) noncollusive setting and (b) collusive setting.

for only one malicious agent with dynamic personality. The experiment proceeds as agents randomly

perform transactions with each other and a good agent is selected to determine the trust value of the

malicious agent periodically. In this experiment the malicious agent performs total 1000 interactions

which are equally divided into four consecutive slots . The malicious agent then alternates between

good and malicious nature from one slot to the next starting with good nature.
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Figure 4.8: Trust computation error with respect to percentage of malicious agents forming collusive group.

Fig. 4.9 shows the computed trust value of the malicious agent under altering behavioral pattern.

We see that SECTrust quickly responds to the sudden fall of performance by the malicious agent once

it builds up its reputation. The sharp fall in the curve signifies this. Once the trust value diminishes to

zero it requires significant number of consecutive good services for its trust value to rise again. From

Fig. 4.9 we see that in spite of the good nature of the malicious agent in the third slot its trust value

rises very late and even in that case it does not rise to the previous value. So, the cost of rebuilding

reputation is actually higher than the benefit gained from milking it. That is the model successfully

incorporates the principle “quick decline and slow rise of trust value”. Fig. 4.9 also shows the impact

of different values of reward factor µ and punishment factor ψ.

4.6 Comparison with other Trust Models

In this set of experiments we will demonstrate the efficiency of SECTrust against other existing trust

models. In these experiments an agent first computes and compares the trust values of the responding

agents (i.e., agents who respond to a transaction request) and chooses the agent with the highest

trust value for interaction. A transaction is successful if the participating agent is cooperative i.e.,

if it is a good agent. In all the experiments we compute STR as the evaluation criterion against

different scenarios. The experiment proceeds in iterations where in each iteration each agent in the

system initiates one transaction. We have discarded the transactions initiated by malicious agents

from the calculation of STR. We execute a total of 100 iterations in one experiment and compute
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Figure 4.9: Effectiveness of SECTrust against dynamic personality.

the average STR. Since the responders to a transaction request is generated at random we take the

mean of 30 experiments for each scenario. We compare our model with SFTrust [39], FCTrust [12],

P2P recommendation trust model (for short we will use Recommendation-Trust/Reco-Trust) [31],

trust model of users’ behavior (for short we will use User-Trust) [34] and dynamic trust model for

multi-agent systems (for short we will use MAS-Trust) [20].

First, we calculate STR against the variation of percentage of malicious agents mal while keep-

ing mres=100% and cm rate=0%. As from Fig. 4.10 we see that SECTrust shows superiority over

the remaining trust models as the amount of malicious agents in the network increase beyond 50%.

Networks today are home to a significant number of malicious agents, especially the internet hold

great threats as it teems with malicious agents. So, in such networks SECTrust would provide the

best performance.

In the next experiment we want to observe the impact of collusion on STR. So, for this experiment

we set mal to 60% because as the number of malicious agents increases their collusive impact becomes

greater and we also set mres to 100%. Fig. 4.11 represents the computed STR against cm rate. Due

to the experimental randomness, the gradient of the curves may vary from experiment to experiment.

So, for better interpretation we draw the linear trend (Fig. 4.12) of these curves and then analysis

the gradient of the trend lines. Now, from mathematical point of view the more positive the gradient

the better since positive gradient means increase in STR which is desirable. In Fig. 4.13 we see that



4.6. Comparison with other Trust Models 55

Figure 4.10: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of average STR against mal.

SFTrust, MAS-Trust and User-Trust have negative gradient so in their case STR is actually decreasing

as collusive group size is increasing. The remaining four trust model remain unaffected by collusion.

The main reason behind this is the credibility measure which filters out false feedbacks. Here false

high ratings come from agents (namely malicious agents) with low credibility as a result they have no

impact on STR.

In the third experiment we will analysis the impact of mres on STR. As we saw in Fig. 4.7 that

the malicious agents tend to fool other agents by oscillating between good and malicious nature.

In this experiment we test three scenarios with mal set to 60%, 70% and 80% respectively while

cm rate is set to 0% in all the cases. Figs. 4.14-4.16 represents the computed STR against mres. From

the figures we see that SECTrust out performs all the trust model significantly. This is because our

model keeps track of sudden rise and fall of trust by agents and penalizes any agent showing frequent

trust fluctuation. Thus, SECTrust can successfully resist strategically altering behavior by malicious

agents.

In the next experiment we will test the stability of the trust models under oscillating behavior.

Here we run the experiment for a total of 500 iterations with mres set to 50% and cm rate set to 0%.

However, we divide the 500 iterations into four equal slots and so each slot contains 125 iterations.
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Figure 4.11: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of average STR against cm rate.

Figure 4.12: Comparing the trend lines of the curves for SECTrust, SFTrust [39], FCTrust [12], Reco-Trust

[31], User-Trust [34], MAS-Trust [20] and PeerTrust [35].

Malicious agents oscillate between benevolent and malicious nature from one slot to the next starting

with benevolent nature. Then we compute the number of times malicious agents are selected as
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Figure 4.13: Comparing the gradient of the trend lines for SECTrust, SFTrust [39], FCTrust [12], Reco-

Trust [31], User-Trust [34], MAS-Trust [20] and PeerTrust [35].

Figure 4.14: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of average STR against mres in presence of 60% malicious agents.

service providers to transactions initiated by only good agents. From Fig. 4.17 we see that in the

initial slot malicious agents are selected numerous times. This is because in the first slot they start off

by behaving good so there is no reason to reject them. However, in the following slots this number

should decline as we now know their true nature. We see that our model performs best in isolating

the malicious agents from providing service compared to the other trust models.
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Figure 4.15: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of average STR against mres in presence of 70% malicious agents.

Figure 4.16: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of average STR against mres in presence of 80% malicious agents.

Finally we compare the time it takes for the different trust models to compute trust. For this

purpose we compute the amount of times it takes for the trust models to execute 200 iterations with



4.6. Comparison with other Trust Models 59

Figure 4.17: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of the number of times malicious agents are selected as service providers.

mal set to 50%, cm rate set to 0% and mres set to 100%. We take the average of 30 runs. From

Fig. 4.18 we see that MAS-Trust requires the largest amount of time while FCTrust requires the lowest

amount. Our trust model requires on average 1.2 seconds to execute 200 iterations which higher than

some the remaining trust model. This is understandable as we have considered a large number of

components/parameters in our trust model as compared to the other trust models. For example we

have considered sudden rise and fall of trust and we have also taken into account the historical trend

of agent behavior which have not been considered by SFTrust, FCTrust, Reco-Trust and User-Trust.

As a result these trust models fail to effectively filter out malicious agents when they start to show

oscillating behaviors. The model that has considered the closest number of components as we have

done is MAS-Trust [20] and as we can see from Fig. 4.18 that it requires on average 4.8 seconds to

execute 200 iterations which is 4 times what our model requires. The main reason behind this is that

we have used exponential averaging function to keep track of any past records which reduces storage

overhead and as a result reduces the time required to retrieve the stored values. So from this point of

view our trust model greatly reduces the computational time.
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Figure 4.18: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of the amount of time required to execute 200 iterations.

Table 4.2: Comparing the min, max, mean and standard deviation obtained for SECTrust, SFTrust [39], FC-

Trust [12], Reco-Trust [31], User-Trust [34], MAS-Trust [20] and PeerTrust [35].

SECTrust SFTrust FCTrust Reco-Trust User-Trust MAS-Trust

Min 0.9468004 0.8621997 0.4800013 0.7888001 0.72919984 0.7911998

Max 0.96550004 0.8984005 0.5096002 0.81939965 0.758999984 0.82559965

Mean 0.956308482 0.883627887 0.492879247 0.805887873 0.746014665 0.807535056

SD 0.006021794 0.008306864 0.007960995 0.009064419 0.007355806 0.008239084

4.7 Statistical Analysis

This section performs some statistical analysis on the trust value computed by our trust model. Since

we are considering random transactions in computing trust values, the purpose of this section is to

check to what extent our trust model is statistically sound. For this purpose we computed min, max,

mean and standard deviation (SD) of the trust values obtained from the 30 runs of the experiment.

The following table summarizes the obtained values for the individual trust models.

The following figure highlight graphically the standard deviation obtained for the different trust

models. As we can see from Fig. 4.19 the computed standard deviation is very small for all the trust

models which signifies that the trust values obtained are more or less uniform.

We also performed chi-square test (χ2-test). For this experiment we set mal to 40%, mres to
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Figure 4.19: Comparing SECTrust with SFTrust [39], FCTrust [12], Reco-Trust [31], User-Trust [34], MAS-

Trust [20] and PeerTrust [35] in terms of computed standard deviation.

100% and cm rate to 0%, and then computed the trust value of all the agents in the system from

a cooperative/good agent’s point of view after 500 iterations. In each interaction each agent in the

system performs one transaction with a randomly chosen agent. After computing the trust values of

all the agents we categorize the agents based on the computed trust value into two classes namely:

good and malicious. Finally, we compare the obtained counts with the expected count (which is 59

good agents and 40 malicious agents as mal is set to 40%) to compute the χ2 value. For simplicity we

perform 20 runs. The observed counts of cooperative and malicious agents is given in the Table 4.3.

Now we calculate the χ2 value according to the following equation-

χ2 =
∑ (O − E)2

E
(4.1)

where O represents the observed value and E represents the expected value. So, after calculation

we obtain χ2 = 2.769 and the degree of freedom is (20 − 1) × (2 − 1) = 19. By consulting the

Chi-Square Probability table we find that a χ2 of 2.769 for 19 degree of freedom is smaller than the

value of 30.144 (researchers commonly use a significance level of p = 0.05) listed. This signifies

that the deviation that is found in the observed values and the expected values are likely caused by

chance. We can interpret the result in another way, for a χ2 value of 2.769 with 19 degree of freedom

the chi-square probability is greater than 0.99 i.e., 99% of the time the observed values agree with the
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Table 4.3: Observed count of good agents and malicious agents.

Run Good Agents Malicious Agents Run Good Agents Malicious Agents

1 54 45 11 57 42

2 58 41 12 57 42

3 57 42 13 58 41

4 59 40 14 58 41

5 57 42 15 57 42

6 58 41 16 58 41

7 58 41 17 58 41

8 57 42 18 58 41

9 56 43 19 59 40

10 59 40 20 59 40

expected value.

4.8 Scalability

The objective of this section is to show that our trust model remains unaffected in terms of perfor-

mance as the number of agents in the network increases. For this purpose we computed STR against

the number of agents in the network. We set mal to 40%, mres to 100% and cm rate to 0%. Fig. 4.20

shows that the computed STR remains same as the number of agents in the network is varied. So, our

trust model is scalable with the increase of agents in the system.

4.9 Decay of Trust with Lapse of Time

This experiment emphasizes the importance of attenuation of trust with lapse of time in absence of

interaction. Now a days agents show highly dynamic personality as result trust values should not

remain static in absence of interaction. By including a time decay model we are establishing the

principle “the more recent the transaction the more reliable it is”. Fig. 4.21 shows the comparison

among no decay and the attenuation function defined in [34] with our decay model. From the figure it

is observable that the attenuation function defined in [34], initially has a higher degradation rate than

later on. However, it should be the reverse i.e., initially the degradation rate should be smaller and as

more and more time elapse the degradation rate should increase or we can also have an uniform decay
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rate which our decay function incorporates.
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4.10 Summary

In this chapter we have evaluated the performance of SECTrust under different scenarios. We have

carried out experiments to tune the different parameters of our trust model to attain the best possible

result. Experiments revealed that SECTrust can quickly adapt to the strategic adaptations made by
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malicious agents including collusion and dynamic personality. From the comparative study with other

existing trust models SECTrust proved to be more robust and effective against attacks from malicious

agents.



Chapter 5

Conclusion

In this last chapter, we draw the conclusion of our thesis by briefly describing the major contributions

made by the research work associated with this thesis followed by some directions for future research.

5.1 Major Contributions

The contributions that have been made in this thesis can be enumerated as follows:

• Our trust model SECTrust provides a reputation based trust mechanism to resolve some of

the threats and risks present in a multi-agent environment by enabling agents to choose reputed

agents while avoiding untrustworthy agents. For example, the simplest form of malicious attack

is to provide some sort of corrupted service (i.e., virus attack, DOS attack etc.) in response to a

transaction. However, with the presence of a reputation-based trust mechanism the agent who

receives malicious service will be able to provide negative feedback to other agents about the

service provided by a malicious agent and thereby, help others to avoid the malicious agent in

future.

• We have also addressed one of the common vulnerabilities associated with reputation-based

trust mechanism such as shilling attacks where adversaries attack the system by submitting

false ratings to confuse the system. Shilling attack is often associated by collusion attack where

malicious agents group up together and collaborate to raise each other’s rating by making fake

transactions. SECTrust prevents such threats by assigning credibility to each feedback provider.

By doing so, SECTrust discards feedbacks submitted by malicious agents and thereby nullify

collusive attack.
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• Our trust model handles one of the challenging threats that most trust models fail to handle

which is the strategic alteration of behavior by malicious agents. By cleverly alternating be-

tween good and malicious nature they try to remain undetected while causing damage. SEC-

Trust keeps track of sudden rise and fall of trust and thereby can easily penalize such oscillating

behavior.

• We have also address the attenuation of trust with elapse of time in absence of interaction which

many of the previous models have not considered.

• We have greatly reduced storage overhead by using an exponential averaging function to keep

record of the previous trends or trust values.

5.2 Future Work

Any research on any topic always makes ways for future research works and ours is not an exception.

Trust models need to adapt to new challenges and requirements that arise as new malicious activities

evolve. Some of the issues that we found requires further investigation are give below-

• As we have previously stated we have addressed only a handful of the threats that exist in MAS.

Other threats like tampering of distributed trust information and man in the middle attack can

be resolved by combining public key cryptography algorithms on top of our trust model. This

can be looked into for further analysis.

• Some of the most complex malicious attacks like the sybil attack [37] (similar to Whitewashing

Attack) where an agent creates multiple identities and switches from one to another with the

intent of removing its bad history severely affect the trust model. Friedman and Resnick [10]

discuss two approaches to this issue: either make it difficult to change online identities or struc-

ture the community in such a way that exit and entry with new identity becomes unprofitable.

So, some kind of metric that takes into account the cost of entry into and exit from a community

could be incorporated into the trust model.

• In case of choosing agents based on highest trust value there is always the probability that some

of the agents (with high reputation) will have heavy load in providing services while other

capable agents (with comparatively low reputation) will have relatively low work load even
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though they could also provide the required services. So, a load balancing scheme based on the

trust metric could be developed to provide a more efficient utilization of resource.

• Our trust model can be easily formulated for use in Wireless Sensor Networks (WSN). The

main advantage with our approach is that the storage requirement for the different components

is minimal as we have used exponential averaging functions to define them. This is critically

important for sensors in WSN as they have limited space and computational power. Some other

parameters like geographical distance of service providers should be taken into consideration

because long distance transmissions require substantial amount of energy and sensors try to

avoid this situation as they are always attempting to conserve energy.
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Appendix A

Algorithms Related to Building the Trust

Model

Algorithm 2 update satisfaction(int id,int feedback)
Input: Target agent′s id id and recent satisfaction degree feedback

Output: Update satisfaction factor for target agent

Scur ← feedback

δ[id] ← |S[id]− Scur|
ξ[id] ← c ∗ δ[id] + (1− c) ∗ ξ[id]

α ← threshold + c ∗ δ[id]
1+ξ[id]

S[id] ← α ∗ Scur + (1− α) ∗ S[id]

Algorithm 3 calculate DT(int id)
Input: Target agent′s id id

Output: Calculate the direct trust of the target agent

DT [id] ← get Satifaction(id) ∗ get Credibility(id)
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Algorithm 4 calculate IT(int id, agent target)
Input: Target agent′s id id and the target agent target

Output: Calculate the indirect trust of the target agent

numerator ← 0

denummerator ← 0

W ⇐ compute recommender set (target) //using algorithm 1

for each x ∈ W do

numerator ← numerator + Cre(x) ∗ get DT (x, id)

denummerator ← denummerator + Cre(x)

end for

if denummerator > 0 then

IT [id] ← numerator/denummerator

end if

Algorithm 5 calculate RT(int id, agent target)
Input: Target agent′s id id and the target agent target

Output: Calculate the recent trust of the target agent

numerator ← 0

W ⇐ compute recommender set (target) //using algorithm 1

for each x ∈ W do

numerator ← numerator + get InteractionCount(x, id)

end for

if |W | > 0 then

M ← numerator/|W |
end if

I ← get InteractionCount(own, id)

if I + M > 0 then

β ← I
I+M

end if

Prev RT [id] ← RT [id]

RT [id] ← β ∗ get DT (id) + (1− β) ∗ get IT (id)
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Algorithm 6 calculate HT(int id)
Input: Target agent′s id id

Output: Calculate the historical trust of the target agent

HT [id] ← ρ∗HT [id]+get PreviousRT (id)
2

Algorithm 7 calculate ET(int id)
Input: Target agent′s id id

Output: Calculate the expected trust of the target agent

I(id) ← get InteractionCount(own, id)

if I(id) = 0 then

ET [id] ← 0

else if I(id) > 0 && get RT (id) > 0 && get HT (id) = 0 then

ET [id] ← get RT (id)

else if I(id) > 0 && get RT (id) = 0 && get HT (id) > 0 then

ET [id] ← get HT (id)

else if I(id) > 0 && get RT (id) > 0 && get HT (id) > 0 then

ET [id] ← η[id] ∗ get RT (id) + (1− η[id]) ∗ get HT (id)

end if

if get RT (id)− get HT (id) > ε && η[id] 6= 1 then

η[id] ← η[id] + 0.1

else

η[id] ← η[id]− 0.1

end if
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Algorithm 8 calculate Similarity(int id, agent target)
Input: Target agent′s id id and the target agent target

Output: Calculate the similarity of the target agent

temp1 ← 0

temp2 ← 0

sat diff ← 0

W ⇐ PS(own)
⋂

PS(target)

if |W | > 0 then

for each x ∈ W do

temp1 ← get satisfaction(own, id)

temp2 ← get satisfaction(target, id)

sat diff ← sat diff + (temp1− temp2)2

end for

difference[id] ←
√

sat diff/|W |
end if

if difference[id] < τ then

sim[id] ← sim[id] + 1−sim[id]
µ

else

sim[id] ← sim[id]− sim[id]
ψ

end if

Algorithm 9 calculate Credibility(int id)
Input: Target agent′s id id

Output: Calculate the credibility of the target agent

if get similarity(id) < 0.01 then

Cre[id] ← 0

else

Cre[id] ← 1− ln(get similarity(id))
ln θ

end if
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Algorithm 10 calculate RRT(int id, agent target)
Input: Target agent′s id id and the target agent target

Output: Calculate the reliability in recent trust of the target agent

N [id] ← get InteractionCount(own, id)

W ⇐ compute recommender set (target) //using algorithm 1

for each x ∈ W do

N [id] ← N [id] + get Credibility(id) ∗ get InteractionCount(x, id)

end for

if N [id] < maxN then

Prev RRT [id] ← RRT [id]

RRT [id] ← sin
(

Π∗N [id]
2∗maxN

)

else

Prev RRT [id] ← RRT [id]

RRT [id] ← 1

end if

Algorithm 11 calculate RHT(int id)
Input: Target agent′s id id

Output: Calculate the reliability in historical trust of the target agent

RHT [id] ← ρ∗RHT [id]+get PreviousRRT (id)
2

Algorithm 12 calculate AT(int id)
Input: Target agent′s id id

Output: Calculate the accumulated misused trust of the target agent

if get RT (id)− get HT (id) > ϕ then

AT [id] ← AT [id] + get RT (id)−get HT (id)
ω

else if get RT (id)− get HT (id) < −ϕ then

AT [id] ← AT [id] + get HT (id)− get RT (id)

else

AT [id] ← AT [id]

end if
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Algorithm 13 calculate DR(int id)
Input: Target agent′s id id

Output: Calculate the deviation reliability of the target agent

if get AT (id) < maxAT then

DR[id] ← cos
(

Π∗get AT (id)
2∗maxAT

)

else

DR[id] ← 0

end if

Algorithm 14 calculate confidence(int id)
Input: Target agent′s id id

Output: Calculate the confidence factor of the target agent

if (get RRT (id) + get RHT (id)) ∗ get DR(id) > 1 then

C[id] ← 1

else

C[id] ← (get RRT (id) + get RHT (id)) ∗ get DR(id)

end if

Algorithm 15 update recommnder credibility(int id, agent target)
Input: Target agent′s id id and the target agent target

Output: Update of the cerdibility of the recommenders

W ⇐ compute recommender set (target) //using algorithm 1

for each x ∈ W do

calculate Similarity(x′s id, x)

calculate Credibility(x′s id)

end for


