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Abstract

An upward point-set embedding of an upward planar digraph G on a set of

points S with a mapping Φ : V (G) → S is a drawing Γ of G where each vertex

of G is placed on a point of S according to Φ, each edge is drawn upward and

no two edges cross each other. In this thesis we give an algorithm for finding an

upward point-set embedding of an upward planar digraph G with a mapping

if it exists. Our algorithm finds a drawing with at most n − 3 bends per edge

whereas the best known previous algorithm finds a drawing with at most 2n−3

bends. Furthermore we also find an upper bound on total number of bends for

an upward point-set embedding.

An orthogonal point-set embedding of a planar graph G on a set S of points

in Euclidean plane is a drawing of G where each vertex of G is placed on

a point of S, each edge is drawn as a sequence of alternate horizontal and

vertical line segments and any two edges do not cross except at their common

end. Orthogonal point-set embeddings have practical applications in circuit

schematics on pre-fabricated printed circuit boards (PCBs), where position of

components on the PCB is prescribed and standard cell technology employed

during the VLSI layout design process. In both the cases, it is always desirable

to minimize the number of bends, points at which the edge changes its direction

in the drawing. Because bends increase the manufacturing cost in PCB board

and VLSI chip. In this thesis we devise an algorithm for orthogonal point-set

embedding of 3-connected cubic planar graphs having a hamiltonian cycle with

at most
(

5n
2

+ 2
)

bends. We also give an algorithm for finding an orthogonal

point-set embedding of 4-connected planar graphs (∆ ≤ 4) with at most 6n

bends. To the best of our knowledge this is the first work on orthogonal point-

set embedding with fewer bends.
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Chapter 1

Introduction

A graph is a mathematical tool that can efficiently represents the real world ob-

jects and the relationships among them. Generally the objects are represented

by small dots named vertices and the relationships are represented by connect-

ing lines called edges . A graph is often used in computer science because of

its versatile usefulness to represent any information that can be modeled as ob-

jects and relationships between pairs of them. As a consequence, graphs became

the most reliable and useful mathematical tool not only in the fields of com-

puter science but also in the areas of electrical, architectural and other field of

engineering, genetics, bioinformatics, molecular biology, chemistry, VLSI tech-

nology, and even in geology, social sciences. Information visualization is one

of the vital parts of graph theory in almost each of its application areas. A

drawing of a graph is a sort of visualization of information represented by that

graph. The field in which the different aesthetic techniques of drawing graphs

are vividly described is “Graph Drawing”.

The origin of Graph Drawing is not well known. It is relatively a new area

in Computer Science. The field of graph drawing is motivated by its abundant

applications for information visualization and also for VLSI circuit design, so-

cial network analysis, cartography, and bioinformatics. The graph in Fig. 1.1(a)

has six vertices and ten edges can easily be visualized if we can represent the

same graph as in Fig. 1.1(b) which is one of the drawing techniques gener-

ally used in graph drawing. Apart from these, graph drawing, particularly

automated generation of the drawings of graphs, nowadays finds inducive ap-

plications in software engineering (data-flow diagrams, subroutine-call graphs,

1
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Figure 1.1: An example of graph drawing in circuit schematics.

object-oriented class hierarchies etc.), databases (ER-diagrams), information

systems (organizational charts), real-time systems (Petri-nets, state-transition

diagrams), Decision support systems (PERT networks, activity trees), electrical

and VLSI circuit design (layout design and circuit schematics), artificial intelli-

gence (knowledge-representation diagrams), logic programming (SLD-trees), bi-

ology and phylogenetics (evolutionary trees), medical sciences (concept lattices),

chemistry (molecular drawings), civil engineering (architectural floorplan) and

cartography (map schematics) [Rah99].

In the field of graph drawing, the geometric representations of graphs gener-

ated by graph drawing algorithms are constrained by some predefined geometric

or aesthetic properties. In another words, the objective of graph drawing is to

obtain a nice representation of a graph such that the structure of the graph is

easily understandable, moreover the drawing should help to resolve the question

arises from the application point of view using predefined properties.

Point-set embedding of a plane graph G on a set of points S is a planar

drawing Γ of G where each vertex of G is placed on a point of S. Γ is called

orthogonal if each edge of Γ is drawn by as a sequence of alternate horizontal and

vertical line segments. Orthogonal drawings have attracted much attention due

to their numerous applications in circuit layouts, database diagrams, entity-

relationship diagrams, etc. The drawing in Fig. 1.1(b) is an example of an

orthogonal drawing of graph in Fig. 1.1(a). Every plane graph with ∆ ≤ 4

2



has an orthogonal drawing, but may need bends, that is, points where an edge

changes its direction in a drawing. If a graph corresponds to a VLSI circuit, then

it is often desirable to find an orthogonal drawing with fewer bends, because

bends increase the manufacturing cost of a VLSI chip. In this thesis, we at first

address the problem of finding an upward point-set embedding of an upward

planar digraph with mapping allowing n−3 bends per edge. After that we devise

two different linear time algorithms for orthogonal drawings of 3-connected cubic

planar graphs having a hamiltonian cycle and 4-connected planar graphs with

smaller number of bends on a point-set.

In the rest of this chapter, we provide the necessary background and ob-

jectives for this thesis. We describe point-set embeddings of planar graphs in

Section 1.1 and Section 1.2 depicts some interesting applications of point-set

embeddings. Section 1.3 presents the scope of this thesis with a brief overview

of the previous results related to the scope and the new results described in this

thesis. Finally the thesis organization is narrated in Section 1.4.

1.1 Point-Set Embeddings of Planar Graphs

In this section we describe the definition of different types of point-set embed-

dings.

1.1.1 Straight-line Point-Set Embedding

A straight-line drawing of a planar graph G is a drawing of G, where each vertex

is drawn as a point and each edge is drawn as a straight-line segment and no two

edges do not cross except their common end. Given a set S of n points on the

Euclidean plane, a straight-line point-set embedding of a planar graph G with n

vertices on S is a straight-line drawing of G, where each vertex of G is mapped

to a distinct point of S. Figure 1.2(c) is a straight-line point-set embedding of

a planar graph G on S (Fig. 1.2(a),(b)) where each vi of G is mapped to point

i in Γ for 1 ≤ i ≤ 6.

3
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Figure 1.2: (a) Planar graph G, (b) point-set S, (c) straight-line point-set

embedding Γ of G on S.
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Figure 1.3: 3-connected cubic planar graph with point-set.
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1.1.2 Orthogonal Point-Set Embedding

An orthogonal point-set embedding of a planar graph G on a set of points S is

a drawing of G where each vertex of G is placed on a point of S, each edge is

drawn as a sequence of alternate horizontal and vertical line segments and any

two edges do not cross except at their common end. A planar graph G is said

to be k-connected if removal of any set of k − 1 vertices does not disconnect

the graph G. If all the vertices of G have degree three, then G is cubic. A

cubic planar graph G with a point-set S is shown in Fig. 1.3. Figure 1.4 is

an orthogonal drawing of a 3-connected cubic planar graph G in point-set S

depicted in Fig. 1.3.

v
1

v
5

v
6

v
2

v
4

v
3

v

v
8

v
9

v
10

7

Figure 1.4: An orthogonal drawing of a planar graph G of Fig. 1.3.

1.1.3 Upward Point-Set Embedding

Let G be an upward planar digraph with n vertices and let S be a set of

n distinct points in the plane. An upward point-set embedding of G on S is a

drawing of G where each vertex of G is placed on a distinct point of S, each edge

is drawn upward and no two edges cross each other. Suppose Φ is a mapping

from the vertices of G to the points of S. An upward point-set embedding of G

on S with the mapping Φ is an upward point-set embedding of G on S where

the vertices of G are located at the points of S according to the mapping Φ

5
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Figure 1.5: An upward planar digraph G and a point-set S.

[GLW09]. G does not admit an upward point-set embedding on S with every

mapping Φ. For example, one can easily observe that there exists no upward

point-set embedding of the upward planar digraph G on the points S in Fig. 1.5

where each vertex vi of G is mapped to the point i of S for 1 ≤ i ≤ 4.

1.2 Applications of Point-Set Embeddings

Point-set embeddings of planar graphs have number of applications in the areas

of VLSI Layouts, circuit schematics, network flow models, Computer Networks,

etc. We present a few applications of point-set embeddings for both undirected

and directed graphs in the remainder of this section.

1.2.1 VLSI Layout

In the standard cell technology employed during the VLSI layout design pro-

cess, the VLSI modules are placed on some constant number of previously fixed

rows and columns. An orthogonal drawing of a graph in a point-set can be used

to obtain a layout of an interconnection network on a standard cell. A vertex

of the graph represents a module of the VLSI circuit and an edge represents an

interconnection between two modules. The input graph represents the inter-

connection graph and the set of points represents the place of modules in VLSI

standard cell. Thus we can find an appropriate VLSI layout of smaller bends

using the orthogonal point-set embedding of planar graph G. The process is

illustrated in Fig. 1.6. The Fig. 1.6(c) is a VLSI layout of a four-connected

planar interconnection graph G of Fig. 1.6(a) in the point-set S of Fig. 1.6(b).

6
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Figure 1.6: (a) Interconnection graph G, (b) point-set S, (c) VLSI Layout of G

on S.
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1.2.2 Hierarchical Structure

Upward point-set embedding has an immidiate application in representing the

hierarchical structure of any nature. Our upward topological book embedding

drawing is useful in the context of computing drawings of hierarchical struc-

tures where it is required to consider not only aesthetic constraints such as the

upwardness and the planarity but also semantic constraints expressed in terms

of collinearity for a set of vertices, i.e in the application domains of knowl-

edge engineering and of project management, PERT diagrams are typically

drawn by requiring that critical sequence of tasks be represented as collinear

vertices [GLMS07].

There are also numerous applications of point-set embeddings of planar

graphs. Upward point-set embedding turns out to be a classical problem of

computational geometry. It is also useful in the context of visualization of

self-modifiable code, based on computing a sequence of drawings whose edges

are define at run-time [Hal91]. Nonetheless, orthogonal drawing alogorithms

became useful tools for finding other important drawing algorithms such as

octagonal drawing, box-orthogonal drawing and hexagonal drawing [NR04].

1.3 Scope of This Thesis

In this section we first mention the previous results of point-set embeddings of

planar graphs and upward point-set embeddability for directed planar graphs.

After that we will discuss the results obtained in this thesis.

1.3.1 Previous Results

The problem of embedding planar graphs in point-set has a rich collection

of literature [Bos97, KW02, PGMP91, PW98]. Bose presented an O(nlog3n)

time and O(n) space algorithm for embedding outer-planar graph in point-

set [Bos97]. Pach and Wenger developed O(n2) time drawing algorithm for

embedding general planar graphs at fixed vertex locations where each edge is

drawn by a polygonal curve with O(n) bends [PW98]. In the later time Kaufman

and Wiese developed two algorithms for drawing 4-connected plane graphs with

at most one bend per edge and general plane graphs with at most two bends

8



per edge [KW02]. Their both algorithms have O(n2) time complexity which can

be improved to O(nlogn) if three bends per edge are allowed in the drawings.

The open problem of deciding whether there is a planar straight-line embedding

of planar graph in point-set exists or not [Bos97, KW02] has been proved as

NP-complete by Cabello [Cab06].

Point-set embedding of planar graphs with minimum number of bends is

another objective for the current researchers. For the class of outer-planar

triangulated st-digraphs, a recent result gives a linear-time algorithm for an

upward topological book embedding with minimum number of bends where at

most two bends per edge are allowed [MS09]. Giordano et al. proved that any

planar digraph has an upward topological book embedding Γ such that every

edge of G contains at most two bends in Γ and they have also developed another

algorithm to obtain an upward point-set embedding of an upward planar digraph

on any set of n distinct points in the plane but their algorithm does not minimize

the total number of bends in Γ [GLMS07]. Furthermore, none of the algorithms

mentioned so far has considered a given mapping of the vertices to the points.

Then Giordano, Liotta and Whitesides modify the previous algorithm to give an

algorithm to draw an upward point-set embedding of an upward planar digraph

with a given mapping with at most 2n− 3 bends per edge [GLW09]. Moreover,

they posted an open problem of minimizing the total number of bends of an

upward point-set embedding in their paper.

1.3.2 Results in This Thesis

In this thesis we mainly provide three different algorithms. Our first algorithm

is for finding upward point-set embeddings of upward planar digraphs. The next

algorithm is for orthogonal point-set embeddings of 3-connected cubic planar

graphs having a hamiltonian cycle. Our last algorithm is for orthogonal point-

set embeddings of 4-connected planar graphs. We also find the upper bound

on number of bends of these drawings. For a brief summary, we now list the

results presented in this thesis as follows:

• At first we give an algorithm for upward point-set embeddings of upward

planar digraphs. Our algorithm uses at most n− 3 bends per edge which

improves the best known previous upper bound of 2n− 3 bends per edge.

We also find the upper bound on number of bends in the drawing.

9



• We give a linear time algorithm for orthogonal point-set embeddings of

3-connected cubic planar graphs with a hamiltonian cycle. Our algorithm

finds a drawing with at most
(

5n
2

+ 2
)

bends.

• At last we provide another linear time algorithm for orthogonal point-

set embeddings of 4-connected planar graphs (∆ ≤ 4) with fewer bends

which has more practical applications in VLSI layout. Our algorithm finds

a drawing with at most 6n bends.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some basic

terminology of graph theory and algorithmic theory. Chapter 3 describes the

algorithm for finding upward point-set embeddings of upward planar digraphs

and related results. In Chapter 4, we give two algorithms for finding orthogo-

nal point-set embeddings of 3-connected cubic planar graphs and 4-connected

planar graphs. Finally Chapter 5 concludes the thesis with a summary of the

results with some future works.

10



Chapter 2

Preliminaries

In this chapter we define some basic terminology of graph theory, graph drawing,

book embedding and algorithm theory, that we will use throughout the rest

of this thesis. In Section 2.1, we cover some definitions of standard graph-

theoretical terms. We devote Section 2.2 to define terms related to planar

graphs. Section 2.3 defines some drawing conventions and Section 2.4 consists

of the terms related to topological book embedding. Finally we introduce the

notion of time complexity of algorithms in Section 2.5.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis. For readers interested in more details of graph theory

we refer to [NC88, NR04, Wes01].

2.1.1 Graphs

A graph G is a tuple (V,E) which consists of a finite set V of vertices and a finite

set E of edges; each edge being an unordered pair of vertices. Figure 2.1 depicts

a graph G = (V,E) where each vertex in V = {v1, v2, . . . , v6} is drawn as a

small circle and each edge in E = {e1, e2, . . . , e8} is drawn by a line segment.

We denote an edge joining two vertices u and v of the graph G = (V,E) by

(u, v) or simply by uv. If uv ∈ E then the two vertices u and v of the graph G

are said to be adjacent; the edge uv is then said to be incident to the vertices

u and v; also the vertex u is said to be a neighbor of the vertex v (and vice

11
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Figure 2.1: A graph with six vertices and eight edges.

versa). The degree of a vertex v in G, denoted by d(v) or deg(v), is the number

of edges incident to v in G. In the graph shown in Figure 2.1 vertices v1 and v2

are adjacent, and d(v6) = 4, since four of the edges, namely e5, e6, e7 and e8 are

incident to v6.

2.1.2 Simple Graphs and Multigraphs

If a graph G has no “multiple edges” or “loops”, then G is said to be a simple

graph. Multiple edges join the same pair of vertices, while a loop joins a vertex

with itself. The graph in Figure 2.1 is a simple graph.

A graph in which loops and multiple edges are allowed is called a multi-

graph. Multigraphs can arise from various applications. One example is the

“call graph” that represents the telephone call history of a network. The graph

in Figure 2.2(a) is a call graph that represents the call history among six sub-

scribers. Note that there is no loop in this graph. Figure 2.2(b) illustrates

another multigraph with multiple edges and loops.

Often it is clear from the context that the graph is simple. In such cases,

a simple graph is called a graph. In the remainder of thesis we will only be

concerned about simple graphs.

2.1.3 Directed and Undirected Graphs

In a directed graph, the edges do have a direction but in an undirected graph, the

edges are undirected. Strictly speaking, each edge in a directed graph should be

12
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Figure 2.2: Multigraphs.

represented by a 2-tuple while for an undirected graph it should be represented

by a 2-member subset of the vertex set. In Figure 2.3(a) and (b), we show an

undirected and a directed graphs respectively. In this thesis, we will mean an

undirected graph when we say “a graph” unless mentioned otherwise.
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Figure 2.3: Undirected and directed graphs.
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Figure 2.4: External Hamiltonian cycle of a 3-connected cubic planar graph G.

2.1.4 Paths and Cycles

A walk, w = v0, e1, v1, . . . , vl−1, el, vl, in a graph G is an alternating sequence

of vertices and edges of G, beginning and ending with a vertex, in which each

edge is incident to the two vertices immediately preceding and following it. The

vertices v0 and vl are said to be the end-vertices of the walk w.

If the vertices v0, v1, . . . , vl are distinct (except possibly v0 and vl), then the

walk is called a path and usually denoted either by the sequence of vertices

v0, v1, . . . , vl or by the sequence of edges e1, e2, . . . , el. The length of the path is

l, one less than the number of vertices on the path. For any two vertices u and

v of G, a u, v-path in G is a path whose end-vertices are u and v.

A walk or path w is closed if the end-vertices of w are the same. A closed

path containing at least one edge is called a cycle. A cycle is called Hamiltonian

if it consists of all the vertices of a graph G. An external Hamiltonian cycle

C of a graph G is a hamiltonian cycle such that C has at least one edge on

the outer face of G. This property is called external hamiltonicity [KW02]. An

external Hamiltonian cycle C = 〈 v1, v2, . . ., v10, v1 〉 is shown in Fig. 2.4 by

dotted lines.

2.1.5 Connectivity

A graph G is connected if for any two distinct vertices u and v of G, there is a

path between u and v. A graph which is not connected is called a disconnected

14



graph. A (connected) component of a graph is a maximal connected subgraph.

The graph in Figure 2.5(a) is a connected graph since there is a path between

every pair of distinct vertices of the graph. On the other hand, the graph in

Figure 2.5(b) is a disconnected graph since there is no path between, say, v1

and v5. The graph in Figure 2.5(b) has two connected components as indicated

by the dotted lines. Note that every connected graph has only one component;

the graph itself.
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(a) (b)

Figure 2.5: (a) A connected graph, (b) A disconnected graph with two connected

components.

The connectivity κ(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex graph K1. We say

that G is k-connected if κ(G) ≥ k. 2-connected and 3- connected graphs are also

called biconnected and triconnected graphs, respectively. A block is a maximal

biconnected subgraph of G. We call a set of vertices in a connected graph G

a separator or a vertex cut if the removal of the vertices in the set results in a

disconnected or single-vertex graph. If a vertex-cut contains exactly one vertex

then we call the vertex a cut vertex.

2.2 Planar Graphs

In this section we give some definitions related to planar graphs used in the

remainder of the thesis.

15



A planar drawing of a graph G is a two-dimensional drawing of G in which

no pair of edges intersect with each other except at their common end-vertex.

A planar graph is a graph that has at least one planar drawing. A planar

embedding of a graph G is a data structure that defines a clockwise (or counter

clockwise) ordering of the neighbors of each vertex of G that corresponds to a

planar drawing of the graph. Note that a planar graph may have an exponential

number of embedding. Figure 2.6 shows two planar embeddings of the same

planar graph.
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Figure 2.6: Two planar embeddings of the same planar graph.

A plane graph is a planar graph with a fixed planar embedding. A plane

graph divides the plane into connected regions called faces . A finite plane

graph G has one unbounded face and it is called the outer face of G. G is

said to be triangulated if each face of G is a triangle, i.e contains exactly three

vertices. A triangulated plane graph is 4-connected if and only if it has no

separating triangle [Woo82]. Furthermore, all 4-connected planar graphs are

Hamiltonian [Tho83].

Let G be a plane graph with a cycle C. Now if E(G), E(C) represent the set

of edges of plane graph G and the cycle C respectively, then we define G − C

as G − C = E(G) − E(C). The edges of G − C can be partitioned into two

classes as inner edges and outer edges of C. The edges of G − C which are

stay inside with respect to the cycle C are called the inner edges of C and the

edges of G−C which are stay outside with respect to the cycle C are called the

outer edges of C. If a cycle C = 〈 v1, v2, . . . , v6, v1 〉 of a plane graph G, then
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Figure 2.7: Inner edges and outer edges of cycle C.

the edges (v1, v3), (v1, v4) are inner edges of C and the edges (v2, v7), (v5, v7) are

outer edges of C as shown in Fig. 2.7.

2.3 Drawing Conventions

In this section we introduce some conventional drawing styles, which are found

suitable in different application domain. The different drawing styles vary owing

to different representations of vertices and edges. Depending on the purpose

and objective, the vertices are typically represented with points or boxes and

edges are represented with simple Jordan curves [NR04]. A few of the most

important drawing styles are introduced below.

2.3.1 Planar Drawing

A drawing Γ of a graph G is planar if no two edges intersect with each other

except at their common end-vertices. In Figure 2.8(a) and (b), we show a planar

and a non-planar drawing of the same graph.

Planar drawings of graphs are more convenient than non-planar drawings

because, as shown empirically in [Pur97], the presence of edge-crossings in a

drawing of a graph make it more difficult for a person to understand the infor-

mation being modeled. Unfortunately, not all graphs have a planar drawing.
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Figure 2.8: (a) A planar drawing, (b) A non-planar drawing of the graph drawn

in (a), (c) A graph which does not have a planar drawing.

Figure 2.8(c) is an example of one such graph.

2.3.2 Straight-line Drawing

A straight-line drawing of a graph G is a drawing of G in which each edge is

drawn as a straight line segment, as illustrated in Figure 2.9. Wagner [Wag36],
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7

Figure 2.9: A straight line drawing.

Fary [Far48] and Stein [Ste51] independently proved that every planar graph

has a straight line drawing.

2.3.3 Orthogonal Drawing

An orthogonal drawing of a planar graph G is a drawing of G, in which each

vertex of G is mapped to a point, each edge is drawn as a sequence of alternate

horizontal and vertical line segments, and any two edges do not cross except at

their common end, as illustrated in Fig. 2.10.
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Figure 2.10: (a) A planar graph G, (b) orthogonal drawing of G with ten bends.

Clearly the maximum degree ∆ of G is at most four if G has an orthogonal

drawing. Conversely, every plane graph with ∆ ≤ 4 has an orthogonal drawing,

but may need bends, that is, points where an edge changes its direction in

a drawing. Bend minimization in orthogonal drawing has a rich collection of

literature [GL99, RNN99, GT01, RN02, RNN03].

2.4 Topological Book Embedding

In this section we will at first define topological book embedding and the related

terms of topological book embedding. Upward topological book embedding is

defined in the last part of the section.

A topological book embedding γ of a planar digraph G is a planar embedding

of G in the form of a 2-page book where the vertices are contained along a

straight-line, each edge is drawn within the two half-planes induced by the

straight-line and the edges are allowed to cross the spine [Miy06]. The straight-

line on which the vertices of G are placed is called the spine of γ and the two

half-planes induced by the spine is called the pages of γ. Figure 2.11(b) shows

a topological book embedding of the graph G of Fig. 2.11(a) where the dotted

line represents the spine and the two half planes on either side of the spine are

the pages of the book. The edge (b, e) in Fig. 2.11(b) crosses the spine.

A book is defined as a collection of half planes called pages which join to-
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Figure 2.11: (a) A planar graph G, (b) a topological book embedding of G with

a spine crossing by the edge (b, e).

gether at a straight-line called the spine. For the rest of the thesis, we shall

assume that in a topological book embedding of a planar graph, the spine is

aligned along the y-axis. In such a drawing the half plane on the left hand side

of the spine is called the left page and that on the right hand side is called the

right page.

An upward topological book embedding of a planar graph G is a topological

book embedding γ where each edge of γ is drawn as upward. Thus an upward

book embedding of G takes the form of a 2-page book where the vertices are con-

tained along a straight-line, each edge is drawn in the monotonically increasing

direction within the two half-planes induced by the straight-line and the edges

are allowed to cross the spine. Figure 2.12(b) shows a upward topological book

embedding of the graph G of Fig. 2.12(a) where the dotted line represents the

spine. The edge (2, 5) in Fig. 2.12(b) crosses the spine. Let Φ is an ordering

of the vertices of G. An upward topological book embedding of G with the

ordering Φ is an upward topological book embedding of G where the ordering

of the vertices along the spine follows Φ.
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Figure 2.12: (a) A planar graph G, (b) a topological book embedding of G with

a spine crossing by the edge (2, 5).

2.5 Complexity of Algorithms

In this section we briefly introduce some terminologies related to complexity of

algorithms. For interested readers, we refer the book of Garey and Johnson

[GJ79].

The most widely accepted complexity measure for an algorithm is the run-

ning time, which is expressed by the number of operations it performs before

producing the final answer. The number of operations required by an algorithm

is not the same for all problem instances. Thus, we consider all inputs of a given

size together, and we define the complexity of the algorithm for that input size

to be the worst case behavior of the algorithm on any of these inputs. Then

the running time is a function of size n of the input.

2.5.1 The Notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

“asymptotic behavior”, that is, the behavior of the algorithm when applied to

very large inputs. To deal with such a property of functions we shall use the

following notations for asymptotic running time. Let f(n) and g(n) are the
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functions from the positive integers to the positive reals, then we write f(n) =

O(g(n)) if there exists positive constants c1 and c2 such that f(n) ≤ c1g(n)+ c2

for all n. Thus the running time of an algorithm may be bounded from above

by phrasing like “takes time O(n2)”.

2.5.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its

complexity is bounded by a polynomial of the size of a problem instance. Ex-

amples of such complexities are O(n), O(nlogn), O(n100), etc. The remaining

algorithms are usually referred as exponential or non-polynomial. Examples of

such complexity are O(2n), O(n!), etc. When the running time of an algo-

rithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.5.3 NP-complete Problems

There are a number of interesting computational problems for which it has not

been proved whether there is a polynomial time algorithm or not. Most of them

are “NP-complete”, which we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables

and the location of the current instruction to be executed. A deterministic

algorithm is one for which each state, upon execution of the instruction, uniquely

determines at most one of the following state (next state). All computers,

which exist now, run deterministically. A problem Q is in the class P if there

exists a deterministic polynomial-time algorithm which solves Q. In contrast, a

non-deterministic algorithm is one for which a state may determine many next

states simultaneously. We may regard a non-deterministic algorithm as having

the capability of branching off into many copies of itself, one for the each next

state. Thus, while a deterministic algorithm must explore a set of alternatives

one at a time, a non-deterministic algorithm examines all alternatives at the

same time. A problem Q is in the class NP if there exists a non-deterministic

polynomial-time algorithm which solves Q. Clearly, P ⊆ NP .

Among the problems in NP are those that are hardest in the sense that if

one can be solved in polynomial-time then so can every problem in NP. These
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are called NP-complete problems. The class of NP -complete problems has the

following interesting properties.

(a) No NP -complete problem can be solved by any known polynomial algo-

rithm.

(b) If there is a polynomial algorithm for any NP -complete problem, then

there are polynomial algorithms for all NP -complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial

time, all problems in NP are so, but we are unable to argue that Q ∈ NP . So

Q does not qualify to be called NP -complete. Yet, undoubtedly Q is as hard as

any problem in NP. Such a problem Q is called NP-hard.

23



Chapter 3

Upward Point-Set Embedding

3.1 Introduction

An upward point-set embedding of an upward planar digraph is an upward planar

drawing of the graph where the vertices are placed on a predefined set of distinct

points in the plane. Mapping is defined from the vertices of upward planar

digraph to the points in the plane.
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Figure 3.1: (a) An upward planar digraph G, (b) a point-set S, (c) an upward

point-set embedding Λ of G on S

.

Let G be an upward planar digraph with n vertices, S be a set of n distinct

points in the plane and Φ be a mapping from the vertices of G to the points
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of S, then an upward point-set embedding with mapping is an upward planar

drawing Λ of G where each vertex of G is placed on the point of S according

to Φ. Figure 3.1(c) shows the upward point-set embedding Λ of upward planar

digraph G on S of Fig. 3.1(a),(b) where Φ is defined from vertex vi of G to the

point i of S for 1 ≤ i ≤ 5. It is easy to understand that not every mapping Φ

has an upward point-set embedding of G on S.

The rest of the chapter is organized as follows. Section 3.2 describes the al-

gorithm for finding an upward topological book embedding of an upward planar

digraph with a given ordering. The algorithm for finding upward point-set em-

bedding from upward topological book embedding is illustrated in Section 3.3.

Finally Section 3.4 concludes the paper. The results described in this chapter

has been presented in [CAR09].

3.2 Upward Topological Book Embedding

It is trivial to see that G admits an upward topological book embedding with

the ordering Φ if and only if Φ induces a topological numbering of V (G). We

thus assume that Φ induces a topological numbering of V (G). We first rename

the vertices so that the vertices are labeled as v1, v2, . . . , vn in the order of Φ.

We now have the following lemma.

Lemma 3.2.1 Let G be an upward planar digraph of n vertices with a directed

hamiltonian path P and let Φ be a topological ordering of the vertices of G.

Then one can find an upward topological book embedding of G in linear time

with no spine crossing.

Proof. Let us rename the vertices so that the vertices are labeled as v1, v2,

. . . , vn in the order of Φ. Then P contains only the edges (vi, vi+1) for 1 ≤ i < n

since Φ is a topological ordering of G. Let G′ be a plane embedding of G. We

now obtain a topological book embedding γ of G with no spine crossing as

follows. We first fix the position of the vertices on a vertical straight-line L (the

spine of γ) such that vi+1 is above vi for 1 ≤ i < n. We first draw each edge

of P by a semi-circle between its two end-vertices on either the left page or the

right page of γ. We draw the rests of the edges as follows. If an edge is to the

left of P in G′, then we draw it on the left page of γ by a semicircle between
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its end-vertices. And if an edge is to the right of P in G′, then we draw it on

the right page of γ by a semicircle between its end-vertices. Clearly γ keeps the

embedding G′ unaltered and hence γ is a planar drawing of G. Furthermore it

is obvious from the algorithm that all the vertices of G are on the straight-line

L and each edge is either on the left page or on the right page of γ, creating no

spine crossing. Thus γ is an upward topological book embedding of G with no

spine crossing. It is also trivial to implement the algorithm in linear time.

Q.E .D.

Let G be an upward planar digraph and let Φ be a topological ordering of the

vertices of G. If G contains a hamiltonian path, then the proof of Lemma 3.2.1

gives a linear-time algorithm to obtain an upward topological book embedding

of G with the ordering according to Φ. We call this algorithm Draw Ham for

the rest of this section. We now use this algorithm to obtain a topological book

embedding of any upward planar digraph G with the ordering Φ. We have the

following theorem.

Theorem 3.2.2 Let G be an upward planar digraph with n vertices and let Φ

be a topological ordering of V (G). Then one can find an upward topological

book embedding of G with the ordering Φ in O(n2) time where each edge of

G crosses the spine at most n − 4 times. Furthermore, if s is the number of

edges that crosses the spine, then the total number of spine crossings is at most

2(n−4)+3(n−5)+ . . .+k(n−2−k)+p(n−3−k) where k and p are integers,

s =
(

k(k+1)
2

− 1 + p
)

and p < k.

In the rest of this section, we give a constructive proof of Theorem 3.2.2.

We rename the vertices of G so that the vertices are labeled as v1, v2, . . . , vn

in the order of Φ. Let λ be an upward planar stright-line drawing of G as

illustrated in Fig. 3.2(a). For every vertex v of G, we denote by p(v) the point

on which v is placed in λ. We may assume that for any three vertices u, v

and w, p(u), p(v) and p(w) are not collinear. We now construct an upward

planar digraph G′ with a hamiltonian path from G as follows. If G contains

the edge (vi, vi+1) for 1 ≤ i < n, then G itself has a hamiltonian path. We thus

assume that there is an index i (1 ≤ i < n) such that G does not contain the

edge (vi, vi+1). If the straight-line segment between p(vi) and p(vi+1) does not

intersect any existing edge in λ, then we add the edge (vi, vi+1) to G. Otherwise,
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Figure 3.2: (a) Upward planar straight line drawing λ of G, (b) graph G′ of λ.

suppose that the straight-line segment between p(vi) and p(vi+1) intersects the

edges e1 = (u1, w1), e2 = (u2, w2), . . ., ef = (uf , wf ) in this order from p(vi) to

p(vi+1). Then we subdivide all these edges, i.e. we delete the edges e1, e2, . . ., ef

from G; add the dummy vertices x1, x2, . . ., xf to G; and add the edges (u1, x1),

(x1, w1), (u2, x2), (x2, w2), . . . , (uf , xf ), (xf , wf ). Finally we add the edges

(vi, x1), (x1, x2), . . . , (xf−1, xf ) and (xf , vi+1). For each index i (1 ≤ i < n)

such that G does not contain the edge (vi, vi+1), we do the same operations as

above. Let G′ be the resulting graph obtained by the operations above, and

we call G′ the augmented hamiltonian graph of G. If p is the total number of

dummy vertices, then G′ has n + p vertices and contains a hamiltonian path

as illustrated in Fig. 3.2(b). Then Algorithm Draw Ham gives an upward

topological book embedding γ′ of G′ with no spine crossing as illustrated in

Fig. 3.3(a). We now obtain an upward topological book embedding γ of G from

γ′ by deleting the dummy vertices as well as the edges incident to them and

drawing the edges of G that were deleted in G′ through the dummy vertices

as illustrated in Fig. 3.3(b). Note that the dummy vertices of G′ represents

the spine crossings in γ. For the rest of this article, we call this algorithm

Draw General. We now have the following three lemmas.

Lemma 3.2.3 Let G be an upward planar digraph and let Φ = v1, v2, . . . , vn

be a topological ordering of G. Let G′ be the augmented hamiltonian graph of

G. Then the number of vertices in G′ is bounded by O(n2).
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Figure 3.3: (a) Upward topological book embedding γ′ of G′, (b) upward topo-

logical book embedding γ.

Proof. A hamiltonian path of length n − 1 is embedded in G′. An edge of

hamiltonian path can cross at most n − 2 existing edges of G (see Fig. 3.2(b)).

Since each crossing represents a dummy vertex, there are at most (n−1)(n−2)

dummy vertices in G′. Hence the number of vertices in G′ is bounded by O(n2).

Q.E .D.

Lemma 3.2.4 Let G be an upward planar digraph and let Φ = v1, v2, . . . , vn

be a topological ordering of G. Let γ be the upward topological book embedding of

G with the ordering Φ obtained by Algorithm Draw General. Then the edge

(vi, vj) can cross the spine at most j − i − 2 times.

Proof. Let λ be any upward planar straight-line drawing of G and let

p(v) denote the point on which a vertex v of G is placed in γ. Let L denote

the polyline containing the straight-line segments between p(vi) and p(vi+1) for

1 ≤ i < n as illustrated in Fig. 3.4. Since the drawing is upward, the edge

(vi, vj) can cross at most j − i line-segments of L between p(vi) and p(vj) in γ.

However since the edge is drawn as a straight-line segment, it does not cross the

two line-segments between (p(vi), p(vi+1)) and between (p(vj−1), p(vj)). Thus
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Figure 3.4: Illustration of the proof of Lemma 3.2.4

from the algortihm it is obvious that the edge (vi, vj) can cross the spine at

most j − i − 2 times. Q.E .D.

Lemma 3.2.5 Let G be an upward planar digraph and let Φ be a topological

ordering of G. Let γ be the upward topological book embedding of G with the

ordering Φ obtained by Algorithm Draw General. Then there are at most
(

k(k+1)
2

− 1
)

edges each of which can cross the spine at least n− 2− k times for

k ≥ 1.

Proof. Let (vi, vj) be an edge that crosses the spine at least n− 2− k times.

Then by Lemma 3.2.4, j − i ≥ n − 2 − k + 2 = n − k. Thus there are at most

k edges ((v1, vn−k+1), (v1, vn−k+2), . . . , (v1, vn)) from v1 that crosses the spine

at least n − 2 − k times in γ. Similarly there are at most k − 1 edges from

v2 that crosses the spine at least n − 2 − k times in γ and so on. Thus the

number of edges that crosses the spine at least n − 2 − k times in γ is at most

k + (k − 1) + . . . + 1 = k(k+1)
2

. However if the edge (v1, vn) is contained in G,

we may assume that it is on the outer face in γ since otherwise we can redraw

it keeping the edge (v1, vn) on the outerface. Thus the edge (v1, vn) does not

cross the spine and the result follows. Q.E .D.

We are now ready to prove Theorem 3.2.2
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Proof of Theorem 3.2.2. Let γ be the upward topological book embedding

of G with the ordering Φ obatined by Algorithm Draw General. By Lemma

3.2.5, there is no edge that crosses the spine at least n − 3 times in γ. Thus

an edge can cross the spine at most n − 4 times in γ. Furthermore, if the total

number of edges that crosses the spine in γ is at most s, then by Lemma 3.2.5,

the total number of spine crossings is at most 2(n− 4) + 3(n− 5) + . . . + k(n−

2 − k) + p(n − 3 − k) where k and p are integers, s = k(k+1)
2

− 1 + p and p < k.

Finally since the number of vertices of G′ is bounded by O(n2) according to

Lemma 3.2.3, the time complexity of the algorithm is also O(n2). Q.E .D.

Let G be an upward planar digraph and let Φ be a topological ordering of

the vertices of G. Let γ be the upward topological book embedding of G with

the ordering Φ obtained by Algorithm Draw General. Since (v1, v2), (vn−1, vn)

and (v1, vn) does not cross the spine in γ, at most 3n−9 edges crosses the spine

in γ. Theorem 3.2.2 then gives an upper bound on the total number of spine

crossings in γ. However in reality, the number of edges that crosses the spine

is much less than the trivial bound of 3n − 9. We finish this section with the

following conjecture the proof of which can give a much better upper bound on

the total number of spine crossings.

Conjecture 3.2.1 Let G be an upward planar digraph and let Φ be a topological

ordering of G. Let γ be the upward topological book embedding of G with the

ordering Φ obtained by Algorithm Draw General. Then there are at most

2n − 6 edges of G that crosses the spine in γ.

3.3 Upward Point-Set Embedding

In this section we address the problem of finding an upward point-set embedding

of an upward planar digraph G of n vertices on a set of n distinct points in the

plane with a mapping Φ from the vertices of G to the points in S. We can

find the upward point-set embedding of an upward planar digraph G using

Algorithm Draw General. The following Theorem is the main result of this

section.

Theorem 3.3.1 Let G be an upward planar digraph with n vertices, S be a set

of n distinct points in the plane and Φ be a mapping from the vertices of G to the
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points in S. Then G admits an upward point-set embedding with the mapping

Φ if and only if there exists a directed line l′ such that Φ induces a topological

ordering of G on l′. Furthermore, such an upward point-set embedding of G on

S can be computed in O(n2) time with at most n − 3 bends per edge.

In the rest of the section, we prove the Theorem 3.3.1.
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Figure 3.5: (a) An upward planar digraph G, (b) projection of S on line l′ and

l′′

.

Let l′ be a directed line and Sl′ = {p′1, p
′

2, . . . , p
′

n} be the collinear set of

points obtained by orthogonaly projecting S onto l′ and we assume that no two

projected points in l′ coincide. And let Φl′ be the mapping from G to Sl′ that

associates each vertex v of G with the projection of Φ(v) on l′. Now if mapping

Φl′ induces a topological numbering of G, then Φ induces a topological number-

ing of G [GLW09]. In Figure 3.5(b), l′ is a line in which the mapping Φ induces

a topological numbering of G whereas the line l′′ does not induce. Then we can

find the upward point-set embedding using the Algorithm Draw General in

the following way.

If the edge of γ does not cross the spine, it can be drawn using one bend in

Γ. Otherwise each edge can be drawn using one more bend than the number of
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spine crossings. So one edge uses at most n− 4 + 1 = n− 3 bends. Clearly the

algorithm runs in quadratic time.

We can find an upper bound on the total number of bends in an upward

point-set embedding of G from the fact that for each edge, the number of

bends in the point-set embedding is at most one more than the number of spine

crossings for that edge in γ and that there are at most 3n − 6 edges in G.

Furthermore, Giordano et. al. also gave an O(n3)-time testing algorithm to

check whether an upward planar digraph G of n vertices admits an upward

point-set embedding on a set S of n distinct points with a given mapping from

the vertices of G to the points in S.

3.4 Conclusion

In this chapter we first gave an algorithm to find an upward topological book

embedding of upward planar digraphs with a given mapping. After that we

extended our result to find an upward point-set embedding of an upward pla-

nar digraphs with mapping and also proved the upper bound on number of

bends in the drawing. Recently Mchedlidze and Symvonis have developed an

algorithm for “ρ-constrained upward topological book embedding” of an embed-

ded planar st-digraphs which can also be used to find the same bound on the

number of bends per edge for upward point-set embedding of directed planar

graphs [MS10].
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Chapter 4

Orthogonal Point-set Embedding

4.1 Introduction

An orthogonal point-set embedding of a planar graph G on a set S of points in

Euclidean plane is a planar drawing Γ of G where each vertex of G is placed on

a point of S and each edge is drawn as a sequence of alternate horizontal and

vertical line segments. Bend is a point at which an edge changes its direction

in Γ. If a graph G corresponds a VLSI circuit, then one may be interested in

an orthogonal drawing such that the number of bends is as small as possible,

because bends increase the manufacturing cost in a VLSI chip. We provide

two algorithms of orthogonal point-set embeddings for two sub-classes of planar

graphs in this chapter. Our first algorithm is for 3-connected cubic planar

graphs with hamiltonian cycle and later one is for 4-connected planar graphs.

Both drawing algorithms have practical applications in circuit schematics on

pre-fabricated printed circuit boards (PCBs), where position of components on

the PCB is prescribed and standard cell technology employed during the VLSI

layout design process. We find the upper bound on number of bends for both the

drawings. For reducing the number of bends, we have imposed another practical

constraint for 3-connected cubic planar graphs that the external hamiltonian

cycle to be embedded consecutively on the point-set S. This problem may arise

in the floorplanning of VLSI design where a critical cycle should be placed with

minimum wire length.

The rest of the chapter is organized as follows. Section 4.2 describes the

algorithm for finding orthogonal point-set embeddings of 3-connected cubic pla-
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nar graphs and the computation of upper bounds on number of bends in the

drawing. The algorithm for 4-connected planar graphs and related results are

described in Section 4.3. Finally Section 4.4 concludes the chapter.

4.2 3-Connected Cubic Planar Graphs

In this section, we give an algorithm for obtaining an orthogonal point-set em-

bedding of a 3-connected cubic planar graph G with an external hamiltonian

cycle C on a point-set S. The following Theorem is the main result of this

section.

Theorem 4.2.1 Let G be a 3-connected cubic planar graph of n vertices with

a hamiltonian cycle C = 〈 v1, v2, . . ., vn, v1 〉 and let S be a set of n points

in Euclidean plane. Then one can find an orthogonal point-set embedding Γ

of G on S with at most
(

5n
2

+ 2
)

bends such that the vertices of C are placed

consecutively on the point-set S. Furthermore Γ can be obtained in linear time.

In the rest of the section, we give a constructive proof of Theorem 4.2.1

which leads to our algorithm.

An outline of our algorithm is as follows. We first rotate the point-set S in

such a way that no two points of S has the same x or y coordinates. We find

a plane embedding G′ of the planar graph G such that an edge of hamiltonian

cycle C in the outer face of G′. We now find a topological book embedding γ of

G as follows. We separate the inner edges and outer edges of hamiltonian cycle

C in G′. The vertices which are incident to the inner edges are called inner

vertices and incident to the outer edges are called outer vertices . We now draw

the inner and outer edges in two different pages of γ for consistency. Our idea

is to choose an appropriate page of γ in which the inner edges to be drawn by

reducing number of bends. From the topological book embedding γ, one can

find the orthogonal drawing Γ of G on point-set S by replacing the edges of

G′ − C of γ in the left side of Γ if they are in the left page of γ and right side

of Γ if they are in the right page of γ.

At first we will find a topological book embedding of G using the following

lemma.
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Figure 4.1: (a) 3-connected cubic planar graph G, (b) topological book embed-

ding γ with no spine crossing.

Lemma 4.2.2 Let G be a 3-connected cubic planar graph of n vertices with a

hamiltonian cycle C = 〈 v1, v2, . . ., vn, v1 〉. Then one can find a topological

book embedding γ of G in linear time with no spine crossing.

Proof. Let G′ be a plane embedding of the planar graph G such that an edge

of hamiltonian cycle C in the outer face of G′. At first we place the vertices of

G′ on the spine of γ according to the order of the vertices of hamiltonian cycle

C on the spine. Then we draw the edges of C in the left page of γ except the

outer face edge of G′. We draw the inner edges of G′ in the right page of γ and

the outer edges of G′ in the left page of γ. Clearly the edges will not create any

spine crossing because the inner and outer edges are in two different sides with

respect to the hamiltonian cycle C in G′. Finally we draw the last edge of C in

the right page of γ, the procedure of drawing is illustrated in Fig. 4.1. Since G is

a planar graph, it is trivial to implement the algorithm in linear time. Q.E .D.

We call the edge (v1, vn) which connects the top most point and the bottom

most point of γ as long edge for the rest of the chapter. From the topological

book embedding, one can find the orthogonal drawing Γ on point-set S with

smaller number of bends in the following way.
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Figure 4.2: (a) Topological book embedding γ, (b) orthogonal drawing Γ.

We place the vertices of γ to the point-set S and draw the arc edges of γ

by alternate sequence of vertical and horizontal line segments. Our idea is to

reduce the number of bends in the drawing. Then we have the following lemma.

Lemma 4.2.3 Let G be a 3-connected cubic planar graph of n vertices and γ

be a topological book embedding of G with no spine crossing. Then one can find

an orthogonal drawing Γ from topological book embedding γ on point-set S with

at most three bends per edge in linear time.

Proof. Without loss of generality, we will assume that no two points of S

does not have same x or y coordinate. Let the order of the vertices be 〈 p1, p2,

. . ., pn 〉 in the monotonically increasing coordinate of y and xi be x-coordinate

of pi for 1 ≤ i ≤ n. If v1, v2, . . . , vn be the order of the vertices of γ, we can map

each vertex vi of γ to the point pi of S where 1 ≤ i ≤ n. We draw the edges of

γ in orthogonal drawing Γ in the following way.

We draw the edge (v1, v2) with two bends. The edge is drawn by vertical,

horizontal and vertical line segments (see in Fig. 4.2). After that if vi has an
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edge in the right page of γ and xi < xi+1, we draw the edge (vi, vi+1) with two

bends. Otherwise we draw the edge with one bend. The edge (v2, v3) is drawn

with two bends but the edge (v7, v8) is drawn with one bend in Fig. 4.2. Similar

approach can be adopted for if vi has an edge in the left page of γ and xi > xi+1.

The inner and outer edges of C can be drawn by two bends per edge, because

γ has no spine crossing. So the edges which are in the left page of γ are drawn

in the left side of Γ by horizontal, vertical and horizontal line segments and the

edges in the right page of γ are drawn in the right side of Γ. Now if v1, vn are

both inner vertices, we draw the edge with two bends in the right side of Γ (see

the edge (v1, v10) in Fig. 4.2) and if v1, vn are both outer vertices, we draw the

edge with two bends in the left side of Γ. So all the edges can be drawn with

at most two bends per edge. But if one of the vertices of v1, vn is inner and

the other is outer, then it takes three bends to draw the edge in Γ. One can

implement the algorithm in linear time. Q.E .D.

One can find an orthogonal point-set embedding of 3-connected cubic planar

graphs with total 3n + 1 bends using the technique described in the proof of

Lemma 4.2.3. But the number of total bends in the drawing can be reduced as

mentioned in the following lemma.

Lemma 4.2.4 Let G be a 3-connected cubic planar graph of n vertices with a

hamiltonian cycle C = 〈 v1, v2, . . ., vn, v1 〉 and let S be a set of n points

in Euclidean plane. Then one can find an orthogonal point-set embedding Γ

of G on S with at most
(

5n
2

+ 2
)

bends such that the vertices of C are placed

consecutively on the point-set S.

Proof. We at first find a plane embedding G′ of G such that an edge of C

in the outer face of G′. We then choose an appropriate page of γ in which the

inner edges will be drawn in the following way.

Let xi denotes the x-coordinate of the point pi of S for 1 ≤ i ≤ n, we sort

the the points of S by their x-coordinate in non-decreasing order. We have to

consider two cases for vertex vi of C to choose the suitable page.

Case 1: Inner edges of G′ are in the left page of γ.

Now if vertex vi (1 ≤ i < n) is mapped to the point p1, we count the number

of nice points pj, points for which it is possible to draw the edge (vi+j−1, vi+j)

with one bend for 1 ≤ j ≤ (n-i). If vertex vi+j−1 is an inner vertex and
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Figure 4.3: 3-connected cubic planar graph G and point-set S

xj < xj+1 or vi+j−1 is an outer vertex and xj > xj+1, then it is possible to draw

the edge (vi+j−1, vi+j) with one bend. If v1 of G maps to the point p1 of S, then

p3, p4, p5, p8 are the nice points for vertex v1 ( see Fig. 4.3). We now count the

number of those nice points for which it is possible to draw the inner edge or

outer edge with one bend and we call these points as min points . A nice point

pj is a min point if

• vi+j−1 is an inner vertex, the inner edge is (vi+j−1, vi+j+k) for 1 ≤ k < (n-

i-j) and there exists no such point pj+l ( 1 ≤ l ≤ k ) for xj+l < xj.

• vi+j−1 is an outer vertex, the outer edge is (vi+j−1, vi+j+k) for 1 ≤ k < (n-

i-j) and there exists no such point pj+l ( 1 ≤ l ≤ k ) for xj+l > xj.

In both cases we can draw the edge with one bend. Let countL(vi) denotes the

sum of nice points and min points for considering vi as start vertex when inner

edges are drawn in the left page of γ. If the long edge of γ connects both inner

vertices or outer vertices, then it is possible to draw long edge with two bends.

Otherwise we will decrease the countL(vi) by 1.

Case 2: Inner edges of G′ are in the right page of γ.
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In this case, a point pj is a nice point if vertex vi+j−1 is an inner vertex and

xj > xj+1 or vi+j−1 is an outer vertex and xj < xj+1. If vertex v1 maps to the

point p1, then p2, p6, p7, p9 are the nice points for vertex v1. Now a nice point

pj is a min point if

• vi+j−1 is an inner vertex, the inner edge is (vi+j−1, vi+j+k) for 1 ≤ k < (n-

i-j) and there exists no such point pj+l ( 1 ≤ l ≤ k ) for xj+l > xj.

• vi+j−1 is an outer vertex, the outer edge is (vi+j−1, vi+j+k) for 1 ≤ k < (n-

i-j) and there exists no such point pj+l ( 1 ≤ l ≤ k ) for xj+l < xj.

Let countR(vi) denotes the sum of nice points and min points for considering vi

as start vertex when inner edges are drawn in the right page of γ. If long edge

of γ does not connect both inner vertices or outer vertices, then we decrease the

countR(vi) by 1.

We now can find the drawing Γ in the following way.

We map the vertex vi to the point p1 and let there is no min point for vertex

vi. Though the nice points (L) and the nice points (R) are complementary ex-

cept points p1 and pn, from pigeonhole principle either countL(vi) or countR(vi)

is at least n−2
2

. If countL(vi) ≥
n−2

2
, then we draw the inner edges of G in the

left side of Γ otherwise we draw the inner edges in the right side of Γ.

We now calculate the total number of bends in Γ. There are total 3n
2

edges

in G and among those edges only n−2
2

edges have been drawn with one bend

and other edges except the long edge are drawn with two bends in the worst

case scenerio. Only long edge may need three bends in Γ from Lemma 4.2.3.

Total number of bends = 1.
(

n−2
2

)

+ 2.
(

3n
2
− n−2

2
− 1

)

+ 3

= n
2
− 1 + 3n − n + 2 − 2 + 3

= n
2

+ 2n + 2

= 5n
2

+ 2

And that completes the proof of Lemma 4.2.4. Q.E .D.

We now formally present the algorithm for finding the orthogonal point-set

embedding of 3-connected cubic planar graphs.

Algorithm 3-Connected(G,C, S)
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.
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begin

1 Take a plane embedding G′ of G such that an edge of C lies on outer

face of G′;

2 Classify the edges of G′ − C as inner and outer edges;

3 Classify the vertices of G′ as inner and outer vertices;

4 Take an edge (vi, vi+1) of C from the outer face of G′;

5 Let vertex vi+1 be mapped to the point p1, set countL to zero;

6 for each j, 1 < j < n, do

begin

7 if v(i+j)%n is an inner vertex and xj+1 > xj then

increase countL by 1 and mark the edge (v(i+j)%n, v(i+j+1)%n);

8 if v(i+j)%n is an outer vertex and xj+1 < xj then

increase countL by 1 and mark the edge (v(i+j)%n, v(i+j+1)%n);

end

9 if countL ≥
(

n
2
− 1

)

then

Choose left page for inner edges;

10 for each j, 1 < j < n, do

begin

11 if the edge (vj, vj+1) is marked then

Draw the edge with one bend;

end

12 else

Choose right page for inner edges;

13 for each j, 1 < j < n, do

begin

14 if the edge (vj, vj+1) is unmarked then

Draw the edge with one bend;

end

15 Draw the other edges with two bends except the edge (vi, vi+1);

16 if vi, vi+1 are both inner vertices or outer vertices then

Draw the edge (vi, vi+1) with two bends.

else

Draw the edge (vi, vi+1) with three bends.

end.
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We now have the following lemma.

Lemma 4.2.5 The Algorithm 3-Connected runs in linear time.

Proof. Since G is a 3-connected cubic planar graph with n vertices, the

number of edges is 3n
2

which is linear. We take a plane embedding G′ of G such

that an edge lies on the outer face of G′ in linear time. Since the number of

edges of G′ is linear, Line 2 and 3 can be executed in linear time. It is easy to

observe that the Line 6, 7, 8 run in linear time. Finally we draw the edges in

linear time. So the overall time complexity of the Algorithm 3-Connected

is linear. Q.E .D.

We now prove the Theorem 4.2.1. Given a 3-connected cubic planar graph

G with a hamiltonian cycle and a set S of points in the Euclidean plane, we

can find the orthogonal point-set embedding Γ of G with at most
(

5n
2

+ 2
)

bends using the Lemma 4.2.4. The drawing can be found in linear time using

Lemma 4.2.5 and hence the proof of the theorem is complete.

4.3 4-Connected Planar Graphs

In this section we describe the algorithm for obtaining an orthogonal point-set

embedding of 4-connected planar graphs with ∆ ≤ 4. The following theorem is

the main result of this section.

Theorem 4.3.1 Let G be a 4-connected planar graph of n vertices with ∆ ≤ 4

and S be a set of n points in Euclidean plane. Then one can find an orthogonal

point-set embedding Γ of G on S with at most 6n bends in linear time.

In the rest of the section we give a constructive proof of Theorem 4.3.1 which

leads to our main algorithm.

We first present the following lemma.

Lemma 4.3.2 Let G be a 4-connected planar graph of n vertices with ∆ ≤ 4

and S be a set of n points in Euclidean plane. Then one can find an orthogonal

point-set embedding Γ of G on S with at most 6n bends.
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Figure 4.5: (a) 4-connected planar graph G, (b) point-set S, (c) hamiltonian

cycle C in G′

.

Proof. Let G′ be a plane embedding of the planar graph G. G′ contains a

hamiltonian cycle, since every 4-connected plane graph is hamiltonian [Tho83].

We can find a hamiltonian cycle C in G′ using the algorithm of Chiba and

Nishizeki [CN89] in linear time (see Fig. 4.5). We now obtain a topological book

embedding γ′ of G′ without any spine crossing using the technique described

in the proof of Lemma 4.2.2. Figure 4.6(a) illustrates the topological book

embedding γ′ of plane graph G′ of Fig. 4.5(c).

We find an orthogonal point-set embedding Γ of G from the topological book

embedding γ′ as follows.

We classify the vertices of γ′ in three types. Left vertices are those vertices

which have two edges in the left page of γ′ and right vertices are those vertices

which have two edges in the right page of γ′ except the edges of hamiltonian

cycle C. We call the other vertices middle vertices . Clearly a middle vertex has

one edge in the left page and another edge in the right page of γ′.

Let xi, yi be denote the x and y-coordinates of the point pi of S. We use four

letters L,R, U,D to represent the change of direction of an edge in the left, right,

up and down, respectively. Left and right movement change the x coordinate

whereas up and down movement change the y coordinate only. So if an edge

(vi, vj) with i < j is drawn by LUR sequence, it represents that the edge is

drawn with horizontal, vertical and horizontal line segments consecutively and
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Figure 4.6: (a) Topological book embedding γ′ of G′, (b) orthogonal drawing Γ

of G

.

it needs two bends.

We now draw the edges of C in Γ except the long edge of γ′. Three cases

may arise in this context.

• Case 1: vi is a middle vertex.

We draw the edge (vi, vi+1) of C with two bends in Γ. The edge at first

goes upward, then left or right depending on the position of point i + 1

and then goes upward to reach the point and we represent the orthogonal

edge by ULU if xi+1 < xi and URU if xi+1 > xi (see the edge (v1, v2) and

(v4, v5) in Fig. 4.6 (b)).

• Case 2: vi is an left vertex.

We draw the edge (vi, vi+1) by at first going to the right side of vi and

then upward if xi+1 > xi i.e. the edge (v3, v4) in Fig. 4.6. Otherwise we

draw the edge by RULU with three bends.

• Case 3: vi is an right vertex.
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We draw the edge (vi, vi+1) by at first going to the left side of vi and then

upward if xi+1 < xi i.e. the edge (v2, v3) in Fig. 4.6 (b). Otherwise we

draw the edge by LURU with three bends.

We now draw the inner and outer edges of G′. Let (vi, vj) be an inner or

outer edge where i < j, we have to consider the three cases of vi to draw the

edge. In each case of vi, there may be two or three sub cases depending on the

nature of the vertex vj. For all figure references refer to Fig. 4.6 (b).

• Case 1: vi is a middle vertex.

(a) vj is a middle vertex.

We draw the edge (vi, vj) of C with two bends in Γ. If (vi, vj) is an

inner edge, we draw it by LUR. Otherwise we draw it by RUL.

(b) vj is a left vertex.

Let the other edge of vj is (vj, vk). Now if yj > yk > yi, We draw

the edge (vi, vj) of C with three bends in Γ by LURD. Otherwise we

draw the edge with two bends by LUR (see the edge (v1, v3)).

(c) vj is a right vertex.

Let the other edge of vj is (vj, vk). Now if yj > yk > yi, We draw

the edge (vi, vj) of C by RULD (see the edge (v1, v5)). Otherwise we

draw the edge with two bends by RUL.

• Case 2: vi is a left vertex.

Let the other inner edge of vi is (vi, vl).

(a) vj is a middle vertex.

If yj > yl > yi we draw the edge (vi, vj) of C with two bends in Γ

by LUR. Otherwise we draw it with either one bend by UR when

xj > xi or three bends by ULUR when xj < xi.

(b) vj is a left vertex.

Let the other edge of vj is (vj, vk). Different types of edges are shown

in Fig. 4.7.

(i) If yj > yk > yi > yl or yl > yj > yk > yi, we draw the edge with

two bends by URD.
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Figure 4.7: Different types of edges of case 2(b)

.

(ii) If yj > yk > yl > yi, the edge is drawn with three bends by

LURD.

(iii) If yk > yj > yi > yl or yl > yk > yj > yi, we draw the edge with

one bend by UR.

(iv) If yk > yj > yl > yi or yj > yl > yi > yk, we draw the edgewith

two bends by LUR.

• Case 3: vi is a right vertex.

Let the other outer edge of vi is (vi, vl).

(a) vj is a middle vertex. If yj > yl > yi we draw the edge (vi, vj) of

C with two bends in Γ by RUL. Otherwise we draw it either with

one bend by UL when xj < xi or either three bends by URUL when

xj > xi.

(b) vj is a right vertex.

Let the other edge of vj is (vj, vk). Different types of edges are shown

in Fig. 4.8.

(i) If yj > yk > yi > yl or yl > yj > yk > yi, we draw the edge with

two bends by ULD.
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Figure 4.8: Different types of edges of case 3(b)

.

(ii) If yj > yk > yl > yi, the edge is drawn with three bends by

RULD.

(iii) If yk > yj > yi > yl or yl > yk > yj > yi, the edge is drawn with

one bend by UL.

(iv) If yk > yj > yl > yi or yj > yl > yi > yk, we draw the edge with

two bends by RUL.

At last we draw the long edge (v1, vn) of γ′ in Γ. Three cases may be arise for

the nature of the vertex vn.

• Case 1: vn is a middle vertex.

We draw the edge with four bends by DRULD.

• Case 2: vn is an left vertex.

If v1 is an outer vertex, then we draw the edge with four bends by DRULD.

Otherwise we draw the edge with three bends by DRUL (see the edge

(v1, v6) in Fig. 4.6 (b)).

• Case 3: vn is an right vertex.
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If v1 is an outer vertex, then we draw the edge with three bends by DLUL.

Otherwise we draw the edge by DLUR.

We now compute an upper bound on the number of bends in othogonal

point-set embedding of 4-connected planar graphs from the drawing algorithm.

The edges of C except the long edge have been drawn with at most three bends

per edge, and the long edge may be drawn with at most four bends. For the case

of inner and outer edges, each edge may be drawn with at most three bends. If

all these edges are drawn with three bends, then the long edge is drawn with

three bends.

Total number of bends = 3.(n − 1) + 3 + 3.n

= 3n − 3 + 3 + 3n

= 6n

And that completes the proof. Q.E .D.

We now formally present the algorithm for finding the orthogonal point-set

embedding of 4-connected 4-regular planar graphs.

Algorithm 4-Connected(G,S)

begin

1 Take a plane embedding G′ of G such that an edge of C lies on outer

face of G′;

2 Find a hamiltonian cycle C in G′;

3 Classify the vertices of G′ as inner and outer vertices;

4 Find a topological book embedding γ of G′;

5 Classify the vertices of G′ as middle, left and right vertices. A vertex

is middle vertex if has one edge in left page and one edge in right page

except the edges of C. A vertex is left vertex if it has two edges in the

left page except the edges of C;

6 Draw all the edges with necessary bends using case comparison.

end.

We now have the following lemma.

Lemma 4.3.3 The Algorithm 4-Connected takes linear time.
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Proof. We can compute the time complexity of Algorithm 4-Connected

as follows. We can find a hamiltonian cycle C in a 4-connected planar graph

in linear time using the algorithm of Chiba and Nishizeki [CN89]. Line 3 and

line 4 can be executed in linear time. Since G has 2n edges, line 6 runs in

linear time also. So the overall time complexity of Algorithm 4-Connected

is linear. Q.E .D.

It is now left to prove the Theorem 4.3.1. Given a 4-connected 4-regular

graph G and a set S of points in Euclidean plane, we can find an orthogonal

point-set embedding of G on S with at most 6n bends using Lemma 4.3.2.

Finally the drawing can be found in linear time using the Lemma 4.3.3 and

hence the the proof of Theorem 4.3.1 is complete.
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Figure 4.9: Tight example of 4-connected planar graphs for which 6n bends are

necessary

.

Theorem 4.3.1 finds an orthogonal drawing in the point-set of 4-connected

planar graphs with mapping if mapping satisfies certain criteria. We now have

the following theorem.
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Theorem 4.3.4 Let G be a 4-connected 4-regular planar graph of n vertices, S

be a set of n points in Euclidean plane and Φ be a mapping from the vertices of G

to the points in S. Let p1, p2, . . . , pn be the sorted order of the points of S accord-

ing to y-axis in non-decreasing order. Then one can find an orthogonal point-set

embedding Γ of G on S with the mapping Φ if Φ−1(p1), Φ
−1(p2), . . . , Φ

−1(pn), Φ−1(p1)

represents a hamiltonian cycle in G. Moreover Γ can be obtained in linear time

with at most 6n bends.

Figure 4.9 illustrates a tight example of a 4-connected planar graph G, a

point-set S with a mapping Φ where each vertex vi of G is mapped to a point

i of S.

4.4 Conclusion

In this chapter we gave two algorithms for finding orthogonal drawings of 3-

connected cubic planar graphs and 4-connected planar graphs. Both the algo-

rithms find the orthogonal drawings with fewer bends. Moreover we gave an

upper bound on number of bends for both the drawings.
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Chapter 5

Conclusion

In this thesis we addressed the problem of finding point-set embeddings of planar

graphs. Our first algorithm was for finding an upward point-set embedding of

upward planar digraphs with a mapping. After that we gave two algorithms

for orthogonal point-set embeddings of 3-connected cubic planar graphs having

a hamiltonian cycle and 4-connected planar graphs with ∆ ≤ 4. In all cases,

we first found a topological book embedding of given planar graph using a

hamiltonian cycle in the graph. After that we found the required drawing using

that topological book embedding. In the case of upward point-set embedding,

we gave an upper bound on number of bends in the drawing and conjectured

that the upper bound can be improved using our result. Our algorithm for

finding an orthogonal point-set embedding of 3-connected cubic planar graphs

uses at most
(

5n
2

+ 2
)

bends. Our last algorithm finds a point-set embedding

of 4-connected planar graphs (∆ ≤ 4) with at most 6n bends.

The problem of minimizing the number of bends in a drawing of planar

graphs is motivated by both theoretical interest and practical applications. The

problem of minimum bends drawing of planar graphs has attracted much inter-

est for the researchers. Rahman and Nishizeki gave a linear time algorithm to

find a bend-optimal orthogonal drawing for plane graphs with ∆ ≤ 3 [RN02].

But for planar graphs, there had been no algorithms for finding bend optimal

drawing. Garg and Liotta [GL99] gave an O(n2) time algorithm for finding

orthogonal drawings of planar 2-connected graphs with three bends more than

the minimum number of bends. In this respect, our upper bounds on number

of bends in the drawing are of good value. The practical applications of point-
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set embedding of planar graphs arise from the requirement in various fields,

especially for the VLSI circuit design and circuit schematics. In VLSI circuit

design, it is always desirable to find the orthogonal drawing with minimum

bends. The problem of finding point-set embedding arises from the concept of

fixed positions of modules in VLSI chip beforehand. Our algorithms are more

applicable for the standard cell layout of VLSI design. Thus the result in this

thesis is more interesting and motivating for the theoretical prospects rather

than practical applications.

The following is a brief list of future works related to our results presented

in this thesis.

• We have provided an algorithm for finding an upward point-set embedding

of upward planar digraphs with mapping. Our algorithm presents the

upper bound of number of bends per edge and we have given a conjecture

on the number of edges which will cross the spine in γ. The conjecture

can be used to improve the upper bound on total number of bends in the

drawing. It would be interesting to either prove or disprove the conjecture.

Minimizing the total bends in upward point-set embedding with mapping

and also improve the time complexity would be an interesting area of

research.

• We have given an algorithm for orthogonal point-set embedding of 3-

connected cubic planar graphs with fewer bends. The upper bound on

number of bends obtained from our algorithm is
(

5n
2

+ 2
)

. It will be in-

teresting to reduce the number of bends of the drawing and also if possible,

find an algorithm for finding the minimum bend orthogonal point-set em-

bedding of planar graphs in restricted cases.

• Algorithm for finding orthogonal point-set embedding of 4-connected pla-

nar graphs with fewer bends has been introduced in this thesis. Minimiz-

ing the number of bends in the drawing may be a good area for future

research.
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