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Abstract
Continuous optimization generally refers to the task of finding values for a set of

continuous variables that optimizes a given objective function. The problem of continuous

optimization appears frequently in every field of science and engineering, and there exist

several paradigms of algorithms that deal with the continuous optimization problem. However,

in comparison to other analytical, single state and local search based algorithms, the

evolutionary and swarm intelligence algorithms show more resilience against local optima and

premature convergence, especially when dealing with complex, high dimensional, multimodal

problems. This is because both the evolutionary and swarm intelligence algorithms maintain a
whole population of candidate solutions that provide diversity and explorative search capacity

against locally optimal points. However, some experimental studies also reveal that sometimes

the population of candidate solutions may lose its diversity too soon and the entire population

may prematurely converge around the locally optimal points. The aim of this thesis is the study

and development of novel evolutionary and swarm intelligence algorithms for continuous

optimization problems that try to balance between global explorations and local exploitations

and to maintain sufficient amount of population diversity to avoid premature convergence.

Along the course of this thesis, we have developed two novel evolutionary algorithms and three

improved swarm intelligence algorithms, which include the Recurring Two Stage Evolutionary

Programming (RTEP), the Diversity Guided Evolutionary Programming (DGEP), the ABC with

Self-adaptive Mutation (ABC-SAM), ABC with Improved Explorations (ABC-IX) and ABC with

Adaptive Explorations and Exploitations (ABC-AX2). They employ techniques like dynamic

adaptation and self-adaptation (e.g., ABC-SAM and ABC-AX2), hybridization with other

meta-heuristic techniques for more explorations (e.g., ABC-IX), recurring alternations between

complementary explorations and exploitations (e.g., RTEP) and automatic control of mutation

step size using population diversity information (e.g., DGEP). We have also carried out intensive

experimental studies on each of these algorithms to better understand how they work, how

their components, control parameters and the proposed techniques affect their performance,

final solution quality, convergence speed, population diversity and explorative search capacity.

Each of our newly introduced algorithms is tested and evaluated on as many as 55 benchmark

problems on continuous optimization from two different benchmark suites. Experimental

studies show that the performance of the proposed algorithms is significantly better than many

other relevant state-of-the-art evolutionary and swarm intelligence algorithms, which

empirically establishes the effectiveness of our proposed techniques for the continuous

optimization problems.
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Chapter1
Introduction

1.1 Introduction
Evolutionary and swarm intelligence algorithms are a class of meta-heuristic algorithms that

take their inspirations directly from nature. Evolutionary algorithms (EAs) are stochastic search

methods that use the computational models of natural evolutionary processes to simulate the

evolution of a population of candidate solutions in order to find an optimal solution to a

problem, particularly an optimization problem. Swarm intelligence algorithms (SIAs) are

optimization algorithms that employ a swarm (i.e., population) of decentralized, self-organized

agents and model some means of communication and information sharing among them to

materialize a co-operative distributed search towards some optimal solution. Since its advent

during mid-seventies, the EA has evolved into several major branches, such as genetic

algorithm (GA) [1], genetic programming (GP) [2], evolutionary programming (EP) [3] and

evolution strategy (ES) [4]. The swarm intelligence algorithms have also appeared in many

different forms, such as the ant colony optimization (ACO) [5], particle swarm optimization

(PSO) [6], bacterial foraging [7], artificial bee colony (ABC) algorithm [8] and their many

variants [9]. During the last few decades, both EAs an SIAs have been extensively employed to

solve wide and diverse range of problems, such as continuous optimization (e.g., [10], [11]),
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discrete optimization (e.g., [12], [13]), constrained optimization (e.g., [14], [15]), multi-objective

optimization (e.g., [16], [17]), design optimization (e.g., [18], [19]), learning decision rules

(e.g., [20]), optimizing object recognition model (e.g., [21]), evolving fuzzy rules (e.g., [22]),

training neural networks (e.g., [23], [24]), design of digital IIR filter [25], PID controller [26],

parameter optimization of milling processes [27] and so on [9].$

The scope of this thesis is the study of EAs and SIAs for solving continuous optimization

problems. The research area of continuous optimization has been very active and dynamic,

especially over the last few decades, because it has numerous applications in widely diverse

fields, such as engineering, mathematics, sciences, business and even social sciences. This has

led to different kinds of deterministic, stochastic and meta-heuristic algorithms [28] for

continuous optimization. Among the stochastic and meta-heuristic approaches, the EAs and SIAs

have gradually become very popular within the research community. This is because both these

family of algorithms offer several distinct advantages over the gradient based exact or direct

search methods [29], such as their global search capability, robustness against local optima,

parallelism, ease of implementation and no requirement of a differentiable or continuous

objective function. However, current methods still find many difficulties in solving complex,

high-dimensional and real-world problems. As a result, the excitement of developing new

improvements and designing new heuristics for the EAs and SIAs that can better address the

challenging issues of continuous optimization problems does still draws the deep interests of

many of today’s researchers.

1.2 Continuous Optimization Problem
Many real-world problems can be formulated as optimization problems of the parameters that

assume values from the continuous domain, i.e., the continuous optimization problems. A

continuous optimization problem can be formalized as follows.

x
minimize f(x)

subject to: Sx

Here, the goal is to find a vector xminS such that f(xmin) ≤ f(x) for all xS, where the search

space nS R is a bounded subset of Rn and the objective function, :f S R is an n-dimensional

real valued function that is to be optimized over its parameter x. Each element xi of the vector x

is a real-valued variable: x = [x1, x2, …, xn]T .nR

The task of continuous optimization is generally referred with many different names, such

as real-parameter optimization [30], function optimization [31] and numeric optimization [32].

However, all of them actually refer to the general task of finding a solution across a real valued,
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(usually) multi-dimensional search space such that the solution gives the best value, i.e.,

minimum or maximum value, of an objective function, depending on whether it is a

minimization or maximization task. This solution should have not only the best objective

function value around its local neighborhood, but also the best objective value over all the

feasible solutions across the entire search space.

The problem of continuous optimization arises in many different forms — it can be a

constrained or unconstrained, single or multi-objective problem. However, studying many

different variants of the problem with numerously many variants of EAs and SIAs would be an

extremely broad topic to be covered. Therefore, we have limited the scope of our thesis only to

the study of single objective, unconstrained continuous global optimization problems using

evolutionary and swarm intelligence algorithms. Problems belonging to this subset have the

following characteristics — the decision variables assume values from continuous, real-valued

domains, there are no constraints on the values that the decision variables can assume (except

their explicit boundary constraints) and there is only a single objective function that has to be

either minimized or maximized. For many complex real world problems, the search space is

multimodal, with the number of optima often being exponential to the number of dimensions.

Large number of real world problems, found in many practical applications, exhibits these

characteristics. To cite only a few examples, we can include acoustics equipment design [33],

aerospace engineering [34], astronomy and astrophysics [35], cancer therapy planning [36],

chemical process modeling [37], data analysis [38], fluid mechanics [39], economic and financial

forecasting [40], hydro-geology [41], industrial process design [42], laser equipment

design [43], model fitting to data (calibration) [44], machine learning [45], molecular

biology [46], optimization in numerical mathematics [30], optimal operation of closed

engineering or other systems [47], pattern recognition [45], portfolio management [48],

potential energy models in computational physics and chemistry [43], the problems of atomic or

molecular clusters and crystals [49], process control [42], protein folding [50], robot design and

manipulations [51], systems of nonlinear equations and inequalities [52], waste water

treatment systems management [53] and many others [9]. However, with the gradually

widespread recognition of EAs and SIAs to solve complex, real world continuous optimization

problems, they have been increasingly applied on many of these problems, as well as many

other new application domains.
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1.3 Motivations and Objectives
Both evolutionary and swarm intelligence algorithms maintain a population of candidate

solutions that is expected to be improved gradually through successive perturbation and

selection operations until they reach sufficiently close to the globally optimum point. But

practical experiences [54], [55] often show that the evolving population loses its diversity and

explorative capacity too soon and the candidate solutions may prematurely get trapped around

the locally optimal points of the fitness landscape. This general problem of premature

convergence often originates from the lack of balance between global explorations and local

exploitations during the optimization process. There exist a number of research works (e.g.,

[55], [58]–[61], [69]) that try to achieve a balance between explorations and exploitations and

to maintain sufficient amount of population diversity for avoiding premature convergence.

However, despite the significant progress made by EAs and SIAs, there are still several

important research issues and challenges that have yet to be fully addressed.

The prime motivation of this thesis is to concentrate on designing new and improved

evolutionary and swarm intelligence algorithms for continuous optimization that will address

the conflicting goals of global explorations and local exploitations, which is often considered a
key factor for the good performance of the algorithm, in terms of both convergence speed and

the quality of the final solution. Exploration refers to the capability of the algorithm to examine

new, unvisited search regions more extensively, which is necessary for robustness of the

algorithm against the locally optimal points. In contrast, exploitation refers to concentrating the

search on local neighborhoods of the already found solutions, which often leads to increased

convergence speed, but possibly towards some locally optimal point. Therefore, balancing

explorations with exploitations may lead to both increased convergence speed with improved

solution quality, which is the prime concern of most EAs and SIAs. Therefore, the main objective

of our study is to introduce novel evolutionary and swarm intelligence based algorithms for the

continuous optimization problem that try to balance between global explorations and local

exploitations and maintain sufficient population diversity in order to avoid the problems of

premature convergence and fitness stagnations. The issues of explorations vs. exploitations and

population diversity vs. convergence are often closely related, and addressing these issues is

often considered essential for both improved final solution quality and higher convergence

speed of an algorithm. Along the course of this thesis, we plan to develop a number of improved

evolutionary and swarm intelligence algorithms that would address these closely related issues.

More specifically, the aim of this thesis is to accomplish the following objectives and to achieve

the following possible outcomes.
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a) Most existing works (e.g., [56], [57], [62]–[68]) consider explorations and

exploitations to be conflicting objectives, so they attempt to increase either the exploitative or

the explorative capacity of the algorithm, either for faster, but possibly premature convergence

or for slower, but global convergence avoiding the locally optimal points. However, explorations

and exploitations are not always conflicting objectives; rather they can be complementary

operations to each other. For example, some exploitation is always necessary after exploring to
a new search region in order to realize the potentials of the newly explored solutions. Also, long

exploitations can lead to getting trapped around the locally optimal points, so some successive

explorative operations might help to break free from any locally optimal point. Based on such

complementary properties of exploitations and explorations, we want to develop new

evolutionary and swarm intelligence algorithms that would try to balance explorations with

exploitations for faster convergence and improved final solution quality.

b) We want to introduce a multi-stage framework for evolutionary and swarm

intelligence algorithms, each stage with its own explorative and/or exploitative operators to

accomplish its explorative/exploitative objective. The complementary stages may be executed

repeatedly, alternating again and again, in order to balance between explorations and

exploitations. Such a design is motivated by considering the complementary, rather than

conflicting, properties of explorations and exploitations. We intend to investigate and analyze

how the repeated alternation between explorations and exploitations, possibly with some

adaptive strategy might distribute the conflicting goals of explorations and exploitations across

the iterations of an evolutionary and swarm intelligence algorithm.

c) An adequate amount of diversity within the population of candidate solutions is

often considered necessary to avoid the problem of premature convergence and to continue the

search space explorations [71]. Most existing algorithms (e.g., [70]–[74]) try to promote

population diversity by altering their selection and/or perturbation operators. However, none

of these algorithms use the population diversity information to control and guide the

optimization process. We intend to introduce a novel evolutionary or swarm intelligence

algorithm that will not only try to preserve the population diversity, but also try to make use of

the existing diversity information to adaptively control the selection and perturbation operators

for better optimization. Since the existing population diversity is often a good measure of the

maturity of the ongoing optimization process, using the diversity information to adaptively

guide the selections and/or perturbation operators may improve the global convergence speed

and the final solution quality of the algorithms.

d) Most evolutionary and swarm intelligence algorithms (e.g., [56], [57], [60]–[68]) are

designed to be either more explorative or more exploitative. For example, the recently

introduced [75] artificial bee colony algorithm is aligned towards more exploitations than
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explorations, like many other EAS and SIAs (e.g., [64]–[66], [68]), while there also exist some

EAs and SIAs (e.g., [56], [57], [60]–[62]) that are biased towards more explorations. Along the

course of this thesis, we plan to design some more explorative variants of ABC and EP-based

algorithms by employing a number of techniques, such as recurring alternations, adaptation,

self-adaptation and hybridization with other existing algorithms. We also plan to find out

whether and by how much these techniques may improve their performance. Study, analysis

and experiments with the algorithms we intend to develop may help other researchers design

novel and more improved variants of the evolutionary and swarm intelligence algorithms.

e) For the purpose of evaluation and comparison of the proposed evolutionary and

swarm intelligence algorithms, we intend to use two different benchmark suites on continuous

optimization problems — the standard benchmark suite [55]–[67] and the recently proposed

CEC2005 benchmark suite [76] introduced in the special session on real-parameter

optimization at the 2005 IEEE Congress on Evolutionary Computation. Both the suites include

several continuous problems with different complexity. The standard benchmark suite has 30

different functions, including both low and high dimensional, unimodal and multimodal,

separable and non-separable functions. However, the functions in the CEC2005 suite are more

challenging, including many shifted, scaled, rotated, expanded and hybrid composite functions.

Using both the benchmark suites, the proposed algorithms will be compared with other existing

state-of-the-art EAs and SIAs.

1.4 Main Contributions
Based on the above-mentioned motivations and objectives, we have developed a number of

evolutionary and swarm intelligence algorithms (chapters 3–8), employing novel techniques

that try to balance between global explorations and local exploitations. The major contributions

of this thesis can be summarized in the following few points.

a) Based on the complementary characteristics of explorative and exploitative

operations during optimization, we have developed, in chapter 3, the Recurring Two-Stage

Evolutionary Programming (RTEP) — a novel evolutionary algorithm that try to maximize both

the degree of explorations and exploitations by regularly alternating between two different

‘modes’ (i.e., stages) of execution — one explorative and the other one exploitative. Each stage

has its own explorative/exploitative operators and objectives. A number of control parameters

allow the user to control the degree of explorations and exploitations during the optimization

procedure. Evaluation of RTEP on the benchmark problems shows that RTEP performs at least

equally well, and often significantly better than many other existing evolutionary algorithms.
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b) The existing amount of genetic diversity within the population of candidate

solutions can often indicate the maturity of the ongoing optimization process. But how

effectively this diversity information can be used to control and guide the evolutionary mutation

and selection operations? Our next algorithm — Diversity Guided Evolutionary

Programming (DGEP), proposed in chapter 4, is based on the concept of employing population

diversity information to control the evolutionary procedure. DGEP introduces Diversity Guided

Mutation (DGM) — a novel mutation scheme that tries to ensure both global explorations and

local exploitations by controlling the mutation step size using the diversity information of the

candidate solutions across the search space. DGEP also makes some diversity preserving

measures to maintain an adequate amount of population diversity that assists the proposed

DGM mutation scheme. The effectiveness of DGEP and DGM is empirically established through

its performance comparison with some other recent and relevant evolutionary and swarm

intelligence algorithms.

c) The magnitude of perturbations on a candidate solution affects the degree of

explorations and exploitations around it. Adapting the perturbation step size, separately for

each candidate solution of the population, can have a positive influence on the performance of

the algorithm by adaptively controlling both explorations and exploitations around each

candidate solution. Our next algorithm — Artificial Bee Colony algorithm with Self--Adaptive

Mutation (ABC-SAM), proposed in chapter 5, tries to control and adapt the mutation step size

for the basic ABC algorithm. Experimental studies (chapter 8) on ABC-SAM reveal that the

self-adaptation of mutation step size can often improve the performance of the basic ABC

algorithm, especially when sufficient degree of explorations is ensured by the proposed

self-adaptation scheme.

d) Some of the single state meta-heuristic algorithms [77] (e.g., simulated annealing,

tabu search, iterated local search) can provide a control over the degree of explorations around

a single candidate solution. Hybridizing such an algorithm with the population based

meta-heuristic algorithms (e.g., EAs and SIAs) may provide a better control over the explorative

and exploitative characteristics of the algorithms. Based on this idea, we have introduced

(chapter 6) the ABC with Improved Explorations (ABC–IX) — a novel ABC-variant that tries to

increase the explorative capacity of the basic ABC algorithm by hybridizing ABC with the

simulated annealing algorithm. ABC-IX also incorporates a strategy for self-adaptive

perturbation rate to control and customize the perturbation rate, separately for each candidate

solution in order to produce better offspring solutions from the existing ones. Experimental
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results (chapter 8) on ABC-IX show that both the techniques (hybridization and self-adaptation)

contribute significantly and synergistically to improve the performance of ABC-IX in comparison

to the basic ABC algorithm and several other recent variants of the evolutionary and swarm

intelligence algorithms.

e) The basic ABC algorithm is inherently biased towards more exploitations by its very

design [78]. Our next algorithm — ABC-AX2 is an improved variant of the basic ABC algorithm

that incorporates three different control parameters, separately within each candidate solution,

that try to adaptively control and customize the degree of explorations and exploitations,

separately around each candidate solution of the population. ABC-AX2 employs three adaptive

and self-adaptive techniques that gradually adjust the values of the three control parameters for

more effective explorations and exploitations. The experimental results (chapter 8) show that

all three control parameters, with their adaptive and self-adaptive strategies, affect the

performance of the algorithm in a positive and synergistic way. Both the convergence speed and

the final solution quality of ABC-AX2 are often found better than ABC-SAM, ABC-IX and several

other state-of-the-art improved variants of the basic ABC algorithm.

f) In chapter 8, we have conducted an in-depth experimental study on each of the

algorithms developed along the course of this thesis, analyzing several aspects of the

algorithms, such as the role and effects of their control parameters, the influence and

contribution of the proposed techniques on the performance of the algorithms, the contribution

and synergy (if any) of the proposed improvements, their impact on the convergence speed,

final solution quality, population diversity, perturbation success rates and so on. We have also

demonstrated that our proposed algorithms might be improved further by incorporating some

simple adaptive, self-adaptive and/or hybrid techniques, as exhibited by a newly introduced

adaptive variant — the Adaptive RTEP (ada-RTEP) in chapter 8.

g) The performance of each algorithm we have developed is evaluated and tested on as

many as 55 benchmark problems on continuous optimization, including 30 standard benchmark

functions [55]–[67], as well as 25 recent functions introduced in the special session on

real-parameter optimization at the 2005 IEEE Congress on Evolutionary Computation [76]. The

benchmark functions include both unimodal and multimodal, separable and non-separable,

low-dimensional and high-dimensional, shifted, scaled, rotated, expanded and hybrid composite

functions. Very few works have ever been tested and evaluated on such a wide and diverse

range of benchmark problems.
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1.5 Organization of the Thesis
The rest of this thesis is organized as follows. Part-II (Foundation) includes the chapter 2 which

briefly introduces the fundamentals of evolutionary and swarm intelligence algorithms, with

their many different variants, models, operators and processes. The essential terms related to

EAs and SIAs are explained with figures and examples. Chapter 2 also presents the strengths,

limitations and applications of EAs and SIAs, how they are employed to solve the continuous

optimization problems and a brief literature survey on how they deal with some challenging

research issues, such as avoiding premature convergence and balancing explorations with

exploitations. Also, an overview of two different benchmark suites consisting of total 55

different benchmark functions on continuous optimization is also presented in this chapter

(section 2.17, Tables 2.3–2.4), which is used extensively throughout the rest of this thesis (i.e.,

chapters 3 to 8) to evaluate and experiment with each of our proposed algorithms — the RTEP,

DGEP, ABC-SAM, ABC-IX and ABC-AX2.

The part-III (Proposed Algorithms) of our thesis spans the next five chapters (the chapters

3 to 7), each one of which develops a new evolutionary or swarm intelligence algorithm, trying

to tweak and improve the degree of explorations and exploitations of an existing EA or SIA, and

compares the results with relevant other state-of the-art EAs and SIAs. For example, chapter 3
introduces RTEP — a new EP-based algorithm that tries to balance between global explorations

and local exploitations by periodically alternating between complementary explorative and

exploitative operations. Chapter 4 presents DGEP ---- another novel EP-based algorithm that

tries to achieve more effective mutations by using the population diversity information to

adaptively control the mutation step size. Each of chapters 5, 6 and 7 tries to develop an

improved variant of the Artificial Bee Colony (ABC) algorithm. Chapter 5 introduces ABC-SAM

that tries to increase the explorative capacity of the basic ABC algorithm by employing a

self-adaptive mutation scheme. Chapter 6 introduces ABC-IX, which is another improved

ABC-variant that hybridizes ABC with a simulated annealing based probabilistic selection and a

self-adaptive perturbation rate in order to control and improve the explorative capacity of ABC.

Chapter 7 introduces ABC-AX2 that controls and customizes the degree of explorations and

exploitations, separately for each candidate solution, by incorporating three additional control

parameters within each candidate solution and by employing three adaptive and self-adaptive

rules that gradually adjust the values of these control parameters.

The next chapter (chapter 8) makes several detailed experiments on each of the five

algorithms developed along the course of this thesis, (i.e., RTEP, DGEP, ABC-SAM, ABC-IX,

ABC-AX2) to investigate the role and contribution of the proposed improvements, the synergy

and justifications of the techniques introduced, the roles and effects of the algorithm specific
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control parameters, how they affect the population diversity, explorative capacity, perturbation

success rate and so on. Chapter 8 also exhibits that incorporating some additional techniques of

adaptation and self-adaptation can often improve the results of most EAs and SIAs, as

demonstrated by a newly developed algorithm variant in this chapter — ada-RTEP.

In the next chapter (chapter 9), we draw conclusions by presenting a summary of the

algorithms developed so far, the major contributions of our thesis and suggest a number of

possible future research directions for the continuation of our works. Then, the Appendix A

presents the two suites of benchmark functions for the continuous optimization problem that

have been used all through this document to evaluate and compare each of our proposed

algorithms, followed by the Appendix B, which briefly lists the published and submitted papers

based on parts of this dissertation. Finally, we have included the complete bibliography for this

work at the end of this document.
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Chapter2
Evolutionary and Swarm Intelligence Algorithms

2.1 Introduction
To handle difficult real world problems, scientists and researchers have long been delving into

natural processes and beings. It is often found that optimization is at the core of many natural

processes, such as Darwinian evolution. Many creatures in nature are also found to be engaged

in varieties of distributed optimization tasks through their food foraging and social group

behavior, such as swarm of ants and bees, flocks of birds, schools of fishes and so on [79].

During the last few decades, researchers have introduced several models of nature-inspired

search and optimization algorithms that have been successfully employed to a wide range of

diversely varied problems, ranging from pure theoretical and scientific studies to practical,

industrial and commercial applications. Such wide, diverse and growing applicability of the

nature-inspired algorithms is a clear indication of their remarkable power and potentials to

tackle complex real world problems.

The field of nature and bio-inspired optimization algorithms mainly constitutes two

different families of algorithms — the evolutionary computing algorithms and the swarm

intelligence based algorithms. Both the families of algorithms share many common features and

both are centered on the problems of search and optimization. However, they are not

equivalent, and each has its own distinctive features and characteristics. In this chapter, we

present the essential terms, notions and concepts related to EAs and SIAs as well as their

strengths, limitations, applications and brief literature survey on how they address the

challenging research issues, such as avoiding premature convergence, preserving population

diversity and balancing explorations with exploitations during the optimization process.
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2.2 Organization of the Chapter
The rest of this chapter is organized as follows. Sections 2.3–2.5 explain the biological basis

behind EAs, present the basic terms and notions related to EAs and provide a brief overview of a
generic, typical EA. Section 2.6 mentions the six main components of EAs and explains each one

of them through the subsections 2.6.1–2.6.6. Section 2.7 explains how to solve a continuous

optimization problem using an EA, using two different examples. Sections 2.8–2.10 present the

overview of SIAs, their key properties and principles. Section 2.11 provides several examples of

swarm intelligence (SI) based algorithms. Section 2.12 presents, in details, the Artificial Bee

Colony (ABC) algorithms, which is a recently introduced SI based algorithm. Sections 2.13–2.14

explain, in details, the major strengths and limitations of EAs and SIAs. The next two sections —

2.15 and 2.16 present a brief literature survey on EA and ABC about how they deal with the

problems of premature convergence, fitness stagnation and the exploration vs. exploitation

dilemma. Finally, section 2.17 briefly presents an overview of two different benchmark suites

on continuous optimization that we have thoroughly used in this thesis (chapters 3 to 8) to test

and evaluate each of our proposed algorithms and to compare them with many other relevant

state-of-the-art EAs and SIAs.

2.3 Biological Basis of EA
In this section some biological terms, related with EA, are defined. This will be helpful to have

some comprehension of the biological processes upon which EAs are based on.

Every living organism consists of one or more cells. Inside each cell, there is a nucleus,

which is known as the central part of the cell. The nucleus of every cell of an organism contains

the same set of chromosomes. Chromosomes are strings of DNA and serve as a model or ‘blue

print’ of the whole organism. Blocks of DNA within a chromosome are known as genes. Each

gene encodes a particular trait, for example color of eyes or hair. Each gene is located at a

particular position in the chromosome. This location is the identity of the gene, and determines

the trait to which it is related. The collection of all the genetic materials within all the

chromosomes is called genome. A specific set of genes in genome is called genotype. The

genotype is directly related with the organism's phenotype, i.e., its physical and mental

characteristics, such as hair color, personality, complexion etc. When two organisms mate, their

reproduction makes some shuffling of genetic materials of chromosomes from both the parents.

A pair of chromosomes exchange genetic information and produce offspring that contain a

combination of information from each parent. This is the recombination operation, which is

often referred to as crossover. Random effects are usually involved in the selection of parents

and in the process of shuffling of genes among the chromosomes. Usually organisms with higher
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fitness get better chance of mating and surviving. EAs usually use some function of the fitness

measure to select individuals probabilistically to undergo the mating and reproduction

procedure using the genetic operations such as crossover/recombination and mutation.

Evolution requires some amount of diversity to work appropriately. In nature, an

important source of diversity is mutation, which changes a randomly selected gene in the

chromosome by a random amount. In an EA, a large amount of diversity is usually introduced at

the start of the algorithm, by randomizing the genes across the population. However, this

diversity may fall rapidly during the next generations because both recombination and selection

operations are usually diversity decreasing operations. Thus, the importance of mutation, which

introduces further diversity while the algorithm is running, cannot be overemphasized.

However, some researchers like crossover/recombination as the main search operator and

prefer mutation as a background operator to reintroduce some of the original diversity that may

have been lost, while others view mutation as playing the dominant role in the evolutionary

process. For example, in the EP-based algorithms mutation is the sole evolutionary search

operator, with no recombination or crossover operation.

2.4 Basic EA Terminology
Since EA is inspired by the concepts of natural genetics and the Darwinian theory of evolution,

they use lots of terms from biology and genetics. Since these terms are prevalent and ubiquitous

across the literature on evolutionary computation, we briefly present them in Table 2.1.

Table 2.1: Common terms used in evolutionary computation

Term Meaning in the context of EA

individual A candidate solution to the problem at hand

population A set of individuals (i.e., candidate solutions) maintained by an EA

genome
Often used interchangeably with the term individual. Actually genome is the
data structure of an individual, which is used during genetic operations, such
as crossover and mutation

genotype same as the term genome

chromosome same as the genotype or genome, but represented as a fixed-length vector

parent and
child (offspring)

A parent (i.e., existing individual or candidate solution) is perturbed by
genetic operations (i.e., mutation, crossover/recombination) to produce a
new candidate solution (child or offspring)

gene A gene is a particular slot position in a chromosome. In other words, each
chromosome is a list (sequence) of gene values.

allele a particular setting of a gene
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Table 2.1 (continued): Common terms used in evolutionary computation

Term Meaning in the context of EA

phenotype The phenotype of an individual is a measurement of how it performs during its
fitness assessment

fitness The fitness of an individual is a measurement of its quality as a candidate
solution to the problem at hand

fitness
assessment The task of computing the fitness of an individual

fitness
landscape quality function; shows the fitness of every possible individual

generation
One complete cycle (iteration) of fitness assessment, breeding and re-insertion
to form the population for the next cycle. The term generation may also refer
to the population produced in each such cycle

selection choosing individuals for breeding, based on their fitness

breeding or
mating

The procedure of producing one or more children (new candidate solutions)
from a pool of parents (i.e., existing candidate solutions) through a process of
selection and genetic operations (crossover/recombination and/or mutation)

recombination
or crossover

A form of genetic operation related to sexual breeding. A typical
recombination or crossover operation selects two individuals (parents),
combines or swaps their information in some way to produce (usually) two
new individuals (offspring).

mutation A form of genetic operation that selects an individual (candidate solution) and
randomly perturbs it to form a new individual.

re-insertion Constructing the population of the next generation from the union of the
parent and offspring solutions.

2.5 EA Overview
Evolutionary algorithm is an iterative, stochastic search and optimization technique based on
the concepts of the Darwinian theory of evolution. EA maintains a population of individuals or
chromosomes (i.e., candidate solutions) that are selected using Darwinian ‘laws of natural
selection’ with ‘survival of the fittest’ and updated using operators borrowed from natural
genetics like crossover, recombination and mutation. EA is an iterative algorithm — it runs
generation by generation. In each generation, a typical EA employs selection,
crossover/recombination and/or mutation operations to produce a pool of new candidate
solutions (i.e., offspring) from the existing solutions (i.e., parents). From the union of the parents
and offspring, the selection and/or reinsertion policy tries to keep the better candidate
solutions and wipe out the low quality individuals during constituting the next generation
population. Crossover and recombination are like ‘sexual breeding’ operations that produce
new candidate solutions by combining information from two (or, more) different existing
solutions, while mutation is like an ‘asexual’ genetic operation that randomly alters ‘gene’
value(s) of an individual.
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Figure 2.1: Block diagram of a typical EA

Figure 2.2: Pseudocode of a typical EA

Algorithm 2.1: A typical EA

1. Initialization. Generate a random population of n chromosomes (individuals). Each
chromosome is a candidate solution for the problem.

2. Fitness Evaluation. Evaluate the fitness f(x) of each chromosome x of the
population.

3. Generate new population. Create a new population by repeating the following steps
until the new population is complete.

3.1 Selection. Select two parent chromosomes from the population according to
their fitness values (the better the fitness, the bigger chance to be selected).

3.2 Recombination. Combine the gene values of the two parents to produce new
offspring.

3.3 Mutation. With a mutation probability, mutate the new offspring at each
gene/locus (position in its chromosome).

3.4 Reinsertion. Either accept or reject the new offspring in a new population.

4. Test for termination. If the stopping criteria are satisfied, then stop and return the
best solution in the current generation population. Otherwise, continue.

5. Loop back. Go to the step 2 to continue the evolution with the new population of
candidate solutions.
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Figure 2.3: Gradual improvement of the objective value during the run of a typical EA. Here,
the objective was the minimization of a continuous function.

In each generation of a typical EA, there are four operations — selection, crossover (or,

recombination), mutation and re-insertion. Selection picks the individuals that go through the

genetic perturbations by crossover (or, recombination) and mutation operations, followed by

the re-insertion scheme that selects high quality individuals for the next generation and weeds

out the low quality solutions. The selection and re-insertion operations are usually based on

fitness and hence responsible for search space exploitations, while the perturbation operations

(crossover/recombination and mutation) usually perform the explorations of the search

regions. Fig. 2.1 shows the structure of a typical evolutionary algorithm, while Fig. 2.2 presents

the pseudocode of a typical EA. The algorithm starts with a population of individuals, each

representing a candidate solution of the problem at hand. Each generation of solutions passes

through the evolutionary process of selection, crossover/recombination and/or mutation

operations to generate new offspring solutions. The next generation is constructed by selecting

good quality individuals from the union of the parents and offspring. This process continues

again and again until some stopping criteria are met, which may be based on some predefined

maximum number of generations, some maximal number of fitness evaluations or reaching

some desired fitness or objective function value. During the run, the fitness value of the best

found individual usually improves over time, generation by generation. This fitness

improvement may stagnate at the intermediate locally optimal points or during the end of the

run, as demonstrated in Fig. 2.3. In the ideal case, the fitness stagnation would happen with the

successful finding of the global optimum. However, stagnation may also occur around a strong

locally optimal point, which can lead to premature convergence of the optimization procedure

with insufficient solution quality, which is one of the major problems of EAs (and SIAs, too).
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2.6 Components of EA
EAs have a number of component procedures and operators that must be described to have a
proper comprehension of the algorithm. When solving a particular problem using EA, each of

these components is required to be specified precisely in order to describe the EA. The essential

components of an EA are as follows.

 Representation (Encoding)

 Fitness (or, evaluation) function

 Selection

 Recombination/Crossover

 Mutation

 Reinsertion

2.6.1 Representation (Encoding)
Representation means to represent or encode a candidate solution of the actual problem as a
data object inside a computer program, suitable to be manipulated by the simulated

evolutionary computation. A data object, representing a potential solution of the actual problem,

is called a ‘chromosome’, ‘genotype’, ‘genome’ or ‘individual’ interchangeably, while the actual

physical solution in the problem domain is referred as ‘phenotype’. A candidate solution may be

encoded as a collection (e.g., vector, list) of attributes (parameters or search variables) within a
chromosome or individual. Each attribute inside a chromosome is called a ‘gene’. An

appropriate encoding for the parameters in the genotype depends on the problem at hand.

However, encoding with binary bit string is very common, because almost all problem

parameters can be encoded using binary representations. The genetic operations often depend

on the encoding of the chromosome, so special encoding may necessitate designing specialized

mutation and crossover/recombination operators. Although there exist many EA variants with

many different encodings and operators, the two most commonly used encodings are for

numeric search domain and permutation domain. Most of the problems handled by EAs appear

from these two domains. Numeric domains cover all the problems where the goal is to find a
numerical vector (i.e., real-valued vector) that optimizes an objective function value. Most of the

applications of EA come from this domain, so there already exist a lot of works addressing the

issues of encodings and operators for numeric domains. The two key encodings for numeric

domain are the binary string (bit string) encoding and the value encoding.

In binary string encoding, every chromosome is a string of bits, 0 or 1. For example, a

chromosome A may be represented as: 110101010010010111. However, in many problems of

the numeric domain, value encoding is used, which directly encodes the chromosome as a



18

sequence of its attribute values. For example, if each attribute is a real number, the chromosome

is represented as a string (or, vector) of real values. Values can be anything connected to the

problem, from numbers or characters to some complicated structures or objects. Some

examples of value encoding are shown below.

Chromosome A white, gray, gray, black, brown

Chromosome B b  a  c  d  c  c  a  b  g  a  c  a  d  b  d  d  c  c  b
Chromosome C 0.5498   1.5329   2.1092   9.2143   0.2241

Another form of representation is the permutation encoding, which is mostly used in

ordering (or, permutation) problems, such as the traveling salesman problem or task ordering

problem. In permutation encoding, every chromosome is a string of numbers, each number

representing a position in a sequence. For example, a chromosome D may have the permutation

encoding: 7 2 4 1 6 5 9 3 8, where the original sequence has 9 different members. For the

traveling salesman problem, the above chromosome D may represent the order at which the

cities are travelled, such as the city #7 been travelled first, followed by the city #2, then city #4,

and so on. Another special kind of representation, which is used with genetic programming [2],

is the tree encoding. In tree encoding, each chromosome represents a computer program or

expression that is evolved through the evolutionary process. In this scheme, every chromosome

is a tree of some objects, such as instructions, or procedures of a programming language.

2.6.2 Fitness (Evaluation) Function
The fitness function (or, evaluation function) performs the role to define how ‘well’ each

individual chromosome is carrying out as a possible solution of the actual problem. Actually, it is
a particular type of objective function, but is called ‘fitness function’ because it assigns a level of

fitness to each individual. This fitness measure summarizes how close is an individual to achieve

the objective of the given problem at hand. The selection and reinsertion phases usually depend

significantly on the fitness values of the individuals assigned by the fitness function. As an

example, suppose, we want to find the value of x within the domain of 8-bit integers so that the

value of the objective function f(x)=x2 is maximized. Here, the phenotype search space contains

all possible integers within the range. The evolution will start with a limited number of

chromosomes, sampled over the range of 8-bit integers. If we use a binary encoding, then a

chromosome 00010100 will represent a phenotype integer 20. To measure the fitness of the

chromosome, the fitness function may simply compute the square of the corresponding

phenotype: 202 = 400. The more the value of the square, the better the chromosome is. Thus, the

evaluation function builds a bridge from the genotype space of the simulated evolution towards
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the phenotype space of the actual problem domain. The direction of the evolution depends

entirely on how the fitness function interprets the fitness and evaluates the chromosomes.

Designing a workable fitness function may not be straightforward. Even though it is no

longer the human designer, but the computer, that comes up with the final design, it is the

human designer who has to design the fitness function. If the fitness function is not designed

appropriately, the algorithm may converge to undesired solutions or even fail to converge at all.

Besides, the fitness function should be designed such a way that it not only closely expresses the

goal of the human designer, but also can be computed quickly with small computational

expense. The execution speed of an EA or SIA is directly dependent on how efficiently the fitness

function can be computed. In some instances, fitness approximation is allowed instead of exact

fitness computation. This reason might be an extremely high computational need of fitness

evaluation, or the lack of an appropriate and known model of the fitness function. In some cases,

it may become completely impossible to even guess the definition of the fitness function (e.g.,

the aesthetics of a fashion product or the taste of a coffee). The interactive genetic algorithm is a
family of EA that handle this difficulty by employing external agents (e.g., humans, polls, online

forums) for fitness evaluations [80].

2.6.3 Selection
Inspired by the ‘laws of natural selection’ and ‘survival of the fittest’ in the Darwinian theory of

evolution, a typical EA selects a number of individuals (parents) from the population to

constitute a mating pool, where they go through the genetic procedures of

crossover/recombination with each other to reproduce a number of new individuals (offspring).

Selection is usually based on fitness to provide the fitter individuals with better chance of

mating, reproduction, and survival in order to simulate the Darwinian evolutionary principle of

survival of the fittest.

There are a number of standard techniques to make the selection of individuals (parents).

For example, the roulette wheel selection, rank based selection, tournament selection, steady

state selection and scaling selection. In Roulette Wheel Selection, parents are selected in

proportion to their fitness. The better an individual, the more likely it is to be selected. Consider

a roulette wheel where all the individuals are placed. The slice of every individual is as large as

(or, proportional to) the fitness of the individual, assigned by the fitness function. The wheel is
rotated at a random pace and a marble is thrown into it to select a chromosome. Chromosomes

with higher fitness and occupying more area on the roulette wheel will have better chance to be

selected. If we need N individuals, the marble is thrown N times; each time it returns an

individual.
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When the best individual of the population is exceptionally better than the other

individuals, the roulette wheel selection will cause problems by selecting the best individual

several times, and filling the populations with its multiple copies. For example, if the best

chromosome’s fitness covers 70% of the area of the roulette wheel, then the other

chromosomes will have few chances to be selected. Rank based selection eliminates such

problem. Rank based selection first ranks all the individuals of the population based on their

objective function value. Then every chromosome receives fitness from its ranking, not from

their actual objective values. Selection is made from these rank based fitness values.

In tournament selection, a number (say, T) of individuals is chosen uniformly at random

from the population and the individual with the best fitness of this group is selected as a parent.

This process is repeated as many times as individuals are needed as parents. The parameter T

takes values ranging from 2 to N, where N is the number of individuals in the population. Large

values of T (e.g., T=10) intensifies the degree of exploitations because it increases the likelihood

of picking from the very fit individuals during each selection, while smaller values of T (e.g.,

T=2) makes the algorithm more explorative, because it picks both high and low quality

individuals with significant probability, allowing some diversity to persist throughout the entire

course of the evolution, which may be necessary to avoid premature convergence for some

problems.

Another commonly used selection scheme is the Scaling Selection. As the average fitness of

the population increases gradually, the scaling selection scheme ensures that the strength of the

selective pressure also increases and the fitness function gradually becomes more and more

discriminating with the ongoing generations. This method can be helpful in making the best

selection later on when all individuals have relatively high fitness values and only small

differences in their fitness values distinguish them one from another.

Another selection scheme — Steady State Selection ensures that most of the chromosomes

of the current generation survive to the next generation. Such a selection scheme usually

exhibits steady improvement of fitness values, and avoids wild oscillations in the average fitness

values. In each generation, some good (or, best) chromosomes are selected for mating.  The

offspring replace some bad (or, worst) chromosomes from the population. The rest of the

population survives to the new generation. The opposite of Steady State Selection is the

Generational selection— the offspring of the parent individuals selected from i-th generation

become the entire next (i.e., i+1-th) generation. No individuals are retained between the

generations.
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A term closely connected with selection is Elitism. Elitism is a method which safeguards

the best part of the population. During each generation, the best chromosome or a pre-defined

number (say, k) of best chromosomes are copied to the new population. Then any selection

scheme completes the rest of the selection. The parameter k is called the elite size. Elitism has

shown good performance with a number of problems [68], [162], because it protects the best

solutions. However, both steady state selection and too strong elitism (i.e., large value of the

elite size k) can turn an EA into too much exploitative by filling the population only by the best

individual and its offspring solutions.

2.6.4 Recombination/Crossover
Recombination is the process of generating new individuals (i.e., offspring candidate solutions)

by combining the information of two or more existing individuals (parent candidate solutions).

Each individual contains a number of attributes (i.e., parameters or search variables).

Recombination is done by combining the attribute values of the parents. There are several ways

of recombination. The representation (encoding) of the parents play an important role in

determining the method of recombination to be applied on the parents.

For individuals with real valued encoding of the attributes, several variants of

recombination is defined. For example, line recombination, extended line recombination,

intermediate recombination. In intermediate recombination, the attribute variables of the

offspring are randomly chosen somewhere around and between the parents’ attribute variables.

Offspring are produced according to the following rule.

   1 2      (1 – );       – ,  1 ;       1,  2,  ...,        o P P
i i i i i iVar Var Var d d i n (2.1)

αi [–d, 1+d ] is generated uniform at random; d=0.25; αi is generated anew for each i.

Here, n is the number of variables in each individual (which is usually same as the

dimensionality of the problem), αi is a scaling factor chosen uniformly at random from the

interval [–d, 1+d]. If d is set to 0, offspring are always generated at the intermediate region of

the parents. Thus, over the generations, the area spanned by the offspring gradually reduces

than the area of the parents. From statistical studies, an appropriate value of d=0.25 has been

chosen, which ensures that the area spanned by the offspring does not shrink by successive

recombination operations over the generations. The difference between intermediate

recombination and the line (or, extended line) recombination is that the latter always produces

the offspring solutions on the line (or, extended line) connecting both the parent solutions,

while the former one (i.e., intermediate recombination) produces the offspring at any point

inside the hypercube (or, extended hypercube, based on the value of d in eq. (2.1)) surrounding

the parents.
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When parents have binary encoding, their recombination constitutes a special case,

known as crossover. During crossover, a random bit position, k is selected from the range [1…n].

Then, the pair of mating parent exchanges all their bits starting from the k-th position. The

random bit position k is called the crossover point and selected anew for each crossover

operation. Depending on the number of crossover points, there exist single-point, two-point and

multi-point crossover. An example of single point crossover is shown in the following Fig. 2.4.

0 0 1 | 0 0 0 1 0 1      +       1 0 1 | 1 1 0 1 0 0 = 0 0 1 1 1 0 1 0 0

Figure 2.4: Single-point crossover

For two-point crossover, two crossover points are selected at random, and binary string from

the beginning of chromosome to the first crossover point is copied from one parent, the part

from the first to the second crossover point is copied from the second parent and the rest is

copied from the first parent. This is illustrated with an example in the following Fig. 2.5.

1 1 0 | 0 1 0 | 1 1 +      1 0 1 | 1 1 1 | 0 1 = 1 1 0 1 1 1 1 1

Figure 2.5: Two-point crossover

Another form of crossover is uniform crossover in which bits are randomly copied from the first

or from the second parent, based on a crossover probability pc. The following Fig. 2.6 shows this

kind of crossover using an example.

1 | 1 0 | 0 1 0 | 1 | 1 + 0 | 1 1 | 1 1 1 | 0 | 0 = 0 1 0 1 1 1 1 0

Figure 2.6: Uniform crossover
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2.6.5 Mutation
Mutation means randomly altering the chromosomes. In EP-based algorithms, mutation is

considered the sole genetic operator, while other EA families employ both the recombination

and mutation operations. Two parameters are associated with mutation — mutation step and

mutation rate. Mutation step controls the amount of variation incurred by the mutation.

Mutation rate controls the probability of an attribute (gene) within a chromosome being

mutated. Usually mutations are applied with small mutation steps and low mutation rate.

Offspring are probabilistically mutated after being created by the recombination step. Like

recombination, there exist several standard ways of mutation. The encoding of the chromosome

determines the possible means of mutation that may be applied on it. If the chromosome has

value encoding, with real values for the attributes, then mutation means adding randomly

created real values with the attributes. For binary encoding, mutation means the flipping of the

bits, since every bit has to be either 0 or 1.

The mutation rate usually depends on the problem at hand. For many problems, the

mutation rate is made inversely proportional to the number of variables. The more attributes

(genes or search parameters) an individual has, the smaller is set the mutation probability.

There exist a number of research works [81]–[83] that try to find the optimal mutation rate and

step size for a problem. However, a mutation rate of 1/n (n: number of genes within a

chromosome) has been reported to exhibit satisfactory results for a wide range of problems.

With this mutation rate, only one variable per individual is altered. Thus, the mutation rate is
become independent of the population size. Another strategy suggested in [83] is to set higher

mutation rates at the beginning of the evolution, and declining this rate with the increasing

generations, which has shown an acceleration of the search process for many problems.

The optimal size for the mutation step is usually difficult to realize. It always depends on

the problem at hand and often varies during the ongoing optimization process. Small mutation

steps are usually successful, while larger steps, when successful, produce good results much

quicker. For this reason, a good mutation operator should produce both small and large

step-sizes in suitable proportions. Such a mutation operator, as proposed and employed

in [81], [84] is specified the following eq. (2.2).

           Mut
i i i i iVar Var s r a (2.2)

i {1, 2, …, n} uniform at random

s
i
{-1, +1} uniform at random

ri = r. domaini
; r : mutation range (standard: 10%)

ai = 2
–u. k

; u[0, 1] uniform at random, k: mutation precision.



24

This mutation is able to generate most points in the hypercube defined by the domain of the

attributes (search variables) of the individuals. Most mutated individuals tend to be near the

parent individual. Only some mutated individuals will be far away from the parent. Thus, the

probability of small step-sizes is greater than larger steps, which is proper for most problems.

For binary valued individuals, mutation means the flipping of the attribute (i.e., gene)

values, because every gene can have either of only two states — 0 and 1. Thus, the size of the

mutation step is always 1. For every individual, the gene value to be mutated is chosen mostly

uniform at random. The following example in Fig. 2.7 shows how a binary mutation alters a

chromosome with 10 bits. Here, mutation randomly flips the bit at position 6 from 0 to 1.

Chromosome (before mutation): 0 0    1    0    0    0    1 0 1    1
Randomly selected gene position to be mutated: 6

Chromosome (after mutation): 0 0    1    0    0    1    1 0 1 1

Figure 2.7: Bit-flip mutation

In order to mutate real variables, it is possible to adapt the direction and step-size to
conduct a more effective search process. These methods are from evolutionary strategies [4]
and also from evolutionary programming [3]. The extensions of these methods and new
developments include several new schemes, such as — adaptation of n (number of search
variables) step-sizes but no direction [88] [89], adaptation of n step-sizes and only one
direction [89] and adaptation of n step-sizes and n directions [90].

2.6.6 Reinsertion
Reinsertion is the process of constructing the next generation population from the union of the

parents and offspring. There exist several schemes, each with its own merits and demerits. In
pure reinsertion [3], the number of offspring reproduced is equal to the number of parents and

the offspring population replaces the parent population entirely. Thus, each individual, even the

best one, lives for only a single generation. In uniform reinsertion [3], fewer offspring are

produced than parents and offspring replace parents uniformly at random. As a result, better

individuals may be replaced by weaker offspring. In elitist reinsertion [3], the worst individuals

of the current population are replaced by the new offspring, which means the elitist reinsertion

can become very exploitative. Another scheme, fitness based reinsertion [3] produces more

offspring than needed, and they are inserted into the population based on their fitness. A
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number of reinsertion schemes may be combined to construct a new scheme. For example, the

elitist scheme combined with fitness-based reinsertion prevents the best individuals from being

lost, and it is recommended for many problems. In this scheme, a given number of the least fit
parents are replaced by the same number of the fittest offspring. Some EAs [91] consider not

only the fitness value, but also the diversity of a candidate solution to allow it to the next

generation. A more diverse individual promotes more search space explorations and helps the

algorithm avoid premature convergence to any locally optimal point.

In addition to all the global reinsertion schemes described above, reinsertion may also be

based on local policies. In local reinsertion, individuals are considered within its bounded

neighborhood only. The reinsertion of an offspring usually takes place in exactly the same

neighborhood from where it is selected. This preserves the locality of the genetic information.

Examples of some local reinsertion policies are as follows.

 Insert every offspring and replace weakest individuals in the neighborhood.

 Insert offspring fitter than weakest individual in the neighborhood and replace the

weakest individuals in the neighborhood.

 Insert offspring fitter than the parent and replace the parent.

 Insert every offspring and replace individuals in the neighborhood randomly.

 Insert offspring fitter than weakest individual in the neighborhood replacing parent.

 Insert offspring fitter than the weakest individual in the neighborhood and replace

individuals in the neighborhood uniformly at random.

During the reinsertion step, a number of better parent solutions may be replaced by some

worse offspring. However, this does not cause trouble for most problems, since if the inserted

offspring are extremely bad, they are very likely to be replaced with new, better offspring

solutions in the next generation.

2.7 Continuous Optimization with EA
An EA always works with a set of individuals (chromosomes), representing candidate solutions
of the problem. EA also needs an evaluation function (or, fitness function) that can assign a
fitness value (i.e., a quality measure) to every individual of the population. EA moves from
generation to generation, performing selection and reproduction of the individuals. The selection
operation (described briefly in section 2.6.3) selects some individuals (parents) for reproduction
by using the recombination and mutation operations to produce a number of new candidate
solutions (offspring). There exist several recombination and mutation operations in the
literature, some of which are briefly described in the earlier sections 2.6.4 and 2.6.5,
respectively. From the union of parents and offspring, the reinsertion operator (section 2.6.6)
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selects some individuals to constitute the next generation population. To employ an EA on a
continuous optimization problem, we have to define at least the following five fundamental
components of EA — the chromosome representation, the fitness (or, evaluation) function, the
selection procedure, the reproduction operators (mutation and crossover/recombination) and
the reinsertion policy, each of which is briefly described in the following paragraphs.

Representation (encoding): For the problem of continuous optimization, it is common to use
either binary string representation or the real-valued vector representation (section 2.6.1).
However, for numerical function optimization, fixed-length real-valued vector representation is
more common. Here, each individual (chromosome) x is represented as a fixed-length vector of
floating point numbers, i.e., x=[x1, x2, …, xD]T, where D is the number of search variables (the
dimensionality of the problem).

Fitness (Evaluation) function: For a maximization problem, where F is the objective function
to be maximized, the fitness of an individual x can be estimated simply by using the value of
F(x). However, for a minimization problem, the same value might be used, but only after
inversion or negation, i.e., fitness(x)=1.0/F(x) or –F(x) might be used. In case F(x) can take both
positive and negative values, we estimate the fitness of x for a minimization problem using (2.3).
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Selection: The selection operation is usually based on the fitness values of the individuals,
though some other criteria (e.g., diversity) may also be considered, as in [88]. A selection
operator has its own particular effect on the exploitative/explorative characteristics of the EA,
so it should be carefully chosen, considering the explorative/exploitative requirements of the
problem at hand. The Roulette wheel selection, developed by Holland in 1975 [1], is one of the
earliest and commonly used selection operator, which can be directly used for the continuous
optimization problem. The other selection operators, briefly described in the section 2.6.3, can
also be used directly, without any alteration, for the continuous optimization problem.

Recombination/Crossover: The representation (encoding) of the individuals usually directs
the choice of the recombination operator. For the binary string representation, the classical
crossover operator is the simple crossover [89]. The n-point crossover [90] and the uniform
crossover [91] may also be used. For real-valued vector representation, numerous
recombination/crossover operators have been developed, such as the Flat crossover [92],
Simple crossover [93], [94], Arithmetical crossover [94], BLX-α crossover [95], Linear
crossover [93], Discrete crossover [81], Extended Line crossover [81], Extended Intermediate
crossover [81], Wright’s Heuristic crossover [96], Linear BGA crossover [97], Fuzzy Connectives
based crossover [98] and so on.
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Mutation: The choice of an appropriate mutation operator largely depends on the
representation (encoding) of the individuals. For binary string representation, the simple bit flip
mutation (section 2.6.5) is often used. For real-valued vector representation, several mutation
operators have been designed and tested, such as the Random mutation [94], Non-uniform
mutation [94], Creep mutations [99], [100], Mühlenbein mutation [81], Discrete Modal
mutation [102], Continuous Modal mutation [101] and so on.

Reinsertion: For the continuous optimization problem, any of the local or global reinsertion
policies (section 2.6.6) can be used. However, for improved performance, we should select the
reinsertion policy only after cautiously considering its explorative/exploitative properties, its
synergy with the selection, crossover/recombination and mutation operations, and the
explorative/exploitative requirements of the problem at hand.
Now we present two examples of how to employ an EA on the continuous optimization
problems. In the first example, we show only one iteration of an EA that tries to maximize the
function f(x)=x2. The EA in this example (Table 2.2) uses binary string representation, roulette
wheel (i.e., fitness proportional) selection, single point crossover and bit-flip mutation. The
control parameters of the EA are set as follows — the crossover probability=0.50, mutation
probability=0.01 and population size, n=4. Because of the low mutation probability on this
small population size, no mutation has been taken place in the current iteration, as shown in
Table 2.2. The execution of the single generation is divided into two stages — the selection stage
(columns 2–4 in Table 2.2) and the recombination stage (columns 5–6). During the selection
procedure, column 2 computes the fitness of each individual xi, column 3 calculates their
relative probability to be selected and column 4 shows the number of times each individual is
actually selected by the roulette wheel selection scheme. During crossover, the column 5 shows

the crossover point by using the ‘|’ symbol. The bottom row shows that all three measures of the

population fitness (the worst, average and best fitness values) have improved significantly, even
within this single generation. This indicates the excellent capacity of an EA to produce
sufficiently good quality solutions within fixed, finite execution time.

Table 2.2: A single iteration of an evolutionary algorithm using binary string representation,
roulette wheel selection and single point crossover operation.

Selection Procedure Crossover/Recombination

Population
Member (xi) fitness(xi)
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x
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Mating

Pool
New

Population
Fitness
(New)

0110 36 0.19 1 01|10 0101 25
0010 4 0.02 0 10|01 1010 100
1001 81 0.43 2 1001 1001 81
1000 64 0.34 1 1000 1000 64
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4
46.25
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25
67.50
100
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Our next example of employing an EA to solve the continuous optimization problem is the

Classical Evolutionary Programming (CEP), which belongs to the evolutionary programming

family. We have implemented CEP according to [102], which is described in the following steps.

We have also compared the results of CEP with most of our own algorithms that are proposed

along the chapters 3 to 8. Like other EP-based algorithms, CEP does not use any recombination

operator; rather, it uses mutation as its sole genetic variation operator. CEP mutates every

individual of the current population to produce a new offspring, then selects the better n

individuals from the union of 2n parents and offspring by using a tournament based global

reinsertion scheme. The following steps are performed in every generation of CEP.

 Generate an initial population of n individuals. Each individual I is represented as a pair

of real valued vectors (xi, ηi), for i=1, 2,  …, n; Here, xi’s are objective variables and ηi’s

are standard deviations for Gaussian mutations. Each xi (and ηi) has D components,

where D is the dimensionality of the problem. Each component of xi, for i=1, 2, …, n, is
generated uniformly at random within its search domain. All the components of ηi, for

i=1, 2,  …, n, are initialized to some moderate value (e.g., 3.0), as is done in [57].

 Calculate fitness value of each individual (xi,ηi) based on objective function value F(xi).

 Mutation step: Mutate each individual (xi, ηi), for i=1, 2, …, n, to create an offspring

(xi′, ηi′) — that is,  for j=1, 2, …, D,

       0,1  i i i jx j x j j N (2.4)

         exp 0,1 0,1      i i j jj j N N (2.5)

Here, xi(j), xi′(j), ηi(j), and ηi′(j) are the j-th component of the vectors xi, xi′, ηi and ηi′,

respectively. Nj(0,1) is a normally distributed one-dimensional random number with

mean=0 and standard deviation=1. Subscript j in Nj(0,1) indicates the random number

is generated anew for each value of j. The factor τ and τ′ are set to   1
2 n


and   1

2n


 Calculate the fitness of each offspring produced by the previous mutation step.

 Conduct a pair wise tournament based competition over the union of parents and

offspring. For each individual, q opponents are picked uniformly at random from all the

other parents and offspring. If the individual’s fitness is not less than its opponent in the

pair wise competition, it receives a ‘win’.

 Select the n individuals from the union of parents and offspring that have received the

highest number of ‘win’s. They become the parents for the next generation.

 Stop if some stopping criterion (e.g., predefined maximum number of generations) is

fulfilled.  Otherwise, go back to the mutation step to start another CEP iteration.
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2.8 Swarm Intelligence Based Algorithms
Swarm of insects that show social behavior, such as ants, bees, wasps and termites, have

fascinated scientists and researchers as well as naturalists and poets for hundreds of years.

Each member of a swarm, e.g., an ant or a bee, seems to perform very simple and basic

operations, but together all their activities seamlessly integrate in an unsupervised and

distributed way, without any central control, and yet lead to extraordinary results, such as the

construction of an amazing ant colony, bee hive, termite nest or finding a set of optimal routes

to good quality food sources over large distances and across lots of obstacles from their nests.

Swarm intelligence is the branch of science that studies such emergent collective intelligence

from the groups of decentralized, self-organized simple agents, in both natural and artificial

systems. In particular, swarm intelligence based algorithms focus on the communal behavior

and collective intelligence that may result from the local interactions and self-organizations of

the individuals with each other and with their environment. The motivation of SI based

algorithms lies in numerous natural systems, like the colonies of ants and termites, hives of

bees, schools of fish, flocks of birds and herds of land animals. In the following sections, we

briefly explain the properties and principles of SI, followed by a number of examples of SI based

algorithms, their notable strengths and limitations, a detailed overview of the Artificial bee

colony (ABC) algorithm, which is a recently introduced [75] SI based algorithm and a brief

literature survey on a few existing improved variants of the ABC algorithm.

2.9 Properties of Swarm Intelligence Algorithms
A typical swarm intelligence based system is a multi-agent system that shows self-organized

behavior based on the local interactions of the agents among themselves and with the

surrounding environment. The self-organization behavior, usually combined with some

significant degree random fluctuations, often leads to the emergence of globally intelligent

behavior, in a distributed style, without the need of any central coordination. A typical swarm

intelligence based system can be characterized by the following distinct properties.

 A swarm is composed of many agents (individuals).

 The individuals are usually homogeneous or nearly homogeneous in nature. They are
either identical or belong to only a few closely related typologies.

 The individuals interact with each other and with the environment. The interactions are
based on only a few simple behavioral rules that exploits some local information that
they exchange, either directly or via some medium or environment (e.g., stigmergy).

 The overall behavior of the swarm system is a direct result of the interactions of the

self-organized individuals with each other and with their environment. This group
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behavior shows the emergence of intelligent behavior from the collaborative,

distributed, self-organized behavior of the individual swarm members.

The distinguished property of a swarm intelligence based algorithm is its ability to show

collective, coordinated, intelligent group behavior without the presence of any central or

external coordinator, which results from the interactions of spatially distributed individuals

that exchange important local information among themselves to organize their behavior based

on some simple, basic rules. Also, some randomness and stochastic behavior should also be

present in each individual of the swarm, which may depend on the information it receives from

the neighboring individuals and also from the surrounding environment. These properties make

it possible to design swarm intelligence based algorithms that are significantly scalable, parallel,

and fault-tolerant.

 Scalability is possible in a swarm intelligence based system, because the interactions are

only among the neighboring individuals, so the total number of interactions don’t

increase severely with the number of individuals in the swarm.

 Parallelism is possible in swarm intelligence based algorithms, because the swarm

individuals can simultaneously perform different actions in different regions of the

search space, without waiting for each-other or without the need for any central control.

 Since every individual swarm member is autonomous, decentralized and self-organized

by using local information only, they can easily aggregate to form a fault tolerant system.

The individuals are homogeneous or nearly homogeneous, so they are easily

interchangeable — a failed individual can easily be replaced by another one, thus

making a highly fault-tolerant system.

2.10 Principles of Swarm Intelligence Algorithms
In swarm based algorithms, the local interactions among simple self-organized agents lead to

the development of collective intelligence at the global level. It has been showed [103] that such

self-organization is the key feature of a swarm system, from which results a global

(macroscopic) level intelligent response from the local (microscopic) level interactions.

In [103], the self-organization in a swarm system is characterized through four characteristics.

(i) Positive feedback from the agents — It is often a simple behavioral rule that helps to

create a collective and convenient behavioral structure. For example, recruitment and

reinforcement of the insects, such as depositing pheromones along the trails by the

ants, following nearby ants or their pheromone trails, dancing of bees after returning to
hive after they find some good quality food source (i.e., nectar) — all these are the

examples of positive feedback.
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(ii) Negative feedback from the failures of the agents — This counterbalances the positive
feedback, which is necessary to stabilize the collective search pattern. Examples of
negative feedback in natural swarms include the evaporation of pheromones from
longer, unattractive ant trails, the abandonment of a food source by the bees when its
nectar amount exhausts, or avoiding food sources that gets too much crowded from the
competition of many other foragers. In such situations, a negative feedback helps to
stabilize the system.

(iii) Some random fluctuations that act as a source of creativity and innovation and helps
avoid the local minima. Some examples of random fluctuations include random walks
by ants, random task switching among the foraging ants, random explorations by scout
bees, some random low-rate errors made by each swarm member and so on.
Randomness is always important to break free from any locally optimal point and it
also promotes the discovery of new, innovative solutions.

(iv) Multiple interactions among the swarm individuals — This usually occurs
automatically from the interaction among agents and their positive and negative
feedbacks, because the agents in the swarm use the information from each-other to
self-organize their own behavior. Gradually, the information, data and their impact
spread throughout the swarm.

For the emergence of swarm intelligence, the following five requirements have been identified
in [104] that are to be satisfied by the swarm behavior.

(i) The proximity principle — The swarm individuals should be able to do simple, basic
space and time computations.

(ii) The quality principle — The swarm should be able to respond to quality factors in the
environment such as the quality of food sources or the safety of a location.

(iii) The principle of diverse response — The swarm should not allocate all of its resources
along excessively narrow channels and it should distribute resources into many nodes.

(iv) The principle of stability — The swarm should not change its mode of behavior upon
every fluctuation of the environment.

(v) The principle of adaptability — The swarm must be able to change behavior mode
when the investment in energy is worth the computational price.

In some recent works (e.g., [105], [106]), it is emphasized that an intelligent division of labor
and performing specialized tasks simultaneously by specialized agents are also important for
the emergence of swarm intelligence. The division of labor is also seen in nature in many social
insects, such as the different species of leaf-cutter ants performing different tasks or the
different groups of bees (e.g., the employed, onlooker and scout bees in the ABC algorithm [75])
performing differentiated foraging tasks.



32

2.11 Examples of Swarm Intelligence Algorithms
Over the last few years, the field of swarm intelligence has been very active, producing several

algorithms that mimic the intelligent swarm behaviors found in the natural world. From these

algorithms, we briefly present only a few in the following paragraphs. A more detailed survey on

this topic can be found in [79].

Ant Colony Optimization: Ant Colony Optimization (ACO) [5] is based on the intelligent ant

swarm behavior to find an (or, a set of) optimal route(s) from their nest to some distant food

source(s). ACO-based algorithms are suitable for the optimization problems that need to find

routes from a source (or, initial state) to a destination (or, goal state). In ACO, artificially

simulated ant agents search across a parameter space that represents the search space of all

possible solutions to find some optimal solution. To do so, the artificial ants put pheromones,

like natural ants, along their way from their nest to the resources. Their search behavior is also

randomly affected by the pheromones laid down by other ants. Better trails have smaller

lengths, so they require less time to travel and hence have higher density of pheromones, which

in turn attracts more ants to deposit pheromones along them. Gradually an optimal or

near-optimal trail is found by such distributed, self-organized behavior and interactions among

the simulated ants.

Artificial Bee Colony algorithm: The Artificial Bee Colony (ABC) algorithm is a recently

introduced [75] population based meta-heuristic algorithm that mimics the intelligent food

foraging behavior of the honey bees found in nature. There exist three categories of honey

bees — the employed, onlooker and scout bees. The ABC algorithm uses the same three groups

of bee agents for differentiated degree of explorations and exploitations of the search space. The

employed and onlooker bees exploit the already found food positions (i.e., candidate solution),

while the scout bees randomly explore the search space for newer food sources. Based on the

interaction among the onlooker and employed bees (recruitment), self-organization of each bee

agent and an intelligent division of work by the different groups of bees, the ABC algorithm

shows very good performance on a wide range of optimization problems, including both

discrete (e.g., [13]) and continuous (e.g., [24]) problems.

Artificial Immune Systems algorithms: The Artificial Immune Systems (AIS) algorithms are a
class of swarm intelligence algorithms that are based on the principles and processes found in
the immune systems of the vertebrate and mammalian species. AIS mimics some of the

characteristics of the immune system, such as learning and memory. Some examples of AIS

based algorithms include the Clonal Selection algorithms [107], Negative Selection

algorithms [108], Immune Network algorithms [109] and Dendritic Cell algorithms [110].
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Bacterial Foraging Optimization: The Bacterial Foraging Optimization (BFO) [7] is a novel

swarm intelligence based algorithm that is inspired by the food-seeking and reproductive

behavior of common bacteria such as E. coli. A common bacterium can perform a number of

operations, such as swim towards nutrient, tumble to change directions and reproduce into two

identical bacteria. The action that a bacterium takes depends probabilistically on its

surrounding environment and its neighboring bacteria. The BFO is a probabilistic and

population based metaheuristic that model such bacteria behavior across the parameter space

to solve many search and optimization problems [111].

Bat Algorithm: The Bat Algorithm (BA) [112] has been motivated by the intelligent

echolocation behavior of certain species of bats. BA employs a strategy that mimics the

frequency-tuning based control of the loudness and rate of emission of sound wave pulses by

bats in order to balance between global explorations and local exploitations of the search space.

Cuckoo Search: The Cuckoo Search (CS) [113] is a recent algorithm based on the brooding

behavior of cuckoos. Some cuckoo species use other host birds for hatching their eggs and

raising their offspring. In CS, such brooding behavior is hybridized with perturbation steps

produced from Lévy distribution. The more explorative Lévy distribution makes the CS more

robust than some other swarm intelligence based algorithms, such as PSO and ABC, as

demonstrated in [113].

Differential Search Algorithm: The Differential Search Algorithm (DSA) [114] is another

recent SI-based algorithm, motivated by the self-organized migration behavior of some

super-organisms. The performance of DSA is evaluated on the numerical optimization problems

and compared with some other recent evolutionary and swarm intelligence based algorithms,

such as ABC, JDE, JADE, SADE, EPSDE, GSA, PSO and CMA-ES [114].

Firefly Algorithm: The Firefly Algorithm (FA) [115] mimics the swarming and re-grouping

behavior of fireflies. Each firefly has some flashing capability and the intensity of its light can

make it more or less attractive to the other fireflies. Using its light intensity, a firefly can attract

other fireflies to form a subgroup or sub-swarm where the other fireflies crowd around the

locally best firefly (i.e., the firefly with maximum flash intensity within its neighborhood). This

makes FA particularly suitable for the multimodal optimization problems.

Glowworm Swarm Optimization: The Glowworm Swarm Optimization (GSO) [116] is another

swarm intelligence algorithm that models the self-organization and swarming behavior of the

glowworms. Each agent in GSO moves across a search space and carry a luminescence amount

called luciferin. The fitness of the current search space location of each particular glowworm is
represented by its luciferin amount. Each glowworm probabilistically selects a subset of its

neighboring glowworms. Then it moves towards any of its neighbors that has a higher luciferin
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value than itself. Such selections and movements, based only on local information, enable the

swarm of glowworms to partition into disjoint subgroups. Each subgroup gradually converges

to a locally optimal point. The GSO algorithm is particularly suitable for simultaneous discovery

of multiple optimal points of the multimodal functions [116]–[118].

Multi-Swarm Optimization: The Multi-Swarm Optimization (MSO) [119] is a novel variation of

the particle swarm optimization (PSO) algorithm to more effectively deal with multimodal

functions. MSO employs multiple sub-swarms to search through different regions of the search

space. A specific diversification method makes decisions about where and when to initiate the

sub-swarms. Employing multiple swarms ensure better search space explorations, which is

especially suitable for multi-modal problems with many local optima.

Particle Swarm Optimization: The Particle Swarm Optimization (PSO) [6] algorithm is

motivated by the social behavior of bird flocking and fish schooling.  In PSO, each candidate

solution is represented as a particle or point in the D-dimensional search space. During

initialization, each particle is usually created at a random location of the D-dimensional space

with a random velocity along a random direction. Each particle can also communicate with its

neighboring particles and possibly with the best-so-far found particle. Particles then fly through

the solution space and often accelerated towards those particles within their neighborhood

which have better fitness values. The velocity, acceleration and direction information of each

particle may also be perturbed randomly and possibly using some key information, such as the

best-so-far location seen by each particle or its neighbors or the global best particle found so far.

There exist several variants of the PSO algorithm (e.g., [18], [69], [74]) and they have been

applied on wide and diverse range of optimization problems [6].

The above list is no way an exhaustive or comprehensive list of the existing swarm

intelligence based algorithms. There exist many other SI based algorithms, such as the

Gravitational Search Algorithm [120], Central Force Optimization [121], Intelligent Water Drops

algorithm [122], Altruism algorithm [123], Magnetic Optimization algorithm [124], Krill Herd

algorithm [125], River Formation Dynamics [126], Self-Propelled Particles [127], Stochastic

Diffusion Search (SDS) [128], Invasive Weed Optimization [129] and so on [79].

2.12 The Artificial Bee Colony (ABC) Algorithm
The ABC algorithm is based on the intelligent food foraging behavior of honey bees. Tereshko

has developed a model of the foraging behavior of a honeybee colony [173]–[175], which

identifies three essential components (food sources, employed bees and unemployed bees) and

two modes of behavior (recruitment to a food source and abandonment of a source). With these

components and modes of behavior, Tereshko [173]–[175] demonstrated the automatic
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emergence of distributed, collective swarm intelligence. The ABC algorithm is based on the

same model of bee behavior [75]. In the ABC algorithm, the position of a food source represents

a candidate solution to the optimization problem and the nectar amount of the food source

corresponds to the quality (i.e., fitness value) of the associated candidate solution. ABC employs

three different groups of bee agents — the employed, onlooker and scout bees. An employed

bee always forages in the vicinity a food source (i.e., candidate solution) that is previously

visited by itself. During each foraging attempt, it produces a modification on the food source

position (i.e., candidate solution) in its memory depending on the local information (visual

information) and evaluates the nectar amount (i.e., fitness value) of the newly found food source

(i.e., new candidate solution). If the nectar amount of the new one is higher than that of the

previous one, the employed bee memorizes the new position and forgets the old one. Otherwise,

it keeps the position of the previous one in its memory. Each employed bee performs a special

dance, known as the ‘waggle dance’ after it returns to the bee hive. The waggle dance contains

important piece of information about the quality (fitness) of the food source (candidate

solution) it has just found. The onlooker bees (i.e., unemployed foragers) wait around the ‘dance

floor’ of the hive and watch the waggle dances of the employed bees. Each onlooker bee selects

any of the employed bees to follow and then forages in the vicinity of the food source of the

selected employed bee. The probability of an employed bee to be selected (by any onlooker bee)

is proportional to the quality of its food source. As in the case of the employed bees, each

onlooker bee also produces a modification on the food position and checks the nectar amount of

the new position either to accept or reject it. If the quality of a food source declines because of

foraging and drops below some threshold value, the employed bee assigned to it becomes a

‘scout’ bee. The scout bees randomly explore the search space to discover new food sources. For

every food source, there is only one employed bee and (possibly) a number of onlooker bees.

In the original implementation of the ABC algorithm [75], half of the colony consists of

employed bees, while the other half is the onlooker bees. The number of food sources (i.e.,

candidate solutions being exploited) is kept equal to the number of employed bees in the colony.

Scout bees are created only when it is necessary, i.e., when a particular food source/candidate

solution fails to improve for an unacceptably long period of time, indicating possible stagnation

at some locally optimal point. However, in each cycle, no more than one scout bee is initiated,

which limits the degree of random explorations of the algorithm. After a scout bee discovers a
food source with sufficiently good quality, it turns into an employed bee. A brief outline of the

algorithm is presented below (Fig. 2.8).
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Figure 2.8: Brief pseudocode of the standard ABC algorithm

As Fig. 2.8 presents, the ABC is an iterative algorithm, it makes progress cycle (iteration)

by cycle. Each cycle of the search consists of four steps — (i) sending the employed bees onto

their food sources and evaluating their nectar amounts, (ii) sharing the nectar information with

each onlooker bee, allowing it to pick a food source to forage, (iii) sending the onlooker bees to

their selected food sources for foraging, and (iv) sending the scout bees to random locations to

possibly find new food sources. During initialization, a set of food sources is randomly selected

across the entire search area and their nectar amounts (i.e., fitness values) are determined.

Then ABC executes cycle by cycle, where each cycle constitutes three different stages with

different sets of operations — the employed bee stage, the onlooker bee stage and the scout bee

stage, each one of which is described in the following paragraphs.

Employed bee stage: This stage mimics the foraging by the employed bees in the vicinity of

their current food source positions. The position of each food source is updated in this stage.

Suppose, an employed bee is currently positioned at a food source position xi. The employed bee

searches in the vicinity of xi by producing a new trial food position vi around xi using (2.6).

 = + ij ij ij ijkjv x φ x x (2.6)

Here,  1,  2, … ,  j D and  k SN1,  2, … ,   are randomly picked indices, D is the number of

search dimensions, SN is the number of employed bees (or, food positions) and φij is a uniform

random value from [-1, 1]. Thus, the new trial solution vi is produced from xi by perturbing one

of its randomly picked parameters (i.e., xij) and using the information of another randomly

picked candidate solution xk. If vi has higher ‘fitness’ value than the original solution xi, then xi is

discarded and replaced by vi. For the problem of function optimization, where F is the function

to be minimized, ABC can compute the ‘fitness’ of a candidate solution xi by using the same (2.3),

as mentioned earlier, but repeated again here for the ease of the reader.

Algorithm 2.2: Standard Artificial Bee Colony (ABC) Algorithm

1. Initialize Population.
2. repeat
3. Send the employed bees to forage around their food sources.
4. For each onlooker bee, pick an employed bee, based on its nectar quality.
5. Send the onlooker bees to forage around their selected employed bees.
6. Send the scout bees to search for new food sources.
7. Memorize the best food source position found so far.
8. until some predefined stopping criteria are met.
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Onlooker bee stage: In this stage, each onlooker bee first randomly selects a particular

employed bee to follow, then forages only in the vicinity of its food source. Suppose, pi is the

probability that the employed bee with food source position xi would be selected by an onlooker

bee, which is computed by ABC using (2.7).
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This makes the probability pi to be proportional to ( ),fitness ix ensuring that the probability of

picking a food source is kept proportional to its quality. Similar to the employed bees, each

onlooker bee also employs (2.6) to produce a trial food source vi in the vicinity of its current

food position xi. If vi has better fitness value than the old food position xi, then xi is replaced by

vi. Otherwise, xi is retained and vi is discarded.

Scout bee stage: If a particular food source position xi has not been improved over an unusually

long period of time (i.e., last limit cycles), then it is presumed to be stuck at a locally optimal

point. If this happens, the ABC algorithm abandons xi and the bee employed to xi now becomes a
scout bee that is placed at random across the search space using (2.8), where j D= 1,  2, … ,   and

[ , ]j jmin   max is the search space along the j-th dimension.

   0,1 j jij jx = min + rand * max min (2.8)

Incorporating all of above stages and operations, the following pseudocode presents a detailed

step-by-step description of the standard ABC algorithm.

Step 1) Generate an initial population of SN individuals. Each individual xi is a food source (i.e.,

candidate solution) that has D parameters, where D is the dimensionality of the problem. Also,

initialize the cycle counter C as C=1.

Step 2) Evaluate the fitness of each individual candidate solution.

Step 3) Each employed bee, placed at a food source that is different from others, search in the

neighborhood of its current position to find a better food source. To accomplish this, the ABC

algorithm generates a new solution vi around each employed bee xi using (2.6), which is

repeated below, for the ease of the reader.

 = + ij ij ij ijkjv x φ x x (2.6)
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Here, k{1, 2, …, Nemp} and j{1, 2, …, D} are randomly chosen indices, Nemp is number of

employed bees (or, food sources) and ij is a uniform random value produced from [-1, 1].

Step 4) Compute the fitness of both xi and vi. Apply greedy selection scheme to pick the better

one of them to be included into the population and discard the other one.

Step 5) Calculate and normalize the selection probability value pi for each food source xi using

(2.7), which is repeated again below for the ease of the reader. The value of pi acts as the

selection probability of the food source xi for the fitness proportional selection in step (6).
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Step 6) Assign each onlooker bee to a food source position xi at random with probability = pi.

This ensures a fitness proportional selection (and exploration) of the food sources by the

onlooker bees.

Step 7) Produce new food position vi for each onlooker bee by using (2.6), with xi in (2.6) now

being the current food source position to which this onlooker bee is assigned and xk in (2.6)

being another food source picked uniformly at random.

Step 8) Evaluate the fitness of xi and vi. Apply greedy selection between them, i.e., if the new

trial food position vi has higher fitness value, then accept it and discard the original solution xi.

Otherwise, retain xi and discard vi.

Step 9) If a particular food position xi has not been improved for an unacceptably long period of

time, say the previous limit attempts with (2.6), then it is assumed to be stuck at a strong local

optimum and is selected for abandonment. Replace this food position by placing a scout bee at a
food source placed uniformly at random over the search space using (2.8), which is repeated

again below for the ease of the reader. For = 1,  2, … ,j D   , repeat the following (2.8).

   0,1 j jij jx = min + rand * max min (2.8)

Step 10) Set the iteration (i.e., cycle) counter C=C+1. Also, keep track of the best food source

position (i.e., candidate solution) found so far.

Step 11) Check for termination. If the best solution found is acceptable or a predefined

maximum number (say, MCN) of cycles have elapsed, then stop and return the best solution

found so far. Otherwise go back to step 3 and repeat again.

We can extend the brief pseudocode (Fig. 2.8) of the standard ABC algorithm by following

the more detailed steps described above. Fig. 2.9 presents a more detailed pseudocode for the

standard ABC algorithm. Here, each cycle (i.e., iteration) of the ABC algorithm consists of

foraging by the employed bees (steps 4–5, Fig. 2.9), then foraging by the onlooker bees (steps

7--9), followed by the placement of the scout bees (step 10).
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Figure 2.9: Detailed pseudocode of the standard ABC algorithm

2.13 Strengths of EAs and SIAs
Both EAs and SIAs belong to the population-based, stochastic, meta-heuristic family of

algorithms and they share many strengths and advantages over other analytical, deterministic,

direct-search and single-state algorithms. Their most prominent strengths and advantages are

listed in the following paragraphs.

(i) Both EAs and SIAs are inherently parallel in nature, because they have to maintain a

population/swarm of candidate solutions. The candidate solutions can produce multiple

offspring to explore the solution space in multiple directions simultaneously. If a

particular path reaches some dead end or a poor local optimum, it can be easily

discarded and search can continue with more efforts along the more promising paths.

(ii) EAs and SIAs are not just parallel hill-climbers; rather they are much better than that.

Each candidate solution can share information with other solutions and affect how they

do the hill-climbing in the fitness landscape. The better solutions can share their

information with the weaker ones, through the recombination and perturbation

operations, thus causing them to move towards the good quality search regions.

Algorithm 2.3: Artificial Bee Colony (ABC) Algorithm
1: Initialize a pool of SN food source positions (candidate solutions) xi, for i = 1, 2, …, SN.

Each xi is a vector of D parameters: xi= [xi1, xi2, …, xiD]T

2: Evaluate the fitness of each food source position using (2.3).
3: repeat
4: For each employed bee, perturb its current food source position xi to produce a new

food source position vi by using (2.6).
5: Evaluate each new solution vi by using (2.3). If vi has higher fitness than xi, then

accept vi to replace xi. Otherwise, discard vi.
6. Calculate the probability value pi associated with each food position xi using (2.7).
7: For each onlooker bee, assign it to a food source position xi, proportionally based on

the probability pi.
8: For each onlooker bee, perturb the food source position of its employed bee xi to

produce a new food source position vi by using (2.6).
9: Evaluate each new solution vi using (2.3). If vi has higher fitness value than xi, then

accept vi to replace xi. Otherwise, discard vi.
10: If a food source has not improved during the last limit cycles, then abandon it and

replace it with a new randomly placed scout bee with its food source xi produced by
using (2.8).

11: Memorize the best food source position found so far.
12: Set cycle counter C=C + 1.
13: until C = Maximum cycle number (MCN).
14: return the best food source position (i.e., candidate solution) found so far.
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(iii)EAs and SIAs can often produce good quality solutions by searching only a small fraction

of the search space. This is why they are particularly effective on the problems with very

large search space — too large for any exhaustive search. The source of this strength is
their inherent parallelism and their ability to implicitly evaluate many schemas (i.e.,

patterns within candidate solutions) simultaneously, as demonstrated in [131] with an

example of the Schemata theorem [130].

(iv)EAs and SIAs are especially suited for non-linear problems with extremely large search

space. Most real-world problems are non-linear, where the search variables are not

independent of one another — changing a single variable may have ripple effects on the

others and can affect the objective value in an unpredicted way. Nonlinearity results in
an exponential increase of the search space. Since EAs and SIAs can usually find good

quality solutions by searching only a small fraction of the search space, and within a

reasonable amount of time, they are often a good choice for the nonlinear problems.

(v) EAs and SIAs are well suited for problems with complex fitness landscape where the

fitness function may be discontinuous, noisy or multimodal (having many local optima).

Many real-world problems have a huge search space with several local optima where

the search algorithm may get stuck with premature convergence. Both EAs and SIAs

have proven their effectiveness at escaping the locally optimal points and locating the

neighborhood of the global optimum, even in a very complex fitness landscape [132].

(vi)EAs and SIAs are exceptionally good for multi-objective and multi-parameter

optimization [133]. They can handle large number of parameters and work on many

objectives simultaneously. Their use of parallelism enables them to produce multiple

good solutions to the same problem, possibly with one candidate solution optimizing

one objective and another solution optimizing a different one [48].

(vii) EAs and SIAs often come up with novel and unconventional solutions to a problem. This

is because they don’t use any prior knowledge or domain-specific information of the

problem during their search. They are like ‘blind watchmakers’ [134], because they

simply make random changes to their candidate solutions and then use the fitness

function to determine whether those changes produce any improvements. An

interesting example of novel design from the EA is [130], where the EA came up with a
high-performance jet engine turbine design that was three times better than a

human-designed configuration and 50% better than a configuration designed by an

expert system. To find the design, the EA successfully searched across a huge solution

space with more than 10387 possible solutions, which clearly indicates the strength of

EAs on large and complex optimization problems.
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2.14 Limitations of EAs and SIAs
Despite their many strengths and advantages, as presented in the previous section 2.13, both

EAs and SIAs do have some limitations, too. However, these limitations are mostly

well-addressed by the researchers and many of them have firm roots in their biological and

natural inspirations. Some of their limitations are as follows.

Need for an appropriate representation: During solving any problem with EA or SIA, the first

step is to represent a candidate solution as an individual of the population or the swarm. This

requires an effective and appropriate representation of the problem. The representation must

be robust and fault-tolerant — it has to ensure that random mutation or perturbations of the

existing candidate solutions can’t produce invalid or inconsistent candidate solutions. One

simple way to ensure this is to employ a repair operator (e.g., [135]) after each perturbation

that ensures the validity of the newly perturbed solution, possibly by doing some extra tasks.

Need for a well-designed fitness function: The fitness function should be thoughtfully

designed such that higher fitness values are assigned only to those candidate solutions that are

actually better solutions to the given problem at hand. If the fitness function is not designed

properly, the EA or SIA may be unable to find a solution or even worse, may wind up solving a
completely wrong problem, an example of which can be found in [136], where the objective was

to design a circuit that can produce an oscillating signal. After the EA finishes its execution using

the improper fitness function, a circuit is evolved that really outputs an oscillating signal, but

not producing by itself, rather by acting as a radio receiver to pick up and relay an oscillating

signal from the nearby electronic devices, which was highly undesirable.

High computational complexity: For complex problems, the repeated fitness evaluations may

become computationally prohibitive and may limit the applicability of EAs and SIAs. In many

real world problems, the fitness evaluation is computationally very expensive. For example, in
some structural optimization problems, a single function evaluation may require hours, or even

days of simulations. For such instance, EAs or SIAs may not be a good choice. However, in such

cases, an EA or SIA may use approximate fitness evaluations, which is less computation

intensive than the exact fitness evaluations.

Limitation with dynamic data: Both EAs and SIAs have inherent limitations to deal with

dynamic data sets. This is because the population or swarm usually converges to the best

solutions of the already seen data, which may no longer be the best solution (or, even a good

solution) for the newly arrived dynamic data points.

Limitation with decision problems: For decision problems, the fitness measure of a candidate

solution is just a right/wrong measure, so the fitness value is either 1 or 0. This makes EAs or

SIAs to be ineffective for such problems, because there is no fitness hill to climb, rather steep

fitness cliffs with no gradient direction to follow.
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Limitation with deceptive functions: Another type of problem where both EAs and SIAs face

difficulty is the problems with ‘deceptive’ fitness functions [131]. For these problems, the

gradient directions often take the algorithm farther from the global optimum. This can happen

when a strong local optimum is located far from the narrow global optimum and the gradients

mostly point towards that local optimum. For such problems, an EA or SIA is likely to find the

strong local optimum instead of the global optimum.

Limitation with fine tuning: Both EA and SIA are good to produce decent near-optimum

solutions within bounded computation time and resource. Usually they can quickly reach close

to the peak of a good local or the global optimal hill of the fitness landscape. But precisely

pinpointing the peak is usually difficult for them and can be done only by random mutations or

perturbations (i.e., by pure chance only). However, for most real world situations, a

near-optimum solution is good enough, given a bounded, reasonable amount of time and efforts.

Premature convergence: One crucial issue for the success of both EAs and SIAs is the

premature convergence [3], [131], which means that the entire population of candidate solutions

has converged to one or a few locally optimal points, failing to locate the global optimum. As a
result, the algorithm returns a suboptimal solution which may be nowhere around the globally

optimum solution. This usually happens when one or a few candidate solutions suddenly

become exceptionally fitter than the rest of the population, causing the selection operator to

pick them several times for reproduction, which may gradually fill the entire population only by

their descendants. This drastically drives down the diversity of the population, because the

entire population now represents only a single (or, a few) locally optimal point(s) around those

exceptionally fit candidate solutions. Premature convergence is followed by fitness stagnation

for many successive iterations. In the ideal case, such fitness stagnation of the population

coincides with the successful discovery of the global optimum, which is highly desirable. But

stagnation may also occur with premature convergence, because all the individuals have

become so similar that the crossover/recombination operation can’t produce any new or better

candidate solutions. At this point, mutation is the only way to break the premature convergence

and explore other areas of the search space. But mutation often requires a number of random

downhill steps [82] to get away from the peak of the locally optimal hill where the entire

population has converged, which may not be allowed by the selection operator that tries to

prematurely dismiss those downhill steps produced by mutation operation.

The likelihood of premature convergence often depends on the characteristics of the

fitness landscape — some functions may provide an easy ascent to the globally optimum peak of

the fitness landscape, while some other may allow easier rides to the locally optimal points. This

may happen more easily with the deceptive problems [131, p.125] or with the problems that

have wide, strong locally optimal points far from the global optimum. The problem of premature
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convergence is common to arise with EAs and SIAs, and this is particularly common with small

population/swarm size, because the possibility of large improvements by a mutation on a

particular individual is high with small population size and it may cause the individual to

become dominant over the rest of the small population. It is interesting to note that premature

convergence does occur in nature, which is called ‘genetic drift’ by the biologists. This is nothing

unusual with the real evolution, because evolution has no commitment to find the global best

solution; rather it can find locally optimal solutions that are just good enough. However,

premature convergence in nature is less common, because the most beneficial mutations on

living things usually produce small, incremental fitness improvements, allowing very little

chance to an individual to be dominant over the rest of the population.

Figure 2.10: Projection of a prematurely converged population of CEP [102] on the dimensions
x1 and x22 at the generation number 1000. The scale along x1 and x22 is magnified to show how
intensely all the individuals have converged into a very narrow region of the search space.

Fig. 2.10 presents a pathological example of premature convergence, where almost all the

individuals have lost their diversity and became too similar. This is an experiment using

Classical Evolutionary Programming (CEP) [3] on a 30D benchmark problem. Fig. 2.10 shows

the values of the individuals after 1000 generations along two search dimensions — x1 and x22,

with the scale along both the dimensions had been much magnified. Since all the individuals

have become too similar to each other, crossover/recombination among them can produce

offspring only like themselves. This is why some amount of genetic diversity must be present

throughout the entire optimization procedure to avoid the premature convergence. In other

words, sufficient amount of population diversity ensures sufficient explorative capacity of the

population that helps to avoid premature convergence. In the literature, there exist several

works (e.g., [59]–[69], [137]–[172]), from both the evolutionary and swarm intelligence

algorithm families, that try to deal with the problems of premature converge. Most of these

algorithms either try to maintain sufficient amount of population diversity or try to tweak the

explorative and exploitative properties of the algorithm to avoid the problem. A brief literature
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survey on the closely related issues of premature convergence, population diversity and

explorations vs. exploitations by EAs and SIAs is presented in the following sections 2.15–2.16.

2.15 Literature Survey on EA
This section does not provide any comprehensive survey of EAs on the continuous optimization

problem, which would be too extensive a subject to be covered here. Instead, this section

presents a brief survey of many existing EAs that try to deal with the problems of premature

convergence and fitness stagnation, primarily by tweaking the degree of explorations and/or

exploitations of their operators and by maintaining an adequate amount of genetic diversity

within the evolving population. Significant amount of research has already been done on this

issue, e.g., [137]–[172]. We reviewed a number of representative research works on this issue

and categorized them into five different categories, as explained in the following subsections.

2.15.1 Dynamic Operator and Parameter Control
The convergence of the population is affected by the synergy of different evolutionary

operators, such as the crossover and mutation and the values of different parameters, like the

population size, crossover rate, mutation rate and step size. These operators and parameter

settings can be dynamically adjusted to guide the evolutionary process, as demonstrated by

several previous works employing deterministic control [137], [138], adaptive control [139],

and self-adaptive parameter control [140]. Among them, the simplest scheme is the

deterministic control where some predetermined policy controls the operator and parameter

settings. Due to the fixed preset policy, it may fail to cope with the dynamic scenario that

evolves continuously during the evolution. A better alternative is the adaptive control methods

that exploit feedback from the population to control the policy. A good example is the Diversity

Guided Evolutionary Algorithm (DGEA) [141]. DGEA applies diversity-decreasing operators

(selection and recombination) as long as the diversity is above a certain threshold, dlow. When

the diversity drops below dlow the algorithm switches to a diversity-increasing operator

(mutation) until another threshold, dhigh is reached. The remaining scheme, self-adaptive

parameter control methods encode the control parameter values, e.g., mutation rate and step

size, as genes in chromosomes and make them evolve with other regular genes. This ensures a
self-adaptive and distributed, rather than central control over the parameter values and the

evolutionary process itself adapts and finds its way towards an appropriate settings. But the

effectiveness of self-adaptive control has not yet been demonstrated on wide range of problems.

2.15.2 Complex Population Structures
In simple GA, any chromosome can mate with any other, so an exceptionally superior quality

gene may spread rapidly throughout the entire population. Such high gene flow may cause loss
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of genetic diversity which eventually leads to premature convergence. To address this problem,

some algorithms have adopted complex population structures or multiple sub-populations, e.g.,

the diffusion model [142, C6.3], Island-model GA (IMGA) [142, C6.4], [143] multinational

GA [72], religion-based EA [144], forking GA [145], bi-objective multi-population algorithm [10],

variable island GA [143] and dual population GA [146]. Periodic migration of chromosomes

between the population structures, e.g., islands, nations and religions, facilitates exchange of

useful information. The semi-isolated and spatially separated nature of the sub-populations

lowers gene flow and promotes overall population diversity. The number of sub-populations is
either fixed, as in [142], [146], or variable allowing suitable merging and splitting of the sub-

populations, as in [72], [143]. Also, the different evolving sub-populations may have the same

evolutionary objective, as in [72], [142] or completely different objectives, as in [146]. However,

the convergence rate and effectiveness of these algorithms is sensitive to several parameters,

such as migration rates and size, migration policy, number and topology of the population

structures. A number of research works, such as [147], [148], [149], [150], have made both

theoretical and experimental study on the effect of these parameter.

2.15.3 Specialized Selection Operators
An effective way to avoid premature convergence is to control the strength of selection, so that

excessively fit candidate solutions don’t get too great of an advantage. Some selection operators,

such as the Rank, Scaling and Tournament selections (section 2.6.3) are easier ways to achieve

this. Another selection scheme to ensure this is the Boltzmann selection [131], where the

strength of selection increases gradually in a manner similar to the temperature variable in

simulated annealing. Besides, some algorithms, such as crowding [151] and fitness

sharing [152]–[154], alter the selection operator in a way that penalizes similar chromosomes

and promotes diverse ones. This eventually forms multiple diverse species within the

population, each evolving to a different peak of the fitness landscape. The Crowding scheme

randomly selects a number, say CF (crowding factor) of chromosomes, from current population

after producing an offspring, O. The chromosome that is most similar to O is then replaced by it.

This reduces the possibility of hosting similar chromosomes within the population. Several

variants of crowding exist in the literature, such as deterministic crowding [155], [156],

probabilistic crowding [157], restricted tournament selection (RTS) [158].

Another approach — fitness sharing [152]–[154] is founded upon the idea that there is only

limited and fixed amount of ‘resources’ (i.e., fitness value) available at each neighborhood of the

fitness landscape. All the chromosomes occupying the same neighborhood have to share the

resource/fitness value. Fitness sharing transforms their raw fitness values in such a way that

the larger the density of chromosomes in a region, the more penalized their fitness values

become. This discourages similar chromosomes within the population and promotes diversity.
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Another example of employing specialized selection operator is the Diversity Control

Oriented Genetic Algorithm (DCGA) [159]. DCGA introduces cross-generational probabilistic

survival selection (CPSS), a novel selection scheme that calculates the survival probability of

each chromosome based on its distance from the current best chromosome. To select a

chromosome for the next generation, CPSS considers not only its fitness but also its dissimilarity

with the current best chromosome in a way that promotes useful genetic diversity.

2.15.4 Specialized Variation Operators
The genetic variation operators, i.e., recombination and mutation, have been altered in several

ways to tweak their capacity of explorations and exploitations. For example, Real Coded

Memetic Algorithm (RCMA) with XHC [160] employs crossover hill climbing, which is an

exploitative crossover operator that performs effective local tuning of the chromosomes to

improve them. The memetic algorithm component of RCMA ensures high level of population

diversity to provide a reliable ground on which the more exploitative crossover operator

performs its fine tuning. Some evolutionary systems, such as EP and ES [4], [161] schemes

employ mutation as their only variation operator. A number of innovative distributions have

been proposed for mutation in EP, such as Lévy distribution [56], Cauchy distribution [57], a

combination of Cauchy and Gaussian distributions [57]. These distributions introduce relatively

large variations to produce offspring which increases the exploration ability of the mutation

operator. Larger variations around the parent chromosomes contribute to more population

diversity and better resilience against local optima and premature convergence. Two other

algorithms, RCMA with Adaptive Local Search (LSRCMA) [162] and Differential Evolution with

Neighborhood Search (NSDE) [163], [164] make attempts to combine the benefits of more

exploitative local search and neighborhood search techniques with more explorative memetic

algorithm and differential evolution respectively. Another approach, Covariance Matrix

Adaptation Evolution Strategy (CMAES) [165] continuously adapts the mutation step size in

such a way that the likelihood of producing better offspring is maximized. A proper balance

between exploitations and explorations is essential to maintain necessary genetic diversity,

avoid premature convergence and achieve adequate convergence speed, as demonstrated

in [160].

2.15.5 Memory-Based Algorithms
Memory-based algorithms make use of an additional explicit or implicit memory in order to

maintain more genetic information that provides the population with additional genetic

diversity. Examples of memory-based algorithms include GA with unexpressed genes

(GAUG) [166], the Diploid GA [167], [168], Dual GA (DGA) [169], [170], the Primal-Dual GA
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(PDGA) [171], [172] and so on. The biological inspiration behind memory based algorithms is
that most beings in nature have a large number of ‘repressed’ genes in their chromosomes with

relatively small number of dominant genes that are expressed in their characteristics. The

repressed genes store large amount of latent information that are used for producing offspring

and thus act as a source of population diversity for the next generations. GAUG uses haploid

(single strand) chromosomes, but includes a number of unexpressed genes that are used for

preserving diversity. Diploid GAs use diploid (double strand) chromosomes and follow some

predetermined dominance rules that decide which genes will be expressed and used for fitness

evaluation. The remaining genes are used for providing diversity to produce offspring. Both

DGA and PDGA employ haploid chromosomes, but the chromosomes may be interpreted in a

complemented way to provide additional diversity. In PDGA, a less fit chromosome may be

interpreted both as original and as complemented, and the original one is replaced by the

complemented one if the latter gives better fitness evaluation. Memory based algorithms are

more suitable for dynamic optimization problems because the usage of additional memory for

extra diversity makes it easier to adapt to external and unprecedented environmental changes.

2.16 Literature Survey on ABC
This section is not a complete survey on the swarm intelligence algorithms in general, or the

ABC algorithm in particular. In this section we first make a brief survey on the swarm

intelligence algorithms that are based on the intelligent honey bees behavior, then narrow down

our focus only on the subset of these algorithms that deal with the continuous optimization

problems, including ABC, then briefly review some of the improved ABC-variants that try to deal

with the problems of premature convergence and fitness stagnation by tweaking the explorative

and/or exploitative characteristics of the standard ABC algorithm.

In the literature, there exist different models that try to simulate the specific food foraging

behavior of honey bee swarms. Such models have been applied for solving both combinatorial

and continuous optimization problems (e.g., [173]–[193]). For example, Tereshko and

Loengarov [173] have modeled a bee colony as a dynamic system of autonomous robots, each

with a small memory and some capability to adapt its behavior based on the information

acquired from the environment. Results [173] demonstrate that these insect-like robots, by

mimicking bee behavior, are quite successful in real robotic tasks. Tereshko, Loengarov and

Lee [174], [175] have built a foraging model including components such as food source,

committed foragers (i.e., bees), and uncommitted foragers and identified some patterns of bee-

like behavior that are found responsible for the emergence of collective intelligence. Wedde et
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al. [176] developed a novel routing algorithm, i.e., BeeHive, based on a dynamically

communicative model that emulates the intelligent behavior of honey bees. In this model, bee

agents travel through the network regions to collect, store and share several pieces of

information about the network state in order to update the local routing tables. Another

metaheuristic, Bee Colony Optimization (BCO) [177], has been employed for solving

combinatorial problems, both deterministic as well as dynamic instances with uncertainty. The

intelligent swarm behavior of bees is also demonstrated to be useful in solving complex

transportation problems [178]–[180].  Drias et al. [181] introduced a metaheuristic, called Bees

Swarm Optimization (BSO) and applied it to solve the maximum weighted satisfiability

(max-sat) problem. Benatchba et al. [182] introduced a metaheuristic derived from the

reproduction process of honey bees to solve the 3-sat problem. Fathian et al. [183] have

developed a novel two-stage algorithm for cluster analysis using the mating behavior of honey

bees. Algorithms inspired by bee behavior have also been employed for solving Traveling

Salesman Problem [184], Generalized Assignment Problem [185], Job shop scheduling [186],

Dynamic allocation of internet servers [187] and so on.

Most of the works mentioned in the previous paragraph are focused on discrete and

combinatorial problems. Relatively few works exist in literature for continuous optimization

problems. However, there exist at least three different algorithms on continuous optimization

based on the intelligent bee behavior, which are — the Virtual Bee Algorithm (VBA) [188], Bees

Algorithm (BA) [189], [190] and Artificial Bee Colony (ABC) Algorithm [11], [75], [191]–[193].

Yang et al. developed the VBA and applied it on numeric function optimizations. Yang

demonstrated the capability of the algorithm by employing it on functions with two parameters

only. In VBA, a swarm of virtual bees randomly explore the search space following a

communication model that mimics the bees’ behavior in nature. Bees that find some good

quality nectar (i.e., candidate solution) that is better than some predefined threshold usually

share this information with other bees by waggle dance upon returning to the hive. The optimal

solution is identified from the intensity of the interactions among the bees. Results show that

VBA is more effective and better resilient against local optima in comparison to genetic

algorithm. The Bees Algorithm (BA) was designed by Pham et al. [189], [190] which also mimics

the food foraging behavior of honey bees. BA requires a number of parameters to be set and

tries to combine a kind of neighborhood search with random search that is suitable for both

combinatorial and continuous problems. However, both VBA and BA are mostly tested on low

dimensional problems with fewer search parameters and they are often outperformed by the

ABC algorithm, which has demonstrated excellent performance on both low and high
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dimensional functions [11]. ABC is first introduced by Karaboga in 2005 [75], then further

improved by Basturk and Karaboga [191]—[193]. They have compared the performance of ABC

with that of genetic algorithm (GA) [194], differential evolution (DE) [195], PSO [196] and

particle swarm inspired evolutionary algorithm (PS-EA) [197] using a number of test problems

on continuous function optimization, where ABC has significantly outperformed all the other

algorithms on most of the functions. Pawar et al. [198]–[200] employed the ABC algorithm to
some mechanical engineering problems, including multi-objective optimization of

electro-chemical machining process parameters, optimization of process parameters of the

abrasive flow machining process and the milling process. To maximize the exploitation capacity

of the onlooker bees, Tsai et al. [201] introduced the Newtonian law of universal gravitation into

the basic ABC algorithm to introduce the Interactive ABC (IABC) algorithm. Baykasoglu et

al. [185] hybridized some techniques, e.g., shift neighborhood search and greedy randomized

adaptive search heuristics and applied it to the generalized assignment problem. ABC is also

extended for constrained optimization problems [192], training neural networks [202], data

analysis [203], clustering [204], structural analysis [205], design of digital IIR filters [25], PID

controller [26], software testing [206], multi-objective optimization [17] and so on.

The ABC algorithm has been extended and improved in many ways, most of which try to

improve either its explorative characteristics (for better strength against premature

convergence and fitness stagnation) or its exploitative properties (for better convergence

speed). Here, we briefly present some of the recent and improved ABC-variants that are focused

on tweaking the explorative/exploitative characteristics of the basic ABC algorithm. For

example, the cooperative ABC (CABC) [60] is a cooperative and explorative variant of ABC. CABC

has been introduced in two different versions — CABC_S and CABC_H. In order to perform more

explorations, CABC_S decomposes the search space into multiple sub-spaces and employs

different bee colonies to search and explore the different sub-spaces. The other variant, CABC_H

tries to perform more exploitations than CABC_S by repeatedly alternating between explorative

CABC_S and exploitative ABC. Another variant — ABC with diversity strategy (DABC) [61] tries

to maintain sufficient level of population diversity for conducting more explorations by

alternating between two different perturbation schemes — one explorative, and the other one

exploitative. DABC regularly measures the existing population diversity d and employs either its

explorative or exploitative perturbation based on the current value of d. Another explorative

ABC-variant is Chaotic ABC (ChABC) [62] which employs chaotic search behavior during

perturbations to produce new food positions from the existing ones. Chaotic dynamics are

produced by the logistic equations (eq. (4)–(7) in [62]) which provide a simple mechanism to
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escape from local minima and avoid premature convergence. Fenglei et al. [63] introduced a

novel control mechanism of the locally optimal solutions to improve the explorative search

capacity of the ABC algorithm. The Gbest-guided ABC (GABC) [64] is an exploitative ABC-variant

that tries to improve the convergence speed of ABC by using the information of the global best

solution found so far into the perturbation scheme (2.6) of the basic ABC. The Hooke Jeeves ABC

(HJABC) [65] is a hybrid ABC-variant that intensifies the degree of exploitations by hybridizing

basic ABC with an efficient local search technique (i.e., the Hooke Jeeves pattern search).

Qingxian and Haijun [66] introduced a modified initialized scheme and replaced the roulette

wheel selection of basic ABC algorithm by Boltzmann selection scheme for improving the

exploitations and convergence speed of ABC. Quan and Shi [67] introduced a novel search

iteration operator based on the fixed point theorem of contractive mapping which is reported to

improve the exploitations and convergence speed of ABC. The Elitist ABC (EABC) [68] is another

exploitative ABC-variant that hybridizes ABC with two different local search operators to

intensify the degree of exploitations around the best candidate solution found so far.

A significant limitation of most of the improved ABC-variants described so far is that they

try to improve either the explorative or the exploitative (but not both) characteristics of the

basic ABC algorithm. The exploitative improvements are usually based on intensifying local

search around the best-so-far solutions (e.g., [64], [65], [68]) and hybridizing efficient local

search operators with ABC (e.g., [65], [67]), while the explorative improvements are usually

based on more population diversity (e.g., [60], [61]) and more explorative initialization,

selection and/or perturbation operations (e.g., [62], [66]). Along the course of this thesis, we

have developed three improved variants of the standard ABC algorithm that try to balance

between explorations and exploitations by employing techniques like adaptation,

self-adaptation and hybridization. A detailed description of our three improved ABC-variants is
presented in the upcoming chapters 5–7.

2.17 Benchmark Problems on Continuous Optimization
In order to evaluate a newly introduced algorithm and to compare it with other existing

algorithms on the continuous optimization problem, a number of benchmark problems have

been proposed and employed by the researchers [57], [76]. Along the course of this thesis, we

have developed a number of improved EP and ABC-based algorithms, as described in details

along the chapters 3 to 7, each one of which is evaluated and compared using two different

suites of benchmark problems, consisting of a total of 55 benchmark problems on numerical

function optimization. No other work, as to our best knowledge, has been tested and evaluated
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on such a wide range of benchmark problems. Each of our algorithms is first tested on the

standard benchmark suite, which consists of 30 standard continuous functions for numerical

optimization. Each function in this suite is well studied and has been used to evaluate many

other existing evolutionary and swarm intelligence algorithms, e.g., [10], [11], [55]–[69], [146],

[160]–[164], [196]. Later, each of our algorithms is also evaluated on a recent benchmark suite

consisting of 25 functions for numeric optimization, introduced in the special session on real

parameter optimization at the 2005 IEEE Congress on Evolutionary Computation (CEC-2005),

held on 2-4 September 2005 at Edinburgh, UK. These CEC2005 suite functions are relatively

more complex, because they include many shifted, rotated, scaled, expanded and hybrid

composite functions. A brief summary of these functions is presented in this section (Tables 2.3

and 2.4). Further details on each of these functions can be found in the Appendix A, and also

in [11], [65] and [76].

The standard benchmark suite (Table 2.3) contains both unimodal (f1−f9) and multimodal

(f10−f30), separable (e.g., f1, f3) and non-separable (e.g., f2, f4), high dimensional (f1–f18) and low

dimensional (f19–f30) functions. A function is called multimodal if it has multiple local optima. To

optimize such a function, the search algorithm must possess both exploitative and explorative

characteristics so that it can explore the locally optimal points without being trapped anywhere

and thus keep exploring further for better unvisited regions of the search space. Some of the

multimodal functions can have hundreds of local optima, even when the dimensionality is just

two or three (e.g., Rastrigin function f10, as demonstrated in Fig. 2.11). The number of local

optima usually increases exponentially with the number of dimensions. This often makes the

minimization of high dimensional multimodal functions extremely difficult. Although the

Rosenbrock function f7 is usually considered to be a unimodal function, as in [11], [56], there is
some evidence (e.g., [228], [229]) that it contains several minima in high dimensional instances.

The global minimum is situated inside a narrow and almost flat valley (Fig. A.1.5 in the

Appendix A). Finding the valley is straightforward, but precisely pinpointing the global

minimum in the almost flat valley is extremely difficult, because the flat region does not provide

any useful gradient direction pointing towards the global minimum. The Ackley function f13 has

an exponential term with cosine sum which issues numerous local minima surrounding one

narrow basin for the global minimum. The Griewank function f14 has a product term

implementing interdependence among all the variables, so any technique trying to optimize

each variable separately is bound to failure for this function. The complexity of the Schwefel

function f12 is due to having a strong second-best local minimum which is very far from the

global minimum of the search space. The low dimensional functions f19−f30 have dimensionality
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D≤ 10, and most of them contain only a small number of local minima. But their locally minimal

points usually have large distances among themselves over the parameter space (e.g.,

Michalewicz function f29, as shown in Fig. A.1.13 in the Appendix A). This makes their

optimization difficult for many algorithms, because escaping from their strong locally optimal

valleys usually requires relatively large, more explorative perturbations on the candidate

solutions. A brief summary on the standard benchmark suite is presented in Table 2.3.

Table 2.3: The standard benchmark suite functions for the evaluation and comparison of each
of our proposed algorithms. Here, D: dimensionality of the function, S: search space, fmin:
function value at global minimum, C: function characteristics with values — U: Unimodal,
M: Multimodal, S: Separable and N: Non-Separable.

No Function S C fmin Formulation

f1 Sphere [-100, 100]D US 0 f(x)= 2
=1

D
ii
x

f2
Schwefel

2.22 [-10, 10]D UN 0 f(x)=
D 1 1

| | | |
D

i ii= i=
x + x
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2.21 [-10, 10]D US 0 f(x)=  max , 1 <i ix i D
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1 1

D i
ji= j=
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Table 2.3 (Continued): The standard benchmark functions for the evaluation and comparison 
of each of our proposed algorithms.

No Function S C fmin Formulation
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Figure 2.11: 3D surface plot (on the left) and 2D contour plot (right)of 2D Rastrigin function
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In addition to the standard benchmark suite functions, as described above, we have also

employed the recently introduced CEC2005 benchmark suite [76] to evaluate and compare each

of our proposed algorithms. The CEC2005 suite consists of 25 functions of different complexity,

including many shifted, rotated, scaled, expanded and hybrid composite functions. The first five

functions (F1‒F5) are unimodal, while the remaining twenty (F6-F25) are multimodal

functions. For almost all of these functions, their global minimum is shifted randomly along each

dimension, and their coordinate space is often rotated to make their optimization even more

difficult. The suite also contains expanded functions, functions with noise, functions without

bounds, non-continuous functions, functions with the global minimum on the bounds and

functions with a narrow basin for the global minimum. The functions F15‒F25 are the hybrid

composite functions that are composed of several other standard benchmark functions to make

them more challenging to minimize. A Gaussian distribution is used to combine the constituent

benchmark functions to blur the individual function’s characteristics. A brief summary on the

CEC2005 benchmark suite is presented in Table 2.4. A more detailed description on each of the

CEC2005 functions can be found in the Appendix A and in [76].

Table 2.4: The CEC2005 benchmark suite functions. Here, D is the dimensionality of the
function, S is the search space and fmin is the function value at the global minimum.

No Function S fmin Function Characteristics

F1 Shifted Sphere Function [–100, 100]D –450 Unimodal, Shifted, Separable,
Scalable

F2 Shifted Schwefel’s Problem 1.2 [–100, 100]D –450 Unimodal, Shifted,
Non-separable, Scalable

F3
Shifted Rotated High Conditioned
Elliptic Function [–100, 100]D –450 Unimodal, Shifted, Rotated,

Non-separable, Scalable

F4
Shifted Schwefel’s Problem 1.2 with
Noise [–100, 100]D –450 Unimodal, Shifted, Non-separable,

Scalable, Noise in Fitness

F5
Schwefel’s Problem 2.6 with Global
Optimum on Bounds [–100, 100]D –310 Unimodal, Non-separable, Scalable,

Global Optimum on the Bounds

F6 Shifted Rosenbrock Function [–100, 100]D 390
Multimodal, Shifted, Non-separable,
Scalable, Very Narrow Valley from
Local Optimum to Global Optimum

F7
Shifted Rotated Griewank Function
without Bounds

Unbounded,
but Initialize
Population in

[0, 600]D
–180 Multimodal, Shifted, Rotated,

Non-separable, Scalable

F8
Shifted Rotated Ackley’s Function
with Global Optimum on Bounds [–32, 32]D –140

Multimodal, Shifted, Rotated,
Non-separable, Scalable, Global

Optimum on the Bound

F9 Shifted Rastrigin’s Function [–5, 5]D –330 Multimodal, Shifted,
Separable, Scalable
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Table 2.4 (continued): The CEC2005 benchmark suite functions. Here, D is the dimensionality 
of the function, S is the search space and fmin is the function value at the global minimum.

No Function S fmin Function Characteristics

F10 Shifted Rotated Rastrigin Function [–5, 5]D –330 Multimodal, Shifted, Rotated,
Non-separable, Scalable

F11 Shifted Rotated Weierstrass Function [–0.5, 0.5]D 90
Multimodal, Shifted, Rotated, Non-
separable, Scalable, Continuous but

not Differentiable on Most Points

F12 Schwefel’s Problem 2.13 [–π, π]D –460 Multimodal, Non-separable,
Shifted, Scalable

F13
Shifted expanded Griewank plus
Rosenbrock Function [–3, 1]D –130 Multimodal, Shifted, Rotated,

Non-separable, Scalable, Expanded

F14 Shifted Rotated Scaffer’s F6 Function [–100, 100]D –300 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Expanded

F15

Hybrid Composition of Rastrigin,
Weierstrass, Griewank, Ackley and
Sphere Functions

[–5, 5]D 120
Multimodal,Shifted, Scalable,

Hybrid, Separable Near Global
Optimum

F16
Rotated Version of the Hybrid
Composition Function F15

[–5, 5]D 120 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid

F17 F16 with Noise in Fitness [–5, 5]D 120
Multimodal, Shifted, Rotated,

Non-separable, Scalable, Hybrid,
Gaussian Noise in Fitness

F18

Rotated Hybrid Composition of
Ackley, Sphere, Rastrigin,
Weierstrass and Griewank Functions

[–5, 5]D 10 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid

F19

Rotated Hybrid Composition
Function F18 with Narrow Basin
Global Optimum

[–5, 5]D 10
Multimodal, Shifted, Rotated,

Non-separable, Scalable, Hybrid,
Narrow Basin for Global Optimum

F20

Rotated Hybrid Composition
Function F18 with Global Optimum on
the bounds

[–5, 5]D 10 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid

F21

Rotated Hybrid Composition of F13,
F14, Rastrigin, Weierstrass, Griewank
Functions

[–5, 5]D 360 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid

F22

Rotated Hybrid Composition
Function F21 with High Condition
Number Matrix

[–5, 5]D 360
Multimodal, Shifted, Rotated,

Non-separable, Scalable, Hybrid,
Global Optimum on the Bound

F23

Non-Continuous version of the
Rotated Hybrid Composition
Function F21

[–5, 5]D 360
Multimodal, Non-continuous, Non-

separable, Shifted, Rotated, Scalable,
Hybrid, Global Optimum on Bound

F24

Rotated Hybrid Composition of F13-14,
Sphere, Ackley, Rastrigin, Griewank,
Non-Continuous F14 and Rastrigin,
High Conditioned Elliptic Functions

[–5, 5]D 260 Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid

F25
Rotated Hybrid Composition
Function F24 , but without Bounds

Unbounded,
but Initialize
Population in

[2, 5]D
260

Multimodal, Shifted, Rotated,
Non-separable, Scalable, Hybrid,

Search Space Unbounded
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Chapter3
Recurring Two-Stage Evolutionary

Programming

3.1 Introduction
The necessity of search space explorations to avoid premature convergence is emphasized in

the previous sections 2.14–2.15. This chapter introduces recurring two-stage evolutionary

programming (RTEP) — a novel evolutionary algorithm that tries to balance the explorative and

exploitative features of the conventional evolutionary algorithms. RTEP is based on repeated

and alternated execution of two different stages, namely the exploration and exploitation stages,

each stage with its own mutation operator, selection strategy and explorative/exploitative

objective. This is significantly different from most other existing evolutionary algorithms (e.g.,

[11]–[27]) which typically follow a single stage execution model with no explicit attempts to

balance between explorations and exploitations. In this chapter, we have presented both

analytical and experimental studies on RTEP to evaluate and compare its performance as well

as to understand the role and necessity of its repeated and alternated explorative and

exploitative operations.

3.2 Organization of the Chapter
The rest of the chapter is organized as follows. Section 3.3 describes the proposed algorithm —

RTEP in details, along with necessary pseudocode, flowchart of the algorithm and analysis and

explanation of its different stages with their recurring design. Section 3.4 explains the

differences of the proposed RTEP algorithm from most other existing evolutionary systems. A
brief theoretical analysis on RTEP is presented in the next section 3.5. Section 3.6 evaluates the

performance of RTEP on two different benchmark suites of continuous optimization problems,

compares its results with several other recent and relevant algorithms and makes a brief

discussion on their results. Finally, section 3.7 concludes with a summary of this chapter and

provides a few suggestions on further research with RTEP.
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3.3 The Proposed Algorithm— RTEP
Most evolutionary algorithms (e.g., [11]–[27]) make no explicit attempts to maintain a proper

balance between the explorative and exploitative operations. Exploitation is usually carried out

implicitly by fitness based selection pressure, while exploration is conducted by the genetic

operators, especially by the mutation operation. Such implicit explorations and exploitations,

without any explicit control over them by the algorithm, often lead to quick loss of population

diversity and stagnation around the local optimal points of the fitness landscape [54]. There also

exist a number of studies (e.g., [56]–[66], [160]–[163]) that try to balance between explorations

and exploitations. However, most of these works are aligned either towards more explorations

(e.g., [56], [57], [60]–[63]) or towards more exploitations (e.g., [64]–[68], [160], [162], [163]).

This is because most algorithms consider explorations and exploitations to be conflicting

objectives, so they try to increase either the exploitative or the explorative capacity of the

operators, either for faster, but possibly premature convergence or for slower, but more global

convergence avoiding local optima.

Some recent studies (e.g., [207]–[209]) reveal that the explorations and exploitations

during an evolutionary optimization are not always conflicting objectives; rather they may be

complementary to each other. For example, some exploitation is always necessary after

exploring to a new search region in order to realize the potentials of the newly explored

solutions. Also, long exploitations can lead to getting trapped around the locally optimal points,

so some successive explorative operations might help to break free from the local optima. The

motivation behind RTEP is to exploit such complementary characteristics of explorations and

exploitations. RTEP is based on the proper utilization of the complementary properties of

exploitations and explorations to improve the optimization procedure for better solution

quality and faster convergence. To ensure a proper balance between exploitations and

explorations, RTEP repeatedly switches and alternates to and from its explicitly explorative and

exploitative operations during the course of evolution. The exploration stage employs mutations

with large step size to reach the unexplored regions of the search space. The exploitation stage

employs small mutation steps to exploit and hill-climb the locally optimal hills around each

point. All these operations are designed explicitly (rather than implicitly) either for explorations

or for explorations, which is motivated by observing the following important facts.

 Exploration is a non-local operation. Therefore, genetic operations involving distant and

dissimilar genes may help the individuals to break free from local optima and can lead

the search process to unexplored regions of the search space.
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 After exploring to a new region, some exploitative steps are often necessary to realize

the potentials of the newly explored regions and to avoid the early rejection of the new,

promising solutions.

 Exploitation is a local operation. Therefore, genetic operations involving similar

genotypes (i.e., neighboring individuals in the search space) and allowing only uphill

moves are relevant to locate and pinpoint the optimal points of each search

region/neighborhood.

A recurring two-stage evolutionary approach is adopted for RTEP in an attempt to balance the

conflicting goals of evolution, i.e., exploration and exploitation. This approach employs one stage

for global exploration and another stage for local exploitation. The two stages execute in a

recurring fashion, one after another, again and again. This regular switching to and from both

the stages avoids the problem of making a perfect decision of permanent switch from

explorations to exploitations. The regularly alternating stages make it possible to gracefully

distribute the conflicting goals of exploration and exploitation across the generations of the

evolution. The exploration stage employs Gaussian mutation with a large standard deviation,

which is set from the distance of two dissimilar individuals along the search dimension

currently being mutated. The same mutation with a small standard deviation, set from the

distance between two similar individuals along the current search dimension, is used during the

exploitation stage. Like any evolutionary process, RTEP starts with some initial population of

individuals. Each individual represents a candidate solution to the particular problem at hand.

The solutions may be values of a set of variables that optimize a function, process, plan, design, a

set of strategies, or any entity that need to be optimized. During each generation, RTEP employs

either explorative or exploitative mutation operators on the individuals to produce some

offspring individuals. The offspring are inserted into the population depending on the

re-insertion scheme based on the current explorative or exploitative stage objective. The major

steps of RTEP can be described as follows.

Step 1) Generate an initial population of M individuals. Each individual xi, i = 1, 2, …, M,

is represented as a real valued vector with D components, where D is the dimensionality of the

problem.       = 1 , 2 , ... , .xi i i ix x x D Each component of ,xi for i = 1, 2, …, M, is generated

uniformly at random within its domain, i.e., xi(j) = Uniform_Random ~ (minj, maxj), for j = 1, …, D.

Step 2) Initialize the parameters K1 and K2 within some certain range. They define how

many generations the exploration and exploitation stages shall each continue before switching

to the other.
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Step 3) Calculate the fitness value of each individual xi, i = 1, 2, …, M, based on the

objective function value. If the best fitness value of the population is acceptable, then STOP and

return the best solution found so far. Otherwise, CONTINUE.

Step 4) Repeat steps (5) to (8) for K1 generations. This constitutes a single pass of the

exploration stage.

Step 5) For each individual xi, i = 1, 2, …, M, find a set of M individuals that have

maximum Euclidean distance from xi in the D-dimensional search space. This is the set of

‘strangers’ for xi. Pick a stranger uniformly at random from this set for xi.

Step 6) Create M offspring by applying mutation on each individual xi, i = 1, 2, …, M, of

the population. Each individual xi creates a single offspring xi by the following procedure.

ni = 1 + ri mod D (3.1)

for t = 1 to ni do         ,0 1i t i t i t tx r x r r N   (3.2)

Here, (3.1) picks a uniform random integer value for ni from {1, 2, …, D}. ni denotes the number

of parameters (i.e., components) of xi out of its D parameters that would be mutated by the

subsequent for loop in (3.2). Each iteration of the for loop picks a random parameter of xi,

uniformly from its D parameters, which is denoted as  i tx r in (3.2), then applies Gaussian

mutation on it with mean = 0 and standard deviation (SD) set from the distance between xi and

one of its strangers, selected at step (5), along this randomly chosen parameter. To further

clarify the notations, the ri in (3.2) is a uniform random integer, rt is a random parameter (i.e.,

gene value) that is being mutated with each iteration of the for loop,  ,0 1tN is a normally

distributed random number with mean = 0 and SD = 1 generated anew in each iteration of the

for loop, and   i tr is the SD for mutating the rt-th component of xi. This SD value (i.e.,   i tr ) is

set as the Euclidean distance along the rt-th component of ix and its selected stranger (say, xj),

which makes    ( ) ( )i t i t j tr x r x r   . Thus, the component    , 0 1i t tr N in (3.2) produces a

random value from a Gaussian distribution with mean = 0 and SD =  , i tr where  i tr is set

as the distance between the current individual xi and one of its randomly chosen stranger in

step (5) along the component currently being mutated (i.e., tr -th component).
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Step 7) Compute the fitness value of each offspring ,xi i = 1, 2, …, M. Select M individuals

from parents and offspring for the next generation. If the fitness value of xi is at least equal to its

parent ,xi then discard xi and select xi for the next generation. Otherwise, discard .xi

Step 8) If the best fitness value found so far is acceptable or the maximum number of

generations has been reached, then STOP. Otherwise, CONTINUE.

Step 9) Repeat steps (10) to (13) for K2 generations. This constitutes a single pass of the

exploitation stage.

Step 10) For each individual xi, i = 1, 2, …, M, find a set of M individuals that have

minimum Euclidean distance from xi in the D dimensional search space. This is the set of

‘neighbors’ for xi. Pick a neighbor uniformly at random from this set for xi.

Step 11) Create M offspring in the same way as described earlier in step (6). However,

neighbors are involved here, instead of the strangers. More specifically, the SD (=   i tr ) of the

Gaussian mutation using (3.2) is now set from the distance along the corresponding (i.e., rt-th)

component between the current individual xi and one of its randomly picked neighbor (rather

than one of its strangers, as done by the exploration stage in step (6)).

Step 12) Compute the fitness value of each new offspring ,xi i = 1, 2, …, M, produced in
the previous step (11). If the fitness value of the offspring solution xi is better than the parent

,xi then discard the parent xi and select the newer xi for the next generation. Otherwise

discard .xi In this way, select M individuals from the union of M parents and their M offspring

for the next generation.

Step 13) If the best fitness value found so far by the population is acceptable or a

pre-defined maximum number of generations has been reached, then STOP. Otherwise, go back

to step (4) to start over another pass of exploration and exploitation stages.

Fig. 3.1 presents the flowchart of RTEP, which shows that the essence of RTEP is its

three components, i.e., the exploration stage, the exploitation stage and their repeated and

recurring execution. Next, the pseudocode of RTEP is presented in Fig. 3.2, which is followed by

a detailed description of the exploration stage (subsection 3.3.1), the exploitation stage

(subsection 3.3.2) and the justification for the recurring execution of the exploration and

exploitation stages (subsection 3.3.3) for RTEP.
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Figure 3.1: Flowchart of RTEP

3.3.1 Exploration Stage
This stage facilitates the exploration of wider regions of a search space so that the chance of

finding a good near optimum solution by exploration is increased. Since exploration is a

non-local operation, a mutation operation that can produce farther offspring and increase the

population diversity is suitable for this stage. In RTEP, the Euclidean distance between the

genotype of xi and one of its strangers along a randomly selected search dimension is used as

the SD to mutate xi along that dimension. To pick a stranger of the current individual xi, RTEP

determines the M individuals across the population whose genotypes have the largest Euclidean

distance from the genotype of xi and then picks one of them, say xi, uniformly at random. Since

the individuals xi and xj are relatively far apart in the search space, the large Euclidean distance

between them could be used as the SD for the explorative mutation.

Yes

No

Stopping
Criteria

Met?

Result

Initialize Population,
Setup Parameters
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(K1 Generations)

Exploitation Stage
(K2 Generations)
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Figure 3.2: Pseudocode of RTEP

Algorithm 3.1: Recurring Two-Stage Evolutionary Programming (RTEP)

begin
1. Generate the Initial Population. Initialize Parameters K1 and K2

2. for K1 generations do [Exploration Stage]
Update the set of strangers Si for every candidate solution xi
for every individual xi do

ni = Random integer picked uniformly from {1, 2, …, D}
xj = A stranger of xi, picked uniformly at random from the stranger set Si
Offspring xi´= xi
for t = 1 to ni do

rt = An attribute (gene) of xi, picked uniformly at random from {1, 2, …, D}
Compute the standard deviation of Gaussian mutation:

Mutate the rt-th gene of xi as:
enddo
if the fitness value of the offspring xi´ is at least equal to the fitness of the parent xi,
then set xi = xi´ to accept xi´ and discard the parent xi. Otherwise, discard xi´.

enddo
enddo

3. if the best solution found is acceptable or the maximum number of generations has been
elapsed then conclude RTEP and GOTO step 6. Else CONTINUE.

4. for K2 generations do [Exploitation Stage]
Update the set of neighbors, Ti every candidate solution, xi
for every individual, xi do

ni = Random integer picked uniformly from {1, 2, …, D}
xj = A neighbor of xi, picked uniformly at random from the neighbor set Ti
Offspring xi´= xi
for t = 1 to ni do

rt = An attribute (gene) of xi, picked uniformly at random from {1, 2, …, D}
Compute standard deviation of Gaussian mutation as:

Mutate the rt-th gene of xi as:
enddo
if fitness(xi´) > fitness(xi) then xi = xi´

enddo
enddo

5. if the best solution found is acceptable or the maximum number of generations has been
elapsed then conclude RTEP and GOTO step 6. Else return to step 2 to start another cycle of
exploration and exploitation stages.

6. return the best individual found so far and conclude RTEP

end
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Figure 3.3: Exploration through the fitness landscape

The scenario presented in Fig. 3.3 exemplifies how mutation involving the distance of

dissimilar individuals may facilitate explorations. The oval boundaries in Fig. 3.3 represent two

groups of individuals that are far apart in the search space and hence ‘stranger’s to each-other.

When RTEP mutates an individual xi from any of the groups using the Euclidean distance

between the genotype of xi and one of its stranger (i.e., another individual from the other

group), some offspring (marked as underlined stars) may be produced in between the two

groups. At first, they might seem to be quite similar to their parent xi in terms of fitness, but a
small amount of subsequent hill climbing steps by the exploitative operations of the subsequent

exploitation stage (subsection 3.3.2) might reach them to the narrow global optimum (i.e., the

narrow peak or maximum of the fitness landscape). Thus exploration of the intermediate search

space becomes possible because of combining information from the dissimilar and distant

individuals across the search space.

3.3.2 Exploitation Stage
The evolutionary approach may discover some promising regions by executing exploration

operations several times. But it is often necessary to realize the potentials of the newly

discovered regions before further explorations. To achieve this objective, RTEP executes the

exploitation stage after the completion of the exploration stage. The aim of the exploitation

stage is to reach peaks of the different explored regions so that the optimum solution, if exists in
close proximity, can easily be found.
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Figure 3.4: Exploitation of the fitness landscape to reach the locally optimal peaks

The exploitation stage uses the distances among similar genotypes (i.e., neighbors) to

induce small, exploitative mutations on the candidate solutions. To find a neighbor for the

current individual (i.e., candidate solution) xi, RTEP determines M other individuals across the

population that have the minimum Euclidean distance of their genotypes from the genotype of

xi, and one of them is picked at random as the neighbor of xi. The mutation used for exploitation

is the same Gaussian mutation as used for exploration stage by employing the (3.1) and (3.2).

However, the only difference is that the Euclidean distance (ED) between the neighbor

individuals is used as the standard deviation (SD) for the Gaussian distribution, instead of the

distance between two strangers, as used by the exploration stage. It is expected that the

neighbors would have much smaller ED, resulting in a small SD that is suitable for producing

small, exploitative perturbation steps from the Gaussian distribution.

The scenario presented in Fig. 3.4 demonstrates two different neighborhoods, marked by

the oval boundaries. As each of the four parent individuals is exploitatively mutated using its

distance from its neighbor (i.e., another individual from the same neighborhood), the four

offspring individuals (marked by underline) are likely to be produced within the same local

neighborhood. However, the re-insertion policy during the exploitation stage is based on fitness

improvement, so only the two fitter offspring (marked by the arrows) are allowed to enter into

the population replacing the worse parents. This shows that both the neighborhoods move

closer to the peaks of their local fitness hills, which is the objective of the exploitation stage.

3.3.3 Recurring Approach
It is well known that pure EAs are not suitable for fine tuning a search in complex search spaces,

and the hybridization of EAs with other methods can greatly improve the search

efficiency [210], [211]. A number of approaches have been proposed in the literature which

uses GAs [211] for exploration and local search methods for exploitation. According to [212],
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the following four issues must be addressed when exploration and exploitation operations are

executed separately and then combined in one algorithm. First, when and where should a local

search method be applied within the evolutionary cycle? Second, which individuals in the

population should be improved by the local search, and how should they be chosen? Third, how

much computational effort should be allocated to each local search? Fourth, how can genetic

operators be best integrated with the local search in order to achieve a synergistic effect? To

address these questions, a number of heuristics and parameters may need to be employed in
any classical EA. However, this requires a user to have rich prior knowledge, which often does

not exist for complex real-world problems. Hence, a scheme that does not employ many

heuristics and user-specified parameters is clearly preferred. The regularly repeated and

alternating execution of exploration and exploitation operations on all individuals of the

population could be a simple solution for the first three questions, which is adopted in RTEP.

Since RTEP uses only mutation for both explorations and exploitations, the problem of

integrating different methods or operators does not arise. The solution quality and convergence

characteristics of RTEP on a wide range of benchmark functions (sections 3.6, section 8.3, 8.8)

show the effectiveness of the aforementioned intuition.

As mentioned previously, RTEP uses the genotype distance between dissimilar and similar

individuals along the selected components as the SD in mutating the corresponding components

of the individuals in order to realize exploration and exploitation objectives. This makes the

exploration and exploitation operations self-adaptive. The degree of exploration is high at the

beginning of the evolutionary process and gradually decreases as the process progresses. A

similar scenario occurs for exploitative mutations, which start with a medium step size and

become very much fine-tuned during the late generations. These are very much possible due to

using the distance as the SD of mutation, because distances among individuals are usually high

in early generations and gradually drops reflecting the maturity of the search process.

3.4 Differences of RTEP with Other Existing Works
RTEP differs from most other EP-based [3] approaches (e.g., [56], [57]) and memetic algorithms

(e.g., [160], [162]) in a number of ways. First, RTEP emphasizes repeated and alternated

objective-oriented mutation and selection operations for achieving global exploration and local

exploitation goals. The essence of this approach is that when an evolutionary process is trapped

into a deep local optimum or finds a very promising region, the repeated execution of

objective-oriented operations helps to handle the situation effectively. Since exploration and

exploitation operations are executed alternatively in RTEP, there is no need to make a “perfect

switching” from one operation to another. The conflicting goals of exploration and exploitation
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are expected to be distributed automatically across the generations of the recurring operations.

This approach is different from the one used in EP, ES and memetic algorithms. Most EP and

ES-based approaches do not execute exploration and exploitation operations separately. Rather,

they often use a single stage execution model with self-adaptation rules (e.g., [56], [57], [213],

[214]). Even recently introduced and more sophisticated ES schemes, like Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [215], follow a single stage execution model and are

usually focused on facilitating more successful mutations by adapting the mutation step size

effectively and more or less ignoring the entirely different and often conflicting goals of

exploration and exploitation that arise again and again throughout the evolutionary search

process. On the other hand, many memetic algorithms, though they take different measures for

the conflicting explorative and exploitative goals, usually execute the exploration and

exploitation stages only once, one after the other, but not repeatedly (e.g., [212], [216]). Most

multimodal benchmark functions have numerous local optima, so repeating the exploration and

exploitation stages only once, rather than repeatedly as RTEP does, has the inherent danger of

being trapped in local optima, failing to reach the neighborhood of the global optimum.

Second, RTEP uses only the mutation operator for both exploration and exploitation.

Although there are many algorithms that use GAs [1] for exploration and local search methods

or a specially designed operator for exploitation (see the review paper [212] and the references

therein), RTEP is to our knowledge the first population based metaheuristic algorithm that uses

only mutation both for exploration and exploitation. Both explorative and exploitative

objectives can be achieved using mutation with a large and a small step size, respectively. There

are some mutation-only algorithms that we have used later in this chapter for comparison with

RTEP. However, they either do not separate exploitations from explorations (e.g., classical

EP [3], improved fast EP (IFEP) [57], adaptive EP with Lévy mutation (ALEP) [56]), or use some

specialized operator other than mutation (e.g., crossover hill climbing (XHC) used by real-coded

memetic algorithm (RCMA) [160], neighborhood search operator used by NSDE [163], adaptive

local search operator used by LSRCMA [162]) for exploitations.

Third, RTEP is also significantly different from Simulated Annealing (SA) [233], which also

uses large and small step sizes for explorations and exploitations, respectively. SA is a single

state algorithm, i.e., it always maintains a single candidate solution. Besides, SA controls its step

sizes probabilistically with little or no control by the user. In contrast, RTEP maintains a

population of candidate solutions and the user can control, more or less, the degree of

explorations and exploitations by setting the control parameters K1 and K2. Besides, RTEP

always ensures some degree of explorations, even during the final generations, while SA usually

becomes too much exploitative, making only uphill moves, during its final iterations.
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Fourth, RTEP uses the distance between similar and dissimilar individuals to employ

exploitative and explorative mutation, respectively. Some other existing works, like

DE [163], [164] also employ the distance between individuals for mutation. However, RTEP is
still significantly different from DE because of its recurring nature of explorations and

exploitations. DE does not consider exploitations and explorations separately and does not

follow any recurring behavior. RTEP has been compared with NSDE [163], which is a recently

introduced more sophisticated variant of DE. Results on recent benchmark functions, presented

later in this chapter (Tables 3.6 and 3.7), exhibit that RTEP often performs better than NSDE,

which indicates the effectiveness of the recurring explorations and exploitations of RTEP over

the traditional single stage execution model of the DE variants.

Fifth, RTEP has been theoretically analyzed and empirically tested on as many as 55

benchmark test functions, consisting of 30 standard test functions ([55]–[68], [162], [164],

[196]) and 25 test functions introduced very recently at CEC2005 [76]. Few evolutionary

approaches have been tested on a similar range of benchmark problems with different

characteristics. Results show that RTEP often produces better solutions than most other

algorithms on most of the functions.

3.5 Analysis of RTEP
The aim of this section is to analyze RTEP based on search bias and exploration/exploitation

operations. When a search operator (e.g., crossover or mutation) is applied to the individuals,

some offspring are more likely to be generated than others. This tendency is called search bias

and has great impact on the performance of EAs. The search bias includes search step size and

search directions. Since RTEP uses only mutation for both explorations and exploitations, the

following analysis presented is carried out only for mutation. The standard deviation (SD) used

in (3.2) determines the search step size of mutation. The probability density function of the

Gaussian distribution used in the mutation is:
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where 0 is the expected value; and σ is the SD. RTEP uses the distance between two individuals

along a selected search dimension as the σ in (3.3) to mutate the corresponding gene (i.e.,

component) of the current individual (i.e., chromosome). However, how does σ affect the

mutation step size? To find the analytical relationship between σ and step size, we can

generalize the analysis method for the mean search step size in [57]. The expected value of

mutation step size for producing offspring is computed as follows.
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Equation (3.4) tells us that the mean step size is directly proportional to the standard deviation

σ. To visualize the effect of σ, the Gaussian probability density function used for introducing

mutation steps is plotted for different values of σ in the same scale (Fig. 3.5). It shows that for a
large σ, the density function distribution exhibits a central maximum with a long flat tail which

is more likely to introduce large variations (i.e., longer jumps) for producing offspring and thus

facilitating global explorations. Similarly, a large central maximum with a small flat tail, which is
obtained for smaller values of σ, is suitable for producing small steps around the mean, which is
necessary for local exploitations. Thus, an optimal value of σ is necessary to facilitate proper

exploration and exploitation. However, a suitable value for σ is problem dependent. Even for a

single problem, a separate σ may be required for each component (i.e., search dimension) of the

individuals during different stages of the evolutionary process. A large σ is beneficial when the

distance between the neighborhood of the optimal point and the current search point is larger

than σ [57]. As the global optimum is unknown, adapting σ during the course of evolution

becomes necessary. However, the self-adaptation scheme of σ described in [3], [102] is partial

and often does not work satisfactorily well [217].

Figure 3.5: Gaussian distributions with mean=0 standard deviations set to 1 to 4
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In addition to the search step size, its precise direction is also important. If an optimal step

size is found but the right search direction is unknown, the evolutionary process is likely to face

difficulty. To address this issue, RTEP incorporates the directional information in mutation by

using the differences between corresponding components of two similar or dissimilar

individuals. More particularly, RTEP randomly picks ni (out of D) components of the current

individual xi and each component is mutated using the distance along this dimension between xi
and a similar individual (i.e. neighbor, for exploitations) or a dissimilar individual (i.e. stranger,

for explorations). This is illustrated in the pseudocode of RTEP (the inner for loops of step 2 and

step 4 in Fig. 3.2). Using multiple components provides direction information along each

component and the offspring is likely to be produced in between the parents. Such an approach

has several advantages. First, it provides an effective search direction by which mutation may

produce offspring that can be non-dominated or dominated by individuals in the current

population. This would increase the efficacy of exploration or exploitation. Second, it makes

mutation operations self-adaptive without using any adaptation scheme. The individuals in a

population are usually widely spread over the entire search space at the beginning of the

evolutionary process. As the evolution progresses, the population converges around the optimal

solutions, and the distance among individuals tend to decrease. This means mutation SD tends

to be larger during early generations and smaller near the end of the evolutionary process.

Hence, the incorporation of such self-adaptive directional information in mutation is inherently

suitable for the search process. Third, such an approach relieves the users of the burden of

specifying initial standard deviations for mutation.

Now, we analyze the effect of repeated alteration of explorations and exploitations. Let σ1

and σ2 be the standard deviations used by mutation for explorations and exploitations,

respectively, with σ1  σ2. We denote x0 as a parent individual and xg as its offspring obtained

after g successive generations. The expected value of total variation xg − x0, introduced by the

successive explorative mutations for K1 generations or exploitative mutations for K2 generations

or explorations followed by exploitations are given by following equations.
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where E(d1), E(d2), and E(d3) are the expected value of total variations by successive

explorations, successive exploitations, and explorations followed by exploitations, respectively.

E(σ1) and E(σ2) are the mean step length of explorative and exploitative mutations. Since E(σ1)

is larger than E(σ2), E(d1) is larger than E(d3), while E(d2) is smaller than E(d3). Hence, the

repeated execution of exploration (or, exploitation) operations introduces more (or, less)

variations than that introduced by exploration followed by exploitation. It may be argued that

employing a single-stage EA with expected step size E(σ3) = (E(σ1) + E(σ2))/2 would achieve a

similar effect. However, finding an appropriate value for σ3 by evaluating the population is not

easy, while finding suitable σ1 and σ2 is fairly straightforward to determine using the distance

between strangers and neighbors. The search space of most benchmark multimodal functions

possesses alternating peaks and valleys, so periodically alternating between explorations and

exploitations has an intuitive appeal to prove effective for advancing the search by alternating

downhill and uphill moves across the search space. Experimental results presented in a later

chapter (Tables 8.11–8.12, Fig. 8.4 in chapter 8) demonstrate that executing explorative and

exploitative stages sequentially (i.e., one after another) fail to yield sufficiently good results in
comparison to the proposed recurring approach with alternating explorations and

exploitations. Since the depths of peaks and valleys in the fitness landscape are not known in
advance, the repetition of explorative and exploitative steps for some length (i.e., K1 and K2,

respectively) seems to be a good choice for automatically handling the locally optimal points

and the promising new regions, respectively of the search space.

3.6 Evaluation of RTEP on Benchmark Functions
This section presents the evaluation and performance comparison of RTEP which would help to

achieve a better understanding of how the repetitions and alternations of the explorative and

exploitative operations of RTEP, based on their different mutation strengths, can influence and

improve the performance of the evolutionary algorithms. We have tested RTEP on two different

suites of benchmark functions — the standard benchmark suite consisting of 30 standard

functions ([11], [162]–[164], [196]) and the recently introduced CEC2005 benchmark suite [76].

Both the suites are presented briefly in section 2.17, and more elaborately in the Appendix A.
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3.6.1 Standard Benchmark Functions
In this section, the standard benchmark suite, consisting of 30 benchmark test functions, is used

to evaluate and experiment with RTEP. Each function is briefly introduced in Table 2.3 and

section 2.17. More information on these functions, including their analytical forms and 3D

surface plots can be found in the Appendix A. Based on their properties, the functions can be

divided into three groups, namely — the unimodal functions (i.e., the functions f1–f9 in Table 2.3

that have no local minima aside from their single global minimum), the high dimensional

multimodal functions (i.e., the functions f10–f18 that have exponentially many locally minimal

points in addition to a single global minimum) and the low dimensional multimodal functions

(i.e., the functions f19–f30 that have dimensionality ≤ 10 and possess only a few local minima).

3.6.2 Results of RTEP on Standard Benchmark Functions
For the results in Table 3.1, the parameters of RTEP are set as follows. The population size M is

set to 50. The neighborhood size M is set at 10. Three different sets of values are used to test the

effect of the length of exploration and exploitation stages, i.e., K1 and K2, respectively. They are

set as (K1, K2) = (1, 1), (2, 4) and (4, 8). The number of function evaluations (FEs) is set to be

150,000 for the high dimensional functions f1–f18 and to be 10,000 for the low dimensional

functions f19–f30. All these values are chosen to make a fair comparison with some of the existing

previous works, e.g., CEP [102], ALEP [56], IFEP [57] and RMEA [218].

Table 3.1 shows the mean error of RTEP on the 30 standard test functions over 50

independent runs. The numbers inside the parentheses next to RTEP indicate the values of K1

and K2 used in the evaluation. For each function, the best (i.e., lowest) mean error value is

shown in boldface font. Fig. 3.6 shows the convergence characteristics of RTEP for several

functions, each with three different settings for (K1, K2), as (K1, K2) = (1, 1), (2, 4) and (4, 8). The

following observations can easily be made from the results in Table 3.1 and Figs. 3.6 and 3.7.

a) First, RTEP with different values for (K1, K2) have reached the proximity of the global

minimum (i.e., mean error=0) for almost all the functions. This signifies the essence of recurring

exploration and exploitation operations for improving the performance of EAs based on

mutation. The mutation of RTEP involves directional information and simple selection

strategies, provides effective exploration and exploitation, which is evident from the

convergence characteristics shown in Fig. 3.6. It is seen that RTEP with different values for K1

and K2 have achieved nearly log-linear convergence and reached sufficiently close to the global

minima very consistently for almost all the functions.
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Table 3.1: Performance of RTEP on the 30 standard benchmark functions, for different values
of the parameters K1 and K2. Results have been averaged over 50 independent runs. The best
results are marked with boldface font. A ‘+’ or ‘–’ in the t-test between algorithms X versus Y
indicate that X is significantly better or worse, respectively than Y with 95% certainty, while a
‘≈’ means that the difference is not statistically significant.

Function
Mean Error ± Standard Deviation t-Test (RTEP vs.)

RTEP (1,1) RTEP (2,4) RTEP (4,8) RTEP (2,4)
vs. (1,1)

RTEP (4,8)
vs. (1,1)

f1 3.1e–18 ± 3.4e–18 7.5e–18 ± 4.4e–18 2.4e–20 ± 7.4e–21 ≈ +
f2 9.8e–08 ± 6.0e–08 1.7e–09 ± 1.5e–09 2.9e–12 ± 6.8e–13 ≈ +
f3 1.0e+00 ± 4.5e–01 1.6e+00 ± 6.2e–01 1.9e+00 ± 1.4e+00 – –
f4 7.2e–14 ± 2.4e–14 2.4e–15 ± 6.2e–16 2.1e–15 ± 4.1e–16 + +
f5 4.9e–01 ± 8.4e–02 2.6e–03 ± 7.7e–04 2.0e–03 ± 4.9–e04 + +
f6 2.8e–01 ± 3.3e–02 1.3e–01 ± 3.9e–02 1.2e–01 ± 3.5e–02 + +
f7 1.5e+01 ± 7.0e+00 1.1e+00 ± 9.0e–01 1.5e+00 ± 6.6e–01 + +
f8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f9 5.3e–34 ± 1.5e–35 8.0e–38 ± 6.4e–39 2.5e–34 ± 1.4e–35 + +
f1 e– e– e–f10 1.0e–12 ± 7.5e–13 2.5e–14 ± 5.0e–15 1.9e–14 ± 6.1e–15 + +
f11 2.1e–03 ± 5.7e–04 2.9e–07 ± 5.1e–08 1.1e–06 ± 9.1e–08 + +
f12 4.3e+03 ± 8.5e+02 7.1e+02 ± 4.9e+02 3.6e+02 ± 9.9e+01 + +
f13 6.1e–09 ± 3.5e–09 2.0e–11 ± 6.5e–12 2.4e–09 ± 9.2e–10 + +
f14 3.4e–17 ± 9.0e–18 2.7e–25 ± 6.3e–26 8.4e–20 ± 3.3e–20 + +
f15 3.0e–09 ± 9.2e–10 7.8e–10 ± 9.4e–11 2.9e–12 ± 4.1e–13 + +
f16 4.8e–06 ± 3.5e–06 2.2e–07 ± 9.1e–08 6.1e–08 ± 2.1e–08 + +
f17 1.7e–10 ± 5.4e–11 3.2e–13 ± 8.5e–14 1.7e–13 ± 2.7e–14 + +
f18 9.2e–03 ± 3.1e–03 7.1e–08 ± 7.3e–09 7.2e–05 ± 2.2e–05 + +

e– e– e–f19 0.002 ± 7.0e–04 0.002 ± 5.8e–04 0.002 ± 3.3e–05 ≈ ≈
f20 0.0007 ± 2.9e–04 0.0004 ± 6.2e–07 0.0008 ± 3.6e–04 + ≈
f21 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f23 0.04 ± 0.03 0.03 ± 0.02 0.00 ± 0.00 ≈ +
f24 0 ± 0 0 ± 0 0 ± 0 ≈ ≈
f25 0.89 ± 0.21 0.55 ± 0.08 0.39 ± 0.10 + +
f26 0.42 ± 0.16 0.38 ± 0.12 0.40 ± 0.12 ≈ ≈
f27 0.27 ± 0.13 0.25 ± 0.10 0.22 ± 0.10 ≈ ≈
f28 0.93 ± 0.32 0.85 ± 0.20 0.42 ± 0.11 ≈ +
f29 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f30 0.48 ± 0.16 0.29 ± 0.09 0.26 ± 0.08 + +
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Figure 3.6: The Convergence characteristics of RTEP(1,1), RTEP(2,4) and
RTEP(4,8) on four unimodal (f1, f2, f8, f9) and six multimodal (f10, f13–f15, f27, f28)
functions. The vertical axis shows the function value, while the horizontal axis
shows the number of function evaluations.
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Figure 3.7: Box plots showing the distribution of the final results by the RTEP variants —
RTEP(1,1), RTEP(2,4) and RTEP(4,8), over their 50 independent runs. In each box plot, the
vertical box corresponds to the results from the 25th percentile to the 75th percentile, the
central red dash marks their mean value, the upper and lower whiskers (i.e., the ┬ and ┴
symbols) show the entire range of values, and the red ‘+’ symbols outside the range of
whiskers show the outliers.
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b) Second, both RTEP(2,4) and RTEP(4,8) performed significantly better than RTEP(1,1)

on as many as 17 and 20 functions, respectively, while RTEP(1,1) outperformed RTEP(2,4) and

RTEP(4,8) only on two functions each (f1, f3 and f3, f20, respectively). This indicates the necessity

of executing exploration and exploitation operations at some length. The t-test shows that both

RTEP(2,4) and RTEP(4,8) performed better than RTEP(1,1) on all of the nine high-dimensional

multimodal functions, which are considered the most challenging family of functions to

optimize. Since the low-dimensional functions, f19–f30 are relatively easier to optimize,

RTEP(1,1) showed similar performance to RTEP(2,4) and RTEP(4,8) on most of these functions.

c) Third, the convergence characteristics of RTEP with different values for K1 and K2 seem

to be quite similar for some of functions (e.g., f1, f9, f13, f27) along the entire evolutionary process

(Fig. 3.6). However, RTEP(4,8) shows the best overall convergence characteristics, in terms of

both convergence speed (e.g., f1, f2, f8, f13–f15, f28) and the final solution quality (e.g., f1, f2, f10, f15,

f27,). However, some little oscillations are observed at the later stage of the evolutionary process,

(e.g., f13, f15). This may be due to the non-optimal setting of K1 and K2, and also because of the

exploration stage involving mutations with large step sizes.

d) Fourth, the low standard deviation of the results in Table 3.1 by the RTEP variants

indicates that RTEP is very consistent and robust, across their 50 independent runs, for almost

all the functions. On average, the magnitude of the standard deviation is only around 38%, 32%

and 28% of the mean results from RTEP(1,1),  RTEP(2,4) and RTEP(4,8), respectively.  The

distribution of the results by the three RTEP variants over their 50 different runs can be viewed

as box plots, as shown by Fig. 3.7 for several randomly selected functions. In each box plot, the

vertical box corresponds to the results from the 25th percentile to the 75th percentile, the central

red dash marks the mean, the upper and lower whiskers (the ┬ and ┴ symbols, respectively)

show the range of values, and the red ‘+’ symbols outside the range (whiskers) show the

outliers. The squeezed size of most of the boxes, as well as the very few occurrence of the

outliers for most of the functions in Fig. 3.7 (except for only a few box plots, e.g., RTEP(4,8) in f3)

indicates the high degree of consistency, stability and robustness of the RTEP variants for any

standard benchmark function in f1–f30.
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3.6.3 Comparison of RTEP with Existing Works

Many approaches exist in the literature against which one could compare the present work.

However, it is infeasible and unnecessary to conduct an exhaustive comparison with all

algorithms. The aim of our comparison here is to understand the strengths and weaknesses of

RTEP. Since the proposed algorithm uses only mutation as a variation operator and executes

exploration/exploitation operations separately, we have considered IFEP [57], ALEP [56],

CEP [102], RCMA with XHC [160] and recurring multistage EA (RMEA) [218] for comparison. In

addition, RTEP is also compared with some basic and representative evolutionary and swarm

intelligence algorithms, such as GA [11], DE [195], PSO [196], ABC [75] and a hybrid algorithm

(i.e., CLPSO [69]). RMEA is a previous research work by us that is founded on a similar

philosophy of RTEP, but a number of key differences make RTEP perform significantly better

than RMEA (Table 3.3). IFEP [57] and ALEP [56] are both based on mutation only, while

RCMA [160] employs both mutation and crossover for exploration and exploitation,

respectively. CLPSO [69] is a hybrid algorithm that combines machine learning techniques with

PSO, but does not consider considers explorations and exploitations separately. In the next

subsection (section 3.6.4), RTEP is also compared with NSDE and LSRCMA, both of which alter

their mutation operation by incorporating specialized exploitative operators for better local

exploitation around the candidate solutions.

At first, RTEP is compared with GA [11], DE [195], PSO [196] and ABC [75] in Table 3.2.

All these algorithms have two parameters in common — the population size µ and the total

number of function evaluations (FE), which are set as µ = 50 and FE = 500,000 for all the

functions in Table 3.2. The other algorithm specific parameters are given below.

GA Settings: We have used binary coded standard GA with fitness scaling, seeded

selection, random selection, crossover, mutation and elitism. Single point crossover operation

with the rate of 0.8 and bit flip mutation with mutation rate of 0.01 is used in the experiments.

As the selection operator, stochastic uniform sampling technique has been used. Generation gap

is the proportion of the population that is to be replaced in each generation, which is set to 0.9

in this comparison.

DE Settings: The standard DE has two parameters — the scaling factor F and the

crossover rate CR. In DE, the parameter F operates as the magnification factor of the differential

variation between two candidate solutions, while CR controls how much new information is

incorporated into the new trial solutions, which in turn affects the change of the diversity of the

population. We have used F = 0.5 and CR = 0.9, as recommended in [195].
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Table 3.2: Comparison of RTEP variants with GA [11], PSO [196], DE [195] and ABC [11] on
the 17 standard benchmark functions. Results have been averaged over 50 independent runs.
The best results are marked with boldface font.

No. D fmin
Mean Error

GA PSO DE ABC RTEP (2,4) RTEP (4,8)

f1 30 0 1.1e+03 0 0 0 0 0

f2 30 0 11.02 0 0 0 0 0

f4 30 0 7.4e+03 0 0 0 0 0

f5 24 0 9.70 1.1e–04 2.2e–07 3.1e–03 9.5e–13 2.7e–15

f6 30 0 1.2e+03 0.6666 0.6666 0 0 0

f7 30 0 1.9e+05 15.08 18.20 0.088 4.6e–03 1.6e–03

f8 30 0 1.2e+03 0 0 0 0 0

f9 30 0 1.8e–01 1.2e–03 1.4e–03 3.00e–03 0 0
e– e– e– e– e–f10 30 0 52.92 43.97 11.72 0 0 0

f12 30 –12569.48 8.8e+02 5.7e+03 2.3e+03 0 2.9e–01 6.6e–01

f13 30 0 14.67 0.16 0 0 0 0

f14 30 0 10.63 0.017 0.0015 0 0 0

f17 30 0 13.38 0.021 0 0 0 0

f18 30 0 125.06 7.7e–03 2.2e–03 0 0 5.1e–10
e– e– e– e– e–f28 10 0 29.57 1364.45 781.55 8.23 0.32 0.10

f29 10 –9.66015 0.16 5.65 0.069 0 0 0

f30 10 –1.4 0.76 1.39 0.35 0.97 0.06 0.16

Figure 3.8: Comparison among the RTEP, GA [11], PSO [196],
DE [195] and ABC [11] based on their mean absolute errors on the
standard benchmark functions. The RTEP variants exhibit the best
performance, i.e., smallest mean absolute error values.
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PSO Settings: The PSO [196] has three control parameters, in addition to the population

size and function evaluations, which are — the cognitive component  1 , social component  2 ,

and the inertia weight w, which are set to 1.8, 1.8 and 0.6, respectively, as suggested in [196].

ABC Settings: In addition to the common parameters (population size and maximum

number of function evaluations), the basic ABC algorithm has one more control parameter —

limit, which is set as SN * D, as recommended in [11]. Here, SN is the number of food sources or

employed bees and D is the dimensionality of the problem.

Table 3.2 compares RTEP(2,4) and RTEP(4,8) with GA [11], PSO [196], DE [195] and

ABC [11] on a total of 17 standard benchmark functions from f1–f30 that have dimensionality

D ≥ 10. The following points summarize the results.

GA vs. RTEP: Both RTEP(2,4) and RTEP(4,8) perform significantly better than GA on all

(i.e., 17 out of 17) functions.

PSO vs. RTEP: The performance of RTEP is either better (i.e., 13 out of 17) or at least

equally good (i.e., remaining four functions) on all the functions.

DE vs. RTEP: RTEP outperforms DE on as many as 11 out of the 17 functions. For the

remaining six functions, both the algorithms show similar performance by reaching the global

minimum.

ABC vs. RTEP: For most of the functions (10 out of 13), ABC and RTEP variants show

similar performance. However, for the seven remaining function, the RTEP variants outperform

ABC on five, while ABC performs better only on the remaining two (i.e., f12 and f18). Show, the

overall performance of RTEP is better than the basic ABC algorithm.

An overall evaluation of the algorithms can be made by using their mean absolute error

over all the functions. To calculate the mean absolute errors, the total absolute error over all the

functions is computed for all the algorithms by summing their individual errors on each

function. Then the total absolute error is divided by the number of functions (i.e., 17 for the

results in Table 3.2). Fig. 3.8 shows that RTEP(4,8) has the lowest mean absolute error, followed

by RETP(2,4) and the basic ABC algorithm, while the remaining algorithms (i.e., GA, PSO and

DE) demonstrate much larger error values.

Next, we compare RTEP against CEP [102], ALEP [56], IFEP [57], RMEA [218] and RCMA

with XHC [160] in the Tables 3.3 and 3.4. Like RTEP, both ALEP [56] and IFEP [57] use only

mutations for producing offspring. IFEP mixed (rather than switched) Cauchy and Gaussian

mutations in one algorithm. This algorithm generated two candidate offspring from each

parent — one by Cauchy mutation and another by Gaussian mutation. The better candidate is
then chosen to enter into the population. ALEP, on the other hand, generated four candidate
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offspring from each parent by using Lévy mutation with four different distributions. It has been

shown that ALEP [56] and IFEP [57] performed better than either their non-adaptive versions

or the CEP [102]. RCMA with XHC [160] executed exploration and exploitation operations

separately and combined them in one algorithm. This algorithm uses position-based crossover

(PBX) [160] and breeder genetic algorithm (BGA) mutation [81] for explorations. It employs a

negative assortative mating strategy for selecting two parents to perform crossover in order to
introduce population diversity. RCMA with a specialized crossover operator, XHC [160], has

been shown to perform better than all other variants. We executed RTEP for the same number

of FEs as for RMEA [218], ALEP [56] and IFEP [57] in Table 3.3 and RCMA with XHC [160] in

Table 3.4. According to [214], we have implemented CEP [102] and executed it for the same

population size and the same number of function evaluations. Table 3.3 and 3.4 compares the

algorithms on 12 and 5 functions, respectively. This is because the results of ALEP [56],

IFEP [57] and RCMA with XHC [160] are directly taken from the corresponding references,

where their results are not available for the rest of the functions.

Results in Table 3.3 show that RTEP(2,4) outperforms RMEA on 11 out of the 12

functions. The only function where RMEA performed slightly better is f3, but the performance

difference does not seem statistically significant. Moreover, RTEP is significantly better than

IFEP on all (i.e., seven out of seven) the functions reported in [57], while it outperforms ALEP on

10 out of 11 functions, and also outperforms CEP on all of the 12 functions. RTEP is also

compared with RCMA-XHC on five functions with dimensionality=25, and for 100000 FEs, as

suggested in [160]. Table 3.4 shows that RCMA-XHC [160] outperformed RTEP(2,4) only on one

unimodal function f1, while RTEP performed better than RCMA on rest of the functions, i.e.,

unimodal functions f3 and f7 and multimodal functions f10 and f14. Although we could not

perform t-test due to lack of availability of the standard deviation values for the results of

RCMA-XHC, it is easily apparent that the performance difference is significantly better by RTEP

for the functions f3, f7, f10, and f14.

As Table 3.3 shows, among the counterparts of RTEP, the best results are achieved by

RMEA [218], which is previous research work by us and shares some degree of similarity with

the currently proposed algorithm — RTEP. However, there also exists significant amount of

dissimilarity between RMEA [218] and RTEP. For example, RMEA [218] uses fitness values to

measure the similarity or dissimilarity between individuals in order to estimate the neighbors

and strangers for a candidate solution. This is based on the assumption that fitness similarity

(or dissimilarity) can generally be accounted for a relative similarity (or dissimilarity) between

the genotypes. However, such an assumption might not be true. The search space for

high-dimensional multimodal functions is usually extremely large, and it is commonly observed
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that genetically diverse individuals can have quite similar fitness values. The converse may not

be so common for continuous functions, but still two genetically very similar individuals might

have quite different fitness values. Thus RMEA [218], by selecting neighbors or non-neighbors

merely by fitness values may inadvertently pick inappropriate individuals which would fail to

induce the intended exploitations or explorations. RTEP, on the other hand, employs genotype

distance to appropriately select neighbors and non-neighbors. This selection operation is

consistent with its variation operation (i.e., mutation) which employs the genotype distances

Table 3.3: Comparison among RTEP(2,4), RMEA [218], ALEP [56], IFEP [57] and CEP [102] for
12 standard benchmark functions. Results have been averaged over 50 independent runs. The
best results are marked with boldface fonts. The ‘+’ indicates that RTEP(2,4) is significantly
better than the compared algorithm with 95% certainty, while ‘≈’ means that the difference is
not statistically significant.

Function
Mean Error t-Test (RTEP vs.)

RTEP (2,4) RMEA IFEP ALEP CEP RMEA ALEP

f1 7.5e–18 1.05e–17 4.16e–05 6.32e–04 9.1e–04 ≈ +
f4 2.4e–15 2.21e–15 – 4.28e–02 2.1e+02 ≈ +
f7 1.1e+00 1.52e+01 – 4.34e+01 8.6e+01 + +

e– e– e– e– e–f10 2.5e–14 1.74e–08 – 5.85e+00 4.3e+01 + +
f12 2.9e–07 9.26e–04 8.87e–02 – 4.0e+01 + –

f13 2.0e–10 5.08e–06 4.83e–03 1.90e–02 1.5e+00 + +
f14 2.7e–25 6.41e–20 4.53e–02 2.40e–02 8.7e–02 + +
f17 3.2e–13 1.72e–08 – 6.00e–06 4.8e–01 + +
f18 7.1e–08 9.29e–05 – 9.80e–05 8.9e–02 + +

e– e– e– e– e–f25 0.55 0.81 4.08 1.03 2.85 ≈ +
f26 0.38 1.41 3.41 0.26 0.78 + ≈
f27 0.25 0.94 1.71 0.62 0.85 + ≈

Table 3.4: Comparison between RTEP and RCMA-XHC [160] on five benchmark functions with
dimensions=25. Results have been averaged over 50 independent runs. The best results are
marked with boldface fonts. The ‘+’, ‘≈’ and ‘–’ indicate that RTEP(2,4) is significantly better,
similar and worse, respectively than its counterpart, RCMA-XHC [160].

Function
Mean Error t-Test

RTEP(2,4) RCMA RTEP(2,4) vs. RCMA

f1 4.72e–21 6.5e–101 –

f3 4.13e–17 3.81e–07 +

f7 1.04e+00 2.2e+00 ≈

f10 8.79e–15 1.4e+00 +

f14 6.29e–28 1.3e–02 +
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too in order to pick an appropriate mutation step size, either exploitative or explorative.

Another difference between RMEA and RTEP is that RMEA uses a single fitness-based greedy

re-insertion policy which always accepts better offspring only, no matter whether the current

stage is the exploration or exploitation stage. In contrast, RTEP uses different re-insertion

strategies, consistently based on the current explorative/exploitative stage. Another difference

between RTEP and RMEA is that, during each mutation, RMEA mutates every individual D

different times, each time randomly picking one of its D gene values. This might cause one gene

to be mutated several times, which is likely to destroy the behavioral link between the parent

and the offspring. In contrast, RTEP mutates a random number, say r, of genes of every

individual. A small value of r is more likely to preserve close behavioral link between the parent

and the offspring (which would be better for exploitations), while moderate or large values of r

would facilitate better search space explorations. Thus, the mutation operation of RTEP

possesses both exploitative and explorative features, while the mutation of RMEA makes it

off-balance towards more explorations. The significant performance difference between RTEP

and RMEA, as illustrated in Table 3.3, indicates the better effectiveness of the proposed RTEP

algorithm over its counterpart, RMEA.

The previous comparisons suggest that RTEP is better than its counterparts that either

use mutations only or execute exploration and exploitation operations separately. It is

interesting to investigate the performance of RTEP with an approach that neither uses mutation

nor considers the exploration and exploitation operations explicitly. One such approach is the

CLPSO [69], which is an improved variant of the PSO algorithm [196]. CLPSO uses a novel

learning strategy in which all other particles’ historical best information is used to update a

particle’s velocity to move the search process forward. It has demonstrated better performance

Table 3.5: Comparison between RTEP and CLPSO [69] on six standard benchmark functions.
Results have been averaged over 30 independent runs. The best results are marked with
boldface font. The ‘+’, ‘≈’ and ‘–’ indicate that RTEP(2,4) is significantly better, similar
and worse, respectively than its counterpart, CLPSO [69].

Function
Mean Error t-Test

RTEP(2,4) CLPSO RTEP(2,4) vs. CLPSO

f1 3.05e–21 4.38e–14 +

f7 8.11e–01 2.08e+01 +

f10 1.05e–15 4.75e–10 +

f12 2.92e–11 4.34e–10 +

f13 7.54e–13 0.00e+00 –

f14 3.19e–27 3.11e–10 +
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than other variants of PSO for wide range of complex functions. Since the number of FEs used by

CLPSO [69] has been 200000, RTEP(2,4) is re-implemented for the same FEs. Table 3.5 presents

results for RTEP(2,4) and CLPSO [69] on six standard benchmark functions over 30

independent runs. Results show that RTEP(2,4) has performed better than CLPSO on two

unimodal and three multimodal functions, while CLPSO outperformed RTEP(2,4) on only one

multimodal function (f13). The performance differences are clearly significant and mostly (5 out

of 6 functions) better for RTEP.

3.6.4 RTEP on CEC2005 Benchmark Functions
RTEP has also been evaluated on the recently introduced CEC2005 benchmark suite [76]. This

new suite includes 25 functions with more complexity, including many shifted, rotated,

expanded and hybrid composite functions. A brief overview on these functions is presented in
Table 2.4 and section 2.17. More detailed description on each function can be found in [76] and

also in the appendix A. In all our comparisons, the dimensionality of these functions is set to 30

and the FE is set to be 3.0e+05. These settings are for a fair comparison with previous

algorithms, such as the RCMA with adaptive local search (LSRCMA) [162] and DE with

neighborhood search (NSDE) [163].

The mean error values over 25 independent runs on each function by RTEP,

LSRCMA [162] and NSDE [163] are presented in Tables 3.6 and 3.7. Results indicate that RTEP

achieves performance comparable to and often better than the other two algorithms. The

following points summarize our observations on their performance comparison.

 In case of the five unimodal functions F1–F5, RTEP is found to be significantly better

than both of LSRCMA and NSDE on three functions, while it is outperformed by them

only on one (f4) and two functions (f1, f4), respectively.

 For the relatively more complex multimodal functions F6–F14, the superiority of

RTEP is clearly visible. RTEP is found to perform significantly better than the other

two algorithms on six (out of nine) functions, while it is outperformed by them on only

two functions (f6 and f8), with similar performance on the remaining one (f14).

 The results in Table 3.7 indicate that the performance of all three algorithms is

somewhat compromised for the hybrid composite functions. However, RTEP still

performs significantly better than LSRCMA and NSDE on six and five (out of 11)

functions, while it shows similar or worse performance for the remaining few

functions. In short, RTEP shows better performance on more functions than either of

NSDE and LSRCMA.



83

Table 3.6: Comparison among RTEP, LSRCMA [162] and NSDE [163]on five unimodal and nine
multimodal functions introduced at CEC2005 [76]. All the results have been averaged over 25
independent runs. The best results are marked with boldface font. Function properties are
expressed by S: Shifted, R: Rotated, N: Non-separable. The ‘+’ and ‘–’ indicate that RTEP(2,4) is
significantly better and worse, respectively than the compared algorithm, while ‘≈’ means that
the difference is not statistically significant.

Function
Mean Error t-Test

RTEP (2,4) LSRCMA NSDE RTEP vs.
LSRCMA

RTEP vs.
NSDE

f1 (S/–/–) 7.62e–09 9.36e–09 0.00e+00 ≈ –
f2 (S/–/N) 2.44e–11 8.71e–06 5.62e–08 + +
f3 (S/R/N) 9.25e+01 8.77e+05 6.40e+05 + +
f4 (S/–/N) 8.99e+02 3.96e+01 9.02e+00 – –
f5 (–/–/N) 7.64e+00 2.18e+03 1.56e+03 + +
f6 (S/–/N) 5.01e+02 4.95e+01 2.45e+01 – –
f7 (S/R/N) 2.85e–05 1.32e–02 1.18e–02 + +
f8 (S/R/N) 1.47e+02 2.07e+01 2.09e+01 – –
f9 (S/–/–) 3.69e–04 6.80e–01 7.96e–02 + +
f10 (S/R/N) 5.92e+00 9.05e+01 4.29e+01 + +
f11 (S/R/N) 7.39e+00 3.11e+01 1.41e+01 + +
f12 (S/–/N) 4.73e+02 4.39e+03 6.59e+03 + +
f13 (S/–/N) 1.54e–01 3.96e+00 1.62e+00 + +
f14 (S/R/N) 8.94e+00 1.25e+01 1.31e+01 ≈ ≈

Table 3.7: Comparison among RTEP, LSRCMA [162] and NSDE [163] on the 11 hybrid
composite functions introduced at CEC2005 [76]. Results have been averaged over 25
independent runs. The best results are marked with boldface font. The ‘+’ and ‘–’ indicate that
RTEP(2,4) is significantly better and worse, respectively than the compared algorithm, while ‘≈’
means the difference is not statistically significant.

Function
Mean Error t-Test

RTEP (2,4) LSRCMA NSDE RTEP vs.
LSRCMA

RTEP vs.
NSDE

f15 9.05e+02 3.56e+02 3.64e+02 ≈ –
f16 5.84e+01 3.26e+02 6.90e+01 + +
f17 2.38e+01 2.79e+02 1.01e+02 + +
f18 7.41e+01 8.77e+02 9.04e+02 – –
f19 9.96e+02 7.81e+02 9.65e+02 + +
f20 9.02e+02 4.79e+02 9.11e+02 – –
f21 5.11e+02 5.80e+02 5.84e+02 + +
f22 1.42e+02 9.08e+02 8.89e+02 – –
f23 8.01e+01 5.59e+02 5.34e+02 + +
f24 7.98e+02 2.00e+02 2.00e+02 + +
f25 1.01e+02 4.11e+02 6.60e+02 + +
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Figure 3.9: Comparison of NSDE [163], LSRCMA [162], CMAES [165] and RTEP (2,4),
based on the mean absolute errors for the CEC2005 benchmark functions F1-F14 (on
the left) and the hybrid composition functions F15-F25 (on the right).

Fig. 3.8 shows the mean absolute error of NSDE, LSRCMA and RTEP, separately for the

non-composite functions F1–F14 and the more complex, hybrid composition functions F15–F25.

Here, RTEP shows the minimum mean absolute error, in comparison to both NSDE and

LSRCMA. Thus we can conclude that RTEP shows the overall better performance than both of its

counterparts — NSDE and LSRCMA.

There may be two reasons why RTEP is a bit inefficient on hybrid composition functions.

First, the fixed strategy used in RTEP that executes repeatedly exploration and exploitation

operations for a fixed number of iterations before alternating to the other operation may not

work well for composition functions. An adaptive approach that can dynamically change this

number during the course of evolution may be more appropriate than the fixed strategy,

particularly for complex search spaces. Second, the directional information used in RTEP is

taken by considering two neighboring or distant individuals. It could be better if the information

of more individuals or the characteristics of the search space around the current points could be

used in the mutations. The incorporation of these ideas could be a topic for our future study.

3.6.5 Discussion on Results of RTEP

This section briefly explains why the performance of RTEP is better than most other algorithms

in comparison for most of the benchmark functions. First, RTEP emphasizes performing global

exploration and local exploitation not only separately but also adaptively. The utilization of the

distance of dissimilar or similar individuals in mutation of RTEP clearly reflects such emphasis,

because such distances among individuals are usually high during the early generations, but

gradually drops with the ongoing evolutionary process. RMEA [218], though attempts to

perform recurring explorations and exploitations, its inappropriate selection scheme of
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strangers and neighbors based on phenotype distance (rather than genotype distance) is likely

to fail to bring about the desired explorations and exploitations. ALEP [56], IFEP [57], and

CEP [102] do not separate exploration and exploitation operations; rather, IFEP and ALEP

primarily emphasize producing good offspring. The emphasis on only good solutions may

reduce the population diversity resulting in poor overall performance. Both RCMA with

XHC [160] and LSRCMA [162] perform explorations and exploitations separately. Exploration is
carried out by using PBX [160] and BGA mutation [81], while exploitation is conducted either by

a special crossover operator (for RCMA with XHC) or using an adaptive local search operator

(for LSRCMA). A special neighborhood search operator is also used for mutations in NSDE [163].

The problem of using different operators lies in ensuring their synergistic effect [212].

CLPSO [69] is a learning approach that does not employ exploration and exploitation operations

separately. Although it utilizes the best information of all particles to update the velocity of any

one particle, it may still trap into local optima due to the inherent problem of a learning scheme.

Second, mutation in RTEP does not produce offspring blindly, but rather utilizes the

information of other individuals to produce objective-oriented offspring. The mutation

produces offspring in such way that an offspring either facilitates the exploration of wider and

unvisited regions of the search space or the exploitation of the local neighborhoods. However,

the mutation in ALEP [56], IFEP [57], and CEP [102] does not use the information of other

individuals and produces offspring blindly. The consequence of blind mutation is that the

offspring produced may be dominated by individuals in the current population. Both RCMA with

XHC [160] and LSRCMA [162] also use blind mutations and crossover for explorations.

NSDE [163] tries to guide the mutation operations by controlling the step size, but with no

direction information. Although RMEA [218] employs direction information for appropriate

mutation step size, it often destroys the behavioral link between the parent and the offspring

which makes the algorithm more explorative than exploitative resulting in deteriorated

performance in comparison to RTEP.

Third, RTEP uses two different simple selection strategies to select offspring for the next

generation. During exploration, our algorithm allows an offspring for the next generation if the

offspring is potentially more promising than the parent, which allows slightly worse (in terms of

fitness) offspring to enter into the population, replacing its parent. However, only the better

offspring is allowed during exploitation stage. These selection strategies match the

exploration/exploitation objective of an evolutionary process. A tournament-based selection

scheme is used in ALEP [56], IFEP [57], and CEP [102]. For each parent or offspring, q

opponents are chosen uniformly at random for pairwise fitness comparison from all the parents

and offspring. However, the value of q affects the population diversity. A large value of q
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corresponds to high selection pressure, so the probability of the fittest individual being selected

multiple times becomes high, resulting in loss of population diversity. Both RCMA with

XHC [160] and LSRCMA [162] allow only better offspring for both explorations and

exploitations, which is more likely to reduce the population diversity and may lead to

premature convergence.

3.7 Conclusion and Future Research Directions
Evolutionary systems based on mutation have been introduced to the scientific community for

around four decades [1]. However, most mutation-based algorithms (e.g., [11], [56], [57], [146],

[162]---[164]) use a single-stage execution model to tackle the conflicting goals of evolution, i.e.,

the exploration and exploitation. These algorithms mostly rely on increasing the exploration

capability of the mutation operation, although both exploration and exploitation are necessary

during the evolution. Improving the capability of one operation at the expense of another

becomes a crucial decision due to the unknown scenario at different stages of evolution. This

chapter introduces RTEP — a recurring explorative/exploitative scheme based on mutation to
unravel the conflicting goals of evolution in finding a good near-optimum solution for complex

problems. RTEP adopts repeatedly alternated execution of exploration and exploitation

operations during the evolution. RTEP uses Gaussian mutation in its both the recurring stages

for producing offspring. Global exploration and local exploitation are encouraged through the

use of mutation involving directional information and appropriate selection strategies. The

distance between two dissimilar or similar individuals is used in RTEP as the SD of Gaussian

mutation to explore the search space globally or locally. In the experiments section (chapter 8,

sections 8.3, 8.8), we have carried out extensive experiments to evaluate how well RTEP can

perform compared to some other existing evolutionary algorithms. In most of the cases, RTEP

clearly outperformed most other algorithms in comparison.

RTEP involves two user specific parameters, K1 and K2, which are the durations of the

exploration and exploitation stages, respectively. In a later chapter (Table 8.11, chapter 8) it is
demonstrated that small values work sufficiently well for K1 and K2 for all the benchmark

functions. However, results usually start to deteriorate with increasing values of K1 and K2

(Tables 8.11–8.12, chapter 8). This happens because the recurring nature of RTEP starts to

diminish with larger lengths of its recurring stages. Thus, the key ingredient for good results

from RTEP is short stage lengths with frequent alternation of the stages. Any small value for

(K1,K2) would likely to perform good enough. For example, all three settings of RTEP with

(K1,K2) = (1,1), (2,4) and (4,8) have produced satisfactory results in Table 3.1. Since real-world

problems vary wildly from each other, it would be inappropriate for us to suggest some optimal
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choice as the values of (K1,K2). Instead, what we suggest is to try with a number of small values

for K1, K2 when the user does not have sufficient prior knowledge about the problem

characteristics.

There are several future research directions suggested by this chapter. First, a scheme to

make the length of exploration and exploitation stages, i.e., K1 and K2 adaptive could be devised.

Second, since the framework presented by RTEP is generic enough, it could be effectively

extended many other existing algorithms. Although RTEP employs only Gaussian mutation and

makes use of no crossover/recombination operator, it is not a rigid design requirement of RTEP.

In fact, RTEP provides a very generic framework and any mutation and/or recombination or

crossover scheme could be incorporated within it. There exist lots of genetic operators whose

strengths have already been demonstrated, e.g., SBX crossover and polynomial mutation [219].

Any such operator might be incorporated into RTEP, while the only requirement is to design

both “explorative” and “exploitative” variants of that operator. It is open to the researchers how

they define the explorative and exploitative variants, which would not be difficult in most

situations. For example, every EA has to maintain a population of potential solutions, so it may

readily introduce the participation of dissimilar and similar individuals in some way to define

the “explorative” and “exploitative” versions of its variation operators. Third, RTEP has been

applied mainly to continuous parameter optimization problems. It would be interesting to study

how well RTEP performs for other problems, especially the discrete and real world ones.

Fourth, as RTEP showed excellent capacity to locate the global optimum, one interesting idea

would be to hybridize RTEP with other existing algorithms. For example, RTEP could be

employed on a problem that is partially solved by another algorithm while the global minimum

is still unknown, yet the algorithm has reached fitness stagnation. In this situation, RTEP could

be employed, starting with the candidate solutions produced by the previous algorithm, and it
would be interesting to find whether or not RTEP could break the fitness stagnation, improve

the final solution quality and locate the global optimum of the search space.
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Chapter4
Diversity Guided Evolutionary

Programming

4.1 Introduction
The necessity of preserving adequate amount of population diversity to ensure more search

space explorations and to avoid premature convergence is emphasized in the previous

section 2.14. There have been several studies (e.g., [141]–[172]), as briefly presented and

categorized in the previous section 2.15, that have focused to devise techniques to preserve

sufficient amount of population diversity throughout the evolutionary process. Since mutation

is the major operator in many evolutionary systems, such as evolutionary programming and

evolutionary strategies, a number of research works have also been done (e.g., [140], [165],

[220]–[223]) for the elegant control and adaptation of the mutation step size to properly

traverse across the locally optimal points and to locate the global optimum point. This chapter

introduces Diversity Guided Evolutionary Programming (DGEP), a novel algorithm that tries to
combine the best of both these research directions (i.e., research along diversity-preserving

evolutionary algorithms and research for designing novel mutation strategies). DGEP

incorporates Diversity Guided Mutation, a novel mutation scheme that controls and guides the

mutation step size using the existing population diversity information. It also takes some extra

diversity preservative measures to maintain an adequate amount of population diversity that

assists the proposed mutation scheme. In this chapter, we have tested and evaluated DGEP on a
wide range of continuous benchmark functions and compared the results with a number of

existing state-of-the-art evolutionary and swarm intelligence algorithms.
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4.2 Organization of the Chapter
The rest of this chapter is organized as follows. Section 4.3 describes the proposed algorithm

DGEP in details, along with its central component — the diversity guided mutation (DGM)

scheme with the pseudocode. A brief analysis of its strengths and how it avoids premature

convergence are also presented in this section. The next section 4.4 highlights the differences

between the proposed algorithm — DGEP and most other existing evolutionary algorithms.

Sections 4.5–4.6 perform the evaluations of DGEP using two different benchmark suites on the

continuous optimization problem and compare the performance of DGEP with several other

relevant evolutionary and swarm intelligence algorithms. Finally, the section 4.7 concludes the

chapter by leaving a few suggestions on future research directions.

4.3 The Proposed Algorithm—DGEP
Since mutation is the sole variation operator in many evolutionary systems, including EP and

ES [4], [161] schemes, much research, both practical, e.g., [220] and theoretical, e.g., [221] has

been done for improving the effectiveness of mutation as a search mechanism. A small mutation

step size provides better search stability, but is likely to get trapped into locally optimal points

while  a large mutation step size is better immune against local optima, but the search may be

unstable with unacceptably slow or no convergence to the global optima. This is why most

existing works [140], [165], [222], [223] try to adapt the mutation rate and step size

dynamically in order to achieve adequate convergence rate and to avoid premature

convergence to local optima. However, none of the existing schemes, to our best knowledge,

makes use of population diversity information to guide the mutation step size. However, the

existing amount of population diversity can often be a good indicator of the maturity of the

ongoing optimization process. This chapter introduces Diversity Guided Evolutionary

Programming (DGEP), which is based on the central idea of making use of the population

diversity information to induce more effective mutations. DGEP is based on Diversity Guided

Mutation (DGM), a novel mutation scheme that employs the diversity information for the

automatic adaptation of the mutation step size to avoid premature convergence to local optima.

The balance between the exploitative and explorative features of the mutation operation is

sought by employing diversity information existent at two different granularities: micro and

macro. At the micro level, diversity among genetically very similar chromosomes is used to

induce small mutation steps that are suitable for exploitations of the existing chromosomes,

while at the macro level the diversity across two random chromosomes is used to induce

relatively large variations that are suitable for search space explorations. To assist the proposed
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diversity based mutation operator with additional diversity, the selection operator of DGEP is

also modified. In addition to fitness based selection, the selection operator also looks for

chromosomes that are either duplicates or have failed to improve for a long time and replace

them with randomly placed chromosomes in a way that promotes population diversity.

DGEP differs from the Classical Evolutionary Programming (CEP) [3], [102] at two

different points. First, DGEP introduces and incorporates Diversity Guided Mutation (DGM), a

novel mutation scheme that uses population diversity information to adapt the mutation step

size. Second, DGEP employs a few simple diversity preserving schemes to assist the DGM

scheme with additional amount of diversity, because sufficient diversity is required by DGM to

perform both exploitative and explorative search around the current chromosomes. DGM makes

use of the population diversity information at two different levels: diversity among very similar

chromosomes is used for exploitative mutations on the existing solutions while diversity among

dissimilar chromosomes across the population is used for explorative mutations to perform the

search space explorations. After random initialization and during early generations, both these

diversity values (say, divlow and divhigh) are usually large. As the population converges around the

locally optimum points of the search space, divlow drops rapidly, but divhigh usually remains

sufficiently high because of the existence of several locally optimal points within the population.

This high amount of diversity among non-neighbors facilitates large mutations and thus helps

avoid premature convergence around any locally optimum point. In the ideal case, the entire

population gradually converges towards a single global optimum which causes both divlow and

divhigh to decrease, allowing the algorithm to converge. In addition to the DGM scheme for more

effective mutations, DGEP also employs some diversity preserving mechanisms to help the DGM

scheme, such as the elimination of identical or nearly duplicate chromosomes, detection of the

chromosomes that have reached fitness stagnation for an unacceptably long time period and

replacing such chromosomes by randomly produced ones or by chromosomes produced from a
series of hill climbing steps inter-mixed with diversity guided mutations. The details of the

DGEP algorithm can be presented in the following steps.

Step 1) Generate an initial population of M chromosomes. Each chromosome, C is

represented as a pair of real valued vectors, (xi, ηi), for i = 1, …, M; xi is the vector composed of

the parameter values being optimized and ηi is the standard deviation vector to perform

Gaussian mutations as hill climbing steps on xi, if necessary (step 7). Each xi (and ηi) has D

components: xi = [xi(1), , xi(2), …, xi(D)]T nR and ηi = [ηi(1), ηi(2), …, ηi(D)]T nR , D being the

dimensionality of the problem. Each component of xi, for i = 1, …, M, is generated uniformly at

random within its domain (i.e., xi(j) = Uniform_Random ~ (minj, maxj), for j = 1, …, D). All the



91

components of ηi, for i = 1, …, M, are initially set to some moderate value (e.g., 3.0), as suggested

in [102]. The iteration counter, t is initialized to 1.

Step 2) Evaluate the fitness of each chromosome xi. Compute the selection probability

for each chromosome, xi using = ( )
∑ ( )

. This also normalizes values into [0, 1].

Step 3) Repeat steps 4-5 for M times. This constitutes the child population, C(t) from the

parent population, P(t).

Step 4) Select a chromosome, xi based on its normalized fitness value, . We employed

traditional roulette wheel selection scheme which ensures fitness proportional selection.

However, any other fitness based selection scheme can also be adopted.

Step 5) Apply the DGM scheme to mutate the selected chromosome, xi to produce an

offspring chromosome, xi'. Details of DGM are explained later with its pseudocode (Fig. 4.1).

Insert xi' into the child population, C(t).

Step 6) Merge the parent population, P(t) and child population, C(t). Sort the

chromosomes according to their fitness values and select the best M chromosomes to constitute

the next generation candidate population, Q(t).

Step 7) Check for chromosomes trapped into deep local optima. If a particular

chromosome, xi in Q(t) has not been improved for several (say, u) consecutive iterations, then

allow u/2 DGM mutations randomly intermixed with u/2 hill climbing steps by Gaussian

mutations using N(0, ηi) distribution (as done using eq. (1) and (2) in [57]). If this leads to

fitness improvement, replace the original chromosome with the newly produced chromosome.

Otherwise eliminate both chromosomes from the population.

Step 8) Elimination of duplicate chromosomes. If the Euclidean distance between the

genotypes of two chromosomes, xi and xj is less than a certain fraction, l of the average

Euclidean distance among all the genotypes across the population, then xi and xj are considered

as duplicates. Select the one with lower fitness value and eliminate it from the population.

Step 9) If the current number of chromosomes is less than M in the candidate population,

Q(t) then introduce new chromosome, xi placed uniformly at random across the search domain

using: = + (0,1) ∗ − for j = 1, …, n; Repeat this step until Q(t) consists

of M chromosomes. Now, Q(t) becomes the parent population, P(t) for the next iteration.

Step 10) Keep track of the best chromosome found so far. Also, increase the iteration

counter, t by setting t = t + 1.
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Step 11) Check for termination. If the best chromosome found so far is acceptable or the

iteration (generation) counter, t exceeds some predefined maximum number of iterations, stop

the process and return the best chromosome found so far. Otherwise go back to step 2 and

repeat again.

The essence of DGEP is the DGM scheme (step 5) for mutation. Also, DGM is supported by

some simple diversity preserving schemes, as described in steps (7) and (8). Before proceeding

to the details of the DGM scheme, we address a number of issues and present some

implementation details in the following points.

(a) In step 1, the initial values of standard deviations, i.e., ηi’s are all set to 3.0. This is not

ad-hoc, rather only to be identical with the initial parameter settings of CEP [102], [57],

IFEP [57] and ALEP [56] for a fair performance comparison. Though such a choice of initial

values does not consider the search space along each dimension, the self-adaptive

mechanism for standard deviations (in step (7) of DGEP, following eq. (1) and eq. (2) in [57]

for CEP and IFEP, eq. (23) in [56] for ALEP) automatically adapts each ηi(j) separately and

makes it suitable for an effective search around the corresponding individual, xi along the

dimension, j.

(b) In step 2, how to compute the fitness of an individual, xi? Since the objective function, f is to
be minimized, so smaller values of f(xi) should translate into higher fitness values. Also, both

positive and negative values of f(xi) need to be considered. In our implementation, we have

employed the following formula to compute the fitness value of an individual, xi from its

objective value, f(xi).
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(c) Since each mutation operation by the DGM scheme (step 5) possesses both exploitative and

explorative potentials, so we are quite indiscriminate to pick the selection operators (in

steps 4 and 6), without expecting any special exploitative or explorative pressure from the

selection operators. For parent selection, we have employed roulette wheel selection (i.e.,

fitness proportional selection) in step 4 and for survivor selection, we employ truncation

selection (step 6). Both the selection operators are a bit exploitative in order to maintain

good convergence speed. However, the choice of these selection operators is not an essential

component of DGEP and any other selection operator might be used. One advantage with

both these operators is that they don’t require any user-specific parameter which might

involve problem specific knowledge. Some other popular selection operators, e.g., the
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tournament selection, can also be employed. However, tournament selection requires a

parameter (e.g., the tournament size) which needs to be set carefully and can affect the

exploitative-explorative bias of the algorithm.

(d) A prolonged fitness stagnation of an individual may be caused not only by a deep local

optimum, but also a wide, flat plateau of the search space. To detect such a situation, our

implementation equips each individual with a counter that keeps track of how many

consecutive mutation attempts fail to improve the individual. If the counter exceeds a

maximum allowed value (say, u), then we assume that the chromosome is stuck either at a
deep local optimum or within a wide flat plateau of the search space. Then we initiate the

sequence of DGM mutations and hill climbing steps by Gaussian mutations, as mentioned in
step 7 of DGEP. Our implementation of step 7 operates like this: let xi be the individual stuck

at a local optimum or a flat plateau. Then repeat the following operations on xi for u times:

Randomly flip a fair, unbiased coin. If it comes up with a head, then mutate xi by the DGM

mutation scheme and accept the offspring solution to replace the parent xi. Otherwise (i.e.,

the flip comes up with a tail), apply Gaussian mutation on xi by using the self-adaptive

mechanism with ηi(j)’s, in the same was as in eq. (1) and (2) of [57]. While the DGM

mutation is always accepted, the Gaussian mutation is accepted only when it leads to fitness

improvement; hence we call it hill climbing steps by Gaussian mutations. Please note again

that, with each Gaussian mutation, the ηi(j)’s (i.e., the standard deviations of Gaussian

distribution, maintained separately for each individual xi and for each of its dimension, j)

also go through the self-adaptation scheme, as described by eq. (2) in [57]. Thus the

sequence of perturbations attempt to break free the individual and improve its current

situation, no matter whether its fitness stagnation is due to some strong local optima or due

to a flat plateau of the search space.

(e) Function evaluations (FEs) are often the most prohibitive and limiting section of

evolutionary algorithms. In our implementation of DGEP, we employ a population of size of

50 which is half the population size of CEP and IFEP, because each DGM mutation involves

two (rather than one) function evaluations for the two different mutations (i.e., exploitative

and explorative). Thus, DGEP still uses roughly the same number of FEs as in CEP, IFEP and

ALEP. Also, with half the population size, the computational cost of average Euclidean

distance across the population (required in step 8) will be much smaller than using the full

size population. Our naïve implementation for step 8 requires Θ(M2) extra computations,

where M is our reduced population size (i.e., 50). However, it might be further reduced by

using a more thoughtful implementation.
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(f) In every generation, DGEP updates the average Euclidean distance across the population

and also updates the pairwise Euclidean distances for the individuals. With this information

ready at hand, implementing step 8 requires only the value of the parameter, l. The specific

value of l, along with the other parameter values of DGEP in our implementation is provided

in the experiments section 4.5.

(g) In every generation, DGEP computes the pairwise distance between individuals and uses

this distance to pick the neighbors. For each individual, xi its neighbors are selected to be the

|N| individuals that have the smallest Euclidean distance from it. As the individuals are

continuously evolving and changing, neighbors of an individual may vary with generations,

bur neighborhood size |N| is kept constant all through the evolution. The value of |N| in our

implementation, along with other parameter values, is specified in the subsequent

experiments section 4.5.

(h) DGEP eliminates duplicate individuals in step 8, which are replaced by random individuals

in step 9. But how can we ensure that the step 9 of DGEP is not producing duplicate

individuals again? In most evolutionary algorithms, the strong locally (or, globally) optimal

points of the fitness landscape usually draws most of the individuals, so the population may

be filled with individuals that are duplicates or nearly duplicates of some other individuals

around the same optimal point. But replacing such an individual with a random individual,

as is done in steps 8–9 of DGEP, has very little or virtually no possibility to produce a

duplicate individual. This is because, for each of the benchmark functions, the search space

is high dimensional and the domain along each dimension is continuous. For example,

consider a problem with dimensionality D=30 or 60. For such a problem, even if the domain

for each dimension is discrete and just {0,1}, the possibility of producing an individual that

is identical to any individual of a population of size=100 is merely 30 60100 2  100 2or ,

which is very close to 0.

The details of DGM scheme with its pseudocode and a brief analysis on how DGEP tries to

balance between exploitations and explorations by employing population diversity information

and how it achieves better immunity against premature convergence is presented the following

sub-sections. Then, we have made a number of points where DGEP differs from most other

existing works in literature.
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4.3.1 Diversity Guided Mutation (DGM)
The central component of the proposed DGEP system is the DGM scheme for mutation. In order

to mutate a particular chromosome xi, DGM randomly picks two chromosomes, one from its

neighbors (i.e., most similar chromosomes) and the other from the rest of the population.

Suppose d1 and d2 be the distance values of these two chromosomes from xi. Since d1 is the

distance between two neighbors, it is expected to be pretty small, while d2 being the distance

between two non-neighbor chromosomes across the population is expected to be rather large in
comparison to d1 (unless the entire population has converged). DGM employs d1 to produce a
small, exploitative variation on xi while d2 is used to bring large, explorative variations. Based on

the fitness value of both these newly produced offspring of xi, only one is selected to compete for

insertion into the next generation population. In order to assist the DGM mutation scheme, an

adequate amount of diversity is sought by adopting some simple techniques, such as elimination

of duplicate chromosomes by randomly produced chromosomes, replacement of chromosomes

stuck at strong local optima or wide flat plateau by multiple hill climbing steps randomly

intermixed with the DGM mutations, as described in steps (7) and (8) of DGEP. The details of

DGM are presented in the pseudocode in Fig. 4.1.

DGM involves three individuals to produce an offspring. There might be some difference

of opinions on whether the proposed DGM scheme can rightfully be called a mutation operator,

because it requires and recombines information from two other individuals, while a traditional

mutation operator usually does not make use of any extra information from other individuals.

However, as is found in the entire differential evolution (DE) literature, a DE mutation operator

is also based on using information from three other individuals from the population. In a DE

mutation, a direction vector is computed from one individual to another, which is then added to

a third individual. The DGM scheme is quite similar to the DE mutation, so we don’t find any

problem to use the term ‘mutation’ for it which is completely consistent with the DE tradition.

Apart from the similarity with the DE mutation, there is also significant difference between

DGM and DE. Usually DE is centered around distances in gene level, while DGEP is based on

distances among chromosome (i.e., individual) level. While the DE mutation does not show any

concern for exploitation or exploration and maintains no relation with the existing population

diversity, DGM puts its active effort to balance exploitation with exploration by estimating the

existing population diversity across similar and dissimilar individuals and employing the

information for exploitative and explorative mutations, respectively. These two different

mutations with widely different step sizes are actually merged to constitute the composite DGM

mutation scheme. DGM produces much improved results than the recent DE variants, like

NSDE [163], [164], as is revealed by our evaluation studies on DGEP (e.g., Tables 4.10–4.11).
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Figure 4.1: Pseudocode for DGM

For most of the benchmark functions on which DGEP and the other algorithms have been

tested, the search spaces along all the dimensions (i.e., the domains of values for all the genes)

are equal and identical. This is why the adjustment of the genes by DGM uses the same

amplitude of step size for all the genes. This may not be a good approach in many real world

problems where the domains of the values corresponding to different genes are widely

different. In practical applications it is possible to have one design variable in [0,1] while

another one within [0, 1000]. However, such a situation can be easily handled by a simple linear

scaling of all the domains to the same size. Before applying the DGM mutation, every gene value,

xi with domain [mini, maxi] can be preprocessed by a simple linear transformation function, g

that transforms each dimension to [0, 1] by ( ) = ( − ) ( − )⁄ .

In the pseudocode of DGM (Fig. 4.1), K operates as a random scaling factor of the distance

between individuals in the DGM mutation scheme. As we have found with some

experimentations, a random value of K within some small range (e.g., Uniform_Random ~[0, 3]

as implemented in DGM) often provides better results than a fixed or larger value of K. The

primary objective of exploration and exploitation is conducted by the distances among

neighbors and non-neighbors (i.e., d1 and d2 in the pseudocode), not by K. The role of K is

essentially a bit of further improvements of the results, as we have been found with some

experimental studies.

Algorithm 4.1: Diversity Guided Mutation (x): Returns x' produced by diversity guided
mutation on x

1. Nx: a set of chromosomes that have minimum distance from the chromosome, x

2. Pick two chromosomes y and z uniformly at random from Nx and P(t) – Nx respectively

3. Compute d1, d2: distance of the point, x from the points, y and z respectively

4. A: a set of genes of x picked at random for mutation

5. For each gene, j in A

begin

K = Uniform_Random ~ [0,3]

child1.j = Uniform_Random ~ [ x.j – K*d1, x.j+K*d1 ]

child2.j = Uniform_Random ~ [ x.j – K*d2, x.j+K*d2 ]

end

6. Apply greedy selection between child1 and child2 to select the fitter one. Let, x' be the
selected offspring.

7. return x'
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4.3.2 Diversity Guided Explorations and Exploitations
In this section we present how DGM tries to balance between explorations and exploitation

using population diversity information. Mutations with small step size usually induce small

amount of variations to the parent chromosomes and thus exploits existing solutions until the

population gets stuck at local optima. In contrast, mutations with large step size are more likely

to escape from local optima and thus better suited for search space explorations, but may lack

the stability to perform in-depth tuning of the existing solutions and thus may fail to locate or

may oscillate around the global optimum. Some existing works try to control mutation step size

following some rigid adaptation strategy [4], [161] or using different distributions [56], [57] or

outcomes of previous mutations [165]. In contrast, DGM adapts the mutation step size by

picking distance values from the population. Exploitation is conducted by picking two very

similar chromosomes and employing the small genotype distance between them which ensures

a small step size that is suitable for exploitation. If this distance value is d1, the mutation step

size is generated uniformly at random from [0, K*d1]. Exploration is carried out following the

same way, but the distance between two non-neighbors, say d2, is employed and the mutation

step size is generated uniformly at random from [0, K*d2]. The pair of distance values, d1 and d2

acts as sampled, approximate diversity of neighbors and non-neighbors across the population.

Thus the distribution and distances of neighbors and non-neighbors from a particular

chromosome xi controls the degree of exploitations and explorations around xi. During the early

generation both the neighbors and non-neighbors would be far apart from each other, which

would make the distance values d1 and d2 to be large in most instances and the evolutionary

search would be mostly explorative. As the population evolves, chromosomes would approach

the local peaks with the formation of several neighbor groups within the population. However,

considering a high dimensional multimodal problem with number of local optima much higher

than the number of evolving chromosomes (which is usually the case), the distance between

different neighborhoods would still be significantly large. Thus, the inter neighborhood

diversity d2 would be sufficiently high to carry out explorations in parallel to the exploitations

with small intra-neighborhood diversity d1. Unless the entire population converges to a single

global optimum, both explorations and exploitations would continue and guide the evolution to

better solutions. In addition to the mutation operator, the selection operator of DGEP also

possesses both explorative and exploitative features. While the fitness based selection exerts

mainly exploitative pressure on the evolution, the elimination of duplicate chromosomes and

other chromosomes that get trapped at local optima (i.e., no fitness improvement for a long

time) put explorative pressure on the evolutionary search. The synergy of these explorative and

exploitative forces ensures better balance and higher amount of population diversity in

comparison to classical evolutionary approaches, as demonstrated later (Table 8.14, chapter 8).
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Balancing exploitation and exploration has also been addressed by some other works,

such as RCMA [160], LSRCMA [162] and NSDE [163], [164]. All these works differentiate the

degree of exploitations and exploration on different chromosomes based on their fitness values.

This probably makes them more exploitative than explorative. DGEP does not differentiate the

degree of exploitations and explorations on the chromosome level; rather it attempts both

explorative and exploitative variation from each chromosome. Also, unlike RCMA [160],

LSRCMA [162] and NSDE [163], [164], the selection operator of DGEP puts some explorative

pressure with elimination of duplicate and stagnant chromosomes. Thus both the evolutionary

operators of DGEP, i.e. selection and mutation, exhibit awareness towards explorations,

exploitations and population diversity to avoid premature convergence.

To some extent, the degree of exploration that DGEP is able to conduct might be controlled

by K, as found in the pseudocode of DGM (step 5 in Fig. 4.1). K acts as a scaling factor of the

distance, say d, between neighbors or non-neighbors. For example, consider an optimization

problem with only one parameter. A chromosome with a parameter value v is mutated

uniformly at random within the range [v – K*d, v + K*d]. The standard deviation of the mutation

perturbation would be ∗
√

, which is proportional to both K and d. Thus, larger values of K (and

d) are likely to provide better explorations. However, more exploration is not always helpful,

especially once the neighborhood of the global optima is found or faster convergence is sought.

Instead, what is always essential is a proper balance between explorations and exploitations.

With our scheme of choosing d from two different ranges of values (exploitative and

explorative), we leave up K to a simple random value. With some experiments, it is observed

that a uniform random value of K within some small range, e.g., [0, 3.0], produces sufficiently

good results and is often better than a fixed value of K. This is why K is simply picked uniformly

at random from [0, 3.0], which is quite arbitrary and meant not to be optimal. With such simple

choice of K, exploitation and exploration is mainly carried out by choosing between d1 and d2,

i.e., the exploitative and explorative distances to guide the mutation step size.

4.3.3 Avoiding Premature Convergence
To avoid premature convergence, the search operators should have some capacity to escape

from the locally optimal points of the search space. In the following two scenarios, we depict

how DGEP possesses an inherent immunity against local optima and can conduct search until

the population is driven to the globally optimum point. For the ease of visualization, a

maximization problem with only one parameter is considered. Scenario #1 (Fig. 4.2) depicts a
situation where the search process has failed to spot the globally maximum point and the entire

population has converged to two local maxima. In this situation, the average distance among
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Figure 4.2: Scenario #1 — the entire population has converged to a few locally optimal hills,
but missing the narrow global optimum.

neighbors would be pretty small and help the chromosomes hill climb towards the locally

optimal objective values, Local_Maximum1 and Local_Maximum2, as depicted in Fig. 4.2. If the

two peaks are well-separated with significant amount of distance between them, it would be

quite difficult for traditional mutation operators to have sufficiently large step size in order to

escape from the local maxima. However, the higher the distance between the two

neighborhoods, the more explorative mutation step size DGEP would pick from their distances

which makes it easier for DGEP to break free from the local maxima. Once the vicinity of the

global maximum is found, both the intra-neighborhood and inter-neighborhood distances start

to drop and allow DGEP to converge to the global maximum.

The worst possible scenario that can appear during evolutionary search is the scenario #2

(Fig. 4.3) where the entire population has converged to a single locally maximal point, far from

the narrow global maximum. If the distance to Global_Maximum is significantly large, it would be

extremely difficult to improve the scenario by using any simple, e.g., [137] or adaptive,

e.g., [140], [222], mutation scheme. Use of specialized selection operator, e.g., [155], [224], [225]

or probability distributions, e.g., [56], [57] for mutation would not help in such a situation. This

is because the appropriately large mutation step size in such situations cannot be derived from

the population information and the traditional fitness based selection operator discards the

newly produced offspring that may be actually closer to the Global_Maximum but have lower

objective value. However, DGEP still possess some probability to improve this situation because

of its specialized selection operator. As the entire population climbs towards the single local

maximum that entraps the entire population (i.e., Local_Maximum1), some chromosomes would

be more or less duplicates of each other. Also, some chromosomes, after reaching very close to

the objective value of Local_Maximum1 (Fig. 4.3) would get into fitness stagnation for a long
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time. This triggers the selection operator, as described in steps (7) and (8) of DGEP, to replace

these chromosomes by randomly producing chromosomes across the search space and applying

a sequence of diversity guided mutations intermixed with hill climbing Gaussian mutation steps

before exerting selection pressure on them. Random placement of the offspring chromosomes is

likely to induce large variations from the current population points, while the sequence of hill

climbing and mutation steps provide them with good survival probability when compared to the

existing chromosomes. As a result, some of the new chromosomes may reach some other locally

maximal points and turn this scenario into the previous scenario #1 (i.e., the population

contains multiple locally maximal points), which is much easier to deal with. Thus DGEP ensures

better probability that the search for global maximum continues avoiding permanent premature

convergence around the local maxima.

Figure 4.3: Scenario #2 — the entire population has converged to a single locally maximal hill,
far from the narrow global maximum.

4.4 Differences of DGEP with Other Existing Works
DGEP differs from most other existing evolutionary algorithm approaches in a number of ways.

First, it neither tries to find an optimal mutation rate and step size (e.g., [137]) nor tries to adapt

their values using some adaptation rule (e.g., [140], [222]). It rather uses existing distances

among chromosomes as a measure of diversity across neighbors and non-neighbors of the

population and guides the mutation operation with this information. Mutation step size is not

explicitly controlled by any rigid adaptation formula, rather becomes guided by the distances

between chromosomes within the search space. As the fitness landscape may have complex and

highly non-linear characteristics, any fixed adaptation rule based on generation number (e.g.,

similar to evolutionary schemes [140], [222]) is likely to fail to respond to the continuously

evolving optimization scenario.
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Second, DGEP tries to balance the exploitative and explorative search requirements

during each mutation by producing two different offspring from each chromosome: one with

small step size to facilitate exploitation around the parent chromosome and the other with large

enough step size for search space exploration. Most existing approaches don’t use such explicit

measure to balance between exploitations and explorations. The use of two widely different

ranges of mutation variations provides DGEP an inherent immunity against local minima.

Third, most existing approaches (e.g., [151]–[165]) tweak either the selection operator or

the variation operator of the standard EA to promote diversity and prevent premature

convergence, while DGEP alters both its variation and selection operators. While the DGM

mutation scheme plays the key role of employing diversity information carrying out effective

mutations, the selection operator also assists it by promoting diversity with the elimination of

the chromosomes that are either duplicates or strongly trapped in some local optima. Altering

only one operator (e.g., selection) and leaving the other (i.e., mutation) unchanged may allow

the operators to play reverse roles in the evolution and nullify each other’s effect resulting in
unacceptably slow convergence speed and poor solution quality.

Fourth, some approaches, e.g., [141], [146], [159], attempt to estimate the population

diversity using some diversity metric and try to make key decisions based on this diversity

value. Since there is no generally accepted metric to measure population diversity, DGEP uses

very general all-purpose Euclidean distance to measure the distances between the genotypes of

the chromosomes. Using simple metric provides a way for plain and simple interpretation and

analysis of the operations.

Fifth, unlike evolutionary systems those employ complex procedures to promote

population diversity, e.g., island [142], nation [72], religion [144], immigration [226], reserve

population [146], switching to and from different genetic operations [141], DGEP employs very

simple diversity preserving measures. DGEP eliminates only those chromosomes that don’t

contribute significantly in the evolutionary search, i.e., chromosomes that are duplicates or

almost identical to some other existing chromosome and the chromosomes that have not been

improved for a long time. However, in the latter case, DGEP makes a series of variation

operations to improve it before discarding it completely. Simple measures for diversity

preservation make the system open for clear interpretation and easier analysis.

4.5 Evaluation of DGEP on Benchmark Functions
This section evaluates the performance of DGEP on a number of benchmark functions and

compares it with several other existing evolutionary systems. Many evolutionary systems exist

in the literature against which we could compare DGEP. However, since DGEP uses mutation as

the sole variation operator and makes use of population diversity information to adjust the
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mutation variation and to balance between exploitations and explorations, we primarily

consider Classical EP (CEP) [3], Improved Fast EP (IFEP) [57], Adaptive EP with Lévy Mutation

(ALEP) [56], Island Model GA (IMGA) [142], [143], GA with Restricted Truncation Selection

(RTS) [158], Dual Population Genetic Algorithm (DPGA) [146], the Real Coded Memetic

Algorithm (RCMA) with Crossover Hill Climbing (XHC) [160], Comprehensive Learning Particle

Swarm Optimizer (CLPSO) [69], RCMA with Adaptive Local Search (LSRCMA) [162], Differential

Evolution with Neighborhood Search (NSDE) [163], [164] and Covariance Matrix Adaptation

Evolution Strategy (CMAES) [165] for comparison. Like DGEP, both ALEP [56] and IFEP [57] use

only mutation for producing offspring. IFEP [57] has mixed, rather than switched, Cauchy and

Gaussian mutations in one algorithm. This algorithm generates two candidate offspring from

each parent: one by Cauchy mutation and one by Gaussian mutation. The better candidate is

then chosen by IFEP [57] as the offspring. ALEP [56], on the other hand, generates four

candidate offspring from each parent by Lévy mutation with four different distributions. It has

been shown that ALEP [56] and IFEP [57] perform better than either their non-adaptive

versions or the classical EP (CEP) [3]. IMGA [142], [143] uses multiple sub-populations

following the island model with periodic exchange of individuals between the islands according

to some predetermined migration policy. The isolated nature of the islands helps the

populations evolve separately which lowers gene flow and promotes population diversity.

RTS [158] is a crowding method that is somewhat different from the standard crowding and

usually produces better results than all other variants of crowding. DPGA [146] maintains a

reserve population in addition to the main population for promoting diversity. Both the

populations evolve through generations, but with completely different objectives. While the

main population evolves to optimize fitness value, the reserve population evolves with the

purpose of providing useful diversity around the best chromosomes of the main population. The

distance value between the two populations is mostly adapted for exploitations, but switched to
explorations when the main population gets trapped into local optima for several generations.

RCMA with XHC [160] executes explorative and exploitative operations separately and

combines them in one algorithm. It uses PBX crossover [160] and BGA mutation [81] for

exploration. RCMA employs a negative assortative mating strategy for selecting two parents to
perform crossover in order to introduce population diversity. RCMA with a specialized

crossover operator, XHC [160] has been shown to perform better than all other variants.

NSDE [163], [164] and LSRCMA [162] tries to balance between exploitations and explorations

by combining the benefits of exploitative local search or neighborhood search with their more

explorative component of differential evolution or memetic algorithm, respectively.
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4.5.1 DGEP on Standard Benchmark Functions
At first, a set of 30 standard benchmark functions, as introduced in section 2.17 and

summarized in Table 2.3, is used to evaluate and compare the performance of DGEP. Based on

their properties, the standard functions can be divided into three groups: the functions with no

local minima (f1–f9, Table 2.3), many local minima (f10–f18), and only a few local minima (f19–f30).

Further details on these benchmark functions with their analytical forms, characteristics and

figures can be found in the Appendix A.

For the evaluations of DGEP (i.e., Tables 4.1– 4.9), the population size was set to 50 and

the number of function evaluations (FEs) was set to 150,000 for the high-dimensional functions

f1−f18 and 10,000 for the low dimensional functions, f19−f30. These values are chosen to make a
fair comparison with the other works in comparison. The remaining parameters of DGEP are u

(maximum number of generations without fitness improvement before discarding a

chromosome), l (ratio of genotype distances to determine duplicates), |N| (number of neighbors

for each chromosome) and |A| (number of genes to be mutated by the DGM scheme). Except

with some extreme choice of values, the performance of DGEP is not very sensitive to these

parameters. For the results in Table 4.1, we have employed DGEP with four different ‘moderate’

settings of these parameter values — DGEP1 with u = 50, l = 0.01, |N| = 5 and |A| = 1, DGEP2 with

u = 30, l = 0.03, |N| = 10 and |A| = 3, DGEP3 with u = 70, l = 0.005, |N| = 4 and |A| = 5, DGEP4 with

u = 40, l = 0.01, |N| = 6 and |A| = 4. These values are quite arbitrary and meant not for optimum.

The performance of DGEP is not much sensitive to these parameter values, unless some extreme

choice of values. According to [214], CEP has been implemented for the same population size

and number of function evaluations as of DGEP.

Table 4.1 shows the mean best results of DGEP on the 30 standard benchmark functions.

DGEP has been employed with four different parameter settings, as denoted by DGEP1, DGEP2,

DGEP3 and DGEP4, and the parameter values are just as specified in the previous paragraph.

Each DGEP variant has made 50 different runs on each function and the mean of the best results

found over the 50 different runs are presented in Table 4.1. The following observations can

easily be made from the results in Table 4.1 and Figs. 4.4 and 4.5.

a) First, all four DGEP variants, each one with its different parameter settings, have

reached the sufficiently close to the global minimum (i.e., mean error = 0) for almost all the

functions (Table 4.1). This indicates the effectiveness of the proposed DGEP algorithm over the

wide and diverse range of its parameter values.
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b) Fig. 4.4 shows that the mean absolute error, achieved by each DGEP variant, is quite

low. However, among the four DGEP variants, the minimum magnitude of the mean absolute

error is achieved by DGEP1, so it will be simply referred as DGEP in all the subsequent

experiments of this chapter (Tables 4.2–4.11, Figs. 4.5–4.8). As Fig. 4.5 shows, DGEP (i.e., DGEP1)

has achieved nearly log-linear convergence and reached sufficiently close to the global

minimum, very consistently for all the functions in Fig. 4.5. Many EP and ES schemes fail to do

this [161], especially for the multimodal functions f10–f30. In comparison to CEP, the proposed

DGEP scheme shows faster convergence speed and better final solution quality for all the

functions (Fig. 4.5, Table 4.3).

c) The low standard deviation of the results in Table 4.1 by the DGEP variants indicates

that DGEP is very consistent and robust, across their 50 independent runs, for almost all the

functions. On average, the magnitude of the standard deviation is only around 27%, 33%, 30%

and 23% of the mean results from DGEP1, DGEP2, DGEP3 and DGEP4, respectively.

Table 4.1: Performance of the DGEP variants on the 30 standard benchmark functions, each
variant using a different setting of the parameter values. Results have been averaged over 50
independent runs. The best results are marked with boldface font, if not identical with the results
from the other algorithms.

No fmin
DGEP1 DGEP2 DGEP3 DGEP4

Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev

f1 0 5.42x10–8 1.48x10–8 2.46x10–7 1.36x10–7 8.16x10–8 6.77x10–9 3.32x10–9 9.40x10–10

f2 0 6.64x10–12 3.61x10–12 9.07x10–12 8.61x10–12 1.32x10–11 1.16x10–11 5.54x10–11 6.56x10–12

f3 0 1.06 0.32 3.16 0.56 2.39 0.44 4.80 1.78

f4 0 4.13x10–8 9.25x10–9 6.79x10–7 8.84x10–8 2.05x10–8 7.12x10–9 7.40x10–8 3.11x10–8

f5 0 2.48x10–4 1.33x10–4 6.24x10–4 2.97x10–4 4.54x10–4 1.05x10–4 2.71x10–4 1.53x10–4

f6 0 4.12x10–2 7.97x10–3 4.54x10–2 9.75x10–3 1.01x10–1 3.78x10–2 1.55x10–1 4.06x10–2

f7 0 1.28 0.76 3.19 0.84 1.25 0.48 2.85 1.08

f8 0 0 0 0 0 0 0 0 0

f9 0 1.94x10–12 8.23x10–13 6.58x10–13 9.76x10–14 3.10x10–12 7.67x10–13 2.99x10–12 6.03x10–13

f10 0 1.56x10–12 5.12x10–13 9.63x10–12 5.65x10–12 2.81x10–12 8.42x10–13 9.37x10–12 1.61x10–12

f11 0 2.85x10–5 4.12x10–6 9.35x10–6 1.88x10–6 8.62x10–7 3.15x10–7 4.40x10–6 1.56x10–6

f12 –12569.5 2.10 1.38 5.65 2.02 15.15 6.90 4.53 0.95

f13 0 2.47x10–16 6.83x10–17 7.73x10–17 3.05x10–17 4.60x10–17 8.24x10–18 8.04x10–18 1.32x10–18
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Table 4.1 (continued): Performance of DGEP variants on the 30 standard benchmark functions.

No fmin
DGEP1 DGEP2 DGEP3 DGEP4

Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev

f14 0 7.52x10–14 2.54x10–14 2.02x10–12 9.18x10–13 4.64x10–11 2.03x10–11 7.93x10–12 2.54x10–12

f15 0 9.53x10–13 2.50x10–13 7.82x10–11 4.46x10–11 7.58x10–12 3.11x10–12 6.50x10–13 2.11x10–13

f16 0 5.50x10–8 8.21x10–9 6.44x10–6 1.21x10–6 6.52x10–7 8.57x10–8 5.72x10–8 8.40x10–9

f17 0 3.32x10–12 1.94x10–13 2.65x10–10 1.80x10–10 8.82x10–11 4.94x10–11 7.71x10–12 7.99x10–13

f18 0 1.74x10–4 2.65x10–5 2.25x10–4 1.80x10–4 1.75x10–4 2.65x10–5 1.98x10–4 2.04x10–5

f19 1 0.02 0.01 0.05 0.03 0.05 0.03 0.04 0.02

f20 3.07x10–4 2.17x10–4 8.2x10–5 2.57x10–4 8.10x10–4 2.25x10–5 9.01x10–6 2.67x10–4 7.2x10–5

f21 –1.0316 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f22 0.398 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f23 –3.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f24 –3.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f25 –10.15 0.28 0.11 0.35 0.08 0.21 0.07 0.42 0.09

f26 –10.40 0.05 1.1x10–2 0.03 1.2x10–2 0.15 6.0x10–2 0.08 2.2x10–2

f27 –10.54 0.04 8.8x10–3 0.09 3.3x10–2 0.18 7.8x10–2 0.10 4.0x10–2

f28 0 0.38 9.3x10–2 0.45 1.2x10–1 0.39 1.4x10–1 0.50 1.9x10–1

f29 –9.66 0 0 0 0 0.01 2.8x10–3 0 0

f30 –1.4 0.18 5.5x10–2 0.23 4.2x10–2 0.16 7.0x10–2 0.33 1.1x10–1

Figure 4.4: The mean absolute error values of the DGEP
variants on the standard benchmark functions. All the DGEP
variants exhibit sufficiently small error values, with DGEP1

showing the least mean absolute error.
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Table 4.2 presents the results of DGEP along with three other algorithms — CEP [102],

ALEP [56] and IFEP [57]. The results of ALEP and IFEP are reported only for the 12 and 7

functions, as available from [56] and [57], respectively. The remaining missing results are

shown with a ‘–’ in Table 4.2. DGEP outperforms both ALEP and IFEP on almost all these

available functions, so we can just guess about somewhat similar performance on the rest of the

functions. The results of DGEP have been averaged over 50 independent runs, as has been done

Figure 4.5: Convergence characteristics of DGEP and CEP [102] on the unimodal
functions f1, f2, f7, multimodal high-dimensional functions f10, f13, f14, f17 and the
low-dimensional function f27. The vertical axis shows the function value, while the
horizontal axis shows the number of function evaluations.
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and reported for CEP [102], ALEP [56] and IFEP [57]. Fig. 4.5 shows the convergence

characteristics of DGEP and CEP [102] on several functions in terms of the mean best fitness

value. It is evident from the Fig. 4.5 that DGEP achieves nearly log-linear convergence until it has

reached sufficiently close to the global minimum. The evolutionary process progresses

smoothly, almost no where getting stuck at the intermediate local minima until it reaches very

close proximity of the global minimum, while many evolutionary algorithms (e.g., CEP) expend

significant amount of time being stuck at several intermediate local minima [161]. As obvious

from Table 4.2, the performance of DGEP is remarkably better than the other three algorithms.

The t-test confirms with at least 95% certainty that the improvement of DGEP is statistically

significant for most of the functions. DGEP is significantly better than IFEP [57] on most (i.e., six

out of seven) of the functions, while IFEP is better on the remaining one function only.

Furthermore, DGEP has outperformed both CEP (12 out of 12) and ALEP (11 out of 12) on all or

most of the test functions. Thus the overall performance of DGEP is much better than all three of

its counterparts. For more comparison between CEP and DGEP, we have re-implemented CEP,

using the same settings as mentioned in [3], and results are compared in Table 4.3, which shows

that DGEP significantly outperforms CEP on most (27 out of 30) of the functions, while both the

algorithms perform equally well on the remaining three.

Table 4.2: Comparison among DGEP, ALEP [56], IFEP [57] and CEP [102] on 12 standard
benchmark functions. Results have been averaged over 50 independent runs. The best
results are marked with boldface font. The ‘+’ indicates that DGEP is significantly better than
the compared algorithm with at least 95% certainty, while ‘≈’ means that the difference is not
statistically significant.

Function
Mean Error t-Test (DGEP vs.)

DGEP IFEP ALEP CEP IFEP ALEP

f1 5.42e–08 4.16e–05 6.32e–04 2.2e–04 + +

f3 4.13e–08 – 4.18e–02 5.0e–02 -N/A- +

f7 1.28 – 4.34e+01 6.17e+01 -N/A- +
e– e– e– e– -N/A-f10 1.56e–12 – 5.85e+00 8.9e+01 -N/A- +

f12 2.10 8.87e–02 1.00e+02 4.6e+03 – -N/A-

f13 2.47e–16 4.83e–03 1.90e–02 9.2e+00 + +

f14 7.52e–14 4.54e–02 2.40e–02 8.6e–02 + +

f17 3.32e–12 – 6.00e–06 1.76e+00 -N/A- +

f18 1.74e–04 – 9.80e–04 1.04e+00 -N/A- +
e– e– e– e–f25 0.28 3.69 0.61 3.29 + +

f26 0.05 3.30 0.10 2.13 + +

f27 0.04 2.75 0.01 1.45 + –
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Table 4.3: Comparison between DGEP and CEP [102] on 30 standard benchmark functions.
Results are averaged over 50 independent runs. Best results are marked with boldface font. The
‘+’ indicates that DGEP is significantly better than CEP with at least 95% certainty, while ‘≈’
means that the difference is not statistically significant.

No fmin
DGEP CEP t-Test

(DGEP vs. CEP)Mean Std Dev Mean Std Dev
f1 0 5.42e–08 1.48e–08 2.4e–04 5.9e–05 +

f2 0 6.64e–12 3.61e–12 2.6e–03 1.7e–04 +

f3 0 1.06 0.32 3.2 1.2 +

f4 0 4.13e–08 9.25e–09 5.0e–02 6.6e–02 +

f5 0 2.48e–04 1.33e–04 7.3e–02 3.1e–02 +

f6 0 4.12e–02 7.97e–03 5.0e–01 1.8e–01 +

f7 0 1.28 0.76 6.17 13.61 +

f8 0 0 0 577.76 1125.76 +

f9 0 1.94e–12 8.23e–13 1.8e–02 6.4e–03 +

f10 0 1.56e–12 5.12e–13 89.0 23.1 +

f11 0 2.85e–05 4.12e–06 5.83 1.60 +

f12 –12569.5 2.10 1.38 4.70e+03 1.3e+03 +

f13 0 2.47e–16 6.83e–17 9.2 2.8 +

f14 0 7.52e–14 2.54e–14 8.6e–02 1.2e–02 +

f15 0 9.53e–13 2.50e–13 5.0e–02 7.3e–03 +

f16 0 5.50e–08 8.21e–09 2.56 0.84 +

f17 0 3.32e–12 1.94e–13 1.76 2.4 +

f18 0 1.74e–04 2.65e–05 1.4 3.7 +

f19 1 0.02 0.01 1.66 1.19 +

f20 3.07e–04 1.17e–04 8.2e–05 4.7e–04 1.3e–04 +

f21 –1.0316 0.00 0.00 0.00 4.9e–07 ≈

f22 0.398 0.00 0.00 0.00 1.5e–07 ≈

f23 –3.86 0.00 0.00 0.00 1.4e–05 ≈

f24 –3.32 0.00 0.00 0.04 5.8e–04 +

f25 –10.15 0.28 0.11 3.29 2.67 +

f26 –10.40 0.05 1.1e–02 2.13 0.95 +

f27 –10.54 0.04 8.8e–03 1.45 0.72 +

f28 0 0.38 9.3e–02 2.42 0.82 +

f29 –9.66 0 0 0.53 0.18 +

f30 –1.4 0.18 5.5e–02 0.93 0.47 +
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Next, DGEP is compared with a number of representative evolutionary and swarm

intelligence algorithms — GA [11], DE [195], PSO [196] and ABC [11]. All these algorithms have

two parameters in common — the population size M and the total number of function

evaluations (FE), which are set as M = 50 and FE = 500,000 for all the functions in Table 4.4. The

other algorithm specific parameters and settings are as follows. For GA [11], binary coded

standard GA is used with fitness scaling, seeded selection, random selection, crossover,

mutation and elitism. The stochastic uniform sampling technique has been used as the selection

operator. The single point crossover operation with crossover rate = 0.8 and bit flip mutation

with mutation rate = 0.01 is used. Generation gap is set to 0.9 (i.e., 90% of the population is

replaced in each generation). For the next algorithm — DE [195], the scaling factor F and the

crossover rate CR are set to 0.5 and 0.9, respectively. For PSO [196], the cognitive component

 1 , social component  2 and the inertia weight w are set to 1.8, 1.8 and 0.6, respectively, as

suggested in [196]. For the next algorithm ABC [11], the control parameter limit is set as SN * D,

as recommended in [11]. Here, SN is the number of food sources or employed bees, which is set

to 25 (i.e., 2M ) and D is the dimensionality of the problem. Table 4.4 compares DGEP with

GA [11], DE [195], PSO [196] and ABC [11] on a total of 17 high dimensional standard

benchmark functions from f1–f30. The following points summarize the results.

GA vs. DGEP: DGEP performs significantly better than GA on all (i.e., 17 out of 17) the

functions in Table 4.4.

PSO vs. DGEP: On majority of the functions (13 out of 17), DGEP performs better than

PSO. For the remaining four functions, both the algorithms show similar performance.

DE vs. DGEP: The performance of DGEP is either better (i.e., 11 out of 17 functions) or at

least equally good (i.e., remaining six functions) on all the functions.

ABC vs. DGEP: For most of the functions (12 out of 17), ABC and DGEP show similar

performance. For the remaining five functions, DGEP performs better than ABC. Thus, the

overall performance of DGEP is better than the basic ABC algorithm.

An overall evaluation of the algorithms can be made by using their mean absolute error

over all the functions. To calculate the mean absolute errors, the total of the absolute errors

over all the functions is divided by the number of functions (i.e., 17 for the results in Table 4.4).

Fig. 4.6 shows that DGEP has the lowest mean absolute error, followed by the basic ABC

algorithm, but the remaining algorithms (i.e., GA, PSO and DE) exhibit much larger error values.
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Table 4.4: Comparison of DGEP with GA [11], DE [195], PSO [196] and ABC [11] on the
standard benchmark functions. The best results are marked with boldface font.

No. D fmin
Mean Error

GA PSO DE ABC DGEP

f1 30 0 1.1e+03 0 0 0 0

f2 30 0 11.02 0 0 0 0

f4 30 0 7.4e+03 0 0 0 0

f5 24 0 9.70 1.1e–04 2.2e–07 3.1e–03 8.4e–16

f6 30 0 1.2e+03 0.6666 0.6666 0 0

f7 30 0 1.9e+05 15.08 18.20 0.088 4.0e–02

f8 30 0 1.2e+03 0 0 0 0

f9 30 0 1.8e–01 1.2e–03 1.4e–03 3.00e–03 0
e– e– e– e–f10 30 0 52.92 43.97 11.72 0 0

f12 30 –12569.48 8.8e+02 5.7e+03 2.3e+03 0 0

f13 30 0 14.67 0.16 0 0 0

f14 30 0 10.63 0.017 0.0015 0 0

f17 30 0 13.38 0.021 0 0 0

f18 30 0 125.06 7.7e–03 2.2e–03 0 0
e– e– e– e–f28 10 0 29.57 1364.45 781.55 8.23 0.06

f29 10 –9.66015 0.16 5.65 0.069 0 0

f30 10 –1.4 0.76 1.39 0.35 0.97 0.11

Figure 4.6: Comparison among DGEP, GA [11], DE [195], PSO [196]
and ABC [11] based on their mean absolute errors on the standard
benchmark functions. DGEP exhibits the best performance, i.e.,
lowest mean absolute error value.
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The proposed system, DGEP is also compared with IMGA [142], [143], RTS [158] and

DPGA [146] on the multimodal functions, f10–f30 (Tables 4.5–4.7). The first nine functions, f10–f18

are high dimensional functions for which DGEP outperforms IMGA [142], [143] and RTS [158]

on five and four (out of six) functions respectively while they perform better only on the

remaining one or two functions. The remaining algorithm, DPGA [146] performs better than

DGEP on three functions, while DGEP outperforms it on the remaining three. For the low

dimensional multimodal functions f19-f30, DGEP always either outperforms all of IMGA [142],

[143], RTS [158] and DPGA [146] (on six functions) or shows similar performance (on the

remaining three), as shown by Tables 4.6–4.7. The summary (Table 4.7) shows that DGEP

outperforms all of IMGA [142], RTS [158] and DPGA [146] on the majority of these functions.

Table 4.5: Comparison among IMGA [142], [143], RTS [158], DPGA [146] and DGEP on the
high dimensional multimodal functions, f10–f18. Best results are marked with boldface font.

Function IMGA RTS DPGA DGEP
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f10 0.358 0.746 0 0 0 0 1.56x10–12 5.12 x 10–9

f12 –12008.1 284.9 –12443.9 142.4 –12550.5 43.9 –12567.4 0.18

f13 4.69x10–15 1.67x10−15 5.26x10–15 1.79x10−15 3.55x10–15 1.39x10–15 2.47x10–16 6.83x10–17

f14 3.54x10–3 7.73x10–3 2.07x10–3 5.31x10–3 1.28x10–3 3.31x10–3 7.52x10–14 2.54x10–14

f17 2.48x10–7 1.14x10–6 1.79x10–32 8.29x10–48 1.57x10–32 8.29x10–48 3.32x10–12 1.94 x 10–13

f18 5.97x10–29 3.48x10–28 4.20x10–4 1.55x10–3 1.39x10–32 2.96x10–33 1.24x10–4 2.65 x 10–5

Table 4.6: Comparison among IMGA [142], [143], DPGA [146], RTS [158], and DGEP on the low
dimensional multimodal functions, f19–f27. The best results by DGEP are marked with boldface
font, if not identical with results from other algorithms.

Function Gen
IMGA RTS DPGA DGEP

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f19 100 1.410 0.676 1.018 0.141 1.355 0.687 1.02 0.04

f20 4000 6.53x10–4 1.27x10-4 5.81x10–4 2.04x10-4 5.86x10–4 1.08x10-4 2.17x10–4 8.2 x 10–5

f21 100 –1.032 0 –1.032 0 –1.031 0 –1.032 0.00

f22 100 0.398 0 0.398 0 0.398 0 0.398 0.00

f23 100 –3.86 0 –3.86 0 –3.86 0 –3.86 0.00

f24 200 –3.32 0.033 –3.28 0.057 –3.28 0.053 –3.32 2.5x10–4

f25 100 –7.11 3.587 –9.14 2.543 –6.86 3.421 –9.87 0.12

f26 100 –9.35 2.278 –10.04 1.480 –8.27 2.2597 –10.27 0.08

f27 100 –9.27 2.760 –10.24 1.439 –9.10 2.052 –10.51 2.2 x 10–2
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Table 4.7: Comparison of DGEP with IMGA [142], RTS [158] and DPGA [146] based on
statistical t-Test on the results from the previous Tables 4.5–4.6. The ‘+’ symbol indicates that
DGEP is significantly better than its competitor with at least 95% certainty, while ‘≈’ means that
the difference is not statistically significant.

Function
t-Test

DGEP vs. IMGA DGEP vs. RTS DGEP vs. DPGA

f10 + – –
f12 + + +
f13 + + +
f14 + + +
f17 + – –
f18 – + –
f19 + ≈ +
f20 + + +
f21 ≈ ≈ ≈
f22 ≈ ≈ ≈
f23 ≈ ≈ ≈
f24 ≈ + +
f25 + + +
f26 + + +
f27 + + +

Table 4.8 compares DGEP against another algorithm — RCMA with XHC [160]. Both DGEP

and RCMA [160] are applied to six benchmark functions for 100,000 FEs and with

dimensionality=25, as suggested in [160]. Table 4.8 shows that RCMA with XHC [160]

outperforms DGEP on only one unimodal function f1, while DGEP outperforms RCMA [160] on

the unimodal functions f4, f7 and the multimodal functions f10, f13 and f14. Although we can’t

perform t-test for the lack of availability of the standard deviation of the results, it is almost

obvious from the magnitude of the results that the performance difference is statistically

significant for all the functions.

It would be interesting to investigate the performance of DGEP against a hybrid algorithm

that hybridizes machine learning techniques with techniques from EAs and SIAs. One such

approach is the comprehensive learning particle swarm optimizer (CLPSO) [69], a variant of the

particle swarm optimizer (PSO) [227]. CLPSO [69] uses a novel learning strategy in which all

other particles’ historical best information is used to update a particle’s velocity to move the

search process forward. It has demonstrated better performance than other variants of PSO for

wide range of complex functions. Since the number of FEs used by CLPSO [69] is 200,000, DGEP

is re-implemented for the same FEs. Table 4.9 presents results for DGEP and CLPSO [69] on

eight functions over 50 independent runs. DGEP performs better than CLPSO [69] on five (out of
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eight) functions, while CLPSO [69] outperforms DGEP on the remaining three only. The

performance differences are clearly significant for all the functions. Thus, the overall

performance of DGEP is better than its counterpart, CLPSO [69].

Table 4.8: Comparison of DGEP with RCMA-XHC [160] on six benchmark functions with
dimensions=25. Best results are marked with boldface font. The ‘+’, ‘≈’ and ‘–’ indicate that
DGEP is significantly better, similar and worse, respectively than RCMA-XHC [160].

Function
Mean Error t-Test

DGEP RCMA DGEP vs. RCMA

f1 1.26e–11 6.5e–101 –
f4 1.05e–15 3.81e–07 +
f7 1.83e–01 2.2e+00 +
f10 1.17e–14 1.4e+00 +
f13 7.89e–12 7.9e–01 +
f14 9.23e–15 1.3e–02 +

Table 4.9: Comparison between DGEP and CLPSO [69] on eight standard benchmark functions.
Best results are marked with boldface font. The ‘+’, ‘≈’ and ‘–’ indicate that DGEP is
significantly better, similar and worse, respectively than its counterpart, CLPSO [69].

Function
Mean Error ± Std Dev t-Test

DGEP CLPSO DGEP vs. CLPSO

f1 2.86e–10 ± 6.81e–11 4.46e–14 ± 1.73e–14 –

f7 0.45 ± 0.063 2.10e+01 ± 2.98e+00 +

f10 5.73e–14 ± 2.55e–14 4.85e–10 ± 3.63e–10 +

f11 9.37e–12 ± 3.50e–12 4.36e–10 ± 2.44e–10 +

f12 6.56e–13 ± 3.08e–13 0.00e+00 –

f13 2.56e–15 ± 8.44e–16 4.32e–14 ± 2.55e–14 +

f14 9.14e–16 ± 5.27e–16 4.56e–03 ± 4.81e–03 +

f16 9.02e–10 ± 6.78e–10 0.00e+00 –

4.5.2 DGEP on CEC2005 Benchmark Functions
DGEP is also evaluated on a new set of benchmark functions introduced in the special session on

real-parameter optimization at the CEC2005 [76]. A brief overview of the CEC2005 benchmark

functions is presented in the previous section 2.17 (Table 2.4). More details on each function

can be found in the Appendix A. An interested reader can find the complete procedure to

compute each of the CEC2005 functions along with the necessary constants, matrices, data files,

characteristics and sample plots in the technical paper [76].
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To evaluate and compare the performance of DGEP, the dimension of all these functions is
set to 30 and the FEs are set to be 3.0e+05. This setup is for a fair comparison with some other

existing algorithms, e.g., LSRCMA [162], NSDE [43], [163] and CMAES [165]. The mean error

values of 50 independent runs for DGEP, LSRCMA [162], NSDE [43], [163] and CMAES [165] are

presented in Tables 4.10–4.11. Results indicate that the performance of DGEP is quite

comparable to and often better than the other three algorithms. We have summarized our

observations on their performance comparison in the following few points.

 The first five functions (F1–F5) are the only unimodal ones in the CEC2005 suite. Over
these five functions, DGEP outperforms its competitors (i.e., LSRCMA, NSDE and
CMAES) on three, three and two functions, while they perform better on the remaining
two, two and three functions, respectively. Also, the mean absolute errors of the
results from DGEP on both the non-composite functions F1–F14 and the hybrid
composite functions F15–F25 are significantly smaller than all of LSRCMA, NSDE and
CMAES, as has been shown in Fig. 4.8. This indicates that the overall performance of
DGEP is better than all its competitors in the comparison, i.e., the LSRCMA [162],
NSDE [163], [164] and CMAES [165].

Table 4.10: Comparison of DGEP, LSRCMA [162], NSDE [163], [164] and CMAES [165] on the
benchmark functions F1–F14 of the CEC2005 suite [76]. Results have been averaged over 50
independent runs. The best results are marked with boldface font.

Function
Mean Error

DGEP LSRCMA NSDE CMAES

F1 7.56e–08 9.36e–09 0.00e+00 5.28e–09

F2 3.98e–10 8.71e–06 5.62e–08 6.93e–09

F3 2.24e+01 8.77e+05 6.40e+05 5.18e–09

F4 2.76e+03 3.96e+01 9.02e+00 9.26e+07

F5 5.11e+00 2.18e+03 1.56e+03 8.30e–09

F6 2.19e+01 4.95e+01 2.45e+01 6.31e–09

F7 7.23e–06 1.32e–02 1.18e–02 6.48e–09

F8 2.00e+01 2.07e+01 2.09e+01 2.00e+01

F9 1.87e–04 6.80e–01 7.96e–02 2.91e+02

F10 2.08e+00 9.05e+01 4.29e+01 5.63e+02

F11 5.15e+00 3.11e+01 1.41e+01 1.52e+01

F12 3.09e+02 4.39e+03 6.59e+03 1.32e+04

F13 1.03e–01 3.96e+00 1.62e+00 2.32e+00

F14 5.13e+00 1.25e+01 1.31e+01 1.40e+01
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Table 4.11: Comparison of DGEP, LSRCMA [162], NSDE [163], [164] and CMAES [165] on the
hybrid composite functions F15–F25 of the CEC2005 suite [76]. Results have been averaged
over 50 independent runs. The best results are marked with boldface font.

Function
DGEP LSRCMA NSDE CMAES

Mean Error Mean Error Mean Error Mean Error

F15 4.88e+02 3.56e+02 3.64e+02 2.16e+02

F16 3.72e+01 3.26e+02 6.90e+01 5.84e+01

F17 1.62e+02 2.79e+02 1.01e+02 1.07e+03

F18 5.49e+02 8.77e+02 9.04e+02 8.90e+02

F19 8.25e+02 8.80e+02 9.04e+02 9.03e+02

F20 7.91e+02 8.79e+02 9.04e+02 8.89e+02

F21 5.00e+02 5.00e+02 5.00e+02 4.85e+02

F22 8.41e+02 9.08e+02 8.89e+02 8.71e+02

F23 5.22e+02 5.59e+02 5.34e+02 5.35e+02

F24 2.00e+02 2.00e+02 2.00e+02 1.41e+03

F25 2.05e+02 2.11e+02 2.00e+02 6.91e+02

 For the relatively more complex multimodal functions F6–F14, the superiority of

DGEP is clearly visible. Not only does DGEP show the smallest error on F6–F15, but

also it outperforms the other algorithms on most (six out of nine) of these functions.

 Functions F15–F25 are the most complex group of functions (hybrid composite

functions) in the CEC2005 suite. The performance of all four algorithms is somewhat

compromised on F15–F25, as shown by Table 4.11. However, DGEP still shows the

best performance (i.e., outperforms the other three algorithms) on as many as seven

(out of 11) hybrid composite functions, while its competitors (LSRCMA, NSDE and

Figure 4.8: Comparison among DGEP, LSRCMA [162], NSDE [163] and CMAES [165],
based on the mean absolute errors on the CEC2005 benchmark functions F1-F14 (on
the left) and the hybrid composition functions F15-F25 (on the right).
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CMAES) perform best only on one, three and two of these functions, respectively.

Besides, DGEP show the lowest mean absolute error on F15–F25 (Fig. 4.8), which

clearly indicates the superiority of DGEP over the other three algorithms.

4.6 Discussion on Results of DGEP
As observed in Tables 4.1–4.3, only three functions — f3, f7 and f12 seem to present some

difficulty to all the EP-based algorithms (e.g., CEP [102], ALEP [56] and IFEP [57]) in our study.

These functions are the Schwefel 2.21, Generalized Rosenbrock and the Generalized Schwefel’s

2.26 functions. Although the generalized Rosenbrock function has been regarded as a unimodal

function, there is evidence [228] suggesting that it contains several minima in high dimensional

instances. The global optimum resides inside a long, narrow, parabolic shaped flat valley.

Finding the valley is not difficult, but pinpointing the global optimum in an almost flat region is
extremely difficult. For both of the Schwefel’s functions (f3 and f12), the fitness landscapes have

predominant flat and semi-flat search regions with narrow global basin. Searching for a narrow

global basin in a flat search space with no useful gradient direction essentially turns into

searching for a needle in a haystack. This is why all the algorithms (Tables 4.2, 4.3) face some

difficulty, more or less, to locate the global minimum and may prematurely converge to some

local minima for these functions. However, with sufficiently large number of function

evaluations (e.g., 500,000 for the results in Table 4.4), DGEP successfully locates the global

minimum and reaches very close proximity of the minimum value (e.g., mean error ≈ 0 for f3, f7
and f12 in Table 4.4 with FE = 500,000).

In Tables 4.6–4.7, DGEP frequently outperforms all of IMGA [142], [143], RTS [158] and

DPGA [146] on the low dimensional multimodal functions f19–f27. However, DGEP receives

relatively stronger competition from DPGA [146] on the high dimensional multimodal functions,

f10–f18. The key difference between these two families of functions provides us an important

insight. Functions f10–f18 have hundreds of local optima, even with just two or three dimensions,

as illustrated in Fig. 4.9 with the 3D surface plot of the 2D generalized Rastrigin function f10. The

number of local optima increases exponentially with the number of dimensions. With the high

dimensionality = 30, the fitness landscape is occupied with exponentially many (i.e., very large

number of) local minima. As a result, the distances among neighboring local peaks are usually

quite small and escaping from a locally optimal point does not demand too high explorative

capacity from the genetic search operators. On the other hand, functions f19–f27 dimensionality ≤

10, so their fitness landscapes have relatively fewer number of local optima. This often makes

the peaks and valleys of their fitness landscapes to be well separated. Once the entire

population converges to one or more isolated, strong locally optimal peaks, it requires relatively
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stronger explorative capacity to break free from the locally optimum regions. Both DPGA [146]

and IMGA [142], [143] maintain only two sub-populations, so it becomes difficult for them to

represent all the distant local or global optimal points. RTS [158] performs relatively better on

these functions, compared to DPGA [146] and IMGA [142], because its selection mechanism

avoids crowding of chromosomes within the same optima and fosters well separated diverse

chromosomes that evolve to the different optimal peaks in parallel. Since the number of optima

for these functions is usually smaller than the population size, RTS [158] can keep track of all

the optima and thus shows overall better performance than both of IMGA [142], [143] and

DPGA [146]. However, DGEP performs still better on f19–f27 outperforming all of IMGA [142],

[143], RTS [158] and DPGA [146] because both its mutation and selection operators are well

suited for such optimization scenario. After random initialization, the population of DGEP

usually spans across the well separated local optima, which ensures a sufficiently large step size

for the DGM mutation scheme, while its selection operator of GDEP discards similar

chromosomes and fosters diverse ones that evolve towards different local peaks until the global

optimum is found.

Figure 4.9: 3D surface plot of the 2-Dimensional Generalized Rastrigin Function

For the high dimensional multimodal functions f10, f17 and f18, DPGA [146] shows excellent

strength in fine-tuning by minimizing to as low as 1e-32 (e.g., results for f17, f18, Table 4.5), which

is better than the proposed DGEP scheme. Although DGEP locates the global optima for all these

functions, it cannot perform such exploitations and fine tuning of the solutions. Once DGEP

locates the global optima, the entire population reaches its close proximity and all the

chromosomes become somewhat similar to each other. As a result, the selection operator of

DGEP eliminates the nearly duplicate chromosomes and replaces them with randomly placed

chromosomes to ensure more diversity and better exploration capacity, which is the key for

locating the global optimum. This is the reason that makes it possible for DGEP to locate the
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global optima for all the multimodal functions, f10–f30, while all three of IMGA [142], [143],

RTS [158] and DPGA [146] miss the global optima on several occasions, especially for the

functions f25–f27. However, this very strength of locating global optima by more explorations and

more diversity does not allow DGEP to be completely exploitative, which is the only reason why

its performance becomes worse than the extensive fine tuning of DPGA [146] on the three

multimodal functions: f10, f17 and f18. However, a simple fine tuning scheme after the execution of

DGEP may further improve its results that may outperform both of DPGA [146] and RTS [158]

on all of these three functions.

Along the results of the Tables 4.1–4.11, DGEP has outperformed many other algorithms,

including CEP [102], ALEP [56], IFEP [57], GA [11], DE [195], PSO [196], CLPSO [69], ABC [105],

IMGA [142], DPGA [146], RTS [158], RCMA-XHC [160], NSDE [163], [164], LSRCMA [162] and

CMAES [165]. But why the performance of DGEP is often better than these other algorithms?

There reasons might be as follows. Firstly, DGEP emphasizes both global explorations and local

exploitations using the population diversity information. The utilization of the distance of

dissimilar or similar chromosomes in mutation clearly reflects such emphasis. CEP [102],

IFEP [57] and ALEP [56] do not separate exploration and exploitation operations; rather,

IFEP [57] and ALEP [56] primarily emphasize producing good offspring. The emphasis on only

good solutions may reduce the population diversity resulting in poor overall performance.

IMGA [142], [143] and RTS [158] alter the selection mechanism in such a way that it promotes

diversity and allows better explorations, but at the cost of reduced exploitations and slower

convergence speed. RCMA with XHC [160] performs exploration and exploitation separately by

using PBX crossover [160] with BGA mutation [81] for exploration and a specialized crossover,

XHC [160] for exploitation. The problem of using different operators lies in ensuring their

synergistic effect [212]. DPGA [146] adapts the distance between its two populations in such a
way that the reserve population mostly exerts exploitative pressure on the main population

until the solutions get trapped into the local optima for several generations. A more balanced

approach between exploitations and explorations might further improve its results. CLPSO [69]

is a learning approach that does not employ exploration and exploitation operations separately.

Although it utilizes the best information of all particles to update the velocity of any one particle,

it may still trap into local optima due to many inherent problems of a learning scheme, e.g.,

difficulty in picking appropriate weight values to make a weighted combination of the old

experiences and the new observations. CMAES [165] maintains and continuously adapts a

covariance matrix in order to maximize the likelihood of producing better offspring which

makes the algorithm more exploitative rather than explorative in nature. The remaining two

algorithms, NSDE [163], [164] and LSRCMA [162] make attempts to combine the benefits of
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neighborhood search and local search techniques with differential evolution and RCMA

respectively. However, the depth of local or neighborhood search on a chromosome is decided

based on the fitness of the chromosome, which makes both these algorithms more exploitative

than explorative. Lack of balance between exploitations and explorations tends to decrease

population diversity and leads to premature convergence.

Secondly, mutation in DGEP does not produce offspring blindly, but rather utilizes the

distance to other chromosomes in order to produce an offspring using an appropriate step size.

This mutation produces an offspring in such a way that it either facilitates the exploration of

wider regions of the search space or performs the exploitation of existing solutions for

immediate fitness improvement. The mutation in CEP [102], ALEP [56], IFEP [57],

IMGA [142], [143] and RTS [158] does not use any information from other chromosomes and

produces offspring blindly. The consequence of blind mutation is that the offspring produced

may be dominated by chromosomes in the current population. RCMA with XHC [160] also uses

blind mutation and crossover for exploration. All of the algorithms — DPGA [146], NSDE [163],

LSRCMA [162] and CMAES [165] make use of population information either to guide the depth

of genetic operations on each chromosome or to adapt step size values for increasing the

likelihood of successful mutations which help them achieve better results than CEP [102],

ALEP [56] and IFEP [57], and sometimes competitive results to DGEP.

Thirdly, DGEP uses selection strategies at two different levels in order to select offspring

for the next generation. During each mutation, it selects an offspring to choose between

exploration and exploitation. After mutating all the chromosomes, it performs a fitness based

selection to pick the best chromosomes for the next generation. This two-level selection

strategy is more likely to perform a better balance between exploitative and explorative

features of the evolutionary search than the more exploitative fitness based schemes of

IMGA [142], [143], RTS [158], DPGA [146], NSDE [163], [164], LSRCMA [162] and CMAES [165].

Also, the diversity preservation schemes of DGEP ensure adequate amount of population

diversity throughout the evolution to assist its diversity guided mutation scheme. In case of

CEP [102], ALEP [56] and IFEP [57], a tournament based selection scheme is adopted where for

each parent or offspring, q opponents are chosen uniformly at random for pair wise fitness

comparison from all the parents and offspring. The value of q affects the population diversity. A
large value of q corresponds to high selection pressure, so the probability of the fittest

chromosome being selected multiple times becomes high, resulting in loss of population

diversity. RCMA with XHC [160] allows only better offspring for both exploration and

exploitation, thus it tends to reduce population diversity, which is the main reason for

premature convergence.
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The incorporation of few simple ideas may further improve the results of DGEP, especially

on the more complex rotated and hybrid composite functions. First, a simple random value of K

is used for the diversity guided mutation (Fig. 4.1). An adaptive approach that can dynamically

change K for explorations or exploitations during the course of evolution may be more

appropriate than a simple random strategy. Second, DGEP showed remarkable explorative

performance to locate the global optimum, but its exploitative capacity is not as good as some

other existing approaches, such as DPGA [146]. It would be interesting to observe if DGEP could

be hybridized with other algorithms, e.g., DPGA [146] or similar algorithms having better fine

tuning capacity. Third, the mutation step size is guided by considering the distance information

of only two neighboring or distant chromosomes. It could be better if more sophisticated

distance information that involves more chromosomes, e.g., the relative density of

chromosomes across the search space or the characteristics of the fitness landscape around the

current point could be considered to extract better guidance for the mutation step size. Fourth,

DGEP has been applied on continuous optimization problems only. It would be interesting to

study how well DGEP performs for other problems, especially the real world ones. The

incorporation of these ideas could be a topic for our future study.

4.7 Conclusion and Future Research Directions
This chapter introduces the novel diversity based algorithm — DGEP with the diversity guided

DGM mutation scheme as its central component. The performance of DGEP and DGM mutations

are evaluated in sections 4.5, 4.6, and later in sections 8.4, 8.8, where the proposed schemes are

compared with several other existing research works on a wide range of low and high

dimensional, unimodal and multimodal, regular, rotated and hybrid composite benchmark

functions. Empirical results demonstrate the effectiveness of DGEP and the DGM mutation

scheme by frequently outperforming the most other algorithms on most of the problems.

However, the incorporation of a few simple ideas may further improve the results of DGEP,

especially on the rotated and hybrid composite functions. First, a simple random value of K is

used for the diversity guided mutation (Fig. 4.1). An adaptive approach that can dynamically

change K for explorations or exploitations during the course of evolution may be more

appropriate than a simple random strategy. Second, DGEP showed remarkable explorative

performance to locate the global optimum, but its exploitative capacity is not as good as some

other existing approaches, such as DPGA [146]. It would be interesting to observe if DGEP could

be hybridized with other algorithms, e.g., DPGA [146] or similar algorithms having better fine
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tuning capacity. Third, the mutation step size is guided by considering the distance information

of only two neighboring or distant chromosomes. It could be better if more sophisticated

distance information that involves more chromosomes, e.g., the relative density of

chromosomes across the search space or the characteristics of the fitness landscape around the

current point could be considered to extract better guidance for the mutation step size. Fourth,

DGEP has been applied on continuous optimization problems only. It would be interesting to

study how well DGEP performs for other problems, especially the real world ones. The

incorporation of these ideas could be a topic for our future study.
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Chapter5
Artificial Bee Colony Algorithm with

Self-Adaptive Mutation

5.1 Introduction
This chapter introduces a novel and improved ABC-variant — the ABC with Self-Adaptive
Mutation (ABC-SAM) that makes attempts to dynamically adapt the mutation step size with
which the artificial bees (i.e., candidate solutions) explore the search space. Mutation with small
step size produces small variations of the existing candidate solutions which is better for
exploitations, while large mutation steps are likely to produce large variations that facilitate
more explorations of the search space. ABC-SAM fosters both large and small mutation steps as
well as adaptively controls the mutation step size based on their effectiveness to produce better
candidate solutions from the existing ones. We have evaluated and compared ABC-SAM on as
many as 55 benchmark problems on continuous optimization, chosen from two different
benchmark suites. The evaluation results are compared with the basic ABC algorithm and
several other recent evolutionary and swarm intelligence algorithms, which show that the
proposed self-adaptation scheme of ABC-SAM can facilitate more effective mutations and
perform better optimizations than most other relevant EAs and SIAs.

5.2 Organization of the chapter
The rest of this chapter is organized as follows. Section 5.3 presents the improved
ABC-variant — ABC-SAM with its pseudocode, explains how it significantly differs from the
basic ABC algorithm and makes a brief analysis on how it improves the performance over the
basic ABC algorithm. Section 5.4 presents the performance evaluation of ABC-SAM on two
different benchmark suites, presents the parameter settings of ABC-SAM and some other
algorithms in comparison, compares their results on the benchmark functions and makes
comments on the results and comparisons. Finally, section 5.5 draws conclusions with a
summary of this chapter and leaves a few suggestions for further research with ABC-SAM.
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5.3 The Proposed Algorithm— ABC-SAM
The basic ABC algorithm drives its search using two operators — the selection and the mutation

operators. The mutation operator is the only source of variations and search space explorations

in ABC, while the greedy fitness based selection operator chooses between offspring and parent

candidate solutions based on which one has the higher fitness value. The mutation operation of

the basic ABC algorithm is described by formula (2.6), which is quite plain and simple — it picks

a random parameter xij of the current candidate solution xi and perturbs it using the information

of another randomly picked candidate solution (i.e., xk in (2.6)). This basic mutation operation

treats every candidate solution xi across the population equally, without considering its

individual explorative/exploitative requirements. Besides, the explorative/exploitative

requirements of a candidate solution usually does not remain the same along the course of the

optimization process; rather it changes dynamically and often in an unpredicted way. To

address this issue, this chapter introduces ABC-SAM — an improved variant of the basic ABC

algorithm that tries to customize the degree of explorations and exploitations, separately for

each candidate solution of the population, by introducing a separate scaling factor SFi for every

candidate solution xi of the population. As the explorative/exploitative requirements of xi evolve

over time, ABC-SAM periodically adjusts the value of SFi, separately for each xi, by examining

whether xi needs more explorations or more exploitations at the current stage of optimization.

ABC-SAM is different from the basic ABC algorithm in two important ways. First, ABC-SAM

alters the basic perturbation formula (2.6) which is used to produce a new trial solution vi from

an existing candidate solution xi in the steps 4 and 8 (the pseudocode in Fig. 2.9) of the basic

ABC algorithm. Second, ABC-SAM executes an ‘adaptation cycle’, periodically after every K

iterations (cycles), in order to automatically adapt the scaling factors, i.e., the SFi values that

ABC-SAM maintains for every candidate solution xi. Both these improvements work together to

induce more effective mutations for producing better trial solutions from the existing ones. The

scaling factor (i.e., the SFi value) that ABC-SAM maintains and adapts for every candidate

solution xi of the population helps the mutation process to perform better exploitations and

explorations around xi. ABC-SAM alters the basic mutation formula (2.6) by including the SFi

term as a magnifier of the difference term, i.e., the  kj ijx x term in (2.6). Thus the SFi value now

tries either to enlarge or to shrink the magnitude of the variation on xi in order to facilitate

either more explorations or more exploitations. The mutation operation (i.e., eq. (2.6), in steps 4

and 8 of the pseudocode of ABC in Fig. 2.9) now gets replaced by the following eq. (5.1).

 iij ij ij ijkjSFv = x + * x x*φ (5.1)
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All SFi values are initiated to 1.0 during the beginning of the search process. As the search

progresses and the candidate solutions proceed across several peaks, valleys and plateaus of the

fitness landscape, the SFi values are automatically adjusted by the periodically invoked

adaptation cycles in order to take care of the current explorative/exploitative requirements of

each candidate solution xi. Small values (less than unity) for SFi would shrink the product term

SFi * Φij in (5.1) to facilitate small mutation steps, thus ensuring more exploitations around the

existing solutions. On the contrary, large enough values for SFi would expand the product term

SFi * Φij which is more likely to induce large variations on xi that might be helpful for the search

process to quickly get rid of any local optimum around xi, thus to perform more explorations of

the search space without being trapped around any of the locally optimal points. Whether

exploitation or exploration is better for xi at the current search stage might not be apparent or

could not be predicted beforehand. This is why the adaptation cycle executes periodically after

each K cycles, performs mutations with different range of SFi values and promotes only those SFi
values that produce more successful mutations. This process dynamically adapts each scaling

factor value SFi that is more suitable for the current optimization scenario around each

candidate solution xi.

Fig. 5.1 presents the pseudocode of the mutation step size adaptation cycle. In this cycle,

ABC-SAM adapts the scaling factor values of the ‘elite’ bees. The elite group consists of some top

portion, say p%, of the bee population that exhibit maximum fitness values. In our

implementation and in all the evaluations of ABC-SAM (i.e., Tables 5.1–5.10, Figs. 5.5–5.8) we

have used p=10. The adaptation cycle generates two uniform random values u1 and u2 from the

ranges [-α, 0) and (0, α] respectively, for each scaling factor parameter SFi maintained for each

elite bee xi. Now, for each xi, three different offspring solutions are generated by using (5.1) —

one by employing the existing value of SFi, and the other two by multiplying SFi with 2u1 and 2u2.

Since u1<0 and u2>0, the scaling factor 2u1*SFi would generate small steps using (5.1) for better

exploitations, while the scaling factor 2u2 *SFi would produce large step sizes for better search

space explorations. ABC-SAM evaluates the fitness of all three offspring solutions produced by

the three different scaling factors (addressed as SFi,1, SFi,2 and SFi,3 in Fig. 5.1) and then accepts

the best one of them as xi in the next cycle. Also, it updates the scaling factor value SFi to the

weighted average of its current value (SFi) and the scaling factor value, say, SFi,k, that has

produced the best offspring by using the following eq. (5.2).

 = 1 –i i i ,kSF   β* SF + β * SF (5.2)

Here, the constants β and (1–β), with 0 < β < 1, control the relative weight between the past and

present knowledge of ABC-SAM on the appropriate scaling factor value SFi for each candidate

solution xi. A small value of β (i.e., β 0) ensures fast learning (and fast forgetting, too), which
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makes ABC-SAM to mostly rely on the newly found scaling factor values (i.e., SFi,k in Fig. 5.1).

However, this may lead to oscillations and instability in the learning behaviour of ABC-SAM. A

large value of β (i.e., β 1.0) ensures stable, but possibly slow learning behavior. After some

initial experiments, we have used β = 0.9 in all the experiments, which has led to stable learning

behaviour and sufficiently good final solution quality for almost all the benchmark functions, as

demonstrated by the results (Tables 5.1–5.10) in the evaluations section.

As we have observed during the experimentations, the SFi values mostly decrease with the

on-going iterations (cycles), because exploitative small mutation steps usually have better

chance to succeed than explorative large steps. This gradual decrease in SFi values shrinks the

mutation steps for each candidate solution xi, which eventually might make the search process

get trapped around the locally optimal points. To avoid this, ABC-SAM adopts two simple, yet

effective techniques. First, SFi is never allowed to drop below a minimum acceptable value (i.e.,

SFmin). Second, if a particular SFi drops to SFmin and is stuck there for the last τ1 cycles without

any fitness improvement of the solution xi, then ABC-SAM manually resets SFi to 1.0 and keeps it
constant at this value for the next τ2 generations. This resetting of the scaling factors to

relatively higher values for τ2 consecutive generations promotes more explorations with larger

mutation steps and helps get rid of the locally optimal point whenever any solution gets

entrapped around the local optima with prolonged fitness stagnation. Fig. 5.2 details this

procedure of maintaining the scaling factor values with necessary resets.

Figure 5.1: Pseudocode for the mutation step size adaptation cycle of ABC-SAM

Algorithm 5.1: Procedure AdaptationCycle( )
begin
for each i ELITE_POP do
{

u1 = Uniform_Random ~ [–α, 0)
u2 = Uniform_Random ~ (0, α]
SFi,1 = SFi
SFi,2 = 2u1 *SFi
SFi,3 = 2u2 *SFi
for k = 1 to 3 do
{

vi,k = vi computed using (5.1) with SFi=SFi,k
fitness[k] = Compute_Fitness (vi,k)

}
Find k such that fitness[k] is the maximum over the array fitness[1]…[3]
SFi = β * SFi + (1–β) * SFi,k

}
end
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Figure 5.2: Pseudocode for maintaining the scaling factor values with necessary resets

Figure 5.3: Distributions that facilitate explorations (on the left) and exploitations (right)

Figure 5.4: The exponential 2x vs. x plot of previous Fig. 5.3, but now with logarithmic Y-axis.
More than 30% times the random values it produces are ≤ 10 1, while more than another 30%
times the random values are ≥ 102. Such a wide range of values, produced with significant
probability, ensure better search space explorations.

Algorithm 5.2: Procedure UpdateSFi( )
SFmin: smallest allowed value for the scaling factors
PrevUpdated: the last iteration (cycle) when SFi was updated
t: current iteration (cycle)

begin
if t < PrevUpdated + τ1 then

Update SFi using the pseudocode in Fig. 5.1
SFi = max (SFmin, SFi)
if SFi> SFmin then

PrevUpdated = t
endif

elseif t < PrevUpdated + τ1 + τ2

SFi = 1.0
else

PrevUpdated = t
endif

end

30% 30%
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Fig. 5.3 shows x vs. 2x and x vs. 2-|x| graphs. These two distributions produce the scaling

factor values for explorations and exploitations respectively. Exponential distributions can

produce wide range of values as scaling factors facilitating from very small to very large steps

ensuring wide range of both exploitations and explorations. Fig. 5.4 reproduces the same graph

of x vs. 2x, but now with logarithmic Y-axis. It shows that, with x ∈ [0, 10], more than 30% times

the scaling factor value produced for explorations by this distribution is ≤ 10, while the value is
100 or even higher for more than another 30% of times. This ensures wide range of SFi values to

be produced with significant probability, which is necessary for excellent explorations of the

search space. Similar analysis of the x vs. 2–|x| graph indicates that this distribution can also

facilitate wide range of exploitative step sizes for the existing candidate solutions.

5.4 Evaluation of ABC-SAM on Benchmark Functions
In this section, ABC-SAM is evaluated using two different suites of benchmark problems on

numerical function optimization and compared with some other existing EAs and ABC-variants.

First, ABC-SAM is evaluated on the standard benchmark suite (Table 2.3, section 2.17),

consisting of 30 benchmark functions. Later in this section (i.e., subsection 5.4.4), ABC-SAM is

also evaluated and compared on the recently introduced CEC2005 benchmark suite (briefly

presented in the Table 2.4, section 2.17), which includes 25 more complex and challenging

functions. Both the benchmark suites are further explained in the Appendix A and in [76].

5.4.1 Results of ABC-SAM on Standard Benchmark Functions
The standard benchmark suite functions are divided into three categories — the unimodal

functions (f1–f9), the high dimensional multimodal functions (f10–f18) and the remaining

multimodal functions with low dimensionality (f19–f30). Tables 5.1–5.2 present the results of

ABC-SAM on all 30 benchmark functions and compare the results with the basic ABC algorithm.

ABC-SAM is tested with four different settings of its parameter K (i.e., the adaptation period) —

K=2, 5, 10 and 50. All the variants have made 50 independent runs on each function and the

mean and standard deviation of the best found solutions from the different runs are presented

in Tables 5.1–5.2. The parameters of ABC-SAM that are inherited from the basic ABC algorithm

are the population size SN, maximum cycle number MCN and limit. The other parameters that

are specific to ABC-SAM are τ1, τ2, α, β and SFmin. For the functions f1–f18 with D=30, we used

SN=100, MCN=1000 and limit=100 for both ABC and ABC-SAM. For the larger variants with
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D=60 (Table 5.2), we used SN=100, MCN=2000 and limit=200. For the low dimensional

functions f19–f30, we used SN=100, MCN=100 and limit=10D for both ABC and ABC-SAM. After

some preliminary testing, the other parameters of ABC-SAM are set as: τ1=40, τ2=20,

SFmin=10-8, α=10 and β=0.9 for all the evaluations (i.e., Tables 5.1–5.10) in this chapter. These

values are chosen after some initial evaluations and not meant for optimum. The results in

Tables 5.1–5.2 can be summarized in the following few points.

 Results of ABC-SAM variants (Table 5.1): For most (25 out of 30) of the functions, the

ABC-SAM variants reach very close proximity of the global minimum. The few functions

for which the ABC-SAM variants face some difficulty are — f3, f7, f12, f28 and f30. However,

the performance of the basic ABC algorithm is mostly (four out of five functions) worse

than the ABC-SAM variants on these five functions (except f7). This indicates that

ABC-SAM has actually improved the performance of ABC on these functions. Besides, for

almost all the functions, the magnitude of standard deviations of the results of ABC-SAM

are quite low compared to the mean values, which indicates a high degree of consistency

and robustness of all the ABC-SAM variants for most of these benchmark functions.

 ABC vs. ABC-SAM variants (Table 5.2): Out of the 18 high dimensional functions f1–f18,

the ABC-SAM variants perform better that ABC on 14 functions, show similar

performance on one (f8), while ABC performs better on the remaining three functions

only (f7, f17, f18). These improvements are always statistically significant, as measured by

t-test with 95% confidence interval. For the 12 low dimensional functions f19–f20, ABC

and ABC-SAM often perform equally well (seven out of the 12 functions), though the

ABC-SAM variants perform better on the remaining five functions. Thus, the overall

performance of the ABC-SAM variants is far better than the basic ABC algorithm.

 The ‘+’, ‘–’ and ‘≈’ symbols at the bottom rows (Table 5.2) count the number of functions

where ABC-SAM performs significantly better, worse or similar, respectively compared

to the basic ABC algorithm. Out of the 30 standard benchmark functions, ABC-SAM

performs significantly better than ABC on 19 functions, shows similar performance on

eight, while ABC has managed to perform better only on three functions.

 Fig. 5.5 compares the overall performance of ABC and the ABC-SAM variants by

comparing their mean absolute error values over the 30 standard benchmark functions.

ABC-SAM with K=10 shows the best performance (i.e., minimum mean absolute error).



129

Table 5.1: Performance of four different variants of ABC-SAM on the 30 standard benchmark
functions, each variant using a different value of K. Results have been averaged over 50
independent runs. The best result for each function is marked with boldface font, if not identical
with the results from the other variants.

No fmin
ABC-SAM(K=2) ABC-SAM(K=5) ABC-SAM(K=10) ABC-SAM(K=50)
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f1 0 6.15e–12 2.14e–12 1.61e–14 3.80e–14 4.18e–14 5.37e–15 7.57e–12 8.44e–13

f2 0 7.19e–07 4.42e–07 9.76e–08 7.58e–08 2.47e–08 2.35e–09 8.54e–07 5.66e–07

f3 0 2.15e+01 3.53 2.13e+01 2.04 1.69e+01 1.43 3.40e+01 5.59

f4 0 6.20e–09 3.56e–09 8.16e–13 1.78e–13 3.95e–12 1.05e–12 8.32e–11 5.90e–11

f5 0 8.37e–01 9.56e–02 2.50e–01 4.63e–02 9.24e–01 2.08e–01 4.09e+00 1.64e+00

f6 0 1.85e–03 5.12e–04 6.41e–02 9.91e–03 2.16e–03 6.37e–04 3.26e–03 9.58e–04

f7 0 2.87e+01 4.11 2.52e+01 4.24 2.28e+01 3.75 3.14e+01 6.23
f8 0 0 0 0 0 0 0 0 0
f9 0 3.35e–12 7.07e–13 6.30e–15 2.55e–15 3.66e–16 1.44e–17 1.23e–13 7.63e–14

f10 0 8.45e–15 3.04e–15 4.14e–15 7.47e–16 1.26e–16 2.11e–17 8.85e–15 3.40e–15

f11 0 9.29e–09 4.12e–09 6.86e–10 2.35e–10 4.60e–10 8.85e–11 8.85e–09 4.92e–09

f12 –12569.5 –11905.20 1.42e+02 –12332.78 7.50e+01 –12416.19 4.02e+01 –12084.23 1.21e+02

f13 0 8.28e–07 3.27e–07 1.58e–08 7.89e–09 9.26e–08 1.89e–08 9.55e–06 4.82e–06

f14 0 8.66e–08 3.47e–08 9.32e–10 3.36e–10 8.36e–10 5.08e–11 1.84e–09 7.11e–10

f15 0 2.63e–06 6.80e–07 1.46e–09 8.80e–10 2.22e–08 3.93e–09 4.40e–05 8.93e–06

f16 0 6.02e–01 1.95e–01 6.82e–03 2.24e–04 5.78e–04 6.31e–05 4.12e+00 1.88e+00

f17 0 2.68e–10 8.39e–11 1.37e–10 6.30e–11 9.78e–12 3.89e–12 8.74e–10 3.56e–10

f18 0 1.91e–03 7.53e–04 6.35e–04 3.28e–04 3.06e–02 8.59e–03 1.08e–04 4.52e–05

f19 1 1.04 0.04 1.03 0.01 1.03 0.02 1.04 0.02

f20 3.07e–04 3.45e–04 2.79e–06 3.67e–04 8.22e–06 4.32e–04 1.09e–05 5.20e–04 6.89e–5

f21 –1.0316 –1.0316 0.00 –1.0316 0.00 –1.0316 0.00 –1.0316 0.00

f22 0.398 0.398 0.00 0.398 0.00 0.398 0.00 0.398 0.00

f23 –3.86 –3.86 0.00 –3.86 0.00 –3.86 0.00 –3.86 0.00

f24 –3.32 –3.32 0.00 –3.32 0.00 –3.32 0.00 –3.32 0.00

f25 –10.15 –9.85 0.11 –10.15 1.87e–08 –10.14 3.68e–07 –10.01 0.06

f26 –10.40 –10.40 5.15e–03 –10.40 6.98e–03 –10.40 3.94e–03 –10.40 8.10e–03

f27 –10.54 –10.54 3.36e–07 –10.54 8.48e–06 –10.54 6.77e–07 –10.54 9.63e–06

f28 0 1.06e+01 3.50 7.36 2.48 4.02 0.39 8.56 2.12

f29 –9.66 –9.66015 0 –9.66015 0 –9.66015 0 –9.66015 0

f30 –1.4 –0.86 0.08 –0.93 0.05 –1.04 0.06 –0.80 0.11
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Table 5.2: Performance comparison of ABC and ABC-SAM on the 30 standard benchmark
functions. Results have been averaged over 50 independent runs. The best result for each
function is marked with boldface font. A ‘+’ or ‘–’ in the t-test of ABC-SAM versus ABC indicate
that ABC-SAM is significantly better or worse, respectively than ABC with 95% certainty, while a
‘≈’ means that the difference is not statistically significant.

No fmin D G
ABC ABC-SAM (K=10) t-Test

(ABC-SAM vs.
ABC)Mean Std. Dev. Mean Std. Dev.

f1 0
30 1000 2.45e–11 7.72e–12 4.18e–14 5.37e–15

+
60 2000 3.75e–10 2.01e–11 6.09e–13 7.24e–14

f2 0
30 1000 5.05e–07 1.74e–07 2.47e–08 2.35e–09

+
60 2000 5.58e–06 1.17e–06 5.06e–07 2.97e–07

f3 0
30 1000 4.18e+01 5.90 1.69e+01 1.43

+
60 2000 7.31e+01 6.88 3.10e+01 5.12

f4 0
30 1000 8.32e–10 9.75e–11 3.95e–12 5.77e–13

+
60 2000 4.50e–09 5.64e–10 7.54e–11 2.14e–11

f5 0 24 1000 6.61e+00 1.07e+00 9.24e–01 2.08e–01 +

f6 0
30 1000 6.67e–01 1.21e–08 2.16e–03 6.37e–04

+
60 2000 6.66e–01 1.05e–07 7.76e–02 1.63e–02

f7 0
30 1000 4.25e–01 1.18e–01 2.28e+01 3.75

–
60 2000 2.02e–01 6.92e–02 4.96e+01 7.80

f8 0
30 1000 0 0 0 0

≈
60 2000 0 0 0 0

f9 0
30 1000 8.60e–13 8.32e–13 3.66e–16 1.44e–17

+
60 2000 9.31e–12 7.17e–12 4.76e–15 5.32e–16

f10 0
30 1000 1.72e–14 1.56e–14 1.26e–16 2.11e–17

+
60 2000 2.84e–13 8.01e–14 8.55e–15 3.15e–16

f11 0
30 1000 2.33e–08 7.49e–09 4.60e–10 8.85e–11

+
60 2000 6.64e–07 1.51e–07 6.80e–09 8.77e–10

f12
–12569.5 30 1000 –11346.79 2.77e+02 –12416.19 4.02e+01

+
–25138.9 60 2000 –22530.82 4.08e+02 –23805.93 2.84e+02

f13 0
30 1000 2.93e–06 3.38e–07 9.26e–08 1.89e–08

+
60 2000 4.65e–06 1.07e–06 2.07e–08 3.55e–08

f14 0
30 1000 4.55e–08 6.54e–09 8.36e–10 5.08e–11

+
60 2000 8.01e–07 2.64e–07 1.56e–10 6.90e–11

f15 0
30 1000 3.34e–04 3.76e–05 2.22e–08 3.93e–09

+
60 2000 7.49e–03 9.58e–04 1.17e–08 2.35e–09
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Table 5.2(continued): Performance of ABC and ABC-SAM on 30 standard benchmark functions

No fmin D G
ABC ABC-SAM (K=10) t-Test

(ABC-SAM vs.
ABC)Mean Std. Dev. Mean Std. Dev.

f16 0
30 1000 3.36e–01 9.58e–02 5.78e–04 6.31e–05

+
60 2000 8.99e–01 3.09e–01 9.20e–03 4.03e–03

f17 0
30 1000 5.47e–12 2.09e–13 9.78e–12 3.89e–12

–
60 2000 7.47e–12 2.74e–12 1.32e–11 5.15e–11

f18 0
30 1000 2.63e–03 1.89e–04 3.06e–02 8.59e–03

–
60 2000 2.66e–03 7.90e–04 5.11e–02 7.39e–03

f19 1 2 100 1.04 0.04 1.03 0.03 ≈
f20 3.07e–04 4 100 5.98e–04 7.22e–05 4.32e–04 1.09e–05 +

f21 –1.0316 2 100 –1.0316 0 –1.0316 0 ≈
f22 0.398 2 100 0.398 7.12e–08 0.398 2.75e–07 ≈
f23 –3.86 3 100 –3.86 7.09e–07 –3.86 1.54e–08 ≈

f24 –3.32 6 100 –3.32 4.74e–13 –3.32 6.26e–14 ≈

f25 –10.15 4 100 –9.61 0.14 –10.14 3.68e–07 +

f26 –10.40 4 100 –10.40 8.61e–03 –10.40 7.94e–03 ≈
f27 –10.54 4 100 –10.52 0.01 –10.54 6.77e–07 +

f28 0 10 100 13.77 3.80 4.02 0.39 +

f29 -9.66015 10 100 -9.66015 0 -9.66015 0 ≈

f30 -1.4 10 100 –0.78 0.09 –1.04 0.06 +

Summary
(t-Test)

+ 19
– 3
≈ 8

Figure 5.5: The mean absolute error values of ABC and ABC-SAM variants on the standard
benchmark functions. All four ABC-SAM variants show smaller error values than the basic ABC
algorithm. ABC-SAM with K=10 shows the best performance (minimum mean absolute error).
This indicates that the performance of ABC-SAM may deteriorate with too frequent (e.g., K=2)
or too delayed (K=50) occurrence of the adaptation cycles, while the moderate values of K (e.g.,
K=5 or K=10) usually yield better performance (i.e., smaller error values).
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Fig. 5.6 presents the convergence graphs of ABC-SAM (with K=10) and the basic ABC
algorithm for six 30-D functions — three of them are unimodal (f1, f4, f8) and the remaining three
are multimodal (f12, f13, f16). For all six functions, ABC-SAM shows better convergence
characteristics than the basic ABC algorithm. For example, consider the functions f12, f13 and f16.
For f12, the basic ABC algorithm prematurely converges to some intermediate locally minimal
point with fitness stagnation, while ABC-SAM reaches very close vicinity of the global minimum.
Also, ABC shows unacceptably slow convergence speed for f13 and f16 during the final cycles of
its execution, while ABC-SAM shows no sign of fitness stagnation and maintains sufficient
convergence speed, even during its final cycles. The plots for ABC for the functions f1, f4 and f16

show several flat and semi-flat segments, indicating short-length fitness stagnations of the basic
ABC algorithm, while ABC-SAM does not show any noticeable flat segments due to fitness
stagnations for these functions. Previously (Table 5.2) we have considered the performance of
ABC and ABC-SAM to be equal on f8, but Fig. 5.6 now reveals that ABC-SAM actually reaches the
global minimum of f8 much earlier than the basic ABC algorithm. Thus, the overall convergence
characteristics of ABC-SAM are better than the basic ABC algorithm.

Figure 5.6: Convergence characteristics of ABC and ABC-SAM on three unimodal
(f1, f4, f8) and three multimodal (f12, f13, f16) functions. The vertical axis is the
function value, while the horizontal axis is the number of cycles elapsed.
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5.4.2 Comparison of ABC-SAMwith Other EAs and SIAs
In this section, ABC-SAM is compared with some basic and representative evolutionary and

swarm intelligence algorithms, such as GA [11], DE [195], PSO [196] and the basic

ABC algorithm [11]. Similar to ABC and ABC-SAM, mutation is the only perturbation operator in
evolutionary programming (EP) based algorithms; so we also include a number of EP-based

algorithms in the comparison, such as Classical EP [3], Improved Fast EP (IFEP) [57] and EP

with Adaptive Lévy Mutation (ALEP) [56]. All these algorithms have two parameters in

common — the population size SN and the total number of function evaluations (FE). For the

next comparison (Table 5.3), they are set as SN=50 and FE=500,000.  The other parameters

specific to GA [11], DE [195], PSO [196], ABC [11] and ABC-SAM are specified below.

GA, DE and PSO Settings: The particular GA scheme we employed uses binary coded

standard GA [11], single point uniform crossover (with crossover rate = 0.80), bit flip mutation

(with mutation rate = 0.01), fitness scaling, selection by stochastic uniform sampling technique

and elitism with generation gap = 0.9, as suggested in [11]. The particular version of PSO [196]

that we used has three more parameters — the cognitive component  1 , social component  2 ,

and the inertia weight w, which are set to 1.8, 1.8 and 0.6, respectively, as suggested in [196].

The standard DE algorithm has two specific parameters — the scaling factor F and the crossover

rate CR, which we have set as F=0.5 and CR=0.9, as recommended in [195].

ABC and ABC-SAM Settings: The common parameters of ABC and ABC-SAM are set as —

population size SN=50, number of function evaluations FE=500,000 and limit=SN*D, as

recommended in [11]. Both employed and onlooker bees are set to 50% of the colony size SN.

The number of scout bees is set to 1. Number of elite bees is set to eight, and with this setting,

the number of fitness evaluations in an adaptation cycle is not large (i.e., only three evaluations

per elite bee), which is close to (actually, smaller than) half of the fitness evaluations in a regular

cycle. The adaptation cycle is invoked in every K=10 cycles. After some initial evaluations, other

parameters of ABC-SAM are set as — τ1=40, τ2=20, SFmin=10-8, α=10 and β=0.9.

Table 5.3 compares ABC-SAM with GA [11], DE [195], PSO [196] and the basic ABC

algorithm [11] on a total of 17 standard benchmark functions, most of which have

dimensionality D=30, (the only exceptions are f28–f30, each one having D=10). The results are

summarized in the following few points.

GA vs. ABC-SAM: On all (i.e., 17 out of 17) of the functions, ABC-SAM performs

significantly better than GA.

PSO vs. ABC-SAM: On most functions (i.e., 13 out of 17), the performance of ABC-SAM is

better than PSO. On the remaining four functions, both of them perform equally well.
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DE vs. ABC-SAM: ABC-SAM outperforms DE on as many as nine out of the 17 functions,

shows similar performance on six, while DE performs better only on the remaining two

functions (f5 and f30).

ABC vs. ABC-SAM: Since both the algorithms are allowed very large number of function

evaluations (i.e., 500,000), both of them precisely locate and reach the global optimum for most

of the functions (i.e., 12 out of 17 functions). However, for the remaining five functions,

ABC-SAM outperform ABC on four, while ABC performs better only on the remaining one

function (i.e., f7). Thus, the overall performance of ABC-SAM is better than basic ABC algorithm.

Fig. 5.7 makes an overall evaluation of the algorithms by comparing their mean absolute

error values on these 17 standard benchmark functions. It shows that both ABC and ABC-SAM

have much smaller error values in comparison to all of their counterparts — GA [11], DE [195]

and PSO [196]. The best overall performance (i.e., minimum mean absolute error value) is

demonstrated by ABC-SAM (error value=2.48e–01), followed by the basic ABC algorithm (error

value=5.46e--01), while the rest of the algorithms show much larger error values.

Table 5.3: Comparison of ABC-SAM with GA [11], DE [195], PSO [196] and ABC [11] on the
standard benchmark functions. The best result for each function is marked with boldface font.

No. D fmin
Mean Error

GA PSO DE ABC ABC-SAM

f1 30 0 1.1e+03 0 0 0 0

f2 30 0 11.02 0 0 0 0

f4 30 0 7.4e+03 0 0 0 0

f5 24 0 9.70 1.1e–04 2.2e–07 3.1e–03 6.83e–05

f6 30 0 1.2e+03 0.6666 0.6666 0 0

f7 30 0 1.9e+05 15.08 18.20 0.088 3.10e+00

f8 30 0 1.2e+03 0 0 0 0

f9 30 0 1.8e–01 1.2e–03 1.4e–03 3.00e–03 9.65e–21
e– e– e– e–f10 30 0 52.92 43.97 11.72 0 0

f12 30 –12569.48 8.8e+02 5.7e+03 2.3e+03 0 0

f13 30 0 14.67 0.16 0 0 0

f14 30 0 10.63 0.017 0.0015 0 0

f17 30 0 13.38 0.021 0 0 0

f18 30 0 125.06 7.7e–03 2.2e–03 0 0
e– e– e– e–f28 10 0 29.57 1364.45 781.55 8.23 0.48

f29 10 –9.66015 0.16 5.65 0.069 0 0

f30 10 –1.4 0.76 1.39 0.35 0.97 0.65
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Figure 5.7: Comparison of ABC-SAM with GA [11], DE [195],
PSO [196] and the basic ABC [11] algorithm based on their mean
absolute error values on the standard benchmark functions.
ABC-SAM shows the overall best performance, i.e., the lowest
mean absolute error value.

Next, ABC-SAM is compared with some EP-based algorithms, including CEP [102],

ALEP [56] and IFEP [57]. Like ABC-SAM, each of these EP-based algorithms is entirely based on

the mutation operator for perturbing the candidate solutions. For example, CEP [102] employs

the Gaussian distribution for producing the step sizes for mutations, IFEP [57] tries to increase

the degree of explorations by mixing a more explorative distribution (i.e., the Cauchy

distribution) with the Gaussian distribution, ALEP [56] tries to adaptively control the degree of

explorations and exploitations by adapting the parameters of the Lévy distribution. During

mutations, IFEP [57] tries to balance explorations with exploitations by generating two

candidate solutions from each parent solution — one by using the Gaussian distribution,

another by Cauchy distribution, then chooses the better candidate solution to enter into the

population. ALEP [56], on the other hand, generates four offspring solutions from each parent

solution by using Lévy distribution with four different parameter settings. It has been shown

that ALEP [56] and IFEP [57] performed better than either their non-adaptive versions or the

CEP [102]. For comparison (Table 5.4), ABC-SAM and CEP [102] have been run for the same

population size and the same number of FEs as of ALEP [56] and IFEP [57]. The results of

ALEP [56] and IFEP [57] and are directly taken from the corresponding papers. Since their

results are not available for all the functions of the standard benchmark suite, Table 5.4

compares them on the available 12 functions only. Results show that ABC-SAM outperforms all

its competitors on most of the available functions.
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Table 5.4: Comparison of ABC-SAM with ALEP [56], IFEP [57] and CEP [102] on the standard
benchmark functions. The best result for each function is marked with boldface font. The ‘+’
indicates that ABC-SAM is significantly better than the compared algorithm with at least 95%
level of certainty, while ‘≈’ means that the difference is not statistically significant.

Function
Mean Error t-Test (ABC-SAM vs.)

ABC-SAM IFEP ALEP CEP IFEP ALEP

f1 6.12e–20 4.16e–05 6.32e–04 9.1e–04 + +
f3 8.58e–01 – 4.28e–02 2.1e+02 -N/A- –
f7 2.65 – 4.34e+01 8.6e+01 -N/A- +

e– e– e– e– -N/A-f10 4.15e–18 – 5.85e+00 4.3e+01 -N/A- +
f12 3.06e+01 8.87e–02 – 4.0e+01 – -N/A-

f13 4.34e–09 4.83e–03 1.90e–02 1.5e+00 + +
f14 9.50e–10 4.53e–02 2.40e–02 8.7e–02 + +
f17 6.67e–12 – 6.00e–06 4.8e–01 -N/A- +
f18 3.75e–02 – 9.80e–05 8.9e–02 -N/A- –

e– e– e– e–f25 0.01 4.08 1.03 2.85 + +
f26 0.00 3.41 0.26 0.78 + +
f27 0.01 1.71 0.62 0.85 + +

5.4.3 Comparison of ABC-SAMwith Existing ABC-Variants
In the Tables 5.5–5.8, ABC-SAM is compared with a few other recent and state-of-the-art

improved ABC-variants, including cooperative ABC (CABC) [60], Gbest-guided ABC (GABC) [64],

ABC with diversity strategy (DABC) [61] and Chaotic ABC (ChABC) [62]. At first, ABC-SAM is

compared with CABC [60], which is an explorative and cooperative ABC variant. CABC [60] is

introduced in two different variants — CABC_S and CABC_H. The first variant — CABC_S

enforces more search space explorations by decomposing the search space and employing

different bee colonies for the different subspaces. The other variant — CABC_H follows an

execution model that repeatedly alternates between explorative CABC_S and exploitative ABC.

For a fair comparison, ABC-SAM is implemented with the same settings, as in [60]. Table 5.5

shows that ABC-SAM outperforms CABC_S on three out of the six functions, shows similar

performance on one (f7), while CABC_S performs better on the remaining two. The other variant

CABC_H outperforms ABC-SAM on three (out of six) functions, while ABC-SAM performs better

on the remaining three. Thus the overall performance of ABC-SAM is at least comparable to the

cooperative CABC counterparts. The next algorithm GABC [64] alters the basic perturbation

formula (2.6) of ABC by incorporating the information about the global best solution found so

far in order to increase the convergence speed of the algorithm. For a fair comparison with

GABC [64], ABC-SAM is run with the same settings of GABC [64], i.e., with SN=80 and

MCN=5000, as suggested in [64]. Table 5.6 shows that ABC-SAM outperforms GABC [64] on
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most (four out of five) of the functions. The reason might be that GABC [64] becomes too much

exploitative by using the best-so-far solution during its perturbation operations. More

exploitations may improve the convergence speed and the final solution quality for some

unimodal and low dimensional functions, such as f7 in Table 5.6, but fails for most of the high

dimensional functions, e.g., four out of the five functions with D=30 in Table 5.6.

Table 5.5: Comparison of ABC-SAM with CABC_S [60] and CABC_H [60]. Boldface font marks
the best performance for each function.

Function
CABC_S CABC_H ABC-SAM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 3.30e–19 2.00e-19 5.92e–18 3.56e–18 8.17e–21 2.68e–21

f7 6.33e+00 7.68e+00 4.80e–01 8.55e–01 6.75e+00 2.24e+00

f10 0 0 0 0 4.83e–21 6.09e–22

f12 1.30e–04 5.21e–06 1.27e–04 0 5.58e+00 1.08e+00

f13 1.83e–14 9.86e–15 8.35e–15 4.13e–15 2.59–16 7.98e–17

f14 4.42e–02 2.99e–02 7.96e–03 9.06e–03 9.12e–12 4.16e-12

+ 3 3

– 2 3

≈ 1 0

Table 5.6: Comparison between ABC-SAM and GABC [64] based on the final solution quality.
The best result for each function is marked with boldface font.

Function D
GABC (C=1.0) GABC (C=1.5) ABC-SAM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1
30 4.31e–16 7.49e–17 4.17e–16 7.36e–17 6.02e–93 2.92e–93

60 1.43e–15 1.43e–16 1.43e–15 1.37e–16 3.28e–28 6.50e–29

f7
2 3.93e–04 4.45e–04 1.68e–04 1.45e–04 9.47e–03 4.31e–03

3 2.63e–03 2.11e–03 2.65e–03 2.22e–03 1.05e–01 8.19e–02

f10

30 9.47e–15 2.15e–14 1.32e–14 2.44e–14 4.33e–105 7.67e–106

60 4.16e–13 1.77e–13 3.52e–13 1.24e–13 2.74e–36 8.73e–37

f13

30 3.31e–14 2.90e–15 3.21e–14 3.25e–15 1.36e–24 6.03e–25

60 1.04e–13 1.07e–14 1.00e–13 6.08e–15 5.63e–27 1.08e–27

f14

30 8.88e–17 8.45e–17 2.96e–17 4.99e–17 9.51e–22 4.60e–23

60 9.47e–16 7.84e–16 7.54e–17 4.12e–16 7.52e–20 3.62e–20

+ 4 4

– 1 1

≈ 0 0
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Table 5.7: Comparison between ABC-SAM and DABC [61]. The best result for each function is
marked with boldface font; if not both the algorithms produce identical results.

Function D
DABC ABC-SAM

Mean Std. Dev. Mean Std. Dev.

f1
10 2.01e–17 5.63e–17 0 0

30 2.01e–16 2.85e–17 2.98e–46 5.78e–47

f7
10 2.73e–03 7.04e–03 6.26e–02 2.40e–02

30 1.42e–02 2.53e–02 2.34e–01 9.63e–02

f10
10 0 0 0 0

30 0 0 0 0

f14
10 0 0 0 0

30 2.59e–16 1.22e–16 7.85e–20 3.42e-20

+ 3

– 2

≈ 3

Table 5.8: Comparison between ABC-SAM and ChABC [62] based on the final solution quality.
The best result for each function is marked with boldface font.

Function D
ChABC ABC-SAM

Mean Std. Dev. Mean Std. Dev.

f1 30 2.99e–16 3.54e–17 8.28e–74 3.82e–74

f7 30 6.33e–02 8.96e–02 6.72e–02 5.40e–02

f10 30 0 0 5.90e–89 2.06e–89

f12 30 3.81e–04 2.07e–04 2.30e–02 6.48e–03

f13 30 2.93e–14 2.99e–15 5.76e–21 1.41e–22

f14 30 2.70e–16 6.20e–17 3.96e–18 1.51e–18

+ 3

– 2

≈ 1

Next, ABC-SAM is compared with two more explorative and improved ABC-variants — the

DABC [61] (Table 5.7) and the ChABC [62] (Table 5.8). DABC [61] replaces the basic

perturbation equation (2.6) using two different equations — one explorative and the other one

exploitative. In every cycle, DABC [61] measures the existing diversity d of the population of

candidate solutions. If d falls below some predefined threshold divlow, then the explorative

perturbation variant is employed. Otherwise, the exploitative variant is used for perturbations.
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In Table 5.7, ABC-SAM is compared with DABC [61] on four functions, with parameter values of

SN=20, MCN=5000 and limit=100, as suggested in [61]. Results indicate that ABC-SAM

performs better than DABC on two out of the four functions (f1 and f14), shows similar

performance on one (i.e., f10), while DABC [61] performs better only on one function (i.e., f7). The

reason why DABC [61] can’t perform as well as ABC-SAM may be that DABC [61] is entirely

based on measuring the population diversity, but there is no accurate and universally accepted

metric of diversity that can correctly measure the maturity of the optimization process. Besides,

the simple strategy of using a fixed value of divlow to decide on explorations/exploitations may

cause repeated oscillations between explorations and exploitations, reducing the convergence

speed and compromising the final solution quality of DABC [61]. The other explorative

ABC-variant — ChABC [62] tries to perform more search space explorations by using chaotic

(instead of random) search behavior during perturbations. Chaotic dynamics are reported to

provide a simple mechanism to escape from local minima [62]. Chaotic dynamics can be

produced in many ways, e.g., using the logistic equations (4)–(7) in [62]. For a fair comparison,

both ABC-SAM and ChABC [62] are executed for 5000 cycles with population size of 70 and

limit=200, as suggested in [62]. Results (Table 5.8) show that ABC-SAM outperforms

ChABC [62] on three out of the six functions, shows similar performance on one (f7), while

ChABC [62] performs better on the remaining two functions. Thus the overall performance of

ABC-SAM is better than ChABC [62]. The reason may be that, unlike ABC-SAM, ChABC [62] does

not consider the individual exploitative/explorative requirements of each candidate solution

separately; rather ChABC [62] employs the same chaotic strategy uniformly for all the candidate

solutions across the population, completely ignoring their individual explorative/exploitative

needs, which may not be a good strategy to deal with complex optimization tasks.

5.4.4 ABC-SAM on CEC2005 Benchmark Functions
ABC-SAM is also evaluated using the recently introduced CEC2005 benchmark suite [76], which

is introduced in the special session on real parameter optimization at the IEEE 2005 Congress

on Evolutionary Computation (CEC-2005), held on 2-4 September 2005 at Edinburgh, UK. The

CEC2005 benchmark suite consists of 25 more complex and challenging functions, briefly

introduced previously in the Table 2.4, section 2.17. A more detailed description can be found in
the Appendix A and in [76].

Using the CEC2005 benchmark suite, ABC-SAM is tested and compared with a few other

evolutionary and swarm intelligence algorithms, such as the basic ABC algorithm [11], the

self-adaptive differential evolution (SADE) [230], the dynamic multi-swarm PSO with local

search (DMS-PSO) [231] and the PSO with recombination by dynamic linkage discovery

(PSO-RDL) [232]. SADE [230] is an improved DE variant that uses a learning strategy over its

past successes and failures to produce better trial solutions from the existing ones by gradually
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self-adapting the values of some control parameters of the standard DE algorithm.

DMS-PSO [231] is an improved and more explorative PSO variant that tries to improve both the

degree of explorations (by employing multiple dynamic swarms, instead of a single swarm) and

the intensity of exploitations (by increasing local search operations using a quasi-Newton

method). PSO-RDL [232] puts efforts to discover the linkages among the variables and to

identify important building blocks present in the good quality solutions, then tries to produce

better trial solutions using the good building blocks and the linkage information. All these

algorithms have been evaluated on the CEC2005 functions with dimensionality D=10 and

FE = 100,000. The other common parameters of ABC and ABC-SAM are the colony size SN and

limit, which are set as SN=20 and limit=200. The remaining parameters of ABC-SAM are set

as — τ1=40, τ2=20, SFmin=10-8, α=10 and β=0.9. The results of SADE [230], DMS-PSO [231] and

PSO-RDL [232] are obtained directly from the corresponding papers. Tables 5.9–5.10 present

their mean errors over 25 independent runs on each function. The results can be summarized in

following few points.

 Out of the 14 functions in Table 5.9 (i.e., non-composite functions F1‒F14), ABC-SAM

becomes the best performer on four functions (F2, F4, F10 and F14), outperforming all

other algorithms on these functions. SADE performs slightly better, by becoming the

best performer on five functions, while the other competitors show similar or worse

performance — ABC, PSO-RDL and DMS-PSO become the best performer only on one,

one and four functions, respectively.

 For the more complex hybrid composition functions F15‒F25 (Table 5.10), ABC-SAM

show the best performance on as many as five (out of 11) functions, while DMS-PSO,

PSO-RDL, SADE and ABC show the best performance only on two, zero, two and two

functions, respectively.

 To compare ABC-SAM with the basic ABC algorithm, it is remarkable that ABC-SAM has

improved the results of ABC for as many as 18 out of the 25 functions. This clearly

indicates the effectiveness of the more explorative and self-adaptive design of ABC-SAM,

especially for these more complex optimization tasks.

 As Fig. 5.8 demonstrates, ABC-SAM shows the minimum mean absolute error on the

hybrid composite functions F15–F25, outperforming all other algorithms in comparison.

For the non-hybrid functions F1–F14, the error value of ABC-SAM is much smaller than

the errors of both of ABC and PSO-RDL, but worse than DMS-PSO and SADE.

 Summarizing all the points above, we can conclude that the overall performance of

ABC-SAM is at least comparable to and often better that all of its counterparts in this

comparison on the CEC2005 benchmark functions.
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Table 5.9: Comparison of ABC-SAM with DMS-PSO [231], PSO-RDL [232], SADE [230] and
ABC [11] on the non-composite functions F1‒F14 of the CEC2005 benchmark suite [76]. The
best result for each function is marked with boldface font.

Function DMS-PSO PSO-RDL SADE ABC ABC-SAM

F1 0.00e+00 2.50e–14 0.00e+00 4.89e–17 3.73e–21

F2 1.30e–13 1.77e–13 1.05e–13 4.81e–14 7.03e–16

F3 7.01e–09 9.6e–02 1.67e–05 2.50e+03 7.80e+01

F4 1.8e–03 2.57e–07 1.42e–05 1.50e–16 6.55e–18

F5 1.16e–06 2.09e–07 1.23e–02 5.82e+01 4.72e+00

F6 6.89e–08 9.57e–01 1.20e–08 3.31e+00 5.61e–02

F7 4.52e–02 5.73e–02 1.99e–02 2.52e–01 3.13e+00

F8 2.00e+01 2.00e+01 2.00e+01 2.03e+01 2.03e+01

F9 0.00e+00 1.25e+01 0.00e+00 4.87e–17 8.58e–22

F10 3.62e+00 3.86e+01 4.97e+00 2.22e+01 3.11e+00

F11 4.62e+00 5.58e+00 4.89e+00 5.46e+00 9.27e+00

F12 2.40e+00 1.31e+02 4.50e–07 9.85e+01 4.43e–01

F13 3.69e–01 8.87e–01 2.20e–01 2.96e–02 7.09e–01

F14 2.36e+00 3.78e+00 2.92e+00 3.41e+00 2.23e+00

Table 5.10: Comparison of ABC-SAM with DMS-PSO [231], PSO-RDL [232], SADE [230] and
ABC [11] on the hybrid composition functions F15‒F25 of the CEC2005 benchmark suite [76].
The best result for each function is marked with boldface font.

Function DMS-PSO PSO-RDL SADE ABC ABC-SAM

F15 4.85e+00 2.71e+02 3.20e+01 1.53e+01 4.46e+00

F16 9.48e+01 2.22e+02 1.01e+02 1.75e+02 8.20e+01

F17 1.10e+02 2.22e+02 1.14e+02 1.96e+02 2.13e+02

F18 7.61e+02 1.02e+03 7.19e+02 4.46e+02 4.32e+02

F19 7.14e+02 9.85e+02 7.05e+02 4.51e+02 4.18e+02

F20 8.22e+02 9.59e+02 7.13e+02 4.38e+02 5.11e+02

F21 5.36e+02 9.94e+02 4.64e+02 4.87e+02 4.69e+02

F22 6.92e+02 8.87e+02 7.32e+02 8.59e+02 7.65e+02

F23 7.30e+02 1.08e+03 6.64e+02 5.98e+02 5.63+02

F24 2.24e+02 7.20e+02 2.00e+02 2.02e+02 2.01e+02

F25 3.66e+02 1.76e+03 3.76e+02 3.38e+02 3.48e+02
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5.5 Conclusion and Future Research Directions
This chapter introduces ABC-SAM — a novel variant of the standard ABC algorithm that

incorporates a self-adaptive mutation scheme which automatically adapts the mutation step

size, suitably either for better exploitations or for more explorations, separately for every

candidate solution of the population. ABC-SAM significantly outperforms the basic ABC

algorithm and several other evolutionary and swarm intelligence algorithms, including some

recently introduced improved ABC-variants on two different suites of benchmark functions. The

empirical results and comparisons prove the better effectiveness of the proposed step size

adaptation scheme of ABC-SAM.

There might be several possible future research works based on ABC-SAM. For example,

we have adapted only the scaling factors, i.e., the SFi values, maintained separately for each

candidate solution xi. For the other control parameters of ABC-SAM (i.e., SN, limit, τ1 , τ2 , SFmin ,

α , β), we have simply used fixed, predefined values all through the optimization process. An

interesting research topic would be how to make some (or, all) of these control parameters

adaptive and/or self-adaptive along the course of the optimization process. Secondly, we have

used simple forms of exponential and negative-exponential distributions for explorations and

exploitations, respectively. Some other distributions, such as the Lévy [56] and Cauchy [57]

distributions, possibly with adaptive distribution parameters, may also be tested to evaluate

how well they can achieve the dynamic explorative/exploitative objectives during optimization.

Figure 5.8: Comparison of ABC-SAM with DMS-PSO [231], PSO-RDL [232], SADE [230]
and the basic ABC algorithm [11], based on their mean absolute error values on the
CEC2005 benchmark functions F1-F14 (on the left) and the more complex hybrid
composition functions F15-F25 (on the right).
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Thirdly, the self-adaptive techniques introduced in ABC-SAM are generic enough; so similar

techniques may be incorporated and hybridized with many other existing and recently

introduced evolutionary and swarm intelligence algorithms to alter and (possibly) improve

their explorative/exploitative characteristics. Fourthly, ABC-SAM is evaluated and tested only

on the continuous optimization problems. It would be interesting to evaluate how well

ABC-SAM can perform on many other existing optimization problems, especially the discrete

and the real world problems.
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Chapter6
Artificial Bee Colony Algorithm with

Improved Explorations

6.1 Introduction
As explained in the previous sections 2.14–2.15, the premature convergence is a major problem

for both evolutionary and swarm intelligence algorithms, which usually originates from the

insufficient degree of explorative search capability during the optimization process. In addition

to premature convergence, another problem with ABC is the fitness stagnation, where the

population of solutions stops improving towards the global optimum, even without converging

to any of the locally optimal points [54]. The risk of fitness stagnation and premature

convergence usually rises with reduced explorations and increased exploitations. This chapter

introduces ABC with Improved Explorations (ABC-IX) — a novel algorithm that modifies both

the selection and perturbation operations of the basic ABC algorithm in an explorative and

self-adaptive way. First, an explorative selection scheme based on simulated annealing allows

ABC-IX to probabilistically accept both better and worse candidate solutions, while the standard

ABC algorithm can accept better solutions only. Secondly, a self-adaptive strategy enables

ABC-IX to automatically adapt the perturbation rate, separately for each candidate solution,

during producing new candidate solutions by perturbing the existing ones. Both these new

improvements are intended to increase the explorative search capacity of the basic ABC

algorithm during the optimization process. We have evaluated ABC-IX using several benchmark

problems on numerical optimization and compared the results with a number of existing

state-of-the-art evolutionary and swarm intelligence algorithms.
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6.2 Organization of the Chapter
The rest of this chapter is organized as follows. Section 6.3 briefly presents a number of recently

proposed improved ABC-variants and explains how the proposed algorithm — ABC-IX is

significantly different from most of them. Section 6.4 introduces ABC-IX and explains its

improvements on the plain selection and perturbation operations of the basic ABC algorithm

along with the necessary pseudocode. Section 6.5 evaluates ABC-IX using a number of

benchmark problems, specifies the parameter settings of ABC-IX and some other algorithms in

comparison, compares their results and makes a few comments and analysis on their results

and comparisons. Finally, section 6.6 concludes with a summary of this chapter and provides a
few directions for further research with ABC-IX.

6.3 Differences of ABC-IX with Other Existing Works
There exist several recent works (e.g., [59]–[68]) that try to tweak the explorative and/or

exploitative properties of the standard ABC algorithm. For example, the ABC with self-adaptive

mutation (ABC-SAM), as described in chapter 5, introduces an adaptive perturbation scaling

factor SFi for every bee agent and tries to perform sufficient degree of both explorations and

exploitations by regularly adapting the SFi values by using two different distributions — one

explorative and the other exploitative.  The cooperative ABC (CABC) [60] algorithm decomposes

the search space into a number of smaller subspaces and enforces more explorations by

employing several bee colonies to explore the different subspaces. Another explorative

ABC-variant — ABC with diversity strategy (DABC) [61] tries to preserve sufficient amount of

diversity within the bee population by switching between two different perturbation

schemes — one explorative and the other exploitative. Chaotic ABC (ChABC) [62] is another

explorative ABC-variant that uses dynamic chaotic sequence generators, instead of random

number generators, to improve the explorative characteristics of the basic ABC algorithm. The

explorative search capacity of ABC may also be improved by intelligent organization of the

locally optimal points, as demonstrated by Fenglei et al. [63]. Another variant — Gbest-guided

ABC (GABC) [64] tries to improve the degree of exploitations and the rate of convergence of ABC

by using the information of the global best solution found so far during the perturbation

operations. Hooke Jeeves ABC (HJABC) [65] is another improved hybrid ABC-variant that

hybridizes an extensively exploitative local search technique, i.e., the Hooke Jeeves pattern

search, with the ABC algorithm. Another hybrid ABC variant is the elitist ABC (EABC) [68] which

hybridizes the standard ABC algorithm with two different local search operators to intensify the

degree of exploitations around the best candidate solution found so far. Quan and Shi [67]
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reported significant improvement of the convergence speed of ABC by introducing and carefully

employing an exploitative search iteration operator that is based on the fixed point theorem of

contractive mapping. Qingxian and Haijun [66] employed the Boltzmann selection scheme to

replace the traditional roulette wheel selection of the basic ABC algorithm and introduced an

improved initialization scheme to improve the degree of exploitations and convergence speed of

the basic ABC algorithm.

A major weakness of most of the existing ABC-variants, as presented in the previous

paragraph, is that none of these algorithms (i.e., [60]–[68]) considers the individual

explorative/exploitative requirements of every candidate solution separately; rather they treat

all the candidate solutions equally, employing some population-wide uniform strategy,

identically on all the solutions across the population, completely ignoring their different

explorative/exploitative needs. Another limitation of most existing algorithms is that they try to

improve either the explorative (e.g., [60]–[63]) or the exploitative (e.g., [64]–[68]) properties of

the standard ABC algorithm. The explorative enhancements are usually based on more

explorative perturbation, selection and/or initialization ([59], [62], [63]) or employing some

technique to maintain more population diversity (e.g., [60], [61]), while the exploitative

developments are usually based on increasing the local search operations around the best

candidate solutions of the population (e.g., [64], [65], [68]). However, only a few (i.e., [59], [61],

[64]) of these algorithms make some efforts, more or less, to balance between the explorative

and exploitative improvements. But most of them use some fixed, rather than adaptive, strategy

to balance the explorations with exploitations. For example, DABC [61] uses a fixed threshold

value dlow and tries to maintain the population diversity always above dlow, GABC [64] controls

the degree of exploitations with some fixed value of its control parameter C, and ABC-SAM

(chapter 5) uses a fixed, exploitative perturbation rate and tries to induce an equal (rather than

adaptive) proportion of explorative and exploitative perturbations.

ABC-IX differs from most other existing ABC-variants (e.g., [60]–[68]) in several important

ways. Firstly, ABC-IX tries to customize the degree of explorations and exploitations, separately

for every candidate solution xi of the population by introducing and separately maintaining a
control parameter xi.q (i.e., perturbation rate) for each xi. Secondly, ABC-IX adopts a

self-adaptive (rather than fixed, as in [59], [61], [64]) technique to adaptively control and

customize the perturbation rate for each candidate solution. Thirdly, ABC-IX tweaks both the

selection and perturbation operations of the basic ABC algorithm, because both these

operations of ABC are biased towards more exploitations (rather than explorations). ABC-IX

pushes the selection operation of ABC towards more explorations by using a simulated
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annealing based probabilistic selection scheme. Also, the basic perturbation operation of ABC is
modified by using a self-adaptive perturbation rate that can customize the degree of

explorations and exploitations, separately for every candidate solution of the population.

Customization of the degree of explorations and exploitations at the individual solution level is
more rational and usually more effective than some population-wide global strategy, because

each candidate solution is usually at a different region of the search space with different and

dynamically changing explorative/exploitative requirements. Hence, adaptation of the control

parameters, separately for each candidate solution, is more suitable for automatically dealing

with its dynamically evolving exploitative/explorative requirements.

6.4 The Proposed Algorithm— ABC-IX
The proposed algorithm — ABC-IX differs from the standard ABC algorithm in two important

ways. Firstly, ABC accepts a newly produced candidate solution vi only if vi has higher fitness

value than the original solution xi (Fig. 2.9, steps 5, 9). This exploitative selection scheme denies

any possible downhill movement and allows only uphill steps in the fitness landscape, which

may turn the entire population into parallel hill-climbers and may lead to premature

convergence to the locally optimal points, failing to locate the global optimum. In contrast,

ABC-IX promotes more search space explorations by probabilistically allowing some downhill

steps using a simulated annealing-based selection scheme (Fig. 6.2). Secondly, ABC perturbs

only a single parameter of an existing candidate solution xi by using (2.6) to produce the new

solution vi (Fig. 2.9, steps 4, 8). This means ABC has a perturbation rate of 1/D, which is kept

constant all through the execution. Such a fixed and small perturbation rate is likely to produce

the offspring solution vi in close vicinity of the parent xi, which is exploitative. In contrast,

ABC-IX introduces a self-adaptive scheme to automatically control and adapt the perturbation

rate at the individual solution level. ABC-IX includes a perturbation probability within each

solution xi, which is addressed as xi.q (Fig. 6.2) and the value of xi.q is self-adapted gradually,

cycle by cycle, separately for each candidate solution xi.

Fig. 6.1 presents the pseudocode for ABC-IX, which has the same algorithmic framework

of the basic ABC algorithm (Fig. 2.9). However, ABC-IX differs from ABC in how the existing

solutions are perturbed (i.e., perturbation steps 4 and 8 in Fig. 2.9) and how the new solutions

are re-inserted into the population (i.e., selection steps 5 and 9). Both these modifications, as

presented in Fig. 6.2, are to increase the explorative capacity of the basic ABC algorithm. They

are further elaborated in the following paragraphs.
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Figure 6.1: Pseudocode of ABC-IX. Steps that differ from basic ABC (Fig. 2.9) are marked with ‘*’

Figure 6.2: Pseudocode of simulated annealing based probabilistic selection scheme (on the
left) and perturbation with self-adaptive perturbation rate (on the right) for ABC-IX

6.4.1 Simulated Annealing Based Probabilistic Selection Scheme
Simulated Annealing (SA) is a heuristic for finding the global optimum in the presence of

multiple local optima. Starting from an initial solution, SA produces new, randomly perturbed

solutions. SA accepts both better and worse new solutions, but the probability of accepting a

Algorithm 6.1: Artificial Bee Colony (ABC) Algorithm with Improved Exploration

1: Initialize a population of SN food source positions (candidate solutions) xi, for i = 1, 2, …, SN. Each xi is a vector of
D parameters: xi= [xi1, xi2, …, xiD]T

2: Evaluate the fitness of each food source position using (2.3)
3: repeat
4*: For each employed bee, perturb its food source position xi to produce a new food position vi by using the

pseudocode for perturbation in Fig. 6.2
5*: Evaluate each new solution vi by (2.3). Select either xi or vi using the simulated annealing based probabilistic

selection scheme (Fig. 6.2)
6. Calculate the probability pi associated with each food source position xi using (2.7)
7: For each onlooker bee, assign it to a food source xi, proportionally based on the probability pi
8*: For each onlooker bee, perturb its food source position xi to produce a new food position vi by using the

pseudocode for perturbation in Fig. 6.2
9*: Evaluate each new solution vi using (2.3). Select either xi or vi by using the simulated annealing based

probabilistic selection scheme (Fig. 6.2)
10: If a food source has not improved during the last limit cycles, then abandon it and replace it with a new

randomly placed scout bee with its food source xi produced by (2.8)
11: Memorize the best food source position found so far
12*: Set cycle counter C=C + 1 and system temperature T = α * T
13: until C = Maximum cycle number (MCN)
14: return the best food source position (i.e., candidate solution) found so far

Algorithm 6.2: Simulated Annealing (SA) based
Probabilistic Selection Scheme for ABC-IX

input: Two candidate solutions xiand vi
output: Either of xi or vi, selected to be included

into the population
begin
if fitness(vi) fitness (xi) then

return vi
else

if rand(0,1) then
return vi

endif
endif
return xi

end

Algorithm 6.3: Perturbation by ABC-IX
input: An existing candidate solution xi
output: Perturbed candidate solution vi
begin
vi = xi
if rand(0,1) ≤ t then

vi.q = qmin + (1.0 – qmin) ∗ rand(0,1)
else

vi.q = xi.q
endif
for j = 1 to D do

if rand(0,1) ≤ vi.q then
k = rand{1, 2, …, SN}
φij = rand(-1,1)
vij = xij + φij ∗ (xkj – xij)

endif
enddo
return vi

end
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worse new solution is reduced over time, based on a gradually decreasing control parameter T

(i.e. system temperature, from the analogy to the real annealing procedure in metallurgy). More

specifically, given an initial candidate solution xi, SA randomly perturbs xi to produce yi in the

neighborhood of xi. Then the change ∆E of the objective function value is computed as

   .E obj obj  i ix y If yi is better than xi (i.e., 0E  ), SA readily accepts yi as its current

state and discards the old solution xi. However, in case the new solution yi is worse than xi (i.e.,

0E  ), SA may still accept yi, but only with probability =   ,exp E T where T is the current

system temperature that is gradually decreased during the entire procedure. SA usually starts

with a high initial temperature T0 to ensure high degree of initial explorations by frequently

accepting worse solutions (i.e., large value of T makes ,0E T  thus the probability

  1exp E T  ). As T gradually decreases with the increasing iterations, SA becomes

increasingly exploitative, accepting better solutions only. Fig. 6.2 presents the pseudocode for

the SA-based probabilistic selection scheme, which probabilistically allows both better and

worse new solutions and thus ensures both uphill and downhill moves in the fitness landscape

to make ABC-IX more resilient against local optima and premature convergence. Temperature T

is gradually decreased by the exponential cooling schedule [233], which relates temperatures

( ) and ( + 1) over two successive cycles by   ( ).1 αT t T t   For most of the evaluations

of ABC-IX (e.g., Tables 6.2–6.10), we used α=0.99, and the initial temperature T0 is set to 50

times of the difference of fitness values of the best and worst candidate solutions of the first

generation.

6.4.2 Self-adaptive Perturbation Rate
The standard ABC algorithm perturbs only a single, randomly picked parameter of the existing

candidate solutions using (2.6). This performs search along only one dimension at a time, which

is usually suitable for separable problems where the parameters are independent of each other,

but may be inappropriate for more complex non-separable problems. In contrast, ABC-IX can

perturb any number of parameters allowing search along any possible direction. Fig. 6.3

illustrates this using an example of a 2D search space. Allowing perturbation of both the

parameters (i.e., both xi1 and xi2) can produce vi along any possible direction from xi. This can be

more effective, especially for non-separable problems, than perturbing either xi1 or xi2, one at a
time as is done by the basic ABC algorithm. This is why ABC-IX tries to perform search along any

possible direction from xi by maintaining and automatically adapting a control parameter xi.q,

separately for every candidate solution xi, that controls the perturbation rate during producing

the trial solution vi from xi. To perform an automatic self-adaptation of the value of xi.q, ABC-IX
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does the following — before perturbing any other parameter of xi during producing vi, the value

of xi.q is perturbed first, with probability t, using (6.1). This perturbed value of xi.q is inherited

by vi, which is now referred as vi.q and is used as the probability of perturbing the parameters of

xi to produce vi from xi. A more effective value of vi.q is likely to produce fitter new solutions,

which are supposed to survive better than xi and produce better, newer solutions which will

propagate the better values of the perturbation probability. Thus a gradual self-adaptation

towards better, more effective perturbation rates will take place, allowing a self-adaptive and

appropriate perturbation rate for all the candidate solutions across the population.

     0,1 0,1

 i

min max min
i

q + rand * q q           if  rand  < t
v .q =

x .q                  otherwise
(6.1)

Here, t is the probability that the perturbation probability xi.q itself is perturbed first before

perturbing any other parameter of xi. For all our experiments, we have set qmax = 1.0, qmin = 1/D

and t to either of 0.10, 0.20 or 0.30 (for ABC-IX1, ABC-IX2 and ABC-IX3 in Table 6.1, respectively).

For all other Tables in this chapter (i.e., Tables 6.2–6.10), t is set to 0.10.

But how the degree of explorations and exploitations around each candidate solution xi
is affected by its self-adaptive perturbation rate xi.q? A small perturbation rate is likely to

perturb only a few parameters of the candidate solution xi which usually produces the new

solution vi in the vicinity of xi and hence is exploitative. Conversely, a high perturbation rate can

induce large variation on a candidate solution by perturbing many of its parameters at once,

which is suitable for explorations. The gradual adjustment of the perturbation rate control

parameter xi.q through the successive applications of (6.1) makes it possible to gradually adapt

and customize the degree of explorations and exploitations around every candidate solution xi.

Figure 6.3: Search direction by ABC (on the left) and ABC-IX (on the right) in 2D search space



151

Figure 6.4: Candidate solutions P, Q, R and S at different regions of the fitness landscape with
different exploitative/explorative requirements.

This is more rational than some population-wide global parameter settings, because the

scenario around each candidate solution can be unique and very different from other solutions

of the population. A candidate solution may need to explore through several peaks, valleys and

plateaus of the fitness landscape. As a result, the explorative/exploitative requirement around

each candidate solution can change suddenly and often in an unpredicted way. When an

individual candidate solution tries to reach some local or global optimal point of the fitness

landscape, such as the solution P or S in Fig. 6.4, it may need a sequence of increasingly small

and exploitative perturbations to pinpoint the optimal point. After P has reached the locally

optimal peak (such as the solution Q) or has landed into a plain, flat plateau of the fitness

landscape (like the solution R), it may need large, explorative perturbations to break free from

the imminent fitness stagnation and to reach the global optimum. This is why attaching each

solution xi with some control parameter (e.g., xi.q) that can dynamically adapt and customize the

degree of explorations and exploitations around it can become very useful throughout the

optimization process. Since xi may have to go through several phases of explorations and

exploitations, the automatic adaptation of its control parameters is often necessary to achieve

an adaptively appropriate degree of explorations and exploitations around xi, based on its

current explorative/exploitative requirements.

6.5 Evaluation of ABC-IX on Benchmark Functions
In this section, ABC-IX is evaluated using two different suites of benchmark problems on

numerical function optimization. At first, we have used a standard benchmark suite consisting

of 30 different functions, all of which have been well-studied and widely used in many recent

studies on EAs and SIAs (e.g., [10], [11], [55]–[69], [146], [160]–[165], [196]). Then ABC-IX is

evaluated on a more recent benchmark suite consisting of 25 more challenging and complex

functions introduced in the special session on real parameter optimization at CEC2005 [76].
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A brief overview of both the benchmark suites is presented in the previous section 2.17 (Tables

2.3–2.4). The reader can get more details on each of these benchmark functions in the

Appendix A and in [76].

6.5.1 ABC-IX on the Standard Benchmark Functions
The standard benchmark suite (Table 2.3, section 2.17) consists of 30 benchmark functions,

including both unimodal (f1−f9) and multimodal (f10−f30), separable (e.g., f1, f3, f15, f16) and

non-separable (e.g., f2, f4, f14, f18), high (f1−f18) and low (f19−f30) dimensional functions. The

results of ABC-IX and the basic ABC algorithm on all these functions are presented in Table 6.1.

ABC-IX is executed with three different parameter settings — ABC-IX1, ABC-IX2 and ABC-IX3 use

the exponential cooling schedule parameter α = 0.97, 0.99 and 0.998, respectively, while the

value of t in (6.1) is set as 0.10, 0.20 and 0.30, respectively. Since slow (fast) cooling and high

(low) perturbation rate indicate more explorations (exploitations), ABC-IX3 is the most

explorative variant, while ABC-IX1 is the most exploitative one among these three ABC-IX

variants. All these algorithms have three parameters in common — the population size SN,

maximum number of function evaluations FE and limit. For high dimensional functions f1–f18,

the parameters are set as SN=50, FE=100000 and limit=100. For the low dimensional functions

f19–f30, we have used SN=100, FE=10000 and limit=10D. Each algorithm has made 50

independent runs on each of the functions and the mean and standard deviation of the best

found solutions from the different runs are reported in Table 6.1. The following points

summarize our observations on the results in Table 6.1.

 Out of the 18 high dimensional functions f1–f18, ABC-IX1 performs better than ABC on as

many as 15 functions, shows similar performance on one (f8), while ABC manages to

perform better on the remaining two functions only (f7 and f18). However, the

performance of the more explorative variants — ABC-IX2 and ABC-IX3 are still better.

Both of them outperform ABC on as many as 17 (out of 18) high dimensional functions

and show similar results on the remaining one (f8).

 Out of the 12 low dimensional functions f19–f30, the basic ABC algorithm performs

slightly better only on one function (f26), while the ABC-IX variants have always

performed either equally well (five functions— f21–f24, f29) or better (six functions) than

ABC on the remaining functions.

 Among the three ABC-IX variants, the best performance is demonstrated by ABC-IX2,

which outperforms ABC on as many as 23 out of the 30 benchmark functions, shows

similar performance on six and slightly worse performance on one function (f26) only.
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Table 6.1: Performance of the ABC-IX variants, compared to the basic ABC algorithm [11] on
the standard benchmark functions. Results are averaged over 50 independent runs. The best
results are marked with boldface font, if not identical with the results from other algorithms.

No fmin
ABC ABC-IX1 ABC-IX2 ABC-IX3

Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev

f1 0 3.58e–11 8.14e–12 8.25e–40 2.83e–40 2.86e–38 6.58e–39 7.39e–36 8.84e–37

f2 0 1.04e–14 5.33e–14 6.77e–19 4.68e–19 6.52e–18 2.65e–18 2.88e–16 1.46e–16

f3 0 9.37e+00 3.22e+00 4.93e+00 1.55e+00 1.17e–02 6.02e–03 4.68e+00 1.59e+00

f4 0 2.75e–10 2.49e–10 9.45e–33 3.41e–33 1.86e–36 8.03e–37 4.89e–35 5.90e–11

f5 0 2.50e+00 9.25e–01 5.10e–01 9.27e–02 7.64e–02 2.70e–02 4.09e–01 1.06e–01

f6 0 6.67e–01 5.74e–09 6.41e–04 9.91e–03 9.22e–05 3.93e–05 7.54e–04 3.05e–04

f7 0 2.75e+00 8.08e–01 5.75e+00 2.47e+00 1.95e–01 8.55e–02 1.09e–01 6.23e–02

f8 0 0 0 0 0 0 0 0 0

f9 0 8.61e–13 7.07e–13 3.84e–60 9.74e–61 1.64e–63 4.14e–64 6.11e–62 2.53e–62

f10 0 5.79e–15 2.48e–15 7.66e–36 1.02e–36 6.14e–41 8.54e–42 1.78e–42 5.82e–43

f11 0 8.82e–09 2.33e–09 5.83e–11 1.16e–11 8.51e–12 2.93e–12 5.77e–11 1.79e–11

f12 –12569.5 3.49e+02 1.18e+02 2.95e+02 1.46e+02 1.56e+02 5.69e+01 1.95e+02 6.21e+01

f13 0 3.08e–06 3.96e–07 5.23e–12 8.68e–13 3.82e–15 4.28e–16 9.98e–13 2.87e–13

f14 0 4.35e–08 8.47e–09 2.39e–42 7.48e–43 9.70e–40 8.30e–41 6.02e–38 2.06e–38

f15 0 6.90e–06 2.15e–06 7.72e–08 3.48e–08 8.21e–10 9.34e–11 6.75e–09 9.12e–10

f16 0 3.03e–02 8.69e–03 5.61e–05 2.69e–05 6.74e–07 2.16e–07 6.05e–04 8.88e–05

f17 0 5.82e–08 9.42e–09 5.79e–12 9.43e–13 7.40e–11 2.06e–11 1.66e–15 7.85e–16

f18 0 2.64e–03 8.53e–04 7.14e–02 3.42e–02 2.61e–03 1.96e–04 4.98e–04 8.04e–05

f19 1 0.03 0.013 0.02 0.012 0.01 0.003 0.02 0.01

f20 3.07e–04 7.60e–05 6.69e–06 4.01e–05 4.22e–06 3.32e–05 2.05e–06 4.25e–05 6.25e–06

f21 –1.0316 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f22 0.398 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f23 –3.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f24 –3.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f25 –10.15 0.30 0.11 0.17 0.10 0.08 0.024 0.15 0.07

f26 –10.40 0.02 0.0025 0.03 0.013 0.03 0.010 0.04 0.016

f27 –10.54 0.12 0.045 0.06 0.023 0.04 0.016 0.03 0.013

f28 0 8.05 2.89 1.44 0.62 0.97 0.28 0.86 0.23

f29 –9.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f30 –1.4 0.54 0.18 0.32 0.14 0.23 0.09 0.51 0.18
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Figure 6.5: The mean absolute error values of ABC and the ABC-IX variants on the standard
benchmark functions. The ABC-IX variants show smaller error values in comparison to ABC.

Table 6.2: Performance comparison of ABC-IX and ABC-SAM (chapter 5) on f1–f18. Results are
averaged over 50 independent runs. Best result for each function is marked with boldface font. A
‘+’ or ‘–’ in the t-test indicates that ABC-IX is significantly better or worse, respectively than ABC
with 95% level of confidence, while a ‘≈’ means the difference is not statistically significant.

No fmin D G ABC-IX ABC-SAM t-Test (ABC-IX
vs. ABC-SAM)Mean Std. Dev. Mean Std. Dev.

f1 0
30 1000 2.84e–38 1.03e–38 4.18e–14 5.37e–15

+
60 2000 6.07e–30 8.55e–31 6.09e–13 7.24e–14

f2 0
30 1000 8.30e–15 3.14e–15 2.47e–08 2.35e–09

+
60 2000 3.01e–12 4.74e–13 5.06e–07 2.97e–07

f3 0
30 1000 8.37e+00 2.64 1.69e+01 1.43

+
60 2000 1.41e+01 5.15 3.10e+01 5.12

f4 0
30 1000 6.43e–31 7.37e–32 3.95e–12 5.77e–13

+
60 2000 1.18e–26 4.95e–27 7.54e–11 2.14e–11

f5 0 24 1000 3.63e–01 6.18e–02 9.24e–01 2.08e–01 +

f6 0
30 1000 5.86e–04 7.31e–05 2.16e–03 6.37e–04

+
60 2000 9.88e–03 8.59e–03 7.76e–02 1.63e–02

f7 0
30 1000 8.96e+00 3.63e+00 2.28e+01 3.75

+
60 2000 1.35e+00 8.93e–01 4.96e+01 7.80

f8 0 30 1000 0 0 0 0 ≈60 2000 0 0 0 0

f9 0
30 1000 8.31e–52 2.19e–52 3.66e–16 1.44e–17

+
60 2000 6.09e–41 2.43e–42 4.76e–15 5.32e–16

f10 0
30 1000 2.21e–35 1.60e–36 1.26e–16 2.11e–17

+
60 2000 2.91e–32 6.44e–33 8.55e–15 3.15e–16

f11 0
30 1000 5.10e–11 9.78e–12 4.60e–10 8.85e–11

+
60 2000 3.63e–10 1.35e–10 6.80e–09 8.77e–10

f12
–12569.5 30 1000 9.64e+01 1.52e+01 1.53e+02 4.02e+01

+
–25138.9 60 2000 8.57e+02 1.35e+02 1.33e+03 2.84e+02

f13 0
30 1000 4.20e–15 5.23e–16 9.26e–08 1.89e–08

+
60 2000 8.84e–14 1.40e–14 2.07e–08 3.55e–08

f14 0
30 1000 5.12e–33 1.55e–33 8.36e–10 5.08e–11

+
60 2000 4.94e–32 9.98e–33 1.56e–10 6.90e–11
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Table 6.2 (continued): Comparison of ABC-IX and ABC-SAM (chapter 5) on f1–f18.

No fmin D G
ABC-IX ABC-SAM t-Test (ABC-IX

vs. ABC-SAM)Mean Std. Dev. Mean Std. Dev.

f15 0
30 1000 8.75e–08 2.38e–08 2.22e–08 3.93e–09

–
60 2000 7.08e–08 1.33e–08 1.17e–08 2.35e–09

f16 0
30 1000 5.24e–06 2.04e–06 5.78e–04 6.31e–05

+
60 2000 2.72e–05 5.12e–06 9.20e–03 4.03e–03

f17 0
30 1000 3.22e–10 7.88e–11 9.78e–12 3.89e–12

–
60 2000 6.46e–10 1.59e–10 1.32e–11 5.15e–11

f18 0
30 1000 7.95e–02 2.14e–02 3.06e–02 8.59e–03

–
60 2000 9.70e–02 2.05e–02 5.11e–02 7.39e–03

Summary
(t-Test)

+ 14

– 3

≈ 1

 An overall evaluation of the algorithms can be made by comparing their mean absolute

error values over all the functions. Fig. 6.5 shows that all the ABC-IX variants have

smaller mean absolute error values compared to the basic ABC algorithm, with ABC-IX2

having the smallest mean absolute error value.

 For almost all the functions, the ABC-IX variants have not only reached sufficiently close

to the global minimum (i.e., mean error ≈ 0), but also accomplished this with very low

standard deviations of their results. This indicates the high degree of accuracy,

consistency and robustness of the ABC-IX variants for all these benchmark functions.

Table 6.2 compares the performance of ABC-IX with an improved ABC-variant —

ABC-SAM (chapter 5). ABC-SAM tries to balance the degree of explorations and exploitations by

maintaining a scaling factor SFi for every bee agent xi and by regularly adapting the value of SFi

using both explorative and exploitative distributions. The regular tuning of the SFi values

performs an automatic self-adaptation of the step size for perturbations, separately for every

individual bee xi. Both ABC-SAM and ABC-IX are tested on the high dimensional functions f1–f18,

with D=30 and 60. The common parameters are set as — SN=100, limit=100 (for 30D

functions) or 200 (for 60D) and FE=100000 (for 30D) or 200000 (60D). The other parameters

of ABC-IX are the same as ABC-IX2, since it shows smaller mean absolute error value (Fig. 6.5) in
comparison to ABC-IX1 and ABC-IX3. Table 6.2 demonstrates that ABC-IX often performs better

than ABC-SAM (14 out of 18 functions), while ABC-SAM shows equal (f8) or better performance

only on a few occasions (i.e., f15, f17, f18). Most of these performance differences are statistically

significant, with at least 95% level of confidence, as shown by the t-test.
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Fig. 6.6 presents the convergence graphs of ABC, ABC-SAM and ABC-IX for six benchmark

functions — including three unimodal (f1, f4, f8) and three multimodal (f12, f13, f18) functions with

dimensionality D=30. Here, all three algorithms use the following parameter settings– SN=100,

maximum cycle number MCN=1000 and limit=100. ABC-IX shows better convergence

characteristics than both ABC and ABC-SAM for all the functions in Fig. 6.6. For example,

consider the functions f13 and f16, where both ABC and ABC-SAM converges to some local

minima with fitness stagnation during the end stage of their execution. However, ABC-IX does

not show any sign of fitness stagnation for both these functions, even after reaching very close

proximity of the global minimum. For most of these functions (e.g., f1, f4, f8, f12), ABC-IX initially

shows relatively slower convergence speed because of the high system temperature T that

ensures high degree of explorations during the early stage of the run. As the algorithm

progresses, the system temperature drops and the perturbation rate control parameters,

separately for every candidate solution, gradually self-adapt towards more effective values,

which gradually help ABC-IX to achieve better convergence speed (e.g., f1, f4, f13, f16) than both

Figure 6.6: Convergence characteristics of ABC [11], ABC-SAM (chapter 5) and
ABC-IX on three unimodal (f1, f4, f8) and three multimodal (f12, f13, f16) functions. The
vertical axis is the function value, while horizontal axis is number of cycles elapsed.
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ABC and ABC-SAM. Previously in Tables 6.1–6.2, we had considered the performance of ABC,

ABC-SAM and ABC-IX to be similar for the function f8. But Fig. 6.6 now reveals that ABC-IX

actually reaches the global minimum of f8 much earlier (i.e., fewer than 250 cycles) than both

ABC (nearly 400 cycles) and ABC-SAM (around 300 cycles), which again indicates the

effectiveness of the ABC-IX algorithm.

6.5.2 Comparison of ABC-IX with GA, DE, PSO and ABC
Now ABC-IX is compared with some basic and representative evolutionary and swarm

intelligence algorithms, such as genetic algorithm (GA) [11], differential evolution (DE) [195],

particle swarm optimization (PSO) [196] and the standard ABC [11] algorithm. The common

parameters are set as — SN = 50 and FE = 500,000, while the other algorithm specific

parameters are as follows.

GA Settings: We have used binary coded standard GA with fitness scaling, seeded selection,

random selection, single point crossover, bit flip mutation and elitism. The crossover and

mutation rates are set to 0.8 and 0.01, respectively. The stochastic uniform sampling technique

is used as the selection operator. The generation gap (i.e., the portion of the population to be

replaced in each generation) parameter is set to 0.9.

DE Settings: The standard DE has two parameters — the scaling factor F and the crossover rate

CR, which are set as: F = 0.5 and CR = 0.9, as recommended in [195].

PSO Settings: The PSO [196] has three more control parameters — the cognitive component  1 ,

social component  2 , and the inertia weight w, which are set to 1.8, 1.8 and 0.6, respectively, as

suggested in [196].

ABC Settings: In addition to the common parameters (SN and FE), the standard ABC algorithm

has one more control parameter — limit, which is set to SN * D, as suggested in [11].

Table 6.3 compares the performance of ABC-IX with GA, PSO, DE and ABC on a total of 17

standard benchmark functions from f1–f30 consisting of eight unimodal and nine multimodal

functions, 13 (out of 17) of which have dimensionality D = 30, one has D = 24 and the remaining

three (f28–f30) has D = 10. In the following brief points, we have summarized our observations on

the results of Table 6.3.

GA vs. ABC-IX: ABC-IX performs better than GA on all (i.e., 17 out of 17) of the functions.

PSO vs. ABC-IX: The performance of ABC-IX is always either better (i.e., 13 out of 17

functions) or at least similar (on the remaining four functions) to PSO.

DE vs. ABC-IX: ABC-IX outperforms DE on 11 out of the 17 functions. On the remaining six

functions, they show similar performance by successfully reaching the global minimum.
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ABC vs. ABC-IX: On most of the functions (12 out of 17), ABC and ABC-IX show similar

performance. However, for the remaining five functions, ABC-IX performs better than ABC.

Table 6.3: Comparison of ABC-IX with GA [11], DE [125], PSO [126] and the basic ABC [11]
algorithm on 17 standard benchmark functions. The best results are marked with boldface font.

No. D fmin
Mean Error

GA PSO DE ABC ABC-IX

f1 30 0 1.1e+03 0 0 0 0

f2 30 0 11.02 0 0 0 0

f4 30 0 7.4e+03 0 0 0 0

f5 24 0 9.70 1.1e–04 2.2e–07 3.1e–03 7.54e–07

f6 30 0 1.2e+03 0.6666 0.6666 0 0

f7 30 0 1.9e+05 15.08 18.20 0.088 6.24e–03

f8 30 0 1.2e+03 0 0 0 0

f9 30 0 1.8e–01 1.2e–03 1.4e–03 3.00e–03 6.78–52
e– e– e– e–f10 30 0 52.92 43.97 11.72 0 0

f12 30 –12569.48 8.8e+02 5.7e+03 2.3e+03 0 0

f13 30 0 14.67 0.16 0 0 0

f14 30 0 10.63 0.017 0.0015 0 0

f17 30 0 13.38 0.021 0 0 0

f18 30 0 125.06 7.7e–03 2.2e–03 0 0
e– e– e– e–f28 10 0 29.57 1364.45 781.55 8.23 0.37

f29 10 –9.66015 0.16 5.65 0.069 0 0

f30 10 –1.4 0.76 1.39 0.35 0.97 0.23

Figure 6.7: Comparison of ABC-IX with GA [11], DE [195], PSO [196] and the basic ABC [11]
algorithm based on their mean absolute error values on the standard benchmark functions.
ABC-IX shows the best performance, i.e., lowest mean absolute error value.
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The overall performance of the algorithms can be compared by their mean absolute error

values on these 17 benchmark functions. Fig. 6.7 shows that ABC-IX has the minimum mean

absolute error, followed by the standard ABC algorithm. The other three algorithms (i.e., GA,

PSO and DE) show much larger error values in comparison to ABC and ABC-IX.

6.5.3 Comparison of ABC-IX with Other ABC-Variants
In this section we compare ABC-IX with a number of recent improved variants of the ABC

algorithm, each one of which alters the explorative and/or exploitative properties of the basic

ABC algorithm, such as the cooperative ABC (CABC) [60], ABC with diversity strategy

(DABC) [61], chaotic ABC (ChABC) [62], gbest-guided ABC (GABC) [64] and Hooke Jeeves ABC

(HJABC) [65] algorithms. The first three variants (e.g., [60]–[62]) try to increase the degree of

explorations to achieve better strength against local optima and premature convergence, while

the last two variants (e.g., [64]–[65]) increase the degree of exploitations in order to achieve

better convergence speed than the basic ABC algorithm.

First, ABC-IX is compared with CABC [60], which is a cooperative variant of the basic ABC

algorithm. CABC has been introduced in two different versions — CABC_S and CABC_H. In order

to perform more explorations, CABC_S decomposes the search space into multiple sub-spaces

and employs different bee colonies to search and explore the different sub-spaces. The other

variant, CABC_H tries to perform more exploitations than CABC_S by repeatedly alternating

between the explorative CABC_S and exploitative ABC. For comparison, ABC-IX is

re-implemented with the same settings — SN=40, no. of function evaluations FE=100,000 and

limit=SND. Table 6.4 shows that ABC-IX significantly outperforms both the CABC variants on

four out of the six benchmark functions, while the CABC variants perform better on the

remaining two functions only. Thus, the overall performance of ABC-IX is better than the CABC

variants. The reason may lie in the difficulties that the CABC variants have to face to properly

decompose the search space into multiple sub-spaces and then, to effectively combine the

partial solutions into a complete solution to the whole problem.

The next comparison is made between ABC-IX and DABC [61]. DABC tries to maintain

sufficient amount of diversity among the candidate solutions in order to allow more search

space explorations. DABC regularly measures the existing population diversity d and employs

either an explorative or exploitative perturbation based on the value of d. As suggested in [61],

ABC-IX is re-implemented with SN=20, MCN=5000 and limit=100 to compare with DABC.

Results presented in Table 6.5 show that ABC-IX performs better than DABC on two out of four

functions (f1 and f14) and shows mixed performance on the remaining two (f7 and f10). For the

10D variants of f7 and f10, ABC-IX performs either equally well or better than DABC, while DABC

performs better only on the larger 30D variants of f7 and f10. Thus, the overall performance of
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ABC-IX is better than DABC. The reason may be that DABC completely relies on its estimated

value of population diversity to choose between explorations and exploitations, while there is
no accurate and universally accepted metric for diversity that can correctly estimate the

maturity of an ongoing optimization process. Besides, DABC uses a fixed threshold diversity

value (i.e., dlow in [61]) to switch between explorations and exploitations, which may cause

repeated oscillations between conflicting explorative and exploitative perturbations and thus

may have reduced its convergence speed, compromising the final solution quality.

Table 6.4: Comparison of ABC-IX with CABC_S and CABC_H [60]. The best performance for
each function is marked with boldface font.

Function
CABC_S CABC_H ABC-IX

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 3.30e–19 2.00e-19 5.92e–18 3.56e–18 9.41e–48 2.04e–48

f7 6.33e+00 7.68e+00 4.80e–01 8.55e–01 3.21e–07 4.27e–08

f10 0 0 0 0 3.86e–52 8.72e–53

f12 1.30e–04 5.21e–06 1.27e–04 0 1.86e–01 4.58e–02

f13 1.83e–14 9.86e–15 8.35e–15 4.13e–15 1.14e–16 3.03e–17

f14 4.42e–02 2.99e–02 7.96e–03 9.06e–03 3.85e–51 1.66e–51

+ 4 4

– 2 2

≈ 0 0

Table 6.5: Performance comparison between ABC-IX and DABC [61]. Best results are marked
with boldface font; if not both the algorithms produce identical results.

Function D
DABC ABC-IX

Mean Std. Dev. Mean Std. Dev.

f1
10 2.01e–17 5.63e–17 0 0

30 2.01e–16 2.85e–17 2.82e–63 6.45e–64

f7
10 2.73e–03 7.04e–03 5.33e–04 1.91e–04

30 1.55e–05 2.53e–06 1.59e–03 4.05e–04

f10
10 0 0 0 0

30 0 0 4.29e–73 8.34e–74

f14
10 0 0 0 0

30 2.59e–16 1.22e–16 7.60e–67 8.16e-68

+ 4

– 2

≈ 2
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Next, ABC-IX is compared with the Chaotic ABC (ChABC) [62] algorithm. ChABC employs

chaotic search behavior during perturbations to produce new food positions from the existing

ones. Chaotic dynamics are produced by the logistic equations (eq. (4)–(7) in [62]) which

provide a simple mechanism to escape from local minima and avoid premature convergence.

For comparison, ABC-IX is executed for 5000 cycles with population size of 70 and limit=200, as

suggested in [62]. Results (Table 6.6) show that ABC-IX outperforms ChABC on as many as five

out of the six functions, while ChABC performs better on the remaining one function (f10) only.

The reason may be that ChABC employs the same chaotic strategy uniformly for all the

candidate solutions across the population, without considering their individual

exploitative/explorative requirements, while ABC-IX considers and customizes the degree of

explorations and exploitations separately for every candidate solution, which should be more

effective for complex optimization tasks.

Next, ABC-IX is compared with GABC [64], which is an exploitative ABC-variant that tries

to improve the convergence speed of ABC by using the information of the global best solution

found so far during the perturbation operations. For a fair comparison, ABC-IX is executed with

the same settings [64] and results are presented in Table 6.7. In [64], GABC is tested with

several values of its parameter C, but the best results are always observed with C = 1.0 or 1.5, so

Table 6.7 includes both the results. Results show that ABC-IX outperforms GABC on four out of

the five functions, while GABC performs better on the remaining one (f7) only. The reason may

be that the perturbation operation of GABC becomes too exploitative because of pushing the

candidate solutions explicitly towards the best solution. Increased exploitations, at the cost of

reduced explorations, may improve the solution quality for unimodal and low dimensional

Table 6.6: Comparison between ABC-IX and ChABC [62] based on the final solution quality.
The best result for each function is marked with boldface font.

Function D
ChABC ABC-IX

Mean Std. Dev. Mean Std. Dev.

f1 30 2.99e–16 3.54e–17 3.28e–97 7.82e–98

f7 30 6.33e–02 8.96e–02 8.15e–03 2.34e–03

f10 30 0 0 4.66e–105 1.40e–105

f12 30 3.81e–04 2.07e–04 2.76e–02 7.35e–03

f13 30 2.93e–14 2.99e–15 7.08e–26 2.23e–26

f14 30 2.70e–16 6.20e–17 3.60e–49 7.84e–50

+ 4

– 2

≈ 0
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functions, such as the f7 in Table 6.7, which has dimensionality D = 2 or 3, but is likely to fail for

more complex multimodal and high dimensional functions, as observed in the other four high

dimensional functions in Table 6.7 with D = 30 and 60.

Table 6.7: Comparison between ABC-IX and GABC [64] based on the final solution quality. The
best result for each function is marked with boldface font.

Function D
GABC (C=1.0) GABC (C=1.5) ABC-IX

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1
30 4.31e–16 7.49e–17 4.17e–16 7.36e–17 2.75e–107 8.54e–108

60 1.43e–15 1.43e–16 1.43e–15 1.37e–16 3.26e–42 7.25e–43

f7
2 3.93e–04 4.45e–04 1.68e–04 1.45e–04 2.93e–03 9.31e–04

3 2.63e–03 2.11e–03 2.65e–03 2.22e–03 6.23e–03 1.08e–03

f10
30 9.47e–15 2.15e–14 1.32e–14 2.44e–14 9.20e–107 3.45e–107

60 4.16e–13 1.77e–13 3.52e–13 1.24e–13 2.11e–48 5.66e–49

f13
30 3.31e–14 2.90e–15 3.21e–14 3.25e–15 4.14e–15 8.12e–16

60 1.04e–13 1.07e–14 1.00e–13 6.08e–15 5.19e–31 2.20e–31

f14
30 8.88e–17 8.45e–17 2.96e–17 4.99e–17 5.68e–105 2.00e–105

60 9.47e–16 7.84e–16 7.54e–17 4.12e–16 1.25e–52 4.16e–53

+ 4 4
– 1 1
≈ 0 0

Table 6.8: Comparison between ABC-IX and HJABC [65] based on their convergence speed.
The best result for each function is marked with boldface font.

Function D
Number of function evaluations

HJABC ABC-IX

f1 30 18322 14919
f2 30 12509 18656
f3 30 120315 –
f4 30 43939 37810
f7 30 102718 –
f8 30 17755 15205
f9 30 – 11415
f10 30 15376 22187
f13 30 54497 45337
f14 30 56855 35640
f15 30 99686 86636

+ 7

– 4

≈ 0
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Next, ABC-IX is compared with HJABC [65], which is a hybrid ABC-variant that intensifies

the degree of exploitations by hybridizing ABC with an efficient local search technique (i.e.,

Hooke Jeeves pattern search). Table 6.8 compares ABC-IX with HJABC based on the number of

function evaluations (NFE) required to achieve a predefined level of accuracy. Both ABC-IX and

HJABC are run with SN=25 and limit=SN  D, until either NFE reaches a predefined maximum

value (NFEmax) or the condition that 1

*f f ε  is satisfied, where *f is the global minimum, f

is the best function value found so far by the algorithm, 1ε = 10-8 and NFEmax=300000, as

suggested in [65]. For seven out of the eleven functions in Table 6.8, ABC-IX performs better

than HJABC, by showing a faster convergence speed, while HJABC performs better on the

remaining four. However, ABC-IX can’t achieve the predefined level of accuracy within NFEmax

function evaluations for two functions (f3 and f7), while HJABC fails to do so only for one

function (f9). In short, the overall performance of ABC-IX is quite comparable to HJABC. The

reason that HJABC often requires larger number of function evaluations, even after using the

efficient Hooke Jeeves local searcher [65], may be that — HJABC regularly tries to find an

appropriate search direction by exploring along the axis directions only, exploring just one

variable at a time, which is usually not suitable for the non-separable problems. Hence, this may

produce improper search directions that might have reduced the convergence speed of HJABC.

6.5.4 ABC-IX on CEC2005 Benchmark Functions
In addition to the standard benchmark functions, ABC-IX is also evaluated using the recently

introduced CEC2005 benchmark suite [76]. This new suite was introduced in the special session

on real parameter optimization at the 2005 IEEE Congress on Evolutionary Computation

(CEC’05) at Edinburgh, UK. We presented a brief overview on the CEC2005 suite functions in the

previous section 2.17 (Table 2.4). Further details on each of these functions are available in the

Appendix A and also in [76].

Using the CEC2005 benchmark suite, we now evaluate and compare ABC-IX with a few
more evolutionary and swarm intelligence algorithms, such as the self-adaptive differential
evolution (SADE) [230], dynamic multi-swarm PSO with local search (DMS-PSO) [231], PSO
with recombination by dynamic linkage discovery (PSO-RDL) [232] and the basic ABC
algorithm [11]. DMS-PSO [231] is an improved PSO variant that divides the candidate solutions
into several small, dynamic swarms. The swarms are regrouped frequently by using various
regrouping schedules and information is exchanged among the swarms. Also, a quasi-Newton
method is used to improve its local search ability. The next algorithm –– PSO-RDL [232] employs
a special recombination operator that dynamically discovers the linkages among the variables
and tries to identify theimportant building blocks that are present within good quality solutions,
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Table 6.9: Comparison of ABC-IX with DMS-PSO [231], PSO-RDL [232], SADE [230] and
standard ABC [11] algorithm on the non-composite functions F1‒F14 of the CEC2005
benchmark suite [76]. The best result for each function is marked with boldface font.

Function
DMS-PSO PSO-RDL SADE ABC ABC-IX

Mean Error Mean Error Mean Error Mean Error Mean Error

F1 0.00e+00 2.50e–14 0.00e+00 4.89e–17 5.92e–26

F2 1.30e–13 1.77e–13 1.05e–13 4.81e–14 8.73e–18

F3 7.01e–09 9.6e–02 1.67e–05 2.50e+03 6.22e+00

F4 1.8e–03 2.57e–07 1.42e–05 1.50e–16 2.82e–18

F5 1.16e–06 2.09e–07 1.23e–02 5.82e+01 1.04e–03

F6 6.89e–08 9.57e–01 1.20e–08 3.31e+00 9.28e–03

F7 4.52e–02 5.73e–02 1.99e–02 2.52e–01 5.25e–01

F8 2.00e+01 2.00e+01 2.00e+01 2.03e+01 2.00e+01

F9 0.00e+00 1.25e+01 0.00e+00 4.87e–17 3.82e–20

F10 3.62e+00 3.86e+01 4.97e+00 2.22e+01 2.11e+00

F11 4.62e+00 5.58e+00 4.89e+00 5.46e+00 3.17e+00

F12 2.40e+00 1.31e+02 4.50e–07 9.85e+01 6.99e–02

F13 3.69e–01 8.87e–01 2.20e–01 2.96e–02 4.72e–02

F14 2.36e+00 3.78e+00 2.92e+00 3.41e+00 2.05e+00

Table 6.10: Comparison of ABC-IX with DMS-PSO [231], PSO-RDL [232], SADE [230] and
standard ABC [11] algorithm on the hybrid composition functions F15‒F25 of the CEC2005
benchmark suite [76]. The best result for each function is marked with boldface font.

Function
DMS-PSO PSO-RDL SADE ABC ABC-IX

Mean Error Mean Error Mean Error Mean Error Mean Error

F15 4.85e+00 2.71e+02 3.20e+01 1.53e+01 3.17e+00

F16 9.48e+01 2.22e+02 1.01e+02 1.75e+02 7.37e+01

F17 1.10e+02 2.22e+02 1.14e+02 1.96e+02 2.02e+02

F18 7.61e+02 1.02e+03 7.19e+02 4.46e+02 4.12e+02

F19 7.14e+02 9.85e+02 7.05e+02 4.51e+02 3.92e+02

F20 8.22e+02 9.59e+02 7.13e+02 4.38e+02 4.49e+02

F21 5.36e+02 9.94e+02 4.64e+02 4.87e+02 4.74e+02

F22 6.92e+02 8.87e+02 7.32e+02 8.59e+02 6.98e+02

F23 7.30e+02 1.08e+03 6.64e+02 5.98e+02 5.57e+02

F24 2.24e+02 7.20e+02 2.00e+02 2.02e+02 2.00e+02

F25 3.66e+02 1.76e+03 3.76e+02 3.38e+02 3.53e+02
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which are then effectively used to produce better trial solutions from the existing ones.

SADE [230] is an improved DE variant that employs a learning strategy to gradually self-adapt

the values of some parameters of the standard DE algorithm. All these algorithms have been

compared on the CEC2005 suite functions with dimensionality D=10 and the number of

function evaluation set to 100,000. Both ABC and ABC-IX have colony size=20 and limit=200.

The remaining parameters of ABC-IX are α and t, which are set to 0.99 and 0.10, respectively.

The results of SADE [230], DMS-PSO [231] and PSO-RDL [232] are obtained directly from the

corresponding papers. Tables 6.9–6.10 present the mean error over 25 independent runs on

each function by all the algorithms. The results can be summarized by the following few points.

 Out of the 14 functions in Table 6.9 (i.e., non-composite functions F1‒F14), ABC-IX

becomes the best performer on five functions (F2, F4, F10, F11 and F14), outperforming

all other algorithms on these functions. Another algorithm — SADE also becomes the

best performer on five functions, while DMS-PSO and PSO-RDL show the best

performance only on three and one function, respectively.

 For the more complex hybrid composition functions F15‒F25 (Table 6.10), ABC-IX show

the best performance on as many as six (out of 11) functions, while DMS-PSO, SADE and

ABC show the best performance only on one, two and two functions, respectively.

 To compare ABC-IX with the basic ABC algorithm, it is remarkable that ABC-IX has

improved the results of ABC for as many as 20 out of the 25 functions. This clearly

indicates the effectiveness of the more explorative and self-adaptive design of ABC-IX,

especially for these more complex optimization tasks.

 As Fig. 6.8 demonstrates, ABC-IX show the minimum mean absolute error on the hybrid

composite functions F15–F25, outperforming all other algorithms in comparison. For

Figure 6.8: Comparison of ABC-IX with DMS-PSO [231], PSO-RDL [232], SADE [230] and
standard ABC [11] algorithm, based on their mean absolute errors values on the CEC2005
benchmark functions F1–F14 (on the left) and hybrid composite functions F15–F25 (right).
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the non-hybrid functions F1–F14, the error value of ABC-IX is much smaller than both of

ABC and PSO-RDL, and very similar to (actually, slightly worse than) the error of

DMS-PSO and SADE.

 Summarizing all the points above, we can conclude that the overall performance of

ABC-IX is at least comparable to and often better that all of its counterparts in the

comparison on the CEC2005 functions.

6.6 Conclusion and Suggestion for Further Study
This chapter introduces ABC-IX — an improved variant of the standard ABC algorithm [11], [75]

that attempts to improve its explorative capacity by incorporating two novel techniques — the

simulated annealing based probabilistic selection scheme and the self-adaptive perturbation

rate for every candidate solution of the population. While the more explorative selection

scheme contributes towards improving the explorative characteristics of ABC, the self-adaptive

perturbation scheme tries to customize and balance the degree of explorations and exploitation

around each candidate solution of the population. Empirical results show that ABC-IX performs

better than standard ABC and several other improved variants of the ABC algorithm.

There are several future research directions suggested by this study. Firstly, currently

ABC-IX uses a simple exponential cooling schedule for the system temperature T. A more

sophisticated cooling strategy, e.g., a strategy parameterized by the population diversity or

current explorative/exploitative requirements of the population or some other metric that can

estimate the current maturity of the ongoing optimization process, may be more effective to

balance between exploitations and explorations. Secondly, ABC-IX concentrates more on

improving the explorative capacity of the algorithm. Putting some more emphasis to control the

exploitations, especially around the best candidate solutions found so far, may further improve

the results. Thirdly, the quality of the final solution might be improved further by using an

efficient and exploitative local searcher after the execution of ABC-IX is over. Fourthly, the

techniques incorporated by ABC-IX are generic enough; so they can be easily incorporated or

hybridized with other suitable evolutionary, swarm intelligence and/or machine learning

techniques. This may lead to developing new algorithms with improved convergence speed,

final solution quality and better resilience against fitness stagnation and premature

convergence. Finally, ABC-IX has been applied mainly on continuous optimization problems. It
would be interesting to study how well ABC-IX performs on many other existing problems,

especially the discrete and real world ones.
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Chapter7
Artificial Bee Colony Algorithm with Adaptive

Explorations and Exploitations

7.1 Introduction
This chapter introduces an improved ABC variant — the ABC with Adaptive eXplorations and

eXploitations (ABC-AX2). ABC-AX2 augments each bee (i.e., candidate solution) of the bee colony

with three additional control parameters that control the perturbation rate, magnitude of

perturbations and proportion of explorative and exploitative perturbations. Together, all the

control parameters try to adapt the degree of global explorations and local exploitations around

each candidate solution by affecting how new trial solutions are produced from the existing

ones. The control parameters are automatically adapted at the individual solution level,

separately for each candidate solution, based on their successes and failures to produce better

trial solutions from the existing ones. We have evaluated ABC-AX2 on a number of benchmark

problems on continuous optimization and compared the results with the basic ABC algorithm

and several other recently introduced improved variants of the basic ABC algorithm.

7.2 Organization of the Chapter
The rest of this chapter is organized as follows. Section 7.3 explains how ABC-AX2 is significantly

different from most other existing ABC-variants. Section 7.4 introduces the proposed

algorithm — ABC-AX2, explains all its components, control parameters, its perturbation

procedure and the adaptive and self-adaptive schemes that guide the control parameters, each

topic with sufficient details and necessary pseudocode. The next section 7.5 presents the

performance evaluation of ABC-AX2 on two different benchmark suites, specifies the parameter



168

settings of ABC-AX2 and the other algorithms in comparison and compares their results with a
few comments and analysis on the results. Finally, section 7.6 presents a short discussion on the

results and concludes the chapter by leaving a few suggestions on future research directions.

7.3 Differences of ABC-AX2with Other Existing Works
There exist a number of recent works (e.g., [59]–[68]) that try to alter the explorative and/or

exploitative properties of the basic ABC algorithm, as explained and briefly reviewed in the

previous section 6.3. However, most of them try to improve either the exploitative (e.g., [64]–

[68]) or the explorative (e.g., [59]–[63]) characteristics of the basic ABC algorithm. The

exploitative improvements are usually based on intensifying the search around the best

solution(s) found so far (e.g., [64], [65], [66]) and/or hybridizing efficient local search operators

with the basic ABC algorithm (e.g., [65], [66], [67]), while the explorative improvements can be

based on more population diversity (e.g., [60], [61]) and/or more explorative initialization,

selection and/or perturbation operations ([59], [62], [63]). But only a few (e.g., [59], [61], [64])

of these algorithms have actually made efforts, to some extent, to balance between their

explorative and exploitative improvements. But most of them employ some fixed, rather than

adaptive, strategy to balance between explorations and exploitations. For example, DABC [61]

uses a fixed diversity threshold value dlow and tries to maintain the population diversity above

dlow by picking either explorative or exploitative perturbation. MABC [55] sets its control

parameter P=0.7 for all the test problems, while GABC [64] experiments with several fixed

values of its control parameter C within the range [0.5, 4.0]. Although ABC-SAM (chapter 5, also

Ref. [59]) employs an adaptive technique to adjust the step size for perturbations, it still uses a
fixed, exploitative perturbation rate and tries to impose an equal, rather than adaptive,

proportion of explorations and exploitations. Besides, none of these algorithms (e.g., [60]–[68]),

except ABC-SAM (chapter 5), considers the explorative/exploitative requirements of the

individual candidate solutions separately; rather they employ some population-wide global

strategy, identically across all the solutions, irrespective of their (possibly) different

explorative/exploitative requirements. However, the proposed ABC-variant — ABC-AX2

carefully tries to consider all these issues.

ABC-AX2 is significantly different from most other existing ABC-variants (e.g., [59]–[68])

in two important ways. Firstly, ABC-AX2 considers explorations and exploitations as

complementary, rather than conflicting, operations and emphasizes an adaptive balance

between explorations and exploitations, while most existing works are biased either towards

more explorations (e.g., [59]–[63]) or towards more exploitations (e.g., [64]–[68]). ABC-AX2

introduces three control parameters within each candidate solution that affect the degree and
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proportion of explorations and exploitations during its perturbations. The control parameters

are adapted gradually, cycle by cycle, using adaptive and self-adaptive techniques that

emphasize both explorations and exploitations in order to reach an adaptive balance between

them. Secondly, ABC-AX2 customizes the degree of explorations and exploitations at the

individual solution level, separately for each candidate solution of the population, while most

other existing ABC-variants employ some explorative and/or exploitative strategy at the entire

population level, identically for all the candidate solutions across the population. Customization

of explorations and exploitations at the individual solution level is more rational that some

population-wide global strategy (e.g., [60]–[68]), because each candidate solution is usually at a
different region of the search space with dynamically changing explorative/exploitative

requirements. This is why the adaptation of the control parameters, separately for each

candidate solution, as adopted by ABC-AX2, is more suitable to automatically cope with the

dynamically evolving exploitative/explorative requirements of the problem.

7.4 The Proposed Algorithms— ABC-AX2

ABC-AX2 tries to improve over the basic ABC algorithm by adapting and customizing the degree

of explorations and exploitations at the individual solution level, i.e., separately for every

candidate solution. ABC-AX2 includes three control parameters — pi, qi and ηi within each

solution xi. The control parameter pi controls the proportion of explorative and exploitative

perturbations; qi controls the perturbation rate to produce vi from xi; and, ηi=[ηi1, ηi2, …, ηiD]T is a
vector with D components, each one (say, ηij) of which controls the distribution of the scaling

factor values (i.e., φij values in (2.6)) during perturbations along the corresponding (i.e., j-th)

dimension. Each control parameter is gradually adapted to achieve higher rate of ‘successful’

perturbations. A perturbation is considered ‘successful’ only if the new trial solution vi has

higher fitness value than the original solution xi. In the following paragraphs, we explain the role

of each control parameter, how it affects explorations and exploitations in perturbations and

how it is gradually adapted by ABC-AX2.

A. Control parameter pi for adaptive proportion of explorations and exploitations:

The basic ABC algorithm uses the single perturbation scheme (2.6), with no attempt to

differentiate between explorative and exploitative perturbations. In contrast, ABC-AX2 employs

two different perturbation schemes — one for explorations, the other for exploitations. Both the

perturbation schemes are based on the same expression (2.6), but they differ in how xi selects
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Figure 7.1: Pseudocode for the ABC-AX2 algorithm. Here, the ‘*’ symbols mark the steps where
ABC-AX2 differ from the basic ABC algorithm in Fig. 2.9.

its supporting candidate solution xk in (2.6). For explorative perturbations, xk is picked by

three-tier explorative tournament selection (3T-ETS), while the exploitative perturbations use

two-tier exploitative tournament selection (2T-ETS) procedure. These selection procedures are

introduced in Fig. 7.2 and Fig. 7.3.

Explorative perturbation:

  ,= + ij ij ij ijkjv x φ x x where xk ~ Three_Tier_Explorative_Tournament_Selection(xi) (7.1)

Exploitative perturbation:

  ,= + ij ij ij ijkjv x φ x x where xk ~ Two_Tier_Exploitative_Tournament_Selection (xi) (7.2)

Here,  j D1,  2, … ,   and  k SN1,  2, … ,   are randomly picked indices, ijφ is uniform random

value produced from [-1, 1]. The explorative 3T-ETS scheme tries to pick a candidate solution xk
that is not only fit, but also dissimilar (from the current solution xi) and diverse (from the other

solutions of the population). Dissimilarity of xk from xi is measured as their Euclidean distance

(ED), while diversity of xk is estimated as its ED from the centroid of population of solutions.

High dissimilarity of xk from xi ensures a large |xkj  xij| in (7.1) to make a large, explorative

perturbation on xi, while the high diversity of xk tries to pull xi away from the population

centroid to promote more diversity and to avoid being trapped around local optima. In contrast,

Algorithm 7.1: The ABC Algorithmwith Adaptive Explorations and Exploitations (ABC-AX2)

1: Initialize a population of SN food source positions (candidate solutions) xi, for i = 1, 2, …, SN. Each xi is a vector
of D parameters: xi= [xi1, xi2, …, xiD]T

2: Evaluate the fitness of each food source position using (2.3).
3: repeat
4*: For each employed bee, perturb its current food source position xi to produce a new food source position vi

by using the perturbation operator of ABC-AX2 (i.e., the pseudocode in Fig. 7.5).
5: Evaluate each new solution vi by using (2.3). If vi has higher fitness than xi, then accept vi to replace xi.

Otherwise, discard vi.
6. Calculate the probability value wi associated with each food source position xi following the same way the

probability value pi was computed in (2.7).
7: For each onlooker bee, assign it to a food source position xi, proportionally based on the probability wi.
8*: For each onlooker bee, perturb the food source position of its employed bee xi to produce a new position

vi by using the perturbation operator of ABC-AX2 (i.e., the pseudocode in Fig. 7.5).
9: Evaluate each new solution vi using (2.3). If vi has higher fitness value than xi, then accept vi to replace xi.

Otherwise, discard vi.
10: If a food source has not improved during the last limit cycles, then abandon it and replace it with a new

randomly placed scout bee with its food source xi produced by (2.8).
11: Memorize the best food source position found so far.
12*: Set cycle counter C = C + 1. Also, for each food position xi, update the values of the control parameters pi, qi

and ηi by using (7.3)–(7.6).
13: until C = Maximum cycle number (MCN).
14: return the best food source position (i.e., candidate solution) found so far.
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the exploitative 2T-ETS scheme tries to pick an xk that is both fit and has high degree of

similarity to xi. This tries to ensure a small |xkj  xij| in (7.2) to make small, exploitative steps

towards the better regions of the search space.

But how does ABC-AX2 decide on whether to perform explorative or exploitative

perturbation on xi? This is done probabilistically — the current values of pi and 1–pi denote the

probability of exploitative and explorative perturbations on xi, respectively. The value of pi is

automatically adapted using the incremental learning experience of xi, which includes the

number of successes and failures by explorative and exploitative perturbations on xi during the

last τ1 cycles (learning period). Initially, pi is set to 0.5 for every solution xi, which makes

exploitative and explorative perturbations equally desired. After the initial learning period of τ1

cycles, ABC-AX2 starts adjusting the pi value for each xi. To do this, ABC-AX2 keeps record of the

number of successes and failures by exploitative and explorative perturbations on xi over the

last τ1 cycles. Suppose nsET and nfET (nsER and nfER) are the number of successes and failures,

respectively by the exploitative (explorative) perturbations on xi during the last τ1 cycles. Then,

success ratios of exploitative perturbation (SRET) and explorative perturbation (SRER) on xi are

computed as: ET
ET

ET ET

nsSR
ns nf

= + and .ER
ER

ER ER

nsSR
ns nf

= + Now, the adjusted probability of

exploitative perturbation on xi (i.e., the adjusted value of pi) is computed using (7.3), which also

ensures  ip0.1 0.9 to avoid the complete domination by either mode of perturbations.

0.9 0.1
  
  

  
i

ET

ER ET

SR
p = min ,  max ,

SR +SR
(7.3)

Once the value of pi for each candidate solution xi is computed by ABC-AX2 using (7.3), it is kept

unchanged for the next τ2 cycles (τ2 < τ1), which allows some time for the adjusted value of pi to

produce both successes and failures by each type of perturbation. ABC-AX2 regularly adjusts the

value of pi for each candidate solution xi using (7.3), periodically after each τ2 cycles, using the

recorded values of number of successes and failures by each type of perturbation on xi over the last

τ1 cycles. After some initial experiments, we have set τ1=50 and τ2=10.

B. Control parameter qi for self-adaptive perturbation rate: The basic ABC algorithm

perturbs only a single, random parameter of xi using (2.6). This usually produces the trial

solution vi in the neighbourhood of the original solution xi, which is exploitative. Perturbing a
single parameter allows search along a single dimension at a time. This may work well for

separable problems, but not suitable for non-separable problems where the parameters are not

independent. Fig. 7.4 shows an example using a 2D search space. Allowing perturbation of both

the parameters (i.e., xi1 and xi2) can produce vi along any possible direction from xi. This is more

efficient than perturbing either xi1 or xi2, one at a time, as is done by the basic ABC algorithm that
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Figure 7.2: Pseudocode for the three-tier explorative tournament selection (3T-ETS) for the
proposed ABC-AX2 algorithm

allows search along axis directions only. In contrast, ABC-AX2 tries to perform search along any

possible direction from xi by maintaining and automatically adapting a control parameter qi,

separately for every candidate solution xi, that controls the perturbation rate during producing

the trial solution vi from xi.

When ABC-AX2 wants to perturb a solution xi to produce vi, the value of qi is perturbed

first, with probability =u1 using (7.4), before perturbing any other parameter of xi. This

perturbed value of qi is inherited by vi, which is henceforth referred as vi.q and is used as the

probability of perturbing the parameters of xi during producing vi from xi. A more appropriate

value of vi.q is likely to produce fitter new solutions, which are supposed to survive better than

xi and produce better, newer solutions and hence, propagate the better value of the

perturbation probability. Thus a gradual self-adaptation towards better, more effective qi values

takes place, allowing a self-adaptive and appropriate perturbation rate for the candidate

solutions across the population.

Algorithm 7.2: Three_Tier_Explorative_Tournament_Selection(xi)
global P: Population of candidate solutions
global t1, t2, t3: Tournament sizes for the dissimilarity, diversity

and fitness based tournaments, respectively

begin
return Tier3_Dissimilarity_Tournament(xi)

end

procedure Tier3_Dissimilarity_Tournament(xi)
best ← Tier2_Diversity_Tournament()
for i from 2 to t3 do

next ← Tier2_Diversity_Tournament( )
if distance(next, xi) > distance(best, xi) then

best ← next
return best

procedure Tier2_Diversity_Tournament( )
best ← Tier1_Fitness_Tournament()
for i from 2 to t2 do

next ← Tier1_Fitness_Tournament()
if diversity(next) > diversity(best) then

best ← next
return best

procedure Tier1_Fitness_Tournament()
best ← a solution picked at random from P
for i from 2 to t1 do

next ← a solution picked at random from P
if fitness(next) > fitness(best) then

best ← next
return best
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q + rand * q q           if  rand  < u
v .q =

q                   otherwise
(7.4)

Here, u1 is the probability that the perturbation probability qi itself is perturbed before

perturbing the parameters of xi. In our implementation, we have set u1=0.10, qmax=1.0 and

qmin=1/D after some initial experiments.

Figure 7.3: Pseudocode for the two-tier exploitative tournament selection (2T-ETS) for the
ABC-AX2 algorithm

Figure 7.4: Search direction by ABC and ABC-AX2 in 2D search space

Algorithm 7.3: Two_Tier_Exploitative_Tournament_Selection(xi)
global P: Population of candidate solutions
global s1, s2: Tournament sizes for the similarity and fitness

based tournaments, respectively

begin
return Tier2_Similarity_Tournament(xi)

end

procedure Tier2_Similarity_Tournament(xi)
best ← Tier1_Fitness_Tournament( )
for i from 2 to s2 do

next ← Tier1_Fitness_Tournament( )
if distance(next, xi) < distance(best, xi) then

best ← next
return best

procedure Tier1_Fitness_Tournament( )
best ← a solution picked at random from P
for i from 2 to s1 do

next ← a solution picked at random from P
if fitness(next) > fitness(best) then

best ← next
return best
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C. Control parameter ηi for self-adaptive perturbation scaling factors: The basic ABC

algorithm draws the φij values in (2.6) uniformly at random from [-1,1], without any attempt to

perform adaptation of the φij values for more effective perturbations on xi. In contrast, ABC-AX2

produces the φij values from a Gaussian distribution with mean=0 and standard deviation=ηij,

where ηi= [ηi1, ηi2, …, ηiD]T is a control parameter vector that is maintained separately for each

candidate solution xi and is gradually self-adapted using (7.5) and (7.6). Although this scheme is

similar to the self-adaptation strategy adopted in some other evolutionary algorithms [58], it

has not yet been employed and tested with the ABC algorithm.

    0,1 0,1 ij jij
 Nη η exp τ + τ N  for j = 1, ... , D= (7.5)

(0, 1)



2if  rand < u

otherwise
i

i

i.
η

=
η

v η (7.6)

Here u2 is the probability that the new trial solution vi gets a control parameter vi.η that is

different from ηi of the original solution xi. We used u2=0.5. The N(0,1) and Nj(0,1) are random

numbers produced from the Normal distribution with mean=0 and standard deviation=1. The

subscript j in Nj(0,1) indicates that the random number is generated anew for each value of j.

The τ and τʹ are called learning rates and are set as


 
 
 

D
1

2 and  D
1

2 respectively, as

suggested in [58]. ABC-AX2 maintains a separate ηi for every solution xi, which enables each xi to

customize its own degree of explorations and exploitations, separately along the D different axis

directions of the search space, using the corresponding components of ηi=[ηi1, ηi2, …, ηiD]T. An

effective value for vi.η is likely to produce better, fitter new solutions that should survive better

than xi and thus a gradual self-adaptation towards better, more effective ηi values can take

place, cycle by cycle, across the population.

The key difference of ABC-AX2 from the basic ABC algorithm is how ABC-AX2 perturbs an

existing candidate solution xi using its control parameters pi, qi and ηi and how ABC-AX2

gradually adapts the values of these control parameters for xi. Fig. 7.5 presents the pseudocode

of the perturbation operation of both ABC and ABC-AX2, one after another, for an easy

comparison. The synergy and interaction of all three parameters — pi, qi and ηi make it possible

to gradually adapt and customize the degree of explorations and exploitations at the individual

solution level, separately for each candidate solution xi. This is more rational than a population

wide global parameter setting, because the scenario around each candidate solution can be

unique and very different from other solutions of the population. A candidate solution may need

to explore through several peaks, valleys and plateaus of the fitness landscape, which makes the

explorative/exploitative requirements around each candidate solution to change suddenly and

often in an unpredicted way. Therefore, attaching each solution xi with a number of
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self-adaptive control parameters can be very useful to dynamically adapt and customize the

degree of explorations and exploitations at the individual solution level.

Figure 7.5: The perturbation operation by ABC and ABC-AX2

Algorithm 7.4: Perturbation_by_ABC
input: An existing candidate solution xi
output: Perturbed candidate solution vi

begin
vi= xi
k = Uniform_Random ~ {1, 2, …, SN} comment: SN is the number of employed or onlooker bees
j = Uniform_Random ~ {1, 2, …, D} comment: D is the dimensionality of the problem
φij = Uniform_Random ~ [-1, 1]
vij = xij + φij (xkj – xij)
return vi

end

Algorithm 7.5: Perturbation_by_ABC-AX2
input: An existing candidate solution xi
output: Perturbed candidate solution vi

begin
vi= xi
r1= Uniform_Random ~ [0, 1]
if r1 ≤ u1 then comment: u1 is the probability that the trial solution vi gets a
r2 = Uniform_Random ~ [0, 1] different perturbation probability, vi.q than that of the
vi.q = qmin + (qmax – qmin) r2 original solution xi. We used u1=0.1, qmax=1.0, qmin =

else
vi.q = qi

endif

r3 = Uniform_Random ~ [0, 1]
if r3 ≤ u2 then comment: u2 is the probability that the scaling factor vector ηi
for j = 1 to D do is perturbed first, before producing the trial

vi.ηj = ηij exp(τʹ N(0,1)+ τ Nj(0,1)) solution vi from xi. We used u2 =0.5
enddo

else
vi.η = ηi

endif

r4= Uniform_Random ~ [0, 1]
if r4 ≤ pi then comment: Probability of exploitative perturbation on xi is pi

Select xk using the two-tier exploitative tournament selection scheme
else

Select xk using the three-tier explorative tournament selection scheme
endif

for j = 1 to D do
r5 = Uniform_Random ~ [0, 1]
if r5 ≤ vi.q then comment: Perturb each parameter of xi with probability=vi.q

φij = Gaussian_Random(0, vi.ηj)
vij = xij + φij (xkj – xij)

endif
enddo

return vi
end
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7.5 Evaluation of ABC-AX2 on Benchmark Functions
To evaluate the performance of ABC-AX2 and to compare it with the basic ABC [11] and some

other recent ABC-variants (e.g., [59]–[68]), we have used two different suites of benchmark

problems. First, ABC-AX2 is tested on a suite of 30 standard benchmark functions, including both

unimodal and multimodal, separable and non-separable, low and high dimensional functions.

Later, ABC-AX2 is also tested on a recent set of benchmark functions introduced in the special

session on real parameter optimization at CEC2005 [76]. The new suite consists of 25

benchmark functions of more complexity, including many shifted, rotated, scaled, expanded and

hybrid composite functions. Both the benchmark suites are briefly introduced in the previous

section 2.17 (Tables 2.3, 2.4). Further details on each benchmark function can be found in the

Appendix A and also in [76].

7.5.1 ABC-AX2 on Standard Benchmark Functions
Table 7.1 presents the results of ABC-AX2 on the 30 standard benchmark functions (Table 2.3)

and compares the results with the basic ABC [11] and ABC with self-adaptive mutation

(ABC-SAM) (chapter 5). All the algorithms made 50 independent runs on each function and the

mean and standard deviation of the best found solutions are presented in Table 7.1. The

algorithms have three parameters in common — population size SN, maximum cycle number

MCN and limit. For functions f1–f18 with D=30, we used SN=100, MCN=1000 and limit=100. For

the larger variants with D=60, the value of SN is kept the same (i.e., 100), but limit and MCN are

set to 200 and 2000, respectively. For the low dimensional f19–f30, we used SN=100, MCN=100,

limit=10D. Other parameters of ABC-AX2 are set as: τ1=50, τ2=10, u1=0.1, u2=0.5, qmin=1 D ,

qmax=1.0. Tournament sizes for 3T-ETS and 2T-ETS selection schemes (Fig. 7.2, 7.3) are set as:

t1=t2=6, t3=4 and s1=6, s2=4. During initializations, the control parameter pi of each solution xi is

set to 0.5, and the qi and ηij values are initialized to random values from [qmin, qmax] and [-1, 1].

These values are chosen with some initial evaluations and not meant for optimum.

 ABC vs. ABC-AX2: Out of the 18 high dimensional functions f1–f18, ABC-AX2 outperforms

ABC on as many as 16 functions, shows similar performance on one (f8), while ABC

manages to perform better only on one function (f7). Each time, the difference is

statistically significant, as measured by t-test with 95% confidence interval. For the low

dimensional functions f19–f30, both ABC and ABC-AX2 perform equally well on eight

functions, while ABC-AX2 performs better on the remaining four.

 ABC-SAM vs. ABC-AX2: On all of the 30 functions, ABC-AX2 performs either better than

or as well as ABC-SAM. For the high dimensional functions f1–f18, ABC-AX2 significantly
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outperforms ABC-SAM on as many as 16 functions and shows similar performance on

two (f7 and f8). On most (nine out of twelve) of the low dimensional functions f19–f30,

both the algorithms perform equally well (i.e., t-test does not find any significant

difference between the results), though ABC-AX2 performs better on the remaining three.

Table 7.1: Comparison of ABC-AX2 with basic ABC [11] and ABC-SAM (chapter 5) on the 30
standard benchmark suite functions. The best results are marked with boldface font.

No fmin D G
ABC ABC-SAM (K=10) ABC-AX2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 0
30 1000 2.45e–11 7.72e–12 4.18e–14 5.37e–15 5.51e–24 3.73e–25

60 2000 3.75e–10 2.01e–11 6.09e–13 7.24e–14 9.43e–28 7.26e–29

f2 0
30 1000 5.05e–07 1.74e–07 2.47e–08 2.35e–09 4.23e–15 3.54e–16

60 2000 5.58e–06 1.17e–06 5.06e–07 2.97e–07 2.98e–17 1.07e–17

f3 0
30 1000 4.18e+01 5.90 1.69e+01 1.43 6.60e–02 5.21e–03

60 2000 7.31e+01 6.88 3.10e+01 5.12 2.78 0.77

f4 0
30 1000 8.32e–10 9.75e–11 3.95e–12 5.77e–13 3.42e–16 8.83e–18

60 2000 4.50e–09 5.64e–10 7.54e–11 2.14e–11 8.84e–20 5.45e–21

f5 0 24 1000 6.61e+00 1.07e+00 9.24e–01 2.08e–01 2.23e–02 3.75e–03

f6 0
30 1000 6.67e–01 1.21e–08 2.16e–03 6.37e–04 5.91e–05 5.67e–06

60 2000 6.66e–01 1.05e–07 7.76e–02 1.63e–02 8.33e–05 1.71e–05

f7 0
30 1000 4.25e–01 1.18e–01 2.28e+01 3.75 2.39e+01 3.66

60 2000 2.02e–01 6.92e–02 4.96e+01 7.80 5.15e+01 7.69

f8 0
30 1000 0 0 0 0 0 0
60 2000 0 0 0 0 0 0

f9 0
30 1000 8.60e–13 8.32e–13 3.66e–16 1.44e–17 8.87e–34 6.78e–35

60 2000 9.31e–12 7.17e–12 4.76e–15 5.32e–16 6.31e–32 2.16e–33

f10 0
30 1000 1.72e–14 1.56e–14 1.26e–16 2.11e–17 4.68e–24 9.03e–26

60 2000 2.84e–13 8.01e–14 8.55e–15 3.15e–16 6.12e–31 8.67e–33

f11 0
30 1000 2.33e–08 7.49e–09 4.60e–10 8.85e–11 1.04e–13 3.16e–14

60 2000 6.64e–07 1.51e–07 6.80e–09 8.77e–10 4.25e–13 7.32e–14

f12
–12569.5 30 1000 –11346.79 2.77e+02 –12416.19 4.02e+01 –12569.48 1.50e–02

–25138.9 60 2000 –22530.82 4.08e+02 –23805.93 2.84e+02 –25016.6 1.89e+01

f13 0
30 1000 2.93e–06 3.38e–07 9.26e–08 1.89e–08 8.13e–13 6.71e–14

60 2000 4.65e–06 1.07e–06 2.07e–08 3.55e–08 3.62e–14 1.15e–15

f14 0
30 1000 4.55e–08 6.54e–09 8.36e–10 5.08e–11 5.63e–23 7.35e–25

60 2000 8.01e–07 2.64e–07 1.56e–10 6.90e–11 7.04e–31 5.77e–32
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Table 7.1 (continued): Comparison of ABC-AX2 with basic ABC [11] and ABC-SAM (chapter 5) on
the standard benchmark suite functions.

No fmin D G
ABC ABC-SAM (K=10) ABC-AX2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f15 0
30 1000 3.34e–04 3.76e–05 2.22e–08 3.93e–09 8.56e–13 1.56e–13

60 2000 7.49e–03 9.58e–04 1.17e–08 2.35e–09 5.37e–13 1.25e–13

f16 0
30 1000 3.36e–01 9.58e–02 5.78e–04 6.31e–05 6.46e–09 8.32e–10

60 2000 8.99e–01 3.09e–01 9.20e–03 4.03e–03 5.38e–08 9.19e–10

f17 0
30 1000 5.47e–12 2.09e–13 9.78e–12 3.89e–12 3.85e–14 4.93e–15

60 2000 7.47e–12 2.74e–12 1.32e–11 5.15e–11 3.50e–14 2.60e–15

f18 0
30 1000 2.63e–03 1.89e–04 3.06e–02 8.59e–03 2.33e–21 7.55e–22

60 2000 2.66e–03 7.90e–04 5.11e–02 7.39e–03 7.52e–26 1.29e–26

f19 1 2 100 1.04 0.04 1.03 0.03 1.01 0.01

f20 3.07e–04 4 100 5.98e–04 7.22e–05 4.32e–04 1.09e–05 3.10e–04 8.73e–06

f21 –1.0316 2 100 –1.0316 0 –1.0316 0 –1.0316 0

f22 0.398 2 100 0.398 7.12e–08 0.398 2.75e–07 0.398 1.83e–07

f23 –3.86 3 100 –3.86 7.09e–07 –3.86 1.54e–08 –3.86 6.77e–10

f24 –3.32 6 100 –3.32 4.74e–13 –3.32 6.26e–14 –3.32 2.61e–15

f25 –10.15 4 100 –9.61 0.14 –10.14 3.68e–07 –10.15 9.15e–08

f26 –10.40 4 100 –10.40 8.61e–03 –10.40 7.94e–03 –10.40 2.56e–03

f27 –10.54 4 100 –10.52 0.01 –10.54 6.77e–07 –10.55 7.84e–08

f28 0 10 100 13.77 3.80 4.02 0.39 4.19e–01 6.54e–02

f29 -9.66015 10 100 -9.66015 0 -9.66015 0 -9.66015 0

f30 -1.4 10 100 –0.78 0.09 –1.04 0.06 –1.28 0.03

Summary
(t-Test)

+ 20 19

– 1 0

≈ 9 11

 For almost all the functions, ABC-AX2 shows very low standard deviation of its results.

On average, the magnitude of the standard deviation of the results by ABC-AX2 of is only

around 9% of their mean, while the standard deviation of the results of ABC and

ABC-SAM is 18% and 17%, respectively, of their mean results (Fig. 7.7). ABC-AX2 also

shows the smallest mean absolute error in comparison to ABC and ABC-SAM, as shown

by Fig. 7.7. This indicates the high degree of both robustness and consistency of ABC-AX2

over all these standard benchmark functions.

 The ‘+’, ‘–’ and ‘≈’ symbols at the bottom rows count the number of functions where

ABC-AX2 produces significantly better, worse and similar results, respectively compared

to ABC or ABC-SAM. Out of the 30 functions, ABC-AX2 performs significantly better than
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ABC and ABC-SAM on 20 and 19 functions, shows similar performance on 9 and 11

functions, respectively, while ABC performs better on one function (f7) only. Thus the

overall performance of ABC-AX2 is much better than both ABC and ABC-SAM.

Fig. 7.6 shows the convergence graphs of ABC, ABC-SAM and ABC-AX2 for three unimodal

(f1, f4, f8) and three multimodal (f12, f13, f18) functions with D=30. ABC-AX2 shows far better

convergence characteristics than its counterparts for all these functions. For example, consider

the functions f12 and f18, where both ABC and ABC-SAM converges to a local minimum and gets

stuck there till the end of their execution. In contrast, ABC-AX2 easily reaches the global

minimum for f12 and shows no sign of fitness stagnation for f18, even after reaching the vicinity

of the global minimum. For some functions, e.g., f1, f4, f13 and f18, ABC-SAM initially shows

somewhat higher convergence speed than ABC-AX2, but eventually it either gets stuck at local

optima (f13, f18) or gradually slows down (f1, f4) and at the end, ABC-AX2 shows significantly

higher convergence speed than both ABC and ABC-SAM. Fig. 7.6 shows that ABC-AX2 has always

reached very close proximity to the global minimum, while ABC and ABC-SAM can get stuck at

Figure 7.6: Convergence characteristics of ABC, ABC-SAM and ABC-AX2 on three
unimodal (f1, f4, f8) and three multimodal (f12, f13, f18) functions. The vertical axis is
the function value, while the horizontal axis is the number of cycles elapsed.
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several intermediate local optima (note the semi-flat and flat regions of the plot of ABC in f4 and

ABC-SAM in f13). Previously Table 7.1 considered the performance of all three algorithms to be

similar on f8, but Fig. 7.6 now reveals that ABC-AX2 actually reaches the global minimum of f8
much earlier (i.e., fewer than 300 cycles) than both ABC-SAM and ABC.

Results in Table 7.1 and Fig. 7.6 indicate that both ABC-SAM and ABC-AX2 show improved

results and better convergence characteristics than the basic ABC algorithm. Both of them

outperform ABC on most of the high dimensional functions f1–f18. ABC-SAM maintains a scaling

factor value (SFi) for every individual bee xi and periodically adjusts the value of SFi using two

different distributions — one explorative and the other exploitative. The gradual adjustment of

the SFi values performs an automatic self-adaptation of perturbation step size, separately for

every individual bee xi. However, the results from ABC-AX2 are further improved and it

outperforms both ABC and ABC-SAM on most (16 out of the 18) of the high dimensional

functions f1–f18, including all the multimodal functions f10–f18. The reason may be that ABC-AX2

employs the idea of self-adaptation not only to perturbation scaling factors (using ηi), as is done

by ABC-SAM (by using SFi), but also to perturbation rate (using qi) and proportion of explorative

and exploitative perturbations (using pi). The synergy and interaction among pi, qi and ηi
improves the results further for ABC-AX2, as has been shown later (Table 8.24, chapter 8). The

only function that seems to present some difficulty to both ABC-AX2 and ABC-SAM is the

Rosenbrock function f7. Although it is often regarded as a unimodal function, as in [11], [57],

there is some evidence (e.g., [228], [229]) that it contains several minima in high dimensional

instances. The global minimum is situated inside a long, narrow valley which is almost flat.

Finding the valley is not difficult, but locating the global minimum in the almost flat valley is

extremely difficult. This is like searching for a needle in a haystack, because the flat region does

not provide any useful gradient direction pointing towards the global minimum.

Figure 7.7: Comparison among ABC, ABC-SAM and ABC-AX2, based on their mean
absolute errors (on the left) and the ratio of the standard deviation to the mean of
errors (on the right) over the standard benchmark functions f1–f30.
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7.5.2 Comparison of ABC-AX2with Other ABC-variants
In this section we compare ABC-AX2 with some other recent variants of ABC, each of which

alters the explorative and/or exploitative properties of the basic ABC algorithm, such as

cooperative ABC (CABC) [60], ABC with diversity strategy [61], ABC with improved explorations

(ABC-IX) (chapter 6), chaotic ABC (ChABC) [62], Gbest-guided ABC (GABC) [64] and Hooke

Jeeves ABC (HJABC) [65]. The first three variants (e.g., [60]–[62]) primarily increase the degree

of explorations to achieve better strength against local optima and premature convergence,

while the last two variants (e.g., [64], [65]) mainly increase the intensity of exploitations to

attain better convergence speed than the basic ABC algorithm.

First, ABC-AX2 is compared with CABC [60], which is a cooperative variant of the basic ABC

algorithm. CABC has been introduced in two different versions — CABC_S and CABC_H. In order

to perform more explorations, CABC_S decomposes the search space into multiple sub-spaces

and employs different bee colonies to search and explore the different sub-spaces. The other

variant, CABC_H tries to perform more exploitations than CABC_S by repeatedly alternating

between explorative CABC_S and exploitative ABC. For comparison, ABC-AX2 is re-implemented

with the same settings [60] — SN = 40, no. of function evaluations FE = 100,000 and limit=SN

D. Table 7.2 shows that ABC-AX2 significantly outperforms both the CABC variants on four out of

the six benchmark functions, while CABC_S and CABC_H perform better on one or two functions

only. Thus the overall performance of ABC-AX2 is better than the CABC variants. The reason may

lie in the difficulties that the CABC variants have to face to properly decompose the search space

into multiple sub-spaces and then, to effectively combine the partial solutions into a complete

solution to the whole problem.

The next comparison is made between ABC-AX2 and DABC [61]. DABC tries to maintain

sufficient amount of diversity among the candidate solutions to allow more search space

explorations. DABC regularly measures the existing population diversity d and employs either

its explorative or exploitative perturbation based on the value of d. As suggested in [61],

ABC-AX2 is re-implemented with SN=20, MCN=5000 and limit=100 to compare with DABC.

Results presented in Table 7.3 show that ABC-AX2 performs better than DABC on two out of four

functions (f1 and f14), shows similar performance on one (f10), while DABC performs better on

the remaining one function (f7) only. The reason may be that DABC completely relies on its

estimated value of population diversity to choose between explorations and exploitations, while

there is no accurate and universally accepted metric for diversity that can correctly measure the

maturity of the optimization process. Besides, DABC uses a naïve strategy of using a fixed

threshold diversity value (i.e., dlow in [61]) to switch between explorations and exploitations,
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which may cause repeated oscillations between conflicting explorative and exploitative

perturbations and thus may have reduced its convergence speed.

Table 7.2: Comparison of ABC-AX2 with CABC_S [60] and CABC_H [60]. Boldface font marks the
best performance for each function.

Function
CABC_S CABC_H ABC-AX2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 3.30e–19 2.00e-19 5.92e–18 3.56e–18 7.22e–51 4.08e–52

f7 6.33e+00 7.68e+00 4.80e–01 8.55e–01 5.94e+00 4.35e+00

f10 0 0 0 0 8.56e–54 3.83e–55

f12 1.30e–04 5.21e–06 1.27e–04 0 1.04e–06 7.98e–08

f13 1.83e–14 9.86e–15 8.35e–15 4.13e–15 7.14e–18 7.83e–19

f14 4.42e–02 2.99e–02 7.96e–03 9.06e–03 3.84e–54 2.04e–55

+ 4 4

– 1 2

≈ 1 0

Table 7.3: Comparison between ABC-AX2 and DABC [61]. Best results are marked with bold
font; if not both the algorithms produce identical results.

Function D
DABC ABC-AX2

Mean Std. Dev. Mean Std. Dev.

f1
10 2.01e–17 5.63e–17 0 0

30 2.01e–16 2.85e–17 7.26e–51 6.47e–52

f7
10 2.73e–03 7.04e–03 9.46e–02 8.22e–03

30 1.42e–02 2.53e–02 5.88e–01 8.32e–02

f10
10 0 0 0 0

30 0 0 0 0

f14
10 0 0 0 0

30 2.59e–16 1.22e–16 1.78e–50 5.28e–51

+ 3

– 2

≈ 3
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Next, we compare ABC-AX2 to ABC with improved explorations (ABC-IX), which is another

improved variant of the ABC algorithm. ABC-IX alters both the selection and perturbation

operators of ABC in a more explorative manner. The selection operator is modified to accept not

only better but also worse solutions, using a probabilistic simulated annealing-like procedure,

while the perturbation operator is modified by incorporating a self-adaptive perturbation rate.

Because of its improved explorative characteristics, ABC-IX performs better than many other

existing ABC-variants (chapter 6). Table 7.4 compares ABC-AX2 with ABC-IX on the high

dimensional multimodal functions f10–f18 with the following parameter settings — SN=50,

MCN=1000 and limit=100. Results show that ABC-AX2 often (6 out of 9 functions) performs

significantly better than ABC-IX, while ABC-IX performs better on three functions only. This

clearly indicates the better effectiveness of the adaptive and self-adaptive schemes of ABC-AX2

over the more explorative scheme of ABC-IX.

Next, ABC-AX2 is compared with the Chaotic ABC (ChABC) [62] algorithm. ChABC employs

chaotic search behavior during perturbations to produce new food positions from the existing

ones. Chaotic dynamics are produced by the logistic equations (eq. (4)–(7) in [62]) which

provide a simple mechanism to escape from local minima and avoid premature convergence.

For comparison, ABC-AX2 is executed for 5000 cycles with population size of 70 and limit=200,

as suggested in [62]. Results (Table 7.5) show that ABC-AX2 outperforms ChABC on as many as

five out of the six functions, while ChABC performs better on the remaining one function (f10)

only. The reason may be that ChABC employs same chaotic strategy uniformly for all the

candidate solutions across the population, without considering their individual

exploitative/explorative requirement, while ABC-AX2 considers and customizes the degree of

explorations and exploitations separately for every candidate solution, which should be more

effective for complex optimization tasks.

Next, ABC-AX2 is compared with GABC [64]. GABC is an exploitative ABC-variant that tries

to improve the convergence speed of ABC by using the information of the global best solution

found so far into the perturbation scheme (2.6) of basic ABC.  For fair comparison, ABC-AX2 is

executed with the same settings [64] and results are presented in Table 7.6. In [64], GABC is

tested with several values of its parameter C, but the best results are always observed with C =

1.0 or 1.5, so Table 7.6 includes both the results. Results show that ABC-AX2 outperforms GABC

on four out of the five functions, while GABC performs better on the remaining one (f7) only. The

reason may be that the perturbation operation of GABC becomes too exploitative by pushing its
candidate solutions towards the best solution found so far. Increased exploitations, at the cost of
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reduced explorations, may improve the final solution quality for the unimodal and low

dimensional function f7, but is likely to fail for the other four high dimensional functions in

Table 7.6 with D=30 and 60.

Table 7.4: Comparison between ABC-AX2 and ABC-IX (chapter 6) based on the final solution
quality. Best results are marked with boldface font.

Function D
ABC-IX ABC-AX2

Mean Std. Dev. Mean Std. Dev.

f10 30 6.14e–41 8.11e–42 8.60e–19 1.14e–19

f11 30 8.51e–12 2.93e–12 4.42e–15 7.47e–16

f12 30 1.56e+02 5.69e+01 5.06e–01 1.77e–01

f13 30 3.82e–15 4.28e–16 3.21e–11 8.09e–12

f14 30 9.70e–40 8.30e–41 7.56e–18 2.70e–18

f15 30 8.21e–10 9.34e–11 2.48e–17 4.09e–18

f16 30 6.74e–07 2.16e–07 3.85e–08 8.12e–09

f17 30 7.40e–11 2.06e–11 2.48e–12 7.09e–13

f18 30 2.61e–03 1.96e–04 1.85e–16 3.12e–17

+ 6

– 3

≈ 0

Table 7.5: Comparison between ABC-AX2 and ChABC [62] based on the final solution quality.
Best results are marked with boldface font.

Function D
ChABC ABC-AX2

Mean Std. Dev. Mean Std. Dev.

f1 30 2.99e–16 3.54e–17 9.76e–119 7.17e–120

f7 30 6.33e–02 8.96e–02 8.48e–07 4.99e–08

f10 30 0 0 8.60e–129 5.14e–130

f12 30 3.81e–04 2.07e–04 5.32e–06 6.04e–07

f13 30 2.93e–14 2.99e–15 2.48e–17 4.09e–18

f14 30 2.70e–16 6.20e–17 1.85e–129 5.75e–130

+ 5

– 1

≈ 0
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Table 7.6: Comparison between ABC-AX2 and GABC [64] based on the final solution quality.
Best results are marked with boldface font.

Function D
GABC (C=1.0) GABC (C=1.5) ABC-AX2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1
30 4.31e–16 7.49e–17 4.17e–16 7.36e–17 9.66e–105 8.05e–106

60 1.43e–15 1.43e–16 1.43e–15 1.37e–16 1.98e–36 3.58e–37

f7
2 3.93e–04 4.45e–04 1.68e–04 1.45e–04 7.88e–03 5.35e–04

3 2.63e–03 2.11e–03 2.65e–03 2.22e–03 2.13e–01 6.12e–02

f10

30 9.47e–15 2.15e–14 1.32e–14 2.44e–14 6.30e–108 1.52e–109

60 4.16e–13 1.77e–13 3.52e–13 1.24e–13 7.42e–40 3.75e–41

f13

30 3.31e–14 2.90e–15 3.21e–14 3.25e–15 4.04e–19 8.28e–20

60 1.04e–13 1.07e–14 1.00e–13 6.08e–15 1.63e–17 2.66e–18

f14

30 8.88e–17 8.45e–17 2.96e–17 4.99e–17 9.50e–101 2.00e–102

60 9.47e–16 7.84e–16 7.54e–17 4.12e–16 1.81e–33 3.25e–34

+ 4 4

– 1 1

≈ 0 0

Next, ABC-AX2 is compared with HJABC [65], which is a hybrid ABC-variant that intensifies

the degree of exploitations by hybridizing basic ABC with an efficient local search technique (i.e.,

Hooke Jeeves pattern search). Table 7.7 compares ABC-AX2 and HJABC based on the number of

function evaluations (NFE in [65]) required to achieve a predefined level of accuracy. Both

ABC-AX2 and HJABC are run with SN=25 and limit=SND, until either NFE reaches a predefined

maximum value (NFEmax) or the condition that 1 *f f ε is satisfied, where *f is the global

minimum, f is the best function value found so far by the algorithm, 1ε =10-8 with NFEmax =

300000, as suggested in [65]. For seven out of the eleven functions in Table 7.7, ABC-AX2

performs better than HJABC, by showing a faster convergence speed, while HJABC performs

better on the remaining four. However, ABC-AX2 can’t achieve the predefined level of accuracy

within NFEmax function evaluations for two functions (f3 and f7), while HJABC fails to do so only

for one function (f9). In short, the overall performance of ABC-AX2 is quite comparable to HJABC.

The reason that HJABC often requires larger number of function evaluations, even after using

the efficient Hooke Jeeves local searcher [65], may be that – HJABC regularly tries to find an

appropriate search direction by exploring along the axis directions only, exploring just one

variable at a time, which is not suitable for the non-separable problems. Hence, this may

produce improper search directions that can reduce the convergence speed of HJABC.



186

Table 7.7: Comparison between ABC-AX2 and HJABC [65] based on convergence speed. Best
results are marked with boldface font.

Function D
Number of function evaluations

HJABC ABC-AX2

f1 30 18322 13805

f2 30 12509 17987

f3 30 120315 –

f4 30 43939 35502

f7 30 102718 –

f8 30 17755 13986

f9 30 – 12230

f10 30 15376 20713

f13 30 54497 42609

f14 30 56855 31582

f15 30 99686 81678

+ 7

– 4

≈ 0

7.5.3 ABC-AX2 on CEC2005 Benchmark Functions
In addition to the standard benchmark functions, as described in the previous subsections,

ABC-AX2 is also evaluated using a recent benchmark suite introduced in the special session on

real parameter optimization at CEC2005 [76]. The functions in the CEC2005 suite are more

complex and challenging to optimize, because they include many shifted, rotated, scaled,

expanded and hybrid composition of other benchmark functions. An interested reader can find

further details on each of the CEC2005 functions in the previous section 2.17 (Table 2.4), the

Appendix A and in [76].

Using the CEC2005 suite, ABC-AX2 is evaluated and compared with some other existing

evolutionary and swarm intelligence algorithms, such as dynamic multi-swarm PSO with local

search (DMS-PSO) [231], PSO with recombination by dynamic linkage discovery

(PSO-RDL) [232], self-adaptive differential evolution (SADE) [230], covariance matrix

adaptation evolution strategy with restarts (R-CMAES) [234] and the basic ABC algorithm [11].

DMS-PSO [231] is an improved PSO variant that divides the candidate solutions into several

small, dynamic swarms. The swarms are regrouped frequently by using various regrouping
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schedules and information is exchanged among the swarms. Also, the quasi-Newton method is
employed to improve its local search ability. The next algorithm — PSO-RDL [232] introduces a
special recombination operator that dynamically discovers the linkages among the variables

and tries to identify the important building blocks that are present among the good quality

solutions, which are then effectively used to produce better trial solutions from the existing

ones. SADE [230] is an improved DE variant that employs a learning strategy to gradually

self-adapt some parameter values of the standard DE algorithm. CMAES [234] is an evolution

strategy that maintains a full covariance matrix of Normal mutation distributions and

continuously adjusts the matrix to adapt the mutation step size for more successful mutations.

The R-CMAES improves the basic CMAES algorithm by incorporating a restart strategy with

successively increasing population size whenever the basic CMAES prematurely converges to

local optima. A larger population is likely to make the search more explorative and robust

against local optima. All the algorithms have been compared on the CEC2005 suite functions

with D=10 and the number of function evaluations set to 100,000. Both ABC and ABC-AX2 have

colony size=20 and limit=200. The values of the remaining parameters of ABC-AX2 are the same

as before. The results of DMS-PSO [231], PSO-RDL [232], SADE [230] and R-CMAES [234] are

obtained directly from the corresponding papers. Tables 7.8–7.9 present the mean error over

25 independent runs on each function by all the algorithms. The results have been summarized

by following points.

 Out of the first 14 functions (i.e., non-composite functions F1‒F14), ABC-AX2 becomes

the best performer on five functions (F2, F4, F11, F13 and F14), outperforming all other

algorithms on these functions. In contrast, DMS-PSO and SADE show best performance

only on two and three functions, respectively. However, R-CMAES also becomes best

performer on five functions, i.e., the same number of functions as of ABC-AX2.

 For the hybrid composition functions F15‒F25, R-CMAES and ABC-AX2 show the best

performance on six and five functions, respectively, while DMS-PSO and SADE have

managed to perform best only on one function each.

 To summarize, the overall performance of ABC-AX2 is clearly better that DMS-PSO,

PSO-RDL and SADE, and quite comparable to R-CMAES.

 To compare ABC-AX2 with the basic ABC algorithm, it is remarkable that ABC-AX2 has

improved the results of ABC for as many as 24 out of the 25 functions. This clearly

indicates the better effectiveness of ABC-AX2 for more complex optimization tasks.
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Table 7.8: Comparison of ABC-AX2 with DMS-PSO [231], PSO-RDL [232], SADE [230],
R-CMAES [234], and basic ABC [11] on the non-composite functions F1‒F14 of the CEC2005
benchmark suite [76]. Best results are marked with boldface font.

Function DMS-PSO PSO-RDL SADE R-CMAES ABC ABC-AX2

F1 0.00e+00 2.50e–14 0.00e+00 5.20e–09 4.89e–17 5.63e–16

F2 1.30e–13 1.77e–13 1.05e–13 4.70e–09 4.81e–14 1.12e–15

F3 7.01e–09 9.6e–02 1.67e–05 5.60e–09 2.50e+03 4.42e–06

F4 1.8e–03 2.57e–07 1.42e–05 5.02e–09 1.50e–16 3.49e–19

F5 1.16e–06 2.09e–07 1.23e–02 6.58e–09 5.82e+01 3.62e–03

F6 6.89e–08 9.57e–01 1.20e–08 4.87e–09 3.31e+00 6.89e–02

F7 4.52e–02 5.73e–02 1.99e–02 3.31e–09 2.52e–01 2.02e–04

F8 2.00e+01 2.00e+01 2.00e+01 2.00e+01 2.03e+01 2.00e+01

F9 0.00e+00 1.25e+01 0.00e+00 2.39e–01 4.87e–17 1.47e–17

F10 3.62e+00 3.86e+01 4.97e+00 7.96e–02 2.22e+01 2.10e+00

F11 4.62e+00 5.58e+00 4.89e+00 9.34e–01 5.46e+00 7.08e–02

F12 2.40e+00 1.31e+02 4.50e–07 2.93e+01 9.85e+01 1.19e+01

F13 3.69e–01 8.87e–01 2.20e–01 6.96e–01 2.96e–02 6.56e–03

F14 2.36e+00 3.78e+00 2.92e+00 3.01e+00 3.41e+00 2.24e+00

Table 7.9: Comparison of ABC-AX2 with DMS-PSO [231], PSO-RDL [232], SADE [230],
R-CMAES [234] and the basic ABC [11] on the hybrid composition functions F15‒F25 of the
CEC2005 benchmark suite [76]. Best results are marked with boldface font.

Function DMS-PSO PSO-RDL SADE R-CMAES ABC ABC-AX2

F15 4.85e+00 2.71e+02 3.20e+01 2.28e+02 1.53e+01 3.78e+00

F16 9.48e+01 2.22e+02 1.01e+02 9.13e+01 1.75e+02 1.69e+02

F17 1.10e+02 2.22e+02 1.14e+02 1.23e+02 1.96e+02 1.51e+02

F18 7.61e+02 1.02e+03 7.19e+02 3.32e+02 4.46e+02 3.59e+02

F19 7.14e+02 9.85e+02 7.05e+02 2.26e+02 4.51e+02 3.07e+02

F20 8.22e+02 9.59e+02 7.13e+02 3.00e+02 4.38e+02 3.92e+02

F21 5.36e+02 9.94e+02 4.64e+02 5.00e+02 4.87e+02 4.58e+02

F22 6.92e+02 8.87e+02 7.32e+02 7.29e+02 8.59e+02 7.62e+02

F23 7.30e+02 1.08e+03 6.64e+02 5.59e+02 5.98e+02 5.56e+02

F24 2.24e+02 7.20e+02 2.00e+02 2.00e+02 2.02e+02 2.00e+02

F25 3.66e+02 1.76e+03 3.76e+02 3.74e+02 3.38e+02 3.27e+02



189

 The mean absolute error of the results from ABC-AX2 on the non-composite functions

F1–F14 is the smallest among all of its counterparts — DMS-PSO, PSO-RDL, SADE,

R-CMAES and the basic ABC algorithm. On the hybrid composite functions F15–F25,

ABC-AX2 also shows smaller mean absolute errors in comparison to all its competitors,

except the R-CMAES, which shows slightly smaller error than ABC-AX2. Summarizing all

these observations, we can conclude that the performance of ABC-AX2 is at least

comparable to, and often better than its all its competitors in comparison, i.e., DMS-PSO,

PSO-RDL, SADE, R-CMAES and the basic ABC algorithm.

7.6 Conclusion and Suggestions for Further Study
This chapter introduces ABC-AX2 — an improvement of the basic ABC algorithm [11], [75] that

tries to adaptively control the degree of explorations and exploitations, separately for each

candidate solution. ABC-AX2 includes three control parameters — pi, qi and ηi within each

candidate solution xi and employs adaptive and self-adaptive techniques to adapt their values

gradually. The control parameter pi controls the proportion of exploitative and explorative

perturbations on xi and is gradually adapted by ABC-AX2 based on the previous successes and

failures of the exploitative and explorative perturbations on xi. The other two control

parameters — qi and ηi control the perturbation rate and perturbation scaling factors for xi and

they have to go through gradual self-adaptation, using (7.4)–(7.6).

ABC-AX2 significantly differs from most other existing variants of ABC algorithm. Most

ABC-variants view exploitations and explorations as conflicting operations, so they try to

improve either the local exploitations (e.g., GABC [64], HJABC [65]) or the global explorations

(e.g., CABC_S [60], CABC_H [60], DABC [61], ChABC [62]) of the basic ABC algorithm, without

trying to establish a proper balance between exploitations and explorations. In contrast,

Figure 7.8: Comparison of ABC-AX2 with DMS-PSO [231], PSO-RDL [232], SADE [230],
R-CMAES [234] and the basic ABC [11] algorithms, based on their mean absolute errors
on the CEC2005 benchmark functions F1-F14 (on the left) and the hybrid composition
functions F15-F25 (on the right).
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ABC-AX2 considers exploitations and explorations to be complementary, rather than conflicting,

operations and try to achieve some degree of both exploitations and explorations throughout

the entire optimization procedure. For example, ABC-AX2 keeps the value of pi always

within [0.1, 0.9] to avoid the complete domination by either exploitative or explorative

perturbations. Also, ABC-AX2 uses fixed values of u1 and u2 (e.g., 0.1 and 0.5, respectively, as in
our implementation), so there is always significant possibility that the values of qi and ηi will be

randomized using (7.4) and (7.5), respectively, which can induce both explorations and

exploitations on xi throughout the entire optimization procedure. Such a design is inspired from

the idea that explorations and exploitations can be complementary, rather than conflicting, to

each other. For example, some exploitation is always necessary after exploring a new, unvisited

search region in order to realize the potentials of the newly explored solutions. Also, long

exploitations can lead to locally optimal points, so some successive explorative operations may

be helpful to break free from the local optima. Evaluation results (Tables 7.1–7.9) clearly show

that ABC-AX2 has significantly improved its results over the basic ABC algorithm [11] as well as

several other recent variants of ABC (e.g., [59]–[65]). Another important difference of ABC-AX2

from many other existing algorithms is that ABC-AX2 customizes the degree of explorations and

exploitations at the individual solution level, using three control parameters separately for

every candidate solution. Differentiating and customizing the degree of explorations and

exploitations for every candidate solution makes it possible to allocate different and dynamic

search intensity around the neighborhoods of each of the candidate solutions. Such an approach

is more suitable to handle the dynamically evolving optimization scenario around each

candidate solution of the population.

There may be several possible future research directions based on this study. Firstly,

ABC-AX2 uses a simple strategy to adjust the values of its control parameters — pi, qi and ηi for

each candidate solution xi. A more sophisticated strategy, such as considering the properties of

fitness landscape around xi, or using a strategy parameterized by the existing population

diversity, maturity of the ongoing optimization procedure, density of the solutions around xi or

some other estimate of current explorative/exploitative requirements of xi may be more

effective to balance between exploitations and explorations around xi. Secondly, the quality of

the final solution could be improved further by using an exploitative and efficient local searcher.

This may help to pinpoint the global minimum more precisely after the execution of ABC-AX2 is

over. Thirdly, ABC-AX2 can be hybridized with many other existing evolutionary, swarm

intelligence and machine learning techniques to further improve its results. Finally, ABC-AX2 has

been applied mainly on continuous optimization problems. It would be interesting to know how

well ABC-AX2 performs on many other existing problems, especially the discrete and real world

ones.
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Chapter8
Experiments

8.1 Introduction
Along the course of this thesis, we have developed a number of improved evolutionary and

swarm intelligence algorithms, such as the RTEP (chapter 3), DGEP (chapter 4), ABC-SAM

(chapter 5), ABC-IX (chapter 6) and ABC-AX2 (chapter 7). The first two algorithms belong to the

evolutionary algorithm family, as they are improved variants of the standard evolutionary

programming (EP), while the last three algorithms belong to the swarm intelligence family, as

they are based on the Artificial Bee Colony (ABC) algorithm. In this chapter we conduct a

number of experiments on each of these algorithms in order to gain a better understanding of

how they work, how they improve their results over the basic ABC or EP-based algorithms, their

specific strengths or weaknesses (if any) and whether and how we can extend and improve

them further to develop new, more effective algorithm variants.

8.2 Organization of the chapter
The rest of this chapter is organized as follows. Section 8.3 and 8.4 carries out a number of

experiments on our two improved EP-variants — the RTEP and DGEP, respectively. The next

three sections, i.e., sections 8.5 to 8.7 perform several experimentations on each of the three

improved ABC-variants — the ABC-SAM, ABC-IX and ABC-AX2, respectively. The next section 8.8

makes a number of comparisons among all these algorithms and tries to find out their specific

strengths and weaknesses. In section 8.9, we demonstrate how the performance of these

algorithms could be improved further by thoughtfully incorporating a few simple techniques

within them. Finally, section 8.10 draws conclusions with a summary of this chapter.
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8.3 Experiments on RTEP
In this section, we conduct a number of experiments on RTEP to examine its various aspects,

such as the role and effect of its control parameters, how they influence the performance of

RTEP for the three different families of benchmark functions (i.e., the unimodal and high and

low dimensional multimodal functions), the role and effect of the recurring explorations and

exploitations of RTEP, the effect of using neighbors and strangers during its mutations and so

on. We have also tried to find an optimal proportion of explorative and exploitative operations

for RTEP, separately for each of the standard benchmark functions f1–f30, as well as for each of

the three different families of benchmark functions.

The main two control parameters of RTEP are K1 and K2, where K1 is the length of the

exploration stage and K2 is the length of the exploitation stage. Therefore, the ratio K2/K1

controls the ratio of exploitations to explorations, while the individual values of K1 and K2

control how frequently RTEP alternates between explorations and exploitations. For example,

consider these two settings of RTEP — (K1=4, K2=8) and (K1=40, K2=80). Both these settings

offer the same ratio of exploitations to explorations (i.e., 2:1), but the former setting ensures

very frequent alternations between explorations and exploitations, while the latter one perform

slow, infrequent alternations.

Tables 8.1–8.3 and Fig. 8.1 compare the performance of RTEP on the unimodal function

family f1–f9 with several different values of K1 and K2. For each function, four different values of

K1 is tested — K1= 4, 10, 20 and 50. For each particular value of K1, eight different values of K2

are selected such that the following eight different values of K2/K1 ratio (i.e., exploitation-to-

exploration ratio) is tested — K2/K1=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0. For example, when

K1=10, we need to pick the values of K2 from the following set — {5, 10, 15, 20, 25, 30, 40, 50}.

In Table 8.1, the best result (i.e., minimum error) for each particular value of K1 is marked with

boldface font, while the best result for a particular function (i.e., the best result along an entire

column, across 4x8=32 different values of (K1,K2)) is marked with underlined font. Table 8.2

tries to summarize the results of Table 8.1 by showing the best value of K2 and K2/K1 ratio for

each particular value of K1. It is interesting to notice that, although we have tested eight

different values K2/K1 ratio, only four of them are present as the optimal K2/K1 ratio in Table 8.2,

with K2/K1=2.5 being the most common (14 instances), followed by K2/K1 =3.0 (11 instances),

K2/K1 =2.0 (4 instances) and K2/K1=4.0 (3 instances). This means that the overall desired

exploitation-to-exploration ratio for the unimodal functions f1–f9 is typically within [2.0, 4.0].

Table 8.2 computes the overall desired exploitation-to-exploration ratio (i.e., K2/K1) for the

unimodal function family by taking the simple arithmetic mean of the optimal K2/K1 ratio values

(i.e., the rightmost column of Table 8.2) over all the unimodal functions f1--f9, which is computed

to be 2.75. This result nicely agrees with the next Table (Table 8.3) and Fig. 8.1. Table 8.3 shows
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the mean absolute error values of RTEP over the unimodal functions f1–f9 for different K2/K1

ratios (i.e., exploitation-to-exploration ratios), which reveals that the best performance

(minimum mean absolute error value) is achieved by RTEP with K2/K1=2.5 for the unimodal

functions f1–f9. Similarly, Fig. 8.1 shows that the minimum mean absolute error value is reached

by RTEP with K2/K1 =2.5, and also, the error values remain satisfactorily small when the K2/K1

ratio is kept within [2.0, 3.0]. However, beyond this range, the error gradually starts to escalate

for both increased and decreased values of K2/K1 ratio. This means that there should be some

balance between the degree of exploitations and explorations, and increasing either of them,

ignoring the other one disproportionally, can easily worsen the final solution quality and

deteriorate the performance of the algorithm.

Table 8.1: Performance of RTEP(K1,K2) with different values of the control parameters K1 and
K2 for the unimodal functions f1–f9, where K1: length of the exploration stage, and K2: length of
the exploitation stage. The best result for each particular value of K1 is marked with boldface
font, and the best result for each function is marked with underlined boldface font.

(K1,K2)
Unimodal functions f1–f9

f1 f2 f3 f4 f5 f6 f7 f8 f9

(4,2) 7.94e–16 5.07e–10 8.63e+01 3.89e–14 7.52e+00 1.80e+00 8.76e+00 0 8.49e–18

(4,4) 7.48e–17 2.09e–11 1.94e+01 5.13e–14 6.19e–03 8.95e–01 4.78e+00 0 2.73e–25

(4,6) 7.57e–17 3.44e–11 1.28e+01 1.39e–15 3.94e–03 3.26e–01 2.18e+00 0 9.51e–36

(4,8) 2.40e–20 2.91e–12 1.93e+00 2.14e–15 2.02e–03 1.18e–01 1.65e+00 0 2.23e–37

(4,10) 1.50e–22 4.77e–13 1.39e+00 8.79e–15 2.39e–03 7.70e–02 8.74e–01 0 5.12e–41

(4,12) 5.70e–22 9.26e–15 9.90e+00 6.97e–16 2.41e–05 7.80e–01 6.84e–01 0 1.12e–46

(4,16) 6.37e–24 4.70e–13 8.57e–01 8.33e–15 9.93e–05 8.30e–01 1.57e+00 0 2.17e–35

(4,20) 4.38e–20 6.38e–12 7.07e–01 1.14e–13 6.02e–04 5.77e+00 3.20e+00 0 7.71e–28

(10,5) 2.59e–15 4.46e–09 4.65e+01 2.17e–14 1.61e–01 8.10e+00 1.70e+00 0 3.60e–38

(10,10) 7.62e–15 8.49e–10 2.03e+00 7.39e–13 1.27e–02 1.40e+00 1.42e+00 0 4.18e–37

(10,15) 2.17e–17 3.54e–10 7.04e+00 3.94e–13 8.79e–04 9.69e–01 6.05e–01 0 7.84e–35

(10,20) 8.35e–17 5.17e–12 9.41e–01 5.58e–15 4.45e–04 6.55e–01 4.34e–02 0 6.13e–38

(10,25) 1.29e–18 1.69e–12 4.10e–01 1.80e–15 8.10e–05 8.04e–01 7.91e–02 0 6.72e–44

(10,30) 5.27e–20 8.01e–13 8.66e–01 2.52e–15 7.40e–04 5.12e–01 5.29e–01 0 3.70e–35

(10,40) 1.76e–21 9.02e–12 6.00e+00 2.66e–13 8.94e–04 1.02e+00 2.46e–01 0 7.15e–31

(10,50) 4.14e–20 2.26e–10 1.67e+02 5.36e–13 8.21e–04 8.63e+00 1.12e+00 0 3.74e–25

(20,10) 7.31e–12 5.59e–08 1.21e+02 2.19e–10 2.52e–01 8.69e+00 3.61e+00 0 1.36e–16

(20,20) 8.65e–14 2.46e–09 2.81e+01 5.22e–12 8.09e–02 1.18e+01 1.30e–01 0 6.21e–21

(20,30) 4.55e–15 3.12e–10 1.27e+01 9.54e–13 2.54e–04 3.07e+00 1.10e–01 0 3.23e–29

(20,40) 8.34e–16 7.21e–09 5.50e+00 2.60e–14 2.33e–04 5.25e+00 3.53e–01 0 9.73e–32

(20,50) 9.30e–16 4.48e–09 2.42e+00 4.21e–14 1.76e–04 1.27e+00 9.38e–02 0 8.49e–35
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Table 8.1 (continued)

(K1,K2)
Unimodal functions f1–f9

f1 f2 f3 f4 f5 f6 f7 f8 f9
(20,60) 4.90e–18 2.00e–10 6.54e+00 3.89e–11 9.65e–03 7.78e–01 7.40e–01 0 5.62e–31
(20,80) 4.11e–19 9.14e–10 1.59e+01 7.77e–10 1.31e–01 4.27e+00 3.22e+00 0 4.87e–30

(20,100) 1.81e–17 6.32e–08 5.20e+01 4.81e–08 9.12e–02 6.37e+00 3.32e+00 0 2.75e–27

(50,25) 6.69e–09 9.64e–07 2.19e+02 6.35e–08 5.33e–01 2.45e+01 1.27e+01 0 3.15e–21
(50,50) 9.61e–11 1.79e–08 4.95e+01 6.86e–10 4.73e–03 1.26e+01 3.76e+00 0 7.62e–25
(50,75) 7.75e–12 4.02e–09 1.58e+01 7.76e–11 4.58e–03 3.92e+00 9.58e–01 0 1.32e–27

(50,100) 9.87e–12 9.61e–10 8.10e+00 7.44e–12 4.82e–04 4.75e+00 5.72e–01 0 5.51e–30
(50,125) 2.04e–14 8.35e–10 6.42e+00 3.96e–12 9.39e–03 1.52e+00 8.68e–01 0 1.41e–35
(50,150) 8.47e–15 4.67e–08 9.81e+00 4.69e–10 9.24e–02 6.24e+00 3.43e+00 0 6.61e–36
(50,200) 9.23e–15 1.74e–09 1.41e+01 3.18e–08 4.62e–02 1.77e+01 8.46e+00 0 6.54e–32
(50,250) 9.26e–12 5.39e–08 8.80e+01 3.84e–07 3.35e+00 1.67e+01 1.54e+01 0 9.46e–27

Table 8.2: For each particular value of K1 in the previous Table 8.1, the optimal value of K2 and
the corresponding K2/K1 ratio, where K1 and K2 are the lengths of the exploration and
exploitation stages, respectively.

Functions
(Unimodal)

For each K1, optimal K2 and K2/K1 ratio Mean optimal
K2/K1 ratio
(for each
function)

K1=4 K1=10 K1=20 K1=50
Optimal

K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

f1 16 4.0 40 4.0 80 4.0 150 3.0 3.75
f2 12 3.0 30 3.0 60 3.0 125 2.5 2.88
f3 10 2.5 25 2.5 50 2.5 125 2.5 2.50
f4 12 3.0 25 2.5 40 2.0 125 2.5 2.50
f5 12 3.0 25 2.5 50 2.5 100 2.0 2.50
f6 10 2.5 30 3.0 60 3.0 125 2.5 2.75
f7 12 3.0 20 2.0 50 2.5 100 2.0 2.38
f9 12 3.0 25 2.5 50 2.5 150 3.0 2.75

Overall optimal K2/K1 ratio for the unimodal functions f1–f9 ==> 2.75

Table 8.3: The mean absolute error values of RTEP(K1,K2) on the unimodal functions f1–f9 for
different values of K2/K1 ratio (i.e., exploitation-to-exploration ratio) in the previous Table 8.1.
The best performance (i.e., minimum error value) is achieved by RTEP with K2/K1=2.5.

Function family K2/K1 ratio Mean absolute error

Unimodal
functions f1–f9

0.5 15.31
1.0 3.78
1.5 1.68
2.0 0.83
2.5 0.45
3.0 1.14
4.0 2.07
5.0 10.32
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Figure 8.1: The mean absolute error values of the final results from RTEP(K1,K2) with eight
different values of the K2/K1 ratio (i.e., exploitation-to-exploration ratio) for the unimodal
functions f1–f9. The best result (i.e., lowest error) is reached by RTEP(K1,K2) with K2/K1=2.5.

Tables 8.4–8.6 and Fig. 8.2 compare the performance of RTEP for different values of K1

and K2 on the high dimensional multimodal functions f10–f18. These experiments are just

identical to the previous ones (Tables 8.1–8.3, Fig. 8.1), but now the multimodal functions f10–f18

are tested, instead of the unimodal functions f1–f9. Similar to the previous experiment

(Table 8.1), eight different values of K2/K1 ratio is tested — K2/K1=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0

and 5.0. Table 8.5 summarizes the results of Table 8.4 by showing the best value of the K2/K1

ratio for each particular value of K1 for each function. As Table 8.5 reveals, for these high

dimensional multimodal functions f10–f18, the most effective exploitation-to-exploration ratio is
2.0, as K2/K1 =2.0 in most (i.e., 22 out of 36) instances in Table 8.5. The overall optimal K2/K1

ratio for these multimodal functions is also computed to be 1.86 (Table 8.5), which is close to

2.0. Table 8.6 and Fig. 8.2 also show that, over these multimodal functions f10–f18, the mean

absolute error value of RTEP reaches its minimum when K2/K1 is in [1.5, 2.0], which nicely

agrees with the computed overall optimal value of K2/K1 (i.e., 1.86). This value indicates that the

high dimensional multimodal functions (f10–f18) generally require relatively more explorations

than the previous unimodal functions f1–f9, for which the overall optimal exploitation-to-

exploration ratio (i.e., K2/K1 ratio) was computed to be 2.75 (Table 8.2).
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Table 8.4: Performance of RTEP(K1,K2) with different values of the control parameters K1 and
K2 for the high dimensional multimodal functions f10–f18, where K1: length of the exploration
stage, and K2: length of the exploitation stage. The best result for each particular value of K1 is
marked with boldface font, and the best result for each function is marked with underlined
boldface font.

(K1,K2)
Multimodal functions (high dimensional) f10–f18

f10 f11 f12 f13 f14 f15 f16 f17 f18

(4,2) 7.36e–12 6.27e–04 7.07e+02 1.78e–08 7.73e–18 9.25e–09 5.95e–05 1.87e–09 1.07e–03

(4,4) 4.48e–13 5.55e–04 7.57e+02 2.56e–08 1.46e–19 2.27e–10 7.92e–07 6.58e–10 4.84e–03

(4,6) 9.67e–16 3.87e–05 2.74e+02 7.88e–09 4.77e–19 1.75e–12 5.58e–08 1.22e–12 1.24e–04

(4,8) 1.88e–14 1.14e–06 3.56e+02 2.43e–09 8.41e–20 2.89e–12 6.10e–08 1.75e–13 7.23e–05

(4,10) 7.19e–14 5.40e–03 6.95e+02 1.51e–08 9.14e–20 3.85e–12 1.58e–07 4.31e–12 6.40e–04

(4,12) 1.91e–11 6.55e–03 8.96e+02 1.44e–07 8.85e–18 9.73e–11 5.38e–07 9.08e–12 7.73e–03

(4,16) 1.31e–10 5.21e–03 1.28e+03 1.69e–07 2.71e–17 1.47e–10 7.76e–05 6.66e–10 8.40e–03

(4,20) 4.06e–10 1.16e–02 1.89e+03 2.27e–07 9.50e–16 7.25e–10 4.60e–04 1.98e–10 5.52e–03

(10,5) 5.77e–12 1.32e–03 1.57e+03 3.55e–06 3.88e–11 6.82e–08 8.17e–04 3.15e–09 4.96e–03

(10,10) 5.48e–12 5.68e–03 9.36e+02 1.21e–08 7.20e–15 7.70e–10 5.26e–05 1.61e–10 5.90e–04

(10,15) 2.95e–13 2.85e–05 6.82e+02 2.86e–08 1.63e–15 6.33e–09 5.02e–05 4.81e–11 7.26e–04

(10,20) 9.50e–14 6.66e–05 5.64e+02 1.23e–09 2.91e–16 8.94e–10 1.60e–07 9.59e–13 1.09e–04

(10,25) 2.49e–12 1.51e–04 7.11e+02 8.07e–09 1.07e–16 6.00e–10 9.99e–06 4.88e–12 6.30e–04

(10,30) 6.04e–10 8.62e–04 1.08e+03 5.56e–08 1.73e–15 7.37e–09 6.83e–05 1.28e–11 6.32e–04

(10,40) 8.87e–10 1.97e–02 1.39e+03 5.83e–07 7.79e–16 1.54e–09 8.87e–05 1.34e–09 7.74e–04

(10,50) 3.19e–09 5.14e–01 1.78e+03 1.55e–07 7.24e–15 8.13e–08 8.05e–05 9.38e–09 7.76e–04

(20,10) 9.80e–11 7.45e–02 1.71e+03 9.42e–06 9.12e–05 3.35e–08 5.50e–03 7.02e–08 2.03e–03

(20,20) 8.90e–11 7.37e–03 9.94e+02 2.73e–08 1.99e–08 1.46e–09 2.91e–04 3.94e–10 4.67e–03

(20,30) 1.76e–12 4.35e–04 6.69e+02 7.27e–08 9.74e–09 9.76e–09 9.72e–06 5.34e–10 6.17e–03

(20,40) 9.55e–14 2.10e–04 9.72e+02 8.61e–08 4.95e–11 6.94e–10 9.85e–07 5.57e–11 7.56e–04

(20,50) 3.32e–13 1.58e–03 1.28e+03 6.61e–06 5.70e–13 8.06e–10 8.36e–05 8.84e–10 1.86e–03

(20,60) 8.14e–10 5.61e–03 1.60e+03 5.87e–06 9.07e–12 3.49e–09 9.80e–04 9.51e–09 2.70e–03

(20,80) 1.45e–10 6.13e–02 2.31e+03 1.10e–06 1.97e–08 9.74e–08 1.49e–04 6.28e–07 4.95e–03

(20,100) 8.58e–09 1.72e–01 2.64e+03 4.69e–06 1.87e–10 1.29e–08 3.74e–01 2.78e–06 9.66e–03

(50,25) 1.76e–08 1.70e–01 2.29e+03 1.84e–01 5.45e–06 7.49e–05 1.42e–02 1.39e–06 2.56e–02

(50,50) 3.28e–09 7.99e–02 1.55e+03 4.02e–02 1.07e–07 3.14e–06 2.71e–03 1.98e–08 2.90e–03

(50,75) 7.86e–13 7.74e–04 9.67e+02 5.18e–05 3.58e–08 4.12e–09 9.30e–04 8.38e–10 2.55e–03

(50,100) 4.66e–13 8.79e–04 8.40e+02 8.95e–05 1.65e–10 9.30e–09 5.05e–03 4.37e–10 1.66e–03

(50,125) 1.60e–12 4.25e–02 1.23e+03 5.54e–04 4.62e–08 9.08e–09 1.07e–01 9.06e–09 1.36e–03

(50,150) 2.33e–10 1.81e–01 1.98e+03 1.83e–03 1.34e–07 9.94e–08 1.04e+00 4.08e–07 1.50e–02

(50,200) 1.72e–08 6.61e+00 2.45e+03 1.52e+00 9.28e–06 6.54e–06 4.47e+00 4.60e–04 5.86e–02

(50,250) 1.13e–07 6.46e+00 3.24e+03 2.13e+00 7.67e–06 1.89e–06 1.58e+01 7.79e–02 5.73e–02
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Table 8.5: For each particular value of K1 in the previous Table 8.4, the optimal value of K2 and
the corresponding K2/K1 ratio.

Functions
(Multimodal,

high
dimensional)

For each K1, optimal K2 and K2/K1 ratio Mean optimal
K2/K1 ratio
(for each
function)

K1=4 K1=10 K1=20 K1=50
Optimal

K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

f10 6 1.5 20 2.0 40 2.0 100 2.0 1.88
f11 8 2.0 15 1.5 40 2.0 75 1.5 1.75
f12 6 1.5 20 2.0 30 1.5 100 2.0 1.75
f13 8 2.0 20 2.0 20 1.0 75 1.5 1.63
f14 8 2.0 25 2.5 50 2.5 100 2.0 2.25
f15 6 1.5 25 2.5 40 2.0 75 1.5 1.88
f16 6 1.5 20 2.0 40 2.0 75 1.5 1.75
f17 8 2.0 20 2.0 40 2.0 100 2.0 2.00
f18 8 2.0 20 2.0 40 2.0 125 2.5 1.88

Overall Optimal K2/K1 ratio for Multimodal (high dimensional) functions f10–f18 ==> 1.86

Table 8.6: The mean absolute errors of RTEP(K1,K2) on high dimensional multimodal
functions f10–f18 for different values of K2/K1 ratio (i.e., exploitation-to-exploration ratio) in the
previous Table 8.4. The best performance (i.e., lowest error) is achieved by RTEP with
K2/K1 =1.5.

Function family K2/K1 ratio Mean absolute error

Multimodal
functions

(high dimensional)
f10–f18

0.5 1.74e+02
1.0 1.17e+02
1.5 7.20e+01
2.0 7.59e+01
2.5 1.09e+02
3.0 1.54e+02
4.0 2.07e+02
5.0 2.66e+02

Tables 8.7–8.9 and Fig. 8.3 perform the same experiments, as of Tables 8.4–8.6 and
Fig. 8.2, but now on the low dimensional multimodal functions f19–f30. Table 8.7 presents the
mean error of RTEP with several different values of K1 and K2, each time taking eight different
values of the exploitation-to-exploration ratio (i.e., K2/K1) — K2/K1=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0
and 5.0. The next Table (Table 8.8) summarizes the results in Table 8.7 by showing the best
found value of the K2/K1 ratio for each function. For these functions, the most suitable value of
the exploitation-to-exploration ratio is found to be 2.0, as the value K2/K1 is mostly (i.e., 20 out of
28 instances) 2.0 in Table 8.8. The overall optimal K2/K1 ratio for these low dimensional
multimodal functions f19–f30 is computed to be 1.96. Table 8.9 and Fig. 8.3 show the mean
absolute error values of RTEP for different values of the K2/K1 ratio, where the best performance
(i.e., minimum mean absolute error) of RTEP is observed for K2/K1=2.0, which closely follows
the computed overall optimal value of K2/K1 (i.e., 1.96) in Table 8.8.
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Figure 8.2: The mean absolute error values from RTEP(K1,K2) with eight different values of the
K2/K1 ratio (exploitation-to-exploration ratio) for the high dimensional multimodal functions
f10–f18. The best result (i.e., lowest error) is reached by RTEP(K1,K2) when K2/K1in [1.5, 2.0].

Table 8.7: Performance of RTEP(K1,K2) with different values of the control parameters K1 and
K2 for the low dimensional multimodal functions f19–f30, where K1: length of the exploration
stage, and K2: length of the exploitation stage. The best result for each particular value of K1 is
marked with boldface font, and the best result for each function is marked with underlined
boldface font.

(K1,K2)
Multimodal functions (low dimensional) f19–f30

f19 f20 f21–f24 f25 f26 f27 f28 f29 f30

(4,2) 0.005 0.0013 0 0.49 0.41 0.37 0.53 0 0.41

(4,4) 0.004 0.0012 0 0.39 0.43 0.31 0.50 0 0.32

(4,6) 0.002 0.0010 0 0.33 0.38 0.25 0.45 0 0.29

(4,8) 0.002 0.0008 0 0.37 0.40 0.22 0.42 0 0.26

(4,10) 0.002 0.0008 0 0.40 0.48 0.23 0.40 0 0.28

(4,12) 0.004 0.0001 0 0.45 0.59 0.28 0.42 0 0.40

(4,16) 0.004 0.0011 0 0.53 0.62 0.29 0.46 0 0.45

(4,20) 0.005 0.0012 0 0.58 0.60 0.32 0.55 0 0.42

(10,5) 0.005 0.0013 0 0.62 0.52 0.27 0.59 0 0.41

(10,10) 0.006 0.0012 0 0.52 0.50 0.26 0.55 0 0.32

(10,15) 0.006 0.0012 0 0.49 0.49 0.22 0.48 0 0.29

(10,20) 0.005 0.0013 0 0.44 0.43 0.20 0.40 0 0.26

(10,25) 0.005 0.0009 0 0.51 0.42 0.22 0.47 0 0.28

(10,30) 0.006 0.0009 0 0.55 0.47 0.25 0.52 0 0.40

(10,40) 0.009 0.0011 0 0.63 0.52 0.33 0.58 0 0.45

(10,50) 0.013 0.0012 0 0.70 0.58 0.33 0.65 0 0.42
0(20,10) 0.010 0.0033 0 0.55 0.64 0.37 0.56 0 0.41

(20,20) 0.008 0.0032 0 0.49 0.55 0.31 0.45 0 0.32
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Table 8.7 (continued)

(K1,K2)
Multimodal functions (low dimensional) f19–f30

f19 f20 f21–f24 f25 f26 f27 f28 f29 f30

(20,30) 0.007 0.0030 0 0.42 0.54 0.26 0.46 0 0.29
(20,40) 0.006 0.0027 0 0.44 0.50 0.25 0.46 0 0.28
(20,50) 0.005 0.0028 0 0.50 0.54 0.25 0.47 0 0.29
(20,60) 0.008 0.0032 0 0.53 0.57 0.29 0.50 0 0.40
(20,80) 0.009 0.0033 0 0.60 0.58 0.36 0.58 0 0.45

(20,100) 0.013 0.0042 0 0.66 0.65 0.44 0.63 0 0.42
(50,25) 0.008 0.0033 0 0.70 0.61 0.45 0.66 0 0.58
(50,50) 0.010 0.0030 0 0.63 0.59 0.38 0.59 0 0.53
(50,75) 0.012 0.0026 0 0.56 0.58 0.32 0.55 0 0.46

(50,100) 0.012 0.0029 0 0.52 0.54 0.36 0.50 0 0.48
(50,125) 0.015 0.0032 0 0.55 0.57 0.38 0.53 0 0.50
(50,150) 0.023 0.0035 0 0.63 0.59 0.44 0.60 0 0.55
(50,200) 0.023 0.0037 0 0.66 0.65 0.49 0.67 0 0.63
(50,250) 0.028 0.0040 0 0.76 0.69 0.54 0.73 0 0.66

Table 8.8: For each particular value of K1 in the previous Table 8.7, the optimal value of K2 and
the corresponding K2/K1 ratio, where K1 and K2 are the lengths of the exploration and
exploitation stages, respectively.

Function
(Multimodal,

low
dimensional)

For each K1, optimal K2 and K2/K1 ratio Mean optimal
K2/K1 ratio
(for each
function)

K1=4 K1=10 K1=20 K1=50
Optimal

K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

Optimal
K2

Optimal
K2/K1

f19 8 2.0 20 2.0 40 2.0 100 2.0 2.00
f20 8 2.0 25 2.5 40 2.0 75 1.5 2.00
f25 6 1.5 20 2.0 30 1.5 100 2.0 1.75
f26 6 1.5 25 2.5 40 2.0 100 2.0 2.00
f27 8 2.0 20 2.0 40 2.0 75 1.5 1.88
f28 10 2.5 20 2.0 40 2.0 100 2.0 2.13
f30 8 2.0 20 2.0 40 2.0 100 2.0 2.00

Overall Optimal K2/K1 ratio for Multimodal (low dimensional) functions f19–f30 ==> 1.96

Table 8.9: The mean absolute error of RTEP(K1,K2) on low dimensional multimodal functions
f19–f30 for different values of the K2/K1 ratio (exploitation-to-exploration ratio) in the previous
Table 8.7. The best performance (i.e., lowest error) is achieved by RTEP(K1,K2) with K2/K1=2.0.

Function family K2/K1 ratio Mean absolute error

Multimodal
functions

(low dimensional)
f19–f30

0.5 0.261
1.0 0.230
1.5 0.209
2.0 0.199
2.5 0.213
3.0 0.243
4.0 0.271
5.0 0.292
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Figure 8.3: The mean absolute error values of the final results from RTEP(K1,K2) using eight
different values of the K2/K1 ratio (exploitation-to-exploration ratio) for the multimodal
functions (low dimensional) f19–f30. The best result (lowest error) is achieved with K2/K1≈2.0.

Table 8.10: The optimal exploitation-to-exploration ratio (i.e., the K2/K1ratio) with the mean
absolute error values of RTEP for the three different function families — the unimodal (f1–f9),
high dimensional multimodal (f10–f18) and low dimensional multimodal (f19–f30) functions.

Function family Optimal
K2/K1 ratio

Mean
Absolute Error

Unimodal
functions (f1–f9) 2.5 0.45

Multimodal
(high dimensional)

functions (f10–f18)
1.5 7.20e+01

Multimodal
(low dimensional)
functions (f19–f30)

2.0 0.199

In the previous Tables 8.3, 8.6 and 8.9, we have presented the mean absolute error values

of RTEP for different exploitation-to-exploration ratio (i.e., the K2/K1 ratio) for the three

different families of the standard benchmark functions — the unimodal functions f1–f9, the high

dimensional multimodal functions f10–f18 and the low dimensional multimodal functions f19–f30.

The next Table 8.10 summarizes Tables 8.3, 8.6 and 8.9 by presenting the overall optimal K2/K1

ratio and the corresponding mean absolute error values of RTEP for these three different

function families.

All of the previous Tables 8.1–8.10 try to find an optimal K2/K1 ratio (i.e., exploitation-to-

exploration ratio) for the different functions. But what should be the individually optimal values

of K1 and K2 (rather than K2/K1)? In the next Table 8.11, we try to find out the optimal values of

K1 and K2, instead of the optimal K2/K1 ratio. In Table 8.11, we present the results of several
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RTEP variants, each one using a different value of (K1,K2). It is interesting to discover that the

best results are always achieved for small (e.g., K1=K2=5) or moderate (K1=K2=10~20) values

of the K1 and K2. Such small stage lengths of RTEP have always performed better than the larger

stage lengths, as also observed in previous Tables 8.1, 8.4 and 8.7. This is reasonable because

when the stage lengths are increased (e.g., K1=K2 =100), the recurring nature of RTEP starts to

diminish, forcing RTEP to operate in somewhat sequential (i.e., non-recurring) manner.

Actually, what seems to be important to RTEP is not the length of the stages but their recurring

nature. A frequent alternation to and from explorations and exploitations is more effective for

RTEP, as demonstrated by the much improved results with (K1,K2) = (5,5) or (10,10), in

comparison to (K1,K2) = (50,50) or (100,100). To examine the effect of delayed, infrequent

alternations, we now present another experiment on RTEP (Table 8.12) by introducing a new

variant of RTEP — the Sequential Two-Stage Evolutionary Programming (STEP). STEP is

equivalent to RTEP(K1,K2) with K1=K2=TN/2, where TN is the total number of generations to

run. This means STEP executes the explorative and exploitative stages sequentially, one after

another, each one for the half of the total length of the execution. For the results in Table 8.12,

STEP is run with population size=100 for a total of 1000 generations, with the first half (i.e.,

first 500 generations) as the exploration stage of RTEP, followed by its exploitation stage for the

remaining 500 generations. Table 8.12 shows the results of STEP, averaged over 50

independent runs. A simple bare eyed comparison of the results presented in Table 8.12 with

those presented in Table 8.11, as well as the highest mean absolute error value of STEP in

Fig. 8.4, indicates that the sequential STEP variant performs much worse than its recurring

counterpart — the RTEP. The difference is often by several orders of magnitude and obviously

statistically significant. This proves the necessity of interleaving and mixing the explorative and

exploitative operations, instead of trying to make a perfect switching from one stage to another.

Table 8.11: Performance of RTEP with different values of the control parameters K1 and K2.
Here, K1: length of the exploration stage, and K2: length of the exploitation stage. The best result
for each function is marked with boldface font.

Function
Mean Error

RTEP(5,5) RTEP(10,10) RTEP(20,20) RTEP(50,50) RTEP(100,100)

f1 1.5e–14 2.7e–13 7.2e–11 8.5e–10 6.1e–10

f2 2.3e–11 3.3e–09 1.6e–08 6.0e–03 8.5e–01

f3 2.3e+00 4.9e+00 6.6e+00 1.8e+01 3.8e+01

f4 7.5e–14 8.2e–11 2.0e–10 5.0e–08 9.3e–05

f5 7.7e–03 2.5e–03 8.4e–02 2.0e+00 5.6e+00

f6 6.1e–01 4.8e–01 1.5e+00 6.0e+00 1.7e+01

f7 2.1e+00 4.7e+00 3.0e+01 2.9e+01 1.0e+03

f8 0 0 0 0 0

f9 6.1e–37 2.6e–36 3.9e–31 3.8e–28 2.2e–25
e– e– e– e– e–



202

Table 8.11 (continued)

Function
Mean Error

RTEP(5,5) RTEP(10,10) RTEP(20,20) RTEP(50,50) RTEP(100,100)

f10 1.7e–11 2.5e–09 7.4e–08 1.1e–06 9.6e–04

f11 9.6e–06 2.0e–05 4.8e–02 2.6e–01 9.3e–01

f12 4.3e–05 3.7e–06 2.2e–05 4.1e–02 2.1e–01

f13 6.8e–09 2.3e–07 1.9e–07 4.6e–06 2.5e–04

f14 8.4e–17 1.7e–16 1.1e–17 2.5e–12 7.0e–11

f15 9.7e–11 6.7e–09 5.1e–08 4.4e–05 4.7e–04

f16 4.5e–08 8.6e–07 2.6e–07 7.5e–05 2.3e–05

f17 2.1e–12 1.9e–13 5.4e–13 2.5e–11 9.2e–08

f18 2.9e–04 1.8e–06 1.4e–05 9.7e–04 5.7e–02
e– e– e– e– e–f19 0.004 0.004 0.007 0.012 0.015

f20 0.0012 0.0017 0.0028 0.0033 0.0045

f23 0.00 0.00 0.07 0.18 0.22

f24 0.00 0.00 0.10 0.15 0.28

f25 0.38 0.41 0.52 0.55 0.56

f26 0.33 0.40 0.56 0.48 0.51
f27 0.31 0.25 0.39 0.82 1.27
f28 0.42 0.48 0.88 0.92 1.04
f29 0.00 0.00 0.00 0.00 0.00
f30 0.25 0.28 0.45 0.44 0.52
f30 0.25 0.28 0.45 0.44 0.52

Table 8.12: Performance of STEP, based on the final solution quality (mean error), on the
standard benchmark functions f1–f30. Results have been averaged over 50 independent runs.

Function STEP
(Mean Error) Function STEP

(Mean Error)
f1 8.3e–04 f15 2.6e–02

f2 5.6e–03 f16 1.0e–02

f3 5.5e+01 f17 9.8e–01

f4 7.4e–02 f18 5.2e–03

f5 3.7e+02 f19 0.025

f6 5.3e+01 f20 0.036

f7 3.7e+02 f23 1.21
f8 0 f24 0.87
f9 6.0e–02 f25 1.77

f10 1.1e+01 f26 1.61

f11 8.5e+00 f27 1.87

f12 2.8e+01 f28 1.26

f13 1.3e+00 f29 0.05

f14 7.1e–01 f30 0.88
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Figure 8.4: The mean absolute error values of the final results from RTEP(5,5),
RTEP(10,10), RTEP(20,20), RTEP(50,50), RTEP(100,100) and STEP, shown in the same
order, from the left to the right. RTEP(5,5) shows the best performance, i.e., the minimum
mean absolute error value, while the sequential variant — STEP shows the worst
performance with the highest error value.

Table 8.13: Comparison between RTEP(2,4) and Naïve-RTEP, based on their final solution
quality, on the standard benchmark functions f1–f30. Results have been averaged over 50
independent runs. For each function, the best result is marked with boldface font.

Function
Mean Error

Function
Mean Error

Naïve-RTEP RTEP(2,4) Naïve-RTEP RTEP(2,4)

f1 6.2e–10 7.5e–18 f16 1.9e–03 2.2e–07

f2 3.2e–07 1.7e–09 f17 8.5e–05 3.2e–13

f3 6.6e+00 1.7e+00 f18 4.2e–06 7.1e–08

f4 1.8e–06 2.4e–15 f19 0.002 0.002

f5 6.2e–02 2.6e–03 f20 4.2e–02 0.0004

f6 5.1e–02 1.3e–01 f21 0.00 0.00

f7 1.9e+01 1.1e+00 f22 0.73 0.00

f8 0.00 0.00 f23 0.73 0.03

f9 8.3e–04 8.0e–38 f24 0.00 0.00

f10 8.2e–02 2.5e–14 f25 0.90 0.55

f11 2.0e–03 2.9e–07 f26 0.75 0.38

f12 3.9e+03 7.1e+02 f27 0.90 0.25

f13 6.5e–02 2.0e–10 f28 1.62 0.85

f14 3.2e–10 2.7e–25 f29 0.00 0.00

f15 8.6e–06 7.8e–10 f30 0.82 0.29

Now we examine whether the usage of neighbors and strangers is necessary for the

improved performance of RTEP. RTEP uses the distance between neighbors and strangers as

the standard deviations of its Gaussian mutations. Therefore, RTEP has to keep track of the
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neighbors and strangers for every individual of the population throughout the evolution. To

examine whether the usage of neighbors and strangers have contributed significantly for the

better performance of RTEP, we introduce here another variant of RTEP — the naïve-RTEP,

which does not use neighbors or strangers; instead, it selects an individual randomly from the

rest of the population. The distance of this random individual from the current individual is then

used as the standard deviation for the Gaussian mutation of RTEP. The results of RTEP(2,4) and

naïve-RTEP with population size=50 and number of function evaluations=150,000 are

presented and compared in Table 8.13. It is apparent from the results that naïve-RTEP

performed much worse than RTEP on most (25 out of 30) of the functions. The performance gap

is often by several orders of magnitude and obviously statistically significant. This indicates the

necessity of using proper standard deviation and directional information for better

performance and more effective explorations and exploitations during the optimization process.

8.4 Experiments on DGEP
In this section, we perform a few experiments on DGEP to examine some of its aspects, such as

the effect of DGEP on the population diversity, how the population diversity evolves under its

influence, whether the DGM mutation scheme can achieve a higher success rate and the

correlation between the success rate of the DGM scheme and the performance of the DGEP

algorithm on the standard benchmark functions f1–f18.

At first, we investigate how the population diversity is evolved by the DGEP algorithm

compared to the basic CEP [102] algorithm. CEP [102] is the classical evolutionary

programming approach and it shows no explicit concern for the degree of explorations,

exploitations and diversity of the evolving population, while DGEP is founded on the idea of

inter-neighborhood and intra-neighborhood diversities to guide its mutation operation. DGEP

also alters the selection operator to promote more population diversity. Table 8.14 compares

the last generation population diversity of CEP [102] and DGEP for the standard benchmark

functions f1---f18. Both CEP [102] and DGEP use real valued representation for the chromosomes,

i.e., each chromosome is a point in the D-dimensional parameter space. Therefore, the diversity

is measured as the average Euclidean distance among the chromosomes across the population.

More formally, the diversity div(P) of the current population P is measured by using the

eqs. (8.1)–(8.2), where D is the dimensionality of the problem and M is the population size.
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Using such a simple, average distance based metric to quantify diversity not only has the benefit

of plain interpretation, but also is consistent with the scheme of DGEP, because DGEP uses the

Euclidean distance between neighbors and non-neighbors to guide the mutation step size, and

also to find duplicate chromosomes for elimination. From the diversity present at last

generations (Table 8.14), it is observed that DGEP fosters significantly higher amount of

diversity in comparison to CEP [102] for most of the functions. In Table 8.14, DGEP shows

higher amount of diversity on as many as 15 (out of 18) functions, while CEP shows better

diversity only on the remaining three. This indicates that DGEP performs an overall higher

amount of search space explorations than CEP. Fig. 8.5 shows the evolution of the population

diversity with the ongoing generations for two multimodal functions — f10 and f18. It is seen that

CEP [102] drops the genetic diversity rapidly, within only a few early generations, and then

never becomes able to restore the lost diversity. In contrast, DGEP maintains an overall higher

amount of diversity all through the evolution and exhibits both ups and downs in the diversity

values which might indicate the ability of DGEP to break free from some locally optimal point.

The ‘up’s in Fig. 8.5 are indication of the strength of DGEP to restore some significant portion of

the lost diversity when it breaks free from some locally optimal point (where it got trapped

previously) by using its diversity guided mutation and diversity-promoting operations, such as

elimination of duplicate individuals and replacement of the individuals stuck at the locally

optimal points by randomly placed new, diverse individuals.

Table 8.14: Comparison of DGEP and CEP [102] based on the population diversity for the high
dimensional functions f1–f18. Diversity of the population is measured using eqs. (8.1)–(8.2). For
each function, the higher diversity value is marked with boldface font.

Function
Population Diversity

Function
Population Diversity

CEP DGEP CEP DGEP

f1 1.27e–06 6.25e–03 f10 1.39e–08 2.27e–03

f2 5.61e–05 5.22e–04 f11 4.52e–03 6.82e–03

f3 4.81e–01 5.27e–01 f12 6.43e–03 1.09e–02

f4 4.79e–04 2.10e–03 f13 8.53e–08 7.90e–05

f5 5.22e–03 9.64e–02 f14 6.47e–06 8.62e–03

f6 5.48e–03 5.67e–01 f15 5.28e–07 2.59e–03

f7 6.35e–01 3.73e–01 f16 6.32e–03 7.01e–02

f8 8.95e–03 9.50e–02 f17 2.86e–09 4.57e–04

f9 5.09e–07 2.14e–04 f18 1.07e–07 5.33e–04

Su
m
m
ar
y DGEP + 7

Su
m
m
ar
y DGEP + 8

DGEP – 2 DGEP – 1
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Figure 8.5: The evolution of the population diversity with the ongoing generations, under the
influence of CEP [102] and DGEP for two multimodal functions — f10 (left) and f18 (right).

DGEP introduces the DGM (Diversity Guided Mutation) scheme for more effective mutations of

the individuals. But does the DGM mutation scheme have a higher success rate than the

traditional Gaussian mutation scheme of the classical CEP [102] algorithm? To find out, we have

measured the average success rates of mutations of both DGEP and CEP and presented in

Table 8.15. Here, a mutation operation is considered ‘successful’ if and only if the new, mutated

candidate solution is better (i.e., has higher fitness value) than the original solution. Both DGEP

and CEP are executed with population size=100 and maximum number of function evaluations

(FE)=100,000. The other parameters of DGEP are set to the same values as of DGEP1 in

Table 4.1 (chapter 4). Table 8.15 demonstrates that, for all (18 out of 18) the functions f1–f18, the

percentage of successful mutations is higher by DGEP than by the CEP algorithm. For some

functions (e.g., f2, f10 and f14), the success rate of DGEP is noticeably much higher than CEP,

which interestingly coincides with the much improved results of DGEP for the very same

functions (f2, f10 and f14) in Table 8.15. Does there exist any direct positive correlation between

the higher success rate of the DGM mutation scheme and the improved performance of the

DGEP algorithm? To find out, we have plotted (Fig. 8.6) the quality of the final solution x*,

measured as  10log *f x , along the y-axis and the corresponding success rate of the DGM

mutation scheme along the x-axis. The correlation between these two series of data points is

computed to be 0.71, which indicates a strong, positive correlation. The plot in Fig. 8.6 also

indicates the existence of a strong positive correlation, which becomes clear from the general

trend of those data points. This positive correlation between improved results by DGEP and the

higher success rate of the DGM mutation scheme indicates that the proposed diversity guided

mutation scheme of DGEP can effectively induce more successful mutations to produce better

offspring solutions from the existing ones, which results in significantly improved performance

of DGEP over the CEP [102] and many other existing evolutionary and swarm intelligence

algorithms, as has already been demonstrated by Tables 4.1–4.11 (Chapter 4).
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Table 8.15: Comparison between DGEP and CEP [102] based on the final solution quality and
the successful mutation rate on the high dimensional standard benchmark functions f1–f18. The
higher mutation success rate for each function is marked with boldface font.

Function
CEP DGEP

Final Solution
Quality, f *

Successful
Mutation (%)

Final Solution
Quality, f *

Successful
Mutation (%)

f1 4.28e–04 25.08 2.81e–07 33.72
f2 2.90e–03 15.05 1.07e–11 38.95
f3 5.15e+02 10.21 6.99e+00 18.94
f4 3.36e–02 22.46 4.85e–06 31.12
f5 3.78e+00 12.01 5.03e–02 21.73
f6 8.58e+00 10.56 2.42e–01 22.55
f7 1.75e+01 11.25 7.11e+00 22.46
f8 2.80e+00 7.48 0 18.28
f9 9.65e–01 17.19 5.40e–06 26.65
f10 5.23e+01 14.64 2.74e–11 36.64
f11 8.40e+00 13.76 9.33e–03 27.37
f12 6.90e+01 5.19 1.65e+01 20.35
f13 4.25e+00 22.94 8.58e–12 29.31
f14 2.77e+00 32.18 1.71e–12 41.37
f15 7.80e–02 17.42 3.54e–07 28.05
f16 4.56e–02 14.50 6.22e–05 31.44
f17 6.58e–01 14.59 3.73e–09 29.19
f18 3.39e–02 16.36 5.26e–03 28.05

Figure 8.6: Scatter plot of the final solution quality vs. the mutation success rate for the DGEP
algorithm. The vertical axis shows the final solution quality, measured as –log10(f *), where
f *= f(x*) and x* is the best-so-far solution found by DGEP), while the horizontal axis shows the
mutation success of DGEP. The plot suggests a strong positive correlation between better
solution quality of DGEP and higher mutation success rates by the DGM mutation scheme.
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8.5 Experiments on ABC-SAM
In this section, we carry out a number of experiments on ABC-SAM to study the role and effect of

its control parameters, examine how they influence its performance, evaluate some of the

design choices of ABC-SAM, measure how the success rate of mutations gets affected by the

self-adaptive mutation scheme and how this affects the final solution quality of ABC-SAM.

In addition to the common parameters of every ABC-based algorithm (i.e., SN, MCN and

limit), ABC-SAM has a number of specific control parameters, such as K, τ1 , τ2 , SFmin , α and β ,

each one of which is introduced in chapter 5, and their default values are specified in

section 5.4.1. However, among these parameters, K and α are the two most influential ones that

significantly affect the performance of ABC-SAM. As a brief reminder for the reader, K denotes

the adaptation period (i.e., number of cycles between two successive ‘adaptation’ cycles of

ABC-SAM), while α controls the intensity of both explorations and exploitations (because, the

explorative and exploitative perturbation scaling factors of ABC-SAM are produced randomly,

within the range [0,2α] and [0,2–α]).

Table 8.16 presents the performance (i.e., mean error of the final solutions) of ABC-SAM

for several different values of K for the standard benchmark functions f1–f30. Results show that

the best result for each function is always achieved with K=5 or K=10. For most of these

functions, the results start to deteriorate for both increasing the value of K beyond K=10 or

decreasing the value of K below K=5. Fig. 8.7 plots the mean absolute error values of ABC-SAM

for different values of K, which also identifies the optimal value of K as K=10. Fig. 8.7 also shows

that the error values start to escalate as K deviates from this optimal value (i.e., 10). This

suggests that adapting the mutation step size too frequently (e.g., with K<5) or too scarcely

(e.g., K=100 or 250) worsens the performance of ABC-SAM, while a moderate frequency of

adaptation (e.g., K=5~10) produces the best possible results for most optimization problems.

Now, we examine the effect of the control parameter α on the performance of ABC-SAM.

The value of α controls the intensity of both explorations and exploitations, because ABC-SAM

produces the explorative and exploitative scaling factors for mutations from [0, 2α] and [0, 2–α],

respectively. Table 8.17 presents the results of ABC-SAM for several different values of α , which

shows that the best result for each function is always achieved with α in [4,12]. For most (18 out

of 25) functions, ABC-SAM produces the best results with α=8 or 10. Results start to deteriorate

for both increasing and decreasing values of α beyond the range of [4,12]. Fig. 8.8 plots the

mean absolute error values of ABC-SAM for different values of α, which also identifies the same

optimal range of values for α (i.e., [8,10]) and shows that the error value starts to rise quickly as

α deviates beyond the range of [4,12]. Since this range of values produces the best results from

ABC-SAM for all the standard benchmark functions, we suggest this value range for a new user

to start with ABC-SAM for any optimization problem at hand.
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Table 8.16: Performance (mean error) of eight different variants of ABC-SAM on the standard
benchmark functions f1–f30, each variant using a different value of the control parameter K (i.e.,
the adaptation period). The best result for each function is marked with boldface font.

Value of
K

Function

f1 f2 f3 f4 f5 f6 f7 f8 f9

K=2 6.15e–12 7.19e–07 2.15e+01 6.20e–09 8.37e–01 6.85e–03 2.87e+01 0 3.35e–12

K=5 1.61e–14 9.76e–08 2.13e+01 8.16e–13 2.50e–01 1.41e–03 2.52e+01 0 6.30e–15

K=10 4.18e–14 2.47e–08 1.69e+01 3.95e–12 9.24e–01 2.16e–03 2.28e+01 0 3.66e–16

K=20 3.46e–12 5.19e–07 1.88e+01 8.58e–12 1.52e+00 2.79e–02 2.69e+00 0 2.65e–14

K=30 1.06e–11 6.33e–07 2.75e+01 1.32e–11 3.59e+00 7.22e–02 2.82e+00 0 7.05e–14

K=50 7.57e–12 8.54e–07 3.40e+01 8.32e–11 4.09e+00 3.26e–03 3.14e+01 0 1.23e–13

K=100 2.56e–10 6.82e–05 3.89e+01 8.89e–08 6.65e+00 1.94e–01 3.79e+01 0 9.11e–10

K=250 3.94e–05 8.77e–02 4.40e+01 5.52e–05 8.76e+00 1.90e+00 4.61e+01 0 7.82e–06

K~[-2, 2]
Value of

K
Function

f10 f11 f12 f13 f14 f15 f16 f17 f18

K=2 8.45e–15 9.29e–09 –11905.2 8.28e–07 8.66e–08 2.63e–06 6.02e–01 2.68e–10 1.91e–03

K=5 4.14e–15 6.86e–10 –12332.8 1.58e–08 9.32e–10 1.46e–09 6.82e–03 1.37e–10 6.35e–04

K=10 1.26e–16 4.60e–10 –12416.2 9.26e–08 8.36e–10 2.22e–08 5.78e–04 9.78e–12 3.06e–04

K=20 1.92e–15 5.64e–09 –12226.2 5.76e–07 9.92e–10 8.27e–07 7.43e–02 4.76e–11 8.88e–02

K=30 5.25e–15 5.09e–09 –12109.2 5.69e–06 1.89e–09 2.56e–07 1.25e–01 3.09e–10 9.80e–03

K=50 8.85e–15 8.85e–09 –12084.2 9.55e–06 1.84e–09 4.40e–05 4.12e+00 8.74e–10 8.08e–03

K=100 7.65e–13 8.03e–07 –11830.2 4.83e–05 7.42e–08 4.46e–04 6.67e+00 6.12e–08 4.54e–03

K=250 9.92e–12 9.56e–06 –11201.2 4.65e–04 6.79e–07 1.79e–03 8.43e+00 6.28e–07 7.89e–03

Value of
K

Function
f19 f20 f25 f26 f27 f28 f30

K=2 1.04 3.65e–04 –9.85 –10.40 –10.53 1.13e+01 –0.86

K=5 1.03 3.47e–04 –10.15 –10.40 –10.54 7.36 –0.93

K=10 1.03 4.32e–04 –10.14 –10.38 –10.52 4.02 –1.04

K=20 1.04 4.74e–04 –10.07 –10.38 –10.51 6.04 –0.94

K=30 1.04 4.90e–04 –10.05 –10.38 –10.52 6.92 –0.95

K=50 1.04 5.20e–04 –10.01 –10.40 –10.54 8.56 –0.80

K=100 1.07 5.38e–04 –9.99 –10.33 –10.48 8.77 –0.78

K=250 1.06 5.88e–04 –9.86 –10.34 –10.35 9.54 –0.67
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Figure 8.7: The mean absolute error values of the final results from ABC-SAM for eight
different settings of the control parameter K (i.e., the adaptation period). ABC-SAM with K=10
shows the best performance, i.e., the minimum mean absolute error value.

Table 8.17: Performance of nine different variants of ABC-SAM on the standard benchmark
functions f1–f30, each variant using a different value of the control parameter α. The best result
for each function is marked with boldface font.

Value of
α

Function
f1 f2 f3 f4 f5 f6 f7 f8 f9

α=0.5 9.88e–12 1.62e–07 2.47e+01 3.95e–10 5.33e+00 1.27e–01 6.25e+01 0 8.05e–14

α=1.0 7.28e–12 9.67e–08 2.23e+01 2.77e–10 4.88e+00 5.61e–01 2.59e+01 0 6.81e–14

α=2.0 9.58e–13 5.44e–08 2.09e+01 7.96e–11 1.77e+00 6.01e–01 2.37e+01 0 3.86e–14

α=4.0 5.96e–13 5.53e–08 1.84e+01 9.60e–13 1.75e+00 6.79e–02 2.17e+01 0 2.73e–15

α=8.0 1.92e–13 1.97e–08 1.78e+01 1.70e–12 4.47e–01 5.22e–02 2.26e+01 0 8.84e–15

α=10 4.18e–14 2.47e–08 1.69e+01 3.95e–12 9.24e–01 2.16e–03 2.28e+01 0 3.66e–15

α=12 2.82e–13 7.06e–08 1.92e+01 4.29e–11 6.55e–02 3.96e–02 2.83e+01 0 5.69e–16

α=15 1.36e–12 1.98e–07 3.33e+01 8.69e–11 4.67e+00 5.87e–01 3.19e+01 0 8.43e–15

α=20 5.89e–12 2.35e–07 3.85e+01 6.56e–10 6.06e+00 6.09e–01 3.39e+01 0 6.12e–14
K~[-2, 2]
Value of

α
Function

f10 f11 f12 f13 f14 f15 f16 f17 f18

α=0.5 7.33e–15 5.62e–09 –11963.5 2.21e–06 3.03e–08 6.35e–06 2.50e–03 2.27e–11 8.76e–02

α=1.0 4.78e–15 6.85e–09 –12106.6 8.15e–07 1.34e–08 1.72e–06 3.90e–03 1.63e–11 9.32e–02

α=2.0 4.66e–15 7.60e–10 –12389.0 7.51e–07 1.71e–08 4.97e–07 6.02e–04 9.87e–12 6.76e–02

α=4.0 8.74e–17 6.61e–10 –12505.8 7.58e–07 3.91e–09 2.35e–07 1.22e–04 8.25e–12 5.05e–02

α=8.0 5.90e–16 6.42e–10 –12434.1 7.73e–08 6.89e–09 9.21e–08 1.71e–05 4.05e–13 3.47e–02

α=10 1.26e–16 4.60e–10 –12416.2 9.26e–08 8.36e–10 2.22e–08 5.78e–04 9.78e–12 3.06e–02

α=12 9.54e–16 3.59e–09 –12348.0 5.91e–08 4.26e–09 8.49e–08 7.49e–03 5.67e–12 6.91e–02

α=15 1.59e–15 5.77e–09 –12108.7 1.04e–07 3.45e–08 6.98e–07 8.92e–03 6.02e–12 8.55e–02

α=20 9.24e–15 6.34e–09 –11706.8 1.56e–06 3.90e–08 2.53e–06 8.18e–02 2.90e–11 8.49e–02
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Table 8.17 (continued)

Value of
α

Function
f19 f20 f25 f26 f27 f28 f30

α=0.5 1.04 5.47e–04 –9.90 –10.40 –10.52 9.55 –0.80

α=1.0 1.04 5.15e–04 –9.96 –10.40 –10.52 6.83 –0.82

α=2.0 1.05 4.82e–04 –10.10 –10.40 –10.53 5.10 –0.90

α=4.0 1.02 4.85e–04 –10.05 –10.40 –10.54 5.66 –1.04

α=8.0 1.02 4.70e–04 –10.11 –10.40 –10.54 4.84 –0.99

α=10 1.03 4.32e–04 –10.14 –10.40 –10.53 4.02 –1.04

α=12 1.03 4.66e–04 –9.85 –10.40 –10.53 5.38 –0.95

α=15 1.04 5.31e–04 –9.78 –10.40 –10.52 7.97 –0.82

α=20 1.04 5.56e–04 –9.73 –10.40 –10.52 8.65 –0.79

Figure 8.8: The mean absolute error values of ABC-SAM with nine different settings of the
control parameter α. ABC-SAM with α=8.0 shows the best performance (i.e., minimum error
value). Also, α ~ [4,10] produces sufficiently good results, i.e., small mean absolute error values.

Our next experiment is on evaluating two important design choices of ABC-SAM. As

explained in chapter 5, ABC-SAM maintains a scaling factor value SFi for every candidate
solution xi and periodically adapts the value of SFi, either for more exploitations (by decreasing

the value of SFi) or for more explorations (i.e., by increasing the value of SFi). During this

adaptation process, the value of SFi is never allowed to fall below SFmin. However, if the value of
a particular SFi is get stuck at SFmin for a very long period (e.g., the previous τ1 cycles), then SFi is

reset to its default value of 1.0. After each such reset, the value of SFi is ‘frozen’ (i.e., kept
constant at 1.0) for the next τ2 cycles. But are these two design choices (i.e., SF-reset and

SF-stagnation) necessary for the good performance of ABC-SAM? In order to find out, we have

introduced two more variants of ABC-SAM — ABC-SAM-II and ABC-SAM-III. The first variant
(ABC-SAM-II) is just like the standard ABC-SAM algorithm, but only one exception — it never

resets any SFi value to 1.0, even if that particular SFi gets stuck at SFmin for the previous τ1 (or,
more) cycles. The other variant — ABC-SAM-III allows the necessary resetting of the SFi values,
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like ABC-SAM, if that particular SFi value is stuck at its minimum value (i.e., SFmin) for the last
τ1cycles. But unlike ABC-SAM, it does not ‘freeze’ that reset SFi value at 1.0 for the next τ2 cycles.

All three algorithms — ABC-SAM, ABC-SAM-II and ABC-SAM-III are run with the following
parameter values — K=10, SN=100, MCN=1000, limit=100, τ1=40, τ2=20, SFmin=10-8, α=10

and β=0.9. Table 8.18 presents their results on the standard benchmark functions f1–f30. Results

indicate that the standard ABC-SAM algorithm, which includes both the SF-reset and
SF-stagnation schemes, significantly outperforms both the other two ABC-SAM variants on most

(18 out of 30) of the functions. This empirically proves the necessity of both the SF-reset and
SF-stagnation schemes. Actually, both these schemes increase the explorative capacity of the

ABC-SAM algorithm. Resetting a particular scaling factor value, say SFi, from its minimum

possible of SFmin (i.e., 10–8) to the default value (i.e., 1.0) makes an exponential leap of its value to
promote the degree of explorations around the candidate solution xi. Freezing this scaling factor

value at 1.0 for the next τ2 cycles promotes the continuation of search space explorations
around xi for at least the next τ2 iterations. Otherwise, the value of SFi might rapidly revert back

to SFmin because of the repeated application of eq. (5.2). The improved results of ABC-SAM
(Table 8.18) in comparison to the other two variants (i.e., ABC-SAM-II without SF-reset and

ABC-SAM-III without SF-stagnation) indicate that the increased degree of explorations by the

SF-reset and SF-stagnation strategies is important and essential for the better performance of
ABC-SAM on most of the standard benchmark functions f1–f30.

Table 8.18: Comparison among ABC-SAM, ABC-SAM-II and ABC-SAM-III based on the final
solution quality on the standard benchmark functions f1–f30. For each function, the best unique
performance is marked with boldface font.

No.

Mean Result ± Standard Deviation t-Test
ABC-SAM (includes

both SF-reset and
SF-stagnation)

ABC-SAM-II
(ABC-SAM without

SF-reset)

ABC-SAM-III
(ABC-SAM without
SF-stagnation)

ABC-SAM
vs.

ABC-SAM-II

ABC-SAM
vs.

ABC-SAM-III
f1 4.18e–14 ± 5.37e–15 6.25e–14 ± 2.95e–14 5.05e–14 ± 2.62e–14 ≈ ≈
f2 2.47e–08 ± 2.35e–09 5.38e–05 ± 2.77e–15 2.28e–05 ± 9.67e–15 + +
f3 16.94 ± 1.43 25.96 ± 7.23 24.27 ± 6.72 + +
f4 3.95e–12 ± 1.05e–12 9.69e–10 ± 9.10e–09 4.76e–10 ± 5.53e–10 + +
f5 9.24e–01 ± 2.08e–01 8.78 ± 1.70 6.92 ± 2.15 + +
f6 2.16e–03 ± 6.37e–04 4.21e–01 ± 1.34e–02 1.85e–02 ± 6.28e–03 + +
f7 22.83 ± 3.75 31.66 ± 3.28 29.83 ± 2.93 + +
f8 0 ± 0 0 ± 0 0 ± 0 ≈ ≈
f9 3.56e–16 ± 1.44e–17 3.64e–16 ± 1.09e–17 3.59e–16 ± 9.77e–17 ≈ ≈
f1 8.53e–15 1

.
0
3
e
–
1
5

1.18e–15 ± 1.03e–15f10 1.26e–16 ± 2.11e–17 1.62e–10 ± 5.24e–11 1.35e–10 ± 8.16e–11 + +
f11 4.60e–10 ± 8.85e–11 4.61e–05 ± 2.31e–05 4.56e–05 ± 1.36e–05 + +
f12 –12416.19 ± 40.22 –11828.33 ± 163.16 –12008.33 ± 65.90 + +
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Table 8.18 (continued)

How does the proposed self-adaptive mutation strategy affect the mutation success rate of
ABC-SAM? To find out, we have measured the percentage of successful mutations for both ABC
and ABC-SAM, and compared them side-by-side in Table 8.19. Results show that the
self-adaptive mutation strategy of ABC-SAM has higher success rate than the basic mutation
scheme of the ABC algorithm on most (15 out of 18) of the functions. But does this higher
success rate have any direct correlation with the improved results of ABC-SAM? To find out, we
have plotted the final solution quality (y-axis) of ABC-SAM against its rate of successful
mutations (x-axis) in Fig. 8.9. The general trend of the points in Fig. 8.9 clearly indicates strong
positive correlation between better results (i.e., smaller function value) and higher mutation
success rate. Strong correlation is also observed in Table 8.19. For example, ABC-SAM
outperforms ABC on 14 (out of 18) functions in Table 8.19, and on each of them ABC-SAM shows
higher mutation success rates than ABC. The only three (out of 18) functions where ABC-SAM
performs worse than ABC are — f7, f17 and f18, and interestingly, these three functions are the
only ones in Table 8.19 where ABC-SAM shows lower mutation success rates than ABC. This
positive correlation between improved results and higher mutation success rate suggests that
the proposed self-adaptive mutation scheme can effectively induce more successful mutations
to produce better trial solutions and thus can improve the performance of the algorithm.

No.
Mean Result ± Standard Deviation t-Test (ABC-SAM vs.)

ABC-SAM ABC-SAM-II ABC-SAM-III ABC-SAM-II ABC-SAM-III

f13 9.26e–08 ± 1.89e–08 4.58e–05 ± 4.74e–06 9.17e–06 ± 3.55e–06 + +
f14 8.36e–10 ± 5.08e–11 6.51e–07 ± 9.79e–08 8.92e–07 ± 3.25e–07 + +
f15 2.22e–08 ± 3.93e–09 3.97e–06 ± 5.20e–07 3.18e–06 ± 9.46e–07 + +
f16 5.78e–04 ± 6.31e–05 3.84e–02 ± 6.94e–15 2.63e–02 ± 9.05e–05 + +
f17 9.78e–12 ± 3.89e–12 8.65e–07 ± 3.25e–07 9.66e–07 ± 3.46e–07 + +
f18 3.06e–02 ± 8.59e–03 2.98e–02 ± 9.18e–03 2.94e–02 ± 1.17e–02 ≈ ≈

e– e
–

f19 1.03 ± 0.02 1.03 ± 0.002 1.028 ± 0.02 ≈ ≈
f20 4.32e–04 ± 1.09e–05 4.35e–04 ± 9.56e–05 4.34e–04 ± 8.25e–05 ≈ ≈
f21 –1.0316 ± 0.00 –1.0316 ± 0.00 –1.0316 ± 0.00 ≈ ≈
f22 0.398 ± 0.00 0.398 ± 0.00 0.398 ± 0.00 ≈ ≈
f23 –3.86 ± 0.00 –3.86 ± 0.00 –3.86 ± 0.00 ≈ ≈
f24 –3.32 ± 0.00 –3.32 ± 0 –3.32 ± 0.00 ≈ ≈
f25 –10.14 ± 3.68e–07 –9.90 ± 0.11 –9.94 ± 0.08 + +
f26 –10.40 ± 3.94e–03 –10.40 ± 0.00 –10.40 ± 0.00 ≈ ≈
f27 –10.54 ± 6.77e–07 –10.38 ± 0.14 –10.34 ± 0.15 + +
f28 4.02 ± 0.39 6.96 ± 1.34 6.13 ± 0.45 + +
f29 –9.66015 ± 0 –9.66015 ± 0.00 –9.66015 ± 0.00 ≈ ≈
f30 –1.04 ± 0.06 –0.89 ± 0.08 –0.90 ± 0.06 + +
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Table 8.19: Comparison of ABC and ABC-SAM based on their final solution quality and
successful mutation rate on the high dimensional benchmark functions f1–f18. Instances with
better solution quality due to higher mutation success rates are marked with boldface font.

Function
ABC ABC-SAM

Final Solution
Quality

Successful
Mutation Rate (%)

Final Solution
Quality, f *

Successful
Mutation Rate (%)

f1 2.45e–11 22.08 4.18e–14 25.33
f2 5.05e–07 14.45 2.47e–08 15.74
f3 4.18e+01 10.62 1.69e+01 12.38
f4 8.32e–10 18.96 3.95e–12 22.78
f5 6.61e+00 13.01 9.24e–01 15.10
f6 6.67e–01 14.73 2.16e–03 18.03
f7 4.25e–01 8.63 2.28e+01 7.15
f8 0 12.69 0 15.44

f9 8.60e–13 19.48 3.56e–16 28.18
.f10 1.72e–14 12.62 1.26e–16 22.09

f11 2.33e–08 12.66 4.60e–10 19.80
f12 –11346.79 5.67 –12416.19 10.81
f13 2.93e–06 23.39 9.26e–08 25.43
f14 4.55e–08 19.53 8.36e–10 22.63
f15 3.34e–04 15.32 2.22e–08 18.96
f16 3.36e–01 12.28 5.78e–04 18.82
f17 5.47e–12 22.91 9.78e–12 21.45
f18 2.63e–03 15.60 3.06e–02 13.55

Figure 8.9: Scatter plot of the final solution quality vs. the mutation success rates of ABC-SAM
on the standard benchmark functions f1–f18. The vertical axis shows the final solution quality
(i.e., mean error) in the logarithmic scale, while the horizontal axis shows the percentage of
successful mutations. The plot indicates that there is strong positive correlation between better
solution quality (i.e., lower function value) and higher mutation success rates.
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8.6 Experiments on ABC-IX
In this section, we conduct several experiments on ABC-IX to comprehend how it improves the

results over the basic ABC algorithm. In the following paragraphs (Tables 8.20–8.23, Figs. 8.10–

8.11), we present the experiments and their results, one by one, intending to find out the

answers to some questions, such as — whether each component of ABC-IX is essential for its

improved performance, how does the population diversity evolve by ABC-IX, what is the effect

of ABC-IX on the mutation success rate, whether (and, how) any self-adaptation takes place on

the perturbation rates of the individuals and does the effective perturbation rate depend on the

characteristics of the function, such as its modality and separability.

Our first experiment on ABC-IX is to validate its design choices — Are both its components

(i.e., the simulated annealing based probabilistic selection scheme and the separate

self-adaptive perturbation rate for each candidate solution) necessary for its good performance?

Do both these design choices contribute significantly to the improved results of ABC-IX? To find

out, we have designed two more variants — ABC-SimAn and ABC-SAD. ABC-SimAn includes the

simulated annealing based probabilistic selection scheme, but does not include the self-adaptive

perturbation rate of ABC-IX. The other variant — ABC-SAD includes the scheme for

self-adaptive perturbation rate, like ABC-IX, but does not employ the explorative simulated

annealing based probabilistic selection scheme. Both ABC-SimAn and ABC-SAD are tested and

compared with ABC and ABC-IX on the 18 high dimensional functions f1–f18 with SN=100,

MCN=1000 and limit=200. Results (Table 8.20) show that both ABC-SimAn and ABC-SAD

outperform the basic ABC algorithm on almost all (16 out of 18) of the functions (with the only

exceptions of f8 and f18), which indicates the effectiveness of both the new selection and

perturbation schemes to improve the results over the basic ABC algorithm. However, when both

the schemes are combined, as is done by ABC-IX, the results are further improved, as shown for

all (18 out of 18) of the functions in Table 8.20. These improvements are often (13 out of 18

functions) statistically significant, as shown by the t-test with at least 95% level of confidence

between the results of ABC-IX and each of ABC-SimAn and ABC-SAD. This also indicates that the

explorative simulated annealing based selection scheme and the self-adaptive perturbation rate

of ABC-IX work synergistically and cooperatively to improve the results significantly over the

basic ABC algorithm, as well as over both the partially improved variants — ABC-SimAn and

ABC-SAD.
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Table 8.20: Comparison of ABC-IX with ABC-SimAn, ABC-SAD and the basic ABC algorithm on
high dimensional functions f1–f18. The best result for each function is marked with boldface font.

No
ABC ABC-SimAn ABC-SAD ABC-IX t-Test

(ABC-IX vs.

Mean Error Std. Dev. Mean Error Std. Dev. Mean
Error Std. Dev. Mean Error Std. Dev. ABC-

SimAn
ABC-
SAD

f1 6.38e–10 8.30e–11 1.37e–10 2.12e–11 1.34e–15 5.29e–16 1.22e–24 5.58e–25 + +

f2 1.68e–12 2.61e–13 1.81e–13 4.66e–14 7.80e–15 2.80e–15 7.63e–15 2.25e–15 + ≈

f3 9.15e+00 1.73e+00 5.50e–02 8.55e–03 3.50e–01 1.13e–01 5.41e–02 8.16e–03 ≈ +

f4 5.67e–08 1.22e–08 1.39e–11 3.00e–12 5.98e–19 8.43e–20 1.70e–25 3.50e–26 + +

f5 4.09e+00 7.63e–01 8.92e–01 1.76e–01 2.75e–01 3.81e–02 1.50e–02 3.22e–03 + +

f6 6.67e–01 2.77e–02 9.84e–02 3.17e–02 6.53e–02 8.77e–03 8.10e–04 2.46e–04 + +

f7 3.11e+00 1.30e+00 1.94e+00 9.43e–01 9.12e–01 1.19e–01 6.13e–01 1.09e–01 + +

f8 0 0 0 0 0 0 0 0 ≈ ≈

f9 9.01e–11 2.66e–11 5.07e–22 9.62e–23 2.43e–31 5.68e–32 9.68–38 9.96e–39 + +

f10 5.02e–14 2.42e–14 2.53e–17 8.64e–18 6.85e–18 3.80e–18 8.71e–20 9.10e–21 + +

f11 2.13e–08 7.78e–09 9.71e–09 9.78e–10 5.23e–12 2.85e–12 4.82e–13 1.98e–13 + +

f12 7.52e+02 3.34e+02 5.29e+02 2.45e+02 8.90e+01 3.65e+01 2.15e+01 1.08e+01 + +

f13 3.04e–07 8.11e–08 8.50e–09 5.41e–09 8.37e–10 4.45e–10 8.89e–11 4.02–11 + +

f14 9.84e–10 4.57e–10 1.91e–19 7.92e–20 3.78e–19 1.62e–19 2.07e–23 2.44e–24 + +

f15 6.98e–06 2.86e–06 2.78e–08 1.49e–08 2.92e–08 1.33e–08 2.58e–08 1.08e–08 ≈ ≈

f16 2.83e–02 7.30e–03 5.24e–06 3.05e–06 5.78e–06 2.31e–06 4.96e–06 2.06e–06 ≈ ≈

f17 7.18e–10 5.19e–10 7.55e–14 2.79e–14 5.09e–14 1.68e–14 1.91e–14 3.73e–15 + +

f18 2.63e–03 1.07e–03 2.64e–03 8.60e–04 2.63e–03 6.02e–04 2.61e–03 5.95e–04 ≈ ≈

Summary
(t-Test)

+ 13 13

– 0 0

≈ 5 5

Figure 8.10: Diversity of the population of candidate solutions, evolving by ABC and
ABC-IX, for the functions f2 and f17. The vertical axis shows the population diversity, while
the horizontal axis is the number of cycles elapsed.
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Table 8.21: Comparison of ABC-IX with ABC, based on their population diversity after the end
of their run, for the high dimensional functions f1–f18. Diversity is measured as the average
Euclidean distance of the individuals from the centroid of the population. The higher diversity
value for each function is marked with boldface font.

Function
Population Diversity

Function
Population Diversity

ABC ABC-IX ABC ABC-IX

f1 5.83e–05 7.92e–03 f10 6.35e–07 6.91e–05

f2 8.59e–05 3.57e–04 f11 2.52e–02 6.02e–02

f3 3.01e–01 7.27e–01 f12 7.54e–03 8.13e–01

f4 2.61e–03 8.77e–03 f13 5.15e–06 5.32e–04

f5 3.37e–02 8.07e–02 f14 5.63e–05 3.84e–03

f6 9.40e–02 9.27e–01 f15 4.16e–05 1.44e–04

f7 9.69e–02 6.80e–01 f16 7.40e–03 2.46e–02

f8 1.88e–03 1.74e–02 f17 3.82e–08 7.07e–04

f9 2.58e–06 6.03e–03 f18 9.77e–07 3.67e–03

Average
f1–f9

5.89e–02 2.73e–01 Average
f10–f18

4.47e–03 1.01e–01

The previous experiment (Table 8.20) demonstrates the presence of synergy among the

components of ABC-IX. But how they affect the diversity of the population? The simulated

annealing based explorative selection scheme of ABC-IX probabilistically accepts not only better

solutions but also worse ones into the population. Does it increase the diversity and explorative

capacity of the algorithm? To find out, Fig. 8.10 plots the evolution of the population diversity

under the influence of both ABC and ABC-IX for two arbitrarily chosen functions — f2 and f17.

Both the algorithms are run with SN=100, MCN=1000 and limit=100. The diversity value is

measured as the mean distance of the candidate solutions to the centroid of the population.

Fig. 8.10 shows that the population diversity drops more rapidly by ABC than by ABC-IX. Also,

ABC-IX maintains higher level of population diversity than ABC all throughout its execution.

Table 8.21 shows the diversity of the final generation population of both ABC and ABC-IX, where

ABC-IX shows higher amount of diversity for all (18 out of 18) the functions. This is usually well

desired for many complex optimization problems, because an increased level of population

diversity is generally considered necessary for increased degree of search space explorations

without being trapped around the locally optimal points of the search space.

How the success rate of perturbations gets affected by ABC-IX? We consider a

perturbation as ‘successful’ if the new, perturbed solution is better (i.e., has higher fitness value)

than the original candidate solution. In the next experiment (Table 8.22), we try to find out

whether the self-adaptive perturbation rate of ABC-IX has actually improved the success rate of

perturbations. To accomplish this, we have measured the average successful perturbation rate
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achieved by ABC and ABC-IX for the high dimensional functions f1–f18 with SN=100, MCN=1000

and limit=100. Table 8.22 demonstrates that, for almost all (15 out of 18) the functions of f1–f18,

the percentage of successful perturbations is significantly higher by ABC-IX than by the

standard ABC algorithm. For some functions (e.g., f10 and f14) the success rate of ABC-IX is

noticeably much higher than ABC, which interestingly coincides with the much improved results

of ABC-IX for the very same functions (f10 and f14) in Table 6.1 (chapter 6). This positive

correlation between improved results by ABC-IX on a particular function and its higher success

rate of perturbations for the very same function indicates that the proposed self-adaptive

perturbation rate scheme of ABC-IX can effectively induce more successful perturbations to

produce better trial solutions from the existing ones, which results in significantly improved

performance of ABC-IX over the basic ABC algorithm.

Table 8.22: Comparison between ABC and ABC-IX based on their successful perturbation rates
for the high dimensional functions f1–f18. The best result (i.e., higher success rate) for each
function is marked with boldface font.

Function D
Successful Perturbation Rate (%)

ABC ABC-IX
f1 30 17.23 22.62
f2 30 14.35 19.24
f3 30 10.96 13.71
f4 30 18.82 22.30
f5 24 11.31 16.52
f6 30 12.92 15.36
f7 30 17.75 14.84
f8 30 19.38 19.62
f9 30 18.46 27.66
f10 30 18.30 33.56
f11 30 15.42 25.60
f12 30 12.64 17.78
f13 30 13.38 26.99
f14 30 12.75 34.12
f15 30 13.26 25.75
f16 30 10.42 21.08
f17 30 16.01 23.48
f18 30 16.60 16.64

+ 15

– 1

≈ 2



219

The next experiment on ABC-IX tries to find out whether the value of the self-adaptive

perturbation probability xi.q, maintained separately for each candidate solution xi, gradually

adapts to more suitable values with the on-going optimization process. To find out, we have run

ABC-IX with SN=100, MCN=1000 and limit=100, then measured the mean value of xi.q,

averaged over all the candidate solutions of the population during each cycle, which is shown as

q in Fig. 8.11. The functions in Fig. 8.11 include both unimodal (f1, f4, f8) and multimodal (f12, f13,

f18), separable (f1, f8, f12) and non-separable (f4, f13, f18) functions. It is interesting to find out that

the control parameter xi.q gradually self-adapts either towards its maximum possible value, i.e.,

1.0 (e.g., for f4, f13 and f18), or towards very small values (e.g., f1, f8 and f12) depending on whether

the function is separable or not. Table 8.23 shows the value of q during the final generation of

Figure 8.11: Evolution of the average perturbation probability q by ABC-IX for three
unimodal (f1, f4, f8) and three multimodal (f12, f13, f18) functions. The vertical axis shows the
value of ,q while the horizontal axis is the number of cycles elapsed.
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Table 8.23: Mean value of the control parameter q (i.e., q ), measured during the final
generation of ABC-IX, for each of the high dimensional functions f1–f18. Here, C is the function
characteristics with values — U: Unimodal, M: Multimodal, S: Separable and N: Non-Separable.

Function C q Function C q

f1 US 0.08 f10 MS 0.17

f2 UN 0.86 f11 MS 0.08

f3 US 0.12 f12 MS 0.15

f4 UN 0.85 f13 MN 0.74

f5 UN 0.81 f14 MN 0.86

f6 UN 0.84 f15 MS 0.12

f7 UN 0.80 f16 MS 0.17

f8 US 0.20 f17 MN 0.80

f9 US 0.10 f18 MN 0.83

Overall
Mean q

Separable Functions 0.13

Non-Separable Functions 0.82

both ABC and ABC-IX for each of the high dimensional functions f1–f18. The overall mean q in

Table 8.23 for the separable and non-separable functions are computed to be as 0.13 and 0.82,

respectively, which reveals the same pattern of values in Fig. 8.11. For a non-separable function,

the parameters are not independent, so perturbing a subset of the parameters is usually not

useful. This is why q has self-adapted towards larger values, which is observed for all the

non-separable functions in Fig. 8.11 and Table 8.23. This indicates the necessity to perturb most

(or, all) of the parameters at once for successful perturbations for these non-separable

functions. However, for the separable functions (e.g., f1, f8 and f12), the value of q self-adapts to

rather small values, which indicates that the parameters are now independent of each other and

perturbing only one or just a few of them is often effective for the optimization.

8.7 Experiments on ABC-AX2

In this section, we carry out a number of experiments on ABC-AX2 to get a better understanding

on how it achieves significantly improved performance than the basic ABC algorithm. These

experiments, as presented in the following paragraphs, provide us with useful insights on

several important aspects of ABC-AX2, such as — whether each of the three adaptation and

self-adaptation strategies of ABC-AX2 is necessary for its improved performance, do these

strategies have any synergistic effect on each other, whether any significant adaptation takes

place on the control parameters pi, qi and ηi that are maintained separately for each candidate
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solution xi by ABC-IX, is there any important pattern on their direction of adaptation, how the

success rate of perturbation gets affected by ABC-IX and is there any significant correlation

between the improved results of ABC-IX and its rate of successful perturbations.

At first, we perform an experiment (Table 8.24) to find out whether all the three

adaptation and self-adaptation schemes of ABC-AX2 (i.e., Eqs. (7.3)–(7.6)), adjusting the values

of its control parameters pi, qi and ηi, can contribute significantly and synergistically to improve

the results. To examine this, we have designed three more variants of the basic ABC

algorithm — ABC-II, ABC-III and ABC-IV. ABC-II uses the control parameter pi, just like ABC-AX2,

for each candidate solution xi to control the proportion of exploitative and explorative

perturbations on xi, but does not use the other two control parameters — qi and ηi. The next

variant, ABC-III uses qi for self-adaptive perturbation rate, but excludes pi and ηi. The third

variant, ABC-IV makes use of scaling factor vector ηi for self-adaptation of the ijφ values in (2.6),

just like ABC-AX2, but does not use pi and qi. Table 8.24 presents the results of all three

ABC-variants, along with the results of basic ABC and ABC-AX2. All of them are tested on the

high dimensional functions f1–f18 with D=30, SN=100, MCN=1000 and limit=100. Results

(Table 8.24) show that ABC has been always outperformed by each of ABC-II, ABC-III and

ABC-IV, which indicates the necessity of all three control parameter to improve the results over

ABC. The performance rank (i.e., rightmost column) presents the order of the algorithms based

on their results, which frequently (i.e., 10 out of the 18 functions) shows the following rank.

ABC-AX2, ABC-III, II, IV, ABC

The performance rank column shows that ABC-AX2 ranks 1st (i.e., best) on 16 (out of 18)

functions. Ignoring the results on f8, for which all the algorithms perform equally well, the

overall average performance rank of ABC-AX2 is the minimum (i.e., 1.24), followed by the

average rank of ABC-III (i.e., 2.24), then ABC-II (rank=3.12), ABC-IV (rank=3.59) and the basic

ABC algorithm (rank=4.82). This indicates that the self-adaptive perturbation rate (adopted by

ABC-III, by using qi) often contributes most for the improved results of ABC-AX2, followed by the

contributions of pi (i.e., adaptive proportion of explorations and explorations, used by ABC-II)

and ηi (i.e., self-adaptive scaling factors vector, used by ABC-IV). Furthermore, ABC-AX2, which

includes all three control parameters, outperforms all other ABC-variants on almost all (16 out

of 18) of the functions, indicating that the roles of the three control parameters are synergistic

and cumulative to improve the results for ABC-AX2.
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Table 8.24: Comparison of ABC-AX2 with ABC-II, ABC-III, ABC-IV and the basic ABC algorithm
on the high dimensional functions f1–f18. The best results are marked with boldface font.

Function D ABC ABC-II ABC-III ABC-IV ABC-AX2 Performance Rank (from best
to worst)

f1 30 2.45e–11 2.61e–14 5.98e–21 3.68e–12 5.51e–24 ABC-AX2, ABC-III, II, IV, ABC

f2 30 5.05e–07 4.40e–12 1.09e–13 3.86e–09 4.23e–15 ABC-AX2, ABC-III, II, IV, ABC

f3 30 4.18e+01 7.45e–01 5.66e+00 1.36e–01 6.60e–02 ABC-AX2, ABC-IV, II, III, ABC

f4 30 8.32e–10 2.72e–14 1.64e–13 7.02e–12 3.42e–16 ABC-AX2, ABC-II, III, IV, ABC

f5 24 6.61e+00 5.19e+00 7.30e–02 5.80e+00 2.23e–02 ABC-AX2, ABC-III, II, IV, ABC

f6 30 6.67e–01 3.11e–03 1.63e–03 1.67e–03 5.91e–05 ABC-AX2, ABC-III, IV, II, ABC

f7 30 4.25e–01 2.52e+00 4.03e–01 7.36e+00 2.39e+01 ABC-III, ABC, ABC-II, IV, ABC-AX2

f8 30 0 0 0 0 0 - all identical results -
f9 30 8.60e–13 7.78e–15 1.47e–15 6.97e–15 8.87e–34 ABC-AX2, ABC-III, II, IV, ABC

f10 30 1.72e–14 1.53e–18 8.02e–19 8.40e–16 4.68e–24 ABC-AX2, ABC-III, II, IV, ABC

f11 30 2.33e–08 4.20e–10 4.18e–12 8.77e–09 1.04e–13 ABC-AX2, ABC-III, II, IV, ABC
f12 30 –11346.79 –12018.08 –12568.94 –12287.40 –12569.48 ABC-AX2, ABC-III, IV, II, ABC

f13 30 2.93e–06 3.85e–08 6.39e–09 8.23e–07 8.13e–13 ABC-AX2, ABC-III, II, IV, ABC

f14 30 4.55e–08 9.54e–17 2.12e–18 5.71e–16 5.63e–23 ABC-AX2, ABC-III, II, IV, ABC

f15 30 3.34e–04 7.89e–10 6.95e–08 2.27e–11 8.56e–13 ABC-AX2, ABC-IV, II, III, ABC

f16 30 3.36e–01 1.84e–06 9.46e–08 3.89e–03 6.46e–09 ABC-AX2, ABC-III, II, IV, ABC

f17 30 5.47e–12 5.14e–14 4.28e–14 7.27e–13 3.85e–14 ABC-AX2, ABC-III, II, IV, ABC
f18 30 2.63e–03 5.32e–13 5.97e–17 4.98e–16 2.33e–21 ABC-AX2, ABC-III, IV, II, ABC

Average
Rank 4.82 3.12 2.24 3.59 1.24 ABC-AX2, ABC-III, II, IV, ABC

In the next experiment, we try to find out whether and how the values of the control
parameters pi, qi and ηi gradually evolve with the on-going optimization process. To discover the
general trend of these control parameter values along the optimization process, we consider
only their average values ,   and ,p q  averaged across all the individuals of the population

during each generation. More formally, the values of ,   andp q  are computed as follows.
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Thus ,   andp q  are the population-wide average values of the control parameters pi, qi and ηi

of every candidate solution xi across the population. Figs. 8.12–8.14 show the gradual evolution
of the values of ,   andp q  along the course of the optimization process. The functions in these

Figs. 8.12–8.14 include both unimodal (f1, f4, f8) and multimodal (f12, f13, f18), separable (f1, f8, f12)
and non-separable (f4, f13, f18) functions. Our observations on these results (Figs. 8.12–8.14,
Tables 8.25–8.27) are briefly summarized in the following few points.
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Figure 8.12: Evolution of the control parameter pi (and, 1 ip ) by ABC-AX2 along the ongoing
cycles (iterations). The vertical axis shows the mean value of the control parameter (i.e.,

and 1i ip p ), while the horizontal axis shows the number of cycles elapsed.

Table 8.25: Mean values of the control parameter pi (i.e., p ), averaged over all the candidate
solutions of the population after the final generation of ABC-AX2. Here, C is the function
characteristics with values — U: Unimodal, M: Multimodal, S: Separable and N: Non-Separable.

Function C p Function C p
f1 US 0.78 f10 MS 0.66
f2 UN 0.87 f11 MS 0.65
f3 US 0.85 f12 MS 0.66
f4 UN 0.69 f13 MN 0.69
f5 UN 0.86 f14 MN 0.62
f6 UN 0.82 f15 MS 0.64
f7 UN 0.84 f16 MS 0.60
f8 US 0.79 f17 MN 0.62
f9 US 0.86 f18 MN 0.65
Average 0.82 (Unimodal) 0.64 (Multimodal) 0.73 (Overall)
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Firstly, we consider the evolution of the control parameter pi of the candidate solutions

xi’-s across the population. The value of pi and 1 ip indicate the probability of exploitative and

explorative perturbations, respectively on the candidate solution xi. For all the functions in

Fig. 8.12, p gradually increases towards larger values, indicating that exploitative perturbations

become gradually more and more attractive to the candidate solutions, irrespective of whether

the function is unimodal or multimodal, separable or non-separable. However, the intensity of

‘more exploitations’ is not the same for the unimodal and multimodal functions. Table 8.25

shows that the overall average p during the last cycle is 0.82 for the unimodal functions f1–f9,

while it is 0.64 for the multimodal functions f10–f18. This indicates that the optimization process

of the unimodal functions become more exploitative than the multimodal functions, which is

rationally expected. Besides, during their final cycles, both the unimodal and the multimodal

functions require more exploitations than explorations (i.e., the average p is 0.82 (unimodal)

and 0.64 (multimodal), both of which are greater than 0.50). This is very rational, because more

exploitations during the final cycles, especially after reaching the neighbourhood of the global

minimum, are always more effective than explorations to reach the globally optimal peak of the

fitness landscape.

Secondly, the evolution of the control parameter qi is considered in Fig. 8.13 and

Table 8.26. Each individual xi has its control parameter qi, which is self-adapted automatically

along the optimization process. To observe the general trend and the direction of

self-adaptation, we consider only the average value of qi (denoted as q ), averaged over all the

candidate solutions across the population using eq. (8.4). Fig. 8.13 shows that q is gradually

self-adapted either towards larger values (e.g., for f4, f13 and f18) or towards smaller values (e.g.,

f1, f8 and f12) depending on whether the function is separable or not. For a non-separable

function, the parameters are not independent, so perturbing a subset of the parameters may not

be useful. This is why iq self-adapts towards larger values, which is observed for all three

non-separable functions f4, f13 and f18, showing the necessity to perturb most (or, all) of the

parameters at once for these functions. However, for the separable functions, f1, f8 and f12, the

value of iq self-adapts to rather smaller values, which indicates that perturbing only one or just

a few parameters is more effective for these separable problems, as the parameters are

independent of each other. Table 8.26 shows the value of q , measured after the final generation

of ABC-AX2, for all of  the high dimensional functions f1–f18, which indicates the same general

trend by the separable and non-separable functions — the average value of q over the

non-separable functions is 0.84, which is quite high, while the same measure for separable

functions is only 0.17.
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Figure 8.13: Evolution of the control parameter qi by ABC-AX2 along the ongoing cycles
(iterations). The vertical axis shows the mean value of the control parameter qi (i.e., iq ), while
the horizontal axis shows the number of cycles elapsed.

Table 8.26: Mean values of the control parameter qi (i.e., q ), averaged over all the candidate
solutions of the population after the final generation of ABC-AX2. Here, C is the function
characteristics with values — U: Unimodal, M: Multimodal, S: Separable and N: Non-Separable.

Function C q Function C q

f1 US 0.14 f10 MS 0.19

f2 UN 0.88 f11 MS 0.12

f3 US 0.16 f12 MS 0.17

f4 UN 0.89 f13 MN 0.88

f5 UN 0.84 f14 MN 0.84

f6 UN 0.85 f15 MS 0.15

f7 UN 0.79 f16 MS 0.21

f8 US 0.25 f17 MN 0.77

f9 US 0.14 f18 MN 0.82

Average
0.55 (Unimodal) 0.46 (Multimodal)

0.51 (Overall)
0.17 (Separable) 0.84 (Non-Separable)
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a

Figure 8.14: Evolution of the control parameter ηi by ABC-AX2 along the ongoing cycles
(iterations). The vertical axis shows the mean value of the control parameter (i.e.,  ), while the
horizontal axis shows the number of cycles elapsed.

Table 8.27: Mean values of the control parameter ηi (i.e.,  ), averaged over all the candidate
solutions of the population after the final generation of ABC-AX2. Here, C is the function
characteristics with values — U: Unimodal, M: Multimodal, S: Separable and N: Non-Separable.

Function C  Function C 

f1 US 0.09 f10 MS 0.10

f2 UN 0.08 f11 MS 0.14

f3 US 0.06 f12 MS 0.12

f4 UN 0.05 f13 MN 0.10

f5 UN 0.05 f14 MN 0.13

f6 UN 0.08 f15 MS 0.07

f7 UN 0.06 f16 MS 0.08

f8 US 0.22 f17 MN 0.11

f9 US 0.06 f18 MN 0.10

Average 0.08 (Unimodal) 0.11 (Multimodal) 0.095 (Overall)
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Thirdly, we observe and analyse the evolution of the control parameter vector ηi in

Fig. 8.14 and Table 8.27. In ABC-AX2, each candidate solution xi maintains its own control

parameter vector ηi = [ηi1, ηi2, …, ηiD]T, where each component ηij controls the distribution of the

scaling factor values (i.e., φij values in (2.6)) during perturbing the corresponding parameter xij

of the candidate solution xi. The φij values in (2.6) are generated randomly using the

Gaussian(0,ηij) distribution, for j=1, 2, …, D. To observe the general trend of the ηij values, we

consider their population-wide average value  , computed by eq. (8.5), in Fig. 8.14 and

Table 8.27. For all the functions in Fig. 8.14, it is observed that the  quickly drops towards

smaller values, indicating that exploitative perturbations with small φij values (i.e., small,

exploitative step sizes) become gradually more and more effective along the course of the

optimization process. Table 8.27 shows this general trend for both unimodal (average  =0.08)

and multimodal (average  =0.11) functions. However, the slightly smaller value (i.e., 0.08) of

average  for the unimodal functions indicates that they need overall more exploitations,

especially during their final cycles, compared to the multimodal functions. However, the

multimodal functions also require more exploitations than explorations during their final cycles,

as demonstrated by the plots of f12, f13 and f18 in Fig. 8.14 and by the quite low value of the

average  (i.e., 0.11) in Table 8.27.

Now, we experiment on whether the adaptation and self-adaptation of the control

parameters pi, qi and ηi have effectively improved the rate of successful perturbations by

ABC-AX2. To find out, we have measured the average successful perturbation rate achieved by

ABC and ABC-AX2 for the high dimensional functions f1–f18 with SN=100, MCN=1000 and

limit=100. Table 8.28 shows that the percentage of perturbations that are successful (i.e., the

new trial solution vi has higher fitness value than the original solution xi) is always higher by

ABC-AX2 compared to the basic ABC algorithm. For some functions (e.g., f14 and f18) the success

rate of ABC-AX2 is much higher than ABC, which also coincides with the much improved results

of ABC-AX2 for the same functions (f14 and f18) in Table 7.1, indicating a strongly positive

correlation between the improved results and the higher success rates of perturbations by

ABC-AX2. This indicates that the proposed adaptive and self-adaptive strategies of ABC-AX2 for

pi, qi and ηi can effectively produce more successful perturbations than can produce better trial

solutions from the existing ones and thus result in significantly improved performance over the

basic ABC algorithm.
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Table 8.28: Comparison between ABC and ABC-AX2, based on their successful perturbation
rates on the high dimensional functions f1–f18. The best result for each function is marked with
boldface font.

Function D
Successful Perturbation Rate (%)

ABC ABC-AX2

f1 30 17.23 24.75
f2 30 14.35 20.66
f3 30 10.96 14.16
f4 30 18.82 24.09
f5 24 11.31 18.60
f6 30 12.92 16.84
f7 30 17.75 14.20
f8 30 19.20 18.41
f9 30 18.46 28.34
f10 30 18.30 22.94
f11 30 15.42 19.53
f12 30 12.64 18.12
f13 30 13.38 19.30
f14 30 12.75 23.44
f15 30 13.26 18.62
f16 30 10.42 17.47
f17 30 16.01 19.52
f18 30 11.64 22.87

+ 16
– 2
≈ 0

8.8 Comparison Among the Proposed Algorithms
In this section, we will compare our algorithms against each other to better understand their
strengths and weaknesses. Along the course of this thesis, we have developed two improved
EP-variants — the RTEP and DGEP (chapters 3–4), as well as three improved variants of the
standard ABC algorithm — the ABC-SAM, ABC-IX and ABC-AX2 (chapters 5–7). In the following
paragraphs, each of these algorithms is compared against relevant other algorithms using a
number of experiments.

In Tables 8.29–8.32, we make comparisons between RTEP and DGEP, based on their final
solution quality (Tables 8.29, 8.31), population diversity (Table 8.30) and resilience against
premature convergence (Table 8.32). For the results in Table 8.29, both the algorithms are run
with population size=50 and the number of function evaluations (FE)=150,000. The other
parameters of RTEP and DGEP are set to the same values as in Table 3.1 and Table 4.1 (DGEP1),
respectively.  A summary of the results observed in Tables 8.29–8.32 are presented in the
following few points.
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 Out of the 18 standard benchmark functions f1–f18, DGEP performs better than the RTEP

variants on seven or eight functions, performs equally good on one or two, while both

the RTEP variants perform better than DGEP on nine functions. Thus, the overall

performance of DGEP is slightly worse than the RTEP variants on the standard

benchmark functions f1–f18.

 Among the 18 standard benchmark functions, there are only three functions (i.e., f3, f7
and f12) for which the RTEP variants face some difficulties. Interestingly, DGEP

outperforms the RTEP variants on all of these three functions. This indicates that DGEP

might be more effective than RTEP for more complex optimization tasks.

Table 8.29: Comparison between RTEP and DGEP variants, based on their final solution
quality (i.e., mean error of their final results), on the high dimensional functions f1–f18. The best
result for each function is marked with boldface font.

Function
Mean Error ± Standard Deviation t-Test

DGEP RTEP (2,4) RTEP (4,8) DGEP vs.
RTEP (2,4)

DGEP vs.
RTEP (4,8)

f1 5.4e–08 ± 1.5e–08 7.5e–18 ± 4.4e–18 2.4e–20 ± 7.4e–21 – –

f2 6.6e–12 ± 3.6e–12 1.7e–09 ± 1.5e–09 2.9e–12 ± 6.8e–13 – –

f3 1.06 ± 0.32 1.7e+00 ± 6.2e–01 1.9e+00 ± 1.4e+00 + +

f4 4.1e–08 ± 9.2e–09 2.4e–15 ± 6.2e–16 2.1e–15 ± 4.1e–16 – –

f5 2.5e–04 ± 1.3e–04 2.6e–03 ± 7.7e–04 2.0e–03 ± 4.9–e04 + +

f6 4.1e–02 ± 7.9e–03 1.3e–01 ± 3.9e–02 1.2e–01 ± 3.5e–02 + +

f7 1.1 ± 0.76 2.7e+00 ± 9.0e–01 3.5e+00 ± 6.6e–01 + +

f8 0 ± 0 0 ± 0 0 ± 0 ≈ ≈

f9 1.9e–12 ± 8.2e–13 8.0e–38 ± 6.4e–39 2.5e–34 ± 1.4e–35 – –
f1 e– e– e–f10 1.5e–12 ± 5.1e–13 2.5e–14 ± 5.0e–15 1.9e–14 ± 6.1e–15 – –

f11 2.8e–05 ± 4.1e–06 2.9e–07 ± 5.1e–08 1.1e–06 ± 9.1e–08 – –

f12 2.10 ± 1.38 7.1e+02 ± 4.9e+02 3.6e+02 ± 9.9e+01 + +

f13 2.4e–16 ± 6.8e–17 2.0e–11 ± 6.5e–12 2.4e–09 ± 9.2e–10 – –

f14 7.5e–14 ± 2.5e–14 2.7e–25 ± 6.3e–26 8.4e–20 ± 3.3e–20 – –

f15 9.5e–13 ± 2.5e–13 7.8e–10 ± 9.4e–11 2.9e–12 ± 4.1e–13 + +

f16 5.5e–08 ± 8.2e–09 2.2e–07 ± 9.1e–08 6.1e–08 ± 2.1e–08 + ≈

f17 3.3e–14 ± 1.9e–14 3.2e–13 ± 8.5e–14 1.7e–13 ± 2.7e–14 + +

f18 1.7e–04 ± 2.6e–05 7.1e–08 ± 7.3e–09 7.2e–05 ± 2.2e–05 – –
e– e– e–

Summary
(t-Test)

DGEP + 8 7

DGEP – 9 9

DGEP ≈ 1 2
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 Between RTEP and DGEP, which one performs more search space explorations? To find

out, we have executed both the algorithms with population size=50 and FE=100,000. At

the end of the run, the genetic diversity of their final generation population is measured

and presented in Table 8.30. Results show that DGEP maintains higher level of genetic

diversity than RTEP on seven out of nine unimodal (i.e., f1–f9) and eight out of nine

multimodal (f10–f18) functions. Also, for both the unimodal and multimodal functions, the

overall average amount of diversity maintained by DGEP is higher than RTEP, which

indicates that DGEP performs an overall higher level of search space explorations than

RTEP. This might be the reason for the better performance of DGEP on the more difficult

and challenging problems, e.g., f3, f7 and f12, as mentioned in the previous point.

 The previous two points suggest that DGEP is more explorative than RTEP and is more

suitable for complex optimization tasks. Therefore, DGEP should be better effective on

the more challenging CEC2005 benchmark functions. To find out whether this does

really happen, we have run both the algorithms on the CEC2005 benchmark functions

F1–F25, with D=30, population size=50 and FE=3.0e+05. Results (Table 8.31) show that

DGEP outperforms RTEP on as many as 18 (out of 25) CEC2005 functions, while RTEP

performs better only on the remaining seven. Also, the mean absolute error of DGEP

over F1–F25 is 2.36e+02, which is smaller than the mean error of RTEP (4.35e+02). This

further consolidates our assumption that DGEP is more suitable than RTEP for more

complex and more challenging optimization problems.

Table 8.30: Comparison between RTEP and DGEP, based on their population diversity,
measured at the end of their runs. Diversity is measured as the average Euclidean distance of
the individuals from the centroid of the population. The higher diversity value for each function
is marked with boldface font.

Function
Population Diversity

Function
Population Diversity

RTEP(4,8) DGEP RTEP(4,8) DGEP

f1 8.29e–06 4.21e–04 f10 7.91e–07 2.29e–04

f2 8.40e–04 7.76e–03 f11 4.66e–03 7.40e–03

f3 6.52e–02 5.11e–02 f12 5.20e–04 1.13e–01

f4 3.83e–04 7.09e–02 f13 3.95e–05 3.32e–03

f5 2.29e–03 8.91e–01 f14 7.99e–05 2.14e–04

f6 8.94e–02 5.52e–02 f15 3.54e–05 1.77e–05

f7 8.49e–01 1.37e+00 f16 8.04e–04 2.05e–03

f8 9.28e–04 3.64e–01 f17 1.67e–06 4.28e–05

f9 2.15e–03 1.56e–02 f18 4.75e–07 5.06e–05

Average
f1–f9

1.12e–01 3.54e–01 Average
f10–f18

6.82e–04 1.40e–02



231

Table 8.31: Comparison between RTEP and DGEP, based on their final solution quality (i.e.,
mean error of their final results), on the CEC2005 benchmark functions. The best result for each
function is marked with boldface font.

Function
Mean Error

Function
Mean Error

DGEP RTEP (2,4) DGEP RTEP (2,4)

F1 7.56e–08 7.62e–09 F13 1.03e–01 1.54e–01

F2 3.98e–10 2.44e–11 F14 5.13e+00 8.94e+00

F3 2.24e+01 9.25e+01 F15 4.88e+02 5.05e+03

F4 9.76e+02 8.99e+02 F16 3.72e+01 5.84e+01

F5 5.11e+00 7.64e+00 F17 3.62e+01 2.38e+01

F6 2.19e+01 5.01e+02 F18 8.49e+01 7.41e+01

F7 7.23e–06 2.85e–05 F19 8.25e+02 9.96e+02

F8 2.00e+01 1.47e+02 F20 7.91e+02 1.80e+03

F9 1.87e–04 3.69e–04 F21 5.00e+02 5.11e+02

F10 2.08e+00 5.92e+00 F22 8.41e+02 1.42e+02

F11 5.15e+00 7.39e+00 F23 5.22e+02 8.01e+01

F12 3.09e+02 4.73e+02 F24 2.00e+02 7.98e+02

F25 2.05e+02 1.01e+02

Summary
DGEP + 9

Summary
DGEP + 9

DGEP – 3 DGEP – 4

Mean Absolute Error (DGEP) 2.36e+02 (RTEP) 4.35e+02

Between DGEP and RTEP, which one is more resilient against premature convergence? To

find out, we have run both the algorithms 100 times on each of the standard benchmark

functions f1–f30, each time starting from a very poor initial population that is randomly

initialized within only 1% of the search space along each search dimension. The 1%

initialization region along each dimension is picked uniformly at random along that particular

search dimension. We employed such a poorly initialized population to represent a prematurely

converged state from which both RTEP and DGEP starts their execution. In addition to

RTEP(4,8), we also employed two more explorative RTEP variants — RTEP(8,4) and

RTEP(20,4). Similarly, a more explorative DGEP variant — DGEP-II is employed, which sets the

parameter values for more explorations, e.g., u=25, l=0.05 and |A|=15. In Table 8.32, a

particular run of DGEP or RTEP is considered ‘successful’ if it can reach sufficiently close to the

global optimum. More precisely, a run is considered successful if and only if it can find a

candidate solution x* such that |f(x**)– f(x*)|≤ 0.1, where x** is the globally minimum point.

Table 8.32 shows that both the DGEP variants can produce more successful runs (i.e., with

overall approx. 81% and 87% success rates) in comparison to the RTEP variants (overall 64%,

73% and 79% success rates). This indicates that DGEP is relatively more resilient than RTEP
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Table 8.32: Comparison among the RTEP and DGEP variants based on their strength against
premature convergence, measured as their number of successful runs (out of 100 test runs) to
locate the global optimum, starting from a prematurely converged initial population. The best
result for each function is marked with boldface font.

Function
No. of Successful Runs

RTEP(4,8) RTEP(8,4) RTEP(20,4) DGEP DGEP-II

f1 87 98 100 100 100
f2 76 88 97 100 100
f3 81 86 98 93 100
f4 73 82 95 92 98
f5 12 19 34 40 58
f6 59 66 82 75 86
f7 17 24 32 35 47
f8 69 74 78 75 92
f9 86 96 100 100 100
f1f10 65 71 88 83 91
f11 37 52 62 58 70
f12 8 11 18 17 28
f13 53 82 88 93 95
f14 80 83 96 93 96
f15 58 86 86 90 93
f16 52 79 87 84 95
f17 34 54 69 67 75
f18 24 28 48 45 62

f19 95 99 100 100 100
f20 96 99 100 100 100
f21 100 100 100 100 100
f22 100 100 100 100 100
f23 100 100 100 100 100
f24 100 100 100 100 100
f25 58 63 73 76 87
f26 50 62 66 81 85
f27 57 65 72 89 92
f28 45 52 60 70 76
f29 100 100 100 100 100
f30 48 60 66 79 86

Average
Unimodal (f1–f9) 62.22 70.33 79.56 78.89 86.78

Average
Multimodal (f10–f18) 45.67 60.67 71.33 70 78.33

Average
Multimodal (f19–f30) 79.17 83.33 86.42 91.25 93.83

Average
Overall (f1–f30) 64.03 72.63 79.33 81.17 87.07



233

against premature convergence. However, with more increased values of the control parameter

K1 (i.e., length of the exploration stage), RTEP(K1,K2) might improve its results further, because

the strength of RTEP against premature convergence seems to increase directly with the higher

values of its control parameter K1. This becomes apparent when we observe the results of

RTEP(K1,K2) in Table 8.32 with (K1,K2)=(4,8), (8,4) and (20,4) — the overall success rates of

these RTEP variants increase from (approx.) 64% to 73% to 79% for the gradually increased

values of K1= 4, 8 and 20, respectively.

Now we compare the three improved ABC-variants that we have developed so far —

ABC-SAM, ABC-IX and ABC-AX2. Tables 8.33–8.36 compare them based on their final solution

quality and explorative capability. In all these experiments, their common parameters are set

as — colony size (SN)=100, maximum cycle number (MCN)=1000 and limit=100. The other

parameters of ABC-SAM, ABC-IX and ABC-AX2 are the same as in Table 6.2 and Table 7.1. Our

observations on the experimental results are briefly summarized in the following few points.

 In Table 8.33, the results of ABC-SAM, ABC-IX and ABC-AX2 are presented side-by-side,

for both 30-D and 60-D variants of the standard benchmark functions f1–f18. Results

show that both ABC-IX and ABC-AX2 outperform ABC-SAM on most of these functions.

Out of the 18 functions, ABC-IX and ABC-AX2 perform better than ABC-SAM on as many

as 14 and 16 functions, respectively, while ABC-SAM performs equally well or better

only on the remaining few (2~4) functions.

 Between ABC-IX and ABC-AX2, the overall better performance is shown by ABC-AX2. Out

of the 18 standard benchmark functions, ABC-AX2 outperforms ABC-IX on 11 functions,

while ABC-IX performs equally good or better on the remaining seven. However, the

strength of ABC-IX is not in fine-tuning, rather in its more explorative search capacity

than ABC-AX2, which is explained in the next two points, using the population diversity

and results on the more complex CEC2005 benchmark functions.

 Table 8.34 compares the explorative search capacity of ABC-IX and ABC-AX2, based on

their existing amount of population diversity, measured at the end of their runs. The

population diversity is computed as the mean distance of the candidate solutions from

the centroid of the population. Table 8.34 shows that ABC-IX generally maintains higher

level of population diversity than ABC-AX2. Out of the 18 standard functions, the

diversity of ABC-IX is higher than ABC-AX2 on as many as 14 functions, which clearly

indicates that ABC-IX, with its simulated annealing based selection scheme that can

probabilistically make both uphill and downhill movements, can perform more search

space explorations than ABC-AX2.
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Table 8.33: Comparison among ABC-SAM, ABC-IX and ABC-AX2, based on their final solution
quality (mean error of their final results), on the standard benchmark functions f1–f18. The best
result for each function is marked with boldface font.

No fmin D G
ABC-SAM ABC-IX ABC-AX2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 0
30 1000 4.18e–14 5.37e–15 2.84e–38 1.03e–38 5.51e–24 3.73e–25
60 2000 6.09e–13 7.24e–14 6.07e–30 8.55e–31 9.43e–28 7.26e–29

f2 0
30 1000 2.47e–08 2.35e–09 8.30e–15 3.14e–15 4.23e–15 3.54e–16
60 2000 5.06e–07 2.97e–07 3.01e–12 4.74e–13 2.98e–17 1.07e–17

f3 0
30 1000 1.69e+01 1.43 8.37e+00 2.64 6.60e–02 5.21e–03
60 2000 3.10e+01 5.12 1.41e+01 5.15 2.78 0.77

f4 0
30 1000 3.95e–12 5.77e–13 6.43e–31 7.37e–32 3.42e–16 8.83e–18
60 2000 7.54e–11 2.14e–11 1.18e–26 4.95e–27 8.84e–20 5.45e–21

f5 0 24 1000 9.24e–01 2.08e–01 3.63e–01 6.18e–02 2.23e–02 3.75e–03

f6 0
30 1000 2.16e–03 6.37e–04 5.86e–04 7.31e–05 5.91e–05 5.67e–06
60 2000 7.76e–02 1.63e–02 9.88e–03 8.59e–03 8.33e–05 1.71e–05

f7 0.
30 1000 2.28e+01 3.75 8.96e+00 3.63e+00 2.39e+01 3.66
60 2000 4.96e+01 7.80 1.35e+00 8.93e–01 5.15e+01 7.69

f8 0. 30 1000 0 0 0 0 0 0
60 2000 0 0 0 0 0 0

f9 0
30 1000 3.66e–16 1.44e–17 8.31e–52 2.19e–52 8.87e–34 6.78e–35

60 2000 4.76e–15 5.32e–16 6.09e–41 2.43e–42 6.31e–32 2.16e–33

f10 0
30 1000 1.26e–16 2.11e–17 2.21e–35 1.60e–36 4.68e–24 9.03e–26
60 2000 8.55e–15 3.15e–16 2.91e–32 6.44e–33 6.12e–31 8.67e–33

f11 0
30 1000 4.60e–10 8.85e–11 5.10e–11 9.78e–12 1.04e–13 3.16e–14
60 2000 6.80e–09 8.77e–10 3.63e–10 1.35e–10 4.25e–13 7.32e–14

f12
–12569.5 30 1000 –12416.19 4.02e+01 –12473.13 1.52e+01 –12569.48 1.50e–02
–25138.9 60 2000 –23805.93 2.84e+02 –24281.80 1.35e+02 –25016.6 1.89e+01

f13 0
30 1000 9.26e–08 1.89e–08 8.13e–13 6.71e–14 4.20e–15 5.23e–16
60 2000 2.07e–08 3.55e–08 8.84e–14 1.40e–14 3.62e–14 1.15e–15

f14 0
30 1000 8.36e–10 5.08e–11 5.12e–33 1.55e–33 5.63e–23 7.35e–25
60 2000 1.56e–10 6.90e–11 4.94e–32 9.98e–33 7.04e–31 5.77e–32

f15 0.
30 1000 2.22e–08 3.93e–09 8.75e–08 2.38e–08 8.56e–13 1.56e–13
60 2000 1.17e–08 2.35e–09 7.08e–08 1.33e–08 5.37e–13 1.25e–13

f16 0
30 1000 5.78e–04 6.31e–05 5.24e–06 2.04e–06 6.46e–09 8.32e–10
60 2000 9.20e–03 4.03e–03 2.72e–05 5.12e–06 5.38e–08 9.19e–10

f17 0.
30 1000 9.78e–12 3.89e–12 3.22e–10 7.88e–11 3.85e–14 4.93e–15
60 2000 1.32e–11 5.15e–11 6.46e–10 1.59e–10 3.50e–14 2.60e–15

f18 0.
30 1000 3.06e–02 8.59e–03 7.95e–02 2.14e–02 2.33e–21 7.55e–22

60 2000 5.11e–02 7.39e–03 9.70e–02 2.05e–02 7.52e–26 1.29e–26

Summary
ABC-AX2 + 16 11
ABC-AX2 – 0 6
ABC-AX2 ≈ 2 1
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Table 8.34: Comparison between ABC-IX and ABC-AX2, based on their population diversity,
measured at the end of their run, on the high dimensional functions f1–f18. Diversity is measured
as the average Euclidean distance of the individuals to the centroid of the population. The
higher diversity value for each function is marked with boldface font.

Function
Population Diversity

Function
Population Diversity

ABC-IX ABC-AX2 ABC-IX ABC-AX2

f1 8.08e–04 4.56e–04 f10 9.87e–03 1.36e–04

f2 5.78e–04 2.22e–05 f11 6.26e–04 6.82e–04

f3 5.99e–01 5.80e–02 f12 2.88e–01 3.04e–01

f4 8.75e–03 1.65e–06 f13 7.10e–05 4.35e–05

f5 8.30e–03 5.85e–03 f14 1.57e–04 6.94e–06

f6 7.06e–02 7.85e–02 f15 7.25e–02 3.03e–03

f7 6.84e–02 6.95e–02 f16 8.40e–01 4.64e–02

f8 5.23e–01 9.26e–03 f17 3.50e–05 1.88e–08

f9 2.56e–05 4.48e–07 f18 9.95e–04 4.59e–04

Average
f1–f9

1.42e–01 2.46e–02 Average
f10–f18

1.35e–01 3.94e–02

The previous point suggests that ABC-IX is more explorative than ABC-AX2. Does it make

ABC-IX more effective on the more complex optimization tasks, such as the more challenging

CEC2005 functions? To find out, we have run both the algorithms on the CEC2005 benchmark

functions F1–F25, with D=30, population size=50 and FE=3.0e+05, and the results are presented

in Tables 8.35–8.36. The results on the non-composite functions F1–F14 (Table 8.35) show that

ABC-IX outperforms ABC-AX2 on as many as seven (out of 14) functions, shows similar

performance on two, and worse performance on the remaining five functions. For the hybrid

composite functions F15–F25 in Table 8.36 ABC-IX performs slightly worse than ABC-AX2 (ABC-IX

is found to be better on four, similar on two and worse on five functions). Summarizing both the

Tables 8.35–8.36, ABC-IX performs better than ABC-AX2 on 11 functions and worse on 10; so the

overall performance of ABC-IX is slightly better than ABC-AX2 on the complex CEC2005

benchmark functions, which might be due to its more explorative search capacity from its more

population diversity, as demonstrated in the previous point.

8.9 Developing New and Improved Variants
Along the course of this thesis, we developed five improved EAs and SIAs — two of them (i.e.,

RTEP and DGEP) belong to the evolutionary family of algorithms, while the remaining three (i.e.,

ABC-SAM, ABC-IX and ABC-AX2) belong to the swarm intelligence based algorithm family. The

techniques that we have employed in these algorithms are based on adaptation, self-adaptation,
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Table 8.35: Comparison among ABC, ABC-SAM, ABC-IX and ABC-AX2, based on their final
solution quality, on the non-composite functions F1‒F14 of the CEC2005 benchmark suite [76].
The best result for each function is marked with boldface font.

Function
Mean Error

ABC ABC-SAM ABC-AX2 ABC-IX
F1 4.89e–17 3.73e–21 5.63e–16 5.92e–26
F2 4.81e–14 7.03e–16 1.12e–15 8.73e–18
F3 2.50e+03 7.80e+01 4.42e–06 6.22e+00
F4 1.50e–16 6.55e–18 3.49e–19 2.82e–18
F5 5.82e+01 4.72e+00 3.62e–03 1.04e–03
F6 3.31e+00 5.61e–02 6.89e–02 9.28e–03
F7 2.52e–01 3.13e+00 2.02e–04 5.25e–01
F8 2.03e+01 2.03e+01 2.00e+01 2.00e+01
F9 4.87e–17 8.58e–22 1.47e–17 3.82e–20
F10 2.22e+01 3.11e+00 2.10e+00 2.11e+00
F11 5.46e+00 9.27e+00 7.08e–02 3.17e+00
F12 9.85e+01 4.43e–01 1.19e+01 6.99e–02
F13 2.96e–02 7.09e–01 6.56e–03 4.72e–02
F14 3.41e+00 2.23e+00 2.24e+00 2.05e+00

Su
m
m
ar
y ABC-IX + 13 13 7

ABC-IX – 1 1 5

ABC-IX ≈ 0 0 2

Table 8.36: Comparison among ABC, ABC-SAM, ABC-IX and ABC-AX2 on the hybrid
composition functions F15‒F25 of the CEC2005 benchmark suite [76]. The best result for each
function is marked with boldface font.

Function
Mean Error

ABC ABC-SAM ABC-AX2 ABC-IX
F15 1.53e+01 4.46e+00 3.78e+00 3.17e+00
F16 1.75e+02 8.20e+01 1.69e+02 7.37e+01

F17 1.96e+02 2.13e+02 2.02e+02 1.51e+02

F18 4.46e+02 4.32e+02 3.59e+02 4.12e+02

F19 4.51e+02 4.18e+02 3.07e+02 3.92e+02
F20 4.38e+02 5.11e+02 3.92e+02 4.49e+02
F21 4.87e+02 4.69e+02 4.58e+02 4.74e+02
F22 8.59e+02 7.65e+02 7.62e+02 6.98e+02
F23 5.98e+02 5.63+02 5.57e+02 5.57e+02
F24 2.02e+02 2.01e+02 2.00e+02 2.00e+02
F25 3.38e+02 3.48e+02 3.27e+02 3.53e+02

Su
m
m
ar
y ABC-IX + 9 9 4

ABC-IX – 2 2 5

ABC-IX ≈ 0 0 2
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hybridization, recurring alternations and diversity feedback control. Each of these techniques

can be suitably altered, extended and incorporated into other algorithms to (possibly) improve

their performance. In the following few points, we present some examples of how each of our

proposed algorithms might be improved and extended further by employing some simple, yet

effective techniques.

(i) RTEP (chapter 3) currently uses fixed values of its control parameters K1 and K2, which

are the lengths of the explorative and exploitative stages, respectively. A more

appropriate design would be to automatically adapt the values of K1 and K2 to ensure a
dynamically appropriate adaptive length for the explorative and exploitative stages. To

accomplish this, one simple strategy could be to estimate the improvements made by

the explorative and exploitative stages and use this estimate to allow more execution

length for the more successful stage (explorative or exploitative).

(ii) DGEP (chapter 4) tries to put an equal (rather than adaptive) emphasis on explorations

and exploitations. This is why, during each mutation, DGEP picks one neighbor (for

exploitations) and one non-neighbor (for explorations). But using two individuals for

each single mutation involves two (instead of one) function evaluations, which is

wasteful. A more appropriate strategy would be to probabilistically pick either a

neighbor or a non-neighbor (but not both), either for exploitations or for explorations,

based on an adaptive probability value pi, maintained separately for every candidate

solution xi. A somewhat similar strategy has been adopted by ABC-AX2 (chapter 7),

which introduces and automatically adapts a probability value pi (i.e., probability of

exploitative mutation on xi) for every candidate solution xi.

(iii)Both RTEP and DGEP perform explorations and exploitations using dissimilar and

similar individuals, respectively. However, exploration and exploitation could be

performed in many different ways, such as by employing simulated annealing based

selection and/or perturbation schemes (as done by ABC-IX in chapter 6) or by using

some other metaheuristic techniques (e.g., tabu search [28], iterated local search [77])

that allows some mechanism of control over the degree of explorations and

exploitations around a candidate solution. Hybridizing such a metaheuristic technique

with RTEP and DGEP might further improve their final solution quality and convergence

speed.

(iv)In chapters 5–7, we have introduced three improved variants of ABC — ABC-SAM,

ABC-IX and ABC-AX2. Each one of them follows a single stage execution model. But a

recurring execution model, like RTEP, might be more effective than the monotonous

single stage model to balance between global explorations and local exploitations. To
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accomplish this, each of ABC-SAM, ABC-IX and ABC-AX2 may use two different settings of

their operators and parameters — one for explorative stage, and the other one for

exploitative stage. Then alternations between these two stages, either periodically or

with adaptive stage lengths, may be more effective to improve their performance and to

effectively balance between global explorations and local exploitations, as demonstrated

by RTEP in chapter 3.

(v) None of our improved ABC-variants — ABC-SAM, ABC-IX and ABC-AX2, makes any use of

the population diversity information. In chapter 4, the experimental results on DGEP has

demonstrated that employing the diversity information can be very useful to effectively

control and guide the mutation operations. Since perturbation (or, mutation) is the sole

variation operator in each of ABC-SAM, ABC-IX and ABC-AX2, their performance possibly

could be improved by estimating their population diversity during each cycle, then

employing this information to dynamically control the perturbation rate and step size,

as demonstrated by the DGM (diversity guided mutation) scheme of DGEP in chapter 4.

(vi)Each of the techniques we proposed along the course of this thesis is based on

adaptation, self-adaptation, hybridization, recurring alternations and diversity feedback

control to guide the perturbation operations. These techniques can often be hybridized,

after suitable modifications and extensions, with many other existing metaheuristic

algorithms to possibly improve their performance. This has been demonstrated in our

another recent work — Scatter Search with Adaptive Diversity Control (SS-ADC) [235].

SS-ADC hybridizes the techniques of adaptation and diversity feedback control with the

standard Scatter Search algorithm [236]. The overall performance of SS-ADC [235] is

better than the standard scatter search algorithm [236], which indicates the

effectiveness of our proposed techniques based on adaptation and diversity feedback

control to improve the performance of many other existing metaheuristic algorithms.

The points mentioned above indicate that there exist many possibilities and directions

along which each of our algorithms might be extended and improved. But it is beyond the scope

of our thesis to explore all these possibilities. However, we have explored, to some extent, only

one of the above design proposals — the proposal (i) above, which tries to automatically adapt

the lengths of the exploration and exploitation stages (i.e., K1 and K2, respectively) of RTEP,

based on the relative success and failure of each stage. The success of a particular stage

(exploration or exploitation) is estimated by its Fitness Gain per Generation (FGPG), which is

defined as follows. Suppose, an explorative stage executes for the last K1 generations and causes
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the best fitness value of the population to progress from *f to ** .f Then, the total fitness gain

( exprf ) and the FGPG of the current explorative stage is computed as ** *
expr ,f f f   and

expr expr 1 .FGPG f K  Similarly the FGPG of the current exploitative stage is computed as

expt expt 2 .FGPG f K  If we find that FGPGexpr>FGPGexpt , then more exploration is promoted by

increasing the value of K1 and decreasing K2 by setting K1=K1*(1+ r) and K2 =K2*(1– r). But in
case we find out that FGPGexpt ≥ FGPGexpr, the opposite is done — K1 is decreased and K2 is

increased for more exploitations by setting K1=K1*(1– r) and K2=K2*(1+ r). However, the

lengths of both the stages (i.e., K1 and K2) are always kept within some predefined

limit [Kmin, Kmax] to avoid the complete domination by either mode (explorative or exploitative)

of operations. In our implementation of this adaptive RTEP variant (ada-RTEP), we have used

r=0.10, Kmin=2 and Kmax=40. Ada-RTEP is compared with RTEP using the same population size

(i.e., 50) and the same number of function evaluations (150,000) for the high dimensional

functions f1–f18. Table 8.37 compares the performance of ada-RTEP with RTEP(2,4) and

RTEP(4,8). Our observations on these results are summarized in the following few points.

 On the unimodal functions f1-f9, ada-RTEP outperforms both the RTEP variants on five

(out of nine) functions, and showed similar performance on the remaining four.

 For the high dimensional multimodal functions f10–f18, ada-RTEP performs better than

the RTEP variants on most (seven out of nine) functions. However, on the remaining two

functions, ada-RTEP performs worse than RTEP(2,4), but performs equally well to

RTEP(4,8).

 For most of the low dimensional multimodal functions f19–f30, ada-RTEP shows similar

performance to RTEP(2,4) and RTEP(4,8). For the remaining few functions, the

performance of ada-RTEP is usually better.

 Combining all the three points above, we can conclude that the overall performance of

ada-RTEP is better than both of its RTEP counterparts, which indicates the effectiveness

of our proposed technique of ada-RTEP.

Ada-RTEP automatically adapts the values of K1 and K2. Does this automatic adaptation

procedure lead towards an optimal K2/K1 (i.e., exploitation-to-exploration) ratio? In the

previous Tables 8.1–8.9, we have manually evaluated RTEP for several different values of K1 and

K2 and found an optimal K2/K1 ratio for each of the 30 standard benchmark functions. Tables 8.3,

8.6 and 8.9 show these manually found optimal K2/K1 ratios for the unimodal, high dimensional

multimodal and the low dimensional multimodal functions, respectively. But does the
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Table 8.37: Performance comparison (based on mean error of the final results) between RTEP
and Ada-RTEP on the standard benchmark functions f1–f30. Results have been averaged over 50
independent runs. A ‘+’ or ‘–’ in the t-test between Ada-RTEP vs. RTEP indicates that Ada-RTEP
is significantly better or worse, respectively than RTEP with 95% certainty, while a ‘≈’ means
that the difference is not statistically significant.

Function
Mean Error ± Standard Deviation t-Test (Ada-RTEP vs.)

Ada-RTEP RTEP (2,4) RTEP (4,8) RTEP (2,4) RTEP (4,8)
f1 3.0e–26 ± 6.4e–27 7.5e–18 ± 4.4e–18 2.4e–20 ± 7.4e–21 + +
f2 8.3e–13 ± 2.5e–13 1.7e–09 ± 1.5e–09 2.9e–12 ± 6.8e–13 + +
f3 1.9e+00 ± 8.2e–01 1.7e+00 ± 6.2e–01 1.9e+00 ± 1.4e+00 ≈ ≈
f4 2.1e–18 ± 8.6e–19 2.4e–15 ± 6.2e–16 2.1e–15 ± 4.1e–16 + +
f5 2.1e–03 ± 6.6–e04 2.6e–03 ± 7.7e–04 2.0e–03 ± 4.9–e04 ≈ ≈
f6 1.4e–01 ± 7.5e–02 1.3e–01 ± 3.9e–02 1.2e–01 ± 3.5e–02 ≈ ≈
f7 1.5e+00 ± 4.1e–01 1.1e+00 ± 9.0e–01 1.7e+00 ± 6.6e–01 ≈ ≈
f8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f9 3.4e–47 ± 7.4e–48 8.0e–38 ± 6.4e–39 2.5e–34 ± 1.4e–35 + +
f1 e– e– e–f10 9.1e–20 ± 8.2e–21 2.5e–14 ± 5.0e–15 1.9e–14 ± 6.1e–15 + +
f11 7.4e–08 ± 1.6e–08 2.9e–07 ± 5.1e–08 1.1e–06 ± 9.1e–08 + +
f12 2.4e+01 ± 8.8e+00 7.1e+02 ± 4.9e+02 3.6e+02 ± 9.9e+01 + +
f13 2.9e–10 ± 7.5e–11 2.0e–11 ± 6.5e–12 2.4e–09 ± 9.2e–10 – +
f14 4.4e–31 ± 9.3e–32 2.7e–25 ± 6.3e–26 8.4e–20 ± 3.3e–20 + +
f15 6.2e–13 ± 2.0e–13 7.8e–10 ± 9.4e–11 2.9e–12 ± 4.1e–13 + +
f16 6.4e–08 ± 2.8e–08 2.2e–07 ± 9.1e–08 6.1e–08 ± 2.1e–08 + ≈
f17 1.7e–13 ± 5.7e–14 3.2e–13 ± 8.5e–14 1.7e–13 ± 2.7e–14 + ≈
f18 4.6e–07 ± 1.6e–07 7.1e–08 ± 7.3e–09 7.2e–05 ± 2.2e–05 – +

e– e– e–f19 0.002 ± 4.0e–06 0.002 ± 5.8e–04 0.002 ± 3.3e–05 ≈ ≈
f20 0.0008 ± 2.9e–07 0.0004 ± 6.2e–07 0.0008 ± 3.6e–04 – ≈
f21 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f23 0.00 ± 0.00 0.03 ± 0.02 0.00 ± 0.00 + ≈
f24 0 ± 0 0 ± 0 0 ± 0 ≈ ≈
f25 0.38 ± 0.12 0.55 ± 0.08 0.39 ± 0.10 + ≈
f26 0.40 ± 0.16 0.38 ± 0.12 0.40 ± 0.12 ≈ ≈
f27 0.21 ± 0.07 0.25 ± 0.10 0.22 ± 0.10 ≈ ≈
f28 0.28 ± 0.05 0.85 ± 0.20 0.42 ± 0.11 + +
f29 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ≈ ≈
f30 0.28 ± 0.09 0.29 ± 0.09 0.26 ± 0.08 ≈ ≈

Summary
(t-Test)

Ada-RTEP + 14 12
Ada-RTEP – 3 0

Ada-RTEP ≈ 13 18
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Table 8.38: Comparison between RTEP and Ada-RTEP, based on their optimal K2/K1 ratio (i.e.,
the exploitation-to-exploration ratio) for the standard benchmark functions f1–f30. RTEP finds
these optimal K2/K1 ratio values manually, by trial-and-error, in the previous Tables 8.2, 8.5 and
8.8, while Ada-RTEP reaches these optimal K2/K1 values through its automatic adaptation
schemes for the stage lengths K1 and K2. The strong positive correspondence between the two
series of K2/K1 ratio values is demonstrated by their high, positive correlation values 0.94, 0.75
and 0.92 for the three different function families.

Function
Ada-RTEP RTEP Correlation

between
(K2/K1)RTEP and
(K2/K1)Ada-RTEPK1 K2 (K2/K1)Ada-RTEP (K2/K1)RTEP

f1 6 21 3.50 3.75

0.94

f2 6 17 2.83 2.88

f3 5 14 2.80 2.50

f4 7 19 2.71 2.50

f5 5 14 2.80 2.50

f6 7 19 2.71 2.75

f7 6 15 2.50 2.38

f9 6 17 2.83 2.75
f1f10 8 13 1.63 1.88

0.75

f11 5 9 1.80 1.75

f12 12 19 1.58 1.75

f13 9 16 1.78 1.63

f14 9 22 2.44 2.25

f15 10 22 2.20 1.88

f16 9 16 1.78 1.75

f17 8 15 1.88 2.00

f18 7 13 1.86 1.88

f19 8 15 1.88 2.00

0.92

f20 10 18 1.80 2.00

f25 10 16 1.60 1.75

f26 9 16 1.80 2.00

f27 9 15 1.70 1.88

f28 8 15 1.88 2.13

f30 8 14 1.75 2.00

automatically adapted K2/K1 ratio values from ada-RTEP agree with those manually found

optimal K2/K1 ratio values? Table 8.38 makes a comparison between these two sets of K2/K1

ratio values and discovers that there exists strong positive correlation between these two sets
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of K2/K1 ratios (i.e., correlation=0.94, 0.75 and 0.92 for the three function families — unimodal,

high dimensional multimodal and low dimensional multimodal functions, respectively). This

indicates that ada-RTEP does really make an automatic and appropriate adaptation of the K1 and

K2 values based on the relative effectiveness of its explorative and exploitative stages.

8.10 Conclusion
In this chapter we have carried out in-depth experiments on each of the five algorithms that we

have developed so far along the entire course of our thesis (across the chapters 3 to 7) — RTEP,

DGEP, ABC-SAM, ABC-IX and ABC-AX2. These experiments provide us with a better

understanding and insight on several aspects of the proposed algorithms, such as how they

work, how they improve their results over the basic EP-based or ABC-based algorithms, how

their performance gets affected by their control parameters, how their final solution quality and

explorative capacity are affected by the proposed techniques and so on. Then we have

compared these algorithms against each other to identify their specific strengths and

weaknesses, based on their final solution quality, explorative search capacity and their strength

against premature convergence. We have also made a number of suggestions on how to improve

their performance by incorporating a few simple, yet effective techniques. Finally, we have

developed an improved and adaptive variant of one of our proposed EP-based algorithms (i.e.,

RTEP) by adapting the lengths of its explorative and exploitative stages, in order to demonstrate

and emphasize the fact that each of our algorithms might be extended and improved further by

employing some simple techniques, such as adaptation, self-adaptation and hybridization.
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Chapter9
Conclusions and Future Work

9.1 Introduction
Along the course of this thesis, we have developed a number of improved evolutionary and

swarm intelligence algorithms, evaluated them on several benchmark problems on continuous

optimization, compared them with some other relevant state-of-the-art metaheuristic

algorithms and carried out some experiments on each of them to analyze and examine their

components, characteristics, the role and effect of their parameters and so on. In this concluding

chapter, we try to summarize all the works done so far, highlight our achievements and then

provide some suggestions and directions for further research based on our works.

9.2 Summary and Conclusion
The objective of this thesis was to study and development of novel evolutionary and swarm

intelligence algorithms that try to balance between global explorations and local exploitations

and to maintain sufficient population diversity to avoid premature convergence around the local

optima. With this end in view, we have developed a number of novel evolutionary and swarm

intelligence algorithms by employing several techniques, such as regular alternations between

exploitative and explorative operations (e.g., RTEP in chapter 3), using the population diversity

information more effectively (e.g., DGEP in chapter 4), using the techniques of adaptation and

self-adaptation (e.g., ABC-SAM and ABC-AX2 in chapters 5 and 7, respectively) and hybridization

with other meta-heuristic algorithms (e.g., ABC-IX in chapter 6). All these works are briefly

summarized in the following paragraphs.
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Chapter 3 introduces RTEP (Recurring Two-Stage Evolutionary Programming) — an

improved EP-based algorithm that is established on the idea that explorations and exploitations

can be orthogonal and complementary (rather than opposing and conflicting) operations.

Therefore, RTEP tries to intensify both the explorative and exploitative operations by frequently

alternating between its two stages — the explorative and exploitative stages. Two control

parameters — K1 and K2 provide an adequate control on the degree of explorations,

exploitations and the frequency of alternations between these two modes of operations. In

chapter 8 (experiments), we have tested several different values of K1, K2 and the K2/K1 ratio,

and suggested an optimal exploitation-to-exploration ratio for each standard benchmark

function, as well as prescribed an overall optimal K2/K1 ratio for the three different function

families — the unimodal functions f1–f9, the high dimensional multimodal functions f10–f18 and

the low dimensional functions f19–f30. The experimental results show that RTEP often performs

significantly better than many other recent evolutionary and swarm intelligence algorithms.

In Chapter 4, we have developed DGEP (Diversity Guided Evolutionary Programming) —

an improved evolutionary algorithm that employs the existing amount of population diversity

to adaptively control and guide the degrees of explorations and exploitations during each

mutation operation. To accomplish this, DGEP introduces DGM (Diversity Guided Mutation) — a

novel mutation scheme that controls the mutation step size using the current population

diversity information. Besides, DGEP employs some basic, yet effective diversity preserving

techniques to maintain a sufficient amount of population diversity in order to assist the

diversity-dependent DGM mutation scheme. Empirical results and comparison with several

other relevant EAs and SIAs (chapter 4) have empirically established the effectiveness of the

DGEP and DGM mutation scheme.  Chapter 8 (experiments) has demonstrated that DGEP is

more explorative and better resilient against premature convergence in comparison to RTEP,

because DGEP maintains relatively higher amount of population diversity throughout the entire

optimization process. This is why DGEP is more effective than RTEP on complex optimization

problems, such as the more challenging CEC2005 benchmark problems on continuous

optimization.

The contribution of chapter 5 is to introduce ABC-SAM (ABC with Self-Adaptive Mutation),

which is an improved variant of the basic ABC algorithm. ABC-SAM tries to control the degree of

explorations and exploitations, separately for every candidate solution xi of the population, by

adaptively controlling the mutation step size on xi. ABC-SAM maintains a scaling factor value SFi,

separately for each candidate solution xi to customize the degree of explorations and

exploitations around xi. The value of SFi is automatically adapted at regular interval, either

towards more explorations or towards better exploitations, based on the current
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explorative/exploitative requirements of xi. ABC-SAM has a number of control parameters for

which suitable values are suggested, through some evaluations, in chapters 5 and

8 (experiments). Experimental results on ABC-SAM indicate that the self-adaptation of mutation

step size can effectively ensure better search space explorations and improve the performance

significantly over the basic ABC algorithm, as well as several other state-of-the-art evolutionary

and swarm intelligence algorithms.

Chapter 6 introduces ABC-IX (ABC with Improved eXplorations) — a novel ABC-variant

that tries to improve the explorative capacity of both the perturbation and selection operations

of the standard ABC algorithm. ABC-IX proposes a simulated annealing based probabilistic

selection scheme that can accept both better and worse candidate solutions, thus allowing both

uphill and downhill movements in the fitness landscape. Besides, ABC-IX employs a

self-adaptive perturbation strategy that can adapt and customize the perturbation rate, and thus

the degree of explorations and exploitations, separately for every candidate solution of the

population. Evaluations and experimental results show that both the improved selection and

perturbation operations of ABC-IX can work together cooperatively and synergistically to

significantly improve its results over the standard ABC algorithm, as well as several other recent

EAs and SIAs, including a number of improved, state-of-the-art variants of the ABC algorithm.

In chapter 7, we have introduced ABC-AX2 — another novel algorithm that improves the

basic ABC algorithm by employing a few techniques of adaptation and self-adaptation. ABC-AX2

extends each candidate solution with three more control parameters that control the degree of

explorations and exploitations, perturbation scaling factors and the rate of perturbations,

separately for every candidate solution of the population. The value of each control parameter is
automatically adapted, separately for every candidate solution, following some adaptive and

self-adaptive rules. ABC-AX2 has been extensively tested on two different benchmark suites and

results have been compared with several other recent, improved variants of the ABC algorithm.

The experimental results show that the performance of ABC-AX2 is often better than its

counterparts, which indicates the effectiveness of the proposed adaptive and self-adaptive

techniques for better optimization.

Chapter 8 carries out an in-depth experimental study on each of the algorithms developed

so far — the RTEP, DGEP, ABC-SAM, ABC-IX and ABC-AX2. The experiments are intended to

study the effect of the control parameters on the algorithms, the role, contribution and synergy

of their components, the validity of their design choices, how their design components affect the

perturbation success rate, population diversity and the degree of explorations, comparison

among the algorithms based on their final results, explorative search capacity, strength against

premature convergence and so on. Chapter 8 concludes by leaving a few suggestions on how
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each of our proposed algorithms might be improved and extended for better performance by

incorporating some simple techniques, such as adaptation, self-adaptation and hybridization.

The development and analysis of the algorithms along the course of this entire thesis has

provided us with a number of important insights on how the different characteristics of the

function may require different behaviors from the algorithm. In the following paragraphs, we

present a few points on how the properties of the function (e.g., separability, modality and

complexity) may necessitate different settings and actions from the optimizing algorithm for

better performance.

Separability of the function: The suitable perturbation rate of the algorithm depends

primarily on the separability of the function, as shown by the Tables 8.23, 8.26 and Figs. 8.11,

8.13 in chapter 8. For a separable function, small perturbation rates are usually more effective,

while large perturbation rates are generally more suitable for non-separable functions. If the

user has some domain knowledge about the separability of the problem, then an initial input

may be sought by the algorithm from the user about whether the function is separable or not.

This may lead towards the development of an improved user-interactive algorithm. Also, the

algorithm may itself try to guess the separability of the problem by observing how the small and

large perturbation rates are affecting the success rates of perturbations. This may lead to an

improved self-adaptive or hybrid machine learning algorithm.

Modality of the function: The required exploitation-to-exploration ratio (i.e., the K2/K1

ratio of RTEP) for the multimodal functions is significantly smaller than the unimodal functions,

as revealed by the experiments on RTEP (Tables 8.1–8.10, Figs. 8.1–8.3). If the modality of the

function is known beforehand by the user, then the algorithm can be effectively guided using

this knowledge as input from the user. Even without this domain knowledge, a machine learning

algorithm may be developed that performs some analysis on the distribution of fitness values

along each of the search dimensions to guess the modality of the function and thus set the value

of the exploitation-to-exploration ratio to some suitable range. This initial ratio value may be

adapted gradually using some strategy, such as the strategy adopted by ada-RTEP, as described

in section 8.9 (results in Tables 8.37–8.38).

Complexity of the function: For complex high dimensional multimodal functions, the

preservation of the population diversity is often considered necessary for avoiding premature

convergence. The experimental results in Tables 8.30–8.36 reveal that the EAs and SIAs that can

maintain more diversity (e.g., DGEP and ABC-IX, as shown in Tables 8.30, 8.34) usually perform

much better on the more complex CEC2005 suite functions. However, the same algorithms (e.g.,

DGEP and ABC-IX) perform worse on the simpler functions, such as the standard benchmark

suite functions, as shown in Tables 8.29, 8.33. This indicates that the explorative capacity of the
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algorithm should match the necessary degree of explorations and diversity requirements of the

function being optimized. If the user has some domain knowledge about the complexity of the

problem at hand, he can either assist the algorithm with this knowledge input or pick the

suitable algorithm for the problem, such as picking DGEP and/or ABC-IX for more complex

functions, while RTEP and ABC-AX2 for simpler functions. This may lead to an improved

interactive algorithm, based on human-computer interactions.

9.3 Future Research Directions
Each of the algorithms developed along the course of this thesis can be improved and extended

further for better final solution quality, more search space explorations, improved convergence

speed, more resilience against local optima and premature convergence and so on. Therefore,

further research on these algorithms is necessary to analyze, understand, extend and improve

their performance. In the following few points, we leave a few suggestions and directions for

further research on each of these algorithms.

Further research on RTEP: The current version of RTEP uses fixed values for its

control parameters K1 and K2, which are the lengths of the recurring explorative and

exploitative stages, respectively. An RTEP-variant could be developed that tries to make the

values of K1 and K2 adaptive along the optimization process. The variant ada-RTEP, introduced

in chapter 8, accomplishes this (i.e., adapts the values of K1 and K2) based on the fitness

improvements of the explorative and exploitative stages. However, some other criteria, e.g., the

convergence speed, genetic diversity, distribution of the candidate solutions and local

neighborhoods across the search space, may also be considered for the adaptation of K1 and K2.

Secondly, RTEP presents a very generic framework where any selection, recombination and/or

mutation operation can be employed. It would be interesting to experiment how some other

existing genetic operators could be incorporated within RTEP and how effectively they could

perform the recurring explorations and exploitations using the framework of RTEP. For

example, some genetic operators are known for their particular strengths or weaknesses, e.g.,

the SBX crossover, polynomial mutation [219] and the BLX-α crossover [95], each of which may

be tested and compared using RTEP. Thirdly, it would be interesting to hybridize RTEP with

many other existing continuous optimization algorithms. Since RTEP demonstrates outstanding

capability to locate the global optimum, it might be applied on a problem that is partially solved

by some other algorithm, say A, up to the point where A becomes prematurely converged or

trapped around some locally optimal point(s) with prolonged fitness stagnation. It would be

interesting to examine whether (and, how) RTEP can break free from the premature

convergence and fitness stagnation and get rid of the locally optimal points. Fourthly, RTEP has
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been employed only on the continuous optimization problems. In the future we would be

looking forward to extend RTEP for the problems on dynamic optimization, multi-objective

optimization, as well as find some new, innovative real world applications of RTEP.

Further research on DGEP: DGEP uses a number of control parameters, such as K, u, l,

|N| and |A|, most of which uses fixed values that are kept constant during the entire

optimization process. The value of K is set at random during each mutation, but always within

some fixed, predefined interval of values (Fig. 4.1). An adaptive DGEP-variant could be

developed that uses an automatic adaptation strategy for some (or, all) of these control

parameters. Such an adaptive approach would be more suitable than any fixed, predefined

strategy to dynamically deal with the continuously evolving explorative/exploitative

requirements of the candidate solutions across the population. Secondly, the distance-based

DGM mutation scheme of DGEP puts an equal amount of emphasis on both exploitations (using

the distance between neighbors) and explorations (using distance between non-neighbors).

However, explorations are usually more effective during the early stage of evolution, while

exploitations should be the major and dominant operation during the final generations.

Therefore, an improved, adaptive DGEP variant might be developed than uses intensive

explorations during the initial generations, but gradually turns to more and more exploitations

with the ongoing generations. Thirdly, the distance-based DGM mutation scheme might be

further improved by considering some more information, such as the genetic diversity, density

of individuals around the current individual, properties of the fitness landscape, current rate of

convergence towards some local or global optima and so on. Fourthly, the experimental studies

(chapter 8) show that DGEP possesses an excellent explorative capacity and robustness against

premature convergence, but its exploitative characteristics are not as good as RTEP or

DPGA [146]. A hybrid DGEP-variant might be developed that tries to hybridize some efficient

local search method (e.g., the Hooke-Jeeves pattern search technique [65]) with DGEP to

improve its exploitative and fine-tuning characteristics. Fifthly, we have employed DGEP only to

solve the continuous optimization problems. An interesting research topic would be to test and

evaluate DGEP on many other existing problems, especially the discrete and the real world ones.

Further research on ABC-SAM: Incorporation of a few more techniques within ABC-SAM

might further improve its performance. For example, during adaptation of the scaling factor

values, ABC-SAM tries to emphasize both explorations and exploitations equally, rather than

adaptively. But the relative necessity of explorations and exploitations usually do not remain

equal throughout the optimization process. Explorations are considered highly necessary

during the initial stage, while exploitations become gradually more and more effective,

especially during the late generations. Besides, the relative necessity of exploitations and

explorations also depend on the function characteristics, especially around the current
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candidate solution, the existing amount of genetic diversity, the current maturity of the on-going

optimization process and so on. Based on these facts, ABC-SAM could re-allocate and skew its

emphasis during the adaptation cycles, either towards more explorations or towards more

exploitations. Secondly, ABC-SAM gradually adapts only the scaling factors, i.e., the SFi values,

for every candidate solution xi. However, the performance of ABC-SAM is also affected by some

other control parameters, such as K, α and β. Currently ABC-SAM assigns fixed, predefined

values to all these control parameters, as well as to its other control parameters — τ1 , τ2 and

SFmin . An important research direction would be to make these control parameters adaptive

and/or self-adaptive along with the on-going optimization process. Thirdly, ABC-SAM currently

uses simple exponential and negative-exponential distributions for producing explorative and

exploitative scaling factors, respectively during the adaptation cycles. There exists some

research opportunity to test, evaluate and compare many other existing probability

distributions, such as the Lévy [56] and Cauchy [57] distributions, to examine how they can

assist the self-adaptive mutation strategy of ABC-SAM. Fourthly, the self-adaptive mutation

scheme of ABC-SAM can be incorporated and hybridized with many other recently introduced

evolutionary and swarm intelligence based algorithms, such as [107]–[129]. Fifthly, so far

ABC-SAM has been employed only on the continuous optimization problems. It would be

interesting to find out how well ABC-SAM performs on many other existing problems, especially

the discrete, dynamic, multi-objective and real-world problems.

Further research on ABC-IX: ABC-IX might be extended and improved in a number of

ways. For example, ABC-IX currently employs an explorative selection scheme that is based on

simulated annealing [233]. Some other explorative meta-heuristic technique, other than

simulated annealing, such as the tabu search [28] or iterated local search [77] might be used to
devise an explorative selection and/or perturbation technique. Secondly, ABC-IX currently

employs the simple and straightforward exponential cooling schedule [233] for its system

temperature T, which might be replaced by some more sophisticated cooling policy, such as

some policy adaptively controlled by the population diversity or genetic distribution or some

other metric that can estimate the current maturity of the ongoing optimization process.

Thirdly, ABC-IX has some additional control parameters, such as T0, α and t, for which we

currently use fixed, predefined values. This might be improved by employing some adaptive

strategy that dynamically considers the current explorative/exploitative needs of the

population and sets the values of these control parameters accordingly. Fourthly, ABC-IX is

currently biased towards more explorations, rather than exploitations. Putting some more

efforts for the exploitations, especially around the best candidate solutions found so far and

during the final cycles of ABC-IX may further improve its results. Some more suggestions and

directions for further research with ABC-IX are — hybridizing ABC-IX with many other existing
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EAs and SIAs, finding new problems and application domains for ABC-IX, especially the discrete,

dynamic and multi-objective optimization problems, as well as many other existing real-world

application problems.

Further Research on ABC-AX2: There exist several possible future research directions

along which ABC-AX2 might be further extended and improved. Firstly, ABC-AX2 uses several

control parameters, such as τ1, τ2, u1, u2, t1, t2, t3, s1 and s2. Currently each of these parameters is
simply set to a fixed, predefined value by ABC-AX2. To improve the performance of ABC-AX2, we

could develop some adaptive and/or self-adaptive strategy that would dynamically adapt the

values of these control parameters based on the current explorative/exploitative requirements.

Secondly, ABC-AX2 uses simple strategies (i.e., eqs. (7.3)–(7.6)) to adjust the values of the

control parameters — pi, qi and ηi for each candidate solution xi. Some more sophisticated

strategy, such as considering the properties of fitness landscape around the current candidate

solution xi, taking into account the existing population diversity, convergence speed and/or the

maturity of the optimization process may be more effective for balancing exploitations with

explorations around xi. Thirdly, after the execution of ABC-AX2 is over, employing some

exploitative and efficient local searcher might improve the results further by precisely

pinpointing the global optimum. Fourthly, the adaptive and self-adaptive strategies of ABC-AX2

can be employed with many other existing mutation-based swarm intelligence algorithms, such

as [113]–[120]. Some more suggestions on further research with ABC-AX2 are — hybridizing

ABC-AX2 with other suitable evolutionary, swarm intelligence and/or machine learning

techniques, employing ABC-AX2 to solve many other existing problems, especially the discrete

and real world ones, improving and extending ABC-AX2 for dynamic, noisy and multi-objective

optimization problems, finding new and novel  application domains for ABC-AX2 and so on.
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Appendix A
Benchmark Functions

Along the course of this thesis, we have developed a number of improved evolutionary and

swarm intelligence algorithms (chapters 3–7). Each of these algorithms is evaluated on two

different suites of benchmark functions on continuous optimization — the standard benchmark

suite consisting of 30 benchmark functions, and the recently introduced CEC2005 benchmark

suite consisting of 25 benchmark functions. Both the benchmark suite functions have been

widely used in many recent studies on evolutionary and swarm intelligence algorithms, e.g., [2],

[15]–[18], [20], [21] and [26]–[28]). In the following two sections, we present an overview on

the 30 standard benchmark suite functions (section A.1), followed by the 25 CEC2005 functions

(section A.2). More details on these functions can be found in [2], [21], [28] and [76].

A.1 Standard Benchmark Functions
The standard benchmark suite contains 30 benchmark functions. Based on their properties,

these functions can be roughly categorized into two groups — the unimodal functions f1−f9 and

the multimodal ones f10−f30. The multimodal functions (i.e., f10−f30) can further be categorized

into two groups — the high dimensional multimodal functions f10−f18, each one of which

contains several local minima, and the relatively low dimensional multimodal functions f19−f30,

each one of which has dimensionality D ≤ 10 and possesses only a few local minima. The suite

also contains both separable (e.g., f1, f3, f15, f16) and non-separable (e.g., f2, f4, f14, f18) functions.

The modality and separability of a function often significantly control the difficulty that the

function presents to any algorithm during optimization. For example, the highly multimodal

functions are usually more challenging to optimize by any algorithm, because the algorithm

must possess both exploitative and explorative characteristics so that it can explore the locally

optimal points without being trapped around any of them. Some of the multimodal functions in

f10−f18 have tens or hundreds of local minima, even when the dimensionality is just two or three

(e.g., Rastrigin function f10, Schwefel function f12, Ackley function f13, Griewank functions f14, as

illustrated in the Figs. A.1.7–A.1.9). For these functions, their number of local optima increases

exponentially with the number of dimensions. This often makes their optimization extremely

difficult for any algorithm. For example, the Ackley function f13 possesses one narrow basin$
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containing the global minimum, but surrounded with exponentially many local minima

(Fig. A.1.8). The Griewank function f14 has a component which creates linkage among the search

variables, which complicates the goal of reaching the global minimum by perturbing any subset

of the variables. The major difficulty of the Schwefel function f12 arises from its second best local

minima which are very far from the single global minimum. The low dimensional functions

f19−f30 have only a few local minima, but their locally minimal points often have significant

in-between distance over the parameter space (e.g., Michalewicz function f29, Fig. A.1.13). This

makes it difficult for any algorithm to break free from their deep local valleys, because it

requires very large, more explorative perturbations on the existing candidate solutions to break

free from the strong locally minimal points. In the following three subsections A.1.1–A.1.3, we

present a brief introduction on the three groups of standard benchmark functions — the

unimodal functions f1–f9 (in subsection A.1.1), the high dimensional multimodal functions f10–f18

(subsection A.1.2) and the low dimensional multimodal functions f19–f30 (subsection A.1.3).

A.1.1 Unimodal Functions f1–f9
f1: Sphere Function It is also known as De Jong's function 1. The Sphere function is very simple

and is widely used for various demonstrations. It is defined by eq. (A.1.1).

  2
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where D is the number of dimensions and x = [x1, x2, … , xD]T is a D-dimensional vector. The

search area is usually restricted to: –100 ≤ xi ≤ 100.

Global minimum: min (f1) = f1 (0, 0, …, 0) = 0.

Properties:

 Unimodal

 Continuous

 Convex

 Separable

f2: Schwefel’s Problem 2.22 It is a unimodal, non-separable function, defined by eq. (A.1.2).
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The search area is usually restricted to –10 ≤ xi ≤ 10, for i = 1, 2, …, D.

Global minimum: min (f2) = f2 (0, 0, …, 0) = 0.

Properties:

 Unimodal

 Non-Separable

 Easily optimized dimension by dimension
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Figure A.1.1: 3-D shaded surface plot of 2-D sphere function (f1)

Figure A.1.2: 3-D shaded surface plot of 2-D Schwefel’s problem 2.22 (f2)

f3: Schwefel’s Problem 2.21 It is a unimodal and separable function, defined by eq. (A.1.3).

   3 max ,1i if x i D  x (A.1.3)

Test area is usually restricted to –10 ≤ xi ≤ 10, for i = 1, 2, …, D.

Global minimum: min (f3) = f3(0, 0, …, 0) = 0.

Properties:

 Unimodal

 Separable
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f4: Schwefel’s Problem 1.2 Schwefel’s function 1.2 is an extension of the axis parallel

hyper-ellipsoid, because this function produces rotated hyper-ellipsoids with respect to the

coordinate axes. It is defined by eq. (A.1.4).
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Test area is often restricted to the hypercube: –65.536 ≤ xi ≤ 65.536, for i = 1, 2, …, D.

Global minimum: min (f4) = f4 (0, 0, …, 0) = 0.

Properties:

 Unimodal

 Continuous

 Convex

 Non-separable

Figure A.1.3: 3-D shaded surface plot of 2-D Schwefel’s problem 1.2 (f4)

f5: Powell’s Function It is a unimodal, non-separable function, defined by eq. (A.1.5).
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The value of k is usually set to 4. The dimensionality D must be a multiple of k. In the suite,

D=24 has been used. Test area is often restricted to the search area: –4 ≤ xi ≤ 5, for i = 1, 2, …, D.

Global minimum: x* = (3,-1,0,1, …, 3,-1,0,1), f5(x*) = 0.

Properties:

 Unimodal

 Non-separable
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f6:Dixon-Price Function It is a unimodal, non-separable function, defined by eq. (A.1.6).
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Test area is often restricted to the search area: –10 ≤ xi ≤ 10, for i = 1, 2, …, D.

Global minimum: min (f6) = f6(0, 0, …, 0) = 1

Properties:

 Unimodal

 Non-separable

Figure A.1.4: 3-D shaded surface plot of 2-D Dixon-Price function (f6)

f7: Rosenbrock Function Rosenbrock valley function is a classic optimization problem, which is
also known as the Banana function. The global minimum resides inside a parabolic shaped

valley (Fig. A.1.5). Finding the valley is not difficult, but precisely pinpointing the global

optimum inside the almost flat, long, narrow valley is extremely difficult. Hence this problem

has been widely used to assess the performance of many optimization algorithms. The general

Rosenbrock function is defined by eq. (A.1.7).
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Although the Rosenbrock function is often considered a unimodal function, as in [2], [28], there

is some evidence [30] that it contains several minima in high dimensional instances. The search

area is usually restricted to: –30 ≤ xi ≤ 30, for i = 1, 2, …, D.

Global minimum: min (f6) = f6(1, 1, …, 1) = 0
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Figure A.1.5: 3-D shaded surface plot of 2-D Rosenbrock function, rendered with Matlab (on
the left) and using a ray tracing program: POV-Ray (on the right)

Properties:

 Unimodal

 Separable

 High dimensional instances contain several minima

f8: Step Function It is a unimodal, separable function, defined by eq. (A.1.8).
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Test area is often restricted to the search area: –100 ≤ xi ≤ 100, for i = 1, 2, …, D.

Global minimum: min (f8) = f8(–0.5 ≤ xi < 0.5) = 0

Properties:

 Unimodal

 Separable

Figure A.1.6: 3-D shaded surface plot of 2-D Step function
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f9: Quartic Function with Noise This function is unimodal, separable and noisy. The noise is
simulated with the random[0,1) term in eq. (A.1.9).
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Test area is often restricted to the search area: –1.28 ≤ xi ≤ 1.28, for i = 1, 2, …, D.

Global minimum: min (f9) = f9(0, 0, …, 0) = 0

Properties:
 Unimodal
 Separable

A.1.2 High Dimensional Multimodal Functions f10–f18
f10: Rastrigin Function The Rastrigin function is based on Sphere function with the addition of

cosine modulation to produce many local minima. For this reason, this function is highly

multimodal and the location of the minima is regularly distributed. The function definition is

given by eq. (A.1.10).
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Test area is usually restricted to the hypercube: –5.12 ≤ xi ≤ 5.12, for i = 1, 2, …, D.

Global minimum: min (f10) = f (0, 0, …, 0) = 0

Properties:

 Multimodal

 Separable

 Regularly distributed, exponentially many local minima

f11: Non-continuous Rastrigin Function It is a non-continuous, multimodal, separable

function, with the definition given by eq. (A.1.11).
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Test area is usually restricted to the hypercube: –5.12 ≤ xi ≤ 5.12, for i = 1, 2, …, D.

Global minimum: min (f11) = f11(0, 0, …, 0) = 0

Properties:
 Multimodal
 Separable
 Exponentially many local minima
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f12: Schwefel’s Problem 2.26 Schwefel's function 2.26 is a deceptive function, because the

global minimum is geometrically very distant, over the parameter space, from the second best

local minima. Therefore, the search algorithms are potentially prone to convergence towards

the wrong direction. The definition of the function is given by eq. (A.1.12).
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Test area is usually restricted to the hypercube: –500 ≤ xi ≤ 500, for i = 1, 2, …, D.

Global minimum: min (f12) = f12(420.9687, 420.9687, …, 420.9687) = –12569.48

Properties:

 Multimodal

 Separable

 Exponentially many local minima

(a) Rastrigin function (b) Schwefel’s problem 2.26

Figure A.1.7: 3-D shaded surface plot of 2-D Rastrigin function (f10) and Schwefel’s problem 2.26 (f12)

f13: Ackley Function It is a multimodal, non-separable function, with the definition of the

function given by eq. (A.1.13).
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Test area is usually restricted to the hypercube: –32 ≤ xi ≤ 32, for i = 1, 2, …, D.

Global minimum: min (f13) = f13(0, 0, …, 0) = 0

Properties:

 Multimodal

 Non-Separable

 Exponentially many local minima
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Figure A.1.8: 3-D shaded surface plot of 2-D Ackley function f13

Figure A.1.9: 3-D shaded surface plot of 2-D Griewank function f14

f14: Griewank Function The Griewank function is a multimodal, non-separable continuous

function similar to the Rastrigin function. It has exponentially many widespread local minima

that are regularly distributed across the parameter space. The definition of the Griewank

function is given by the following eq. (A.1.14).
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Test area is usually restricted to the hypercube: –600 ≤ xi ≤ 600, for i = 1, 2, …, D.

Global minimum: min (f14) = f14 (0, 0, …, 0) = 0

Properties:

 Multimodal

 Non-Separable

 Regularly distributed, exponentially many local minima

f15: Alpine Function The Alpine function is a multimodal, separable function, defined by the

following eq. (A.1.15).

   15 1
sin 0.1

i i

D

ii
xx xf


x (A.1.15)

The test area is usually restricted to: –10 ≤ xi ≤ 10, for i = 1, 2, …, D.

Global minimum: min (f15) = f15(0, 0, …, 0) = 0

Properties:

 Multimodal

 Separable

 Exponentially many local minima

f16: Weierstrass Function The Weierstrass Function is a multimodal, separable function,

defined by the following eq. (A.1.16).

       16

max max

1 0 0
cos 0.5 cos 2 0.52

D k kk k k k
ii k k

a bf a b x D 
  

         x (A.1.16)

Here, the constants a, b and kmax are set as: a=0.5, b=3.0 and kmax=20. The test area is usually

restricted to: –0.5 ≤ xi ≤ 0.5, for i = 1, 2, …, D.

Global minimum: min (f16) = f16(0, 0, …, 0) = 0

Properties:

 Multimodal

 Separable

 Exponentially many local minima

f17–f18: Generalized Penalized Functions Both these functions are multimodal, separable and

have exponentially many locally optimal points. They are defined by eqs. (A.1.17) and (A.1.18).
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( ) = 10sin ( ) + ( − 1) [1 + 10sin ( )] + ( − 1)

+∑ ( , 10,100,4) (A.1.17)

( ) = 0.1 sin (π3 ) + ∑ ( − 1) [1 + sin (3π )]
+( − 1) [1 + sin (2π )]

+∑ ( , 5,100,4) (A.1.18)

where: u( , a, k, m) = ( − ) , >
0, − ≤ ≤
(−x − ) , < −

= 1 +
1
4
( + 1)

The search area is usually restricted to: –50 ≤ xi ≤ 50, for i = 1, 2, …, D.

Global minimum: min (f17) = min (f18) = f (0, 0, …, 0) = 0

Properties:

 Multimodal

 Nonseparable

A.1.3 Low Dimensional Multimodal Functions f19–f30
f19: Shekel’s Foxholes Function It is multimodal separable function, defined by the following

eq. (A.1.19).

 
1

25
19 21 6

1

1 1.0
500 ( )

j
i iji

f
j x a







  
   
     



x (A.1.19)

The search area is usually restricted to: –65.536 ≤ xi ≤ 65.536, for i = 1, 2, …, D. For the usual

value of D=2, the constant (aij) is defined as:

 
32   16        0        16       32   32   ...   ...   ...    0    16    32

32   32    32    32   32   16  ...   ...   ...   32    32    32
ija

   
  
       

Global minimum: min (f19) = f19 (–32, –32, …, –32) ≈ 1
Properties:

 Multimodal

 Separable
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f20: Kowalik Function It is multimodal, non-separable function, defined by the eq. (A.1.20).
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The search area is usually restricted to: –5 ≤ xi ≤ 5, for i = 1, 2, …, D. For the usual value of D=4,

the constants ai and bi are defined in Table A.1.

Global minimum: min (f20) ≈ f20(0.1928, 0.1908, 0.1231, 0.1358) ≈ 0.0003075

Properties:
 Multimodal
 Non-separable

f21: Six Hump Camel Back Function The 2-D Six Hump Camel Back function has a total of six

locally minimal points (within the bounded search region), two of which are global minima. The

function is defined by the following eq. (A.1.21).

  2 4 6 2 4
21 1 1 1 1 2 2 2

1
4 2.1 4 4

3
xx x x x x xf      x (A.1.21)

The search area is usually restricted to: –5 ≤ xi ≤ 5, for i = 1, 2.

Global minimum: Two different global minima are (0.0898, –0.7126) and (–0.0898, 0.7126).

min (f21) = –1.0316285

Properties:
 Multimodal
 Non-separable
 Number of local minima: six local minima (within the bounded search space), two of

which are global minima.

(a) Shekel’s Foxholes function (b) Six Hump Camel Back function

Figure A.1.10: 3-D surface plot of Shekel’s Foxholes function f19 and Six Hump Camel Back function f21
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Table A.1: Coefficients for Kowalik function f20

i ai bi–1

1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

11 0.0246 16

f22: Branin Function The 2-D Branin function is a multimodal, separable test function that has

three equal sized global minima, no local minimum and has the following definition.

   2
22 1 1 1

2

2 2 10
5.1 5 1

6 10 1 cos
4 8

xf x x x
  

            
   

x (A.1.22)

The search area is usually restricted to: –5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

Global minimum: Three global minima: (–3.142, 2.275), (3.142, 2.275), (9.425, 2.425)

min (f22) = 0.397887

Properties:

 Multimodal

 Separable

 Number of local minima: No local minimum except the global ones

Figure A.1.11: 3-D shaded surface plot of the Branin function f22
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f23: Hartman3 Function This is a 3-D multimodal, non-separable test function that has the

following definition (A.1.23).

   223 1

4 3

1
= i ij j ijj=i=

cf  exp a x p      x (A.1.23)

The search area is usually restricted to: 0 ≤ xi ≤ 1, for i = 1, 2, 3. The constants (aij), ci and (pij) are

defined in Table A.2.

Global minimum: x* = (0.114614, 0.555649, 0.852547)

min (f23) = f23(x*) = –3.86278
Properties:
 Multimodal
 Non-separable
 Number of local minima: Four local minima

f24: Hartman6 Function This is a multimodal, non-separable test function with the

dimensionality D = 6. It has the following definition (A.1.24).

   224 1

4 6

=1
= i ij j ijj=i

cf  exp a x p      x (A.1.24)

The search area is usually restricted to: 0 ≤ xi ≤ 1, for i = 1, 2, …, 6. The constants (aij), ci and (pij)
are defined in Table A.3.

Global minimum: x* = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

min (f24) = f24(x*) = –3.32237

Properties:
 Multimodal
 Non-separable
 Number of local minima: Four local minima

Table A.2: Coefficients for the Hartman function f23

i aij, j = 1, 2, 3 ci pij, j = 1, 2, 3
1 3 10 30 1 0.3689 0.1170 0.2673

2 0.1 10 35 1.2 0.4699 0.4387 0.7470

3 3 10 30 3 0.1091 0.8732 0.5547

4 0.1 10 35 3.2 0.038150 0.5743 0.8828

Table A.3: Coefficients for the Hartman function f24

i aij, j = 1, …, 6 ci pij, j = 1, …, 6
1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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f25–f27: Shekel’s Family: These three functions are non-separable multimodal functions, each

one with dimensionality D = 4 and having five, seven and ten local minima, respectively. They

are defined by the following general eq. with m=5, 7 and 10, respectively.

      25 261
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The search area is usually restricted to: 0 ≤ xi ≤ 10, for i = 1, 2, 3, 4. The constants ai and ci are

defined in Table A.4.

Global minimum: x* = (4, 4, 4, 4)

min (f25)= f (x*) = –10.1532

min (f26)= f (x*) = –10.4029

min (f27)= f (x*) = –10.5364

Properties:

 Multimodal

 Non-separable

 Number of local minima: Five, seven and ten local minima for f25 , f26 and f27, respectively

Table A.4: Coefficients for the Shekel functions f25, f26, f27

i aij, j = 1, …, 4 ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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f28: Fletcher-Powell Function This is a multimodal, non-separable test function with the

following definition.

 28 1
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 x (A.1.28)
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The search area is usually restricted to: – ≤ xi ≤ , for i = 1, 2, …, D. The values of the constants

(aij), (bij) and αj can be found at the Tables 5–7 in [11].

Global minimum: min (f28) = f28(0, 0, …, 0) = 0

Properties:

 Multimodal

 Non-separable

Figure A.1.12: 3-D surface plot of the 2-D Fletcher-Powell function f28

f29: Michalewicz Function This is a highly multimodal test function with D! local optima. The

parameter m defines the steepness of the valleys or edges, so larger values of m leads to more

difficult search. For very large value of m, the function behaves like a needle in the haystack (i.e.,

the function values at the points outside the narrow peaks provide very little direction

information towards the global optimum). The function is defined by the following eq. (A.1.29),

and the search area is usually restricted to: 0 ≤ xi ≤ , for i = 1, 2, …, D.

      29
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Global minimum: For D=10, min (f29) = –9.66015171

Properties:

 Multimodal

 Non-separable

f30: Langerman Function This is a multimodal, non-separable test function with unevenly

distributed local minima. It is defined by the following eq. (A.1.30).

      30
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  x (A.1.30)

The search area is usually restricted to: 0 ≤ xi ≤ 10, for i = 1, 2, …, D. The constants (aij) and (ci)

are defined in Table A.5.

Global minimum: For D=10, min (f30) = –1.4

Properties:
 Multimodal
 Non-separable

(a) Michalewicz function (b) Langerman function

Figure A.1.13: 3-D shaded surface plot of 2-D Michalewicz function f29 and Langerman function f30

A.2 CEC2005 Benchmark Functions
This section briefly presents the CEC2005 benchmark functions which was proposed for the
“Special Session on Continuous Optimization” held at the 2005 IEEE Congress on Evolutionary
Computation (CEC-2005), held on 2-4 September 2005 at Edinburgh, UK. For this special
session, a set of 25 continuous functions that are very difficult and challenging to optimize were
proposed. These functions present many of the characteristics that can make a continuous
function very hard to be solved, such as multimodality (presence of many local optima that mislead

the search process), non-separability (dependencies among the variables that make it impossible
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Table A.5: Coefficients (aij) and ci for the Langerman function f30

i aij, j = 1, …, 10 ci
1 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 0.806
2 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517
3 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 1.500
4 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426 0.908
5 8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 0.965
6 7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208 0.669
7 1.256 3.605 8.623 6.905 0.584 8.133 6.071 6.888 4.187 5.448 0.524
8 8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762 0.902
9 0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637 0.531

10 7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247 0.876
11 0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016 0.462
12 2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789 0.491
13 8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109 0.463
14 2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564 0.714
15 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670 0.352
16 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826 0.869
17 8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591 0.813
18 4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740 0.811
19 2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675 0.828
20 6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258 0.964
21 0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070 0.789
22 5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234 0.360
23 3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027 0.369
24 8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064 0.992
25 1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224 0.332
26 0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644 0.817
27 0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229 0.632
28 4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506 0.883
29 9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732 0.608
30 4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500 0.326

for the algorithm to independently optimize each variable), shifting of the global optimum (to

prevent algorithms to take advantage of a global optimum centered at zero), etc. Before

formulating and describing each of the proposed functions, we first introduce the notation used

to describe the functions — D represents the dimensionality of the problem, i.e., the number of

variables to optimize, z is a candidate solution to the problem, o is the optimal solution (i.e.,

global optimum) to the problem and M are linear transformation matrices with an associated

condition number (a measure that tells how numerically well-conditioned a problem is, i.e., how

small variations of the input data can affect the output value). The functions in the CEC205

benchmark suite are classified into the following four groups.

i. Unimodal functions (F1–F5)

ii. Basic multimodal functions (F6–F12)
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iii. Expanded functions (F13–F14)

iv. Hybrid composition functions (F15–F25)

The first two groups are simple unimodal and multimodal functions, respectively. The third

group is composed of functions constructed in the following way — given a 2-D function F(x; y)

as a starting function, the corresponding expanded function EF(x1, x2, … , xD) is defined as

follows.

         1 2 1 1 2 2 3 1 1, ,..., , , ,  ... , ,D D D D DEF x x x x F x x F x x F x x F x x     

Finally, the fourth group of functions is composed of hybrid functions constructed from multiple

functions from the second group. Hybrid functions apply each of the simple functions to the

candidate solution and then carry out a weighted average of the result values. Additionally,

some stretching and compressing values are applied, as well as shifting of the global optima.

A.2.1 Unimodal Functions (F1–F5)
F1: Shifted Sphere Function This is a unimodal, shifted, separable and scalable function,

defined by eq. (A.2.1).

2
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 (A.2.1)

where: 1 2,   [ , , , ]Dz x o x x x x    [ 100,100]Dx 

F2: Shifted Schwefel’s Problem 1.2 This is a unimodal, shifted, non-separable and scalable

function, defined by eq. (A.2.2).
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  (A.2.2)

where: 1 2,   [ , , , ]Dz x o x x x x    [ 100,100]Dx 

(a) Shifted sphere function (F1) (b) Shifted Schwefel’s problem 1.2 (F2)
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Figure A.2.1: 3-D shaded surface plots of the 2-D shifted sphere function (F1) and shifted
Schwefel’s problem 1.2 (F2)

F3:  Shifted Rotated High Conditioned Elliptic Function This is a unimodal, shifted, rotated,

scalable and non-separable function, defined by eq. (A.2.3).
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where: 1 2( ) ,   [ , , , ]Dz x o M x x x x     [ 100,100]Dx 

F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness This is a unimodal, shifted,

non-separable and scalable function with noise in fitness, defined by eq. (A.2.4).
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  (A.2.4)

where: 1 2,   [ , , , ]Dz x o x x x x    [ 100,100]Dx 

(a) High conditioned elliptic function (F3) (b) Shifted Schwefel’s problem 1.2 with noise
(F4)

Figure A.2.2: 3-D shaded surface plots of High conditioned elliptic function (F3) and Shifted
Schwefel’s problem 1.2 with noise (F4)

F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds This is a unimodal,

non-separable and scalable function with the global optimum located at the bounds of the

search space, defined by eq. (A.2.5).

5( ) = iF A x Bmax ix (A.2.5)
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Here, A is a D*D matrix of random integer numbers,  ,500, 500 1,ij i ja D      and 0 A  .

Also, Ai is the i-th row of A and  i iB A o, where o is a *1D vector of random integer numbers

within the interval[ , ]100 100 . Finally, [ , ]100 100 Dx 

Figure A.2.3: 3-D shaded surface plot of Schwefel’s problem 2.6 with global optimum on bounds (F5)

A.2.2 Basic Multimodal Functions (F6–F12)
F6: Shifted Rosenbrock Function This is a multimodal, shifted, non-separable and scalable

function with a very narrow valley from the local to the global optimum. It is defined by

eq. (A.2.6). Fig. A.2.4 shows a 3-D shaded surface plot of this function.
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     (A.2.6)

where: 1 2,   [ , ,  ,  ]Dz x o x x x x    1 [ 100, 100]Dx 

F7: Shifted Rotated Griewank Function without Bounds This is a multimodal, non-separable,

shifted, rotated and scalable function, with no bounds for the variable x. The population is

initialized in the interval [0, 600]D, but the global optimum is outside of this initialization range.

This function is defined by eq. (A.2.7). Fig. A.2.4 shows a 3-D shaded surface plot of this function.
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where: 1 2( ) ,   [ , ,  ,  ]Dz x o M x x x x     [0, 600]Dx
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F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds This is a
multimodal, rotated, shifted, non-separable, scalable function. The global optimum is located at
one bound of the search space. It is defined by eq. (A.2.8). Fig. A.2.5 shows its 3-D surface plot.
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  (A.2.8)

where: ( ) ,   [ , ,  ,  ]1 2 Dz x o M x x x x     [ 32,  32]Dx 

(a) Shifted Rosenbrock function (F6) (b) Shifted Rotated Griewank function (F7)

Figure A.2.4: 3-D shaded surface plot of the Shifted Rosenbrock function (F6) and Shifted
Rotated Griewank function (F7)

F9: Shifted Rastrigin’s Function This is a multimodal, shifted, separable and scalable function,

with a huge number of local optima. It is defined by eq. (A.2.9) and Fig. A.2.5 shows its 3-D plot.
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where: 1 2( ),   [ , ,  ,  ]Dz x o x x x x    [ 5 5]x  , D

F10: Shifted Rotated Rastrigin Function This is a multimodal, shifted, rotated, non-separable

and scalable function, with a huge number of local optima. It is the same function as the

previous one, with the only difference that, in this case, ( )* .z x o M 
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    (A.2.10)

where: 1 2( ) * ,   [ , ,  ,  ]Dz x o M x x x x    [ 5 5]x  , D
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(a) Shifted Rotated Ackley function (F8) (b) Shifted Rastrigin function (F9)

Figure A.2.5: 3-D shaded surface plots of shifted Rotated Ackley function with global optimum
on bounds (F8) and Shifted Rastrigin function (F9)

F11: Shifted Rotated Weierstrass Function This is a multimodal, shifted, rotated,

non-separable and scalable function. This function has the particularity of being continuous in
all the domains but only differentiable in a particular set of points. It is defined by eq. (A.2.11),

whereas a 3-D shaded surface plot of this function is provided in Fig. A.2.6.
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where: 1 2( ) * ,   [ , ,  ,  ]Dz x o M x x x x    [ 0.5 0.5]x  , D

F12: Schwefel’s Problem 2.13 This is a multimodal, shifted, non-separable and scalable

function. It is defined by eq. (A.2.12).
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Where Ai and Bi are defined as two D*D matrices, and a and b are two random numbers within

the interval [ ].100,100
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(a) Shifted Rotated Rastrigin function (F10) (b) Shifted Rotated Weierstrass function (F11)

Figure A.2.6: 3-D shaded surface plots of the Shifted Rotated Rastrigin function (F10) and
Shifted Rotated Weierstrass function (F11)

Figure A.2.7: 3-D shaded surface plot of Schwefel’s problem 2.13 (F12)

A.1.3 Expanded Functions (F13–F14)

F13: Shifted expanded Griewank’s plus Rosenbrock’s Function This function is an expanded

composition of Griewank function (eq. (A.2.7)) and Rosenbrock function (eq. (A.2.6)). The

shifted function is defined by the following eq. (A.2.13).

13 1 2 2 3 1 1( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , ))D D DF x F F z z F F z z F F z z F F z z     (A.2.13)

where: 1 2,   [ , ,  ,  ]Dz x o x x x x   +1 [ 3 ]x  ,  1 D
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F14: Shifted Rotated Scaffer’s F6 Function This is an expanded version of Scaffer’s F6

function, which is defined by the following eq. (A.2.14).

2 2 2

( , ) 2 2

(sin ( ) 0.5)
0.5

(1 0.001( ))x y

x y
F

x y

 
 

 
(A.2.14a)

It is then expanded as the following eq. (A.2.14b).

1 2 1 1 2 2 3 1 1( ) ( , ,..., , ) ( , ) ( , ) ... ( , ) ( , )D D D D DF x EF z z z z F z z F z z F z z F z z       (A.2.14b)

where: 1 2( ) * ,   [ , ,  ,  ]Dz x o M x x x x    [ 100,  100]Dx 

A.1.3 Hybrid Composition Functions (F15–F25)
These functions are compositions of multiple individual. For their sheer complexity, their

equations are not presented here. A detailed description on each of these hybrid composition

functions, as well as the necessary pseudocode to compute their values, is provided in [76].

(a) F13 function (b) F14 function

Figure A.2.8: 3-D shaded surface plots of the expanded functions F13 and F14

F15: Hybrid Composition Function This is a multimodal, separable (near the global optimum)

and scalable hybrid function with a huge number of local optima where characteristics of

different constituent functions, such as the Rastrigin, Weierstrass, Griewank, Ackley and Sphere

functions, are mixed together. The separability near the global optimum is due to Rastrigin’s

function, whereas the two flat areas present in the function are due to the Sphere function. This

function is defined within the interval [ ,  ]5 5 D .

F16: Rotated Version of the Hybrid Composition Function F15 This is a rotated version of

the previous function (F15) with similar characteristics. It uses the same constituent functions
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(i.e., the Rastrigin, Weierstrass, Griewank, Ackley and Sphere functions) and is defined within

the same search area, i.e., [ ,  ]5 5 .D

(a) F15 function (b) F16 function

Figure A.2.9: 3-D shaded surface plots of the hybrid composition functions F15 and F16

(a) F17 function (b) F18 function

Figure A.2.10: 3-D shaded surface plots of the hybrid composition functions F17 and F18

F17: F16 with Noise in Fitness This is the same function as the previous one with the only
difference that a Gaussian Noise is introduced in the fitness function, as shown in eq. (A.2.15).

17 16( ) ( ) * (1 0.2 | (0,1) |)F x F x N  (A.2.15)

F18: Rotated Hybrid Composition Function This is a multimodal, rotated, non-separable and
scalable hybrid function with a huge number of local optima in which properties of different
functions such as Ackley, Rastrigin, Sphere, Weierstrass and Griewank are mixed together. Two
flat areas are present in the function due to the Sphere function, and a local optimum is set in
the origin. This function is defined within the interval[ , ]5 5 D .
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F19: Rotated Hybrid Composition Function with Narrow Basin Global Optimum This is the
same function as the previous one, but with different weights for composing the different
constituent functions that make the global optimum become a small basin.

F20: Rotated Hybrid Composition Function with Global Optimum at the bounds This is the
same function as F18, but with the global optimum shifted to the bounds of the search space.

(a) F19 function (b) F20 function

Figure A.2.11: 3-D shaded surface plots of the hybrid composition functions F19 and F20

(a) F21 function (b) F22 function

Figure A.2.12: 3-D shaded surface plots of the hybrid composition functions F21 and F22

F21: Rotated Hybrid Composition Function This is a multimodal, rotated, non-separable and
scalable hybrid function with a huge number of local optima in which properties of functions
such as F13, F14, Rastrigin, Weierstrass and Griewank are mixed together. This function is
defined within the interval [–5, 5]D.

F22: Rotated Hybrid Composition Function with High Condition Number Matrix This is the
same function as the previous one but with higher condition numbers for linear transformation
matrices. This makes the fitness landscape rougher and more difficult to search.
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F23: Non-Continuous Rotated Hybrid Composition Function This is a non-continuous

neutralized version of the previous F21 function with the global optimum located at the bounds

of the search space.

F24: Rotated Hybrid Composition Function This is a multimodal, rotated, non-separable and

scalable hybrid function with a huge number of locally optimal points that have properties of

(a) F23 function (b) F24 function

Figure A.2.13: 3-D shaded surface plots of the hybrid composition functions F23 and F24

different functions such as Weierstrass, F13, F14, Ackley, Rastrigin, Griewank, non-continuous

versions of F14 and Rastrigin, the High Conditioned Elliptic function and the Sphere function

with noise in fitness are mixed together. It presents several flat areas due to the unimodal

functions. This function is defined within the interval [–5, 5]D.

F25: Rotated Hybrid Composition Function without Bounds This is the same function as F24

except for the open (unbounded) search range that is set for it. The population should be

initialized within the interval [2, 5]D.
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List of Publications

1. M. S. Alam, M. M. Islam, X. Yao and K. Murase, “Recurring Two-Stage Evolutionary

Programming: A novel approach for numeric optimization,” IEEE Transactions on Systems,

Man and Cybernetics, Part B: Cybernetics, vol. 41, no. 5, pp. 1352–1365, Oct. 2011.

2. M. S. Alam, M. M. Islam, X. Yao and K. Murase, “Diversity Guided Evolutionary Programming:

A novel approach for continuous optimization,” Applied Soft Computing, vol. 12, no. 6, pp.

1693–1707, Jun. 2012.

3. M. S. Alam and M. M. Islam, “Artificial bee colony algorithm with self-adaptive mutation: A

novel approach for numeric optimization,” in Proceedings of the IEEE 2011 International

Conference on Trends and Developments in Converging Technology (TENCON), Bali,

Indonesia, Nov. 21‒24, 2011, pp. 49–53.

4. M. S. Alam, M. M. Islam and K. Murase, “Artificial bee colony algorithm with improved

explorations for numerical function optimization,” in Proceedings of the 13th International
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5. M. S. Alam, M. M. Islam and K. Murase, “Artificial bee colony algorithm with adaptive
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