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Abstract

Time series forecasting (TSF) has been widely used in many application areas such as science, en-

gineering, and finance. Usually the characteristics of phenomenon generating a series are unknown

and the information available for forecasting is limited to the past values of the series. It is, there-

fore, important to use an appropriate number of past values, termed lag, for forecasting. Although

ensembles (combining several learning machines) have been widely used for classification problems,

there is only a handful work for TSF problems. Existing algorithms for TSF construct ensembles by

combining base predictors involving different training parameters or data sets . The idea of ensemble

is also employed to find the optimal parameter of predictors used for TSF. The aim of using different

parameters or data sets is to maintain diversity among the learning machines in an ensemble. It

has been known that the performance of ensembles greatly depends not only on diversity but also

on accuracy of the learning machines. However, the issue of accuracy is totally ignored in ensemble

approaches used for forecasting.

This thesis proposes a layered ensemble architecture (LEA) for TSF. Our LEA is consisted of two

layers. Each of the layers uses a neural network ensemble. However, tasks of ensembles in the two

layers are different. While the ensemble of the first layer tries to find an appropriate time window of

a given time series, it of the second layer makes prediction using the time window obtained from the

lower (first) layer. For maintaining diversity, LEA uses a different training set for each network in the

ensemble of the first and second layers. LEA has been tested extensively on the time series data sets

of NN3 competition. In terms of prediction accuracy, our experimental results have showed clearly

that LEA is better than other ensemble and nonensemble algorithms.
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Chapter 1

Introduction

A time series is a sequence of observations of the same random variable at different times, normally

at uniform intervals. Share prices, profits, imports, exports, interest rates, popularity ratings of

politicians and amount of pollutants in the environment are some examples of time series. Fig.1.1

gives an idea about a time series where the exchange rate between the British pound and the US

dollar are recorded over a specific number of weeks. Here exchange rate is the rate at which one

currency will be exchanged for another. Lagged variables, autocorrelation and non-stationarity are

the major characteristics that distinguish time series data from other types of data. The difficulties

posed by these special features make forecasting time series extremely difficult.

Figure 1.1: British pound vs US dollar exchange rate

Time series forecasting (TSF) is to predict future values based on previously observed values

1



CHAPTER 1. INTRODUCTION 2

using a model or technique. TSF has been widely used in many real-world applications such as

financial market prediction [5], weather prediction [6], electric load forecasting [7] etc. Generally the

characteristics of the phenomenon generating a time series are unknown and information available for

forecasting is limited to the past values of the series. The relations between the past and the future

values should be deduced in the form of functional relation approximations. It is thus important to

use an appropriate number of past values, termed time window or lag, for forecasting. Using a time

window of a fixed size has proven to be limiting in many applications: if the time window is too

narrow, important information may be left out while, if the window is too wide, useless inputs may

cause distracting noise. Ideally, for a given problem, the size of the time window should be adapted

to the context.

Over the last few decades, there have been immense interests for understanding the past and

predicting the future. This gives us many forecasting methods; most of them are relying on linear

and non-liner statistical models. Linear statistical models are easy to explain and implement, but

they may be inappropriate for time series originating from non-linear processes. Although nonlin-

ear statistical models [8], [9] overcome some of the limitations of the linear models, they are still

limited in a way to solve real-world problems [10]. This is because the time series data has to be

hypothesized with little knowledge of the underlying law that generates the series. Furthermore, the

formulation of a non-linear statistical model for the series is a difficult task [11]. Most of the statistical

methods involve the construction of a mathematical model that best represents the behavior of the

observed system. However, identifying a suitable model requires skilled and experienced forecasters

as real-world processes often exhibit non-linear characteristics which are difficult to model. Different

forecasters may arrive at different models even if they use the same set of observations. For example,

in ocean modeling and weather prediction, individual forecasters can be sensitive to small variations

in initial and boundary conditions [12].

Several studies try to employ machine learning techniques to avoid the aforementioned shortcom-

ings. Ensemble of multiple learning machines that brings together several learning machines to provide

a single output has received a lot of research interests in the machine learning community. Hansen and

Salamon (1990) in their seminal work show that the generalization ability of neural networks (NNs),

a machine learning technique, can be significantly improved through ensembling. Furthermore, an

ensemble alleviates the difficulty associated with the conventional design strategy of selecting a single

network and its parameters. In [13], it is explained that NN models are inherently unstable in perfor-
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mance, i.e., small changes in the training set and/or parameter selection can produce large changes

in the network architectures. Thus, the sensitivity to small perturbation in model parameters can be

exploited to generate an ensemble of forecasters, and the output from all ensemble members can be

analyzed and combined to improve the overall performance.

1.1 Our contribution

NN ensembles have been widely used for classification problems, but there is only a handful of work

for TSF problems [14], [15]. The main issue of applying ensemble approaches is the consideration

of “accuracy” and “diversity” (chapter 2) among individual networks, called base predictors, in an

ensemble. Existing ensemble approaches used for TSF try to induce diversity in the base predictors,

but they totally ignore the other important component i.e., accuracy of the predictors. Specifically,

they use the same and fixed time window for different TSF problems. As mentioned earlier, the time

window is the most critical component in forecasting, because it corresponds to the number of past

observations used to capture the underlying pattern of a time series. The use of many or small number

of past examples is not beneficial for learning and may affect the accuracy of base predictors.

Besides, a common problem with existing the time series forecasting model is the low accuracy of

long term forecasts. The estimated value of a variable may be reasonably reliable in the short term,

but for longer term forecasts, the estimate is likely to become less accurate. While reliable multi-step

ahead time series prediction has many important applications and is often the intended outcome,

most of the existing works usually considers one-step time series prediction. The main reason for this

is the increased difficulty of the multi-step ahead TSF problems and the fact that the results obtained

by simple extensions of techniques developed for one-step prediction are often disappointing.

The main contribution of this thesis is to devise a method to work well on both one-step and

multi-step prediction. To achieve this goal, we propose a layer based ensemble architecture (LEA)

for TSF. Our LEA is consisted of two layers. We use an ensemble of multi-layer perceptron (MLP)

networks for each of the layers. The salient features of LEA are as follows.

• LEA considers both accuracy and diversity in constructing layered ensemble architectures for

TSF.

• Due to use of ensemble for TSF, LEA is less sensitive to the system parameters, such as the

architecture of NNs, the initial weights of NNs and learning rate for training NNs.
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• LEA does not put any constrain on the type of networks to be used for constructing ensembles.

• LEA can be applied to a wide range of time series prediction problem.

1.2 Outline of the thesis

The reminder of this thesis is organized as follows.

In chapter 2 we briefly discuss about the basic components necessary to understand the idea

presented in this thesis. We start with the discussion of the architecture and learning algorithm

for training the NNs. Then we briefly discuss about how we can map a time series data into the

conventional data format to train the NNs. The architecture and the working principle of ensemble

of NNs are then introduced. Then we present some arguments to justify why ensemble of NNs should

be used to improve the performance. Finally, we provide a general overview of the existing state of

the art algorithms using ensemble for TSF.

Chapter 3 presents the major contribution of this thesis. Our LEA algorithm and main components

of LEA are thoroughly discussed with their specific purposes. The mechanism of inducing both

diversity and accuracy in ensemble of NNs is also presented here. A comparative discussion illustrating

how LEA is different from the existing state of the art algorithms concludes this chapter.

In chapter 4, the experimental analysis regarding the performance of LEA is presented. The

description of the dataset used in this thesis are presented at first. It is followed by the discussion of

the various performance metrics and their formulation. Since, LEA uses basic bagging algorithm, so

we provide an extensive simulation and result analysis against basic bagging algorithm. However, we

also compare the performance of LEA with boosting. In order to establish the fact that LEA provides

better result than basic ensemble algorithm we also perform statistical analysis here.

Finally, in chapter 5 we provide some future aspects of this research and conclude the thesis.

We try to provide some directions regarding how the presented LEA algorithm can be modified and

extended further.



Chapter 2

Background

Neural networks (NNs) are a class of machine learning algorithms that draw inspiration from biological

neural systems. They are generally implemented in computer software with the aim of enabling

automatic learning and subsequently autonomous problem solving.

This chapter begins with introduction to NNs followed by an explanation of the architecture and

the working principle of ensemble of NNs. To clarify the idea of ensemble further, three most popular

ensemble algorithms i.e. bagging [16], boosting [17] and random subspace [18] are presented here

along with their pros and cons. Next, we provide a brief comment to justify why ensemble of NNs

should be used to improve the performance and how NNs can be applied to time series forecasting.

Finally, we conclude this chapter by describing some state of the art ensemble approaches for TSF.

2.1 Neural networks

NNs are computational models implemented in computer systems in an attempt to replicate some

of the behavioral and adaptive features of biological neural systems. The biological nervous system

consists of assemblies of interconnected cells called neurons. Each neuron has a certain transfer

threshold that the sum of the incoming voltages (from the dendrites) need to exceed in order to

activate an outgoing electrical signal. When this occurs, we say the neuron is excited, or that it is

firing. NNs are by no means exact replicas of their biological counterparts. In the following, we are

going to discuss about how these replicas are made.

5
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2.1.1 Artificial neurons

Every NN consists of a set of units (or neurons) and a set of connections between them. Each neuron

is basically just a mathematical function φ (the transfer function) that takes as parameter the transfer

a, which is a weighted sum of all the incoming signals to the neuron. The value of φ(a) is the outgoing

signal of the neuron.

It is important to note that the transfer parameter of a given neuron is a weighted sum of all its

incoming signals:

a =
∑

wi × xi (2.1)

Figure 2.1: Artificial neuron model

In fig. 2.1 wi is the weight of the incoming connection i, and xi is the signal value that is sent by

the neuron on the other side of that connection. It’s clear that the higher the weight of the connection

is, the more influence it will have on the neuron. Here we can simulate adaptation by adjusting the

values of these weights. This is typically done using a method called backpropagation, which we will

come back to later.

The exact nature of the transfer function φ(a) can be defined in several different ways. One very

simple and somewhat common approach is to use a step function which is either 1 or 0 based on

whether the transfer a is greater than some constant threshold v, i.e. :

φ(a) =

 1, if a ≥ v

0, otherwise

While this approach works well enough in many situations, it is clear that more information could
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Figure 2.2: The symmetric sigmoid transfer function

be produced by each neuron if its transfer function was continuous instead of just binary. This is

because a binary φ means the neuron can only take on one of two states, whereas a continuous φ

can take on any number of different values. One of the most popular choices of continuous transfer

functions, which is also the one used by our proposed method, is the symmetric sigmoid function:

φ(a) = tanh(k × a) (2.3)

Here k is a scaling factor which determines how steep the curve is. The resulting value is bound

to the range 〈−1; +1〉. Fig. 2.2 shows the shape of this function with k = 1.

2.1.2 Layer architecture

Now that we understand the basic mechanism of how these artificial neurons operate individually, we

can next consider how a network of them operates. The standard way of designing NNs is to group

the neurons into N layers, including one input layer, one output layer, and one or more hidden layer.

Such a network is illustrated in fig. 2.3. Notice that in this network, a given neuron in one layer is

not necessarily connected to all the neurons in the next. This is what we call a sparse network. A

complete network is one in which any given neuron is always connected to every neuron in the next

layer.

• Input layer: This layer can be thought of as the “sensor organ” of the NN. It is where we set
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Figure 2.3: Example of an artificial neural network with layers

the parameters of the environment (i.e. the information we want the NN to make a decision

about). The neurons in this layer have no incoming connections, since their values are set from

an external source. The outgoing connections send these values to the neurons of the next layer

in the hierarchy.

• Hidden layer: In between the input and output layers, we put a series of one or more “hidden”

layers. The reason we call them hidden is that they are invisible to any external processes that

interact with the NN. The neurons in these layers have both incoming connections from the

preceding layer and outgoing connections to the succeeding layer, and work just as described

earlier in this section. The hidden layers can be thought of as the “cognitive brain” of the

network.

• Output layer: The output layer holds the end result of the computations of the NN. If the input

layer holds the parameters of a problem, the information here can be interpreted as the proposed

solution. The neurons in this layer have no outgoing connections, because their φ-values are

read directly by whatever external process is using the network.

To test the network, we simply load the problem information into the input layer neurons, and

compute φ for every neuron in each of the succeeding layers (layer by layer until we reach the output

layer). The resulting values in the output layer will depend on what training we have previously

exposed the network to.
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2.1.3 Training the NN

Our discussion of NNs so far has explained what they do (i.e. what calculations are made) when

they are given some input that is transformed into some output (as the neurons are updated through

the network from the input to the output layer). In this section we will see how we can attempt to

teach the network to solve specific problems by showing it examples of problems with given correct

solutions.

We already mentioned that by varying the weights of the connections in the network we can train

the network. This is typically done by implementing a process called “backpropagation of error”.

Qualitatively, the process can be described roughly as follows:

• Load an example problem from the training data.

• Run the network normally with the problem information.

• Calculate the error between the resulting output of the NN and the actual correct solution.

• Iterate backwards through the layers of the network, and slightly tweak the weights of all the

connections in the direction (positive or negative) that minimizes the error of the output.

This process is repeated over a set of training data. The “tweaking” of the weights is done using

a formula called the Delta rule, which is based on the principle of gradient descent.

2.2 Ensemble of neural networks

An ensemble of learning machines is using a set of learning machines (i.e. neural network discussed

in previous section) to learn partial solutions to a given problem and then integrating these solutions

in some manner to construct a final or complete solution to the original problem. Using ŷ1; . . . ; ŷm

to denote m individual learning machines, a common example of ensemble for regression problem is

shown in fig. 2.4 where wi > 0 is the weight of the estimator ŷi in the ensemble and model can be any

learning machine (i.e. neural network).

Ensemble methods have been widely used to improve the generalization performance of the single

learner. This technique originates from Hansen and Salamon’s work [19], which showed that the

generalization ability of a neural network can be significantly improved through ensembling a number

of neural networks.
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Based on the advantages of ensemble methods and increasing complexity of real-world problems,

ensemble of learning machines is one of the important problem-solving techniques. Since the last

decade, there have been much literature published on ensemble learning algorithms, from Mixtures

of Experts [20], bagging [16] to various boosting [17], random subspace [21], random forests [18] and

negative correlation learning [22], etc.

Before going into further details about ensemble we need to be familiar with two most common

terminologies used in the ensemble literature. These are:

• Diversity. Brown et al. [23] gives a good account of why diversity is necessary in neural network

ensembles and presents a taxonomy of methods that enforce it in practice. If two neural networks

make different errors on the same data points/inputs, they are said to be diverse [23].

• Accuracy. Accuracy could be defined as the degree of a network (ensemble member) performing

better than random guessing on a new input [23].

2.2.1 Creating an ensemble

Neural network ensemble, which originates from Hansen and Salamon’s work [19], is a learning

paradigm where a collection of neural networks is trained for the same task. Two interrelated ques-

tions need to be answered in designing an ensemble system: i) how will individual classifiers (base

classifiers) be generated? and ii) how will they differ from each other? The answers ultimately deter-

mine the diversity of the classifiers, and hence affect the performance of the overall system. Therefore,

any strategy for generating the ensemble members must seek to improve the ensembles diversity and

Figure 2.4: A schematic overview of how models can be combined in an ensemble
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accuracy. In general, however, ensemble algorithms do not attempt to maximize a specific diversity

and accuracy measure. Rather, increased diversity is usually sought somewhat heuristically through

various resampling procedures or selection of different training parameters. Bagging (section 2.2.2),

boosting (section 2.2.4), and random subspace method (section 2.2.5) are three most popular ensem-

ble algorithms based on the various resampling procedures of the training dataset. In the following

section, we are going to give a brief overview about these three algorithms.

2.2.2 Bagging

The bagging technique (bootstrap aggregating) [16] is based on the idea that bootstrap samples of

the original training set will present a small change with respect to the original training set, but

sufficient difference to produce diverse predictors. Each member of the ensemble is trained using

a different training set, and the predictions are combined by averaging or voting. The different

datasets are generated by sampling from the original set, choosing N items uniformly at random with

replacement. See the basic method in Algorithm 2.1.

Algorithm 2.1 Bagging

Require: Ensemble size L, training set S of size N .

1: for i = 1 to L do
2: Si ← N sampled items from S, with replacement.
3: Train predictor hi using Si.
4: end for
5: for each new pattern do
6: if outputs are continuous then
7: Average the decisions of hi, i = 1; . . . ;L.
8: else
9: if outputs are class labels then

10: Compute the majority voting of hi, i = 1; . . . ;L.
11: end if
12: end if
13: end for

The probability of any object not being selected is p = (1 − 1/N)N . For a large N , a single

bootstrap (version of the training set) is expected to contain around 63% of the original set, while

37% are not selected.

There are two interesting points of bagging method:

• Instances of an unstable predictor trained using different bootstraps can show significant differ-
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ences,

• Variance reduction.

The bias-variance decomposition is often used to handle discussions on ensemble performances.

Bias-variance decomposition analyzes how much selection of any specific training set affects perfor-

mance of ensemble. In this decomposition, it is assumed that there are infinitely many classifiers

built from different training sets. Then bias is defined as expected error of the combined classifiers

on new data (e.g. test data) whereas variance is the expected error due to the particular training set

used. So, when the classifiers has small bias (errors) but high variance, bagging helps to reduce the

variance [24]. According to Breiman [16] it works better with unstable models such as decision trees

and neural networks, and can possible not work well with simple or stable models such as k-Nearest

Neighbors.

After creating the ensemble we can use any combination method. However, according to [24]

simple linear combination using averaging or majority voting (elementary combiners, see section 2.2.6)

is optimal.

The number of bagged predictors should be selected by experimenting for each application. In

the literature it is common to use from 50 to 100 predictors, but when an applications cannot handle

this amount of processing time, this number must be better chosen. A recent study showed that with

10 predictors the error reduction is around 90%, because bagging allow a fast variance reduction as

the number of bagged predictors is increased. Curiously, despite the simplicity and many successful

applications, there are situations where bagging converges without affecting variance [23], so it seems

that this method is still not fully understood.

2.2.3 Boosting

In 1990, Schapire proved that a weak learner, an algorithm that generates classifiers that can merely

do better than random guessing, can be turned into a strong learner that generates a classifier that

can correctly classify all but an arbitrarily small fraction of the instances [17]. Formal definitions

of weak and strong learner, as defined in the PAC learning frame work, can be found in [17], where

Schapire also provides an elegant algorithm for boosting the performance of a weak learner to the level

of a strong one. Hence called boosting, the algorithm is now considered as one of the most important

developments in the recent history of machine learning.
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Similar to bagging, boosting also creates an ensemble of classifiers by resampling the data, which

are then combined by majority voting. However, similarities end there. In boosting, resampling is

strategically geared to provide the most informative training data for each consecutive classifier. In

essence, boosting creates three weak classifiers: the first classifier C1 is trained with a random sub-set

of the available training data. The training data subset for the second classifier C2 is chosen as the

most informative subset, given C1. That is, C2 is trained on a training data only half of which is

correctly classified by C1, and the other half is misclassified. The third classifier C3 is trained with

instances on which C1 and C2 disagree. The three classifiers are combined through a majority vote.

Schapire has shown that the error of this three classifier ensemble is bounded above, and it is less

than the error of the best classifier in the ensemble, provided that each classifier has an error rate

that is less than 0.5. For a two-class problem, an error rate of 0.5 is the least we can expect from a

classifier, as an error of 0.5 amounts to ran-dom guessing. Hence, a stronger classifier is generated

from three weaker classifiers. A strong classifier in the strict PAC learning sense can then be created

by recursive applications of boosting.

2.2.4 Adaboost

In 1997, Freund and Schapire introduced AdaBoost [25], which has since enjoyed a remarkable atten-

tion. AdaBoost is a more general version of the original boosting algorithm and capable of handling

multiclass and regression problems, respectively. Adaboost (adaptive boosting) [25], tries to combine

weak base predictor in order to produce an accurate “strong” predictor. There are many variations

and derived methods of boosting in the literature. It is similar to bagging since the base predictors are

built over different training sets. However it is a ensemble learning method, not a general methodology

to construct an ensemble.

The method is an iterative process that builds an ensemble of base predictors. The algorithm

trains base predictors sequentially, a new model per round. At the end of each round, the misclas-

sified patterns are weighted in order to be considered more important in the next round, so that

the subsequent models compensate error made by earlier predictors. The learning algorithm of the

predictor used in Adaboost must allow the use of a weight for each training pattern.

Algorithm 2.2 shows the procedure of boosting. Note that bagging uses uniform distribution for

Si, while Adaboost adapts a non-uniform one Wi over the elements of S. It also checks if the current

predictor has at least a performance better than random guessing, that is, the error εi < 0.5. When
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this condition is not true, another predictor is trained or the iteration is terminated. After each

iteration, the distribution Wi is updated so that the samples wrongly estimated by hi have the half of

the distribution mass. For example, if the error is 0.15, the next predictor will devote 50% of effort in

order to estimate correctly the examples from that 15% wrongly estimated samples, while the other

objects are less emphasized.

Algorithm 2.2 Adaptive Boosting

Require: Ensemble size L, training set S of size N where yi ∈ {+1,−1}, initialize uniform distribu-
tion Wi over S.

1: for i = 1 to L do
2: Train predictor hi using distribution Wi.
3: Compute εi ← PW i(hi(x) 6= y).
4: if εi ≥ 0.5 then
5: Break.
6: end if
7: αi ← 1

2 ln 1−εi
εi

8: Wi+1 ← Wi exp(−αiyihi(x))
Zi

9: where Zi is a normalization factor to ensure that Wi+1 is a valid distribution.
10: end for
11: for each new pattern x do
12: H(x)← sign(

∑L
i=1 αihi(x))

13: end for

2.2.5 Random Subspace Method

The Random Subspace Method (RSM) [18] randomly selects an arbitrary number of subspace from

the original feature space, and build a predictor on each subspace. This randomization should cre-

ate predictors that are complementary. The combination can be carried out by simple fixed rules.

Experimental evidences showed that RSM works well with feature spaces with large feature sets and

redundant features. It avoids the curse of dimensionality.

The algorithm projects each feature vector into a less dimensional subspace, by selecting m random

components. Algorithm 2.3 shows the procedure.

RSM is similar to bagging but instead of sampling objects, it performs a kind of feature sampling

without replacement since it would be useless to include one feature more than once. Note that the

number of features that is used to train each predictor, di can be different from one predictor to

another, although it is often set to be uniform.

This method seems to work well for large feature sets with redundant features. It was also observed
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that it avoids the curse of dimensionality [26]. The key issue is how to define the dimensionality of

the subspaces (variable d). For this there is no clear guideline, for each application experiments have

to be carried out to understand the effect of d on the performance.

Algorithm 2.3 Random Subspace Method

Require: Ensemble size L, feature set S of size N , where the number of features is D; choose di to
be the number of features to train each individual predictor, where di < D, for i = 1; . . . ;L.

1: for i = 1 to L do
2: Si ← d randomly chosen features out of D, without replacement.
3: Train predictor hi using Si.
4: end for
5: for each new pattern do
6: if outputs are continuous then
7: Average the decisions of hi, i = 1; . . . ;L.
8: else
9: if outputs are class labels then

10: Compute the majority voting of hi, i = 1; . . . ;L.
11: end if
12: end if
13: end for

2.2.6 Combining the members of ensemble

Another key component of any ensemble system is the strategy employed in combining classifiers

or predictors. Combination methods try to find out an optimal way to combine the output of the

predictors in the ensemble so that the ensemble exhibits lower error on the test set than any member

in the ensemble.

Several reasons of combining the predictors are summarized by Timmerman [27]. First argument is

due to diversification. One model is often suited to one kind of data. Thus, the higher degree of overlap

in the information set, the less useful a combination of forecasts is likely to be. In addition, individual

forecasts may be very differently affected by structural breaks in time series. Another related reason

is that individual forecasting models may be subject to misspecification bias of unknown form. Lastly,

the argument for combination of forecasts is that the underlying forecasts may be based on different

loss functions. A forecast model with a more symmetric loss function could find a combination of the

two forecasts better than the individual ones.

The forecast combination problem generally seeks an aggregator that reduces the information in

a potentially high-dimensional vector of forecasts to a lower dimensional summary measure. Poncela
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et al. [28] denotes that one point forecast combination is to produce a single combined 1-step-ahead

forecast Ŷt at time t, with information up to time t, from the N initial forecasts; that is

Ŷt = wt × Yt+1|t (2.4)

where wt is the weighting vector of size N for the combined forecast, Yt+1|t is N dimensional vector

of forecasts at time t. A constant could also be added to the previous combining scheme to correct

for a possible bias in the combined forecast. The main aim is to reduce the dimension of the problem

from N forecasts to just a single one, Ŷt.

After creating an ensemble, there are numerous methods for combining predictors. The final

decision can be obtained by two principal approaches:

• Integration (or fusion): all predictors contribute to the final decision, assuming competitive

predictors.

• Selection: one predictor is used to give the final decision. It assumes that predictors are

complementary.

Integration of members

Various integration methods may be applied in practice. In this thesis, we will compare methods

based on the averaging, both simple and weighted on predictors performance. Some widely used

averaging techniques are briefly described below:

• Simple average: In the simple averaging schema, the final forecast is defined as the average

of the results produced by all different predictors. The simplest one is the ordinary mean of the

partial results. The final prediction Ŷt from N predictors is defined by:

Ŷt = 1/N

N∑
i=1

Ŷti (2.5)

where Ŷti is the prediction made by the individual predictor. This process of averaging may

reduce the final error of forecasting if all predictive networks are of comparable accuracy. Oth-

erwise, weighted averaging shall be used.
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• Weighted average: The accuracy of weighted averaging method can be measured on the basis

of particular predictor performance on the data from the past. The most reliable predictor

should be considered with the highest weight, and the least accurate one with the least weight.

The estimated prediction is calculated as

Ŷt = 1/N
N∑
i=1

wi × Ŷti (2.6)

where Ŷti is the prediction made by the individual predictor and wi is weight associated with

each predictor. One way to determine the values of the weights (i = 1, 2, . . . , N) is to solve

the set of linear equations corresponding to the learning data, for example, by using ordinary

least squares. Another way is using relative performance(i.e. mean scaled error(MSE)) of each

predictor [27], where the weight is specified by:

wi =
1/MSEi∑N
i=1 1/MSEi

(2.7)

In this weighted average, the high performance predictor will be given larger weight and vice

versa.

• In the trimmed average, individual forecasts are combined by a simple arithmetic mean,

excluding the worst performing k% of the models. A trimming of 10% to 30% is usually recom-

mended [29], [30].

• In the median-based combining, the combination function is the median of the individual

forecasts. Median is sometimes preferred over simple average as it is less sensitive to extreme

values [31], [32].

• In the variance-based method, the optimal weights are determined through the minimization

of the total sum of squared error (SSE ) [30], [33].

Selection of members

Franses [34] states that the prediction methods that need to be combined are those which contribute

significantly to the increased accuracy of prediction. The selection of prediction models in the ensemble

is usually done by calculating the performance of each model toward the hold-out sample. Andrawis
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et al. [35] use 9 best models out of 140 models to combine. Previously, Armstrong [36] states that only

five or six best models are needed to get better prediction result. Authors in [37] also suggests that

selecting few best models are crucial for improving the forecasting result. Some selection mechanisms

are described here in brief.

• Winner takes all: In this schema, the final output of an ensemble system is the output of

a member of that ensemble which makes the lowest error on the hold-out sample. For error

measure any performance metric can be used (i.e. MSE, sMAPE ).

• Diversity based selection: A set of diverse member of an ensemble is selected to give the

final output of the ensemble based on some diversity measuring mechanisms. The author in [38]

selects the most diverse members (vary the number of diverse member from 5 to 20) from a

random forest ensemble and bagged ensemble for regression problem.

• Kuncheva presents an hybrid approach between the selection of best predictor and the combi-

nation of the predictors [39]. It uses paired t-hypothesis test to verify if there is one predictor

meaningfully better than the others. If positive, it uses the best predictor, if not it uses a

combination approach.

2.3 Reasons for better performance of ensemble

Theorems have shown that there is not a single predictor that can be considered optimal for all

problems [40]. There is no clear guideline to choose a set of learning methods and it is rare when one

has a complete knowledge about data distribution and also about the details of how the prediction

algorithm behaves. Therefore, in practical pattern prediction tasks it is difficult to find a good single

predictor.

The choice of a single predictor trained with a limited (size or quality) dataset can make the design

even more difficult. In this case, selecting the best current predictor can led to the choice of the worst

predictor for future data. Especially when the data used to learn was not sufficiently representative in

order to estimate properly new objects, the test set provides just apparent errors Ê that differ from

true errors E, in a generalization error: Ê = E + δ. This common situation, where small and not

representative data is used as an input to a predictor, can led to difficulties when one must choose

from a set of possible methods.
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According to Dietterich [41], there are three main motivations to combine predictors, the worst

case, the best case and the computational motivation:

• Statistical (or worst case) motivation: It is possible to avoid the worst predictor by aver-

aging several predictors. It was confirmed theoretically by Fumera and Roli in [24]. This simple

combination was demonstrated to be efficient in many applications. There is no guarantee,

however, the combination will perform better than the best predictor.

• Representational (or best case) motivation: Under particular situations, fusion of multiple

predictors can improve the performance of the best individual predictor. It happens when the

optimal predictor for a problem is outside of the considered “predictor space”. There are many

experimental evidences that it is possible if the predictors in an ensemble makes different errors.

This assumption has a theoretical support in some cases when linear combination is performed.

• Computational motivation: Some algorithms performs an optimization task in order to learn

and suffer from local minima. Algorithms such as the backpropagation for neural networks are

initialized randomly in order to avoid locally optimum solutions. In this case it is a difficult task

to find the best predictor, and it is often used several (hundreds or even thousands) initializations

in order to find a presumable optimal predictor. Combination of such predictors showed to

stabilize and improve the best single predictor result [42].

2.4 Time series using NN

The problem of forecasting time series with NN is considered as obtaining the relationship from the

value at period “t” (in this system, the resulting NN will have only one output neuron) and the values

from previous elements of the time series (Yt−1, Yt−2, . . . , Yt−k) to obtain a function as it is shown in

Eq. 2.8.

Yt = f(Yt−1, Yt−2, . . . , Yt−k) (2.8)

To obtain a NN for making a single step forecast, one have to go through the following steps:

• Normalization of data: An initial step has to be done with the original values of the time

series, i.e. normalizing the data. The original values of the time series are normalized into the
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range [-1,1]. Once the NN gives the resulting values, the inverse process is carried out, rescaling

them back to the original scale.

• Number of node in input layer: Defining the number of node in input layer is the most

important things because it corresponds to the number of past lagged observation which will

affect the future point. So basically the number of input nodes for TSF problem is equal to the

lag of the time series.

• Number of node in hidden layer: The number of hidden nodes, empowers neural networks

with the nonlinear modeling capability. It has been shown that the in-sample forecasting and

the out-of-sample forecasting ability of neural networks are not very sensitive to the number of

hidden nodes [43]. Therefore, for the sake of simplicity, number of hidden nodes is kept same

as the number of input nodes.

• Number of node in output layer: For single-step ahead forecast, the number of node in

the output layer is always will be one. But for multi-step ahead forecast, depending upon the

method of forecasting, the number of node in this layer may vary.

• Training set generation: To obtain a training set, the time series will be transformed into a

pattern set depending on the k input nodes of a particular NN, and each pattern will consist of

the following:

– k inputs values that correspond to k previous values of period t : Yt−1, Yt−2, , Yt−k.

– One output value: Yt (the desired target).

This patterns set will be used to train and validate each NN of the ensemble. Therefore, patterns

set will be split into two subsets, training and validation. The complete patterns set is ordered

into the same way the time series is. The first x% (where x is a parameter) from the total

patterns set will generate the train patterns subset, and the validation subset will be obtained

from the rest of the total patterns set. The test subset will be the future (and unknown) time

series values that the user wants to forecast. An example of this process using an NN with 3

input nodes (k = 3) can be seen at fig. 2.5.

• Activation functions: Regarding to the transfer function, transformation of time series data

is needed. Depending upon which data normalization scheme we use, there are several transfer
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Figure 2.5: Process to generate training set from time series data

function. Like sigmoid transfer function works on the range [0,1] whereas hyperbolic tangent

function uses the range [-1,1]. For the hidden layer, the transfer function always should be either

sigmoid logistic or hyperbolic tangent [44]. But for output layer normally linear transformation

function is used [44].

• Learning algorithm: There are several types of training algorithms in the literature used for

learning of feed forward artificial neural networks. One of the widely used training algorithm for

TSF is Levenberg-Marquardt (LM) [44]. However, back propagation or other gradient descent

based learning algorithms can also be used.

2.5 Related work

Very few works have been conducted to deal with the time series forecasting problem using ensemble.

Most of these works fall into one of the four different categories: TSF using bagging ensemble ap-

proaches, TSF using boosting ensemble approaches, TSF using hybrid ensemble approaches and TSF

using miscellaneous ensemble. Here, we provide a brief overview of all these types of approaches.
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2.6 Existing state of the art ensemble algorithms for TSF

For classification problems there exists many ensembles algorithms in the literature. However, the use

of ensembles for TSF problems is very few. The main issue of applying ensemble approaches for TSF

(or classification) is the consideration of accuracy and diversity among base predictors (or predictors)

in an ensemble. Combining several predictors to improve the forecasting accuracy has been extensively

studied in the traditional forecasting literature. Clemen [45] provides a comprehensive review and

annotated bibliography in this area. The aim of this section is to describe computational intelligence

based ensemble approaches used for TSF problems.

There are two different ways in inducing diversity: one is varying the parameters involved with

the base predictors and one is varying data sets used for constructing/training the base predictors.

Boosting [17] and bagging [16] are popular methods for creating data sets with some degree of varia-

tions among them. Random subspace method [18] is also like bagging but the variation is applied on

the feature set instead of dataset.

2.6.1 TSF using Boosting ensemble

Boosting is used in [46] where feed-forward neural networks are employed as base predictors for

forecasting. The algorithm is based on a fundamental observation that often the mean squared error

of a predictor is significantly greater than the squared median of the error due to a small number of

large errors. Boosting is also coupled with recurrent neural networks in several studies. The authors

in [47] first create an ensemble by randomizing the initial weights of a pool of Elman networks, a kind

of recurrent networks and then use the modified AdaBoost [48] by directly weighting the cost function

of the networks. Assaad et al. [49] introduce a new parameter in boosting for creating an ensemble

of recurrent networks. The new parameter tunes the boosting influence on available examples.

Instead of using neural networks as base predictors, other machine learning techniques can also

be used. Genetic programming (GP) [50]) is one such technique. Paris et al. [51] propose GPBoost

that uses boosting algorithm with GP as a base predictor. A very similar idea is used in [52], where

the correlation coefficients are used to update the weights and the final hypothesis instead of the loss

function commonly used by boosting. The correlation coefficient measures the relation between the

real and the predicted values of a given time series data.

Boosting algorithm is used in [46] for the prediction of a benchmark time series, but with MLPs
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as models.

2.6.2 TSF using Bagging ensemble

Like boosting, the application of bagging is also found in the forecasting literature. The authors in [53]

use bagging with neural networks for binary prediction of financial time series. Inoue and Kilian (2005)

explore the usefulness of bagging in forecasting economic time-series from the perspective of linear

multiple regression models. It has been observed that bagging tends to produce large reductions in

the out-of-sample error and provides a useful forecasting tool. Bagging with competitive associative

networks (CANs) is applied to time series data of NN3 competition [54]. To remove seasonality, time

series data are first preprocessed by employing first-order difference and then bagging is applied to

create different training sets for different CANs in an ensemble.

2.6.3 TSF using Random Subspace

The authors in [14] employ 500 classification and regression (CART) as base predictor to constitute

the ensemble. This paper presents an ensemble algorithm for time series forecasting that combines

the bootstrap sampling and random subspace. To train each base CART 63.2% of data is randomly

selected; within the selected data 70% of feature is randomly selected. To generate training data

from time series the authors employ lag number as a training parameter. A simple model selection

based on minimizing the in sample Symmetric Mean Absolute Error (sMAPE ) Eq. (3.1) is employed

to select the lag parameter. Finally, the model that minimizes the sMAPE is selected to make the

final forecast. The proposed ensemble method participated in the NN3 competition [1] and secured

the third position among the computational intelligence methods.

2.6.4 TSF using different base predictors ensemble

All the ensemble approaches discussed so far combine base predictors taken from one single class.

However, it is possible to construct ensembles by combining base predictors taken from several classes.

Wichard and Maciej [55] combine predictors taken from linear and polynomial models, k-nearest

neighbor model, neural networks and perceptron radial basis network. Unlike [55], the authors in [40]

use radial basis function networks, k-nearest neighbors and self organizing maps for constructing

ensembles. Ten different predictors for each of the three classes are first generated by varying the
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number of hidden layers for neural networks, the number of neighbors for k-nearest neighbors or the

map size of self-organizing maps. Three best predictors one from each class are then combined to

generate the ensemble output.

2.6.5 TSF using other ensemble approach

Apart from the above discussed methods, there exists several other ensemble method for TSF. For

example, the single layer nonlinear neural network ensemble model proposed in [56] used principle

component analysis to determine the ensemble members. Here [56] a triple-phase nonlinear neural

network ensemble model is proposed for financial time series forecasting. First of all, many individual

neural predictors are generated. Then an appropriate number of neural predictors are selected from the

considerable number of candidate predictors. Finally, selected neural predictors are combined into an

aggregated neural predictor in a nonlinear way. In 2007, Bo Qian and Khaled Rasheed [57] examined

Dow Jones Industrial Index using voting and stacking ensemble methods of back propagation neural

networks, k-nearest neighbor and decision trees.

Brown et al. [23] paper investigates the performance of two different types of neural network

ensembles. One type varies the initial weights for the individual networks an ensemble, while the other

type varies the architecture of the individual networks. The parameter of recurrent neural networks

is varied in constructing ensembles using such networks. For example, in [58], an ensemble approach

using “echo state” neural networks, a special case of recurrent neural networks, with different memory

length is proposed. A special gating echo state neural network is used to combine the networks.

Recently, a multi-level ensemble architecture consisting of m neural networks is proposed in [59].

Each network has a different randomly selected architecture with respect to hidden layers. In the first

level, there are k groups of networks having on average m/k networks in each group. Each group of

networks is trained on a different subset of data obtained by randomly permutating, partitioning and

injecting noise to the original data. The best networks from each of the k groups are combined in the

second level to form the ensemble output. In [2], ensemble is first used to simultaneously determine

the optimal spreads of radial basis function networks and the optimal lag of a given time series. These

optimal values are then used to train the networks for forming an ensemble. In both level, only three

radial basis function networks are used and the same data set is used for training all networks in the

ensemble.

In [2], an ensemble architecture consisting of three radial basis function (RBF) networks is proposed
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and applied to the time series data of NN3 competition. The author in [2] suggests to use the spread

factor set of RBF networks as the 50th, 75th, and 95th percentiles of the nearest distances of all

training samples to the rest of the points. It is, however, not known whether this suggestion is

effective for other time series data. To find an appropriate lag of a given time series, the ensemble

architecture is trained lmax times using the suggested spread factor set. Here lmax represents the

maximum lag of the series. Finally, using the obtained lag and the suggested spread factor set, the

ensemble architecture is trained one time for forecasting.

The lag parameter is generally used in generating a data set for a given time series. In addition to

this, the authors in [60] use this parameter for partitioning the data set and propose two schemes. In

the first scheme, the data set is systematically partitioned into k subsets of approximately the same

size when the lag is k. The same approach is also used in [14]. Unlike the first scheme, the second

scheme partitions the data set into k mutually exclusive subsets. The subsets of data produced by

these schemes are then used to construct an ensembles consisting of k MLPs.

2.7 Problems of the existing method

A good ensemble is produced when its individual members are both accurate and diverse i.e., the

members have low error rates and their errors are uncorrelated [23], [61], [62]. A careful scrutiny

of the existing work reveals that all other works but [2] emphasize only on the diversity of the base

predictors. Diversity in those works is encouraged by varying the data sets used for training the

predictors (e.g. [14], [46], [49], [59]), varying the parameters involved with the predictors (e.g. [23],

[58]) and varying the type of base predictors (e.g. [40], [55]). Not only that except [2] all other works

do not consider accuracy and diversity in combining predictors for constructing ensembles. Although

the method proposed in [2] ensures accuracy of the predictors by using an appropriate lag, the base

predictors will be less diverse as they differ only by the spread factor. It has been known that training

predictors using different data is more effective for maintaining diversity [63], [64]. Furthermore, the

way [2] finds the appropriate lag is computationally expensive. This is because an ensemble has to

sequentially train lmax times for finding the appropriate lag. So we are motivated to develop a layered

based ensemble architecture for time series forecast that will capture not only the methods of accuracy

for ensemble generation of traditional methods using lag parameter but also incorporate the powerful

diversity mechanism of bagging.
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Proposed Method

Motivated by the problems stated in previous chapter, we have devised a novel layer based ensemble

architecture LEA for TSF. In this chapter, we describe the details of LEA algorithm. The objective

of LEA is twofold, to improve the accuracy and diversity of the base predictors, and to improve

forecasting accuracy. LEA technique employs a layer-wise mechanism by which important lag or time

window for a time series is identified first in layer one. Then using this lag information, design an

ensemble where the base predictors have higher accuracy and diversity. Finally, LEA uses a powerful

combination algorithm to provide a final forecast.

3.1 Layered Ensemble Architecture

In order to reduce the detrimental effect of using a pre-defined lag and to devise an efficient forecasting

scheme, a layered ensemble approach, LEA, is adopted in this work. Ensembles’ requirement for

maintaining diversity and accuracy among the base predictors matches well with the emphasis on using

a layered architecture. In its current implementation, LEA uses MLP networks as base predictors.

The major steps of LEA can be described by fig. 3.1, which are explained further as follows.

1. Preprocess data of a given time series for handling seasonality, noise and missing attribute

values.

2. Hold out k data points (observations) for testing LEA and use the remaining observations for

constructing the forecasting model.

26
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Data Preprocessing
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Figure 3.1: Major steps of our algorithm

3. Ensemble Layer 1

(a) Generate an ensemble consisting of N MLP networks. Here N is a user-defined parameter

and greater than lmax, the maximum lag of the series. For example, lmax can be 12 for a

monthly time series.

(b) Assign a random lag, li, to the network i of the ensemble. This is done by generating a

number uniformly at random within 1 and lmax.

(c) Define the architecture of each network in the ensemble. The network has an input layer,

a hidden layer and an output layer. The number of nodes in the input and hidden layers

equals to the lag assigned to the network, while the number of nodes in the output layer is

one.

(d) Create N training sets, one for each network, using the lags assigned to all N networks in

the ensemble.

(e) Train each network in the ensemble on the training set generated for it using the Levenberg-
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Marquardt (LM) algorithm.

(f) Evaluate each network in the ensemble on a validation set containing n data points. The

symmetric mean absolute percent error (sMAPE ) is used for evaluation. According to [1],

it can be expressed as

sMAPE =
1

n

n∑
i=1

|Yi − Ŷi|
(Yi + Ŷi)/2

× 100 (3.1)

where Yi and Ŷi are the true and predicted values for the i-th time point, respectively.

The above equation provides a value between 0% and 200%. The smaller the sMAPE is,

the better the prediction accuracy is. We use sMAPE because it is used in many previous

forecasting competitions (e.g. NN3 [1], NN5 [4]) and previous studies (e.g. [65], [66]).

However, any other performance measure can be used for evaluating the networks.

(g) Find the ensemble output by applying the winner-take-all method on the sMAPE s of all

the N networks. Since the aim of the first layer is to find appropriate lag, the output of

the ensemble is a lag that provides the lowest sMAPE on the validation set.

4. Ensemble Layer 2

(a) Generate an ensemble consisting of N MLP networks.

(b) Assign the same lag, which is obtained by the first layer, to each network in the ensemble.

(c) Define the architectures of networks in the same way as described in the step 3c. Since the

lag assigned to each network is same, the architectures of all N networks in this layer will

be same.

(d) Create a training set, Dtr, using the lag.

(e) Train each network, j, in the ensemble on a training subset Dj
tr using the LM algorithm.

Training subsets are created from Dtr by re-sampling its k% data so that that there is

some differences among the subsets. Bagging [16] or boosting [17] can be used for creating

such sets.

(f) Use the model selection and combination algorithm 3.1 to obtain output of the ensemble.

The ensemble output here indicates the final forecast.
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The above layered ensemble architecture appears to be straight forward, but its essence is the

techniques incorporated for maintaining accuracy and diversity among the base predictors of the

ensembles. Our LEA also has some other components. Details of them are given in the following

sections.

3.1.1 Data preprocessing

Noise removal

In many TSF problems (e.g. time series of NN3 [1]), data points in the time series are heavily

influenced by noise. A data point is considered as noise if its value is very much different from other

values of the series. Failure to take specific measures against noise may lead to a bad forecasting

performance.

There are several ways by which one can remove noise from time series data. For example, a large

second order difference value is used as an indication of noise in [67]. In this paper, we use a noise

detection mechanism proposed in [2], where a data point is identified as a noise whose absolute value

is four times greater than the absolute medians of the three consecutive points before and after that

point. That is, Yi is a noise if its value satisfies the following condition: Yi ≥ 4 ×max{|ma|, |mb|},

where ma = median(Yi−3, Yi−2, Yi−1) and mb = median(Yi+3, Yi+2, Yi+1). When a data point is

identified as a noise, its value is simply replaced by the average value of the two points that are

immediately before and after it.

Treatment of missing value

Depending upon the nature of time series, it might be necessary to perform further data preprocessing.

Treatment of missing value is one of those. Specifically, the time series of NN5 [4] competition requires

a preprocessing step called gaps removal. There are basically two types of anomalies in the NN5 time

series data. One is zero value that indicates no money withdrawal occurred on that particular time

point and another is missing observations for which no value is recorded. Gaps removal strategies

try to identify those anomalies and remove them. In this work, we adopt the gap removal method

proposed in [68]: if Yi is the gap sample, this method replaces the gap with the median of the set

[Yi−365, Yi+365, Yi−7 and Yi+7] among which are available.
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Deseasonalization

Treatment of seasonality is one of the major issues in TSF literature, because many time series (e.g.

time series of NN3 [1] and NN5 [4]) contain some seasonality. There are basically two methods, namely,

direct and deseasonalized, for handling seasonality [35]. In the direct method, the base predictors are

trained directly on the raw data, whereas in the latter method, seasonal adjustments are made on the

raw data before the predictors are trained on.

For the seasonal series of NN3, we adopt a simple deseasonalization procedure suggested in [69].

To obtain a deseasonalized series it simply subtracts the seasonal average from the series. Since the

time series of NN5 possess a variety of periodic patterns, the deseasonalization methodology discussed

in [35] is adopted here to remove the strong day of the week seasonality as well as the moderate day of

the month seasonality. To make final forecast, we restore back the seasonality to provide the output

of the forecasting model.

3.1.2 Training set generation

A training set in the form {Xi;Yi}i = 1 to N is necessary for obtaining optimal or near optimal weights

of an MLP network using the LM algorithm. Here Xi represents inputs to the network and may have

several components i.e., Xi = x11, x12, . . . , x1d. For the sake of simplicity and without loss of generality,

we assume that the output Yi has one component. To generate the training set for a TSF problem, we

need some extra effort because only data points of a given time series are available. The parameter

needed in such generation is the lag, which determines how many previous data points will influence

the next point.

An appropriate lag of a time series is not known in advance. As mentioned before, the aim of our

ensemble layer 1 is to find the appropriate lag. Lacking of knowledge about such a lag enforces LEA

to vary the lag from 1 to lmax. And LEA generates a different training set using each of different

lags. Let the lag equals to 5 and the data points d1, d2, . . . , dk are used for generating the training

set. The generation process takes the lag as a window and shifts it in generating the training set.

That is, X1 = d1 . . . d5 and Y1 = d6, X2 = d2 . . . d6 and Y2 = d7 and this process continues until the

Yi reaches at the end of the series i.e., dk. It is now clear that it is possible to get a different training

set by using a different lag.

In the ensemble layer 2, the training sets for base predictors are generated in two steps. At the
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first step, using the lag obtained from the ensemble layer 1 and the data points d1, d2, . . . , dk, LEA

generates the training set, Dtr. In the second step, bootstrapped sampling is applied on Dtr for

generating N training sets, one for each base predictor in the ensemble layer 2.

3.1.3 Base predictors

Since the nature of typical time series output variables is continuous, individual base predictor models

should be chosen in such a way so that it includes universal and flexible regression models capable

of handling multiple inputs and multiple outputs. Neural networks are considered to be a universal

nonlinear regression model. It has the ability to control its complexity and diversity by varying

network architectures and initialization conditions, or cross-training. Given all these advantages, we

decided to choose a simple Feedforward Multilayer Perceptron (MLP) as a base predictor model that

would be used to test the presented architecture against standard predictors and combiners. The

chosen NN is trained using an efficient modified BP (MBP) with adaptive learning rates that scales

linearly with the number of parameters to be optimized.

The factors related to neural network model architecture include the number of input variables,

the number of hidden layers and hidden nodes, the number of output nodes, the activation functions

for hidden and output nodes, and the training algorithm and process. Because a single hidden-layer

network has been shown both theoretically and empirically capable of modeling any type of functional

relationship, it is used in our experimental study. The activation functions used for all hidden nodes

are the logistic function while the identity function is employed in the output layer.

The number of input nodes is perhaps the most critical parameter since it corresponds to the

number of past lagged observations used to capture the underlying pattern of the time series. Since

there is no theoretical result suggesting the best number of lags for a nonlinear forecasting problem,

we will experimentally vary this parameter from 1 to 12 in ensemble layer 1. Another important

factor is the number of hidden nodes, which empowers neural networks with the nonlinear modeling

capability. It has been shown that the in-sample forecasting and the out-of-sample forecasting ability

of neural networks are not very sensitive to the number of hidden nodes [43]. Therefore, for the sake

of simplicity, number of hidden nodes is kept same as the number of input nodes in the ensemble

layer 1. Since we are varying the lag number, so in the ensemble layer 1 we are obtaining a set of

base predictors with different architecture (i.e. different number of input nodes and hidden nodes).

In the ensemble layer 2, we are using a fixed lag number obtained from ensemble layer 1, so the
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architecture of base predictors in this layer is same except some variation in the initial weight of the

base predictors.

3.1.4 Model selection for ensemble

There are two important goals of a good ensemble. One is improving the accuracy of the weak

predictors so that the combined system is a strong one and another is combination of well-trained

complementary base predictors. Individual base predictors are said to be complimentary if they could

offset each other’s deficiencies to solve a particular problem. Since achieving the aforementioned two

goals is a difficult task and also the number of individual base predictors in an ensemble system is

not known in advance, the generation of the member of an ensemble system is usually divided into

two phases [70]. A set of individual base predictors are first generated and then using a selection

mechanism several accurate and diverse base predictors are chosen for combination [61], [71]. Usually

for regression problems, variance is used to measure the diversity [72] and simple averaging or weighted

averaging is the most common method for combination [73].

Since LEA has two different layers of ensembles, it is necessary to use a proper selection and

combination method so that the objective of each layer can be achieved. In the ensemble layer 1,

we evaluate each network by sMAPE over the validation set and the output of the ensemble i.e., the

optimal lag is obtained using the winner-take-all method. Other combining strategies like averaging

or weighted averaging is not suitable for this layer, because the lag should be an integer number

and averaging or weighted averaging might gives a fractional number, which is unacceptable for the

generation of training data. We might truncate the fractional part, but it may introduce error. Besides,

each MLP in ensemble layer 1 comes up with a sMAPE over the validation set for the specific lag

assigned to it. The optimal lag is the one for which a MLP comes up with a lowest sMAPE. Hence,

averaging or weighted averaging does not make any sense because it will simply make an average

or weighted average over the randomly generated lag. Note that we randomly assign a lag to each

network of the ensemble layer 1.

To provide a better forecast, we improvise a model selection and combination method for the

ensemble layer 2, which is based on clustering over the variance of MLP networks. The calculation

of variance is quite straight forward. For each MLP, we first vary its training set by adding random

noise and calculate how much error it makes. Then we calculate the variance based on the errors. To

ensure accuracy and diversity of the selected networks, we cluster all the generated networks using
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their variance. The networks in the same cluster indicate that they are much more alike, while they in

different clusters indicate diversity among them. Finally, we select the best network based on sMAPE

from each cluster and combine all the selected networks by weighted average. The weight of a network

is inversely proportional to its corresponding sMAPE over the validation set. The pseudo code of the

whole process is given in Algorithm 3.1.

Algorithm 3.1 Model selection and combination algorithm in ensemble layer 2

Require: Ensemble size N , cluster size c.

1: for i = 1 to N do
2: calculate the variance of each MLPs Ni.
3: end for
4: Cluster the N MLPs into c classes (c < N) by their variance value.
5: Select one MLP from each cluster which has lowest sMAPE over validation set in that cluster.
6: For each selected MLP calculate combination weight using their sMAPE.
7: For each selected MLP perform out-of-sample prediction.
8: Provide the final out-of-sample forecast using weighted average.

3.1.5 Accuracy and Diversity

The idea of combining multiple predictors is based on the observation that achieving optimal per-

formance in combination is not necessarily consistent with obtaining the best performance for an

individual (base) predictor. The idea is that it may be easier to optimize the design of a combina-

tion of relatively simple predictors than to optimize the design of a single complex predictor. So, an

ensemble are often more accurate than any of its individual members and a necessary and sufficient

condition for this is that individual member of the ensemble be accurate and diverse. Accuracy of

a predictor means how accurately a base predictor predicts value (i.e. within a threshold error rate)

whereas two individual predictors are diverse when their out of sample errors are uncorrelated (the

errors are independent random variables).

Although it is known that diversity among base predictors is a necessary condition for improve-

ment in ensemble performance, there is no general guideline about how to ensure diversity among

the base predictors. In our algorithm LEA, ensuring accuracy and diversity among the member of

the ensemble is very crucial since we are generating ensemble in two completely different layer and

ensemble generation in the layer 2 is completely dependent upon the result of ensemble in layer 1.

According to TSF literature, accuracy of the base predictor largely depends upon the time window

or lag parameter of time series. Since for a particular time series, we do not have any knowledge of
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optimal lag, the motivation of ensemble layer 1 is to discover the optimal lag through a set of diverse

base predictors. In this layer, we generate a set of diverse base predictors by varying architecture of

base predictors and different training set. Training set are generated using different time window or

lag parameter (i.e. 1 to 12). Since the number of input nodes and hidden nodes in the input and

hidden layer is equal to the lag parameter, so architecture of the base predictors also get varied. To

ensure that each of the time window or input lag from 1 to 12 are covered by the ensemble, we set

the number of neural network N which is greater than lmax. By using this setting, we can expect at

least one of the base predictor will come up with lowest error on the validation set, thus ensuring the

accuracy. Since each neural network is trained using a randomly selected training set the mentioned

strategy fulfils two of the important aspect of ensemble design. We are getting more than one expert

in certain region of our search space which implies accuracy and at the same time getting diverse

expert on different area of the search space which implies diversity.

Using the best lag from ensemble layer 1, we have to build up the ensemble in the layer 2, in more

sensible and constructive way. A careful scrutiny in the design of ensemble layer 1, reveals that we

are obtaining the best lag for a particular base predictor (a fixed number of input nodes and hidden

nodes equal to best time window). To answer the question of ensuring accuracy, it will be sensible to

replicate the same architecture using optimal lag in all the members of ensemble layer 2. As a result,

the architecture of the all base predictors in this layer is same with only slight variation in the initial

weight. Diversity in this layer is obtained using random data sampling. For this purpose, training

set Dtr is generated using best lag. Then bootstrapped sampling is applied on Dtr to obtain several

training subset Dj
tr where j = 1, 2, . . . , N . These training subsets Dj

tr are used to train the neural

networks of ensemble layer 2.

Our data partitioning schemes serves a most important aspect of time series prediction problem:

maintains the correlation between the value at Yt and the values from the previous elements of the

time series Yt−lag, . . . , Yt−2, Yt−1. Like classification problem, we cannot use the randomly partitioned

data to train the neural network for TSF. However, we will find that most of the literature like the

authors in [59] employed this näıve strategy to enforce diversity. And this is the single most reason for

the failure of accurate prediction for many state of the art algorithms in the literature of ensemble. We

are applying our proposed data partitioning scheme on Dtr that is already generated considering the

correlation (i. e., best time window or lag parameter) which eventually reduces harmful correlation

effect among predictions.
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3.2 Difference with existing work

In this section, we try to investigate the novelty of our LEA by comparing it with very recent state-

of-the art ensemble based algorithm for TSF [2]. We establish here the difference from the following

perspectives.

• Diversification among the member of ensemble: In [2] the author proposes an ensemble

of radial basis function (RBF) network for TSF. The ensemble constitutes of three RBFs. All

three members of the ensemble in both first and second layer receive the same data. In the first

layer, members of the ensemble use the all possible input lag [1, 2, . . . , 12] and in second layer

those member use the best lag as an input.

However, in LEA different members of ensemble use the different lag as an input, which implies

different data. In ensemble layer 2, all member of the ensemble use the best input lag for

generating the training set Dtr and a random re-sampling is applied on Dtr to obtain Dj
tr to

train each member j where j = 1, 2, . . . , N .

Since, in [2] all the members of the ensemble in layer 1, are trained on each possible lag

[1, 2, . . . , 12], this method is not developing expert on different area of the solution space rather

making all the member as equal expert. This is not the property of ensemble where most of

the member is actually a weak learner. But in LEA, different members of the ensemble in layer

1, get trained on different lagged training set so we are getting experts from different solution

space.

Similarly, in ensemble layer 2, [2] is doing exactly the same thing as he has done in the layer 1,

except this time using the best lag. There is no data variation here also. The author is using

the structure like an ensemble but applying no property of ensemble here.

• Pattern retraining for better forecast: In [2] the author simply uses the best lag for all the

three RBFs not so much different than layer 1. As a result, the pattern that might be appear

in the test set is not getting any kind of extra treatment here.

But in LEA, the data variation is obtained by applying random re-sampling on the training

set, and this random re-sampling will increase the probability of the appearance of the patterns

which might appear in the testing set and as a result will get more emphasized in the training

set. As a result, we can expect more accurate forecast from LEA.
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• Computational effectiveness: For all possible input lag [1, 2, . . . , 12], the three member of

ensemble in [2] are trained. That means for 12 lags there are 12 training set and each member

is trained 12 times. If the number of lag is a large number like 100, then in [2] each member

will be required to train using all possible 100 lags which is computationally very expensive but

in LEA we are training NNs using random lag, which is far more computationally effective.

• Dependency on the nature of data: In [2] the only parameter of the architecture is spread

factor set and it is again dependent on the distribution of the dataset. For different dataset the

spread factor set is different and the author is not sure whether the spread factor set will really

achieve a good learner. The author is using three members with three different spread factor set

to sort out the problem of finding a good member. To calculate the spread factor set, the author

empirically take three percentile (25th, 50th, 75th) for each time series of NN3 competition [1].

That means for other types of time series data this strategy might not work well.

But, in LEA we do not have any specific requirement of the distribution of the dataset. The

only input of LEA is lag number and the ensemble size.

• Combining the output: The author [2] uses simple average to calculate the final forecast.

For the computation of the best lag the author employs winner-takes-all over the validation set.

In LEA, we also do the same for determining the best lag. However, for making final forecast

we propose a new combination algorithm 3.1 considering the accuracy and diversity issues of

ensemble.

Since all the member of the ensemble have the same data and the architecture, the author in [2]

is applying average as a combination rule. But in LEA, we exploit all possible search space of

the time series forecasting and a simple averaging will drastically reduces the accuracy of our

system because of random re-sampling some members of the ensemble will produce a very large

error and some members will produce less error. So picking up the members of the ensemble for

making final forecast is very crucial in this stage. Thats why we envision a new combination

algorithm 3.1 which is based on clustering the variance of the NNs.



Chapter 4

Experimental Studies

In this chapter, we evaluate the effectiveness of our proposed LEA and compare its performance with

different ensemble and non-ensemble methods existing in literature. We have selected two competitive

ensemble algorithms bagging [16] and boosting [17]. Since, LEA uses basic bagging algorithm, so we

provide an extensive simulation and result analysis against basic bagging algorithm. We evaluate the

performance on some real world data sets collected from NN3 [1] and NN5 [4] forecasting competition.

We also establish the statistical significance of LEA using Wilcoxon signed rank test for all three

performance metrics used in this thesis.

4.1 Simulation framework

In this section, we describe the characteristics of the dataset used in this thesis. Next, we discuss

about the performance metrics used to evaluate the performance of LEA. A brief discussion about

the experimental setup will conclude this section.

4.1.1 NN3 data set

We first evaluate and compare the performance of LEA using NN3 [1] time series competition dataset.

The competition provides two datasets: A and B. The dataset A contains 111 monthly time series

drawn from a homogeneous population of empirical business time series, while the dataset B contains

only 11 series taken from A. These datasets can be obtained from http://www.neural-forecasting-

competition.com/NN3/datasets.htm. We use the data set A for our simulation and comparison.

Organizers of the NN3 competition categorize the time series into long and short based on the

37
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Table 4.1: Characteristics of NN3 [1] Forecasting Competition Data

short long Sum

non-seasonal 25 32 57
seasonal 25 29 54

Sum 50 61 111

length of series. The short series contains less than 50 data points, but the long one contains more than

50 data points. According to the characteristics of data, the time series can be further categorized into

seasonal and non seasonal. In a seasonal time series, there exists regularly spaced peaks and troughs

that have a consistent direction and approximately have the same magnitude at every period. These

are, however, not present in a non-seasonal one. The number of series in each category is presented

in table 4.1.

4.1.2 Performance measure

The global performance of a forecasting model is usually evaluated by some accuracy measure such as

sMAPE [66], median root absolute error (MdRAE ) [74] and mean absolute scaled error (MASE ) [74].

sMAPE is used in NN3 [1], NN5 [4] and NN GC1 [75] forecasting competitions. One advantage of

sMAPE is its scale independence property, which is suitable for comparing different methods across

various series. Although sMAPE has been originally proposed in [76], most of the authors adopt the

variant proposed in [66], which does not lead to negative values. We also use this variant in this work.

A particular performance measure may favor a forecasting method if the measure implicitly or

explicitly satisfies the assumption or condition of the method. Hence, in order to make exhaustive

evaluation, we use MdRAE and MASE in addition to sMAPE. The measures, MdRAE and MASE,

can be expressed as

MdRAE = median(|ri|), ri =
Yi − Ŷi
Yi + Ŷ ∗i

(4.1)

MASE =

∑n
i=1 |ei|

n
n−1

∑n
i=2 |Yi − Yi−1|

, ei = Yi − Ŷi (4.2)

where Ŷ ∗t is the forecast made by a reference method i.e., random walk [76] applied on the series data

for a given forecast horizon h.
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The error measure MdRAE has been considered as the most reliable error measures for a large

number of applications e.g. [76], [77]. However, in the case of equal consecutive observations, this

error measure returns infinite, a serious deficiency of MdRAE [74]. The authors in [76] suggest that

MdRAE is appropriate only for a very small set of series. The most important advantage of MdRAE

is its better protection against noise [76].

The error measure MASE scales the error based on the in-sample mean absolute error from the

näıve method and are independent of the scale of the data. The authors in [74], [78], [79] recommend

that MASE to become the standard measure for forecast accuracy. This due to the fact that MASE

is always defined and finite, unlike other measures in certain occasions.

4.1.3 Experimental setup

An MLP network containing one hidden layer with the tan sigmoid activation function is used as

the base predictor for the ensemble layers 1 and 2. The learning rate and momentum term of the

LM algorithm are set to 0.1 and 0.4, respectively. We stop a learning process after 1000 epochs or

when the root mean square error of the predictor reaches to 0.00001. The ensemble in layer 1 and 2

is consisted of 50 MLP networks. It is important to note that we use the aforementioned parameter

settings for all time series and they are not meant to be optimal.

According to [1], we withhold the last 18 data points of every time series for testing and use the

remaining data points for building forecasting models. More specifically, from the remaining data

points, we use 80% data for training and 20% data for validation. We normalize each data point of

the series to zero mean and unitary variance. The normalization parameters are computed from the

training and validation data, and then applied to training, validation and testing data.

The layer based ensemble architecture for TSF proposed in this paper is implemented using MAT-

LAB (R2012a, The Mathworks, Inc., Natick, MA, USA). MLP networks are implemented using the

Neural Network Toolbox of MATLAB. The source codes of LEA is available from the author.

4.2 Results

We first compare our LEA with basic bagging and boosting to show the effect of layering on the

performance of these basic ensemble models. We then compare LEA with several other ensemble,

non-ensemble and benchmark statistical methods.
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4.2.1 Comparison with Bagging

As mentioned in section 3.1, LEA re-samples k% data points to create different training sets for

different base predictors of the ensemble layer 2. To make a fair comparison with bagging, LEA uses

here bagging as a method for re-sampling. We call this version of LEA as layered bagging. The value

of k used for LEA is set to 9%.

Tables 4.2-4.5 and fig. 4.1-4.6 show the results of basic bagging and layered bagging. It is to be

noted that for the calculation of mean, minimum (min), maximum (max) and standard deviation

(STD.) we have used simply the accuracy value of 111 time series of NN3 competition. For example,

mean sMAPE is the average of the sMAPE across all the 111 time series. Similarly we have calculated

the others. The following observations can be made from these tables and figures.

• It can be seen that the lag obtained by the ensemble layer 1 of LEA is different for different

time series (Table 4.2). These results indicate that it is very important to determine the lag of

a given time series automatically. Note that the basic bagging algorithm uses the same lag for

all time series. According to the suggestion of NN3 [1], the lag is set to 12 for basic bagging.

• In terms of average sMAPE, MASE and MdRAE, layered bagging is found better than basic

bagging irrespective of the nature of time series i.e., seasonal, non-seasonal, long or short.

For example, for the seasonal time series, the average MdRAE achieved by basic bagging is

0.61, whereas it achieved by layered bagging is around 0.54 (Table 4.3). The better average

performance indicates the finer approximation capability of layered bagging for different time

series.

• Our layered bagging is always found better than basic bagging when we compare these two meth-

ods based on minimum sMAPE, MASE or MdRAE. However, in terms of maximum sMAPE,

MASE and MdRAE, basic bagging is found better than layered bagging for two cases out of 12

cases (four different time series and three different performance metrics) (Tables 4.3-4.4).

• The performance of layered bagging is found more consistent compared to bagging across dif-

ferent time series. This can be observed by looking the standard deviation (std) of these two

methods (Tables 4.3-4.4). In terms of std, layered bagging is found better for nine cases, while

basic bagging is found better for three cases.
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• To get an idea about the performance on different time series, we count the number of times

layered bagging is better or worse compared to bagging. Using any error measurement, if layered

bagging exhibits better performance than bagging for a specific time series, we call it as win

for layered bagging; otherwise it is a loss. Once again, layered bagging is proved superior than

basic bagging with respect to three different performance metrics (Table 4.5).

• Fig. 4.1 and 4.2 illustrate the comparison of forecast between the layered bagging and basic

bagging for all four (seasonal, non-seasonal, short and long) types of time series. For each type

of time series, we select one easy time series and one complex time series. We make this kind of

classification (easy and complex) using the information provided in [80]. The magenta and black

line represent the forecast made by layered bagging and basic bagging respectively, whereas the

real value is shown using green line. The vertical blue line separate the training data from the

testing data. It can be observed from the fig. 4.1 and 4.2 for easy time series, layered bagging

is following almost the same pattern with real time series. For example, for the easy long time

series number 91, the magenta line (layered bagging) follows exactly the same pattern of the

green line (real time series value). Basic bagging also tries to follow the pattern but has a lower

accuracy. For complex time series, it seems like basic bagging is behaving more like a random

walk, whereas layered bagging is trying to catch the pattern of real time series. A short glance

at the time series number 19 and 102 reveals the fact.

• Finally, in order to get an overview of per series wise performance of layered bagging over basic

bagging we also plot per series wise star plot using all three performance metrics as shown in

fig. 4.3-4.5. It can be observed from these fig. 4.3-4.5 that basic bagging is surrounding the

layered bagging in all most all case irrespective of any performance metric which again indicates

that basic bagging has higher forecasting error than layered bagging.

• It can be observed from fig. 4.6 that layered bagging is better than basic bagging for all forecast

horizons except one. For example, for the non-seasonal time series, the average sMAPE of basic

bagging is better than layered bagging for the forecasting horizon 4. However, layered bagging is

found better than basic bagging for all other cases. It is also observed that the average sMAPE

of layered bagging and basic bagging increases in many instances with the increase of forecast

horizon. Similar results are found for MASE and MdRAE as shown in fig. 4.7 and 4.8.
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Figure 4.1: Comparison of forecast for seasonal and non-seasonal time series between basic bagging
and layered bagging

We use the Wilcoxon signed rank test to assess whether the performance difference between layered

bagging and basic bagging is statistically significant. Compared to the t-test, the ranked test makes

fewer and less stringent assumptions on the sample distributions and thus is more powerful in detecting

the existence of significant differences. In our test, the matched pair samples are the per-series sMAPE,

MASE and MdRAE of the seasonal, non-seasonal, long and short time series with forecasting horizon

18.

Table 4.6 shows the summary of the Wilcoxon signed rank test [81] based on the sMAPE, MASE

and MdRAE of the four different types time series. Here, R+ corresponds to the sum of ranks for

layered bagging and R− for the basic bagging algorithm. These notations are used throughout the

paper. The results show that the null hypothesis has been rejected in favor of layered bagging with
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Figure 4.2: Comparison of forecast for short and long time series between basic bagging and layered
bagging

a significance level 0.05 for seasonal, non-seasonal, short and long time series. In fact the associated

p-values indicate that even a significance level 0.001 would have resulted in the rejection of null

hypothesis in favor of layered bagging.

4.2.2 Analysis

In order to understand the reasons behind the better performance of LEA, we analyze the ensembles

produced by layered bagging and basic bagging. We employ bias-variance-covariance decomposition,

double fault and disagreement for analysis.
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Table 4.2: Best lag obtained from ensemble layer 1 for different time series data of NN3 [1] competition

seasonal non short long
seasonal

mean 7.426 6.8837 6.8 7.557
LEA minimum 1 1 1 1

maximum 12 12 12 12
STD. 3.068 3.5133 3.307 3.175

Table 4.3: Comparison between basic bagging and layered bagging in terms of sMAPE, MASE and
MdRAE for seasonal and non-seasonal time series data of NN3 [1] competition. Here the best result
is highlighted using boldface text.

Basic Bagging Layered Bagging

sMAPE MASE MdRAE sMAPE MASE MdRAE

mean 14.220 1.380 0.618 13.139 1.230 0.540
seasonal min 0.875 0.484 0.206 0.798 0.437 0.183

max 60.584 8.324 1.291 60.535 4.837 1.085
std 11.784 1.174 0.246 11.903 0.898 0.234

mean 17.963 0.940 0.694 16.448 0.679 0.565
non-seasonal min 5.819 0.499 0.289 4.157 0.293 0.202

max 76.622 2.516 2.227 80.809 1.707 0.967
std 13.703 0.501 0.340 13.498 0.270 0.207

Table 4.4: Comparison between basic bagging and layered bagging in terms of sMAPE, MASE and
MdRAE for short and long time series data of NN3 [1] competition. Here the best result is highlighted
using boldface text.

Basic Bagging Layered Bagging

sMAPE MASE MdRAE sMAPE MASE MdRAE

mean 14.333 0.960 0.597 13.464 0.748 0.496
short min 5.819 0.499 0.206 4.157 0.293 0.183

max 40.682 2.523 2.227 44.271 2.355 0.967
std 8.226 0.535 0.348 8.339 0.353 0.210

mean 17.266 1.415 0.689 15.205 1.236 0.595
long min 0.875 0.484 0.273 0.798 0.437 0.202

max 76.622 8.324 1.291 80.809 4.837 1.085
std 15.320 1.213 0.220 15.244 0.934 0.225
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Table 4.5: Comparison between basic bagging and layered bagging in terms of Win-loss count for the
time series data of NN3 [1] competition. Here the best result is highlighted using boldface text.

Performance Number of Wins
Metrics

Basic Layered
Bagging Bagging

sMAPE 26 85
MASE 32 79
MdRAE 25 86

Table 4.6: Wilcoxon Signed Rank Test summary between layered bagging and basic bagging for the
time series data of NN3 [1] competition.

Performance R+ R− p-value hypothesis
Metrics Significance level=0.05

sMAPE 1899 447 9.16E-06 Rejected for layered bagging
Seasonal MASE 1802 544 0.00012 Rejected for layered bagging

MdRAE 1867 479 2.2E-05 Rejected for layered bagging

sMAPE 819 127 2.94E-05 Rejected for layered bagging
Non-seasonal MASE 749 197 0.0086 Rejected for layered bagging

MdRAE 787 159 0.00016 Rejected for layered bagging

sMAPE 1068 207 3.24E-05 Rejected for layered bagging
Short MASE 930 345 0.00048 Rejected for layered bagging

MdRAE 1085 190 1.56E-05 Rejected for layered bagging

sMAPE 1564 327 8.89E-06 Rejected for layered bagging
Long MASE 1560 331 1.02E-05 Rejected for layered bagging

MdRAE 1512 379 4.72E-05 Rejected for layered bagging
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Figure 4.3: Comparison between basic bagging and layered bagging in terms of sMAPE on time series
data of NN3 [1] competition using star plot.

Bias-Variance-Covariance estimation

Mean square error (Emse) of an ensemble can be decomposed into bias (Ebias), variance (Evar) and

co-variance (Ecov). For regression problems, this decomposition has been widely used (e.g. [82], [83])

for analyzing the performance of ensembles and can be expressed as

Emse = Ebias + Evar + Ecov (4.3)

The above equation indicates that to achieve good performance, the bias, variance and covariance of

the ensemble should be small.

Let the average output of the ensemble and network i on the nth pattern in the testing set

n = 1, . . . , N are denoted, respectively, by Ŷ (n) and Ŷi(n), which are given by Eqs. (4.4) and (4.5)

Ŷ (n) =
1

K

K∑
k=1

Ŷ (k)(n) (4.4)
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Figure 4.4: Comparison between basic bagging and layered bagging in terms of MdRAE on time series
data of NN3 [1] competition using star plot.

Ŷi(n) =
1

K

K∑
k=1

Ŷ
(k)
i (n) (4.5)

where Ŷ (k)(n) and Ŷ
(k)
i (n) are the output of the ensemble and the network i on the nth pattern from

the kth simulation. The bias, variance and covariance of the ensemble are defined by Eqs. (4.6), (4.7)

and (4.8), respectively.

Ebias ≡
1

N

N∑
n=1

(Ŷ (n)− Y (n))2 (4.6)

where Y (n) is the true value on nth time point.

Evar ≡
M∑
i=1

1

N

N∑
n=1

1

K

K∑
k=1

1

M2
(Ŷ

(k)
i (n))− Ŷi(n))2 (4.7)
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Figure 4.5: Comparison between basic bagging and layered bagging in terms of MASE on time series
data of NN3 [1] competition using star plot.

Ecov ≡
M∑
i=1

M∑
j=1,j 6=i

1

N

N∑
n=1

1

K

K∑
k=1

1

M2
(Ŷ

(k)
i (n))− Ŷi(n))2(Ŷ

(k)
j (n))− Ŷj(n))2

(4.8)

Emse can also be defined by Eq. (4.9).

Emse ≡
1

N

N∑
n=1

1

K

K∑
k=1

(Ŷ (k)(n)− Y (n))2 (4.9)

To obtain bias, variance and co-variance of an ensemble architecture, we follow the experimental

methodology suggested in [83]. According to [83], several (say, 25) simulations of each ensemble

architecture has to be conducted. The only difference in different simulations is the training sets used

for training base predictors. Since NN3 competition [1] contains a large number of time series, we

select only one series from each of four different types of time series, namely series number 71, 73, 2

and 110 for seasonal, non-seasonal. short and long series, respectively. However, similar results can
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Figure 4.6: Comparison between basic bagging and layered bagging in terms of forecast horizon wise
sMAPE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.
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Figure 4.7: Comparison between basic bagging and layered bagging in terms of forecast horizon wise
MdRAE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.
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Figure 4.8: Comparison between basic bagging and layered bagging in terms of forecast horizon wise
MASE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.



CHAPTER 4. EXPERIMENTAL STUDIES 52

Table 4.7: Comparison between layered bagging and basic bagging in terms of average Bias, Variance
and Co-variance decomposition for the time series data of NN3 [1] competition. Here the best result
is highlighted using boldface text.

Ebias Evar Ecov Emse

Seasonal 0.0705 4.21E-04 0.0101 0.0810
Layered Non-seasonal 0.0513 4.40E-04 0.0055 0.0572
Bagging Short 0.0538 8.55E-04 0.0317 0.0863

Long 0.0419 7.87E-04 0.0276 0.0702

Seasonal 0.1026 4.63E-04 0.0046 0.1076
Basic Non-seasonal 0.0874 3.00E-03 0.0376 0.1280
Bagging Short 0.0735 1.20E-03 0.0476 0.1223

Long 0.1157 6.78E-04 0.0112 0.1275

be obtained for other series.

Table 4.7 summarizes the results of the bias-variance-covariance decomposition of layered bagging

and basic bagging. It can be observed from the table 4.7 that layered bagging provides less bias than

basic bagging. Once again, the effectiveness of achieving the accurate lag from layer 1 of layered

bagging is evident here. Apart from this, layered bagging also produces less variance and covariance

in most of the cases than basic bagging. The positive effect of less bias, variance and co-variance is

the less mean squared error, as shown in the last column of the table 4.7. Like sMAPE, MdRAE and

MASE, layered bagging also defeats here basic bagging.

Disagreement and double fault

In the preceding section, we analyze ensembles produced by layered bagging and basic bagging al-

gorithms based on bias, variance and co-variance decomposition. We here like to analyze these two

algorithms based on disagreement and double fault. Although many diversity measures have been

proposed in the context of classification problems, very little research has been done to measure

diversity in case of ensembles applied on regression problems.

Disagreement is the ratio between the number of observations on which one predictor is correct

and the other predictor is incorrect to the total number of observation. Double fault is defined as the

portion of the cases that have been misclassified by both predictors. The disagreement (Dda{m,n})

and double fault (Ddf{m,n}) between two predictors m and n can be expressed as
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Dda{m,n} =
N01 +N10

N11 +N01 +N10 +N00
(4.10)

Ddf{m,n} =
N00

N11 +N01 +N10 +N00
(4.11)

Let N be the number of instances, 1 denotes correct classification and 0 denotes incorrect classifi-

cation. In Eqs. (4.10) and (4.11), N ij denotes the number of examples that the first predictor m puts

label i on a particular example, while the second predictor n puts label j on the same example. To

use disagreement and double fault measures for TSF problems, we use the extension suggested in [38].

For each instance x, we calculate the standard deviation, σ, of the estimated target variable by all

predictors in an ensemble. If the true value of the target is α, then a prediction β is considered to be

correct if that β ≤ α+σ and β ≥ α−σ i.e., the prediction has to fall within a margin of one standard

deviation of the value of the target variable. Otherwise, the prediction is considered as incorrect. We

count the number of correct and incorrect predictions for each predictor over the data set and use the

formula above to measure disagreement and double fault. From Eqs. (4.10) and (4.11), it is evident

that a larger disagreement value indicates better diversity. In contrast, a larger double-fault value

indicates worse diversity.

Table 4.8 summarizes the average result of disagreement and double fault for basic bagging and

layered bagging for 111 time series. In our experiment there are 50 ensemble, so there in total 1326

pairwise diversity values for each of the time series. For each time series we simply take the average

across all the pairs to calculate the final value of diversity. It can be observed that in terms of

double fault, layered bagging is generating more diverse ensemble than basic bagging irrespective of

the nature of the time series. Since layered bagging is trying to enforce accuracy among the members

of an ensemble, it is obvious that the number of instances for which a pair of MLPs makes mistake

will be less by layered bagging. This is the main reason for obtaining better double fault results by

our method for all four different types of time series. In terms of disagreement measure, both basic

bagging and layered bagging are better for two cases.

4.2.3 Comparison with Boosting

At each step of boosting, training data are reweighed in such a way that incorrectly classified examples

get larger weights in a new training set. Hence, unlike bagging, we do not need to specify any data
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Table 4.8: Comparison between basic bagging and layered bagging in terms of disagreement and
double fault for seasonal, non-seasonal, short and long time series data of NN3 [1] competition. Here
the best result is highlighted using boldface text.

Basic Bagging Layered Bagging
disagree double disagree double

fault fault

Seasonal 0.255 0.393 0.276 0.362
Non-seasonal 0.352 0.342 0.324 0.316
Short 0.370 0.390 0.325 0.357
Long 0.228 0.359 0.270 0.334

partition percentage here. To incorporate layering, we simply implement two layers of boosting and

named this version as layered boosting, where one layer determine the best lag and the other layer

uses it for forecasting.

Tables 4.9-4.12 and fig. 4.9-4.11 show the results of basic boosting and layered boosting. Following

observations can be made from these tables and figures.

• Layered boosting outperforms basic boosting in terms of average, minimum and maximum

sMAPE, MASE and MdRAE. This is true for four different types of time series we consider here

(Tables 4.9 and 4.10). Wilcoxon signed rank test conducted between layered boosting and basic

boosting indicates that the superiority of layered boosting over basic boosting is statistically

significant (Table 4.12).

• Once again we see that a layered approach provides more stable result than a non-layered one.

The standard deviation (std) from tables 4.9-4.10 of layered boosting establishes the fact.

• It can be observed from fig. 4.9 that layered boosting is better than basic boosting for all forecast

horizons. Similar results are found for MASE and MdRAE as shown in fig. 4.10 and 4.11.

• We also calculate the win-loss count over sMAPE, MASE and MdRAE for the 111 time series.

A glance at the table 4.11 again reveals that layered boosting is providing better performance

than basic boosting irrespective of any performance measure.

Boosting algorithm focuses more on the difficult examples in the training set. Therefore, the

number of unique training example decreases. It has been found that the performance of boosting is

affected by the training set size and boosting is only be useful for large training sets [84]. Considering
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Table 4.9: Comparison between basic boosting and layered boosting in terms of sMAPE, MASE,
MdRAE for seasonal and non-seasonal time series data of NN3 [1] competition. Here the best result
is highlighted using boldface text.

Basic Boosting Layered Boosting

sMAPE MASE MdRAE sMAPE MASE MdRAE

mean 22.980 2.131 1.169 16.474 1.593 0.820
seasonal min 1.742 0.825 0.183 1.482 0.579 0.153

max 76.102 13.046 4.543 68.116 9.884 2.285
std 17.579 1.817 0.759 13.671 1.511 0.528

mean 29.718 1.165 1.337 20.958 0.823 0.883
non seasonal min 9.743 0.630 0.052 6.068 0.361 0.062

max 115.230 2.576 3.514 84.521 1.843 2.423
std 22.479 0.321 0.748 14.800 0.239 0.464

Table 4.10: Comparison between basic boosting and layered boosting in terms of sMAPE, MASE,
MdRAE for short and long time series data of NN3 [1] competition. Here the best result is highlighted
using boldface text.

Basic Boosting Layered Boosting

sMAPE MASE MdRAE sMAPE MASE MdRAE

mean 25.225 1.204 1.322 17.591 0.835 0.902
short min 9.743 0.630 0.187 6.068 0.361 0.182

max 95.814 2.493 3.514 50.140 1.567 2.423
std 16.243 0.346 0.724 9.697 0.202 0.478

mean 25.890 2.209 1.163 18.719 1.672 0.797
long min 1.742 0.825 0.052 1.482 0.579 0.062

max 115.230 13.046 4.543 84.521 9.884 2.285
std 22.429 1.899 0.779 17.131 1.580 0.522

these facts and the average length of the time series of NN3 competition, it is expected that boosting

algorithm will exhibit an inferior performance than bagging. In terms of average sMAPE over 111 time

series, layered boosting and layered bagging achieve error rates of 18.21% and 14.42%, respectively,

which establishes the facts more clearly. The same is true if we consider average MASE and MdRAE.

4.2.4 Comparison with Näıve forecast

In TSF literature (e.g. [27], [36]), näıve forecast is used as a benchmark model against which more

sophisticated models can be compared. For time series data, the näıve forecast equals the previous

period’s actual value. In this section, we establish the evidence that LEA provides statistically
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Table 4.11: Comparison between basic boosting and layered boosting in terms of Win-loss count for
the time series data of NN3 [1] competition. Here the best result is highlighted using boldface text.

Performance Number of Wins
Metrics

Basic Layered
Boosting Boosting

sMAPE 5 106
MASE 8 103
MdRAE 14 97

Table 4.12: Wilcoxon Signed Rank Test summary between layered boosting and basic boosting for
the time series data of NN3 [1] competition.

Performance R+ R− p-value hypothesis
Metrics Significance level=0.05

sMAPE 2346 0 3.53E-12 Rejected for layered boosting
Seasonal MASE 2336 10 4.68E-12 Rejected for layered boosting

MdRAE 2258 88 1.29E-10 Rejected for layered boosting

sMAPE 945 1 1.65E-08 Rejected for layered boosting
Non-seasonal MASE 936 10 2.73E-08 Rejected for layered boosting

MdRAE 877 69 1.04E-07 Rejected for layered boosting

sMAPE 1274 1 1.11E-09 Rejected for layered boosting
Short MASE 1272 3 1.18E-09 Rejected for layered boosting

MdRAE 1248 27 4.80E-09 Rejected for layered boosting

sMAPE 1891 0 5.14E-11 Rejected for layered boosting
Long MASE 1872 19 9.21E-11 Rejected for layered boosting

MdRAE 1735 156 3.18E-09 Rejected for layered boosting



CHAPTER 4. EXPERIMENTAL STUDIES 57

0 5 10 15 20
14

16

18

20

22

24

sM
A

P
E

%

Forecast Horizon of Seasonal Series

 

 
Layered Boosting
Boosting

0 5 10 15 20
20

22

24

26

28

30

sM
A

P
E

%

Forecast Horizon of Non−Seasonal Series

 

 
Layered Boosting
Boosting

0 5 10 15 20
16

18

20

22

24

26

sM
A

P
E

%

Forecast Horizon of Short Series

 

 
Layered Boosting
Boosting

0 5 10 15 20
16

18

20

22

24

26

sM
A

P
E

%

Forecast Horizon of Long Series

 

 
Layered Boosting
Boosting

Figure 4.9: Comparison between basic boosting and layered boosting in terms of forecast horizon wise
sMAPE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.
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Figure 4.10: Comparison between basic boosting and layered boosting in terms of forecast horizon
wise MdRAE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.
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Figure 4.11: Comparison between basic boosting and layered boosting in terms of forecast horizon
wise MASE for seasonal, non-seasonal, short and long time series data of NN3 [1] competition.
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Table 4.13: Wilcoxon Signed Rank Test summary between layered bagging and näıve forecast for the
time series data of NN3 [1] competition.

Performance R+ R− p-value hypothesis
Metrics Significance level=0.05

sMAPE 2296 50 6.79E-12 Rejected for layered bagging
Seasonal MASE 2073 273 3.81E-08 Rejected for layered bagging

MdRAE 2337 9 1.14E-12 Rejected for layered bagging

sMAPE 946 0 1.12E-08 Rejected for layered bagging
Non-seasonal MASE 884 62 6.95E-07 Rejected for layered bagging

MdRAE 946 0 1.12E-08 Rejected for layered bagging

sMAPE 1275 0 7.56E-10 Rejected for layered bagging
Short MASE 1180 95 1.63E-07 Rejected for layered bagging

MdRAE 1275 0 7.56E-10 Rejected for layered bagging

sMAPE 1843 48 1.14E-10 Rejected for layered bagging
Long MASE 1661 230 2.76E-07 Rejected for layered bagging

MdRAE 1880 11 1.92E-11 Rejected for layered bagging

significant result than näıve forecast. We here use the same Wilcoxon signed rank test with per-series

sMAPE, MASE and MdRAE for two different comparison, one layered bagging vs. näıve forecast

and another is layered boosting vs. näıve forecast.

Tables 4.13 and 4.14 summarizes the results of the rank test. It can be seen that layered bagging

is significantly different from the näıve forecast. In fact the associated p-values indicate that even a

significance level of 0.001 would have resulted in the rejection of null hypothesis in favor of layered

bagging for seasonal, non-seasonal, short and long time series irrespective of which performance metric

is used. Layered boosting also provides significant difference than näıve forecast for any type of time

series.

4.2.5 Comparative performance against different combining strategy

In ensemble literature, there are several different methods for combining the output of different mem-

ber of ensemble. Majority voting, winner takes all, averaging are the most common methods for

combining the output of ensemble for classification problem. In regression ensemble most of the

literature suggested the averaging or weighted averaging as a strategic method for combination. In

table 4.15 we present our analysis using two combination strategies namely averaging and our com-

bination algorithm 3.1. It is clear from the table 4.15 averaging strategy is not a very good strategy
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Table 4.14: Wilcoxon Signed Rank Test summary between layered boosting and näıve forecast for the
time series data of NN3 [1] competition.

Performance R+ R− p-value hypothesis
Metrics Significance level=0.05

sMAPE 1830 516 5.96E-05 Rejected for layered boosting
Seasonal MASE 1714 632 0.00094 Rejected for layered boosting

MdRAE 1636 710 0.00466 Rejected for layered boosting

sMAPE 648 298 0.03459 Rejected for layered boosting
Non-seasonal MASE 768 178 0.00036 Rejected for layered boosting

MdRAE 648 298 0.03459 Rejected for layered boosting

sMAPE 993 282 0.000600 Rejected for layered boosting
Short MASE 1124 151 2.65E-06 Rejected for layered boosting

MdRAE 834 441 0.047284 Rejected for layered boosting

sMAPE 1337 554 0.0049 Rejected for layered boosting
Long MASE 1243 648 0.0326 Rejected for layered boosting

MdRAE 1364 527 0.0026 Rejected for layered boosting

for TSF specially for NN3 [1] competition dataset. Out of 111 time series averaging wins only 9 times

whereas the our combination algorithm 3.1 wins 102 times. Besides, for those 9 series, the difference

of sMAPE between averaging and our combination algorithm 3.1 is very negligible. Furthermore, the

average sMAPE using averaging is 23.27% whereas our combination algorithm 3.1 method provides

a sMAPE of only 14.42%. So our combination algorithm 3.1 is 38.46% better than averaging which

is justification why we have adopted this method in our proposed LEA scheme.

4.2.6 Comparative performance using different ensemble size

Determining the optimal size of the ensemble (i.e. number of NN in ensemble) is an important

research issue. The size of the ensemble may vary depending on the nature of the dataset. Different

ensemble size may result in a different performance for the same dataset because of the convergence

issue and the unstable nature of the base predictors (i.e. MLPs). For example, in bagging algorithm,

the number of base predictors should be selected by using trail and error for each application. It

is common to use from 50 to 100 base predictors in the literature, but when an applications cannot

handle this amount of processing time, this number must be better chosen.

Now considering, the large size and different types of time series data of NN3 competition [1],

determining the optimal size of ensemble is a huge challenge. The size of ensemble may vary from one
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Figure 4.12: Boxplot Comparison of sMAPE of our proposed scheme using different ensemble size on
the time series data of NN3 competition [1]

type of time series data to another type. The size of ensemble may also get changed from one time

series to another. To determine the optimal size of ensemble for each of 111 time series of NN3 is

computationally very expensive. Besides, another important requirement of NN3 competition is that

for all the 111 time series the same experimental setup must be used. Since our main concern is to

obtain better average sMAPE across all the 111 time series, to obtain the optimal size of ensemble

we do not change it for every time series rather for all the 111 time series we keep the size of ensemble

fixed. Now we vary the size of ensemble across all the 111 time series, for which we obtain the better

forecast. Fig. 4.12 illustrates the result obtained using average sMAPE for different size of ensemble.

From the Fig. 4.12 it is evident that increasing size of ensemble improves the performance. For

example, the average sMAPE reduces from 16.47% to 14.42% when we increase the size of ensemble

from 30 to 50. However, increasing the size beyond 50 is not upgrading the performance rather in

some case giving inferior result which is due to the unstable nature of base predictor. So, for the sake

of computational cost, we prefer to choose 50 is the optimal size of ensemble for the dataset of NN3

competition [1].
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Figure 4.13: Boxplot Comparison of sMAPE of our proposed scheme using different data re-sampling
rate on the time series data of NN3 competition [1]

4.2.7 Comparative performance using different data re-sampling rate

In ensemble layer 2 of LEA, we apply random re-sampling on the dataset Dtr to obtain a set of dataset

to train each member of ensemble. Unlike basic bagging which uses a data re-sampling rate of 36.2%

percentage, we apply here an adaptive strategy to obtain a best data re-sampling rate.

Since the most of the time series data of NN3 [1] contains data point between 69 to 150, a data

re-sampling rate of 36.2% will cause a huge loss of correlation information among the time series data.

So we start with a data re-sampling rate of 7% and increments it up to 10. Fig. 4.13 illustrates the

average sMAPE obtains over 111 time series data of NN3 competition for the data re-sampling rate

of 7%, 8%, 9% and 10% respectively. From the fig. 4.13 it is evident that a data re-sampling rate of

9% gives the best result and thats why we uses a data re-sampling rate of 9% in our experiment.

4.2.8 Discussion

This section briefly explains why the performance of LEA is better than other ensemble algorithms

bagging and boosting for TSF problems we tested.
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method Our Average
combination
algorithm

Number of Win 102 9
sMAPE 14.42 23.2

Table 4.15: Comparison between different combining strategies for the time series data of NN3 [1]
competition.

LEA emphasizes both accuracy and diversity among individual NNs in an ensemble, while bagging

and boosting primarily emphasizes diversity. LEA performs better than bagging in 85 out of 111

cases in terms of sMAPE. LEA obtains multiple decisions from a set of both diverse and accurate

base predictors, whereas the bagging ensemble relies on the decision of an individual diverse classifier.

This accounts for the better performance of the LEA. Similarly, LEA outperforms boosting in 106

out of 111 cases in terms of sMAPE. LEA identifies difficult-to-predict by layering. This is where

the proposed approach takes the lead. Overall, in terms of sMAPE the proposed approach performs

7.91% better than bagging, and 20.11% better than boosting on NN3 [1] competition dataset.

LEA alleviates the problem of generating diverse ensemble in ensemble layer 1 using random lag

which ensures different training set and architecture for MLPs in ensemble layer 1. Besides using the

best lag from layer 1, LEA generates the optimal dataset on which bootstrapped sampling is applied

using adaptive strategy so that the correlation between the time series data does not get lost which

implicitly ensures the accuracy.

4.2.9 Comparison with other work

The NN3 competition attracts 59 submissions from computational intelligence (CI) based methods

and statistical methods, making it the largest CI competition on time series. We choose the best

five benchmarked statistical methods and the best five CI based methods for our comparison. The

detail description of these methods can be found in [3]. Furthermore, we choose recently proposed

ensembles of RBF networks by Yan [2] for comparison.

Table 4.16 presents the average results over 111 time series of layered bagging, Yan [2] and 10 other

algorithms [3]. The model IDs with letter C as prefix stand for CI based models and those with letter

B stand for statistical benchmark models. It can be observed from this table that layered bagging

beats not only CI based methods but also the benchmarked statistical methods in terms of average
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sMAPE, MASE and MdRAE. If we compare CI based methods (excluding layered bagging) with

statistical methods, the best two CI based methods secure the third position and the fifth positions,

while the other CI based methods appear at the bottom of the comparison table. This comparison

indicates that the layered ensemble approach with proper techniques for maintaining accuracy and

diversity is useful for obtaining good forecasting accuracy.

4.2.10 Further experiments and comparison

In order to show the predictive power of LEA, we choose to perform experiments on the NN5 time

series data [4], another large benchmark time series dataset. The difficulties of this data set include

outliers, missing values, multiple overlying seasonalities, etc. All these make the NN5 competition

is one of the most interesting one. Like the NN3 competition, the NN5 provides two datasets: A

and B. The dataset A contains 111 daily time series representing roughly two years of daily cash

money withdrawal amounts (735 data points) by ATM machines at various cities in the UK., while

the dataset B contains only 11 series taken from the dataset A. The challenge of the competition is to

forecast the values of the next 56 days using the given historical data points. sMAPE is also adopted

in the NN5 competition to declare the final winner.

Comparison with Bagging

In this section, we try to perform the same analysis for NN5 competition [4] that we have performed

for NN3 competition [1]. Unlike, NN3 competition, the dataset of NN5 competition can be catego-

rized into two groups namely seasonal and non-seasonal. There are 71 seasonal time series in NN5

competition whereas this number is 40 for non-seasonal time series.

Tables 4.17-4.19 show the results of basic bagging and layered bagging. Following observations

can be made from these tables.

• Layered bagging again outperforms basic bagging in terms of average, minimum and maximum

sMAPE, MASE and MdRAE with some exceptions. This is true for two different types of time

series we consider here (Table 4.17). We also conduct the same Wilcoxon signed rank test here.

The superiority of layered bagging over basic bagging is again evident here from the table 4.19.

• Stability of layered approach again is established here (Table 4.17). Layered bagging is providing

more stable result than basic bagging in terms of sMAPE and MdRAE. However, in terms of
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Table 4.16: Comparison among layered bagging, Yan [2] and 10 other methods [3] based on average
sMAPE, MASE and MdRAE. Note that the results are average of 111 time series data of NN3
competition and ‘-’ represents data are not available. Here the best result is highlighted using boldface
text.

ID Method sMAPE MdRAE MASE

- Layered bagging 14.42 0.55 1.01
B09 Wildi 14.84 0.82 1.13
B07 Theta 14.89 0.88 1.13
C27 Illies 15.18 0.84 1.25
B03 ForecastPro 15.44 0.89 1.17
- Yan 15.80 - -
B16 DES 15.90 0.94 1.17
B17 Comb S-H-D 15.93 0.90 1.21
B05 Autobox 15.95 0.93 1.18
C03 Flores 16.13 0.93 1.20
B14 SES 16.42 0.96 1.21
B15 HES 16.49 0.92 1.31
C46 Chen 16.55 0.94 1.34
C13 D’yakonov 16.57 0.91 1.26
B00 Automated ANN 16.81 0.91 1.21
C50 Kamel 16.92 0.90 1.28
B13 Njimi 17.05 0.96 1.34
C24 Abou-Nasr 17.54 1.02 1.43
C31 Theodosiou 17.62 0.96 1.24
B06 Census X12 17.78 0.92 1.29
B02 nMLP 17.84 0.97 2.03
C38 Adeodato 17.87 1.00 1.35
C26 de Vos 18.24 1.00 1.35
B01 nSVR 18.32 1.06 2.30
C44 Yan 18.58 1.06 1.37
C11 Perfilieva 18.62 0.93 1.57
C37 Duclos 18.68 0.99 1.30
C49 Schliebs 18.72 1.06 1.37
C59 Beliakov 18.73 1.00 1.36
C20 Kurogi 18.97 0.99 1.31
B10 Beadle 19.14 1.04 1.41
B11 Lewicke 19.17 1.03 1.43
C36 Sorjamaa 19.51 1.13 1.42
C15 Isa 20.00 1.12 1.53
C28 Eruhimov 20.19 1.13 1.50
C51 Papadaki 22.60 1.27 1.77
B04 Naive 22.69 1.00 1.48
B12 Hazarika 23.72 1.34 1.80
C17 Chang 24.09 1.35 1.81
C30 Pucheta 25.13 1.37 1.73
C57 Corzo 32.66 1.51 3.61
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Table 4.17: Comparison between basic bagging and layered bagging in terms of sMAPE, MASE and
MdRAE for seasonal and non-seasonal time series data of NN5 [4] competition. Here the best result
is highlighted using boldface text.

Basic Bagging Layered Bagging

sMAPE MASE MdRAE sMAPE MASE MdRAE

mean 24.025 0.987 0.715 19.993 0.982 0.705
seasonal min 12.903 0.695 0.224 13.090 0.684 0.193

max 38.110 1.659 1.079 31.302 1.651 1.141
std 5.498 0.171 0.204 4.601 0.174 0.196

mean 23.306 0.885 0.639 19.528 0.880 0.639
non seasonal min 15.357 0.618 0.233 12.637 0.615 0.209

max 32.613 1.178 0.962 26.505 1.157 1.008
std 4.279 0.126 0.199 3.743 0.128 0.181

Table 4.18: Comparison between basic bagging and layered bagging in terms of Win-loss count for
the time series data of NN5 [4] competition. Here the best result is highlighted using boldface text.

Performance Number of Wins
Metrics

Basic Layered
Bagging Bagging

sMAPE 25 86
MASE 52 59
MdRAE 46 65

MASE basic bagging is marginally beating the layered bagging.

• The statistics using the win-loss count over sMAPE, MASE and MdRAE for the 111 time series

of NN5 competition is depicted in the table 4.18. And like other performance measures basic

bagging is providing inferior result than layered bagging.

Comparison with other work

The average sMAPE over 111 time series of layered bagging and 10 other algorithms of NN5 com-

petition is furnished in the table 4.20. The result of other algorithms is compiled from [4]. As NN3

competition, the model IDs with letter C as prefix stand for CI based models and those with letter

B stand for statistical benchmark models. From the table 4.20, we can observe that LEA is again

beating all the CI and statistical benchmark based methods. It is to be noted that for NN5 dataset,
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Table 4.19: Wilcoxon Signed Rank Test summary between layered bagging and basic bagging for the
time series data of NN5 [4] competition.

Performance R+ R− p-value hypothesis
Metrics Significance level=0.05

sMAPE 2484 1 3.72E-13 Rejected for layered bagging
Seasonal MASE 2485 0 0.0200 Rejected for layered bagging

MdRAE 1511 700 0.0095 Rejected for layered bagging

sMAPE 861 0 2.48E-08 Rejected for layered bagging
Non-seasonal MASE 496 365 0.0395 Rejected for layered bagging

MdRAE 455 406 0.02489 Rejected for layered bagging

Table 4.20: Comparison among layered bagging and 10 other methods [4] based on average sMAPE.
Note that the results are average of 111 time series data of NN5 [4] competition and ‘-’ represents
data are not available. Here the best result is highlighted using boldface text.

ID Method sMAPE

- Layered bagging 19.82
B02 Wildi 19.9
C23 Andrawis 20.4
C12 Vogel 20.5
C10 D’yakonov 20.6
B08 Noncheva 21.1
C06 Rauch 21.7
C19 Luna 21.8
B05 Lagoo 21.9
C01 Wichard 22.1
C17 Gao 22.3

we have used the same experimental configuration of NN3 except we change here the ensemble size

to 100. We can also observe that the better performance of number of CI based methods compared

to the NN3 competition, indicating that these methods are making improvement and will outperform

statistical benchmark method very soon.



Chapter 5

Conclusion

Ensembles have been introduced to the machine learning community for nearly two decades. Many

ensemble algorithms have been developed for classification problems. However, few algorithms exist

that are developed for dealing with TSF problems. An important component of designing ensembles

either for TSF (or classification) problems is the consideration of accuracy of the base predictors and

diversity among the base predictors. Although most of the existing algorithms consider the diversity

issue in designing ensemble for TSF, few attempts have been made in relation to accuracy. Most

importantly, time series data have autocorrelation affect and the use of an appropriate lag is crucial

for the accuracy of base predictors. Ensemble design still has to rely on either a tedious trial-and-error

process or an human expert with rich prior knowledge about the lag parameter of a given series. In

this thesis, we propose a layered ensemble architecture for efficiently forecasting time series data. Our

layered architecture is consisted of two layers, each of which is an ensemble of neural networks.

Since lag parameter is vital for accurate forecast, LEA introduces a layer of NN ensemble to find

out this information. Different training set using different lag are used to train the base predictors

in ensemble layer 1 which eventually enforces diversity among them. However, to ensure accuracy in

this layer, the only thing left to us is the use of a large number of NN (50 in the experiment of this

thesis), and we can expect at least some of those come up with an optimal lag.

In ensemble layer 2 of the LEA, we already have the optimal lag from ensemble layer 1, so we

have the quite “accurate” information about how many previous step will affect the prediction of the

time series. Using this optimal lag, we are making sure all the member of the ensemble in the layer 2

is quite “accurate”.
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To introduce diversity in ensemble layer 2, LEA does not blindly change the architecture of the

base predictors or randomly make some alternation in the dataset. In order to make a perfect forecast,

it is necessary to handle those patterns, which might appear in the testing set, get more emphasized in

the training set. LEA uses this important observation to incorporate diversity. Since only oracle has

the knowledge which patterns will appear in the testing set, the only way around of this problem, is

to randomly take some of the patterns, which appear in the training set and increase the probability

of their appearance in the training of the base predictors. That’s why during the training subset

generation for the different member of the ensemble, LEA in this layer (layer 2) use the bagging to

make random re-sampling of the optimal training set. But unlike bagging which randomly resample

data points, LEA performs random re-sampling on the optimal lagged training set. So this technique

serves the three important points for TSF using ensemble. Firstly, it is preserving the autocorrelation

information of the time series. Secondly, it is increasing the probability to get better forecast, and

finally, it is helping to generate a diverse ensemble.

The other important essence of LEA is that, it is completely independent of the architecture of the

base predictors. Although in this thesis, we have used MLPs as base predictors, reader are encouraged

to use any base predictor (Radial Basis Function, Elmen Neural Network etc).

Extensive experiments have been carried out in this thesis to evaluate how well LEA performed on

different TSF problems in comparison with other ensemble and non-ensemble algorithms. In almost

all cases, LEA was found better compared to popular ensemble algorithms, i.e., basic bagging, and

basic boosting on different types of time series. LEA is providing an improvement of 9.08% in terms

of sMAPE over basic bagging, whereas in terms of MASE and MdRAE the improvement is 13.04%

and 15.64% respectively over basic bagging. LEA is also providing superior result than basic boosting

where the improvement is 28.84%, 26.27% and 31.54% in terms of sMAPE, MASE and MdRAE

respectively. These results indicate that the layering concept we introduce in this thesis can help to

improve the forecasting accuracy of basic ensemble algorithms irrespective of the type of time series.

When we compare LEA with other state-of-art statistical and CI methods, our algorithm was also

found better. In fact LEA is improving the forecasting accuracy by 2.83% in terms of sMAPE against

the top performer of NN3 [1] competition. For NN5 [4] competition the improvement is 0.40% in

terms of sMAPE. Then, if we consider bias-variance-covariance decomposition, we will find that LEA

is generating an ensemble system with less bias, variance and covariance than basic bagging and as

a result LEA is exhibiting less MSE on the test set than basic bagging. Finally, considering the
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diversity we find that LEA is also generating a reasonable amount of diverse members which helps to

reduce the generalization error on the test set.

5.1 Future direction

Although LEA has performed very well for almost all TSF problems we tested, our experimental

study appeared to have revealed a weakness of LEA in dealing with time series number 103 of NN3 [1]

competition dataset, compared to other time series. The reasons for such performance is due to

improper selection of ensemble size and parameters associated with the ensemble members. These

and some other issues can be considered for future research, which are described as follows.

• Parameter optimization: Current implementation of LEA, obtains the parameter of MLPs

using a trial and error basis rule. However, there exists several parameter optimization algorithm

in the literature, using which might help to find a better parameter set for MLPs which ultimately

helps us to find more accurate base predictors in both layers.

• Data sampling in both layer: LEA applies the bagging (i.e. bootstrapped sampling) in the

ensemble layer 2 in order to enforce diversity. However, it might be a research question, whether

we should apply the bagging in the layer 1 also. What kind of benefit we can achieve if we apply

this in ensemble layer 1?

• Varying the architecture of the base predictors in both layers: In our current imple-

mentation of LEA, we vary the architecture of NNs in ensemble layer 1 only by using different

randomly lagged training set. So, basically we are enforcing diversity in ensemble layer 1 by

using variation in both training set and architecture. But in ensemble layer 2 we only vary the

training set. Further experimental analysis should be performed to investigate whether maxi-

mizing the diversity using the variation on both training set and architecture really improves

the performance of LEA.

• Number of base predictors in the ensemble: Our experimental analysis already provides

the information that increasing the number of NNs in ensemble improves the performance. For

a given time series data, a system is said to be fully automated, if it can determine the required

number of base predictors necessary for better forecast rather than using the user defined input.

So any future extension of LEA, should try to incorporate this feature.
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• Combining the output of the ensemble: Although there exists several combining method

for classification problem, for TSF there exists very little. In fact most of the existing methods

are direct extension of their classification part. So extensive research efforts must be applied

here for better forecast of time series.

• Apart from the above discussed phenomenon, more real-world time-series prediction problems

have to be performed to further ascertain the applicability of LEA. The results have to be

compared not only with those from NN based systems but also other established statistical

techniques that have been widely used in undertaking TSF problems. Research efforts should

also be devoted to the methods that can further reduce the correlation effect of the time series

data in combining neural networks. Simulation and experimental design methodology should

prove useful and necessary in these endeavors.
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[13] John G Carney and Pádraig Cunningham. The neuralbag algorithm: Optimizing generalization

performance in bagged neural networks. In Proceedings of the 7th European Symposium on

Artificial Neural Networks, pages 35–40. D-Facto: Bruges, Belgium, 1999.

[14] H. Chen and X. Yao. Ensemble regression trees for time series predicitions. methods, 11:6, 2007.

[15] I. Maqsood, M.R. Khan, and A. Abraham. An ensemble of neural networks for weather forecast-

ing. Neural Computing & Applications, 13(2):112–122, 2004.

[16] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[17] R.E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[20] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.

Neural computation, 6(2):181–214, 1994.

[21] T.K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[22] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399–

1404, 1999.

[23] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods: a survey

and categorisation. Information Fusion, 6(1):5–20, 2005.



BIBLIOGRAPHY 75

[24] Giorgio Fumera, Fabio Roli, and Alessandra Serrau. A theoretical analysis of bagging as a linear

combination of classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(7):1293–1299, 2008.

[25] Y. Freund, R.E. Schapire, et al. Experiments with a new boosting algorithm. In Thirteen

International Conference on Machine Learning, pages 148–156, 1996.

[26] LI Kuncheva, Fabio Roli, Gian Luca Marcialis, and Catherine A Shipp. Complexity of data

subsets generated by the random subspace method: an experimental investigation. In Multiple

Classifier Systems, pages 349–358. Springer, 2001.

[27] Allan Timmermann. Forecast combinations. Handbook of economic forecasting, 1:135–196, 2006.
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[49] M. Assaad, R. Boné, and H. Cardot. A new boosting algorithm for improved time-series fore-

casting with recurrent neural networks. Information Fusion, 9(1):41–55, 2008.

[50] John R Koza, Forrest H Bennett III, and Oscar Stiffelman. Genetic programming as a Darwinian

invention machine. Springer, 1999.

[51] Gregory Paris, Denis Robilliard, and Cyril Fonlupt. Applying boosting techniques to genetic

programming. In Artificial evolution, pages 267–278. Springer, 2002.

[52] Luzia Vidal de Souza, Aurora TR Pozo, Joel MC da Rosa, and Anselmo Chaves Neto. The

boosting technique using correlation coefficient to improve time series forecasting accuracy. In

IEEE Congress on Evolutionary Computation (CEC), pages 1288–1295. IEEE, 2007.

[53] Zhuo Zheng. Boosting and bagging of neural networks with applications to financial time series.

Technical report, Working paper, Department of Statistics, University of Chicago, 2006.

[54] Shuichi Kurogi, Ryohei Koyama, Shinya Tanaka, and Toshihisa Sanuki. Forecasting using first-

order difference of time series and bagging of competitive associative nets. In International Joint

Conference on Neural Networks (IJCNN), pages 166–171. IEEE, 2007.

[55] J.D. Wichard and M. Ogorzalek. Time series prediction with ensemble models. In IEEE Inter-

national Joint Conference on Neural Networks, volume 2, pages 1625–1630. IEEE, 2004.

[56] Kin Keung Lai, Lean Yu, Shouyang Wang, and Huang Wei. A novel nonlinear neural network

ensemble model for financial time series forecasting. In Computational Science–ICCS 2006, pages

790–793. Springer, 2006.

[57] Bo Qian and Khaled Rasheed. Stock market prediction with multiple classifiers. Applied Intelli-

gence, 26(1):25–33, 2007.



BIBLIOGRAPHY 78

[58] I Ilies, H Jaeger, O Kosuchinas, M Rincon, V Šakėnas, and N Vaškevičius. Stepping forward
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