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Abstract

A phylogenetic tree represents the evolutionary relationship among a group of species. The

‘quartet-based’ phylogenetic tree construction refers to the method of combining many ‘quar-

tets’ (a phylogenetic tree relating 4 species) into a single phylogenetic tree. In this thesis

we present a new algorithm for ‘quartet-based’ phylogenetic tree construction and show its

superiority in accuracy over the current best method for this problem.

Phylogenetic tree construction methods are inherently computationally very intensive, and

usually can be applied to limited number of species. But the ultimate goal of phylogenetic

reconstruction is to infer the phylogeny involving all lives on earth, i.e., to infer the ‘Tree of

Life’. The ‘supertree’ method (constructing larger tree(s) from many smaller trees) has been

identified as a reasonable solution in this regard, as these methods are computationally less

intensive compared to other existing phylogenetic tree contruction methods (such as maximum

likelihood). Over the past decade, supertree construction has become an area of active theo-

retical and practical research. A ‘quartet’ is the the basic piece of phylogenetic information,

so the quartet-based supertree method is responsible for combining many minimal pieces of

information into a single, coherent, and more comprehensive piece of information. Since the

quartet-based supertree methods are inherently computationally less intensive compared to the

other approaches of phylogenetic tree construction, the only challenge of such construction is

to achieve the accuracy and scalability.

In this thesis, we have devised a new quartet based supertree method, QFM (Quartet FM),

which constructs more accurate trees (in terms of topological accuracy) than the current best

quartet based method, QMC (Quartet MaxCut) [32]. The new method is also scalable to large

datasets, that is, it performs well on very large datasets without compromising the accuracy.

xv
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Also, QFM is found performing same as (even better in some cases) QMC in maximizing the

objective function of the underlying optimization problem. In this thesis, we performed an

extensive experimental study to evaluate the accuracy and scalability of our algorithm on both

simulated and biological datasets. In addition, we have developed a software tool, named,

‘QTREE’ to simulate and analyze the two methods - QFM and QMC.



Chapter 1

Introduction

The study of evolution is fundamental to the investigation of a wide array of biological questions.

For example, estimates of the evolutionary history of sets of molecular sequences are used in

biomedical research, including drug and vaccine development [2], in tracking the origins and

development of humans over time [15], and even as forensic evidence in the investigation of

criminal acts [23]. One of the most ambitious goals in evolution is to discover the relationships

among all the species on Earth, the Tree of Life. The field responsible for this undertaking is

phylogenetics.

Scientific euphoria has recently centered on the reconstruction of evolutionary relationships

among different species. It is argued that all life currently on earth is descended from a single

common ancestor. Over a period of at least 3.8 billion years, that single original ancestor

has split repeatedly into new and independent lineages, i.e., species. On occasions, some of

these independent lineages have come back together to form yet other lineages or to exchange

genetic information. The evolutionary relationships among these species are referred to as

“Phylogeny”, and phylogenetic reconstruction is concerned with inferring the phylogeny of

groups of organisms. These relationships are expressed as a tree known as phylogenetic tree.

1



2 CHAPTER 1. INTRODUCTION

1.1 Phylogenetic Tree

A phylogeny is the written representation of the evolutionary relationships of a set of organisms.

One of the simplest forms of phylogenies are phylogenetic trees, or trees. A phylogenetic tree

T = (V , E) is a connected acyclic graph of a set of vertices V and a set of undirected edges E

connecting the vertices. A leaf (or node with degree one) in V represents a taxon (species, gene

etc.), that typically exists in the present day. An internal node (with degree greater than one)

in V constitutes an (hypothetical) ancestral taxon from which some descendent taxa evolved.

If all internal nodes in a tree have degree at most three, then the tree is referred to as binary.

Otherwise, the tree is non-binary, and has some node with degree greater than three, also known

as a polytomy. An edge e = (u, v) ∈ E represents an evolutionary relationship between the

two taxa (plural for taxon) at the vertices u and v connected by e. An edge is synonymously

referred to as a bipartition since its removal splits the tree T into two connected components

(and consequently the set of taxa into two disjoint subsets). The phylogeny problem is to

reconstruct the evolutionary history of a set S of taxa where S is the set of leaf nodes. The

phylogeny problem can be formally derived as follow.

The Phylogeny Problem

Input: A set S of taxa.

Output: A tree T leaf-labeled by S, such that T represents the evolutionary relationship

among the members of S.

Figure 1.1 illustrates an example of a phylogenetic tree (borrowed from a presentation titled

Introduction to Phylogenetic Estimation Algorithms [39]). The tree is rooted at the most recent

common ancestor of the five existing species represented by the five leaves. Other internal nodes

represent hypothesized or known ancestors. The common practice today is to use biomolecular

sequences as representatives of the species set; which is why the nodes of this tree are labeled

by DNA sequences. Other than the molecular sequences, morphological data (e.g., color, size,

weight etc.), molecular markers (Single Nucleotide Polymorphism (SNP ), haplotypes etc.),

and gene order and content can be used as the representatives of the species set. These are
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commonly known as character data.

TAGCCCA

AGCACTTTAGCCCT

AGGGCAT TAGACTT AGCACAA AGCGCTT

AAGGCCT

AAGACTT

3 million years

AGGGCAT

TGGACTT

1 million years

2 million years

today

Figure 1.1: A phylogenetic tree(figure borrowed from [39]).

1.2 Applications of Phylogenies

One of the great challenges of science is reconstructing the Tree of Life, which is the evolutionary

history of all organisms on Earth. The implication of this grand phylogeny - that all living

things on Earth today (from bacteria, to seaweeds, to mushrooms, to humans) are related -

has forever changed our perception of the world around us. Moreover, the uses of phylogenies,

beyond elucidating the evolutionary relationships of biological species, are many and growing.

Phylogenies have become an integral part of biological research, including biomedical research,

drug design and, areas of bioinformatics (such as protein structure prediction and multiple

sequence alignment). In this section, we give a brief overview of applications of phylogeny. The

description below are mostly adopted from [19].

• Study of Evolution: Phylogenies play a major role in the interpretation of information

on all characteristics of organisms, from structure and physiology to genomics. Phylogeny

reflects the history of transmission of life’s genetic information, and hence organizes our

knowledge of diverse organisms, genomes, and molecules. At the species level, a phylogeny

– provides hypotheses about the derivation of traits and the circumstances behind
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such derivation. Thus plays a vital role in studies of adaptation and evolutionary

constraints [9, 18, 20, 21, 22].

– informs the dynamics of speciation and, to some extent, extinction - the two forces

that generate and reduce biodiversity [3, 12].

• Comparative study: The most common use of phylogeny is for comparative study [1,

14]. A comparative study is one where a particular question is addressed by comparing

how certain biological characters have evolved in different lineages in the context of a

phylogeny. This information is used to infer important aspects of the evolution of those

characters.

• Biogeographic hypothesis: Another common use of phylogenies is to test biogeo-

graphic hypothesis. Biogeography is concerned with the geographical distribution of

organisms, extant and extinct. For example, a researcher may be interested in whether a

particular species have colonized a set of islands a single time or repeatedly. This can be

assessed by determining whether all of the species on the island arose from a single most

recent mainland common ancestor or whether they are multiple independent mainland

species.

• Inference of amino acids: One can also use a phylogeny to attempt to infer the amino

acid sequence of extinct proteins. This putative extinct proteins can then be synthesized

or an artificial gene coding for them can be produced, and the functional characteristics

of the proteins that are of interest can be tested.

• Evolution of diseases: In a more practical vein, phylogenies can be used to track the

evolution of diseases, which can, in turn, be used to design drugs and vaccines that are

more likely to be effective against the currently dominant strains. The most prominent

example of this use is the flu vaccine, which is altered from year to year as medical experts

work to keep track of the influenza types most likely to dominate in a given flu season [2].

• Biological Investigation: Finally, phylogenies have even been used in criminal cases



1.3. OVERVIEW OF PHYLOGENETIC TREE RECONSTRUCTION METHODS 5

where the phylogenetic evidence plays a prominent role in the trial.

In summary, phylogenies are useful in any endeavor where the historical and hierarchical

structure of the evolution of species can be used to infer the history of the point of interest.

1.3 Overview of Phylogenetic Tree Reconstruction Meth-

ods

Since the evolutionary history is at best partially known, biologists, mathematicians, and com-

puter scientists have designed a variety of criteria and methods for their accurate reconstruction.

Before we discuss the various phylogenetic reconstruction methods, we first briefly describe two

types of data that are used to represent the input to those methods, and models of sequence

evolution.

Input Data

Early approaches of phylogenetic reconstruction were based on morphological characters of

species (such as physical characteristics or biological functions) as data, but with the advance-

ment of molecular biology, researchers developed methods based on molecular (amino acid and

nucleotide) sequence data. Molecular sequence data can be used in two way: character data and

distance data. These two are the most common types that are used in phylogenetic analysis.

• Character Data: Qualitative characters in biomolecular sequences are the single posi-

tions within multiple alignments, and they have a fixed number of states (4 for DNA and

RNA, 20 for amino-acids). Phylogenetic reconstruction methods based on character data

take as input a matrix Mn×k of n species and k characters, so that each species s ∈ S is

represented by a vector in Zk. Thus, Mij is the state of character j for species si, where

S = {s1, . . . , sn}. The output of the method is a phylogeny leaf-labeled by S, and whose

internal nodes are also labeled by vectors in Zk.

• Distance Data: Some phylogenetic reconstruction methods take “distance” matrices
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as a representation of the input. A distance matrix Mn×n is a symmetric matrix that

indicates the pairwise distances between taxa; Mij represents the distance between the

two taxa i and j. Distance matrices are usually computed from the character data of the

input. Those matrices have Mii = 0 for every 1 ≤ i ≤ n, but do not necessarily satisfy

the triangle inequality.

Phylogenetic tree estimation techniques from molecular sequence can be divided into three

high-level types, namely, sequence based, distance based and topology based. We now briefly

describe the techniques of these three broad categories.

1.3.1 Sequence Based Method

In sequence based methods, the input is a set of homologous sequences from different species.

The method builds a phylogeny that tries to represent the evolutionary history of these se-

quences. The most promising sequence based methods are maximum parsimony and maximum

likelihood methods.

Maximum Parsimony

Maximum Parsimony (MP) [10] is an optimization problem based on the minimum evolution

principal1. A maximum parsimony tree is one that minimizes the number of changes over the

edges of the tree needed to “explain” the sequences at its leaves.

Parsimony score of a tree: Let T = (V,E) is a tree with a set of vertices V and a set of

undirected edges E. The leaves of T are labeled by a set of sequences S, each of length ℓ. An

extension f of S on T is a labeling of all vertices of T by sequences of length ℓ that maintains

the original leaf-labeling by S. For two sequences x and y, let H(x, y) be the Hamming distance

between x and y 2. Then the parsimony score of an extension f , denoted by, score(f, T ), is∑
(u,v)∈E H(f(u), f(v)), where f(u) and f(v) denote the labeling of u and v in f . A minimal

extension is one that minimizes the parsimony score, and the parsimony score of a minimal

1The best evolutionary trees are the ones that minimize the number of changes along the edges of the tree.
2For two sequences x = x1x2 . . . xl and y = y1y2 . . . yl, H(x, y) = |{i : xi ̸= yi}|
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extension is the parsimony length of the tree T .

A maximum parsimony tree for a given set of sequences S is a tree that has the smallest

possible parsimony length of any tree leaf labeled by S. The parsimony problem is to find

a tree of minimum parsimony cost. This is an NP-hard problem even when the sequences are

binary (i.e., the alphabet size is two) [7, 11]. Heuristic searches are used to find a solution of

this problem.

Maximum Likelihood

Maximum Likelihood (ML) [8] is also an optimization problem, and seeks the most probable

tree according to some specified model of evolution. Given a model of sequence evolution, a

maximum likelihood tree is a tree topology, along with a set of branch lengths and parameters

for the given model of evolution, that maximizes the conditional probability of observing the

sequences at the leaves given the assumed model. Again, let S be a set of sequences of equal

length. The maximum likelihood solution for the set S is an edge weighted tree (T,w), together

with a set of model parametersM, that minimizes Pr(S | T,w,M). As with MP, ML is also

NP-hard [4], and heuristic searches are used to compute ML trees.

1.3.2 Distance Based Methods

Distance-matrix methods of phylogenetic analysis explicitly rely on a measure of “genetic dis-

tance” between the sequences being classified. Therefore, they require an MSA (multiple se-

quence alignment) as an input. Distance is often defined as the fraction of mismatches at

aligned positions, with gaps either ignored or counted as mismatches [24]. Distance methods

attempt to construct an all-to-all matrix from the sequence query set describing the distance

between each sequence pair. From this, a phylogenetic tree is constructed that places closely

related sequences under the same interior node and whose branch lengths closely reproduce the

observed distances between sequences. Distance-matrix methods may produce either rooted or

unrooted trees, depending on the algorithm used to compute them.
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Neighbor Joining

A popular distance based method is neighbor joining [28]. Neighbor joining takes as input a

distance matrix specifying the distance between each pair of taxa (i.e., aligned sequences). The

algorithm starts with a completely unresolved tree, whose topology corresponds to that of a

star network, and iterates over the following steps until the tree is completely resolved and all

branch lengths are known:

• Based on the current distance matrix calculate the matrix Q. Based on a distance matrix

relating the n taxa, Q is calculated as follows:

Q(i, j) = (n− 2)d(i, j) −
n∑

k=1

d(i, k)−
n∑

k=1

d(j, k),

where d(i, j) is the distance between taxa i and j.

• Find the pair of taxa for which Q(i, j) has its lowest value. Add a new node to the tree,

joining these taxa to the rest of the tree.

• Calculate the distance from each of the taxa in the pair to this new node.

• Calculate the distance from each of the taxa outside of this pair to the new node.

• Start the algorithm again, replacing the pair of joined neighbors with the new node and

using the distances calculated in the previous step.

1.3.3 Supertree Method

Although the sequence based methods construct quite accurate trees on small to moderate

sized datasets, in many cases accuracy decreases as the input size increases or when such a set

of homologues3 for the set of species under study does not exist. Topology based methods can

perform better than sequence based methods in such cases. The task of the topology-based

3Homology is shared evolutionary history, and genes are called homologous if they descended from a common

ancestor gene.
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reconstruction method is to build many overlapping small trees with very accurate sequence-

based methods and later amalgamate these into a big complete tree that represents each of

the input small trees. By the term ‘overlapping’ we mean that the taxa sets corresponding to

the small trees are not disjoint. This method is also known as the ‘supertree’ method. The

supertree construction technique addresses the problem of ‘Tree Compatibility’ which is an

NP -hard problem [19].

Tree Compatibility Problem

Input: Set T = {T1, T2, . . . , Tk} of trees on sets S1, S2, . . . , Sk, respectively.

Output: Tree T, if it exists, such that for each i, T|Si refines Ti
4.

The construction of a supertree scales exponentially with the number of taxa included; therefore

for a tree of any reasonable size it is not possible to examine every possible supertree and weigh

its success at combining the input information. Therefore, heuristic methods are essential for

supertree reconstruction. Let S be a set of n taxa (i.e., n sequences). The supertree methods

follow the steps below.

• Step 1: Division of the taxa set S into required number of overlapping subsets.

• Step 2: Application of any sequence based or distance based method on each subset to

compute small trees.

• Step 3: Application of heuristics to combine the small trees to get a single tree.

Matrix Representation Parsimony (MRP) [26]

Matrix representation parsimony (MRP) [26] is the most popular supertree method. MRP is

a general supertree method, that is the overlapping small trees are either rooted or unrooted

and can have any number of taxa (species). It uses MP to analyze the data matrix created

from input trees. As MRP involves solving an NP hard problem (i.e., MP), it is not efficient

for large datasets and naturally its accuracy decreases with increased input size.

4T is said to refine Ti is Ti can be obtained from T by a sequence of edge-contractions.
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Quartet Based Supertree Method

When all the small trees are unrooted and have 4 taxa, a supertree method is called a ‘quartet-

based’ supertree method. Here a ‘quartet’ is an unrooted tree relating 4 species (taxa). Since

a ‘quartet’ is the most basic piece of phylogenetic information, the quartet-based method is

responsible for combining many minimal pieces of information into a single, coherent, and

more comprehensive piece of information. An accurate and efficient quartet-based method can

overcome the scalability problem of MRP and provide at least as accurate result as MRP. This

is why significant attention has been given in the relevant literature for devising efficient and

accurate quartet based methods.

In this thesis, we focus on quartet based supertree method. In particular, we concentrate

on developing a heuristic approach for combining small trees.

1.4 Motivation Behind Quartet Based Supertree Meth-

ods

To realize the usefulness of quartet based supertree method, first we have to realize the ad-

vantages of supertree methods. Supertree methods are beneficial over other approaches of

phylogenetic tree estimation in the following cases.

1) Summarizing the results of available studies on (subsets of) a particular group of interest

when access to the sequences is not possible.

2) Producing a tree from disparate data-types, such as molecular, morphological, and gene-

order data, that require independent types of analysis (and therefore prohibit a combined

analysis).

3) Analyzing large datasets that would take too long to analyze using other phylogenetic

reconstruction methods.

The most crucial role of supertree method is in inferring the Tree of Life. In a typical

molecular phylogenetic analysis, a tree on a particular set of species is constructed by first
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collecting the DNA or protein sequences for a homologous gene in each species, and then using

those sequences to construct a tree on that set of species. Using this sort of process to construct

the Tree of Life is not feasible, since one particular gene from each species may not provide

sufficient information to derive the evolutionary relationship. So collecting the sequences from

multiple genes from each species is required. A supertee method provides a solution for such

a case by constructing a tree on each gene dataset separately and then combining those trees

into a single tree on the entire set of species. Supertrees are presently a necessary tool for

many phylogenetic problems. In fact, most, if not all, detailed estimates of the Tree of Life

(e.g. the Tree of Life Web Project; http://tolweb.org/tree/phylogeny.html) to date have been

constructed using a supertree approach. For this reason there is an increasing interest among

the research community for studying these methods.

A supertree method can reconstruct a correct tree when the generated input small trees are

correct, i.e., when the input small trees represent true evolutionary relations among their leaves.

Now let us discuss how the quartet based supertree methods are useful. We need accurate (as

much as possible) small trees for accurate reconstruction of the supertree. But sometimes,

depending on data, accurate reconstruction of small trees may not be feasible. For example,

suppose that the input sequences have some missing information. In such cases, generation of

a small tree of a moderate size may not be done accurately due to missing information. But as

we have already noted, a quartet carries the basic piece of phylogenetic information. So small

trees relating only 4 taxa can still be inferred accurately for such data. When the small trees are

accurate then we can expect (reasonably) accurate reconstruction of the supertree depending

on the underlying heuristic used to combine the small trees. So the quartet based supertree

methods are getting significant research attention compared to other supertree methods.

1.5 Literature Review

Quartet based phylogenetic tree reconstruction has been receiving extensive attention in the

literature for more than two decades. Different approaches have been proposed and improved

time to time. Among these the most prominent approaches are: quartet quzzling (QP), quartet
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joining (QJ) and quartet max-cut (QMC).

Quartet puzzling (QP) [36] infers the phylogeny of n sequences in three steps as follows.

First, the maximum-likelihood step uses the maximum-likelihood principle to weight all possible

4-trees. Then, based on these weights, the puzzling step constructs a large number of n-

trees. And finally the consensus step computes the consensus tree of these n-trees. TREE-

PUZZLE [30] is a program package that implements QP. The puzzling step has been modified

in [35] by assigning each qaurtet qi a weight wi. In this approach the Bayesian probability pi

of each quartet qi is computed using the maxmimum likelihood value of the three associated

4-trees. Strimmer et al. [35] proposed three different ways to use these probabilities to weight

4-trees. In the continuous case, the probabilities are directly used as weights, i.e., wi = pi. In

the binary (unweighted) case, the weight of the 4-tree with highest probability is set to 1, and

the weights of the two others are set to 0. In the discrete case, the three wi’s are discrete, least-

squares approximations of the pi’s. QP with Bayesian weighting scheme was an improvement

over the original QP in recovering a true tree [35]. Ranwez and Gascuel [25] proposed weight

optimization (WO), a new algorithm which is also based on weighted 4-trees inferred by using

the maximum likelihood approach. WO searches for the tree on n taxa such that the sum

of the weights of the 4-trees induced by this tree is maximal. WO is faster and offers better

theoretical guarantee than QP but is less efficient than traditional phylogenetic reconstruction

approaches based on pairwise evolutionary distances or maximum likelihood [25].

Quartet joining (QJ) [40] concentrates on reconstructing reliable phylogenetic trees while

tolerating as many quartet errors as possible. This is achieved by carefully selecting two pos-

sible neighbor leaves to merge and assigning weights intelligently to the quartets that contain

newly merged leaves. Theoretically, if the input quartet set is completely consistent with evo-

lutionary tree T , the quartet-joining algorithm will reconstruct the exact evolutionary tree T .

QJ outperforms QP on real datasets. On average, the performance of QJ and NJ [28] are very

close but QJ outperforms NJ on quartet sets with low quartet consistency [40].

In 2007, Snir et al. [33] proposed a novel quartet-based method called short quartet puz-

zling (SQP), which gives better estimates of the true tree topology by comparison to both NJ
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and MP and QP. It differs from the previous techniques in that it does not consider all possible

4-trees while constructing the output tree and rather considers only a subset of all possible

4-trees as input. This is a two phase technique: the first phase uses the randomized technique

for selecting input quartets from all possible 4-trees, and the second phase uses Quartet Max

Cut (QMC) [33, 31] technique for amalgamating quartet trees together. The 4-trees are esmi-

ated using ML. QMC seeks to find a tree on the full dataset satisfying a maximum number of

quartets. It is a divide and conquer approach that repeatedly bipartitions the quartet set by

taking the maxcut of the graph constructed based on input quartet sets. Swenson et al. [37]

performed an experimental study of QMC and other supertree methods. In this experimental

study, source trees were generated using five different encoding techniques. Two QMC-based

supertree methods, QMC (All) and QMC (Exp+TSQ), differing only in how the source trees

are encoded, produced more accurate supertrees than MRP (in many cases) and the other

supertree methods (in many cases) for the smaller (100-taxon and 500-taxon) datasets. But

MRP outperforms all QMC methods on the largest (1000-taxon) datasets. In [32], Snir and

Rao presented a fast and scalable implementation of QMC.

1.6 Objective of This Thesis

In the study of phylogenetic tree reconstruction, two questions are vital. These are: 1) Is the

reconstruction method results in accurate trees? 2) Is the method scalable to (i.e., performs

equally on) large datasets (i.e., several hundreds of species)?. The existing best phylogenetic

tree reconstruction methods, other than the supertree methods, usually get stuck in the question

number 2, since those methods are computationally very intensive to be applied to very large

datasets. Supertree methods are usually scalable to large datasets. The best (in terms of

accuracy) supertree method to date is MRP [26], though it is not time and space efficient for

very large datasets. Quartet based supertree methods can be considered to be a solution to

the problem of scalability to large datasets. QMC [33, 31, 32] is the current best quartet best

supertree method. It defeats MRP in terms of running time; however it does not always return

as accurate tree as MRP does.
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In this thesis, our objective is to find out an accurate and scalable quartet based supertree

reconstruction method, and also to challenge QMC in terms of accuracy and scalability. In

addition, we aim to develop a software interface implementing our method and QMC, so that

bioinformaticians can compare and analyze the results of these methods for different datasets

easily without having any prior knowledge about how these algorithms work.

1.7 Main Contribution and Result Summary

In this thesis, we address the problem of constructing phylogenetic trees using quartet based

method. Our contributions and the main results are summarized below.

1. We propose a new heuristic algorithm (QFM) for reconstructing a supertree from quartets,

which follows a divide and conquer based strategy.

2. We compare our method with the best known quartet based method, QMC, by performing

an intensive experimental study on simulated datasets.

3. Our experimental results suggest that QFM provides results at least as good as (even

better) than QMC in maximizing the optimization criteria (see Section 2.4).

4. To measure the topological accuracy of the estimated trees, both QFM and QMC have

been applied to the simulated datasets, generated from a model tree. In most of the cases,

the tree estimated by QFM than the tree returned by QMC, is more close to the model

tree.

5. QFM, when applied to small to large sized datasets (containing several hundreds of taxa,

several lacs of quartets) is found satisfactorily scalable.

6. The accuracy of QFM has also been measured in this thesis by applying it on biolog-

ical dataset. QFM returns the phylogenetic tree that matches the tree anticipated by

biologists for the set of taxa under consideration.
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7. Finally as part of this thesis we have developed a software interface ‘QTREE’ imple-

menting both QFM and QMC for the use of bioinformatics practitioners interested in

phylogenetic analysis and experiments.

1.8 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we discuss the relevant ideas and

necessary definitions from phylogeny and algorithm theory to understand our research work.

Chapter 3 describes our heuristic algorithm QFM for quartet based supertree reconstruction.

Chapter 4 deals with our experimental works - data generation, experimental setup, result

summary and detailed analysis on results. Finally, We conclude in Chapter 5 with some future

directions.



Chapter 2

Preliminaries

In this chapter, we define some basic concepts and terminology related to phylogeny and al-

gorithm theory. Definitions that are not included in this chapter will be introduced as they

are needed. We start in Section 2.1, by describing basic concepts related to phylogenetic trees

- tree structure, representation etc. Then in Section 2.2 we define a quartet - its structure,

representation and other concepts related to quartet based phylogeny. The concepts related to

algorithm theory are discussed in Section 2.3. Finally, in Section 2.4 we define the optimization

problem that we are addressing in this thesis.

2.1 Phylogenetic Tree Basics

Phylogenetic trees can be either rooted or unrooted with leaves labeled by extant taxa (species).

Internal vertices (hypothetical ancestors) are usually unlabeled and have degree at least three.

2.1.1 Rooted Phylogenetic Tree

A rooted phylogenetic tree is a directed tree with a unique node corresponding to the (usually

imputed) most recent common ancestor of all the entities at the leaves of the tree. The node

representing the most recent common ancestor is called the root (having degree two or more),

from which a unique path leads to any other node. A rooted phylogenetic tree is binary

if all internal vertices have degree three, except the root, which has degree two. A rooted

16
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phylogenetic tree is non-binary if any internal node has degree greater than three. Figure 2.1

shows an example of binary (tree at left) and non-binary (tree at right) rooted trees.

C D EA B
A B C D FE

F

Degree = 4

Figure 2.1: An example of binary and non-binary rooted trees.

2.1.2 Unrooted Phylogenetic Tree

An unrooted phylogenetic tree illustrates the relatedness of the leaf nodes without making

assumptions about ancestry at all. In an unrooted tree the lines represent evolutionary lineages,

but unlike a rooted tree, we do not know which way evolution preceded along the lineage. An

unrooted phylogenetic tree is binary if all internal vertices have degree three; otherwise the tree

is non-binary. Figure 2.2 shows an example of binary and non-binary unrooted trees.

E C

B F D

CA

B

E

A

F D

Figure 2.2: An example of binary and non-binary unrooted trees.
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2.1.3 Rooting and Unrooting Trees

An unrooted tree can always be generated from a rooted tree by simply omitting the root. In

Figure 2.3, T1 is a rooted tree, an unrooted tree T2 is generated by discarding the root vertex

R and then joining the two children of R by an edge.

A C D E F

U
V

R

T
1

A

DC

F

E

2

VU

T

Figure 2.3: Unrooting a rooted tree.

We can generate a rooted tree Tr from an unrooted tree Tu in two ways.

• Rooting at an internal node: We can select any internal node of Tu as a root for Tr. In

this way number of possible rooted trees from an unrooted tree equals the number of

internal nodes in the unrooted tree.

• Rooting at an edge: We can select any edge e of Tu and replace it by a randomly labeled

root node r. Then connect r with the two endpoints of e. In this way number of possible

rooted trees from an unrooted tree equals the number of edges in the unrooted tree.

Figure 2.4 shows an example of generating rooted trees Tr from an unrooted tree Tu. How-

ever the selection of the internal node or the edge as the root is not done at random. To select

a root we need some means of identifying ancestry. Accurately rooting a phylogenetic tree is a
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E C

B D
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F D

A B

CFE

U

U

Tu
T

C DFEA B

r

Tr

rooting at edge AU

rooting at node U

U

Figure 2.4: Generating rooted tree from an unrooted tree.

complex problem requiring specific knowledge of the set of taxa being studied or the assump-

tion of a molecular clock1. If the molecular data used to reconstruct a phylogeny are assumed

to have evolved at a constant rate over time, then one can root the tree based on estimated

leaf-to-leaf distances. This assumption is often violated in real datasets. In mathematical (and

computational) phylogenetics, therefore, our goal is to reconstruct only the unrooted version

of the rooted tree that represents the evolutionary relationships among the taxa.

2.1.4 Newick Representation

In mathematics, Newick tree format (or Newick notation or New Hampshire tree format) is

a way of representing graph-theoretical trees. The Newick Standard for representing trees in

1The molecular clock is a technique in molecular evolution that uses fossil constraints and rates of molecular

change to deduce the time in geologic history when two species or other taxa diverged. It is used to estimate

the time of occurrence of events called speciation.
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computer-readable form makes use of the correspondence between trees and nested parenthe-

ses, noticed in 1857 by the famous English mathematician Arthur Cayley. In this format we

express a rooted phylogenetic tree T as “(left(T ), right(T ))”, where left(T ) and right(T ) are the

children of the root of T . If left(T ) and right(T ) are internal nodes, then we replace them by

“(left(left(T )), right(left(T )))” and “(left(right(T )), right(right(T )))”, respectively. If an inter-

nal node has more than two children then they are expressed in left to right order. Figure 2.5

illustrates the formation of the Newick expression of a rooted tree. An important character-

A B C D E

(C, (D, E))

(A, B) (D, E)

((A, B), (C, (D, E)))

Figure 2.5: Illustration of newick expression of a tree.

istics of this representation is that from a biological point of view it does not make a unique

representation of a tree. There are two reasons for this.

• First, the left to right order of descendants of a node affects the representation, even

though it is biologically not interesting. Thus, to a biologist (A, (B,C), D) is the same

tree as (A, (C,B), D).

• Second, the standard is for representing a rooted tree. For an unrooted tree we do not

have the root. For expressing an unrooted tree, the convention is simply to arbitrarily

root the tree and report the resulting rooted tree. So an unrooted tree can have several

Newick representations corresponding to its different rooted versions.
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2.1.5 Clades and Star

A clade in a tree is a maximal set of leaves that all have the same most recent common ancestor.

To generate all the clades in a rooted tree, we need to look at each node in turn, and write down

the leaves below that node. Thus, for the tree T = ((A,B), (C, (D,E)) (Figure 2.6), the set of

clades of the tree T , denoted Clades(T ), is given by {{A}, {B}, {C}, {D}, {E}, {A,B}, {D,E},

{C,D,E}, {A,B,C,D,E}}.

A B C D E

Figure 2.6: An example of clades in a tree.

In graph theory, a star Sk is the complete bipartite graph K1,k: a tree with one internal

node and k leaves (but, no internal nodes and k + 1 leaves when k ≤ 1). A tree T over taxa

set P is a star, if T has only one internal node and there is an edge from the internal node

incident to each taxon t ∈ P . We also refer to such a tree as a depth one tree. Figure 2.7 shows

an example of a star.

��
��
��
��

C

E

D

A

B

Figure 2.7: An example of a star tree.
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2.2 Quartet Trees

A quartet q is an unrooted binary phylogenetic tree over 4 taxa. For a taxa set A, B, C, D of

size 4, there are three possible unrooted binary phylogenetic trees, as shown in Figure 2.8.

A quartet has five edges. So a particular quartet can be rooted in five ways, in each case

choosing an edge as the root. Figure 2.9 shows all five rootings of the second unrooted tree in

Figure 2.8 considering the edges as root. Similarly, Figure 2.10 shows the two possible rooted

trees considering the two internal nodes of quartet ((A,D), (B,C)) as root.

A

C

B

D

A B

CD

A C

B D

Figure 2.8: Three possible unrooted trees over four taxa.

In Newick format, a quartet is usually represented as ((A,B), (C,D)) (the rightmost quar-

tet in Figure 2.8). This expression means that there is an edge separating A and B from C

and D (note that this does not mean that A is closer to B than to C). The same quartet

could have been written as ((B,A), (D,C)), or ((C,D), (A,B)), etc, since swapping the sib-

lings does not change the tree topology. Also (C,D, (A,B)) and (A,B, (C,D)) correspond to

the Newick expressions for the rooted trees which are generated from the same unrooted tree

((A,B), (C,D)) (Figure 2.11) by taking its internal nodes as root respectively. Since an un-

rooted tree is expressed in Newick format by first considering any rooted version of the tree and

then write down the Newick expression for the rooted version, so a single quartet has several

Newick representations.

2.2.1 Quartet Consistency

A quartet ((A,B), (C,D)) is consistent with a tree T if in T , there is an edge (or path in

general) separating A and B from C and D. For any four taxa, only one (out of 3 possible

quartets) will be consistent with a tree T . In Figure 2.12 among the three quartets, quartet 1
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C

Figure 2.9: Five possible rooting of the unrooted tree ((A,D), (B,C)) by taking an edge as

root.

is consistent with tree T as there exists an edge in T such that it separates A and C from B

and D. Other two quartets are inconsistent with T as no such edge exists in T .

2.2.2 Tree Bipartition

A bipartition of an unrooted tree T is formed by taking any edge in T , and writing down

the two sets of taxa that would be formed by deleting that edge. Note that when the edge is

incident to a taxon, then the bipartition is trivial - it splits the set of taxa into one set with a

single taxon, and the other set with the remaining taxa. These bipartitions are present in all

trees with any given taxa set. Hence, we will focus just on the non-trivial bipartitions. That

is, we will consider only the internal edges (not incident to a taxon) for a bipartition.

Consider T be a tree over the taxa set P . Now, if we take an internal edge e belongs to

edge set of T and delete e, then we get two subtrees, namely, Ta and Tb. Let Pa and Pb be the
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D

A

B

C

B

C

A

D

Figure 2.10: Two possible rooting of the unrooted tree ((A,D), (B,C)) by taking an internal

node as root.

A

B D

C

(A, B, (C, D))

((A, B), (C, D))

(C, D, (A, B))

Figure 2.11: Different Newick expressions for the same quarter. Arrow denotes the choice of

rooting position.

taxa sets of Ta and Tb respectively. We shall denote a bipartition as (Pa, Pb). Thus an internal

edge in T corresponds to a bipartition of P .

Let q = ((A,B), (C,D)) be a quartet, where A, B, C, D ∈ P . If we want to test the

consistency of q with respect to T , we need to find out a bipartition (Pa, Pb) such that A,B ∈ Pa

and C,D ∈ Pb or A,B ∈ Pb and C,D ∈ Pa. Now, we will define the status of a quartet q with

respect to a given bipartition (Pa, Pb).

A quartet q = ((A,B), (C,D)) is satisfied with respect to a bipartition (Pa, Pb) if taxa

A and B reside in one part and taxa C and D reside in the other. A satisfied quartet is



2.2. QUARTET TREES 25

A

C

B

D

A B

CD

A C

B D

A C F B

E D

T

1 2 3

Figure 2.12: Quartet consistency with a tree T .

consistent with T .

A quartet q = ((A,B), (C,D)) is violated with respect to a bipartition (Pa, Pb) if taxa A

and C (or A and D) reside in one part and taxa B and D (or B and C) reside in the other

part.

A quartet q = ((A,B), (C,D)) is deferred with respect to a bipartition (Pa, Pb) if any three

of its four taxa reside in one part and the fourth one in the other part.

In Figure 2.13, Q is the input quartet set, P is the taxa set and T is the resultant tree. We

consider a bipartition of the taxa as {1, 2, 3} and {4, 5, 6}. This bipartition corresponds to the

dotted edge in T . With respect to this partition q2, q5 and q6 are satisfied, q1, q3 and q4 are

deferred and q7 is violated.

2.2.3 Supertrees and Quartet based supertree methods

Let T = {T1, T2, . . . , Tn} be a set of n phylogentic trees. Consider, P1, P2, . . ., Pn be the taxa

sets of T1, T2, . . ., Tn respectively and P = {P1

∪
P2

∪
. . .

∪
Tn}. A supertree method will be



26 CHAPTER 2. PRELIMINARIES

Q

q1 : ((1, 2), (3, 4)) q2 : ((1, 2), (5, 6))

q3 : ((1, 3), (2, 4)) q4 : ((3, 4), (5, 6))

q5 : ((2, 3), (4, 5)) q6 : ((1, 3), (5, 6))

q7 : ((1, 4), (2, 6))

P = {1, 2, 3, 4, 5, 6}

Pa = {1, 2, 3} Pb = {4, 5, 6}

2

1 5

63 4

T

Figure 2.13: Example of satisfied, violated and deferred quartets with respect to a partition.

defined as any function that takes as input a collection T of phylogenetic trees, and returns a

tree, or a collection of trees, with taxa set P. The input trees to supertree methods are called

source trees, and a tree in the output is often referred to as a supertree. If all the source

trees are quartets, then a supertree method is referred to as a quartet based supertree method.

Steps of Quartet Based Supertree Reconstruction

Given a set S of n aligned molecular sequences of n species. Let, P be the taxa set containing

these n species. The quartet method has following three steps:

• Step 1 [Selection of Subsets]: The method first selects a set P ′ of subsets of size 4

from P . The subsets can be overlapping, i.e., one taxon may exist in multiple 4-element

subsets. But union of all subsets in P ′ must return P .
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• Step 2 [Estimation of Source Trees]: For each subset in P ′, a quartet is estimated by

analyzing the 4 sequences (taken from S) of the corresponding 4 species. The analysis is

done using any sequence based method (for example, maximum likelihood method). All

these estimated quartets makes the quartet set Q.

• Step 3 [Inference of Supertree]: An amalgamation method is applied to combine the

collection of the quartet trees.

2.3 Algorithms and Complexity

In this section, we briefly introduce some terminologies related to the theory of algorithms and

complexity. For a more in-depth knowledge, the readers are referred to refer to [13, 6, 16].

2.3.1 Big-O Notation

The most widely accepted complexity measure for an algorithm is the running time which is

expressed by the number of operations it performs before producing the final answer. Instead

of reporting that an algorithm takes, say, 5n3 + 4n + 3 steps on an input of size n, it is much

simpler to leave out lower-order terms such as 4n and 3 (which become insignificant as n

grows), and even the detail of the coefficient 5 in the leading term (computers will be five times

faster in a few years anyway), and just say that the algorithm takes time O(n3) (pronounced

“big oh of n3”). The reason behind such simplification is that we are often interested only

in the “asymptotic behavior”, that is, the behavior of the algorithm, when applied to very

large inputs, which is insensitive to constant factors and low order terms. We now define this

notation precisely. Let f(n) and g(n) are the functions from the positive integers to the positive

reals, then we write f(n) = O(g(n)) (which means that f(n) grows no faster than g(n)) if there

exists positive constants c1 and c2 such that f(n) ≤ c1g(n) + c2 for all n.

This cavalier attitude toward constants in case of big-O notation may seem very rude since

programmers and algorithm developers are very interested in constants and give tremendous

effort in order to make an algorithm run faster even by a factor of 2. But understanding and
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analyzing algorithms at theoretical level would be impossible without the simplicity afforded

by big-O notation.

2.3.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities are

O(n), O(n log n), O(n100), etc. An algorithm that is guaranteed to terminate within a number

of steps which is a exponential function of the size of the problem, is called exponential or

nonpolynomial algorithm. Suppose, we need to check every binary number of n digits to find a

solution of a problem, so the complexity is O(2n). Now if we add an extra digit, we must check

two times as many numbers. In contrast, when the running time of an algorithm is bounded

by O(n), we call it a linear-time algorithm or simply a linear algorithm.

2.3.3 Complexity Classes

We first introduce some important concepts. Decision problems refer to the algorithmic ques-

tions that can be answered by ‘yes’ or ‘no’.

A deterministic algorithm is an algorithm which, given a particular input, will always pro-

duce the same output, with the underlying machine always passing through the same sequence

of states. All computers that exist exist now, run deterministically. Deterministic algorithms

can be defined in terms of a state machine: a state describes what a machine is doing at

a particular instant in time. Let, just after we enter the input, the machine is in its initial

state or start state. A deterministic algorithm uniquely determines at most one next state

from all possible choices of next states. In contrast, a nondeterministic algorithm is one which

determines many states as the next state simultaneously. We may regard a nondeterministic

algorithm as having the capability of branching off into many copies of itself, one for the each

next state. Thus, while a deterministic algorithm must explore a set of alternatives one at a

time, a nondeterministic algorithm examines all alternatives at the same time.

A problem P1 is polynomially reducible to problem P2 (P1 ≤p P2) if there exists a polynomial
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time algorithm that transforms every instance I1 of P1 to an instance I2 of P2 such that the

answer to I1 is “yes” (I1 ∈ P1) if and only if the answer to I2 is “yes” (I2 ∈ P2).

The Class P

P is the class of problems that can be solved by deterministic polynomial time algorithm.

This implies that there is a deterministic algorithm that takes as input an instance I and has

a running time polynomial in I such that if I has a solution, the algorithm returns such a

solution; and if I has no solution, the algorithm correctly reports so. Clearly P ⊆ NP . But

the question, “P = NP?” is still unresolved. It is widely believed that P ̸= NP . However,

proving this has turned out to be extremely difficult, one of the deepest and most important

unsolved puzzles of mathematics.

The Class NP

NP is the class of problems – solutions of which can be verified deterministically in polyno-

mial time. This means that there is an efficient (low-order polynomial) deterministic checking

algorithm C that takes as input the given instance I (the data specifying the problem to be

solved), as well as the proposed solution S, and outputs true if and only if S really is a solution

to instance I. Moreover the running time of C(I, S) is bounded by a polynomial in |I|. We

can also define NP as the class of decision problems that can be solved nondeterministically in

polynomial time, which is why NP stands for “nondeterministic polynomial time.”

The class NP -complete and NP -hard

A problem p is NP -complete if it satisfies the following two conditions.

1. p ∈ NP .

2. For every problem p′ ∈ NP , p′ ≤p p.

A problem satisfying condition 2 is said to be NP -hard, whether or not it satisfies condition

1. NP -complete problems are considered to be the hardest problems in NP . These problems

have the following interesting properties.
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(a) No NP -complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-complete problem, then there are polynomial

algorithms for all NP-complete problems.

2.3.4 Heuristic Algorithms

In computer science, a heuristic algorithm, or simply a heuristic, is an algorithm that is able to

produce an acceptable solution to a problem in many practical scenarios, but for which there is

no formal proof of its correctness. Alternatively, it may be correct, but may not be proven to

produce an optimal solution, or to use reasonable resources. Heuristics are typically used when

there is no known method to find an optimal solution, under the given constraints (of time,

space etc.) or at all. These algorithms, usually find a solution close to the best one and they

find it fast and easily. Sometimes these algorithms can be accurate, that is they actually find

the best solution, but the algorithm is still called heuristic until this best solution is proven to

be the best. The method used for a heuristic algorithm is one of the known methods, such as

greediness, but in order to be easy and fast the algorithm ignores or even suppresses some of

the problem’s demands. Heuristics rely on ingenuity, intuition, a good understanding of the

application and meticulous experimentation to attack a problem [6].

2.3.5 Divide and Conquer Algorithms

In computer science, divide and conquer is an important algorithm design paradigm based on

multi-branched recursion. The divide-and-conquer strategy solves a problem by: 1) breaking

it into subproblems that are themselves smaller instances of the same type of problem, 2)

recursively solving these subproblems, and 3) appropriately combining their answers. The

real work is done piecemeal, in three different places: in the partitioning of problems into

subproblems; at the very tail end of the recursion, when the subproblems are so small that

they are solved outright; and in the gluing together of partial answers. These are held together

and coordinated by the algorithm’s core recursive structure [6]. This technique is the basis of
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efficient algorithms for numerous problems, such as sorting (e.g., quicksort, merge sort).

2.4 Problem Definition

In this thesis, we focus on the inference of a supertree from a given set of quartets. In this

section, we will define the optimization problem that we address in reconstructing supertree

from a set of quartets. Before we formally define the problem, we first discuss two important

concepts, quartet compatibility and resolved quartet.

Consider a set Q = {q1, q2, . . . , qn}, where qi is a quartet over a set, pi, of 4 taxa. Q is

said to be compatible if there is a phylogenetic tree T on P = p1
∪
p2

∪
. . .

∪
pn, such that

each qi ∈ Q is consistent with T . In this case, the quartet set Q and the tree T are said to be

consistent. An quartet is called resolved if every internal node has degree three [34].

Suppose we are given a set Q of resolved quartets on P , where P is a set of n taxa. For

given a tree T , consistency of T with Q can be verified by checking each resolved quartet in Q

against T . The Quartet Compatibility Problem is the problem of determining the existence of

a phylogeny T on P that satisfies all the quartets. This is an NP -complete [34] problem.

Quartet-based supertree reconstruction addresses the problem of Maximum Quartet Con-

sistency (MQC), which is a natural optimization problem. This problem takes a quartet set Q

as input and finds a phylogenetic tree T such that maximum number of quartets in Q become

consistent with T (or T satisfies maximum number of quartets). Now we formally define the

optimization problem that we address in this thesis.

Problem 1 Maximum Quartet Consistency.

Input: A set of quartets Q on a taxa set P .

Output: A phylogenetic tree T on P such that T satisfies the maximum number of quartets of

Q.

The Maximum Quartet Consistency (MQC) problem represents an NP-hard optimization prob-

lem [34]. Existing approaches for the MQC problem can be categorized as either heuristic or
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exact. Exact methods such as exhaustive searches or branch and bound algorithms are pro-

hibitively time consuming for large datasets. They are applicable in inferring phylogenetic tree

for a limited number of taxa. Therefore, for any substantial problem (hundreds of taxa) we

are forced to rely on heuristics to guide a limited search of tree space in the hope of finding

good (optimal or near optimal) trees. The focus of the thesis is on heuristic solutions for the

MQC problem as we aim to build the phylogenetic tree for several hundreds of taxa.

2.5 Summary

In this chapter, we have introduced some basic concepts and terminology related to phylogeny

and algorithm theory. In Section 2.1, we described the basic concepts related to phylogenetic

trees - tree structure, representation etc. Then in Section 2.2 we defined a quartet - its structure,

representation and other concepts related to quartet based phylogeny. The concepts related

to algorithm theory were discussed in Section 2.3. Finally, in Section 2.4 we have defined the

optimization problem that we are addressing in this thesis.



Chapter 3

Quartet Based Phylogenetic Tree

Reconstruction

In this chapter we give our heuristic algorithm of constructing a phylogenetic tree from a set

of input quartets. Our quartet based reconstruction technique follows a divide and conquer

approach. The divide and conquer approach uses a bipartition technique which is inspired

by the famous Fiduccia Mattheyses (FM) bipartition technique [5]. So we call our algorithm

Quartet FM (QFM) algorithm. In Section 3.1 we present the overall divide and conquer

approach. Then we describe our bipartition technique in Section 3.2 and its time complexity

in Section 3.4.

3.1 Algorithm QFM

Let, Q be a set of quartets over a set of taxa, P . Algorithm QFM aims to construct a tree T ,

satisfying the largest number of input quartets possible. The divide and conquer approach re-

cursively creates bipartition of the taxa set p, where each bipartition corresponds to an internal

edge in the tree under construction. We shall describe the bipartition algorithm in Section 3.2.

33
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3.1.1 The Divide and Conquer Approach

Divide Step: At each recursive step, we partition the taxa set P into two sets Pa and Pb.

After the algorithm partitions the taxa set, it augments each part with a uniquely denoted

dummy (artificial) taxon. This taxon will play a role while returning from recursion. After the

addition of the dummy taxon to the sets Pa and Pb, we subdivide the quartet set Q into two

sets, Qa and Qb. A quartet set Qi takes those quartets ((a, b), (c, d)) from Q such that either

all four taxa a, b, c and d or any three of the four taxa belong to Pi. That is, a quartet q ∈ Q,

such that q is satisfied or violated, is not considered to be included in Qa or Qb. Moreover, in

every deferred quartet (three taxa are in the same part), the other taxon is renamed by the

name of the dummy taxon and the quartet continues to the next step (each such taxon in all

deferred quartets is renamed to the same name). Thus we get, two (Qi, Pi) pairs corresponding

to each bipartition. We then recurse on both pairs (Qa, Pa) and (Qb, Pb). The recursion ends

when quartet set Q is empty or |P | < 3. We then return a depth 1 tree (star) over the taxa set

P .

Conquer Step: On return from the recursion, at each step, we have two trees, T1 (correspond-

ing to (Qa, Pa)) and T2 (corresponding to (Qb, Pb)). These two trees are rerooted such that the

dummy taxon serves as root in each tree. Then the dummy taxon is removed from each tree

and the two roots are joined by an internal edge. Thus we get the merged tree T where each

bipartition corresponds to an internal edge.

Figure 3.1 describes the high level divide and conquer algorithm. Let Q be the input quar-

tet set and P be the corresponding taxa set. Q = {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((2, 3), (4, 5)),

((1, 2), (5, 6)), ((3, 4), (5, 6)), ((1, 3), (5, 6))}. Hence, P = {1, 2, 3, 4, 5, 6}. P is bipartitioned

into two sets, Pa = {1, 2, 3, X} and Pb = {4, 5, 6, X}. Here, X is a dummy taxon. The way

this bipartition is returned will be illustrated for this pair of (P,Q) in Section 3.2. The bipar-

tition (Pa, Pb) satisfies quartets q3 : ((2, 3), (4, 5)), q4 : ((1, 2), (5, 6)) and q6 : ((1, 3), (5, 6)) from

Q. So these quartets will not be considered in the next level. Qa takes q1 : ((1, 2), (3, 4)) and

q2 : ((1, 3), (2, 4)) as three of the taxa of q1 and q2 reside in Pa. We replace the taxon which does

not belong to Pa with the dummy taxonX. Hence we get Qa = {((1, 2), (3, X)), ((1, 3), (2, X))}.
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Similarly we get Qb = {((X, 4), (5, 6))}. Both Pa and Pb have been partitioned further into

(Paa , Pab) and (Pba , Pbb). The partition (Paa , Pab) satisfies ((1, 2), (3, X)) and violates ((1, 3), (2, X))

of Qa and (Pba , Pbb) satisfies the only quartet of Qb. So the quartet sets for the next level are

empty. In such case, no more recursion is required. We return a star for each of the taxa sets

Paa , Pab , Pba and Pbb . The returned trees are merged by removing the dummy taxon of that

level and joining the branches of dummy taxa. In Figure 3.1, the upper half shows the divide

steps. The depth one trees are returned when no more recursion is required. The lower half of

Figure 3.1 shows how the trees are returned and merged upon return from recursion. Thus we

get the final merged tree (((1, 2), 3), (4, (5, 6))) (at bottom) satisfying 5 quartets in total. The

satisfied quartets are q1, q3, q4, q5 and q6 (Figure 3.1).

3.1.2 Pseudocode of QFM

The pseudocode of Algorithm QFM is given in Figure 3.2. This is a recursive algorithm which

takes a taxaset P and a quartet set Q as input. The recursion terminates when either of the

following conditions gets true.

• Cardinality of P is less then or equal to 3

• Q is empty.

The algorithm uses five procedures, namely, DEPTH ONE TREE, MFM, POPULATE, RE-

ROOT and MERGE. These procedures work as follows:

• DEPTH ONE TREE(P ): It returns a star T over the taxa set P .

• MFM(P , Q): It takes taxaset P and quartet set Q as input and returns a bipartition of

the taxa set. The underlying algorithm is described in Section 3.2.

• POPULATE(Pi, Q, dummy): It takes one part (let, Pi) of the bipartitioned taxa set

as input. Also it takes the quartet set Q and an artificial taxon dummy as input. The

function of this procedure is to populate the quartet set Qi corresponding to Pi. It checks
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each quartet q ∈ Q and decides whether to insert it on Qi based on the following

conditions.

– If all four taxa of q belong to Pi, then add q to Qi.

– If any three of the four taxa of q belong to Pi, then replace the taxon which does

not belong to Pi with dummy and add the resultant quartet to Qi.

• REROOT(Ti, dummy): The tree Ti is rerooted such that the artificial taxon dummy

serves as the root of the resultant tree T
′
i .

• MERGE(Ti, Tj, dummy): It takes two trees Ti and Tj as input which are already rooted

at taxon dummy. Then, it removes the taxon dummy from each tree and joins the trees

by an internal edge connecting the root nodes. Finally, it returns the merged tree T .

3.2 Method of Bipartition

The most crucial part of our algorithm is the bipartition (divide step) technique. Here, we adopt

a new bipartition technique inspired from the famous Fiduccia and Mattheyses (FM) algorithm

for bipartitioning a hyper graph minimizing the cut size [5]. This is why our algorithm is referred

to as the MFM (Modified FM) Bipartition Algorithm. Before we give our bipartition algorithm

we shall discuss about the components of the algorithm. First, in Section 3.2.1 we describe

the algorithmic components of Algorithm MFM. Next, in Section 3.2.2 we describe the generic

MFM algorithm. Then in Section 3.3 we describe six different versions of the generic MFM

algorithm.

3.2.1 Algorithmic Components of MFM

Algorithm MFM takes a pair of taxa set and a quartet set (P , Q) as input. It partitions P

into two sets, namely, Pa and Pb with an objective that (Pa, Pb) satisfies maximum number of

quartets from Q. The algorithm starts with an initial partition and iteratively searches for a
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better partition. We will use a heuristic search to find the best partition. Before we describe

the steps of the algorithm, we describe the algorithmic components.

Partition Score:

We assess the quality of a partition by assigning a partition score. We use a scoring function,

Score(Pa, Pb, Q), such that higher score will indicate a better partition. This function checks

each q ∈ Q against the partition (Pa, Pb) and determines whether q is satisfied, violated or

deferred. We will define the score function in terms of the number of satisfied and violated

quartets. Let s and v denote the number of satisfied and violated quartets. Then, two natural

ways of defining the score function are: 1) taking the difference between the number of satisfied

and violated quartets (s − v), and 2) taking the ratio of the number of satisfied and violated

quartets (s/v). We can also use some other complicated score functions defined in terms of the

number of satisfied, violated and deferred quartets (i.e., Score(Pa, Pb, Q) = f(s, v, d), where d

denotes the number of deferred quartets).

Gain Measure:

Let (Pa, Pb) be a partition of set of taxa P . Let t ∈ P be a taxon and without loss of generality

we assume that t ∈ Pa. Let (P ′
a, P

′
b) be the partition after moving the taxa t from Pa to Pb.

That means, P ′
a = Pa− t, and P ′

b = Pb∪ t. Then we define the gain of the transfer of the taxon

t with respect to (Pa, Pb), denoted by Gain(t, (Pa, Pb)), as Score(P
′
a, P

′

b , Q)− Score(Pa, Pb, Q).

Singleton Bipartition:

A singleton bipartition is a bipartition with a single taxon in one (or both) of the partitions.

We do not allow our bipartition algorithm to return a singleton bipartition to avoid the risk of

infinite loop.
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3.2.2 Algorithm MFM

Now we describe the steps of the generic MFM (Modified FM) Bipartition Algorithm. Let,

(P , Q) be the input to the bipartition algorithm, where P be a set of taxa and Q be a set of

quartets over the taxa set P .

We start with an initial bipartition (Pa0 , Pb0) of P . Obtaining (Pa0 , Pb0), we search for a

better partition iteratively. At each iteration, we perform a series of transfers of taxa from

one partition set to the other to maximize the number of satisfied quartets. At the beginning

of an iteration, we set the status of all the taxa as free. Then, for each free taxon t ∈ P ,

we calculate Gain(t, (Pa0 , Pb0)), and find the taxon t1 with the maximum gain. There can be

more than one taxa with the maximum gain where we need to break the tie. We will discuss

this issue later. Next we transfer t1 and set the status of this taxon as locked in the new

partition that indicates that it will not be considered to be transferred again in this current

iteration. This transfer creates the first intermediate bipartition (Pa1 , Pb1). The algorithm then

find the next free taxon t2 with maximum gain with respect to (Pa1 , Pb1), and transfer and

lock that taxon to create another intermediate bipartition (Pa2 , Pb2). Thus we transfer all the

free taxon one by one. Let Q be the input quartet set and P be the corresponding taxa set.

Q = {((1, 2), (3, 4)), ((1, 2), (5, 6)), ((1, 3), (2, 4)), ((3, 4), (5, 6)), ((2, 3), (4, 5)), ((1, 3), (5, 6))}

(same as used in Figure 3.1). In this example, we used s − v as the partition score. Hence,

P = {1, 2, 3, 4, 5, 6}. Assume that following the steps of the initial bipartition, we get the

initial bipartition Pa0 = {1, 2} and Pb0 = {3, 4, 5, 6}. Figure 3.3 shows the first iteration of the

bipartition algorithm.

Let {t1, t2, . . . , tn} be the ordering of locking. That is, t1 has been locked first, then t2, t3

and so on. Let, the gain values of the corresponding partitions are:

Gain(t1, (Pa0 , Pb0)), Gain(t2, (Pa1 , Pb1)), . . . , Gain(tn, (Pan−1 , Pbn−1)).

Now we define the cumulative gain up to kth transfer as

CGain(k) =
k∑

i=1

Gain(ti, (Pai−1
, Pbi−1

)).
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The maximum cumulative gain, MCGain(t1, t2, . . . , tn) is defined as

MCGain({t1, t2, . . . , tn}) = max1≤i≤nCGain(i).

In each iteration the algorithm finds the current ordering ({t1, t2, . . . , tn}) of the transfers and

save this order in a log table along with the cumulative gains (see Table 2 for example). Let

tm be the taxon in the log table corresponding to the MCGain({t1, t2, . . . , tn}), that means we

obtain the maximum cumulative gain after moving the mth taxon (with respect to the order

stored in the log table). Then we rollback the transfers of the taxa (tm+1, . . . , tn) that were

moved after tm. Let the resultant partition after these rollbacks is (Pa, Pb). This partition

will be the initial partition for the next iteration. In this way, the algorithm continues as long

as the maximum cumulative gains is greater than zero and return the resultant bipartition.

Table 3.1 lists the ordering of locking, corresponding gain and cumulative gain with respect

to the iteration illustrated in Figure 3.3. From Table 3.1 we note that we get maximum

cumulative gain 2 after moving taxon 3. Here, we also get maximum value of cumulative gain

after moving taxon 4. We break the tie arbitrarily. We consider the taxon for which we get

maximum cumulative gain for the first time. For this example, we get maximum cumulative

gain 2 at taxon 3 for the first time. So we rollback all the moves after that move. The resultant

partition after this rollback is ({1, 2, 3}, {4, 5, 6}) (partition (Pa1 , Pb1) in Table 1). Similarly,

Table 3.2 lists the ordering of locking, corresponding gain and cumulative gain with respect

to the iteration next to the iteration illustrated in Figure 3.3. From Table 3.2 we get that

the maximum cumulative gain 0, so the moves are rolled back and we get the final resultant

partition ({1, 2, 3}, {4, 5, 6}).

The bipartitioning of a taxa set P is done at each divide step (see Section 3.1.1). At each

divide step we have a (P,Q) pair as input. The bipartition algorithm returns a bipartition

(Pa, Pb) of the taxa set P . We then divide Q into Qa and Qb and obtain (Pa, Qa) and (Pb, Qb)

pairs. Pa and Pb will be further bipartitioned in subsequent divide steps. The pseudo-code of

the bipartition method MFM is given in Figure 3.4.
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k Taxon Gain CGain(k)

1 3 2 2

2 4 0 2

3 2 −2 0

4 1 −1 −1

5 5 −1 −2

6 6 2 0

Table 3.1: The log table corresponding to the iteration shown in Figure 3.3

k Taxon Gain CGain(k)

1 4 0 0

2 2 −2 −2

3 1 −1 −3

4 5 −1 −4

5 6 2 −2

6 3 2 0

Table 3.2: The log table corresponding to the next iteration of the iteration shown in Figure 3.3

3.3 Variations of Algorithm MFM

In this section we shall discuss different versions of MFM algorithm, where these versions differ

from one another in i) initial partitioning, ii) partition score, and iii)selection of free taxon. We

have implemented Algorithm QFM using six different approaches of Algorithm MFM. Thus we

get six different versions of QFM. Performance of these different approaches are summarized in

Chapter 4.

3.3.1 Algorithm MFM - Ia

This version of the MFM algorithm has the following characteristics:
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• Random Initial Partition: Let P be the input taxa set and Q be input quartet set.

Initially Pa0 and Pb0 is empty. We select each taxon from P and insert it into Pa0 and Pb0

alternative manner. Finally, we get Pa0 and Pb0 which are balanced, that is, the difference

of their cardinality is either 0 or 1.

• Partition Score: Let Pa and Pb be the current partition and Q be the quartet set. The

partition score is computed using the following formula:

Score(Pa, Pb, Q) = s − v

where s and v are the number of satisfied and the number of violated quartets (respec-

tively) in Q with respect to the partition (Pa, Pb).

• Selection of free taxon: At each iteration, all the free taxa are moved to the other

partition one by one. Among multiple choices of free taxa, we select the taxon with

maximum gain. If there are multiple choices of such a taxon, then we select the taxon

among those choices, transfer of which satisfies maximum number of quartet. If there is a

tie again, we break the tie at random. The most important point is, here we do not keep

any check whether the transfer of the selected taxon creates a singleton partition or not.

3.3.2 Algorithm MFM - Ib

This version of the MFM algorithm is almost similar to the previous version (Section 3.3.1). It

differs from the previous version in the following characteristic:

Partition Score

Let Pa and Pb be the current partition andQ be the quartet set. The partition score is computed

using the following formula:

Score(Pa, Pb, Q) = (s − v) + s/v

where s and v are the number of satisfied and the number of violated quartets (respectively) in

Q with respect to the partition (Pa, Pb).
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The pseudocode for initial partition for Algorithm MFM - Ia and MFM - Ib is given in

Figure 3.5. We call this version Initial Partition - I.

3.3.3 Algorithm MFM - IIa

MFM - II noticeably differs from MFM - I in the way of initial partition and the choice of free

taxon. The characteristics of this version are summarized below.

Initial Bipartition

Let Q = q1, q2, . . . , qm, where m = |Q| be the input quartet set. Initially both Pa0 and Pb0 are

empty. Now we consider the quartets of Q one by and do the following.

Let q = ((t1, t2), (t3, t4)) be a quartet in Q. If none of the 4 taxa belongs to either Pa0 or

Pb0 , then we insert t1 and t2 in Pa0 and t3 and t4 in Pb0 . Otherwise, if any of the 4 taxa exists

in either Pa0 or Pb0 we take the following actions to insert a taxon which doest not exist in Pa0

or Pb0 . We maintain an insertion order. We consider t1, t2, t3 and t4 respectively.

• To insert t1, we look for the partition of t2 (if t2 exists in any part) and inset t1 into that

partition. But if t2 does not exist in either of the partition, then we look for the partition

of either t3 or t4 (either of these two must exist in Pa0 or Pb0) and inset t1 into the other

partition.

• To insert t2, we look for the partition of t1 and inset t2 into that partition.

• To insert t3, we look for the partition of t4 (if t4 exists in any part) and inset t3 into that

partition. But if t4 does not exist in either of the partition, then we look for the partition

of either t1 and inset t3 into the other partition.

• To insert t4, we look for the partition of t3 and inset t4 into that partition.

When we insert a taxon t to any part, we remove it from P . After considering each q ∈ Q and

inserting taxa accordingly, if P remains non-empty, we insert the remaining taxa to either part

randomly.
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Partition Score

Let Pa and Pb be the current partition andQ be the quartet set. The partition score is computed

using the following formula:

Score(Pa, Pb, Q) = s − v

where s and v are the number of satisfied and the number of violated quartets (respectively) in

Q with respect to the partition (Pa, Pb).

Selection of free taxon - check for singleton partition

The way follow for initial partition may result in imbalanced partition (majority of taxa in one

part and a few taxa in the other part) which may result in a singleton partition in the course

of transferring free taxon from one partition to the other. We should not allow any singleton

bipartition to avoid infinite loop. Therefore, we need to add some additional conditions in

selecting the free taxon so that its transfer does not result in a singleton partition. Also,

there could be more than one taxa with maximum gain, where we need to decide which one to

transfer. We consider the following cases to address these issues. Let, M be a set of taxa with

maximum gain.

• Case 1: |M | = 1 and transfer of t ∈ M will not result in a singleton partition. Then, we

transfer taxon t.

• Case 2: |M | > 1 and all the corresponding partitions are singleton. In that case, we look

for a taxon with second highest maximum gain. Now, assume that M ′ contains the taxa

with second highest maximum. Then we select one taxon considering these cases for M ′

as we did for M . And we continue in this way further if appropriate.

• Case 3: |M | > 1 and at least one corresponding partition is not singleton. If there is

only one taxon, transfer of which will not result in a singleton partition then that taxon

is selected to be transferred. In case of a tie, we find out the taxon (taxa), for which

the corresponding partition(s) satisfies (satisfy) the maximum number of quartets. If one
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such taxon is available, then we choose that taxon for the transfer. Otherwise, if we have

multiple such taxa available, we choose one taxon to transfer at random.

3.3.4 Algorithm MFM - IIb

This version of the MFM algorithm is almost similar to the previous version (Section 3.3.3) in

the way of initial partition and selection of free taxon. It differs from the previous version in

the following characteristic:

Partition Score

Let Pa and Pb be the current partition andQ be the quartet set. The partition score is computed

using the following formula:

Score(Pa, Pb, Q) = (s − v) + s/v

where s and v are the number of satisfied and the number of violated quartets (respectively) in

Q with respect to the partition (Pa, Pb).

The pseudocode for initial partition for Algorithm MFM - IIa and MFM - IIb is given in

Figure 3.6. We call this version Initial Partition - II.

3.3.5 Algorithm MFM - IIIa

MFM - III noticeably differs from MFM - II in the way of initial partition. The characteristics

of this version are summarized below.

Initial Bipartition

The initial bipartitioning is done in four steps.

• Step 1: We count the frequency of each distinct quartet in Q.

• Step 2: Then sort Q by the frequency count of the quartets in non increasing order.
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• Step 3: Suppose after sorting Q = q1, q2, . . . , qm, where m = |Q|. Now we consider the

quartets one by one in the sorted order. Initially both Pa0 and Pb0 are empty.

Let q = ((t1, t2), (t3, t4)) be a quartet in Q. If none of the 4 taxa belongs to either Pa0

or Pb0 , then we insert t1 and t2 in Pa0 and t3 and t4 in Pb0 . Otherwise, if any of the 4

taxa exists in either Pa0 or Pb0 we take the following actions to insert a taxon which doest

not exist in Pa0 or Pb0 . We maintain an insertion order. We consider t1, t2, t3 and t4

respectively.

– To insert t1, we look for the partition of t2 (if t2 exists in any part) and inset t1 into

that partition. But if t2 does not exist in either of the partition, then we look for

the partition of either t3 or t4 (either of these two must exist in Pa0 or Pb0) and inset

t1 into the other partition.

– To insert t2, we look for the partition of t1 and inset t2 into that partition.

– To insert t3, we look for the partition of t4 (if t4 exists in any part) and inset t3 into

that partition. But if t4 does not exist in either of the partition, then we look for

the partition of either t1 and inset t3 into the other partition.

– To insert t4, we look for the partition of t3 and inset t4 into that partition.

• Step 4: When we insert a taxon t to any part, we remove it from P . After considering each

q ∈ Q and inserting taxa accordingly, if P remains non-empty, we insert the remaining

taxa to either part randomly.

Partition Score

Let Pa and Pb be the current partition andQ be the quartet set. The partition score is computed

using the following formula:

Score(Pa, Pb, Q) = s − v

where s and v are the number of satisfied and the number of violated quartets (respectively) in

Q with respect to the partition (Pa, Pb).
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Selection of free taxon - check for singleton partition

The way follow for initial partition may result in imbalanced partition (majority of taxa in one

part and a few taxa in the other part) which may result in a singleton partition in the course

of transferring free taxon from one partition to the other. We should not allow any singleton

bipartition to avoid infinite loop. Therefore, we need to add some additional conditions in

selecting the free taxon so that its transfer does not result in a singleton partition. Also,

there could be more than one taxa with maximum gain, where we need to decide which one to

transfer. We consider the following cases to address these issues. Let, M be a set of taxa with

maximum gain.

• Case 1: |M | = 1 and transfer of t ∈ M will not result in a singleton partition. Then, we

transfer taxon t.

• Case 2: |M | > 1 and all the corresponding partitions are singleton. In that case, we

look for a taxon with second highest maximum gain. Now, M ′ contains taxa with second

highest maximum. Then we select one taxon considering these cases for M ′ as we did for

M . And we continue in this way further if appropriate.

• Case 3: |M | > 1 and at least one corresponding partition is not singleton. If there is

only one taxon, transfer of which will not result in a singleton partition then that taxon

is selected to be transferred. In case of a tie, we find out the taxon (taxa), for which

the corresponding partition(s) satisfies(satisfy) the maximum number of quartets. If one

such taxon is available, then we choose that taxon for the transfer. Otherwise, if we have

multiple such taxa available, we choose one taxon to transfer at random.

3.3.6 Algorithm MFM - IIIb

This version of the MFM algorithm is almost similar to the previous version (Section 3.3.5) in

the way of initial partition and selection of free taxon. It differs from the previous version in

the following characteristic:
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Partition Score

Let Pa and Pb be the current partition andQ be the quartet set. The partition score is computed

using the following formula:

Score(Pa, Pb, Q) = s − v + s/v

where s and v are the number of satisfied and the number of violated quartets (respectively) in

Q with respect to the partition (Pa, Pb).

The pseudocode for initial partition for Algorithm MFM - IIIa and MFM - IIIb is given in

Figure 3.7. We call this version Initial Partition - III.

3.4 Time Complexity

In this section, we shall derive the theoretical running time of Algorithm MFM (P , Q), where

P is a set of taxa and Q is a set of quartets over the taxa set P . Let, n and m be the cardinality

of taxa set P and the quartet set Q respectively. We first derive the running time for the Initial

Partition.

• Initial Partition - I: It inserts each taxa t ∈ P alternatively either in Pa or in Pb. So the

time complexity is O(n).

• Initial Partition - II: It checks each quartet q ∈ Q and inserts each of its 4 taxa either

in Pa or in Pb by checking the existing elements of Pa and Pb. The length of Pa or Pb is

bounded by O(n), so the time required to insert taxa of each quartet is O(n). Hence, the

total running time is O(nm).

• Initial Partition - III: In this approach, before we perform the steps of Initial Partition

- II, we first count the frequency of the distinct quartets in Q and sort Q by frequency

count. Each of the counting and the sorting step requires O(m2) running time. So the

total complexity is O(m2) + O(nm).
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Now we explain the time required for the remaining part of Algorithm MFM which is accom-

plished in several iterations. Let, the maximum cumulative gain becomes 0 in k iterations. The

time complexity per iteration is described below.

• Gain Measure of a Partition: The gain of a new partition is the difference between its

score and the score of initial partition. The difference is measured in O(1) time. We

need to find out the time required to calculated partition score of a partition (Pa, Pb). To

calculate score, each q ∈ Q is checked against the partition (Pa, Pb) which takes O(n)

since the length of Pa or Pb is bounded by O(n). Hence to check m quartets, that is, to

calculate partition score O(nm) time is required.

• SELECT FREE TAXON(P ): One taxon is selected among the free taxa. For each free

taxon Gain is measured and the taxa with maximum gain is selected. There are n free

taxa initially, so this step requires n × O(nm) = O(n2m) time. The selected taxon is

made locked.

• There are n free taxon initially. Each taxon is selected and locked one after another. So

the total time complexity to lock all the taxa = n×O(n2m) = O(n3m).

• Each locked taxon has a gain associated with it. When all taxa are locked, cumulative

gain and maximum cumulative gain are calculated. These take O(n) time.

Overall the running time for one iteration is O(n3m) + O(n) = O(n3m). For k iterations, the

time complexity becomesO(n3mk). Depending on the initial partition technique used, the time

complexity of initial partition will be added with this value to give the total time complexity

of Algorithm MFM.

3.5 Summary

In this chapter we discussed our quartet based phylogenetic tree reconstruction method. In

Section 3.1 we described our algorithm QFM. Then in Section 3.2 we presented the bipartition

algorithm that we use in Algorithm QFM. We described the generic approach of our bipartition
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algorithm MFM in Section 3.2.2. We discussed six different versions of Algorithm MFM in

Section 3.3. Finally, in Section 3.4 we derived the time complexity of Algorithm MFM (the

main contributing part of time complexity of QFM).
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Figure 3.1: Divide and conquer approach.
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Algorithm QFM(P , Q)

if |P | ≤ 3 or Q is empty

then T = DEPTH ONE TREE(P )

return T

else

(Pa, Pb) ← MFM(P , Q)

dummy ← uniquely generated artificial taxon

Pa ← {Pa

∪
dummy}

Pb ← {Pb

∪
dummy}

Qa ← POPULATE(Pa, Q, dummy)

Qb ← POPULATE(Pb, Q, dummy)

T1 = QFM(Pa, Qa)

T2 = QFM(Pb, Qb)

T
′
1 = REROOT(T1, dummy)

T
′
2 = REROOT(T2, dummy)

T = MERGE(T
′
1, T

′
2)

return T

Figure 3.2: QFM (Quartet FM Algorithm)
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Figure 3.3: An example iteration of the Bipartition Algorithm MFM. The locked taxa are

shown in circles.
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Algorithm MFM(P , Q)

(Pa0 , Pb0) ← INITIAL PARTITION(P , Q)

repeat always

FREE LOCKS(P ) //set the status of each taxon free

CLEAR LOG() //maintain a log file, initially blank

i← 1

while there is a free taxon do

begin

ti ← SELECT FREE TAXON(P) //find a free taxon to

transfer next

transfer ti to the other partition

update (Pai−1
, Pbi−1

) to (Pai , Pbi)

LOCK(ti) //set the status of taxon ti locked

LOG RECORD(ti, Gain(ti, (Pai−1
, Pbi−1

))) //write on log file

increment i

end do

FREE LOCKS()

check the log file and find MCGain(t1, t2, . . . , tn) and tm //cumu-

lative gain is maximum at the m-th transfer

if MCGain(t1, t2, . . . , tn) > 0

then

set new (Pa0 , Pb0) by rolling back the transfers that occurred

after the transfer of tm

CLEAR LOG()

continue with the the loop

else

terminate the algorithm and output current partition

end repeat

Figure 3.4: MFM (Modified Fiduccia Mattheyses Bipartition Algorithm)
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Procedure INITIAL PARTITION-I (P , Q)

Pa0 ← ϕ

Pb0 ← ϕ

flag ← 0

while P is not empty do

begin

Select any taxon t from P

if flag is zero

thenInsert t to Pa0

else Insert t to Pb0

Toggle flag and remove t from P

end do

return (Pa0 ,Pb0)

Figure 3.5: Pseudocode for Procedure Initial Partition - I
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Procedure INITIAL PARTITION-II (P , Q)

Pa0 ← ϕ

Pb0 ← ϕ

for each q = ((t1, t2), (t3, t4)) ∈ Q do

if t1, t2, t3, t4 non existent in Pa0 or in Pb0

then Insert t1 and t2 to Pa0

Insert t3 and t4 to Pb0

else

if t1 non existent in Pa0 or in Pb0

then if t2 exists in Pa0 or in Pb0

then Insert t1 to that partition

else if t3 exists in Pa0 or in Pb0

then Insert t1 to the other partition

else if t4 exists in Pa0 or in Pb0

then Insert t1 to the other partition

if t2 non existent in Pa0 or in Pb0

then Insert t2 to the partition where t1 exists

if t3 non existent in Pa0 or in Pb0

then if t4 exists in Pa0 or in Pb0

then Insert t3 to that partition

else Insert t3 to the partition where t1 does not exist

if t4 non existent in Pa0 or in Pb0

then Insert t4 to the partition where t3 exists

return (Pa0 , Pb0)

Figure 3.6: Pseudocode for Procedure Initial Partition - II



56 CHAPTER 3. QUARTET BASED PHYLOGENETIC TREE RECONSTRUCTION

Procedure INITIAL PARTITION-III (P , Q)

Pa0 ← ϕ

Pb0 ← ϕ

COUNT FREQUENCY(Q) //count the frequency of

each distinct quartet in Q

Q ← SORT BY FREQUENCY(Q) //sort quartets by

their frequency count

for each q = ((t1, t2), (t3, t4)) ∈ Q do

if t1, t2, t3, t4 non existent in Pa0 or in Pb0

then Insert t1 and t2 to Pa0

Insert t3 and t4 to Pb0

else

if t1 non existent in Pa0 or in Pb0

then if t2 exists in Pa0 or in Pb0

then Insert t1 to that partition

else if t3 exists in Pa0 or in Pb0

then Insert t1 to the other partition

else if t4 exists in Pa0 or in Pb0

then Insert t1 to the other partition

if t2 non existent in Pa0 or in Pb0

then Insert t2 to the partition where t1 exists

if t3 non existent in Pa0 or in Pb0

then if t4 exists in Pa0 or in Pb0

then Insert t3 to that partition

else Insert t3 to the partition where t1 does not exist

if t4 non existent in Pa0 or in Pb0

then Insert t4 to the partition where t3 exists

return (Pa0 , Pb0)

Figure 3.7: Pseudocode for Procedure Initial Partition - III



Chapter 4

Experimental Study

In this chapter we will present our experimental setup, data generation method, results and

analysis thereof. Before that, in Section 4.1 we will describe the accuracy measures for simula-

tion study and in Section 4.2 we will describe a general strategy of simulation study. Then in

Section 4.3 we will describe how we have performed our experiment on simulated data. We will

then highlight the data generation method (Section 4.3.1), result summary and comparison of

the 6 approaches of QFM (Section 4.3.2). Then in Section 4.3.3 we will analyze the accuracy of

QFM over QMC. Finally, in Section 4.4 we will explain our experimental results on biological

datasets.

4.1 Measure of Accuracy

Since the true tree is unknown, measuring the accuracy of an estimated tree is a big challenge. If

the true tree is known, then topological measures are used to determine how close the estimated

tree is with the true tree. Let us assume that the true tree is known; now we will discuss some

measures to determine the topological accuracy of the estimated tree.

Let T0 on taxa set S is the true tree, and T is an estimated tree for the same taxa set. Let

C(T0) and C(T ) are the sets of non-trivial bipartitions of T0 and T respectively. There are

several techniques that have been used to quantify errors in T with respect to T0, of which the

dominant ones are the followings:

57
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1. False Negatives (FN): The false negatives are those edges in T0 inducing bipartitions that

do not appear in C(T ). Such a branch is also called a “missing branch” or a “missing

edge”. The false negative rate is the fraction of the total number of non-trivial bipartitions

that are missing, or |C(T0)−C(T )|
|C(T0)| [19].

2. False Positives (FP): The false positives in a tree T with respect to the tree T0 are those

edges in T that induce bipartitions that do not appear in C(T0). The false positive rate

is the fraction of the total number of non-trivial bipartitions in T that are false positives,

or |C(T )−C(T0)|
|C(T )| [19].

3. Robinson-Foulds (RF) [27]: The most typically used error metric is the sum of the number

of false positives and false negatives, and is called the Robinson-Foulds distance. The sum

of the number of (internal) edges in both the model and the output trees is 2n−6 (where

n is the number of taxa in each tree) when both trees are binary. The sum of the number

of false positives and false negatives ranges from 0 (so the trees are identical) to at most

2n− 6. To turn this into an error rate, that number is divided by 2n− 6.

4.2 Design of Simulation Study

Simulation studies are widely used to evaluate the performance of phylogenetic reconstruction

methods, as well as that of supertree methods. Simulation studies are important for two reasons:

• When performing a phylogenetic analysis of real data, we do not typically know the true

tree for the taxa under study. In simulation studies we know the true tree because we

explicitly construct it, and can use this tree to measure the topological accuracy of the

tree(s) returned by a given tree inference method.

• Furthermore, the theoretical guarantees on performance for phylogenetic methods are

usually very loose. Simulations help overcome this problem by providing actual figures

on the topological accuracy of the trees returned by phylogenetic reconstruction methods,

as long as the model space is adequately explored, and the models are biologically relevant.
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The simulation study of a quartet based method involves the following four steps:

• Generate a model tree: Generate either a random or a biologically-based model tree T

over the taxa set under consideration. A biological model tree is one which is reconstructed

from a thorough analysis of a biological data set, and believed by experts to be the most

accurate estimate of the history of that set of taxa. A random model tree can be picked

uniformly at random from all possible tree topologies or by some random process.

• Generate quartets: Generate all possible induced quartets. An induced quartet is

generated by deleting all but the 4 leaf nodes of interest with the edges incident to those

and suppressing all degree two nodes. Figure 4.1 shows an example. In this example, we

want to generate a quartet over 4 leaves B, F , E and C. So we delete the leaf nodes A

and D with their incident edges and obtain quartet ((B,F ), (E,C)).
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Figure 4.1: An example quartet generation from a tree (((A,B), F ), (E, (D,C))).

• Sample input quartets: Select quartets that will make the input quartet set Q. Sam-

pling is done either at random or following different encoding techniques [38, 32].

• Apply tree reconstruction method: Apply the quartet based method on Q and obtain a

supertree T ′.

• Compare with the model tree: The inferred phylogeny T ′ is then compared against the
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model phylogeny T , and error (usually topological) is quantified, using some measure (see

Section 4.1).

4.3 Experiment on Simulated Data

In this section, we will describe the way we performed our experiment on simulated data. First,

we have generated a model tree at random, which is our true tree. Then, we have generated

sets of induced quartets from the model tree. We have applied both QFM and QMC on the

generated input sets and then compared the results of QFM with that of QMC. We will analyzed

our results in two parts.

• Part I: We will compare and analyze the results of the 6 approaches of QFM with that of

QMC (in terms of number of satisfied quartets) and identify one version of QFM as the

best among the 6 approaches.

• Part II: We will compare the topological accuracy of the trees estimated by the best

approach of QFM and QMC and show that QFM returns more accurate trees than QMC

does.

Section 4.3.1 describes our simulation data sets and Section 4.3.2 summarizes results of Part

I and Section 4.3.3 describes the findings of Part II of our simulation study.

4.3.1 Simulated Data Generation

We have generated seven model tress over 25, 50, 100, 200, 300, 400 and 500 taxa respectively.

Let n denotes the number of taxa of a model tree. From each model tree over n taxa we have

generated quartet sets by varying the two following parameters:

• Size of the input quartet set: From all possible induced quartets, we take only a

subset of induced quartets to make our input quartet set. We sample input quartets from

all possible induced quartet uniformly at random. For each tree of n taxa, we generate

quartet sets of size n1.5, n2 and n2.8. In [32], QMC is applied to the quartet sets of size n2
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and n2.8 and QMC has been found performing better for n2.8 sized quartet sets. So in this

thesis, we have chosen these two sizes for quartet sets. Also we have chosen a size n1.5 at

random to test the performance of both methods on a comparatively smaller quartet set.

• Percentage of consistent quartets: All induced quartets are consistent with the model

tree. After we take a required number of induced quartets in the input set, we flip a fixed

percentage of quartets so that they become inconsistent with the model tree. We denote

the percentage of consistent quartets in the input set by c. From each input quartet set

of a certain size (e.g., n1.5, n2 or n2.8 ), we make three different input quartet sets taking

c = 70%, 80% and 90%.

We have used the tool developed in used in [32] to generate the model tree and the input

quartet sets. The tool takes the number of taxa, size of quartet set and percentage of consistency

as input and returns the quartet set accordingly. For 25, 50 and 100-taxon model trees, we have

generated quartet sets of size 125 (= 251.5), 625 (= 252), 8208 (= 252.8), 354 (= 501.5), 2500 (=

502), 57164 (= 502.8), 1000 (= 1001.5), 10000 (= 1002), and 398108 (= 1002.8) respectively. For

each size, we varied the the percentage of consistency c by making it 70%, 80% and 90%. Thus

for model trees of 25, 50 and 100 taxa, we get (3 × 3) × 3 = 27 input quartet sets. Similarly,

for 200, 300, 400 and 500-taxon model trees, we varied quartet set size by n1.5 and n2, where

n = 200, 300, 400 and 500. For each size, we again varied the the percentage of consistency c

by making it 70%, 80% and 90%. Thus we get (4 × 2) × 3 = 24. In total we have generated

27 + 24 = 51 input quartet sets.

We have also analyzed the datasets (uniformly sampled quartets) used in [32], where the

number of taxa (n) takes values 25, 50, 100, 200, 300, 400 and 500. For these cases, we have

n2 quartets with c = 90% in each input set. So including these additional 7 input sets, total 58

input quartet sets make our simulation datasets.



62 CHAPTER 4. EXPERIMENTAL STUDY

4.3.2 Part I: Comparison of the Performance of Six Approaches of

QFM

In Section 3.3 we have described six different approaches of our bipartition algorithm MFM.

We have implemented all the six versions of our bipartition algorithm, which resulted in six

different approaches for our quartet based supertree method QFM. We have applied simulation

datasets over all these approaches. Also, we have applied our datasets to QMC. For QMC, we

have used their implementation developed in [32]. The experiments have been done in an Intel

dual core machine of 2 GB RAM with Linux OS. We now summarize results (i.e., number of

satisfied quartets) of the all six versions of QFM and compare the results with that of QMC.

Algorithm QFM - Ia & Ib

QFM - Ia is implemented with MFM - Ia (Section 3.3.1). Similarly, MFM - Ib (Section 3.3.2)

is implemented in QFM - Ib. Table 4.1 shows the results of QFM - Ia & Ib and the results of

QMC at c = 90%. Similarly, Table 4.2 and Table 4.3 show the results when 20% (c = 80%)

and 30% (c = 70%) quartets are flipped respectively.
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Table 4.1: Comparison of QFM (Ia & Ib) to QMC at c = 90% in number of satisfied

quartets. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-Ia approach-Ib

25 125 114 112 114

25 625 557 558 559

25 8208 7266 7233 7388

50 354 316 309 319

50 2500 2248 2248 2252

50 57164 51280 51277 51448

100 1000 895 895 904

100 10000 8990 8979 9004

100 398108 358001 357995 358298

200 2829 2539 2542 2244

200 40000 36002 35984 36012

300 5197 4671 4688 4689

300 90000 80990 80957 81015

400 8000 7187 7201 7206

400 160000 143988 143981 144017

500 11181 10075 10051 10091

500 250000 224978 224948 225017



64 CHAPTER 4. EXPERIMENTAL STUDY

Table 4.2: Comparison of QFM (Ia & Ib) to QMC at c = 80% in number of satisfied

quartets. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-Ia approach-Ib

25 125 99 100 106

25 625 491 491 501

25 8208 6485 6485 6567

50 354 286 288 289

50 2500 1987 1986 2004

50 57164 45600 45602 45732

100 1000 800 791 803

100 10000 7998 7992 8009

100 398108 318228 318228 318487

200 2829 2260 2245 2270

200 40000 32003 32009 32042

300 5197 4166 4127 4186

300 90000 72012 71986 72025

400 8000 6435 6427 6437

400 160000 128010 128000 128046

500 11181 8957 8948 8982

500 250000 199995 199989 200041
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The results obtained from Table 4.1 - Table 4.3 show that QFM - Ia and QFM - Ib perform

as closely as QMC. Though QFM - Ia and QFM - Ib satisfy less number of input quartets than

QMC, but the difference is nominal with respect to the total number of input quartets. To

compare the performance of these two approaches with respect to QMC, we have drawn the

performance curves which are given in Appendix B. The performance curves obtained for QFM

and QMC are almost the same.

Algorithm QFM - IIa & IIb

Though the results obtained from QFM - Ia and QFM -Ib are quite satisfactory, to get even

better results we moved towards QFM - IIa and QFM - IIb. The algorithmic improvements are

described in Section 3.3.3 and Section 3.3.4. The results of QFM - IIa & IIb and the results

of QMC at c = 90% are shown in Table 4.4. Similarly, Table 4.5 and Table 4.6 show the

results when 20% (c = 80%) and 30% (c = 70%) quartets are flipped respectively. QFM -

IIa is implemented with MFM - IIa (Section 3.3.3). Similarly, MFM - IIb (Section 3.3.4) is

implemented in QFM - IIb.
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Table 4.3: Comparison of QFM (Ia & Ib) to QMC at c = 70% in number of satisfied

quartets. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets(#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-Ia approach-Ib

25 125 88 87 92

25 625 426 427 429

25 8208 5668 5668 5746

50 354 252 244 260

50 2500 1734 1738 1754

50 57164 40015 39861 40015

100 1000 706 699 712

100 10000 7007 6994 7016

100 398108 278483 278483 278676

200 2829 2007 1983 2025

200 40000 28024 27998 28044

300 5197 3635 3637 3683

300 90000 63020 63012 63057

400 8000 5590 5557 5663

400 160000 111951 111965 112065

500 11181 7809 7741 7894

500 250000 175028 175011 175073
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Table 4.4: Comparison of QFM (IIa & IIb) to QMC at c = 90% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIa approach-IIb

25 125 114 116 114

25 625 563 563 559

25 8208 7388 7388 7388

50 354 318 312 319

50 2500 2251 2251 2252

50 57164 51448 51448 51448

100 1000 904 899 904

100 10000 9004 9001 9004

100 398108 358298 358298 358298

200 2829 2549 2547 2244

200 40000 36002 36000 36012

300 5197 4691 4687 4689

300 90000 81012 81005 81015

400 8000 7208 7202 7206

400 160000 144016 144007 144017

500 11181 10075 10060 10091

500 250000 225016 225008 225017
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Table 4.5: Comparison of QFM (IIa & IIb) to QMC at c = 80% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIa approach-IIb

25 125 106 103 106

25 625 501 501 501

25 8208 6567 6567 6567

50 354 289 288 289

50 2500 2000 2000 2004

50 57164 45600 45732 45732

100 1000 801 799 803

100 10000 8007 8005 8009

100 398108 318487 318487 318487

200 2829 2267 2262 2270

200 40000 32037 32037 32042

300 5197 4173 4182 4186

300 90000 72029 72012 72025

400 8000 6448 6446 6437

400 160000 128038 128031 128046

500 11181 8969 8969 8982

500 250000 200042 200037 200041
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With a close observation of the results, we find that we get more satisfactory results this

time. Our result, in most of the cases matches with the result of QMC. In some cases QFM

outperforms QMC and in a few cases our result is less than that of QMC. But the difference is

nominal with respect to the total number of input quartets. We have drawn the performance

curves for these results which are included in Appendix B. Again we get almost the same curves

for QFM and QMC.

Algorithm QFM - IIIa & IIIb

To get even more satisfactory results we make some algorithmic improvements in our bipartition

algorithm. QFM - IIIa is implemented with MFM - IIIa (Section 3.3.5). Similarly, MFM - IIIb

(Section 3.3.6) is implemented in QFM - IIIb. Table 4.7 shows the results of QFM - IIIa & IIIb

and the results of QMC at c = 90%. Similarly, Table 4.8 and Table 4.9 show the results when

20% (c = 80%) and 30% (c = 70%) quartets are flipped respectively.
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Table 4.6: Comparison of QFM (IIa & IIb) to QMC at c = 70% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIa approach-IIb

25 125 87 90 92

25 625 426 434 429

25 8208 5668 5746 5746

50 354 260 253 260

50 2500 1750 1749 1754

50 57164 40015 40015 40015

100 1000 704 706 712

100 10000 7015 7010 7016

100 398108 278676 278676 278676

200 2829 2030 2016 2025

200 40000 28044 28043 28044

300 5197 3664 3650 3683

300 90000 63045 63044 63057

400 8000 5647 5615 5663

400 160000 112054 112054 112065

500 11181 7837 7837 7894

500 250000 175064 175044 175073
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Table 4.7: Comparison of QFM (IIIa & IIIb) to QMC at c = 90% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIIa approach-IIIb

25 125 114 116 114

25 625 563 563 559

25 8208 7388 7388 7388

50 354 318 315 319

50 2500 2252 2252 2252

50 57164 51448 51448 51448

100 1000 903 895 904

100 10000 9004 9003 9004

100 398108 358298 358298 358298

200 2829 2251 2536 2244

200 40000 36011 36003 36012

300 5197 4689 4682 4689

300 90000 81012 81003 81015

400 8000 7206 7206 7206

400 160000 144018 144008 144017

500 11181 10088 10074 10091

500 250000 225017 225017 225017



72 CHAPTER 4. EXPERIMENTAL STUDY

Table 4.8: Comparison of QFM (IIIa & IIIb) to QMC at c = 80% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIIa approach-IIIb

25 125 106 103 106

25 625 501 501 501

25 8208 6567 6567 6567

50 354 289 286 289

50 2500 2002 2002 2004

50 57164 45732 45732 45732

100 1000 804 806 803

100 10000 8008 8006 8009

100 398108 318487 318487 318487

200 2829 2273 2264 2270

200 40000 32038 32037 32042

300 5197 4181 4174 4186

300 90000 72034 72020 72025

400 8000 6451 6446 6437

400 160000 128048 128043 128046

500 11181 8991 8983 8982

500 250000 200044 200044 200041
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With a close observation of the values, we see that in most of the cases our result is greater

than or equal to that of QMC. In a very few cases, our result is less than that of QMC with

a nominal difference. The performance curves are shown in Appendix B. Moreover, QFM -

IIIa performs better than QFM - IIIb. So we can identify QFM - IIIa as the best among the 6

approaches of QFM.

4.3.3 Part II: Comparison of QFM and QMC in Accurate Tree Es-

timation

In this section, we will analyze and compare accuracy of the trees estimated by QFM and

QMC. Among the six approaches of QFM algorithm, we find QFM - IIIa performing best. We

measure the topological accuracy of the trees estimated by QFM - IIIa with the trees returned

by QMC. FN (False Negative) rate, FP (False Positive) rate and RF (Robinson Foulds) rate are

the three standards for measuring the accuracy of the estimated trees. In most of the studies,

FN rate and RF rate have been considered as more reliable to measure the accuracy. To test

the topological accuracy of QFM - IIIa against QMC, first we have applied our method over

the dataset used in [32]. The results are shown in Table 4.10, which show that QFM clearly

outperforms QMC. Figure 4.2 shows two charts based on Table 4.10. These charts are drawn for

FN rates (missing branch rates). In Figure 4.2, the chart at top compares the missing branch

rates of QFM - IIIa and QMC. The chart at bottom (Figure 4.2) illustrates the percentage of

datasets on which the performance of QFM is better than, worse than or eqaul to QMC. The

chart reveals that QFM is better than QMC in 71% of the cases.
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Table 4.9: Comparison of QFM (IIIa & IIIb) to QMC at c = 70% in number of

satisfied quartets. The left two columns represent the size of model tree (#Taxa), and the

number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied

QFM QMC

approach-IIIa approach-IIIb

25 125 87 92 92

25 625 434 434 429

25 8208 5746 5746 5746

50 354 260 263 260

50 2500 1753 1754 1754

50 57164 40015 40015 40015

100 1000 722 721 712

100 10000 7018 7014 7016

100 398108 278676 278676 278676

200 2829 2026 2020 2025

200 40000 28043 28044 28044

300 5197 3672 3675 3683

300 90000 63057 63055 63057

400 8000 5648 5631 5663

400 160000 112066 112047 112065

500 11181 7814 7826 7894

500 250000 175078 175078 175073
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Table 4.10: Comparison of QFM - IIIa to QMC in FN rate, FP rate and RF rate at

c = 90% for the dataset used in [32]. The left two columns represent the size of model

tree (#Taxa), and the number of input quartets (#Quartets).

#Taxa #Quartets #Satisfied FN Rate FP Rate RF Rate

QFM QMC QFM QMC QFM QMC QFM QMC

25 625 563 563 0.0 0.0 0.136 0.136 0.068 0.068

50 2500 2252 2252 0.154 0.154 0.298 0.298 0.226 0.226

100 10000 9000 9002 0.171 0.190 0.402 0.340 0.287 0.265

200 40000 36001 35984 0.363 0.450 0.599 0.609 0.481 0.530

300 90000 80980 80980 0.426 0.455 0.687 0.653 0.556 0.554

400 160000 144002 143997 0.555 0.629 0.776 0.758 0.665 0.694

500 250000 224998 224996 0.510 0.609 0.759 0.746 0.643 0.678
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Figure 4.2: Top: Missing branch rates of QFM - IIIa and QMC. Bottom: Illustration for the

proportion of datasets on which the performance of QFM is better than, worse than or eqaul

to QMC.
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We have also measured the topological accuracy for the results summarized in Table 4.3.2 to

Table 4.9. We have compared FN rate, FP rate and RF rate for trees returned by QFM-IIa and

QMC. The results are summarized from Table 4.11 to Table 4.13. The results have been ana-

lyzed by drawing graphs for FN rates, which are shown in Figure 4.3 and Figure 4.4. Figure 4.3

shows the bar charts comparing the values of missing branch rates (FN rate). Figure 4.4 shows

the percentage of cases where QFM is better than, worse than or equal to QMC. These charts

reveal that QFM is better in 81% of the cases for Table 4.11 and Table 4.13. For Table 4.12

QFM is better in 47% of the cases.
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Table 4.11: Comparison of QFM - IIIa to QMC at c = 70% in FN rate, FP rate and

RF rate. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets (#Quartets).

#Taxa #Quartets FN Rate FP Rate RF Rate

QFM QMC QFM QMC QFM QMC

25 125 1.0 0.75 1.0 0.818 1.0 0.784

25 625 0.222 0.263 0.363 0.363 0.293 0.313

25 8208 0.0 0.0 0.0 0.0 0.0 0.0

50 354 1.0 0.938 1.0 0.957 1.0 0.947

50 2500 0.436 0.474 0.531 0.574 0.434 0.524

50 57164 0.0 0.0 0.0 0.0 0.0 0.0

100 1000 1.0 0.964 1.0 0.979 1.0 0.972

100 10000 0.467 0.517 0.588 0.567 0.527 0.542

100 398108 0.010 0.021 0.010 0.021 0.010 0.021

200 2829 0.985 0.976 0.995 0.989 0.989 0.984

200 40000 0.652 0.616 0.751 0.731 0.702 0.673

300 5197 0.989 0.984 0.997 0.993 0.993 0.989

300 90000 0.694 0.742 0.825 0.832 0.759 0.787

400 8000 1.0 1.0 1.0 1.0 1.0 1.0

400 160000 0.783 0.812 0.879 0.872 0.831 0.842

500 11181 0.982 0.989 0.996 0.996 0.989 0.993

500 250000 0.827 0.836 0.897 0.893 0.862 0.865
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Table 4.12: Comparison of QFM - IIIa to QMC at c = 80% in FN rate, FP rate and

RF rate. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets (#Quartets).

#Taxa #Quartets FN Rate FP Rate RF Rate

QFM QMC QFM QMC QFM QMC

25 125 0.857 0.867 0.909 0.909 0.883 0.888

25 625 0.050 0.100 0.136 0.181 0.093 0.141

25 8208 0.0 0.0 0.0 0.0 0.0 0.0

50 354 0.591 0.759 0.809 0.851 0.699 0.805

50 2500 0.268 0.275 0.362 0.383 0.315 0.329

50 57164 0.0 0.0 0.0 0.0 0.0 0.0

100 1000 0.824 0.941 0.938 0.969 0.881 0.955

100 10000 0.289 0.341 0.495 0.443 0.392 0.392

100 398108 0.0 0.0 0.0 0.0 0.0 0.0

200 2829 0.912 0.946 0.975 0.975 0.943 0.960

200 40000 0.649 0.680 0.766 0.756 0.708 0.718

300 5197 0.941 0.965 0.976 0.983 0.959 0.974

300 90000 0.663 0.698 0.815 0.785 0.739 0.741

400 8000 0.952 0.959 0.987 0.985 0.969 0.972

400 160000 0.679 0.712 0.834 0.809 0.757 0.760

500 11181 0.939 0.953 0.986 0.984 0.962 0.969
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Table 4.13: Comparison of QFM - IIIa to QMC at c = 90% in FN rate, FP rate and

RF rate. The left two columns represent the size of model tree (#Taxa), and the number of

input quartets (#Quartets).

#Taxa #Quartets FN Rate FP Rate RF Rate

QFM QMC QFM QMC QFM QMC

25 125 0.846 0.800 0.909 0.837 0.878 0.832

25 625 0.0 0.167 0.0 0.318 0.0 0.242

25 8208 0.0 0.0 0.0 0.0 0.0 0.0

50 354 0.590 0.576 0.809 0.702 0.699 0.639

50 2500 0.147 0.111 0.383 0.319 0.265 0.215

50 57164 0.0 0.0 0.0 0.0 0.0 0.0

100 1000 0.769 0.800 0.907 0.897 0.838 0.848

100 10000 0.169 0.325 0.392 0.443 0.280 0.384

100 398108 0.0 0.0 0.0 0.0 0.0 0.0

200 2829 0.833 0.905 0.954 0.959 0.894 0.932

200 40000 0.557 0.464 0.706 0.619 0.631 0.542

300 5197 0.989 0.921 0.997 0.967 0.993 0.944

300 90000 0.506 0.599 0.737 0.704 0.622 0.652

400 8000 0.836 0.923 0.969 0.967 0.903 0.945

400 160000 0.593 0.592 0.791 0.725 0.692 0.659

500 11181 0.900 0.937 0.982 0.978 0.941 0.957

500 250000 0.536 0.587 0.779 0.751 0.657 0.668
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Figure 4.3: Missing branch rates of QFM and QMC on different datasets (with different number

of taxa, number of quartets and the consistency level). From top to bottom: the number

quartets are n1.5, n2, and n2.8, where n is the number of taxa. From left to right: 70%, 80%

and 90% of the input quartets are consistent with the model species tree. We did not run our

method on more than 100 taxa when the number of taxa is n2.8 (since these are computationally

intensive and could not be run within a reasonable time limit. Moreover, this model condition

is less revealing since both QMC and QFM can reconstruct the true species trees on these

datasets.)
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Figure 4.4: Illustration for the proportion of datasets on which the performance of QFM is

better than, worse than or eqaul to QMC. From top to bottom: charts are drawn for Table 4.11,

Table 4.12 and Table 4.13.
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A close observation of the results reveals the following facts:

• QFM outperforms QMC in terms of FN rate in almost all cases. And in many cases, we

observe substantial improvement for QFM.

• In terms of RF rate our method outperforms QMC in most of the cases.

• At lower consistency rate (c = 70% or 80%) our method performs better than QMC.

• Our method performs better than QMC for large quartet sets.

QFM is a new promising divide and conquer supertree method having an algorithmic appeal

which is able to return more accurate tree than QMC does. Another advantage of QFM is that

it is flexible in choosing the partition score function. QFM can be customized to take different

scoring functions (i.e., s−v, s/v, etc.) without making any change in the algorithmic construct.

We have tested that QFM may not give the same result for different scoring functions for

the same dataset. In other words, maximizing the ratio of number of satisfied and violated

quartets (as done by QMC) or maximizing the difference between number of satisfied and

violated quartets may not give best result for all datasets. So for different datasets we may

need to adapt different scoring function. QFM provides us with the flexibility to change the

scoring function as needed. In future we shall try to make our algorithm self adaptable to the

appropriate scoring function.

4.4 Experiment on Biological Data

We tested our algorithm on a biological dataset too. In this case, there is no model tree to

compare with. So we have compare our estimated tree against a biological model tree. This

model tree is hypothetical which is obtained by thorough analysis of a biological data set, and

believed by experts to be the most accurate estimate of the history of that set of taxa.

Our biological dataset consists of 18 gene trees on 25 taxa (species), obtained from Tree-

BASE [29]. This dataset has originally been used to study the efficacy of species tree methods

at the family level in birds, using the Australo-Papuan Fairy-wrens (Passeriformes: Maluridae)
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clade [17]. This dataset considers 25 taxa (species) from 4 families of birds. The families are:

Amytornis, Stipiturus, Malurus and Clytomias.

We took 18 gene trees over 25 birds from these 4 families. We decomposed every gene tree

into its induced quartets which called embedded quartets [32, 41]. Then we take the union of all

these quartets (multiple copies of a quartet is retained). In this way we have 227,700 quartets.

We used these quartets to estimate a species tree using our method QFM (approach IIIa). The

tree estimated by QFM is shown in Figure 4.5.

Since we have applied our method for biological data, we are interested to analyze the esti-

mated tree with respect to the cluster(s) (group of species under a common ancestor) identified.

The estimated tree shows the following characteristics.

• The clusters identified by this tree are consistent with prior studies ([17]). From Figure 4.5

we see that all the Amytornis birds have been grouped together. Similarly, Stipiturus,

Malurus and Clytomias birds have been grouped separately. So clearly, the clusters have

been identified correctly.

• Also, as suggested in an earlier work [17], QFM placed the grasswrens (Amytornis) as the

sister to the rest of the family, and the emu-wrens (Stipiturus) as the sister to fairywrens

(Malurus, Clytomias).

These characteristics show that the tree estimated by QFM is same to the biological tree

believed by experts for this set of species. Therefore, QFM performs well on biological dataset

which indicates the qualitative significance of our algorithm.

4.5 Summary

In this chapter we have explained our experimental works and presented the results obtained.

The chapter starts with a description of accuracy measure in Section 4.1. In Section 4.2 we

briefly described the technique of a simulation study. Then, in Section 4.3 we described the

way we performed our simulation on simulated data - data generation (Section 4.3.1), result

summary (Section 4.3.2) of 6 approaches of QFM and analysis of accuracy of QFM over QMC
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Figure 4.5: The 25 species bird phylogeny estimated by QFM using the 227,700 embedded

quartets from 18 gene trees.

(Section 4.3.3). Finally, in Section 4.4 we explained our experimental result on biological

dataset.



Chapter 5

Conclusion & Future Work

In this thesis we have presented a new quartet based phylogenetic approach. Also we showed

superiority of our method over the approach which is known to be the best to date in quartet

based phylogeny. In addition, we have developed a software tool which is an all in one tool to

simulate and analyze our method and the method we compared with.

We have started with an introductory overview on phylogeny Chapter 1. In that chapter

we have described different approaches of phylogentic tree construction and discussed various

practical applications of phylogeny. We also gave motivation and literature review of quartet

based phylogeny; and described our objective and main results of this thesis.

In Chapter 2 we have introduced some basic concepts and terminology related to phylogeny

and algorithm theory. In particular we focused on the concepts related to quartet based phy-

logeny.

In Chapter 3 we have presented our algorithm QFM. We have described the six different

versions of our algorithm. In Chapter 4 we have presented our simulation results for simulated

and biological datasets. We have also showed the comparative analysis of our method and

QMC (the method we compared with).

In Chapter A we have described our software tool ‘QTREE’ and provided an user manual.

In Chapter B we have shown some performance curves as part of the experiments described in

Chapter 4. We listed the experimental running times in Chapter C.

This thesis goes a long a way to devise a more accurate quartet based phylogenetic approach

86
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compared to the existing approaches. However, we have figured out some more tasks to be

done to make our approach more challenging which could not be done in this thesis due to time

limitation. We plan to accomplish those tasks in future.

1. In this thesis, we have generated simulation data using uniform distribution. We plan to

generate input quartet sets using geometric distribution as done in [32].

2. We indicated that our algorithm can be modified to take different scoring functions. But

we have not yet identified yet which scoring function will give better result in what type

of input data. Our plan is to make our algorithm self adaptable to choose appropriate

scoring function.

3. The current implementation of our algorithm is not very efficient. By efficient coding our

algorithm will run much faster. We will focus on this immediately.

4. At present, our software tool ‘QTREE’ can be used to simulate and analyze the two

methods - QFM and QMC. We want to incorporate other approaches of quartet based

phylogeny in this tool so that the researchers developing new methods find this software

very helpful to compare the new method with existing ones.



Appendix A

QTREE: A Simulation Tool for

Quartet Based Phylogeny

QTREE QTREE is a software tool to simulate and analyze two quar-

tet based supertree methods, namely, QFM (Quartet FM) and

QMC (Quartet MaxCut).

Functions

• User can upload an input file (in ‘*.txt’ format) and simulate

both QFM and QMC on the input.

• QTREE shows the output of QFM and QMC in two different

displays.

• User can download the output file (in ‘*.txt’ format) for each

individual run.

• User can store the simulation results by creating a graph

dataset (i.e., by creating a file).

• User can create multiple files to create multiple graph

datasets and select one from multiple files to store result of

an individual run.

• User can select a file (i.e, a graph dataset) to draw graph.

88
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Requirements Linux OS, Basic Perl installation, JDK 1.5 or above

Input File Format The input file contains a number of quartets in Newick format

(e.g., ‘((A,B), (C,D))’). Each quartet must be ended with a

semicolon ‘;’ and there must be only one quartet per line.

Output File Contents The outfile file contains the estimated supertree in Newick for-

mat.

Graph Output QTREE provides the facility to draw the performance curve of

QFM vs QMC based on the results of multiple runs. The ‘X’-

axis of the output curve denotes the ‘Number of Taxa’ and the

‘Y’-axis denotes the ‘Number of Satisfied Quartets’. When user

chooses a file to store the result of a simulation, the three values

- taxa count, number of satisfied quartets by QFM and number

of satisfied quartets by QMC are being inserted into the chosen

file.

A.1 User Manual

Open QTREE

Click ‘Upload input file’ button. A ‘browse’ dialog box will appear.
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Select input file location and double click the selected file.

Click ‘run QFM’ button to start simulation of QFM. Similarly click ‘run

QMC’ button to start simulation of QMC
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Outputs will be displayed in associated scroll panels. To download cor-

responding output file, Click ‘download’ button.

A save dialog box will appear. Choose a location to save outputfile.
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Select or Create a file to store result as graph input. Selecting ‘Create a

new file’ option will ask for a file name. Enter file name and Click ‘Create

file’ button.

Click ‘Add result to selected file’ button to append the result in selected

file.
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Click ‘Draw curve for selected file’ button to draw graph on selected file.

Another window will appear showing the graph.
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Appendix B

Performance Curves of Six Approaches

of QFM vs QMC

The performance curves have been drawn for the results summarized in Table 4.1 to Table 4.9.

95
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Performance Curves for Approach Ia with n1.5 input quartets
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Figure B.1: Comparison of QFM - Ia and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - Ia with n2 input quartets
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Figure B.2: Comparison of QFM - Ia and QMC when size of quartet set = n2 at c = 70% (top),

c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - Ia with n2.8 input quartets
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Figure B.3: Comparison of QFM - Ia and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - Ib with n1.5 input quartets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

Figure B.4: Comparison of QFM - Ib and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - Ib with n2 input quartets
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Figure B.5: Comparison of QFM - Ib and QMC when size of quartet set = n2 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - Ib with n2.8 input quartets
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Figure B.6: Comparison of QFM - Ib and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIa with n1.5 input quartets
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Figure B.7: Comparison of QFM - IIa and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIa with n2 input quartets
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Figure B.8: Comparison of QFM - IIa and QMC when size of quartet set = n2 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIa with n2.8 input quartets
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Figure B.9: Comparison of QFM - IIa and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIb with n1.5 input quartets
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Figure B.10: Comparison of QFM - IIb and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIb with n2 input quartets
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Figure B.11: Comparison of QFM - IIb and QMC when size of quartet set = n2 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIb with n2.8 input quartets
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Figure B.12: Comparison of QFM - IIb and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIa with n1.5 input quartets
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Figure B.13: Comparison of QFM - IIIa and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIa with n2 input quartets
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Figure B.14: Comparison of QFM - IIIa and QMC when size of quartet set = n2 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIa with n2.8 input quartets

 0

 50000

 100000

 150000

 200000

 250000

 300000

 20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa(n)

Performance of QFM vs QMC

QFM
QMC

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa(n)

Performance of QFM vs QMC

QFM
QMC

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa(n)

Performance of QFM vs QMC

QFM
QMC

Figure B.15: Comparison of QFM - IIIa and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIb with n1.5 input quartets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0  50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 s

at
is

fie
d 

qu
ar

te
ts

Number of taxa (n)

Performance of QFM vs QMC

QFM
QMC

Figure B.16: Comparison of QFM - IIIb and QMC when size of quartet set = n1.5 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIb with n2 input quartets
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Figure B.17: Comparison of QFM - IIIb and QMC when size of quartet set = n2 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)
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Performance Curves for QFM - IIIb with n2.8 input quartets
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Figure B.18: Comparison of QFM - IIIb and QMC when size of quartet set = n2.8 at c = 70%

(top), c = 80% (middle) and c = 90% (bottom)



Appendix C

Experimental Running Time

#Taxa #Quartets %Consistency Time(s)

25 125 70 3

25 125 80 3

25 125 90 3

25 625 70 5

25 625 80 4

25 625 90 4

25 8208 70 18

25 8208 80 19

25 8208 90 18

50 2500 70 12

50 2500 80 12

50 2500 90 11

50 354 70 7

50 354 80 6

50 354 90 5
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#Taxa #Quartets %Consistency Time(s)

50 57164 70 1161

50 57164 80 1138

50 57164 90 1178

100 10000 70 72

100 10000 80 55

100 10000 90 61

100 1000 70 13

100 1000 80 12

100 1000 90 13

100 398108 70 58137

100 398108 80 59957

100 398108 90 59123

200 2829 70 66

200 2829 80 64

200 2829 90 48

200 40000 70 969

200 40000 80 1153

200 40000 90 1036

300 5197 70 247

300 5197 80 252

300 5197 90 240

300 90000 70 5999

300 90000 80 6227

300 90000 90 6694
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#Taxa #Quartets %Consistency Time(s)

400 160000 70 17927

400 160000 80 22582

400 160000 90 23118

400 8000 70 654

400 8000 80 610

400 8000 90 569

500 11181 70 1574

500 11181 80 1393

500 11181 90 1387

500 250000 70 58003

500 250000 80 48870

500 250000 90 47952

Table C.1: Running time of QFM - IIIa for different

datasets
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