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ABSTRACT

Participatory sensor network is a network where participants or nodes use mobile

phones or social network and feed data to detect an event. Data is gathered

and analyzed to an event. As data gathering is open to many participants, one

of the major challenges is to identify if the reported observations are true or

false. It becomes more challenging when node or participant’s reliability is un-

known or even the probability of event to be true is unknown. In our research,

we study this challenge and observe that applying evolutionary method, event

detection becomes more reliable. We call this approach Population Based Reli-

ability Estimation (PBRE). In this research project we do simulation study and

our experimental results show that PBRE performs better than other reliability

estimation method in our defined environment.
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Chapter 1

Introduction

1.1 Overview

In this chapter, we provide an introduction to the participatory sensor research

field. Currently there are more than 3 billion smart phone users in the world,

and this number is increasing at an impressive rate. This makes cell phones an

excellent platform for sensing the environment at unprecedented spatio-temporal

granularity. The new generation smart phones or devices have multiple embed-

ded sensors (e.g., accelerometer, gyroscope, light, video, microphone, etc.) and

can easily communicate with external static sensors via any of the built-in in-

terfaces including bluetooth, infrared, or WiFi [32] and are increasingly capable

of capturing, classifying and transmitting image, acoustic, location aware data.

Smart device users can participate in an event detection or as location-aware data

collection sources [3]. Through the use of sensors (e.g., cameras, motion sensors,

and GPS) built into smart phones and web services to aggregate and interpret

the assembled information, a new collective capacity has emerged in which people

participate in sensing and analyzing aspects of their lives that were previously

invisible. This concept is known as ParticipatorySensing. Let us consider some

illustrative examples:

1. A group of citizens, organized through a social network, could use their

mobile phones to take geo-tagged images as they move about town. Im-

ages of community assets are automatically uploaded and displayed on an

interactive map could be used to promote neighborhood identity and local

services. Images of safety hazards can help prioritize maintenance services.

2. Runners can use similar techniques to document and select scenic and

shaded running routes away from roadways and can combine their shared

data with personal fitness journaling.
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3. Using the smart devices and web capabilities, each member of a family

can monitor his or her travel and activity patterns for a few days to allow

reflection and discussion of daily routines. In concert with engaging visual

displays of similar information about their peer groups and neighborhoods,

family-wellness coaches could provide highly personalized guidance [17].

ParticipatorySensing is a process of data collection and interpretation. Par-

ticipatory sensing emphasizes the involvement of citizens and community groups

in the process of sensing and documenting where they live, work, and play. It can

range from personal observations to the combination of data from hundreds, or

even thousands, of individuals that reveals patterns across an entire city. Most

important, participatory sensing begins and ends with the people, individually

or community wise. The type of information collected, how it is organized, and

how it is ultimately used, may be determined in a traditional manner by a cen-

trally organized body, or in a distributed manner by the collection of participants

themselves. [17].

A Participatory Sensor Network consists of nodes which recruits participant

to actively collect data for a common project goal within its framework. The

nodes or participants use their personal mobile phones to sense various activities

of their surrounding environment and submit sensed data through mobile network

or social networking sites.

Finding reliable sources in a participatory sensor network is challenging due

to the large proliferation of sensing and communication capabilities of the partici-

pant nodes and the availability of ubiquitous, real-time data sharing opportunities

among nodes via mobile devices and social networking sites [30]. One conven-

tional way to collect the reliable data on human interactions is to analyze the

self-reported surveys. But this is a time consuming procedure. Data collection

can be done using mobile devices like smart-phones, wearable sensing devices or

through social networks [4, 11, 25, 28]. In a participatory network where the

users are considered as participatory sensors, an event can be reported or de-

tected [10, 23, 24]. One of the major challenges in this participatory sensing is

ascertaining the truthfulness of the data and the reliability of the sources because

data collection is open to a very large population. The reliability of the partic-

ipants (or sources) denotes the probability that the participant reports correct

observations. Reliability may be impaired because of the lack of human attention

to the task, or because of the bad intention to deceive. Without knowing the

reliability of sources, it is difficult to measure whether the reported observations

are true or not. [34, 36, 37]

We study participatory sensing challenges in our research.
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1.2 Participatory Sensor Network Architecture

In this section we discuss the architecture of a Participatory Sensor Network.

Despite the diversity in why and how individuals engage in participatory sens-

ing, the basic sensing process can be broken down into the following steps, each

of which is facilitated by the combination following technologies: coordination,

capture, transfer, storage, access, analysis, feedback, and visualization [17].

Figure 1.1: A Participatory Sensor Network

1.2.1 Coordination

Coordination involves recruiting and communicating with participants to explain

the sensing effort and provide necessary guidance. Such communication is assisted

by existing social networks, which can be accessed via computers, mobile phones,

or face-to-face gatherings.

1.2.2 Capture

Capture is the acquisition of data on a smart phone or other smart devices. In ad-

dition to standard capabilities of smart phones, specialized software applications

can be downloaded in project-specific configurations or be programmed directly

by participants.

1.2.3 Transfer

Transfer takes place using mobile phones and wireless networks. Mobile phone

software can make data uploading transparent to the participant and tolerant of

inevitable network interruptions. Depending on the approach and the purpose

of a project, either the participants or the organizers can bear the cost of data

transfer.
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1.2.4 Storage

Storage occurs on servers distributed across the internet: privately owned servers,

commercially managed but privately accessed storage services such as Google, and

sharing-oriented services such as Facebook.

1.2.5 Access

Access is managed according to policies guided by project organizers and partici-

pants. Participatory Sensing data often include particularly sensitive information

such as images of oneś family and friends, and the participantś location collected

over time. While many privacy mechanisms can already be put in place, which is

a crucial issue that requires continual attention and improvement to reduce the

risks associated with misuse.

1.2.6 Analysis

Analysis includes a wide variety of data-processing methods, from aggregation of

contributed data for display to the participant, to higher-level analysis of data

to classify a participantś activities, to image processing that automatically elim-

inates blurry or poorly exposed images. Analysis also includes the calculation of

group statistics and the integration of contributed data into statistical and spatial

models that can be used to determine event location and time.

1.2.7 Feedback

Feedback may be required during event detection. Systems can use contributed

data and mobile phone messaging to deliver such triggers in context-dependent

ways. For example, when a person travels to a location of interest, the systems

can trigger a message for the person to respond to or for the phone to answer

automatically (to record sounds when the participant stops walking).

1.2.8 Visualization

Visualization goes hand-in-hand with analysis and is the step in which data are

displayed in a legible format. The effectiveness of any project depends on how

well its results are understood by the target audience. Excellent methods for

mapping, graphing, and animation make this a rich area to develop in the con-

text of Participatory Sensing.
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1.3 Applications of Participatory Sensor Net-

work

1. Health and Fitness

Individuals can self-monitor to observe and adjust their medication, physical

activity, nutrition, and interactions. Communities and health professionals

can also use participatory approaches to better understand the development

and effective treatment of disease. [14]

• eCAALYX: Chronic disease management; an Android smart phone

application that receives input from a BAN (a patient-wearable smart

garment with wireless health sensors) and the Global Positioning Sys-

tem (GPS) location sensor in the smart phone and communicates over

the Internet with a remote server accessible by health care profession-

als who are in charge of the remote monitoring and management of

the older patient with multiple chronic conditions.

• BeWell: A system that uses sensors embedded within a smart phone

(gyroscope, accelerometer, microphone, camera, and digital compass)

to enable a new class of personal wellbeing applications to monitor

activities such as sleep, social interactions, and physical activity which

in turn impact physical and mental health of an individual.[19].

• StressSense: A system that recognizes stress from human voice using

smart phone and can robustly recognize stress among multiple indi-

viduals in diverse acoustic environments.[22].

• Ambulation: a mobility monitoring system that employs mobile phones

to automatically detect a userś mobility mode using GPS data. The

gathered information is critical for patients suffering from mobility-

affecting chronic diseases such as MS, Parkinson, and Muscular Dys-

trophy. For energy efficiency, the system uses accelerometer as the

means for detecting motion and triggering GPS [29].

• AndWellness: it is a personal data collection system that uses mo-

bile phones to collect and analyze data from on board sensors and

triggered user experience samples . They have conducted a two week

in-lab deployment of this system using the same campaign settings

from a planned future deployment. They plan to deploy these systems

for the following two applications: (1) to measure the behaviors and

emotions of young breast cancer survivors and (2) to assess at risk

HIV+ participants [18].
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2. Urban Planning By lowering the complexity of creating trustworthy ad-

hoc observing applications at the metropolitan scale, participatory sensing

enables a very exciting application space for urban planning.

• The Grand Avenue Project : Los Angeles is preparing for a two bil-

lion dollar redevelopment of a portion of its downtown, . The Nor-

man Lear Center has invited citizen submission of design ideas for the

projectś park component, receiving and publishing hundreds of such

submissions. Participatory sensing tools will enable these and other

organizations to initiate data collection that similarly connect people

(and their data) to the planning of their own environments [3].

• GIS-based noise planning tool: [26] Describes the tool created for the

city of Belo Horizonte in Brazil, noting that noise is a major source

of nuisance and, for many, an important quality of life metric. They

model it in a GIS system but do not address how real world data might

be gathered.A participatory sensing approach suggests that a simple

service running on citizensḿobile devices, gathering and publishing ba-

sic statistics on ambient sound at regular intervals, with appropriate

context checks, might be able to gather such data.Citizens could join

a data-collection campaign to document noise levels in a community.

They would configure simple selective sharing options to choose when

and where samples are taken to calculate average sound amplitude, as

well as the spatial and temporal resolution acceptable for network con-

text tagging. A collaboratively generated city-scale analysis of noise

levels at different times a day becomes feasible. When combined with

participatory GIS techniques , incredible potential exists for develop-

ing important, accessible planning tools for communities of all sizes.

3. Cultural Identity and Creative Expression

In 1996, Caroline Wang supplied women in a rural Chinese village with

35mm film cameras to document ẃhat is worth remembering and what

needs to be changed .́ They documented the results of a lack of adequate day

care for children and midwifery training for women. As a result of present-

ing this work in a gallery seen by political leaders, local health policies for

themselves and their children improved. [33] This became the Photovoice

movement. Another set of motivating applications, new for sensor networks,

seeks to combine the ethos of Wang’s efforts with the increased ubiquity of

image capture possible with network-connected, imager-equipped, always-

on mobile device. The decision to create a campaign to gather imagery

might come from initiators within a community, and the Partisan architec-
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ture enables the network to lend some credibility to notions of when and

where media is gathered. These features could allow the scale of partici-

pation to increase without losing the sense that the location was actually

‘known’ by the gatherer.

4. Personal Reflections on Environmental Impact and Exposure

• Impacts of Climate Change Scientists have unveiled new evidence

that a changing climate is affecting our ecosystems. The latest data,

however, come from an unusual source: hundreds of botanists using

their mobile phones to photograph and send pictures of plants to re-

searchers for analysis. Their ongoing study in phenology examines

the link between increasing temperatures attributed to global warm-

ing and the timing of specific events in the lives of some critical plant

species [17].

• Pollution Sources by Community Groups Using data-gathering

software run on residentsḿobile phones, the community organization

initiated data collection, recruited and coordinated participants, and

analyzed the resulting data to make the case that diesel truck traffic

on neighborhood streets created unexpected h́ot spotsóf traffic near

homes and schools [17].

5. Transportation and Civil Infrastructure Monitoring

• BikeNet: a mobile sensing system for mapping the cyclist experience.

The system collects and stores data about the cycling performance

metrics, including current speed, average speed, and distance traveled,

and calories burned over the long term. The gathered data is archived

and analyzed for understanding long-term performance trends. For

example, a cyclist can monitor his/her performance improvement or

his/her exposure to health risks like automobile exhaust. The system

also provides information to cyclists about the healthiness of a given

route in terms of pollution levels, allergen levels, noise levels, and

terrain roughness [13].

• Biketastic: it is a platform that enriches this experimentation and

route sharing process by letting bikers to document and share routes,

ride statistics, sensed information to infer route roughness and nois-

iness, and media that documents ride experience . The application

running on a smart phone records high-frequency GPSdata (latitude,

longitude, and speed) every 1 second. The microphone and the ac-

celerometer embedded on the phone are sampled to infer route noise

7



level and roughness. This will allow bikers to know the areas that

have excessive noise levels, which could be indicators of large vehicles

or heavy traffic. The onboard accelerometer is sampled to measure ac-

celeration variance of the axis corresponding to the direction pointing

towards earth, which gives an indication of divots and bumps. Au-

thors evaluated the system based on feedback from expert bicyclists

provided during a two-week trial period [27].

1.4 Challenges of Participatory Sensor Network

Participatory sensing applications provide numerous research challenges from the

perspective of analysis. [1, 30] listed some of these challenges below:

1. Privacy: Since the collected data typically contains sensitive personal data

(eg. location data), it is extremely important to use privacy sensitive tech-

niques in order to perform the analysis.

2. Low Battery Life: Sensors, whether wearable or embedded in mobile

devices, are typically operated with the use of batteries, which have limited

battery life. Certain kinds of sensor data collection can drain the battery life

more quickly than others (eg. GPS vs. cell tower/WiFi location tracking in

a mobile phone). Therefore, it is critical to design the applications with a

careful understanding of the underlying trade-offs, so that the battery life is

maximized without significantly compromising the goals of the application.

3. Data Volume: The volume of data collected can be very large. For ex-

ample, in a mobile application, one may track the location information of

millions of users simultaneously. Therefore, it is useful to be able to design

techniques which can compress and efficiently process the large amounts of

collected data.

4. Trustworthiness or Participant’s Reliability: Since the data are often

collected through sensors which are error prone, or may be input by indi-

viduals without any verification, this leads to numerous challenges about

the trustworthiness of the data collected. Furthermore, the goals of pri-

vacy and trust tend to be at odds with one another, because most privacy-

preservation schemes reduce the fidelity of the data, whereas trust is based

on high fidelity of the data.

5. Real-time Processing: Many of the applications require dynamic and real

time responses. For example, applications which trigger alerts are typically

8



time sensitive and the responses may be real-time. The real-time aspects

of such applications may create significant challenges, considering the large

number of sensors which are tracked at a given time.

6. Participant Recruitment: Developers of a sensor data collection cam-

paign face the challenge of identifying the appropriate set of individuals

who would collect the data, for example, using their mobile phones. In

most cases, the participation by individuals is voluntary, although there

may be applications where an organization may have its employees be the

data contributors as part of their jobs. The problem lies in identifying what

subset of individuals who are interested and meet the basic requirements

of being data contributors (i.e., have the right type of sensors and reside in

the geographical area where the data collection is to be done in a window

of time) is actually selected to contribute.

7. Data Quality and Participant Reputation: There may be significant

differences between the data collection performance of different participants,

and the performance of a participant may vary over time across different

campaigns or during the course of the same campaign.

8. Sparse Sampling and Generalization: Consider applications that at-

tempt to learn from collected observations and generalize by building mod-

els of system behavior where some components, interactions, processes, or

constraints are not well-understood.
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Chapter 2

Background Study

2.1 Overview

In this chapter, we discuss the motivation of this research work and provide the

relevant research work. The major tasks of a participatory sensor network are

data collection, processing and result publishing. We know that the data collec-

tion is often open to a large population. Therefore, the main challenge is to know

which of the reported observations are true and which are not. This challenge is

also known as trust or reliability of a participant. In this chapter, Section 2.1

discusses the motivation of this research and in Section 2.2, we provides some

relevant research results.

2.2 Motivation

The openness of participatory sensing systems provides a tremendous amount

of power consumption in collecting information from a wide variety of sources,

and distilling this information for data mining purposes. However, it is this

very openness in data collection, which also leads to numerous questions about

the quality, credibility, integrity, and trustworthiness of the collected information

[5, 9, 15, 16]. Furthermore, the goals of privacy and trust would seem to be at

odds with one another, because all privacy-preservation mechanisms reduce the

fidelity of the data for the end-user, whereas the end-user trust is dependent on

high fidelity of the data. Numerous questions may arise in this respect:

• How do we know that the information available to the end user is correct,

truthful and trustworthy?

• When multiple sources provide conflicting information, how do we know

which one is trustworthy?
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• Have errors been generated in the process of data collection, because of

inaccuracy or hardware errors?

The errors which arise during hardware collection are inherent to the device used,

and their effect can be ameliorated to some extent by careful design of the un-

derlying application. For example, the LiveCompare [6] application, which is

used for comparison shopping of grocery products, works by allowing individuals

to transmit photographs taken in stores of grocery products, and then presents

similar pictures of products taken in nearby stores. The approach allows the

transmitting of product photos taken by individual users of competing products,

but does not automatically try to extract the pricing information from the price

tags in the photograph. This is because the extraction process is known to be

error-prone, and this design helps avoid the inaccuracy of reporting the pricing of

competing products. It also avoids manual user input about the product which

reduces error and maximizes trustworthiness.

A more critical question about trustworthiness arises when the data is collected

through the actions of end users. In such cases, the user responses may have an

inherent level of errors which may need to be evaluated for their trustworthiness.

The issue of truthfulness and trust arises more generally in any kind of applica-

tion, where the ability to contribute information is open. Such openness creates

challenging trade-off which increases information availability at the expense of

trust. Aside from the social and participatory sensing platforms, any web en-

abled platforms which allow the free contribution of information may face such

challenges.

2.3 Related Work

Here, we discuss some research work on the reliability estimation of the nodes in

a participatory sensing network.

• Certificate Based Reliability or Trust

For the case of specific kinds of data such as location data, a variety of

methods can be used in order to verify the truthfulness of the location of a

mobile device [21]. The key idea is that time-stamped location certificates

signed by wireless infrastructure are issued to co-located mobile devices. A

user can collect certificates and later provide them to a remote party as

verifiable proof of his or her location at a specific time.The major draw-

back of this approach is that the applicability of these infrastructure based

approaches for mobile sensing is limited as cooperating infrastructure may

not be present in remote or hostile environments of particular interest to
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some applications. Furthermore, such an approach can be used only for

particular kinds of data such as location data.

• Platform Attestation

In the context of participatory sensing, where raw sensor data is collected

and transmitted, a basic approach for ensuring the integrity of the content

has been proposed in [9], which guards whether the data produced by a

sensor has been maliciously altered by the users. Thus, this approach relies

on the approach of platform attestation which vouches that the software

running on the peripheral has not been modified in an unintended manner.

This kind of approach is more useful for sensors in which the end data is

produced by the device itself, and an automated software can be used for

detection of malicious modification. In essence, the approach allows the

trusted sensing peripherals to sign their raw readings, which allows the re-

mote entity to verify that the data was indeed produced by the device itself

and not modified by the user. Trusted Platform Module (TPM) hardware

[15], commonly provided in commodity PCS, can be leveraged to help pro-

vide this assurance. To address the problem of protecting the privacy of

data contributors, techniques such as requiring explicit authorization for

applications to access local resources and formulating and enforcing access

control policies can be used. A TPM is a relatively inexpensive hardware

component used to facilitate building trusted software systems. It is possible

to leverage the TPM functionality of attesting to the integrity of software

running on a device to a remote verifier. The TPM can attest to the soft-

ware platform running on the machine by providing a signed quote of its

PCR(s) in response to a challenge from a remote verifier. In many cases,

user actions may change the data (such as the cropping of an image), but

this may not actually affect the trust of the underlying data. The work in

[16] proposes YouProve, which is a partnership between a mobile device’s

trusted hardware and software that allows un-trusted client applications to

directly control the fidelity of data they upload and services to verify that

the meaning of source data is preserved. The approach relies on trusted

analysis of derived data, which generates statements comparing the content

of a derived data item to its source. For example, the work in [16]tests

the effectiveness of the method on a variety of modifications on audio and

photo data, and shows that it is possible to verify which modifications may

change the meaning of the underlying content.

• Heuristic Based Approach

In this context, the problem of trustworthiness has been studied for re-

12



solving multiple, conflicting information provision on the web. The earliest

work in this regard was proposed in [38], where the problem of studying

conflicting information from different providers was studied [38]. Subse-

quently, the problem of studying trustworthiness in more general dynamic

contexts was studied in [7, 8].

• Likelihood Reliability

A number of recent methods [20, 34, 35, 37] address this issue, in which

a consistency model is constructed in order to measure the trust in user

responses in a participatory sensing environment. The key idea is that

untrustworthy responses from users are more likely to be different from one

another, whereas truthful methods are more likely to be consistent with one

another. This broad principle is used in order to model the likelihood of

participant reliability in social sensing with the use of a Bayesian approach

[34, 35]. A system called Apollo [20] has been proposed in this context in

order to distill the likely truth from noisy social streams.

• Fuzzy Logic

In [2] authors present an application agnostic framework to evaluate trust in

social participatory sensing systems. the system independently assesses the

quality of the data and the trustworthiness of the participants and combines

these metrics using fuzzy logic to arrive at a comprehensive trust rating for

each contribution. These trust ratings are then used to calculate and update

the reputation score of participants. By adopting a fuzzy approach, this

system is able to concretely quantify uncertain and imprecise information,

such as trust, which is normally expressed by linguistic terms rather than

numerical values.

• Streaming Approach

In this paper [36] authors present a streaming approach to solve the truth

estimation problem in crowdsourcing applications. They consider a cate-

gory of crowdsourcing applications where a group of individuals volunteer

(or are recruited to) share certain observations or measurements about the

physical world. Ascertaining the correctness of reported observations is

a key challenge in such applications, referred to as the truth estimation

problem. This problem is made difficult by the fact that the reliability of

individual sources is usually unknown a priori, since any concerned citizen

may, in principle, participate. Moreover, the timescales of crowdsourcing

campaigns of interest can be as small as a few hours or days, which does not

offer enough history for a reputation system to converge. Fact-finding algo-

rithms are used to solve this problem by iteratively assessing the credibility
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of sources and their claims in the absence of reputation scores. Such algo-

rithms, however, operate on the entire dataset of reported observations in a

batch fashion, which makes them less suited to applications where new ob-

servations arrive continually. Authors describe a streaming fact-finder that

recursively updates previous estimates based on new data. The recursive

algorithm solves an expectation maximization (EM) problem to determine

the odds of correctness of different observations.

• Semi-supervised Methods

Accessing online information from various data sources has become a nec-

essary part of our everyday life. Unfortunately such information is not

always trustworthy, as different sources are of very different qualities and

often provide inaccurate and conflicting information. Existing approaches

attack this problem using unsupervised learning methods, and try to infer

the confidence of the data value and trustworthiness of each source from

each other by assuming values provided by more sources are more accu-

rate. However, because false values can be widespread through copying

among different sources and out-of-date data often overwhelm up-to-date

data, such bootstrapping methods are often ineffective.In this paper [39]

authors propose a semi-supervised approach that finds true values with the

help of ground truth data. Such ground truth data, even in very small

amount, can greatly help to identify trustworthy data sources. Unlike ex-

isting studies that only provide iterative algorithms, the optimal solution

to the problem can be derived and an iterative algorithm that converges to

it can be provided.
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Chapter 3

Problem Domain

3.1 Overview

In this chapter, we define the problem and discuss some preliminaries relevant to

our research problem.

3.2 Preliminaries

Let us consider a participatory sensing network model where a group of M par-

ticipants, S1. . . . SM , make individual observations about a set of N events C1. . . .

CN . Therefore, total reported observations are M ×N . It is very challenging to

find if the reported observations are true or false.

It will be more challenging if source reliability and the probability of event to

be true are unknown. We define source reliability a as the probability that the

participant reports correct observation and z as the probability that the event to

be true. Figure 3.1 illustrates a system model. Our goal is to estimate a for z.

Let us assume that a and z both are unknown.

3.3 Population Based Reliability Estimation (PBRE)

Population Based Reliability Estimation (PBRE) uses a set of reliability instead

of single reliability. In our approach, we call this set of reliability as P and

use Genetic Algorithm to estimate the reliability of participant. Population-

based methods keep around a sample of candidate solutions rather than a single

candidate solution. Each of the solutions is involved in tweaking and quality

assessment. Most of the population-based methods steal concepts from biology,

genetics or evolution. An algorithm chosen from this collection is known as an

Evolutionary Algorithm(EA). Common EAs include the Genetic Algorithm (GA)
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Figure 3.1: A System Model

and Evolutionary Strategies(ES). Table 3.1 describes some common terms in EA.

Terms Description

individual a candidate solution
child and parent a child is the tweaked copy of a candidate solu-

tion(its parent)
population set of candidate solutions
fitness quality
fitness landscape quality function
fitness assessment or
evaluation

computing fitness of an individual

selection picking individuals based on their fitness
recombination or
crossover

A special Tweak which takes two parents, swaps
sections of them, and (usually) produces two chil-
dren.

breeding producing one or more children from a population
of parents through an iterated process of selec-
tion and tweaking(typically mutation or recombi-
nation)

Table 3.1: Terminology Used in Evolutionary Algorithm
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3.3.1 Genetic Algorithm

Genetic algorithm (GA) is a search heuristic that mimics the process of natural

evolution. This heuristic (also sometimes called a metaheuristic) is routinely

used to generate useful solutions to optimization and search problems. Genetic

algorithms belong to the larger class of evolutionary algorithms (EA), which

generate solutions to optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and crossover.

3.3.2 Steps of Basic Genetic Algorithm

There are two steps in basic Genetic Algorithm which are listed below:

• Constructs an initial population,

• Then iterates through three procedures:

– Fitness Assessment: First, it assesses the fitness of all the individuals

in the population.

– Breeding: Second, it uses this fitness information to breed a new pop-

ulation of children. It begins with an empty population of children.

Then produces two children as follows:

∗ select two parents from the original population

∗ copy them

∗ cross them over with one another

∗ mutate the results

– Joining: Third, it joins the parents and children in some fashion to

form a new next-generation population,

3.4 Our Approach

3.4.1 Population Based System Model

Here, we consider a participatory sensing application model where a group of M

participants, S1 to SM , make individual observations about a set of N events C1

to CN . Probability that participant Si reports a true event when the event is

actually true is ai and the probability that participant Si reports a true event

when the event is actually false is bi. θ is the set of ai and bi e.i. {ai, bi}.
Here, 1< = i< = M and 1< = j< = N . We call the set of θ as P which is

a set of reliability. zj is the probability that the event Cj is indeed true. Figure

3.2 illustrates the model.
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Figure 3.2: Population Based System Model

3.4.2 Detail Methodology

1. Step1: We initialize and build popoulation as following:

• Firstly, we initialize M , N

• Secondly, we initialize SC matrix = [0,1]. Here, 0 = When participant

reports an event as false, and 1 = When participant reports an event

as true.

• Thirdly, we initialize d=[ random value from 0 to 1] = Overall bias on

event to be true.

• Finally, P= The set of θ ={a, b}= [any value between 0 to 1].

2. Step2: We calculate zj as following:

p(zj Xj , θ ) is the conditional probability zj to be true given the observation

matrix Xj related to the jth and current estimate of θ .

Here, we define d as overall bias on event to be true. The value of d is

any real value between 0 to 1. If the value is greater than 0.5, we consider

the event to be true and if the value is below or equal to 0.5, we consider

the event to be false. For example, if d=0.7, it implies that the probability

of event to be true is true. Using this bias factor, we try to converge zj

towards d.

3. Step3: Fitness Function

Then we assess fitness of the P , set of reliability. We compare P with the

best reliability. The target reliability or target ai is computed as below:
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target ai =
M∑
i=1

(
N∑
j=1

= SC(i,j)
N

)

For example, in ideal case, the probability of all events to be true, zj =1.

Let us consider, there are 2 events and 3 participants which is illustrated

in Figure 3.3. Participant S1 reports event C1 as true and event S2 as false.

Therefore, target a1 = SC(1,1)+SC(1,2)
2

= 1+0
2

= 0.5

Figure 3.3: Calculating best reliability or target ai

Now, the objective is to select fittest ai from P that helps to converge zj.

We take the fittest value from the initial set of values of ai using fitness

function. The similar calculation can be done for finding fit bi. We call

this fittest value as fit reliability or fit ai or fit bi. Now, we take two

types of fitness functions Fit Parent and Replace Parent:

(a) Type 1 : Fit Parent

The idea of fitness function Fit Parent is to select fit ai from set of ai

of Si. Here, fit ai is that one which is closest to target ai.

Figure 3.5 is an illustrative example of Fit Parent computation.

Here, we initialize three sets of a1 for participant S1 e.i. 0.3, 0.1 and 0.8.

From previous Figure 3.3, we see that the target a1 is 0.5. Therefore,

the closest a1 e.i. fit a1 is 0.3. Similarly, we calculate for participant

S2 and S3 which are a2=0.8 and a3=0.6 respectively.

(b) Type 2 : Replace Parent

In Replace Parent, instead of selecting one fit ai from every partic-

ipant Si’s P , we select the full set of ai which is closest to set of

target ai.

Now, we give an illustrative example of Replace Parent in Figure 3.5.

Here, we initialize three sets of ai for each participant S1 e.i. (a11, a12, a13)

= (0.3, 0.1, 0.8), for S2 it is (a21, a22, a23)=(0.8, 0.4, 0.5) and for S3 it

is (a31, a32, a33)= (0.8, 0.5,0.9). Now, we make another set taking the
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Figure 3.4: Fit Parent Computation

first ai from each Si e.i. ( a11, a21, a31 )=(0.3, 0.8, 0.8) and similarly

(a12, a22, a32 )=(0.1, 0.4, 0.6) and (a13, a23, a33 )=(0.8, 0.6,0.9). Our

target ai = (0.5, 1, 0.5). Therefore, we find that there are 2 fit ais in

the first set, similarly 1 and 0 fit ai for the second and the third set.

Finally, we take the first set as the set of fit ai.

4. Step 4: Breeding

Now, the objective is to generate new child θ from parent θ . We choose

recombination technique [12] as breeding technique. This new values are

called child values anewi and bnewi, where,

anewi = αai + (1− α)bi

bnewi = βbi + (1− β)ai

Where, α = random value between 0 to 1 and

β = random value between 0 to 1

5. Step 5: Joining

We form the next generation parent by using new children.

Joining Formula

ai = anewi

bi = bnewi

6. Step 6: Error percentage of participant’s reliability

We calculate Error percentage of participant’s reliability by below formula,
Total number of converged reliability

Total number of reliability
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Figure 3.5: Replace Parent Computation

3.5 Algorithm

In this section, we provide the detail steps of our computation.

3.5.1 Population Based Reliability Estimation(PBRE)

procedure PBRE

1: Initialize M , N , P , d

2: Initialize observation matrix SC with random values either 0 or 1

3: Initialize θ = {a,b} with random values between 0 and 1

4: Initialize fit a(i) as NULL

5: Initialize zcount=0 // zj convergence metric

6: Calculate target a(i) =
M∑
i=1

N∑
j=1

SC(i,j)
N

7: while zj does not converge do

8: for i=1:M do

9: a(i, P + 1) = fit a(i) //add fit a(i) in the population of a(i)

10: end for

11: for j=1:N do

12: for K=1:P+1 do

13: z(j,K)

14: if z(j,K) = d do

15: zj convergence counter

16: end if
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17: end for

18: end for

// Fitness Function

19: assesFitness-Fit Parent() or assesFitness-Replace Parent()

20: breed() //breeding Function

21: join() // Joining Function

22: reliabilityEstimation()

23: end while

3.5.2 Computing probability that the event zj is true or

false

procedure z(j,K)

begin

// Calculate at=conditional probability that participant’s observation is true

given θ and event z=1.

1: at(j,K) =
M∑
i=1

a(i,K)SC(i,j)(1− a(i,K))(1−SC(i,j))

// Calculate bt=conditional probability that participant’s observation is true

given θ and event z=0.

2: bt(j,K) =
M∑
i=1

b(i,K)SC(i,j)(1− b(i,K))(1−SC(i,j))

3: z(j,K) = at1(j,K)×d
at1(j,K)×d+bt1(j,K)×(1−d)

end procedure

3.5.3 Fitness Function

procedure assesFitness-Fit Parent()

begin

//Select closest a to target a as fit a

1: for i = 1:M do

2: for K = 1:P + 1 do

3: if (0<= target a(i)<= 0.25 AND 0<= a(i,K)<=0.25) OR (0.25<target a(i)

<= 0.75 AND 0.25 <a(i,K) <=0.75) OR (0.75<target a(i) <=1 AND 0.25

<a(i,K) <=1)then

4: fit a(i) = a(i)

5: end if

6: end for

7: end for
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8: return fit a

end procedure

procedure assesFitness-Replace Parent()

begin

//Select closest set of a to set of target a as fit a

1: for i = 1:M do

2: for K = 1:P + 1 do

3: if (0<= target a(i)<= 0.25 AND 0<= a(i,K)<=0.25) OR (0.25<target a(i)

<= 0.75 AND 0.25 <a(i,K) <=0.75) OR (0.75<target a(i) <=1 AND 0.25

<a(i,K) <=1) then

4: count(K) + +

5: end if

6: end for

7: end for

8: best=0

9: for K = 1 : P + 1 do

10: if count(K)>best then

11: best = count(K)

12: L = K

13: end if

14: end for

15: for i = 1 : M do

16: fit a(i) = a(i, L)

17: end for

18: return fit a

end procedure

3.5.4 Breeding Function

procedure breed()

begin

//breed using recombine - multiply

1: for i=1:M do

2: for i=1:P do

3: t(i,K) = α× a(i,K) + (1− α)× b(i,K)//newchild1

//α = random number between 0 and 1

4: s(i,K) = β × b(i,K) + (1− β)× a(i,K)//newchild2

//β = random number between 0 and 1
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5: end for

6: end for

7: return t, s

end procedure

3.5.5 Joining Function

procedure join()

begin

//Replace new children with parents

1: for i = 1 : M do

2: for K = 1 : P do

3: a(i,K) = t(i,K)

4: b(i,K) = s(i,K)

5: end for

6: end for

7: return a, b

end procedure

3.5.6 Reliability Estimation

reliabilityEstimation()

begin

1: for i = 1 : M do

2: if(0< =target a(i)< = 0.25AND0< =fit a(i, K)< = 0.25)OR(0.25<target a(i)< =

0.75AND0.25<fit a(i, K)< = 0.75)OR(0.75<target a(i)< = 1AND0.25<fit a(i,

K)< = 1) do

3: truecount+ + // count of correct reliability estimation

4: end if

5: end for

6: error = (1− truecount
M

)× 100 // percentage of error reliability estimation

end procedure

3.6 Summary

In this section, we summarize the whole PBRE Algorithm.
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Figure 3.6: Flow Chart
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Chapter 4

Experimental Results

4.1 Overview

In this chapter, we have provided our experimental results. We have also com-

pared our results with another relevant algorithm Expectation Maximization [37].

4.2 Testbed Description

The simulation of PBRE runs on 1.58 GHz Intel Core 2 Duo Processor with 2

GB memory. The operating system used to run the simulation is Windows XP

Professional Version 2002 . We have simulated PBRE using Visual Basic for

Applications (VBA) which is closely related to Visual Basic and uses the Visual

Basic Runtime Library.

4.2.1 Simulation Metric

In this section, we have presented the simulation metrics as performance measures

to show the effectiveness of our PBRE. The simulation metrics are as follows:

1. The error percentage of participant’s reliability denotes the estimation of

reliability of a participant to a converged event z.

2. The convergence rate denotes how quickly participant can provide the cor-

rect event. It is computed by the participantś reliability divided by the

total iteration needed to converge.

4.2.2 Simulation Settings

To set up a simulation environment, at first we need to specify some parameters

for participatory sensing. In the Table 4.1 we have described simulation settings.
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Parameters Value

Participant number, M 30-900
Event number, N 2-10
Set of reliability per participant or popula-
tion number , P

2-15

Observation Matrix, SC 0,1
Probability that a participant Si reports a
true event when the event is actually true, a

any value from 0 to 1

Probability that a participant Si reports a
true event when the event is actually false, b

any value from 0 to 1

Probability that the event Cj is indeed true
,d

0.7

α any real value from 0 to 1
β any real value from 0 to 1

Table 4.1: Simulation Settings

4.3 Experimental Results

In this section, we have carried out experiments using simulation to evaluate the

performance of the proposed PBRE scheme in terms of estimation accuracy of

the probability that a participant is right or a measured variable is true compared

to another existing reference method Expectation Maximization. We have taken

the average of 10 experiments involving the same sources and variables. We have

shown that the new algorithm performs better.

4.3.1 Expectation Maximization

It is a general algorithm for finding the maximum likelihood estimates of pa-

rameters in a statistic model, where the data are “incomplete” or the likelihood

function involves latent variables. Intuitively, what EM does is iteratively “com-

pletes” the data by “guessing” the values of hidden variables then re-estimates

the parameters by using the guessed values as true values. Let us consider, an

observed data set =X, one should judiciously choose the set of latent or missing

values Z, and a vector of unknown parameters θ, then formulate a likelihood func-

tion L(θ;X;Z) = p(X;Z θ), such that the maximum likelihood estimate (MLE)

of the unknown parameters θ is decided by:

L(θ;X) = p(X θ)

Once the formulation is complete, the EM algorithm finds the maximum likeli-
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hood estimate by iteratively performing the following steps: E-step: Compute

the expected log likelihood function where the expectation is taken with respect

to the computed conditional distribution of the latent variables given the current

settings and observed data.

Q(θ θt)

M-step: Find the parameters that maximize the Q function in the E-step to be

used as the estimate of for the next iteration.

θ(t+1) = argmax Q(θ θt)

4.3.2 Error percentage of participant’s reliability

A: For Variable Number of Participants

We have compared the estimation accuracy of PBRE (Fit Parent and Replace Parent)

and Expectation Maximization(EM) scheme by varying the number of partici-

pants in the system.

Figure 4.1: Error estimation for M=30-50, N=2, P=2

In Figure 4.1, we have varied participants from 30 to 90. We have taken 2 events

and 2 sets of reliability per person. We have observed that, PBRE has a lower

estimation error in participant reliability compared to EM scheme. Between two

schemes of PBRE, Fit Parent and Replace Parent, Fit Parent has much lower

estimation error. This is because Fit Parent takes only the fit values whereas

Replace Parent takes the fit set of values.

We have run experiments for the increased number of participants from 300 to

900. We have increased the number in the set of reliability per person to 15.
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Figure 4.2: Error estimation for M=300-900, N=2, P=15

Event number is same as before e.i. 2. Now, in Figure 4.2, we have observed that

the error percentage decreases for Fit Parent to 1% compared to 10 to 15% in

Figure 4.1 for participants with 4 set of reliability per person. The reason behind

this decline is the increased number in the set of reliability.

B : For Variable Number of Events

Now, we have compared the results by varying the number of events from 2 to

10.

Figure 4.3: Error estimation for M=50, N=2-10, P=4

In Figure 4.3, we have run experiments for 50 participants, 2-10 events and 4

set of reliability per person. Here also, PBRE shows better results than EM.

Because, when the event number increases, target ai decreases (line 6, procedure

PBRE). Therefore, there are more matches of ai as fit ai to target ai.

We have examined the results for the increased number of participants 600 and
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Figure 4.4: Error estimation for M=600, N=2-10, P=15

the increased number of set of reliability 15 in Figure 4.4. Here, we have an-

alyzed that the error percentage decreases for Fit Parent (0-1%) compared to

Figure 4.3(2-15%) whereas the error percentage for Replace Parent and EM for

Figure 4.3 and 4.4 remain the same. Here, we have found no impact on the in-

creased number in participants or the increased number in the set of reliability.

This is because, Fit Parent takes only the fit values whereas Replace Parent takes

the fit set of values.

C : For Variable Number of the Set of Reliability

Now, we have compared the estimation accuracy of Fit Parent and Replace Parent

scheme by varying the number of set of reliability per person. The number of set

of reliability per person varies from 2 to 15.

Figure 4.5: Error estimation for M=50, N=2, P=2-15
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In Figure 4.5 for 50 participants and 2 events, we have observed that, for in-

creased number of set of reliability, error estimation for both Fit Parent and

Replace Parent decreases. However, in case of Fit Parent it drops from 25% to

5% whereas for Replace Parent it is around 45%. This is because Fit Parent

takes only the fit values whereas Replace Parent takes the fit set of values.

Figure 4.6: Error estimation for M=600, N=4, P=2-15

We have raised the number of participants to 600 and event to 4 in Figure 4.6.

Here, we have analyzed that the error estimation for Replace Parent keeps around

45% whereas in Figure 4.5, it drops from 50% to 40%. This is because, the event

number has been increased and when the event number increases, target ai de-

creases (line 6, procedure PBRE). Therefore, there are more matches of ai as

fit ai to target ai. But for Fit Parent strategy, it shows the minimal impact.

4.3.3 Convergence Rate

A: For Variable Number of Participants

We have compared the convergence vs. estimation accuracy of PBRE and EM

scheme by varying the number of participants from 30 to 80. Event number is

fixed at 2 and the set of reliability per person is 4.

In Figure 4.7, we have observed that the convergence rate for PBRE is lower

than the EM. This is because, though PBRE has the lower error percentage of

reliability than EM, it iterates more than EM to converge. Here, the convergence

rate for Fit Parent, Replace Parent and EM are 0-2, 3.5-4.5 and 8-10 respectively.

B : For Variable Number of Events

Now, we have examined results by varying number of events from 2 to 10. Par-

ticipant number is fixed at 50 and set of reliability per person is 4.
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Figure 4.7: Convergence rate for M=30-80, N=2, P=4

Figure 4.8: Convergence rate for M=50, N=2-10, P=4

In Figure 4.8, we have found that the convergence rate for PBRE is lower than

the EM. This is because, though PBRE has the lower error percentage of reli-

ability than EM, it iterates more than EM to converge. Here, convergence rate

for Fit Parent, Replace Parent and EM are 0-1, 2-4 and 7.5-10 respectively. We

have also observed that the rate in Figure 4.8 is lower than the rate in Figure

4.7 for increased number of events. Because, when the event number increases,

target ai decreases (line 6, procedure PBRE). Therefore, there are more matches

of ai as fit ai to target ai and when there is a set of reliability(PBRE) instead

of one (EM), to find fit ai from set of ai is less error-prone.

C : For Variable Number of the Set of Reliability

We have compared results by varying the number in the set of reliability per

person from 4 to 12 keeping the fixed number of participants at 50 and the fixed
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Figure 4.9: Convergence rate for M=50, N=2, P=4-12

number of events at 2.

In Figure 4.9, we have found that the convergence rate for Fit Parent is lower

than the Replace Parent. Convergence rate for Fit Parent and Replace Parent

are 0-1 and 4.5-1.5. This is because Fit Parent takes only the fit values whereas

Replace Parent takes the fit set of values.
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Chapter 5

Conclusion

5.1 Overview

In this chapter, we draw the conclusion of our project followed by some future

research directions.

5.2 Summary

In this research, we study reliability of event detection in a participatory sen-

sor network. We propose Population Based Reliability Estimation(PBRE) which

starts with assuming a set of reliability. Then, we compute conditional prob-

ability of event to be true with these set of reliability until it converges. We

have used the concept from genetics or evolution. An algorithm chosen from

this collection is known as an evolutionary algorithm. More specifically, we have

used genetic algorithm to estimate the reliability by iterating through fitness as-

sessment, breeding and joining. Two types of fitness assessment are defined e.i.

Fit Parent and Replace Parent. We vary the number of participants, number of

events and number of set of reliability per person. The metrics for performance

measurement is error percentage of participant’s reliability and the convergence

rate. We have compared the results with another Expectation Maximization in

our defined environment and find that our approach provides better results.

We also observe that, for different experiments, Fit Parent is less error prone

because it uses the fit reliability whereas Replace Parent uses the whole set of

fit reliability.
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5.3 Future Work

Reliability estimation in participatory sensor network is a challenging research

field. We would like to extend our work by experimenting with real-life data. We

also want to do experiments by varying overall bias d and the probability that a

person reports a true event when the event is actually false, b.
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