

Equivalence of Problems in Problem Based e-

Learning of Database

Submitted by

Md. Rasel Uddin
Student ID: 100705003P

 A thesis submitted to the Department of Computer Science and Engineering in

partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING IN

COMPUTER SCIENCE AND ENGINEERING

Supervised by

Dr. A. S. M. Latiful Hoque
Professor, Department of CSE, BUET

Department of Computer Science and Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Dhaka, Bangladesh

February, 2013

The thesis ―Equivalence of Problems in Problem Based e-Learning of Database”,

submitted by Md. Rasel Uddin, Roll No. 100705003P, Session: October 2007, to the

Department of Computer Science and Engineering, Bangladesh University of Engineering

and Technology, has been accepted as satisfactory for the partial fulfilment of the

requirements for the degree of Master of Science in Engineering (Computer Science and

Engineering) and approved as to its style and contents. Examination held on March 16, 2013.

Board of Examiners

1.

Dr. Abu Sayed Md. Latiful Hoque

Professor, Department of CSE

BUET, Dhaka-1000

Chairman

(Supervisor)

2. ________________________________

Dr. Abu Sayed Md. Latiful Hoque

Professor and Head, Department of CSE

BUET, Dhaka–1000

Member

(Ex–officio)

3. ________________________________

Dr. Mohammed Eunus Ali

Associate Professor, Department of CSE

BUET, Dhaka–1000

Member

4. ________________________________

Dr. Tanzima Hashem

Assistant Professor, Department of CSE

BUET, Dhaka–1000

Member

5. ________________________________

Dr. M Abdul Awal

Professor, Department of EE and CS

North South University, Dhaka-1229

Member

(External)

I

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the investigation

performed by me under the supervision of Dr. A. S. M. Latiful Hoque, Professor, Department

of Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka. I also declare that no part of this thesis and thereof has been or is being

submitted elsewhere for the award of any degree.

 (Md. Rasel Uddin)

II

Acknowledgement

First I express my heartiest thanks and gratefulness to Almighty Allah for His divine

blessings, which made me possible to complete this thesis successfully.

I feel grateful to and wish to acknowledge my profound indebtedness to Professor Dr. A. S.

M. Latiful Hoque, Department of Computer Science and Engineering, Bangladesh University

of Engineering and Technology. Deep knowledge and keen interest of Professor Dr. A. S. M.

Latiful Hoque in the field of e-Learning influenced me to carry out this thesis. His endless

patience, scholarly guidance, continual encouragement, constructive criticism and constant

supervision have made it possible to complete this thesis.

I also express my gratitude to Professor Dr. A. S. M. Latiful Hoque, Head of the Department

of Computer Science and Engineering, BUET for providing me enough lab facilities to make

necessary experiments of my research in the Graduate lab of BUET.

I would like to thank the members of the Examination committee, Dr. Mohammad Eunus Ali,

Associate Professor, Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, Dr. Tanzima Hashem, Assistant Professor,

Department of Computer Science and Engineering, Bangladesh University of Engineering

and Technology and Dr. M Abdul Awal, Professor, Department of Electrical Engineering &

Computer Science, North South University, Dhaka for their helpful suggestions and careful

review of this thesis.

I would like to convey gratitude to all my course teachers whose teaching helps me a lot to

start and complete this thesis work.

Lastly I am also grateful to my family and colleagues for giving me continuous support.

III

Abstract

Problem-based learning (PBL) in engineering education is an important research area.

Several works have been done to express PBL methodologies, problem design,

implementation of learning environment, support PBL learning, evaluate performance, group

assignment and others. Problem solving is the main goal of education. Problem-based

learning is a way to learn what is needed to solve a problem, how can a solution be obtained

quickly, precisely and professionally. To achieve the goal of problem-based learning,

problem design and assign same level of problems among the students are important in

engineering classroom environment.

SQL is a major part in Database course. In problem-based e-Learning of SQL, it is essential

to find out the equivalence of a SQL problems to assign the set of problems to a set of

students. This is necessary for equal judgment of the performance of individual students. We

have developed a complexity model to find out the equivalence of problems for problem

based e-learning of database. In this model, complexity of problems is found by parsing the

given solution of the problem in top down approach.

We have applied our model to well known SQL Learning and Evaluation System (SQL-

LES). We have compared our calculated complexity value with the complexity value in the

question bank of SQL-LES assigned by the SQL experts and found that in most case our

model generate similar complexity value as SQL-LES. Application of our model will reduce

the instructor workload in SQL-LES.

IV

Contents

Declaration.. I

Acknowledgement ... II

Abstract .. III

Contents ... IV

List of Figures ... VIII

List of Tables ... IX

Chapter 1 .. 1

Introduction .. 1

1.1 Background ... 1

1.2 Problem Definition .. 1

1.3 Objectives .. 2

1.4 Overview of the Thesis ... 2

1.5 Organization of the Thesis .. 3

Chapter 2 .. 5

Literature Review .. 5

2.1 What and How do Students Learn in PBL .. 5

2.2 PBL for Software Engineering Course.. 6

2.3 PBL in Software Engineering Classroom ... 6

2.4 PBL for Engineering Education .. 7

2.5 Framework for PBL Environments ... 8

2.6 3C3R.. 8

2.7 e-Learning System for Problem-based Education ... 9

2.8 Problem Design in Problem-based Learning .. 9

2.9 Group Effectiveness vs Individuals... 9

2.10 Constraints for Problem-based Learning... 10

2.11 Problem-based Learning Tools ... 10

2.11.1 Multiagents System for PBL ... 10

2.11.2 Web-based Environment for PBL ... 11

2.11.3 INDIE .. 11

2.11.4 SQL-LES ... 12

V

2.11.5 ShareFast ... 15

2.11.6 Problem-based Learning via Web ... 16

2.9 Summary ... 17

Chapter 3 .. 18

Complexity Model: System Architecture and Analysis .. 18

3.1 Complexity Model... 18

3.2 Complexity Value ... 19

3.3 Equivalence of Problem .. 19

3.4 Basic SQL Operation .. 20

3.4.1 Select Statement .. 21

3.4.2 CREATE Statement ... 23

3.4.3 INSERT Statement .. 23

3.4.4 UPDATE Statement .. 23

3.4.5 DETELE Statement ... 24

3.5 Top-down Analysis of SQL Select Statement .. 24

3.5.1 Tree Structure of SQL Select Statement.. 25

3.5.2 Level of Used of Database Clauses ... 25

3.5.3 Complexity Value of Database Clauses with SELECT Statement.................... 26

3.5.4 Complexity Value of SQL SELECT Operation (CP) .. 26

3.6 Algorithm to Calculate Complexity Value of SQL problem 31

3.6.1 Algorithm to Calculate Complexity Value of Function 31

3.6.2 Algorithm to Calculate Complexity Value of Column 33

3.6.3 Algorithm to Calculate Complexity Value of Table ... 34

3.6.4 Algorithm for Complexity Value of Predicate .. 34

3.6.5 Algorithm to Calculate Complexity Value of Expression 35

3.7 Top-down Analysis of SQL Create Table Statement .. 36

3.7.1 Tree Structure of SQL Create Statement ... 37

3.7.2 Complexity Value of Database Clauses with CREATE Statement 37

3.7.2 Complexity Value of SQL CREATE Statement (CP) 37

3.8 Top-down Analysis of SQL Insert Statement ... 38

3.8.1 Tree Structure of SQL Insert Statement .. 38

3.8.2 Complexity Value of Database Clauses with Insert Statement 39

3.8.3 Complexity Value of SQL Insert Statement (CP) .. 39

VI

3.9 Top-down Analysis of SQL Update Statement ... 40

3.9.1 Tree Structure of SQL Update Statement .. 40

3.9.3 Complexity Value of SQL Update Statement (CP).. 41

3.10 Top-down Analysis of SQL Delete Statement .. 41

3.10.2 Complexity Value of Database Clauses with Delete Statement 42

3.10.3 Complexity Value of SQL Delete Statement (CP) ... 42

3.11 Complexity Model on Stored Procedure ... 43

Chapter 4 .. 44

Result and Evaluation.. 44

4.1 Experimental Environment ... 44

4.2 Complexity Value for Individual Database Item .. 44

4.3 Evaluation Methodology ... 46

4.4 Complexity Value of SQL Select Statement ... 47

4.4.1 Complexity Value of Table in Select Statement ... 47

4.4.2 Complexity Value of Columns in Select Statement .. 50

4.4.3 Complexity Value of Functions in Select Statement ... 56

4.4.4 Complexity Value of Predicates in Select Statement .. 61

4.4.5 Complexity Value by Increasing Table, Column, Function, Predicate and

Expression for Select Statement ... 66

4.5 Complexity Value of SQL Create Statement .. 69

4.6 Complexity Value of SQL Insert Statement ... 72

4.7 Complexity Value of SQL Update Statement ... 73

4.8 Complexity Value of SQL Delete Statement .. 74

4.9 Comparing Complexity Value with Existing SQL-LES Systems 75

4.10 Comparison Result with Existing SQL-LES Systems .. 77

4.10.1 Comparison Result with Existing SQL-LES Systems by Changing Parameter

Values using Table 4.1 ... 77

4.10.2 Comparison Result with Existing SQL-LES Systems by Changing Formula

and Parameter Values using Table 4.1 ... 79

4.10.3 Summary of the Comparison Results .. 80

Chapter 5 .. 81

Conclusion .. 81

5.1 Contributions ... 81

VII

5.2 Future Research Direction ... 82

References ... 83

Appendix ... 85

VIII

List of Figures

Fig. 2.1: System Architecture of SQL-LES... 12

Fig. 3.1: Top-down Analysis of PBL Problem .. 19

Fig. 3.2: Top-down Analysis of Select Statement ... 25

Fig. 3.3: Tree Structure of SQL Select Statement ... 25

Fig. 3.4: Used Level of SQL Database Clauses .. 26

Fig. 3.5: Top-down Analysis of Crete Statement .. 37

Fig. 3.6: Tree Structure of Crete Statement ... 37

Fig. 3.7: Top-down Analysis of SQL Insert Statement ... 38

Fig. 3.8: Tree Structure of SQL Insert Statement .. 39

Fig. 3.9: Top-down Analysis of SQL Update Statement... 40

Fig. 3.10: Tree Structure of SQL Update statement .. 40

Fig. 3.11: Top-down Analysis of SQL Delete Statement .. 42

Fig. 3.12: Tree Structure of SQL Delete Statement .. 42

Fig. 4.1: Comparison of Different Complexity Values of Table ... 48

Fig. 4.2: Complexity Value of SQL Problems by Varying Number of Tables 50

Fig. 4.3: Comparison of Different Complexity Values of Column with Select Clause 51

Fig. 4.4: Comparison of Different Complexity Values of Column with Group By Clause 52

Fig. 4.5: Comparison of Different Complexity Values of Column with Order By Clause 53

Fig. 4.6: Complexity Value of SQL Problems by Varying Number of Columns 56

Fig. 4.7: Comparison of Different Complexity Values for Type-3 Functions 57

Fig. 4.8: Comparison of Different Complexity Values for Type-3 Functions 58

Fig. 4.9: Comparison of Different Complexity Values for Type-3 Functions 59

Fig. 4.10: Complexity Value of SQL Problems by Varying Number of Functions 61

Fig. 4.11: Comparison of Different Complexity Values for Comparison Type Predicates 62

Fig. 4.12: Comparison of Different Complexity Values for Logical Type Predicates 63

Fig. 4.13: Complexity Value of SQL Problems by Varying Number of Predicates 65

Fig. 4.14: Complexity Value of Select Statements Varying by Parameters 69

Fig. 4.15: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values ... 79

Fig. 4.16: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values and Formula .. 80

IX

List of Tables

Table 3.1: Equivalence of Problems using Boundary Value .. 20

Table 3.2: Complexity Value of SQL Items with Different Clause.. 26

Table 3.3: Database Function with Type and Weight ... 27

Table 3.4: Complexity Value of Used Function ... 28

Table 3.5: Complexity Value of Used Table by Varying Number of Tables 28

Table 3.6: Complexity Value of Column with Different Clauses... 29

Table 3.7: List of Comparison Type Predicates .. 30

Table 3.8: List of Predicates ... 30

Table 3.9: Complexity Value of Different Clauses for Create Statement 37

Table 3.10: Complexity Value of Different Clauses with Insert Statement 39

Table 3.11: Complexity Value of Different Clauses for Update Statement 41

Table 3.12: Complexity Value of Different Clauses for Delete Statement 42

Table 4.1: Complexity Value for Individual Database Item ... 44

Table 4.2: Complexity Level According to Complexity Value .. 46

Table 4.3: Comparison of Different Complexity Values of Table ... 47

Table 4.4: SQL-Select Query by Varying Number of Tables... 48

Table 4.5: Complexity Value of SQL Problems by Varying Number of Tables 49

Table 4.6: Comparison of Different Complexity Values of Column with Select Clause 50

Table 4.7: Comparison of Different Complexity Values of Column with Group By Clause . 51

Table 4.8: Comparison of Different Complexity Values of Column with Order By Clause .. 52

Table 4.9: SQL Select Query by Varying Number of Columns ... 53

Table 4.10: Complexity Value of SQL Problems by Varying Number of Columns 55

Table 4.11: Comparison of Different Complexity Values for Type-1 Functions 56

Table 4.12: Comparison Result using Different Complexity Values for Type-2 Functions .. 57

Table 4.13: Comparison Result using Different Complexity Values for Type-3 Functions .. 58

Table 4.14: SQL Select Query by Varying Number of Functions .. 59

Table 4.15: Complexity Value of SQL Problems by Varying Number of Functions 60

Table 4.16: Comparison of Different Complexity Values for Comparison Type Predicates . 61

Table 4.17: Comparison of Different Complexity Values for Logical Type Predicates 62

X

Table 4.18: SQL Select Query by Varying Number of Predicates ... 63

Table 4.19: Complexity Value of SQL Problem by Varying Number of Predicates.............. 65

Table 4.20: SQL Select Query by Increasing Parameters of All Clauses 66

Table 4.21: Complexity Value of Select Statements Varying by Parameters 68

Table 4.22: SQL Create Statements with Different Constraints ... 69

Table 4.23: Complexity Value of SQL Create Statements ... 71

Table 4.24: SQL Insert Statement with Different Parameters .. 72

Table 4.25: Complexity Value of SQL Insert Statements .. 73

Table 4.26: SQL Update Statement with Different Parameters .. 73

Table 4.27: Complexity Value of SQL Update Statements .. 74

Table 4.28: SQL Delete Statement with Different Parameter .. 74

Table 4.29: Complexity Value of SQL Delete Statements ... 75

Table 4.30: Best Comparing Result with Existing SQL-LES Systems 75

Table 4.31: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values ... 78

Table 4.32: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values and Formula .. 79

1

Chapter 1

Introduction

1.1 Background

Problem based learning (PBL) is an instructional method in which students learn through

facilitated problem solving. PBL is important and essential in engineering education.

Technology has been changing over time. To fetch the changing technological problem,

engineering students need to be technically competent, self learner, communicative and think

creatively. Traditional learning does not fulfil these requirements. Traditional learning

environment based on memorized knowledge. Students can’t apply their knowledge what

they have learned from traditional method in real life problem.

 In PBL, teacher acts to facilitate the learning process rather than to provide knowledge. The

goals of PBL include helping students develop flexible knowledge, effective problem solving

skills, self-directed learning (SDL) skills, effective collaboration skills, and intrinsic

motivation. Facilitator assigns problem to student for learning. Students work in collaborative

groups to identify what they need to learn in order to solve the problem. They engage in self-

directed learning and then apply their new knowledge to the problem and reflect on what they

have learned and the effectiveness of the strategies employed.

In PBL, teacher fetches some problems to assign similar level of problems among the

students. It is very difficult to find out the complexity value of problems. Using the

complexity value, teacher can determine equivalence of problems. The equivalence of

problems means that the complexity to solve the problem is within a specified boundary.

Those problems fall into a specified boundary are all equivalent problems and any of the

problem can be assigned to any student and seem to have equal judgement. So it is necessary

to develop a complexity model to find out complexity value that can be used to identify

problem equivalence.

1.2 Problem Definition

Most important criteria for Problem-based learning is to define the problems and distribute

them among the students. Existing problem-based learning focus on the PBL methodology,

learning content, learning environment, problem design, e-learning for PBL, tools to submit

2

report, discussion forum, problem design, monitor student activity and others. Existing

systems do not focus on the complexity of the problem and distribute among the students.

Simply PBL facilitators choose problems and assign them to the student for learning. Where

some students complain that the problem is very simple for learning and other students

complain that the problem is very complex to solve within limited time.

Database is the core course in Computer Science and Engineering. SQL is an important part

of Database. In Problem-based Learning and Evaluation of SQL, students are assigned

multiple assignments with a varying complexity. Existing SQL Learning and Evaluation

systems assign the complexity values of SQL problems manually based on domain

knowledge of the instructors. If the class size is large multiple instructors produce multiple

assignments then it is difficult to have an equivalence of assignments. Students’ performance

sometime varies because of the dissimilarities of the assignments given by different

instructors. At the same time, if the SQL question bank contains hundreds of questions, it is

extremely difficult to obtain a global complexity value of each SQL problem to reuse the

problems.

1.3 Objectives

The objectives of the thesis are to:

 design a complexity model to find out complexity value of a SQL problem,

 apply the proposed complexity model on Problem-based e-Learning of Database,

 evaluate the performance of the model by applying the model in an SQL-Learning

and Evaluation System.

1.4 Overview of the Thesis

In problem based learning, teacher assigns problem among the students at the beginning of

PBL session. Similar level of problem defines and distributions among the students are

important in problem based learning. Problem equivalence can be found out by analyzing the

problem in top-down fashion. We have proposed Complexity Model to find out complexity

value of SQL problems. By comparing complexity value, we have found out the equivalence

problems.

Complexity Model parses the problem in top-down fashion to find out the required domain

knowledge. Through top-down analysis, PBL problem has been divided into sub-problems.

3

Then each sub-problem analyzes to find out critical, meaningful and complex item to solve

the problem. All discovered item then mark with some weighted value. To find out problem

complexity value, weighted value has been calculated using different mathematical formula.

In Problem based Learning and Evaluation of SQL, students are assigned multiple

assignments with varying complexities. We have discussed details about SQL operations like

CREATE, INSERT, DELETE, UPDATE and SELECT. SQL complexity depends on how

much domain and general knowledge required to solve a problem. We have analyzed those

SQL operations to find out the used domain knowledge. Same item can use in different place

in SQL statement. Based on the used position and item type, we have assigned some

complexity value to that item. Similar items can repeat within a problem several times which

does not seem to increase the complexity of a problem. To curb complex value, we have used

logarithm function. Finally we have applied our newly developed system on existing SQL-

LES question banks as a case study and found that in most case our model generate similar

complexity value as SQL-LES.

Existing works does not focus on the equivalence of problems. We have proposed

Complexity Model to find out equivalence of problems using the complexity value of

different problems.

1.5 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, we have discussed details about existing works on Problem based Learning in

engineering education.

In Chapter 3, we have discussed details about the complexity model and analysis of the

model, problem equivalence and mathematical formula to find out problem complexity value.

Database has many SQL operations. We have analyzed those operations in details to find out

problem complexity value.

In Chapter 4, we have evaluated the Complexity Model using real SQL problems for different

operations. We have calculated complexity value of different SQL operations to find out the

equivalence of problems. To calculate complexity value of a SQL problem, we have defined

4

complexity value of individual keyword, function, predicate and others. Finally we have

applied our model on existing SQL-LES question bank and shown the result.

In the Chapter 5, we have concluded this thesis with contributions and further research

directions.

5

Chapter 2

Literature Review

Problem based Learning (PBL) is a blended learning environment, a combination of self-

directed learning and collaborative learning [1]. Learners need to know methods, techniques

and standard practices which help to develop skill, positive learning aptitudes and get

valuable experience. Problem based e-Learning (PBeL) can support and complement the

problem-based learning model with knowledge transfer [2], [3]. The design of problems,

finding the complexity of the problems to assign students individually or in a group and

evaluation of the problems are the challenging issues in PBL Systems.

Many researchers have focused on teaching strategy, student learning, tutor roles, student

roles, grading, and group distribution [1], [2], [3]. Meaningful learning and problem solving

can only be acted out in a certain learning environment [4]. Hung [5] proposed the 3C3R

paper based model, a systematic conceptual framework for guiding the design of effective

and reliable PBL problems. PBL activities like report submission, group discussion,

construction learning content, student feedback and assessment has supported with web-

based learning environment [6], [7]. A number of research and development have been done

on e-Learning to support problem based learning [8], [9], [10].

Hoque [11] has developed SQL-LES to teach SQL query by assigning SQL problem to

students from question bank. Teachers choose problem based on the complexity value of that

problem. Teachers assign the complexity value during the creation of question bank by

analyzing of the SQL queries and the result.

2.1 What and How do Students Learn in PBL

Hmelo-Silver described what and how student learn in Problem-based learning (PBL) [1].

PBL is part of this tradition of meaningful, experiential learning. In PBL, students learn by

solving problems and reflecting on their experiences. Students learn through the experience

of solving problems, they can learn both content and thinking strategies. PBL is an

instructional method in which students learn through facilitated problem solving. Students

work in collaborative groups to identify what they need to learn in order to solve a problem.

They engage in self-directed learning (SDL) and then apply their new knowledge to the

problem and reflect on what they learned and the effectiveness of the strategies employed.

This approach focused, experiential learning organized around the investigation, explanation,

6

and resolution of meaningful problems. The PBL learning cycle is enacted through the

tutorial process that begins with the presentation of a problem and ends with student

reflection. A PBL tutorial session begins by presenting a group of students with minimal

information about a complex problem.

2.2 PBL for Software Engineering Course

Ming et al. applied PBL approach in a course ―Advance Software Engineering‖ in

engineering education [2]. This approach is conducted a blended learning environment, a

combination of a face-to-face learning environment and e-Learning environment. A set of

integrated projects were selected as stimulus to learning. Both inter- and intra-group

collaborative learning are encouraged. A survey conducted in the end of the course showed

that students accept the problem-based learning quiet well, and their academic achievements

were also better than expected.

Ming has divided students into group of different size. Each group is guided by teacher

assistant. At the beginning of class, project concepts, submission deadline and other rules are

introduced. The students were asked to follow the guideline and develop the project in an

iterative and incremental way. A credit system was introduced to differentiate the grades of

students. All credits are given to teams - not individuals. At the end of the course, each team

proposed a credit distribution for its members, based on their contributions to the project. It is

challenging to develop a course based on PBL. One of the challenges encountered was

projects distribution. While some students complained that the project is too simple, some

others were unconfident that they can get through the project.

2.3 PBL in Software Engineering Classroom

Non-traditional teaching method was introduced for inexperienced students to understand in

software engineering classroom by Ita et al. [3]. It present factors which should exists in pure

problem-based learning. This problem-based learning class was observed and analyzed by the

second author Yvonne. The analysis presented focuses on the problem-based learning factors,

how they were implemented in class, and the strengths and weaknesses of the use of problem-

based learning in this way. The authors also discuss how the teaching could be improved

through modifying the teaching method for a future class in which problem-based learning

will be used. Yvonne attended class during different session to find out how the students were

7

handling the problem in class and how the lecturer was facilitating. Yvonne compared the

problem, the facilitation and the participation of the class with standard PBL methodology.

This is expected to improve the understanding of the PBL methodology, the role of the

student in determining their learning issues, the facilitation process, the importance of the

student’s role in the team, the assessment methodology and problem development.

Fundamental beliefs will be challenged. Building a comprehensive PBL community requires

determination and commitment from all levels – student, faculty and management – to make

it work.

2.4 PBL for Engineering Education

The development of positive learning aptitudes on engineering students has been carried out

with the help of the problem based learning (PBL) methodology by Lacuesta et al. [4].

Solutions of medium-high complexity problems by students make them work on the

development of different skills. The teaching model turns into a significant and autonomous

learning model where students are conscious of their compromise with this process

(learning). Competences can be regarded as skills or abilities to understand and use

knowledge, solve problems, use tools or technologies, learn in an autonomous way, research

and think with initiative and creativity, communicate, cooperate, and so on.

To implement PBL methodology, the development of the project/problem presented by the

lecturer will have to allow students to integrate the contents of all of them. The proposed

project must have the characteristics of an appropriate problem of PBL. The use of a virtual

learning platform will be also recommended to improve both the lecturer-student and

lecturer-team interaction using different tools as chat, email, forums, private intranets, etc. It

is very suitable and advisable that documentation produced by students is homogeneous,

maintaining the same format. The development of a PBL experience lies on the following

activities to be carried out by lecturers and/or students:

 Explanation of the experience to develop.

 Initial explanation of theoretical concepts.

 Allocation of groups, projects and roles.

 Continuous monitoring and evaluation.

 Final Assessment.

8

As regards abilities and skills developed by the students, the results obtained coming from the

last experience showed that the abilities and skills more developed were: self learning,

knowledge integration, oral and written communication, critical capacity, team work and

initiative. Similar project/problem distribution and assessment is very important and

challenging task in PBL methodology.

2.5 Framework for PBL Environments

Qian et al. proposed a framework for designing problem-based learning environment (PBLE)

[5]. It consist three layers--a goal layer, a base layer and a core layer. Activity (problem/task

and its context) with various interpretative and intellectual support systems surrounding it is

the authentic elements of the environment. Related elements include information resources,

tools and scaffoldings can support understanding of the problem and suggest possible

solutions and help learners to interpret and manipulate aspects of the problems. The relation

of teachers, learner, as well as the virtual learning environment (VLE) is an important design

issue for deigning problem-based learning environment. PBLE concentrate on community

building. Communities enable the learner to negotiate and co-construct meaning for the

problem; and also to help teachers to implement the PBLEs.

2.6 3C3R

Hung developed conceptual framework for designing problem in problem-based learning [6].

Well-designed problems are crucial for the success of problem-based learning (PBL). The

3C3R model comprises two classes of components: core components and processing

components. Core components—including content, context, and connection—support content

and conceptual learning, while processing components—consisting of researching, reasoning,

and reflecting—concern students’ cognitive processes and problem-solving skills. To

optimize and maximize the effects of PBL, the quality of the problems is vital. Research is

needed to evaluate and validate the 3C3R model in terms of its comprehensiveness and

conceptual soundness in guiding instructional designers and educators to design effective

PBL problems. Further studies are needed to examine whether the 3C3R model can

sufficiently address these different requirements for solving different types of problems as

well as the interaction between types of problems and the components of the 3C3R model.

9

 2.7 e-Learning System for Problem-based Education

Lian et al. developed e-Learning system for problem-based education [10]. It provides the

learning environment, tools, resources and management for e-learning such as support to the

creation of scenarios, information integration, resource sharing, and collaboration. In this e-

Learning system, the function of knowledge-point links can help students. Knowledge-points

are organized in non-linear network structure, and are associated through the learning

navigation. After the learners chose knowledge-point and the other requirements, and

combined with user information, the system searches and organizes the related knowledge

giving points’ linked map, which is convenient for studying. This e-Learning system fits well

in the problem-based learning model with knowledge transfer. It can fully stimulate the

initiative of both teachers and students, and can support the teaching mode effectively.

2.8 Problem Design in Problem-based Learning

Designing problems for problem-based learning (PBL) courses in engineering has always

been a challenging task, especially in environment where the only method of importing

technical education has been through traditional a lecture/tutorial/practical approach. A

Mantri at el. described design of problems, analyses of solutions submitted by the student

groups and how learning objectives were achieved [22]. The facilitator not only managed

time, but also keeps in mind what maximum technical nodes were covered and learning

objectives were achieved. They described the flow of ideas touch the deep conceptual level

and at the same time move to presentation levels. The pedagogy involved designing problems

that covered the scope of the subject; carefully listing technical nodes and objectives; and

handling the course, class, students and their psychological issues, besides the technical ones.

2.9 Group Effectiveness vs Individuals

Cooperative groups perform better than independent individuals on a wide range of problems.

R. Laughlin at el. described the effectiveness of group size on intellective problems [20].

Comparisons of the performance of cooperative groups of a given size and individuals are a

special case of the larger issue of the relationship between group size and performance. The

current experiment addressed this larger issue by a comparison of groups of size two, three,

four, and five people and the best of an equivalent number of individuals on letters-to-

numbers problems. They review the surprisingly small amount of previous research on the

effects of group size in problem solving. From these considerations, they predicted (a) better

10

performance for groups of each of size two, three, four, and five than an equivalent number

of individuals and (b) major improvement in performance from group size two to three, with

decreasing improvement from group sizes three to four to five. Finally they suggest that 3-

person groups are necessary and sufficient to perform better than the best individuals on

highly intellective problems.

2.10 Constraints for Problem-based Learning

P. Lai at el. was study to obtain insight into the effect of quality assurance system on the

implementation of PBL teaching strategy to courses [21]. Before the implementation of PBL,

the tutors attended specific orientation and training sessions on PBL. Twenty-one tutors were

randomly selected for interview after the implementation. The results of the study indicate

that the quality assurance system within most institutions does affect the implementation of

PBL. The reliance of research output and a standardized student feedback questionnaire as

indicators of staff performance do have a detrimental effect on the implementation of PBL.

On the other hand, resources and class size also have a direct effect on the willingness of

academic staff to adopt the PBL approach in teaching. Finally, student factor also plays an

important role in the successful implementation of PBL. To implement PBL successfully,

PBL tutors need to be supported by a clear message from the university quality assurance

system that this is the way to go forward. Without taking this seriously into consideration,

one could predict serious difficulties in promoting PBL in the education sector.

2.11 Problem-based Learning Tools

2.11.1 Multiagents System for PBL

Fontes et al. introduced multiagents system to support problem-based learning [13].

Multiagents system can model complex system, allowing agents to have common or

conflicting goals. According to this approach, four types of agents are proposed: a Problem

Detector Agent (PDAg), a Student Agent (SAg), an Animated Interface Agent, and Work

Group creation agents (WCAg). Those agents can interact with each other in two ways:

directly (via communication and negotiation) or indirectly (acting upon the environment).

The agents can cooperate in order to achieve mutual benefits or compete to serve their own

interests. Sensors are the agent’s data inputs and the actuators are the ways through which the

agent per- forms its actions and interacts with the environment. Agents can perform many

tasks in computer-supported collaborative learning, such as monitoring students’ participation

11

in discussions, facilitating the selection of topics for discussion, and assessing student

performance in relation to the use of communication and cooperation tools available in the

environment, among others. Fontes presented an approach that uses software agents to avoid

allowing the students to lose focus during interactions with other students and support group

creation, providing the facilitator with support to solve these problems. Using the proposed

approach, it is possible to achieve a reduction of student dispersion, as upon detecting the

focus has been lost, it notifies the facilitator, who can take appropriate action. The

architecture also provides support for group creation. The WCAg is responsible for the

automatic creation of groups by analyzing the students’ profiles and the groups’ profiles.

2.11.2 Web-based Environment for PBL

Yueh et al. developed web-based environment to implement problem-based learning [7].

Problem-based learning is a self directed learning method with different activities likes- team

working, group discussion, collaboration and communication, resources sharing etc. Yueh

developed this web-based environment to support all of those activities. This system contains

of functions of general content management system such as announcement, course

information, lecture notes of each class, and instructor’s contacts. This system only describes

the supporting features for problem-based learning. But it didn’t mention about the problem

distribution among the groups, problem complexity and others.

2.11.3 INDIE

INDIE was built to create web-based interactive learning environments where students can

run simulated experiments, analyze test results, form rationales, and construct arguments to

support or refute possible hypotheses by Lin Qiu [8]. Problem-based learning is a

pedagogical strategy that centers learning activities around the investigation and development

of solutions to complex and ill-structured authentic problems. A number of difficulties occur

when implementing such approaches in schools. To address these difficulties Qiu developed

this web-based tool. This paper focuses on how INDIE supports problem-based learning by

creating an authentic environment that incorporates important aspects in real life, providing

tools to help student perform problem-solving and receive coaching and critiquing, providing

support for instructors to assess student understanding and provide feedback, and using an

interface that allows open-ended inquiry and exploration. Problem-based learning

environment also need more feature like- problem set generation, problem assignment and

evaluation.

12

2.11.4 SQL-LES

SQL Learning and Evaluation System (SQL-LES) was developed by L. Hoque et al. [11].

SQL-LES focused on question bank, test set generation and evaluation of student’s

performance. The question bank used for both learning and automatic evaluation of student’s

performance by creating test set and assigning the test sets to the individual students. This

system has been used for the teaching, learning and evaluation of database laboratory course

in undergraduate level of the Department of Computer Science and Engineering (CSE),

Bangladesh University of Engineering and Technology (BUET) in several years and found to

be very effective in classroom environment. The overall SQL-LES architecture (Fig. 2.1) is a

combination of six interconnected modules: Data Set Management Module (DSMM), User

Management Module (UMM), System Security Module (SSM), Question Bank Management

Module (QBMM), Test Set Management Module (TSMM) and Project Management Module

(PMM).

Fig. 2.1: System Architecture of SQL-LES

DSMM stores data related to schema given by system coordinator. This module is used by

QBMM, TSMM or can be operated individually in response to authorized users. UMM is the

hub of all user related functionality and interactions to other modules of system and are used

by actors. It relies on SSM for authentication and authorization. SSM is the host of all

security functionality of the system. It provides an abstract layer over other modules to

protect them from external harm. QBMM deals with both executable and non-executable

question managements and also schema management. Thus it has three sub-modules, Schema

Management Sub-module, Executable Question Sub-module and Non-executable Question

Sub-module. TSMM is responsible for creating and monitoring test sets. Test sets are built

13

from schemas and questions supplied by QBMM. TSMM has two sub modules, one is for

executable questions and another is for non executable questions. Project Management

Module (PMM) helps students and instructors to submit and evaluate projects.

2.11.4.1 User Management Module (UMM)

In the system, there are 4 types of users: administrator, coordinator, instructor and student.

UMM gets the authentication and authorization from SSM and send necessary information to

TSMM, PMM and QBMM upon request. UMM can also register a user to the system and

thus it can send and receive user information to or from SSM. Administrator can also modify

a user and block or unblock a user. User can also access his full profile via UMM. The UMM

has a function that fetch user auth info from SSM.

2.11.4.2 Data Set Management Module (DSMM)

SQL-LES contains preloaded datasets for creating new questions or update existing questions

in the question bank. It contains a schema bank. Based on the schema bank, representative

datasets are generated. It can also insert data to a table to be tested by student, can view

current data and provide analysis and report on current data set, can export data as a CSV file

(with help of UMM to determine the current user has the right to do the operation) and with

support from SSM, can provide additional security over DSMM.

2.11.4.3 Test Set Management Module (TSMM)
Using these module teachers can create test sets for student examination on SQL, assessment

and practice. This module depends on QBMM module for questions. It fetches questions

from QBMM and generates test sets. A test set can be assigned to every individual student in

the class; time can be set and managed. Instructors can monitor every submission of the

students. The instructor can download the total class performance of all the students and give

to the students just after the class is over. Sometime, the students claim that their submission

was correct but the system has evaluated wrongly.

This module deals with 2 types of test sets. Namely, Executable test set and Non executable

test set. Executable test sets deals with executable questions. An executable question can be

evaluated automatically by the system. As for example, SQL questions are executable type.

TSMM deals with question setup, test set creation, test monitoring and test result. When a

student log in into the system, he finds the test set assigned to him by the instructor. The

student can view the question, the SQL schema with data types and the relational schema. He

can perform all kinds of checking whether his solution to the SQL problem given to him is

14

correct or not. After all kinds of checking, he submits the solution and gets an instant

response whether his given answer is correct or not.

2.11.4.4 Question Bank Management Module (QBMM)
A question bank is the storage of questions related to a topic (in this SQL), where these

questions are related to a schema stored in the schema bank of the system (Fig.6). QBMM

module stores the schema, related Entity Relation Diagram (ERD)’s, and relations in system.

This module serves other modules and used by instructor to create question sets based on a

specific schema. Instructors can assign for each question a complexity value that is used for

test set creation.

The QBMM module has the two sub-modules, SQL executable module and non-executable

module. The purpose of SQL executable module is to deal with those questions which can be

executed by the system. In this case, system can fully determine that the learner has given a

correct solution or not. The executable module has two sub-modules, Schema Bank and SQL

executable question bank.

Non executable module serves those questions that cannot be solved automatically, Such as

database design, PL-SQL functions and procedure evaluation. In this case, these solutions

have to be checked manually and evaluated by instructor. In general, QBMM deals with

schema and questions that are put to test the learning.

2.11.4.5 System Security Module (SSM)
It is an internal module that works throughout the system to provide enhanced security on

data and programs executed inside the system. SSM has user security layer which works with

UMM, project security layer which works with PMM and SQL security layer that works

when there is a SQL execution on system or when an SQL related information is storing in

system. This sub module checks the SQL statement and confirms that this SQL statement will

not harm the system.

For data sets security, SMM applies SQL security level while communicating with data

storage (either database or configuration files required for a DSMM operation) and it help

building improved security with Database server (in this case as we are using oracle security

services) by adding some upper layer functionality for developing intelligence data security.

2.11.4.6 Project Management Module (PMM)
PMM module deals with managing the projects throughout a semester. Its sole purpose is to

automate the project activity management and communicate with other modules if necessary.

15

This module is used by admin, instructors and students. Admin supervise the whole process

while instructors and students communicate and transfer different state in this module. State

refers to submission of project designs, reports and presentation during the tenure of the

project.

A project requires a strong evaluation process during a course like database system design. A

project demonstrates how a student can handle a real life problem with the knowledge he

learned from the course. Evaluation of project is a difficult task as there are many process and

artifacts to control. The PMM helps an instructor to handle these tasks. The necessary steps

taken by the PMM Module are commencing project session, submissions of project list,

creating project group by student, assignment of project supervisor, assign projects to group,

project submissions, and Project evaluation.

The present system evaluates the SQL queries as correct or incorrect. No partial evaluation

can be done using the system. Also there is no global complexity value of SQL problems in

the present system. Teachers assign the complexity value during the creation of question bank

trough QBMM. Analyzing of the SQL queries and the results, a model can be developed for

assigning a global complexity value of the SQL problems. The same model can be used for

partial evaluation of submitted SQL solutions.

2.11.5 ShareFast

Kazuo et al. developed a new design engineering educational framework using an e-learning

system called ShareFast, a Semantic Web-based software for document management system

with workflow [13]. The software offers a function to keep tracks of learner’s behavior so

that the instructor can analyze it to improve learning materials and class efficiency. It can also

record learner’s input and output history data for the instructor to conduct performance

analysis activities. This tool has been developed by the members of Design Engineering

Laboratory, the University of Tokyo. It is an open source, client/server application for

document management based on workflow using RDF metadata on Jena framework. The

client program, developed using C# technology, provides a workflow editor for users to

create workflows and relate any documents to each task node in the workflows. It also

provides the Tree Explorer to browse the workflows hierarchically. Workflows will be stored

as XML with their metadata (e.g. creator, create date etc.) in RDF format. The client program

uploads them together to the server. ShareFast has been applied for many aspects, such as

16

knowledge management, information sharing environment and design support system.

However, one of the very first reasons to develop ShareFast is to use it as the e-learning

component of a framework for supporting design education, such as CAD software learning.

ShareFast system contains many functions and activities, which can powerfully facilitate

teacher and students in design learning activities.

2.11.6 Problem-based Learning via Web

 Eleni at el. developed web base learning environment to support problem-based learning

[23]. In this approach, students and instructors use the web as a virtual place to collaborate

and create new knowledge and new educational experiences. Specific objectives of this work

include- support collaboration of remote overspecialized medical experts in order to devise,

develop and deploy didactic problems for problem based learning in medicine; deploy

problem-based sessions in virtual teams, where both students and instructors may be located

in remote institutions; support strong instructor’s presence; provide tools for student inquiry

and collaboration; and provide mechanisms for continuous monitoring and evaluation, that

would address direct knowledge, as well as tacit competencies targeted via PBL. Considering

the academic educational set-up, there is also the additional requirement for integration with

generic environments that support teaching in higher education, i.e. open source learning

management systems and related educational standards. This approach combines

collaborative tools such as wikis, blogs and forums in order to provide problem based

learning solely on the web. In these PBL sessions, instruction is performed by an

interdisciplinary team of experts from remote institutions, while the group of learners can be

students from the same or different institutions within the consortium. Instructors

collaboratively develop a problem in a wiki. Discussion is initiated via a problem’s blog or

forum, where students and instructors collaborate to analyze the problem, identify conquered

knowledge and plan actions for problem solving. Then students search (via the web and not

only) and collaborate to solve the case via the wiki. Student activities, progress and more

importantly gained experience and competences are recorded, shared and commended on via

their personal blogs. The entire learning episode and all its steps (with the final

problem/answer deployment) are recorded, commended on and monitored via the wiki (final

and intermediate versions) and the participants’ blogs.

17

2.9 Summary

This chapter described different facets of existing problem-based learning systems. Existing

PBL systems focused on the PBL methodology, teaching strategy, problem design, group

distribution, teacher and student roles, learning environment, applicable educational sectors

and limitation of PBL. However, PBL is a highly successful model for teaching and learning.

Still it has been required lots of research to make it more effective and efficient. Complexity

model is a new technique to find out problem complexity. The existing PBL researches do

not focus on the distribution of similar types of problem distribution among the student

groups. Complexity model will help to find out analogous problem using problem complexity

value.

 In the next chapter we have discussed system architecture and analysis of our developed

complexity model for problem-based learning.

18

Chapter 3

Complexity Model: System Architecture and

Analysis

 Problem-based Learning (PBL) is a blended learning environment, a combination of self-

directed learning and collaborative learning. This model believes that teaching should not

only directly focus on the knowledge of the subjects, but also focus on the learner’s abilities,

such as the ability to analyse and solve problems, communicating skills and comprehensive

ability. Problem is the core element in Problem-based Learning. By solving the practical

problems, the learners can explore the concept and principles behind the issues, developing

their self-learning ability, and implement the meaningful construction of the knowledge. In

PBL, different levels of problems are distributed among the student to solve. It is important to

distributed similar level of problem between different students. We have determined the

problem level depend on complexity value of a problem. Problem complexity depends on

how much domain knowledge and general knowledge requires to solve the problem. A

Structured Query Language (SQL) statement is a combination of database clauses. We have

analysed SQL statement in top-down method to know details about database clause and use

position. We have marked each clause with complexity value. We have calculated complexity

value of each clause to find out the complexity value of a SQL problem. Finally, we have

found out the equivalence of problems using complexity value of different problems. We

have taken several surveys from database specialist about the complexity value of individual

database clause based on the clause type and use position in SQL statement.

3.1 Complexity Model

Problem complexity depends on how much domain knowledge requires to solve a problem.

To find out used domain knowledge, Complexity Model parses problem in to sub-problem.

Then each sub-problem analyzes to find out critical, meaningful and complex item to solve

the problem. Then we assign complexity value to each item based on item type and use

position in SQL statement. We have used top-down method to analyze PBL problem.

19

Fig. 3.1: Top-down Analysis of PBL Problem

3.2 Complexity Value

Data is an important factor in any programming concept. Database operations are key items

in any programming language

Complexity Value(𝐶𝑃) = 𝑤𝑡𝑖 × log2 1 + 𝑘

𝑛

𝑖=1

where,

 n = number of sub-problem

 k = number of similar item in sub-problem

 t = item type

 wi = complexity value of t type item

Database SQL statement is a combination of different SQL clause, function, predicate,

constraint and others. Same item can use in different place or repeat again and again within

SQL statement which does not seem to increase the complexity of SQL statement. To curb

complex value, we have used logarithm function.

3.3 Equivalence of Problem

In PBL, it is necessary to assign similar level of complex problems among the students.

Teacher uses complexity value of a problem to determine problem equivalence. The

equivalence of problems means that the complexity to solve the problem is within a specified

boundary. Those problems fall into a specified boundary are all equivalent problems and any

of the problem can be assigned to any student and seem to have equal judgement. The

20

boundary value depends on the problem domain and teaching policy. During problem

equivalence, the domain of a problem must also be considered. Let us consider domains D1,

D2 ... Dm are in an area of problems and P1, P2 ... Pn are problems in domain D1 with

complexities C1, C2 ... Cn. The problem P1 will be equivalent to P2 if

 C1 ~ C2 ≤ €

where, € is the allowable error in the specific level of problem.

The value of € can vary based on the nature of problems, how many levels we want to divide

the problem for a particular domain and what is the difference between the lowest and the

highest complexity value. For simple level of complex problems, minimum domain

knowledge requires to solve SQL problems and the difference between the lowest and the

highest complexity value is minimum. In this case, we have chosen minimum value for €.

Otherwise all problems will be in same level. In the following table (Table 3.1) has shown the

problem level using boundary value.

Table 3.1: Equivalence of Problems using Boundary Value

Problem

No

Complexity

Value (CP)

Problem

Level

Boundary

Value (CP ± €)

1 23

Level – 1

25 ± 2 2 23

3 26

4 29

Level – 2

30 ± 2 5 30

6 28

Here we have divided the problem in two levels. If we want to divide those problems in more

levels then we have to decrease the value of €.

Rule: Two problems can be considered equivalent only and only if they are in the same

domain and the complexity value is within a specific boundary.

3.4 Basic SQL Operation

Data is an important factor in any programming concept. Database operations are key items

in any programming language. In general, all database operations can be broadly classified

into the following categories

 SELECT

 CREATE

21

 INSERT

 UPDATE

 DELETE

3.4.1 Select Statement

SQL is a special purpose programming language to manipulate data in Relational Database

Management System. The most common operation in SQL is the query, which is performed

with the declarative SELECT statement. SELECT retrieves data from one or more tables, or

expressions. Select statement has following clauses with huge selection of options,

parameters and keyword:

 FROM CLAUSE -indicate data source from which data to be retrieved

 WHERE CLAUSE -uses to specify which data to be retrieved

 GROUP BY CLAUSE -groups data to apply aggregate function

 HAVING CLAUSE -uses with Group By clause to filter groups

 ORDER BY CLAUSE -identifies which columns are used to sort the resulting data

3.4.1.1 General Format of SQL SELECT Statement

SELECT [ALL | DISTINCT] column1[,column2] FROM table1[,table2 | Sub Query]

[WHERE "conditions"] [GROUP BY "column-list"] [HAVING "conditions”] [ORDER

BY "column-list" [ASC | DESC]]

Complexity of a given problem depends on how many database clauses has used with options

and parameters.

3.4.1.2 SELECT Clause

Select clause itself can use predicate, function and expression like-

SELECT [ALL | DISTINCT | TOP n] column1[,column2]

[function(column1[,column2])] [expression]

In SQL, there are two types of function. First one is library or built in function and second

one is user defined function. Function complexity depends on which type of function is used,

how many parameters are required for that function and how to use those parameters to

execute that function. Select statement uses Expression to format, represent and calculate

column value.

http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Table_%28database%29

22

3.4.1.3 FROM Clause

Select statement uses FROM as required clause to define the data source as-

 FROM table1[,table2 | Sub-Query].

Select statement can include optional Sub-Query with FROM clause as data source. The

complexity of SELECT statement increases with the number of used table and sub-query. To

link with different table JOIN keyword can use with linking condition. The syntax of JOIN

keyword like-

 From tabl1 t1 <JOIN> table2 t2 on t1.coulmnA = t2.columnA

3.4.1.4 WHERE Clause

WHERE clause in SQL statement specifies that query should only affect rows that meet

specified criteria. The criteria are expressed in the form of predicate or condition. Where

clause is not mandatory clause, but can be used to limit the number of affected rows. The

syntax of SQL WHERE clause:

 WHERE comparison predicates [, other predicates]

3.4.1.5 GROUP BY Clause

The SQL GROUP BY Clause is used along with the aggregate functions to retrieve data

grouped according to one or more columns. The common format of GROUP BY clause is –

SELECT column1, aggregate-function(column2)FROM table1[,table2 |

Sub Query] GROUP BY column1[,column2]

3.4.1.6 HAVING Clause

HAVING clause in SQL specifies that an SQL SELECT statement should only return rows

where aggregate values meet the specified conditions. It was added to the SQL language

because the WHERE keyword could not be used with aggregate functions. The syntax of

HAVING clause is:

 HAVING comparison predicates [, other predicates]

3.4.1.7 ORDER BY Clause

The ORDER BY clause is an optional clause in SQL SELECT Statement and use to sort the

resulting data, and in which direction they should be sorted. The syntax of order by clause is:

 ORDER BY column1[,column2] [ASC | DESC]

23

3.4.2 CREATE Statement

A CREATE statement in SQL creates an object inside of a relational database management

system (RDBMS). The types of objects that can be created depends on which RDBMS is

being used, but most support the creation of tables, indexes, users, synonyms and databases.

A commonly used CREATE command is the CREATE TABLE command. The typical usage

is:

CREATE [TEMPORARY] TABLE [table name] ([column definitions]) [table

parameters].

Column definitions: A comma-separated list consisting of any of the following

Column definition: [column name] [data type] {NULL | NOT NULL} {column options}

Primary key definition: PRIMARY KEY ([comma separated column list])

Constraints: {CONSTRAINT} [constraint definition]

3.4.3 INSERT Statement

An SQL INSERT statement adds one or more records to any single table in a relational

database. Insert statements have the following form:

INSERT INTO table (column1 [, column2, column3 ...]) VALUES (value1 [,

value2, value3 ...])

The number of columns and values must be the same. If a column is not specified, the default

value for the column is used. The values specified (or implied) by the INSERT statement

must satisfy all the applicable constraints (such as primary keys, CHECK constraints, and

NOT NULL constraints). If a syntax error occurs or if any constraints are violated, the new

row is not added to the table and an error returned instead.

3.4.4 UPDATE Statement

An SQL INSERT statement adds one or more records to any single table in a relational

database. An SQL UPDATE statement changes the data of one or more records in a table.

Either all the rows can be updated, or a subset may be chosen using a condition. The

UPDATE statement has the following form:

UPDATE table_name SET column_name = value [, column_name = value ...]

[WHERE condition]

For the UPDATE to be successful the user must have data manipulation privileges (UPDATE

privilege) on the table or column and the updated value must not conflict with all the

http://en.wikipedia.org/wiki/Primary_key

24

applicable constraints (such as primary keys, unique indexes, CHECK constraints, and NOT

NULL constraints).

3.4.5 DETELE Statement

In the database structured query language (SQL), the DELETE statement removes one or

more records from a table. A subset may be defined for deletion using a condition, otherwise

all records are removed. The DELETE statement follows the syntax:

DELETE FROM table_name [WHERE condition];

Any rows that match the WHERE condition will be removed from the table. If the WHERE

clause is omitted, all rows in the table are removed. The DELETE statement should thus be

used with caution. The DELETE statement does not return any rows; that is, it will not

generate a result set. Executing a DELETE statement can cause triggers to run that can cause

deletes in other tables. For example, if two tables are linked by a foreign key and rows in the

referenced table are deleted, then it is common that rows in the referencing table would also

have to be deleted to maintain referential integrity.

3.5 Top-down Analysis of SQL Select Statement

SQL SELECT statement is a combination of different database clause named FROM,

WHERE, GROUP BY, HAVING and ORDER BY. FROM clause uses as a required clause

and all other clauses are optional. Each clause can use functions, predicates, columns or

expression to make it meaningful. The main purpose of database clauses is to prepare data for

user with desire shape.

25

Fig. 3.2: Top-down Analysis of Select Statement

3.5.1 Tree Structure of SQL Select Statement

Database clauses can use lots of keyword, function, expression and predicate to make the

SQL query more purposeful and efficient. Any clause can use those items with proper format.

The level of used of those items have shown using tree structure.

Fig. 3.3: Tree Structure of SQL Select Statement

3.5.2 Level of Used of Database Clauses

Select statement has five clauses. Each clause can use function, column name, predicate or

sub-query as parameter. Same type parameter can use with different clauses and there is

different meaning. So the complexity of the used parameter depends on the type and use

position in SQL statement. In the following figure (Fig. 3.4), we have shown details about

use position of different parameter with different clauses.

26

Fig. 3.4: Used Level of SQL Database Clauses

3.5.3 Complexity Value of Database Clauses with SELECT Statement

Table 3.2: Complexity Value of SQL Items with Different Clause

Name of the SQL Clause Used in Level Complexity Value

Functions

Select

fw Where

Having

Columns

Select

Cv
Group By

Order By

Tables From Tv

Predicate

Select

Pv
Where

Having

Expression

Select Ev

From

3.5.4 Complexity Value of SQL SELECT Operation (CP)

Complexity value of a given SQL problem has been calculated by analyzing SQL statement.

SQL statement is a combination of different types of clause. Database clauses can use lots of

keyword, function, expression and predicate to make the SQL query more purposeful and

27

efficient. So SQL complexity depends on used clauses and parameters. The complexity value

has been calculated by using the following formula:

 CP =
𝐶𝑖

𝐶𝑖(𝑚𝑎𝑥)

𝑛
𝑖=1 /𝑛𝑚𝑎𝑥 × 100, 𝐶𝑖 ∈ 𝐶𝐿𝑣 , 𝐹𝑣 , 𝐶𝑣 ,𝑇𝑣 ,𝑃𝑣 ,𝐸𝑣

where

nmax is the cardinality of the clause array of Ci

CLv is complexity value of usages database clauses

Fv is functional value,

Cv is columns value,

Tv is tables value,

Pv is predicates value,

Ev is expression value

3.5.4.1 Complexity Value of Function (Fv)

The complexity SQL function depends on which type function uses to process data, how

many parameters requires for that function and which clause use that function. Complexity

vale of SQL Select statement proportionally increased with the functional value. To calculate

the complexity value of usage function, we have used the following formula:

Fv = 𝑓𝑤𝑡 × log2(1 + 𝑛)𝑚
𝑡=0

where,

t is function type,

fw is the functional weight of type t,

n is the number of used t type function

Same type of function can repeat in SQL statement again and again, which does not mean to increase

the problem complexity. To curb the complexity value for repeated function, we have used logarithm

function.

SQL Functions:

Table 3.3: Database Function with Type and Weight

Function Name Function Type

(t)

Function Weight

(fw)

SUM t fw

COUNT t fw

28

AVG t fw

MAX t fw

MIN t fw

FORMAT t fw

etc

Example:

If we consider the functional weight (fw) of Type t is 1, then the functional value will be –

Table 3.4: Complexity Value of Used Function

Number of used

function

Function value

Fv = 𝒇𝒘 × 𝐥𝐨𝐠𝟐(𝟏 + 𝒏)

1 1 × log2 1 + 1 ≈ 1

2 1 × log2 1 + 2 ≈ 1 . 585

3 1 × log2 1 + 3 ≈ 2

4 1 × log2 1 + 4 ≈ 2.322

5 1 × log2 1 + 5 ≈ 2.585

3.5.4.2 Complexity Value of Table (Tv)

Table is a set of data elements (values) that use as a data source with SQL query. Multiple

tables can use with SQL query to retrieve user desire data. JOIN clause use to combine data

from different tables. User needs to carefully handle table joining to avoid wrong data. So

query complexity will be increase if we use more tables to get data. We have the following

formula to calculate used table value:

Tv = 𝑡𝑤 × log2 1 + 𝑛

where,

 tw is the weight of table

n is the number of used tables

Multiple tables can use in SQL statement, which does not seem to increase the problem

complexity. To curb the complexity value for multiple tables, we have used logarithm

function.

Complexity Value by Varying the Number of Table:

Table 3.5: Complexity Value of Used Table by Varying Number of Tables

No. of

Table

Complexity Value

29

1 5 × log2 1 + 1 ≈ 5

2 5 × log2 1 + 2 ≈ 7.925

3 5 × log2 1 + 3 ≈ 10

4 5 × log2 1 + 4 ≈ 11.61

5 5 × log2 1 + 5 ≈ 12.925

6 5 × log2 1 + 6 ≈ 14.035

7 5 × log2 1 + 7 ≈ 15

8 5 × log2 1 + 8 ≈ 15.85

9 5 × log2 1 + 9 ≈ 16.61

10 5 × log2 1 + 10 ≈ 17.295

17 5 × log2 1 + 17 ≈ 20.85

3.5.4.3 Complexity Value of Column (Cv)

Table has a specified number of columns. Most of the time user does not need all column

value. In this situation, user has to mention desired column in SQL query. Also some

aggregate function depends on column which has to define by user. So column has many

roles in QSL query. Column value (Cv), depends on the number of used column and the level

of used. We have calculated column value in the following way:

Cv = 𝑐𝑣𝑆 × log2 1 + 𝑚 + 𝑐𝑣𝐺 × log2 1 + 𝑛 + 𝑐𝑣𝑂 × log2 1 + 𝑝

where,

S is SELECT clause,

O is other clause like GROUP BY, ORDER BY,

 cwS, is the column weight with SELECT clause,

cwG, is the column weight with GROUP BY clause,

cwO, is the column weight with ORDER BY clause,

m is the number of used column with SELECT clause

n is the number of used column with GROUP BY and

p is the number of used column with ORDER BY clause

Table 3.6: Complexity Value of Column with Different Clauses

Number of

Column

Used with Column Weight Complexity Value

2

SELECT

1

1.585

4 2.322

6 2.807

2

 4.755

30

4 GROUP BY/

ORDER BY

2 6.966

6 8.421

3.5.4.4 Complexity Value of Predicate (Pv)

Predicates boil down to either a TRUE or a FALSE result. Predicates use to filter out

unwanted rows from the result of an SQL query by applying a WHERE clause whose

predicate excludes the unwanted rows.

Pv = 𝑝𝑤𝑡
𝑛
𝑡=0 × log2(1 + 𝑛)

where

t is the predicate type

pw is the weight of t type predicate

n is the number of use t type predicates

Comparison Predicates:

Table 3.7: List of Comparison Type Predicates

Predicate Meaning

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Other Predicates:

Table 3.8: List of Predicates

ALL BETWEEN

DISTINCT EXISTS

IN LIKE

MATCH NOT IN

NOT LIKE NULL

OVERLAPS SIMILAR

SOME, ANY UNIQUE

TOP SKIP

etc

31

3.5.4.5 Complexity Value of Expression (Ev)

SQL Expression is a combination of symbols and operators to perform arithmetic calculation,

formation and compare values against others value. Expressions can be found inside of any

SQL clause usually in the form of a conditional statement.

Ev = 𝑒𝑤𝑡 × log2 1 + 𝑛 𝑚
𝑡=0

where,

t is the expression type,

ew is the expression weight of type t,

n is the number of used t type function

 3.6 Algorithm to Calculate Complexity Value of SQL

problem

Algorithm I calculates complexity value of a given SQL problem using SQL statement for

that problem. This algorithm uses five functions - CalculateFunctionalValue,

CalculateColumnValue, CalculateTableValue, CalculatePredicateValue and

CalculateExpressionValue to complete the calculation. We have described details about those

functions later in this chapter.

Algorithm I ComplexityValue

Input: SQL Statement sst;

Output: return total Problem weight as Complexity value in numeric

Step 1: Initialize Total Weight totalWeight = 0.0;

Step 2: totalWeight += CalculateFunctionalValue(sst);

Step 3: totalWeight += CalculateColumnValue(sst);

Step 4: totalWeight += CalculateTableValue(sst);

Step 5: totalWeight += CalculatePredicateValue(sst);

Step 6: totalWeight += CalculateExpressionValue(sst);

3.6.1 Algorithm to Calculate Complexity Value of Function

SQL statement uses function to make query result more meaningful to user. Function can use

anywhere in SQL query with desired parameter(s). Function complexity depends on which

type of function is used, how many parameters require for that function and how to uses those

32

parameters to execute that function. Functional weight has been calculated by using the

Algorithm II.

Algorithm II CalculateFunctionalValue

Input: SQL Statement sst;

Output: return functional weight in numeric

Step 1: Initialize functional weight fnWeight = 0.0, Function list with Weight fnList[];

 usedFnByType[ftype] = 0.0; to count similar type function.

Step 2: ARRAY[] items = split sst to words;

Step 3: FOREACH(item in items)

 IF(item in fnList) THEN

 ftype = find out function type

 usedFnByType[ftype] +=1;

 ENDIF

 END FOREACH

Step 4: FOREACH (usedFn in usedFnByType)

 fnWeight = fnList[ftype] * log(1+ usedFn, 2);

 END FOREACH

In the Algorithm II, we have calculated functional complexity of a SQL statement. First we have split

SQL statement into array, and then we have searched the array to find out the use database function.

Finally we have calculated complexity value of function based on their type. The time complexity of

step 1 is O(1), step 2 is O(1), step 3 for find out used function from n number of items is O(n) and step

4 for calculate complexity value of m number of function is O(m). The total complexity for

Algorithm II is

= 𝑂(1 + 1 + 𝑛 + 𝑚)

= 𝑂(2 + 𝑛 + 𝑚)

= 𝑂(𝑛 + 𝑚)

The complexity of Algorithm II for calculation of complexity value for function is 𝑂(𝑛 + 𝑚)

where n is the number of used item in SQL statement.

33

3.6.2 Algorithm to Calculate Complexity Value of Column

Database table has a specified number of columns. Most of the time user needs to mention

column name at different level in SQL query to perform calculation, data filtering, ordering

and others. Algorithm III has been used to measure the functional weight.

Algorithm III CalculateColumnValue

Input: SQL Statement sst;

Output: return column weight as numeric value

Step 1: Initialize column weight cWeight = 0.0; Resrver SQL keyword keyList[];

 usedColumnByLevel[usedLevel] = 0.0; to count total used column at different level

Step 2: ARRAY[] items = split sst to words;

Step 3: FOREACH(item IN items)

 IF(item NOT IN keyList) THEN

 usedLevel = find out level [Select, Group By or Order By]

 usedFnByType[usedLevel] +=1;

 ENDIF

 END FOREACH

Step 4: cWeight = ColumnWeightWithSelect * log(1+ usedFnByType[0], 2);

 cWeight += ColumnWeightWithOthers * log(1+ usedFnByType[1], 2);

In the Algorithm III, we have calculated the complexity value of columns of a SQL statement. First

we have split SQL statement into array, and then we have searched the array to find out the use

database column and the clause name which use that column. Finally we have calculated complexity

value of column based on use position. The time complexity of step 1 is O(1), step 2 is O(1), step 3

for find out used function from n number of items is O(n) and step 4 is O(1). The total complexity

for Algorithm II is

= 𝑂(1 + 1 + 𝑛 + 1)

= 𝑂(3 + 𝑛)

= 𝑂(𝑛)

The complexity of Algorithm III for calculation of complexity value for column is 𝑂(𝑛)

where n is the number of used item in SQL statement.

34

3.6.3 Algorithm to Calculate Complexity Value of Table

SQL statement uses function to make query result more meaningful to user. Function can use

anywhere in SQL query with desired parameter(s). Function complexity depends on which

type of function is used, how many parameters require for that function and how to uses those

parameters to execute that function. Functional weight has been calculated by using the

Algorithm IV.

Algorithm IV CalculateTableValue

Input: SQL Statement sst;

Output: return table weight as numeric value

Step 1: Initialize Total Weight tWeight = 0.0; used table uTable = 0.0

Step 2: uTable = Total used table in SQL statement

Step 3: tWeight = tableWeight * log(1+ uTable, 2);

3.6.4 Algorithm for Complexity Value of Predicate

SQL statement uses function to make query result more meaningful to user. Function can use

anywhere in SQL query with desired parameter(s). Function complexity depends on which

type of function is used, how many parameters require for that function and how to uses those

parameters to execute that function. Functional weight has been calculated by using the

Algorithm V.

Algorithm V CalculatePredicateValue

Input: SQL Statement sst;

Output: return functional weight in numeric

Step 1: Initialize predicate weight pWeight = 0.0, Predicate list with Weight pList[];

 usedFnByType[], to store used predicate

Step 2: ARRAY[] items = split sst to words;

Step 3: FOREACH(item in items)

 IF(item in fnList) THEN

 usedFnByType[i++] = item;

 ENDIF

 END FOREACH

35

Step 4: FOREACH (usedFn in usedFnByType)

 fnWeight = fnList[ftype];

 END FOREACH

In the Algorithm V, we have calculated the complexity value of predicates of a SQL statement. First

we have split SQL statement into array, and then we have searched the array to find out the use

database predicate with predicate type. Finally we have calculated complexity value of predicate

based on their type. The time complexity of step 1 is O(1), step 2 is O(1), step 3 for find out used

predicate from n number of items is O(n) and step 4 for calculate complexity value of m number of

predicate is O(m). The total complexity for Algorithm V is

= 𝑂(1 + 1 + 𝑛 + 𝑚)

= 𝑂(2 + 𝑛 + 𝑚)

= 𝑂(𝑛 + 𝑚)

The complexity of Algorithm V for calculation of complexity value for predicate is 𝑂(𝑛 +

𝑚) where n is the number of used item in SQL statement.

3.6.5 Algorithm to Calculate Complexity Value of Expression

SQL statement uses function to make query result more meaningful to user. Function can use

anywhere in SQL query with desired parameter(s). Function complexity depends on which

type of function is used, how many parameters require for that function and how to uses those

parameters to execute that function. Functional weight has been calculated by using the

Algorithm VI.

Algorithm VI CalculateExpressionValue

Input: SQL Statement sst;

Output: return Expression weight as numeric value

Step 1: Initialize Expression weight ExWeight = 0.0; Resrver SQL keyword keyList[];

 usedColumnByLevel[usedLevel] = 0.0; to count total used column at different level

Step 2: ARRAY[] items = split sst to words;

Step 3: FOREACH(item IN items)

 IF(item NOT IN keyList) THEN

 extype = find out expression type

 usedExByType[extype] +=1;

36

 ENDIF

 END FOREACH

Step 4: FOREACH (usedEx in usedExByType)

 ExWeight = fnList[usedEx] * log(1+ usedEx, 2);

 END FOREACH

In the Algorithm VI, we have calculated the complexity value of expression of a SQL statement.

First we have split SQL statement into array, and then we have searched the array to find out the use

expression with type. Finally we have calculated complexity value of expression based on their type.

The time complexity of step 1 is O(1), step 2 is O(1), step 3 for find out used expression from

n number of items is O(n) and step 4 for calculate complexity value of m number of

expression is O(m). The total complexity for Algorithm VI is

= 𝑂(1 + 1 + 𝑛 + 𝑚)

= 𝑂(2 + 𝑛 + 𝑚)

= 𝑂(𝑛 + 𝑚)

The complexity of Algorithm VI for calculation of complexity value for function is 𝑂(𝑛 +

𝑚) where n is the number of used item in SQL statement.

3.7 Top-down Analysis of SQL Create Table Statement

Create Table statement in SQL, creates a table object in relational database. This statement is

a combination of Column Definition and Constraint. Constraint imposes some rules on table

or columns using default, unique, check etc.

37

Fig. 3.5: Top-down Analysis of Crete Statement

3.7.1 Tree Structure of SQL Create Statement

SQL Create statement uses different constraints to describe the desired behavior of column

value. We have shown the level of used of different constraints in bellow figure using tree

structure.

Fig. 3.6: Tree Structure of Crete Statement

3.7.2 Complexity Value of Database Clauses with CREATE Statement

Table 3.9: Complexity Value of Different Clauses for Create Statement

Name of the SQL Clause Used in Level Complexity Value

Create Tables CTv
Column Cv

Table Constraint tw

Constraint Kw

3.7.2 Complexity Value of SQL CREATE Statement (CP)

SQL functional value depends on which type function used to process data, how many

parameter requires for that function, which clause use that function etc. SQL complexity

proportionally increased with the functional value. To calculate functional value we have

used the following formula:

CP = 𝐶𝑇𝑣 + 𝐶𝑣 × log2(1 + 𝑝) + 𝐾𝑤𝑡 × log2(1 + 𝑛)𝑚
𝑡=0 + 𝑡𝑤 × log2 1 + 𝑞

 where,

38

 CTv is the weight of CREATE Table command

 Cv is the weight of column

p is the number of used columns

Kw is the weight of constraint

t is the type of used constraint

n is the number of used t type constraints

tw is the weight of table

q is the number of used tables

3.8 Top-down Analysis of SQL Insert Statement

SQL Insert statement is a combination of column name and column value use to insert data in

data table.

Fig. 3.7: Top-down Analysis of SQL Insert Statement

3.8.1 Tree Structure of SQL Insert Statement

SQL Insert statement use column name as optional item. Using column name, it is possible to

insert particular column value. The level of use column name, column value and sub-query

has shown in bellow figure using tree structure.

39

Fig. 3.8: Tree Structure of SQL Insert Statement

3.8.2 Complexity Value of Database Clauses with Insert Statement

To calculate complexity value of Insert statement, we have used the following table.

Table 3.10: Complexity Value of Different Clauses with Insert Statement

Name of the SQL Clause Complexity Value

Insert Iv
Column Cw

Column Value Cv

Multirow Mv

Sub-Query *

3.8.3 Complexity Value of SQL Insert Statement (CP)

Complexity value of Insert statement depends on the number of mention column name,

column value and number of rows insert at a time. To calculate complexity value we have

used the following formula:

CP = 𝐼𝑣 + 𝐶𝑤 × log2(1 + 𝑝) + 𝐶𝑣 × log2(1 + 𝑛) + 𝑀𝑣 × log2 1 + 𝑞

 where,

 Iv is the weight of INSERT command

 Cw is the weight of column

p is the number of used columns

Cv is the weight of column value

n is the number of column value

Mv is the weight of multi row

q is the number of rows insert at a time

40

Same item can repeat again and again. To limit the complexity value, we have used logarithm

function.

3.9 Top-down Analysis of SQL Update Statement

SQL Update statement uses to change particular column value in a data row. Update

statement uses column name and column value with update condition. Update condition can

use as optional parameter. Without update condition, update statement will update entire table

value for the mention column.

Fig. 3.9: Top-down Analysis of SQL Update Statement

3.9.1 Tree Structure of SQL Update Statement

SQL Update statement use to change exiting value of a data row in data table. Update

statement uses column name as mandatory clause and where clause as optional clause. The

level of use column name, column value and sub-query has shown in bellow figure using tree

structure.

Fig. 3.10: Tree Structure of SQL Update statement

3.9.2 Complexity Value of Database Clauses with Update Statement

41

Table 3.11: Complexity Value of Different Clauses for Update Statement

Name of the SQL Clause Complexity Value

Update Uv
Column Cv

Set Sv

Table tw

Where Wv

Predicate Pv

3.9.3 Complexity Value of SQL Update Statement (CP)

Complexity value of Update statement depends on the number of mention column and

condition. To calculate complexity value for Update statement, we have used the following

formula:

CP = 𝑈𝑣 + 𝑆𝑣 + 𝐶𝑣 × log2(1 + 𝑛) + 𝑤𝑣 + 𝑃𝑣 + 𝑆𝑄𝑉

 where,

 Uv is the complexity value of UPDATE command

 Cv is the complexity value of column

n is the number of used columns

wv is the complexity value of where clause

Pv is the complexity value of predicate

SQV is the complexity of Sub-Query value

SQL Select statement can use as a sub-query. To calculate complexity value of sub-query, we have

the formula that use to calculate complexity value of Select statement. More than one column can use

with update statement which does not mean to increase complexity value. To limit the complexity

value of Update statement, we have used logarithm function with the number of used column.

3.10 Top-down Analysis of SQL Delete Statement

Delete statement uses to remove all or particular rows from data table. Without conditional

where clause, it removes all rows from data table. Conditional clause can use Sub-Query to

match criteria. SQL select statement uses as sub-query. We have already described details

about SQL Select statement.

42

Fig. 3.11: Top-down Analysis of SQL Delete Statement

3.10.1 Tree Structure of SQL Delete Statement

Delete statement uses table name as main clause and where clause as optional. The level of

use table name, where clause, predicate, function and sub-query has shown in bellow figure

using tree structure.

Fig. 3.12: Tree Structure of SQL Delete Statement

3.10.2 Complexity Value of Database Clauses with Delete Statement

Table 3.12: Complexity Value of Different Clauses for Delete Statement

Name of the SQL Clause Complexity Value

Delete Dv
Table tw

Where wv

Predicate Pv

Function fv

3.10.3 Complexity Value of SQL Delete Statement (CP)

Complexity value of Delete statement depends on the number of parameters with optional

where clause. To calculate complexity value of Delete statement, we have used the following

formula:

43

CP = 𝐷𝑣 + 𝑡𝑤 + 𝑤𝑣 + 𝑃𝑣 + 𝐹𝑣 + 𝑆𝑄𝑉

 where,

 Dv is the complexity value of DELETE command

 tw is the complexity value of table

wv is the complexity value of where clause

Pv is the complexity value of predicate

Fv is the complexity value of function

SQV is the complexity of Sub-Query value

SQL Select statement can use as a sub-query with DELETE operation. To calculate

complexity value of sub-query, we have the formula that use to calculate complexity value of

Select statement. More than one column can use with update statement which does not mean

to increase complexity value. To limit the complexity value of Update statement, we have

used logarithm function with the number of used column.

3.11 Complexity Model on Stored Procedure

Stored procedures are set of Structured Query Language (SQL) statements that perform

particular task. The general format for stored procedure is –

CREATE PROCEDURE <Procedure_Name>

 -- Add the parameters for the stored procedure here

AS

BEGIN

 -- Insert SQL statements for procedure here

END

Stored procedure uses insert, delete, update or select statements with input and output type

parameters. Complexity of stored procedure depends on the numbers of use input, output

parameters and SQL statements. To calculate complexity value of stored procedure, we have

to find out the complexity value of use input, output parameter and SQL statements. We have

already described how to calculate complexity value of SQL statements.

44

Chapter 4

Result and Evaluation

The objective of this chapter is to verify the accuracy and effectiveness of our proposed

Complexity Model. The experimental evaluation has been performed using question bank of

database lab for undergraduate student. The experimental result has been compared with

existing manual system question distribution.

4.1 Experimental Environment

Our proposed Complexity Model has been implemented on a machine (treated as server) with

2.10GHz Intel Core 2 Duo processor and 4GB of RAM, running on Microsoft Windows

Server 2008 with Apache server. We have developed a client-server online system for

database practical class. The system has been developed in open source environment. We

have used PHP for sever side processing and HTML for client side. System administrator has

submitted question bank and other related data by using online administrators interface in

web browser. For storing and retrieving data we have used Oracle database.

4.2 Complexity Value for Individual Database Item

We have collected the complexity value of individual database clause based on the item type

and use position in SQL statement from database specialists. Then we have applied different

values for individual database item and find out the most approving value to calculate

complexity of a problem. We have calculated SQL problem complexity using the most

approving value. In the following table, we have shown details about the complexity value of

individual database item.

Table 4.1: Complexity Value for Individual Database Item

SQL Item

Details

Level in

Use

Complexity

Value By

DB Expert

One

Complexity

Value By

DB Expert

Two

Complexity

Value By DB

Expert Three

Use Complexity

Value

CREATE 3 4 3 3.3

INSERT 3 3 3 3

UPDATE 3 3 3 3

DELETE 3 3 1 2.3

SELECT 3 3 2 2.6

WHERE
SELECT

3 3 4 3.3

GROUP BY 3 4 3 3.3

45

ORDER BY 3 2 5 3.3

HAVING 3 4 3 3.3

TABLE FORM 3 3 2 3.6

COLUMN

SELECT 2 2 2 2

GROUP BY 3 4 3 3.5

ORDER BY 3 2 2 2

INSERT 3 3 2 2

UPDATE 3 3 4 3.3

CREATE 3 3 3 3

LIKE WHERE 5 4 3 4

DISTINCT SELECT 3 3 2 3.6

IN WHERE 3 3 2 3.6

ROWNUM
SELECT 2 2 2 2

WHERE 3 3 2 3.6

EXISTS

WHERE

3 4 5 4

BETWEEN 2 2 2 2

NULL 1 1 1 1.3

AND 1 1 2 1.3

OR 1 1 2 1.3

NOT 1 1 2 1.3

DESC
ORDER BY

1 1 2 1.3

ASC 1 1 2 1.3

ON FROM 2 2 4 2.6

AS
SELECT 1 2 2 1.6

FROM 1 2 2 1.6

JOIN FROM 3 3 4 3.3

>=

WHERE

2 2 2 2

<= 2 2 2 2

<> 2 2 2 2

= 2 2 2 2

SUM

SELECT 3 3 2 2.5

WHERE 3 3 2 2.5

HAVING 3 3 3 2.5

AVG

SELECT 3 3 2 2.5

WHERE 3 3 2 2.5

HAVING 3 3 3 2.5

COUNT

SELECT 3 3 2 2.5

WHERE 3 3 2 2.5

HAVING 3 3 3 2.5

MIN

SELECT 2 2 2 2.5

WHERE 2 2 2 2.5

HAVING 2 2 3 2.5

MAX

SELECT 2 2 2 2.5

WHERE 2 2 2 2.5

HAVING 2 2 3 2.5

 SELECT 2 2 2 2.5

46

LENGTH WHERE 2 2 2 2.5

HAVING 2 2 3 2.5

EXTRACT

SELECT 4 4 4 3.5

WHERE 4 4 4 3.5

HAVING 4 4 5 3.5

CONCAT SELECT 2 3 4 2.5

PRIMARY KEY

CREATE

2 3 3 2.6

DEFAULT 2 2 2 2

UNIQUE 2 2 2 2

CONSTRAINT 3 3 3 3

CHECK 2 3 3 2.6

FOREIGN KEY 2 3 3 2.6

REFERENCES 2 2 3 2.3

CASCADE 3 3 4 3.3

PARTITION 4 4 5 4.3

NOT NULL 1 1 2 1.3

SET UPDATE 2 2 3 2.3

4.3 Evaluation Methodology

The equivalence of problems means that the complexity to solve the problem is within a

specified boundary. Those problems fall into a specified boundary are all similar problems

and any of the problem can be assigned to any student and seem to have equal judgment.

Table 4.2: Complexity Level According to Complexity Value

Assignment

No
Level No

Complexity Value Boundary

Value (CP ± €)

1

1 9 ≤ CP ≤ 11 , CP = 10 10 ± 1

2 12 ≤ CP ≤ 14 , CP = 13 13 ± 1

3 15 ≤ CP ≤ 17, CP = 16 16 ± 1

4 18 ≤ CP ≤ 20, CP = 19 19 ± 1

5 21 ≤ CP, CP = 22 [21, 22]

2

1 23 ≤ CP ≤ 27, CP = 25 25 ± 2

2 28 ≤ CP ≤ 32, CP = 30 30 ± 2

3 33 ≤ CP ≤ 37, CP = 35 35 ± 2

4 38 ≤ CP ≤ 42, CP = 40 40 ± 2

5 43 ≤ CP ≤ 47, CP = 45 45 ± 2

3

1 48 ≤ CP ≤ 52, CP = 50 50 ± 2

2 53 ≤ CP ≤ 57, CP = 55 55 ± 2

3 58 ≤ CP ≤ 62, CP = 60 60 ± 2

47

4 63 ≤ CP ≤ 67, CP = 65 65 ± 2

5 68 ≤ CP ≤ 72, CP = 70 70 ± 2

4

1 73 ≤ CP ≤ 77, CP = 75 75 ± 2

2 78 ≤ CP ≤ 82, CP = 80 80 ± 2

3 83 ≤ CP ≤ 87, CP = 85 85 ± 2

4 88 ≤ CP ≤ 92, CP = 90 90 ± 2

5 93 ≤ CP ≤ 100, CP = 95 95 ± 2

4.4 Complexity Value of SQL Select Statement

The complexity value of SQL Select statement depends on the number of used clauses,

tables, columns, functions, predicates and expression. To observe the effect of increase

individual clause, we have analyzed one by one all of those clauses one by one. When we

have increased table number then we try to keep fix value for others clause like function,

column and other.

4.4.1 Complexity Value of Table in Select Statement

Complexity value of SQL problem depends on the number of used tables to solve the

problem. Complex problem requires more tables to find out desired data from database. We

have assigned complexity value of table (tw) to calculate the complexity of a SQL problem.

We have applied different tw value to get more approving result. We have got the best result,

when we used tw = 3.6.

Table 4.3: Comparison of Different Complexity Values of Table

Complexity value of

Table (tw)

% of Similarity compare

with SQL-LES

3.2 86.6

3.3 90.0

3.6 91.6

3.7 90.0

3.8 83.3

48

Fig. 4.1: Comparison of Different Complexity Values of Table

We have used the following formula to calculate complexity value of used table:

Tv = 𝑡𝑤 × log2 1 + 𝑛

Table 4.4: SQL-Select Query by Varying Number of Tables

Number

of

Table

SQL Statement

1 Select ProductNumber, Name, ListPrice, Size from Product

2

SELECT ProductNumber, P.Name, PM.ModelName, ListPrice FROM

Product P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

3

SELECT ProductNumber, PM.ModelName, OrderQty, CustomerID FROM

Product] P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

INNER JOIN SalesOrderDetail] SOD ON P.ProductID = SOD.ProductID

5

SELECT ProductNumber, PM.ModelName, OrderQty, CD.LastName FROM

Product P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

INNER JOIN SalesOrdDetail SD ON P.ProductID = SD.ProductID

INNER JOIN SalesOrdHeader SOH ON SD.SalesOrdID = SOH.SalesOrdID

INNER JOIN Customer CD ON SOH.CustomerID = CD.CustomerID

7

SELECT ProductNumber, PM.ModelName, OrderQty, ad.PostalCode FROM

Product P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

INNER JOIN SalesOrdDetail SD ON P.ProductID = SD.ProductID

INNER JOIN SalesOrdHeader SH ON SD.SalesOrderID = SH.SalesOrderID

INNER JOIN Customer] CD ON SOH.CustomerID = CD.CustomerID

INNER JOIN CustomerAddress CA ON SOH.CustomerID = CA.CustomerID

INNER JOIN Address Ad ON CA.AddressID= Ad.AddressID

82

83

84

85

86

87

88

89

90

91

92

93

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

% of Similarity Compare with SQL-LES

Complexity Value of Table (tw)

49

Complexity value for problem-1:

Table value: Tv = 3.6 × log2 1 + 1 = 3.6

Column value: Cv = 2 × log2 1 + 4 ≈ 5

Complexity Value CP = 3.6 + 5 = 8.6

Complexity value for problem-2:

Table value: Tv = 3.6 × log2 1 + 2 ≈ 5.7

Column value: Cv = 2 × log2 1 + 4 ≈ 5

Predicate value: Pv = 2

Complexity Value: CP = 5.7 + 5 + 2 = 12.7

Complexity value for problem-3:

Table value: Tv = 3.6 × log2 1 + 7 ≈ 10.8

Column value: Cv = 2 × log2 1 + 4 ≈ 5

Predicate value: Pv = 2

Complexity Value: CP = 10.8 + 5 + 2 = 17.8

Table 4.5: Complexity Value of SQL Problems by Varying Number of Tables

Number

of

Table

Number

of

Column

Number

of

Function

Number

of

predicate

Number

of

Expression

Complexity

Value

1 4 0 0 0 8.6

2 4 0 2 0 12.7

3 4 0 4 0 14.8

5 4 0 8 0 16.35

7 4 0 12 0 17.8

The complexity value of SQL problem by varying the number of used table has shown on

above table. In the above example the number of table has increase, but the syntax of table

joining is same. It does not means that the complexity value of SQL problem will

proportionally increase with the number of used table. To curb the complexity value of table,

we have used logarithm function which has helped to calculate accurate complexity value.

50

Fig. 4.2: Complexity Value of SQL Problems by Varying Number of Tables

The complexity value of SQL problem has logarithmic increase with the number of used

table. For huge number of used table, complexity value has increased minimally.

4.4.2 Complexity Value of Columns in Select Statement

 Used column in SQL query plays vital role to calculate complexity value of SQL Select

statement. Colum can use with SELECT, GROUP BY or ORDER BY clause. Complexity

value of used column depends where it is use. Order of column on GROUP BY or ORDER

By clause has different meaning. Complexity value of column with SELECT clause has

different value than GORUP BY or ORDER BY clause.

Table 4.6: Comparison of Different Complexity Values of Column with Select Clause

Level in use Complexity value of

Column (CvS)

% of Similarity compare

with SQL-LES

Select

1 83.3

1.5 85

2 91.6

2.3 81.6

2.5 63.3

Different complexity value of column and their effectiveness has shown in the table 4.6. We

have collected complexity value of column from different database specialist then we have

0

5

10

15

20

25

0 2 4 6 8 10 12 14

Complexity Value

Number of Tables

51

applied different complexity value base on collected value. We have got maximum approving

at CvS =2.0. Using the maximum approving value, it can calculate 91% of similar result as

SQL-LES.

Fig. 4.3: Comparison of Different Complexity Values of Column with Select Clause

Column has different meanings base on their use position. Group By clause can generate

different result base the use column and their order of use. We have analyzed the complexity

value of column using value to observe the best approving value. It can calculate 91% of

similar result compare to existing SQL-LES at CvG =3.5.

Table 4.7: Comparison of Different Complexity Values of Column with Group By Clause

Level in use Complexity value of

Column (CvG)

% of Similarity compare

with SQL-LES

Group By

2.5 90

3 91.6

3.3 91.6

3.5 91.6

4 90

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

% of Similarity Compare with SQL-LES

Complexity Value of Column with Select Clause (CvS)

52

Fig. 4.4: Comparison of Different Complexity Values of Column with Group By Clause

Column has different meanings base on their use position. Order By clause uses column

name to make the retrieve data more meaningful. We have analyzed the complexity value of

column with different values. It can calculate 91% of similar result compare to existing SQL-

LES at CvO =2.0.

Table 4.8: Comparison of Different Complexity Values of Column with Order By Clause

Level in use Complexity value of

Column (CvO)

% of Similarity compare

with SQL-LES

Order By

1.5 88.3

2.0 91.6

2.5 90

3.0 86.6

3.5 80

89.8

90

90.2

90.4

90.6

90.8

91

91.2

91.4

91.6

91.8

92

0 1 2 3 4 5

% of Similarity Compare with SQL-LES

Complexity Value of Column with Select Clause (CvG)

53

Fig. 4.5: Comparison of Different Complexity Values of Column with Order By Clause

Following formula has been used to calculate complexity valued of used column in SQL

SELECT statement.

Cv = 𝑐𝑣𝑆 × log2 1 + 𝑚 + 𝑐𝑣𝐺 × log2 1 + 𝑛 + 𝑐𝑣𝑂 × log2 1 + 𝑝

Table 4.9: SQL Select Query by Varying Number of Columns

Number of

Table

SQL Statement

CS = 3

CO = 1

Select

ProductNumber,

Name,

ListPrice from Product where Color = 'Silver'

ORDER BY ProductNumber

CS = 5

CO = 2

Select

ProductNumber,

Name,

Class,

Size,

ListPrice from Product where Color = 'Silver'

ORDER BY Class, Size

SELECT

ProductNumber,

78

80

82

84

86

88

90

92

94

0 1 2 3 4

% of Similarity Compare with SQL-LES

Complexity Value of Column with Select Clause (CvO)

54

CS = 6

CO = 3

Name,

Class,

Size,

Style,

ListPrice from Product where Color = 'Silver'

ORDEER BY Class, Size, Style

CS = 7

CO = 3

SELECT

ProductNumber,

Name,

Class,

Size,

Style,

Weight,

ListPrice from Product where Color = 'Silver'

ORDEER BY Class, Size, Style

Complexity value for problem-1:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 + 3 × log2 1 + 1 = 7

Predicate value: Pv = 1

Complexity Value: CP = 10 + 7 + 1 = 18

Complexity value for problem-2:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 + 3 × log2 1 + 1 = 10

Predicate value : Pv = 1

Complexity Value: CP = 10 + 10 + 1 = 21

Complexity value for problem-3:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 6 + 3 × log2 1 + 3 ≈ 12

Predicate value : Pv = 2

Complexity Value: CP = 10 + 12 + 2 = 24

Complexity value for problem-4:

Table value: Tv = 10 × log2 1 + 1 = 10

55

Column value: Cv = 2 × log2 1 + 3 + 3 × log2 1 + 1 = 12

Predicate value: Pv = 1

Complexity value: CP = 10 + 7 + 1 = 23

Table 4.10: Complexity Value of SQL Problems by Varying Number of Columns

Number

of

Table

Number

of

Column

Number

of

Function

Number

of

predicate

Number

of

Expression

Complexity

Value

1 4 0 1 0 18

1 7 0 1 0 21

1 9 0 1 0 23

1 10 0 1 0 23

Table 4.6 has shown the complexity value of SQL problem by varying the number of used

column with different SQL clause. Column usages with different clause have different

meaning. SELECT clause can use column with any order which does not effect on SQL

query result, but column ordering with GROUP BY or ORDER BY clause has different

meaning. For this reason, we assume different complexity value of column with different

clause.

0

5

10

15

20

25

0 2 4 6 8 10 12

Complexity Value

Number of Columns

56

Fig. 4.6: Complexity Value of SQL Problems by Varying Number of Columns

The complexity value of SQL problem has increase logarithmically with the number of used

column. For huge number of used table, complexity value has increased minimally

4.4.3 Complexity Value of Functions in Select Statement

Lots of functions use with SQL query to calculate, format or convert data. The main purpose

of function in query is to represent stored data as meaningful information. Lots of functions

are similar type i.e. number of used parameter and working mechanism is same. So the

Complexity value of SQL problem depends on how many similar types of functions has been

used to solve the problem. We have analyzed complexity value of functions by applying

different parameter value for those functions.

Table 4.11: Comparison of Different Complexity Values for Type-1 Functions

Function Type Complexity value of

Function (fw)

% of Similarity compare

with SQL-LES

Sum, Avg, Count and

Concat

1.5 88.3

2.0 90

2.5 91.6

3 86.6

3.5 81.6

Different types of function use with SQL select statement. We have grouped those function in

different types base on the return type and the number of function parameters. To find out

more approving complexity value of function, we have analysed different parameter value

rang from 1.5 to 3.5 for type-1 functions. We have found that fw = 2.5 give the best result for

type-1 function. We have shown the analysed result in the table 4.11.

57

Fig. 4.7: Comparison of Different Complexity Values for Type-3 Functions

We have shown the analysed result of type-2 function in the table 4.12. Different functions

use with SQL select statement for this type. To find out more approving complexity value of

those functions, we have analysed different parameter value rang from 1.5 to 3.5 for type-2

functions. We have found that fw = 2.5 give the best result for type-2 function.

Table 4.12: Comparison Result using Different Complexity Values for Type-2 Functions

Function Type Complexity value of

Function (fw)

% of Similarity compare

with SQL-LES

Min, Max, Length

and Floor

1.5 86.6

2.0 90

2.5 91.6

3 90

3.5 86.6

80

82

84

86

88

90

92

94

0 1 2 3 4

% of Similarity Compare with SQL-LES

Complexity Value of Function (fw) for Type - 1

58

Fig. 4.8: Comparison of Different Complexity Values for Type-3 Functions

We have shown the analysed result of type-3 function in the table 4.13. Different functions

use with SQL select statement for this type. To find out more approving complexity value of

those functions, we have analysed different parameter value rang from 2.0 to 4.5 for type-3

functions. We have found that fw = 3.5 give the best result for this type of functions.

Table 4.13: Comparison Result using Different Complexity Values for Type-3 Functions

Function Type Complexity value of

Function (fw)

% of Similarity compare

with SQL-LES

Extract, Substr and

Month_between

2.0 90

2.5 91.6

3.5 91.6

4.0 91.6

4.5 90

86

87

88

89

90

91

92

0 1 2 3 4

% of Similarity Compare with SQL-LES

Complexity Value of Function (fw) for Type - 2

59

Fig. 4.9: Comparison of Different Complexity Values for Type-3 Functions

We have used the following formula to calculate complexity value of function:

Fv = 𝑓𝑤𝑡 × log2(1 + 𝑛)𝑚
𝑡=0

Table 4.14: SQL Select Query by Varying Number of Functions

Number

of

Function

SQL Statement

1

SELECT ProductID,

COUNT(SalesOrderID) as [Total Order]

FROM SalesOrderDetail

GROUP BY ProductID

ORDER BY ProductID

2

SELECT ProductID,

COUNT(SalesOrderID) as [Total Order],

SUM(OrderQty) as [Order Quantity]

FROM SalesOrderDetail

GROUP BY ProductID

ORDER BY ProductID

4

SELECT ProductID

,COUNT(SalesOrderID) as [Total Order]

,SUM(OrderQty)[Order Quantity]

,AVG(UnitPrice)[Avg Unit Price]

,SUM(OrderQty*UnitPrice) [Total Price]

FROM SalesOrderDetail

89.8

90

90.2

90.4

90.6

90.8

91

91.2

91.4

91.6

91.8

92

0 1 2 3 4 5

% of Similarity Compare with SQL-LES

Complexity Value of Function (fw) for Type - 3

60

GROUP BY ProductID

ORDER BY [Total Order] desc

Complexity value for problem-1:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 2 + 3 × log2 1 + 2 ≈ 8

Function value: fv = 3 × log2 1 + 1 = 3

Predicate value : Pv = 1

Expression value: Ev = 1

Complexity Value CP = 10 + 8 + 3 + 1 + 1 = 23

Complexity value for problem-2:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 + 3 × log2 1 + 2 ≈ 9

Function value: fv = 3 × log2 1 + 2 ≈ 5

Predicate value : Pv = 1

Expression value: Ev = 1 × log2 1 + 2 ≈ 2

Complexity Value CP = 10 + 9 + 5 + 1 + 2 = 27

Complexity value for problem-3:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 5 + 3 × log2 1 + 2 ≈ 10

Function value: fv = 2 × log2 1 + 2 + 3 × log2 1 + 2 ≈ 8

Predicate value : Pv = 1

Expression value: Ev = 1 × log2 1 + 4 + 2 × log2 1 + 1 ≈ 4

Complexity Value CP = 10 + 10 + 8 + 1 + 4 = 33

Table 4.15: Complexity Value of SQL Problems by Varying Number of Functions

Number

of

Table

Number

of

Column

Number

of

Function

Number

of

predicate

Number

of

Expression

Complexity

Value

1 4 1 1 1 23

61

1 5 2 2 2 27

1 7 4 2 5 33

Table 4.8 has shown the complexity value of SQL problem by varying the number of used

similar type function. In the above example, we have calculated how many similar type

functions used to process the query. Most of the time function uses column, predicate and

other items. So the complexity value of other items can be increase with the number of

function. Complexity value of Column and Expression has increased in the above example.

Fig. 4.10: Complexity Value of SQL Problems by Varying Number of Functions

The complexity value of SQL problem has logarithmic increase with the number of used

table. For huge number of used table, complexity value has increased minimally

4.4.4 Complexity Value of Predicates in Select Statement

 Rang of simple to complex predicate are use with SQL query to retrieve data. Similar type of

predicate can use anywhere in SQL query. Predicate complexity depends on the type of

predicate. We have analyzed the complexity value of predicate by applying different

parameter value to define the more approving value.

Table 4.16: Comparison of Different Complexity Values for Comparison Type Predicates

Predicate Type Complexity value of % of Similarity compare

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Complexity Value

Number of Functions

62

Column (pw) with SQL-LES

Comparison

Predicate

1.0 83.3

1.5 86.6

2 91.6

2.5 86.6

3 83.3

We have shown the complexity value of comparison type predicates in the tbale 4.16. We

have analysed complexity value by applying different parameter value range from 1.0 to 3.0.

We have got the best result at pw = 2.

Fig. 4.11: Comparison of Different Complexity Values for Comparison Type Predicates

We have shown the complexity value of logical type predicates in the tbale 4.17. We have

analysed complexity value by applying different parameter value range from 1.0 to 1.5. We

have got the best result at pw = 1.3.

Table 4.17: Comparison of Different Complexity Values for Logical Type Predicates

Predicate Type Complexity value of

Predicate (pw)

% of Similarity compare

with SQL-LES

Logical

 Predicate

1.0 90

1.2 91.6

1.3 91.6

1.5 90

82

83

84

85

86

87

88

89

90

91

92

93

0 0.5 1 1.5 2 2.5 3 3.5

% of Similarity Compare with SQL-LES

Complexity Value of Comparison Type Predicate (pw)

63

1.8 86.6

Fig. 4.12: Comparison of Different Complexity Values for Logical Type Predicates

We have used the following formula to calculate complexity value of predicate:

Pv = 𝑝𝑤𝑡
𝑛
𝑡=0 × log2(1 + 𝑛)

Table 4.18: SQL Select Query by Varying Number of Predicates

Number

of

Predicate

SQL Statement

1 SELECT DISTINCT Style, Name, Size FROM Product

2
SELECT DISTINCT Style, Name, Size FROM Product WHERE Size in

('S','M','L')

5
SELECT DISTINCT Style, Name, Size FROM Product WHERE Size in

('S','M','L') AND Style IS NOT NULL

7
SELECT DISTINCT Style, Name, Size FROM Product WHERE Size

IN ('S','M','L') AND Style IS NOT NULL

AND Name LIKE '%Classic%'

9

SELECT DISTINCT Style, Name, Size FROM Product WHERE Size

IN ('S','M','L') AND Style IS NOT NULL

AND (Name LIKE '%Classic%' OR Name LIKE '%Women%')

12

SELECT DISTINCT Style, Name, Size FROM Product WHERE Size

IN ('S','M','L') AND Style IS NOT NULL

AND (Name LIKE '%Classic%' OR Name LIKE '%Women%')

AND SellStartDate

BETWEEN '2002-07-01 00:00:00.000' AND '2002-07-31 23:59:59.000'

Complexity value for problem-1:

Table value: Tv = 10 × log2 1 + 1 = 10

86

87

88

89

90

91

92

93

0 0.5 1 1.5 2

% of Similarity Compare with SQL-LES

Complexity Value of Logical Type Predicate (pw)

64

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 3

Complexity Value CP = 10 + 4 + 3 = 17

Complexity value for problem-2:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 4

Complexity Value CP = 10 + 4 + 4 = 18

Complexity value for problem-3:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 7

Complexity Value CP = 10 + 4 + 7 = 21

Complexity value for problem-4:

Table value: Tv = 3.6 × log2 1 + 1 = 3.6

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 12

Complexity Value CP = 3.6 + 4 + 12 = 19.9

Complexity value for problem-5:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 13

Complexity Value CP = 10 + 4 + 7 = 27

Complexity value for problem-6:

Table value: Tv = 10 × log2 1 + 1 = 10

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 18

65

Complexity Value CP = 10 + 4 + 7 = 32

Table 4.19: Complexity Value of SQL Problem by Varying Number of Predicates

Number

of

Table

Number

of

Column

Number

of

Function

Number

of

predicate

Number

of

Expression

Complexity

Value

1 3 0 1 0 17

1 3 0 2 0 18

1 3 0 5 0 21

1 3 0 7 0 26

1 3 0 9 0 27

1 3 0 12 0 32

Table 4.10 has shown the complexity value of SQL problem by varying the number of used

predicate. In the above example most of the predicate repeated, but the syntax of their usage

is same. To calculate complexity value of predicate, we have grouped similar type predicates.

Fig. 4.13: Complexity Value of SQL Problems by Varying Number of Predicates

The complexity value of SQL problem has increased logarithmically increase with the

number of used table. For the huge number of used predicate, complexity value has increased

minimally.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

Complexity Value

Number of Predicates

66

4.4.5 Complexity Value by Increasing Table, Column, Function, Predicate

and Expression for Select Statement

All examples on above sections have shown the complexity value by varying individual item

like table, function and others only. In this section we have shown the complexity value by

increasing table, column, function, and others.

Table 4.20: SQL Select Query by Increasing Parameters of All Clauses

No. SQL Statement

1 Select ProductNumber, Name, ListPrice from Product where Color =

'Silver'

2

SELECT ProductNumber, P.Name, PM.Name AS [Model Name], ListPrice

FROM Product P INNER JOIN ProductModel PM ON P.ProductModelID =

PM.ProductModelID WHERE Color = 'Silver' order by PM.Name

3

SELECT ProductNumber, P.Name, PM.Name AS [Model Name], ListPrice,

OrderQty, SOH.OrderDate FROM Product P

INNER JOIN ProductModel PM ON P.ProductModelID = M.ProductModelID

INNER JOIN SalesOrderDetail SOD ON P.ProductID = SOD.ProductID

INNER JOIN SalesOrderHeader SOH ON SOD.SalesOrderID =

SOH.SalesOrderID

WHERE Color = 'Silver' and SOH.OrderDate >='2004-06-01' and

SOH.OrderDate <='2004-07-01'

4

SELECT ProductNumber, P.Name, PM.Name AS [Model Name], ListPrice,

OrderQty, ListPrice*OrderQty as [Total Price], SOH.OrderDate FROM

Product P INNER JOIN ProductModel PM ON P.ProductModelID =

PM.ProductModelID AND PM.Name in ('Front Brakes','LL Mountain

Frame','Mountain-500')

INNER JOIN SalesOrderDetail SOD ON P.ProductID = SOD.ProductID

INNER JOIN SalesOrderHeader SOH ON SOD.SalesOrderID =

SOH.SalesOrderID WHERE Color = 'Silver' and SOH.OrderDate >='2004-

06-01' and SOH.OrderDate <='2004-07-01'

ORDER BY OrderQty DESC

5

SELECT ProductNumber, P.Name, PM.Name AS [Model Name], ListPrice,

OrderQty, ListPrice*OrderQty as [Total Price], SOH.OrderDate FROM

Product P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

AND PM.Name in ('Front Brakes','LL Mountain Frame','Mountain-500')

INNER JOIN SalesOrderDetail SOD ON P.ProductID = SOD.ProductID AND

SOD.OrderQty > (SELECT MIN(OrderQty) from SalesOrderDetail)

INNER JOIN SalesOrderHeader SOH ON SOD.SalesOrderID =

SOH.SalesOrderID

WHERE Color = 'Silver' and SOH.OrderDate >='2004-06-01' and

SOH.OrderDate <='2004-07-01'

ORDER BY OrderQty, [Total Price] DESC

6

SELECT SOH.CustomerID, CSD.FirstName + ', ' + CSD.LastName as

[Full Name], Phone, EmailAddress, P.Name, PM.Name AS [Model Name],

ListPrice, OrderQty, ListPrice*OrderQty as [Total Price],

SOH.OrderDate FROM Product P

INNER JOIN ProductModel PM ON P.ProductModelID = PM.ProductModelID

AND PM.Name in ('Front Brakes','LL Mountain Frame','Mountain-500')

INNER JOIN SalesOrderDetail SOD ON P.ProductID = SOD.ProductID AND

SOD.OrderQty > (SELECT MIN(OrderQty) from SalesOrderDetail)

INNER JOIN SalesOrderHeader SOH ON SOD.SalesOrderID =

SOH.SalesOrderID

INNER JOIN Customer CSD ON SOH.CustomerID = CSD.CustomerID

WHERE Color = 'Silver' AND P.Name LIKE '%LL Mountain%' AND

SOH.OrderDate >='2004-06-01' and SOH.OrderDate <='2004-07-01'

67

ORDER BY OrderQty, [Total Price] DESC

Complexity value for problem-1:

Table value: Tv = 3.6 × log2 1 + 1 = 3.6

Column value: Cv = 2 × log2 1 + 3 ≈ 4

Predicate value: Pv = 2

Complexity Value CP = 3.6 + 4 + 2 = 9.6

Complexity value for problem-2:

Table value: Tv = 3.6 × log2 1 + 2 ≈ 5.7

Column value: Cv = 2 × log2 1 + 4 + 3 × log2(1 + 1) ≈ 8

Predicate value: Pv = 3+2+1 = 6

Expression value: Ev = 1

Complexity Value CP = 5.7 + 8 + 6 + 1 = 20.7

Complexity value for problem-3:

Table value: Tv = 3.6 × log2 1 + 4 ≈ 8.35

Column value: Cv = 2 × log2 1 + 6 ≈ 6

Predicate value: Pv = 3+2+1+2+2+1 = 11

Expression value: Ev = 1

Complexity Value CP = 8.35 + 6 + 11 + 1 = 26.35

Complexity value for problem-4:

Table value: Tv = 3.6 × log2 1 + 4 ≈ 8.35

Column value: Cv = 2 × log2 1 + 8 + 3 × log2(1 + 1) ≈ 9

Predicate value: Pv = 3+2+1+2+2+3 + 1+1= 15

Expression value: Ev = 1 × log2 1 + 2 + 2 × log2(1 + 1) ≈ 4

Complexity Value CP = 8.35 + 9 + 15 + 4 = 36.35

Complexity value for problem-5:

Table value: Tv = 3.6 × log2 1 + 5 ≈ 9.3

Column value: Cv = 2 × log2 1 + 9 + 3 × log2(1 + 2) ≈ 11

68

Function value: Fv = 2

Predicate value: Pv = 3+2+1+2+2+3 + 1+1+2= 17

Expression value: Ev = 1 × log2 1 + 2 + 2 × log2(1 + 1) ≈ 4

Complexity Value CP = 9.3 + 11 + 2 +17 + 4 = 43.3

Complexity value for problem-6:

Table value: Tv = 3.6 × log2 1 + 6 ≈ 10.1

Column value: Cv = 2 × log2 1 + 12 + 3 × log2(1 + 2) ≈ 11

Function value: Fv = 2

Predicate value: Pv = 3+2+1+2+2+3 + 1+1+2 + 5 = 22

Expression value: Ev = 1 × log2 1 + 2 + 2 × log2 1 + 1 + 3 × log2(1 + 1) ≈ 7

Complexity Value CP = 10.1 + 11 + 2 +22 + 7 = 52.1

Table 4.21: Complexity Value of Select Statements Varying by Parameters

Number

of

Table

Number

of

Column

Number

of

Function

Number

of

predicate

Number

of

Expression

Complexity

Value

1 3 0 1 0 9.6

2 5 0 4 1 20.7

4 6 0 12 1 26.35

4 9 0 16 3 36.35

5 11 1 17 3 43.3

6 14 1 18 4 52.1

Table 4.12 has shown the complexity value of SQL problem by increasing all clause items

like table, column, function and others. In the above example most of the item has repeated,

but the syntax of their usage is same. To calculate complexity value of problem, we have

grouped similar type items and used logarithm function to curb the value.

69

Fig. 4.14: Complexity Value of Select Statements Varying by Parameters

4.5 Complexity Value of SQL Create Statement

The complexity value of SQL Select statement depends on the number of used tables,

columns, functions, predicates and expression. To observe the effect of increase individual

clause, we have analyzed one by one all of those clauses one by one. When we have

increased table number then we try to keep fix value for others clause like function, column

and other.

Table 4.22: SQL Create Statements with Different Constraints

No. SQL Create Statement

1 create table tablename

 (col1 number,

 col2 char(25),

 col3 number,

 col4 number(10),

 col5 char(1));

2

create table tablename

 (col1 number primary key,

 col2 char(25),

 col3 number default 0,

 col4 number(10) unique,

 col5 char(1));

3

create table tablename

 (col1 number primary key,

 col2 char(25),

 col3 number default 0,

 col4 number(10) unique,

 col5 char(1),

0

10

20

30

40

50

60

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

Table

Column

Function

Predicate

Expression

Complexity

70

constraint col5_cst check (col5 in (‘M’,‘F’)));

4

create table tablename

 (col1 number primary key,

 col2 char(25),

 col3 number default 0,

 col4 number(10) unique,

 col5 char(1),

constraint col5_cst check (col5 in (‘M’,‘F’)),

constraint col2_fk foreign key (col2) references table2(col1));

5

create table tablename

 (col1 number primary key,

 col2 char(25),

 col3 number default 0,

 col4 number(10) unique,

 col5 char(1),

constraint col5_cst check (col5 in (‘M’,‘F’)),

constraint col2_fk foreign key (col2) references table2(col1)

on delete cascade);

6

create table tablename

 (col1 number primary key,

 col2 char(25),

 col3 number default 0,

 col4 number(10) unique,

 col5 char(1),

constraint col5_cst check (col5 in (‘M’,‘F’)),

constraint col2_fk foreign key (col2) references table2(col1)

on delete cascade)

partition by reference (col2_fk);

Complexity value for problem-1:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Complexity Value CP = 3 + 8 = 11

Complexity value for problem-2:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Constraint value: Kwt = 3 + 2 +2 = 7

Complexity Value CP = 3 + 8 + 7 = 18

Complexity value for problem-3:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Constraint value: Kwt = 3 + 2 + 2 + 3 + 3 = 13

Complexity Value CP = 3 + 8 + 13 = 24

71

Complexity value for problem-4:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Constraint value: Kwt = 3 + 2 + 2 + 3 + 5 + 2 = 17

Reference Table: tw = 3

Complexity Value CP = 3 + 8 + 17 + 3 = 31

Complexity value for problem-5:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Constraint value: Kwt = 3 + 2 + 2 + 3 + 5 + 2 +3 = 20

Reference Table: tw = 3

Complexity Value CP = 3 + 8 + 20 + 3 = 34

Complexity value for problem-6:

Create Table: CTv = 3

Column value: Cv = 3 × log2 1 + 5 ≈ 8

Constraint value: Kwt = 3 + 2 + 2 + 3 + 5 + 2 +3 + 4 = 24

Reference Table: tw = 3

Complexity Value CP = 3 + 8 + 24 + 3 = 38

Table 4.23: Complexity Value of SQL Create Statements

Problem

No

Number of

Column

Number of

Constraint

Number of

Reference Table

Complexity

Value

1 5 0 0 11

2 5 3 0 18

4 5 5 0 24

4 5 8 1 31

5 5 9 1 34

6 5 11 1 38

72

4.6 Complexity Value of SQL Insert Statement

The complexity value of SQL Insert statement depends on the number of used column name,

column value and sub-query. We have analyzed all clause using different parameters. Insert

statement uses Select statement as sub-query. To calculate sub-query complexity, we have

used the same formula as Select statement.

Table 4.24: SQL Insert Statement with Different Parameters

No. SQL Create Statement

1 INSERT INTO contact (id, name, phoneNo)

values (1, ‘James’, ‘017117’)

2

INSERT INTO contact (id, name, phoneNo)

Values (1, ‘James’, ‘017117’),

 (1, ‘James’, ‘017117’),

 (1, ‘James’, ‘017117’)

3 INSERT INTO contact (id, name, phoneNo)

SELECT id, name, phoneNo from Employee where did = 5

Complexity value for problem-1:

Complexity value of Insert: Iv = 3

Complexity value of Column Name: Cw = 2 × log2 1 + 3 = 4

Complexity value of Column Name: Cv = 2 × log2 1 + 3 ≈ 4

Complexity Value CP = 3 + 4 + 4 = 11

Complexity value for problem-2:

Complexity value of Insert: Iv = 3

Complexity value of Column Name: Cw = 2 × log2 1 + 3 = 4

Complexity value of Column Name: Cv = 2 × log2 1 + 9 ≈ 7

Complexity value of Multirow: Cv = 2 × log2 1 + 2 ≈ 3

Complexity Value CP = 3 + 4 + 7 + 3 = 17

Complexity value for problem-3:

Complexity value of Insert: Iv = 3

Complexity value of Column Name: Cw = 2 × log2 1 + 3 = 4

Complexity value of sub-query: SQV = 15

Complexity Value CP = 3 + 4 + 15 = 22

73

Table 4.25: Complexity Value of SQL Insert Statements

Problem

No

Number of Mention

Column Name

Number of used

column value

Number of

Multiple row

Complexity

Value

1 3 3 0 11

2 3 3 0 17

3 3 3 2 22

4.7 Complexity Value of SQL Update Statement

The complexity value of SQL Update statement depends on the number of used column,

condition and sub-query. We have analyzed all of those using different parameters. Update

statement uses Select statement as sub-query. To calculate sub-query complexity, we have

used the same formula as Select statement.

Table 4.26: SQL Update Statement with Different Parameters

No. SQL Update Statement

1 UPDATE contact SET name = ‘Unknown’, phoneNo =‘017’

2 UPDATE contact SET name = ‘Jack’, phoneNo =‘16319219742’ WHERE id

= 3

3 UPDATE contact SET name = ‘Jack’, phoneNo =‘16319219742’ WHERE id

in (Select empId from Employee where empID =121)

Complexity value for problem-1:

Complexity value of Insert: Uv = 3

Complexity value of Column: Cv = 2 × log2 1 + 2 ≈ 3

Complexity value of Column: Pv = 2

Complexity Value CP = 3 + 3 + 2 = 8

Complexity value for problem-2:

Complexity value of Insert: Uv = 3

Complexity value of Column: Cv = 2 × log2 1 + 2 ≈ 3

Complexity value of Where clause: wv = 3

Complexity value of Column: Pv = 4

Complexity Value CP = 3 + 3 + 3 + 4 = 12

Complexity value for problem-3:

Complexity value of Insert: Uv = 3

74

Complexity value of Column: Cv = 2 × log2 1 + 2 ≈ 3

Complexity value of Where clause: wv = 3

Complexity value of Column: Pv = 5

Complexity value of sub-query: SQV = 13

Complexity Value CP = 3 + 3 + 3 + 5 + 13 = 26

Table 4.27: Complexity Value of SQL Update Statements

Problem

No

Number of

Column

Number of

Predicate

Use Sub-Query Complexity

Value

1 2 1 False 8

2 2 2 False 12

3 2 2 True 26

4.8 Complexity Value of SQL Delete Statement

The complexity value of SQL Delete statement depends on the optional where clause and

sub-query. We have analyzed all of those using different parameters. Delete statement uses

Select statement as sub-query. To calculate sub-query complexity, we have used the same

formula as Select statement.

Table 4.28: SQL Delete Statement with Different Parameter

No. SQL Delete Statement

1 DELETE FROM contact

2 DELETE FROM contact WHERE id = 5

3 DELETE FROM contact WHERE id in (Select empId from Employee where

name = ‘james’)

Complexity value for problem-1:

Complexity value of Delete: Dv = 2

Complexity value of Table: tw = 3

Complexity Value CP = 3 + 2 = 5

Complexity value for problem-2:

Complexity value of Delete: Dv = 2

Complexity value of Table: tw = 3

Complexity value of Where clause: wv = 3

75

Complexity value of Column: Pv = 2

Complexity Value CP = 2 + 3 + 3 + 2 = 10

Complexity value for problem-3:

Complexity value of Delete: Dv = 2

Complexity value of Table: tw = 3

Complexity value of Where clause: wv = 3

Complexity value of Column: Pv = 3

Complexity value of sub-query: SQV = 13

Complexity Value CP = 2 + 3 + 3 + 3 + 13 = 24

Table 4.29: Complexity Value of SQL Delete Statements

Problem

No

Number of

Predicate

Use Sub-Query Complexity

Value

1 0 False 5

2 1 False 10

3 1 True 24

4.9 Comparing Complexity Value with Existing SQL-LES

Systems

Table 4.30: Best Comparing Result with Existing SQL-LES Systems

Prob.

No

Assignment

No

Complexity

Value

Complexity

Level

Complexity

Value from

SQL-LES

Complexity

Level from

SQL-LES

Similarity

1 1 8.2 1 5 1 Ok

2 1 10.2 1 7 1 Ok

3 1 10.8439 1 9 1 Ok

4 1 14.6699 3 13 3 Ok

5 1 14.8 3 13 3 Ok

6 1 14.9699 3 14 3 Ok

7 1 14.9699 3 14 3 Ok

8 1 15.8 3 15 3 Ok

9 1 15.8 3 15 3 Ok

76

10 1 15.9699 3 16 3 Ok

11 1 16.9699 3 17 3 Ok

12 1 17.2699 3 17 3 Ok

13 1 17.5 4 17 3 Not OK

14 1 20.1399 4 19 4 Ok

15 1 19.4 4 18 4 OK

16 1 19.4 4 18 4 Ok

17 1 19.4 4 18 4 Ok

18 1 20.0908 5 19 5 Ok

19 1 20.3439 5 20 5 Ok

20 1 20.8699 5 19 5 Ok

21 2 30.8699 2 26 1 Not Ok

22 2 31.6304 2 30 2 Ok

23 2 31.8043 2 32 2 Ok

24 2 30.9742 2 32 2 Ok

25 2 30.9742 2 32 2 Ok

26 2 31.5138 2 31 2 Ok

27 2 30.7398 2 32 2 Ok

28 2 30.7398 2 31 2 Ok

29 2 33 2 34 2 Ok

30 2 33.1043 3 32 2 Not Ok

31 2 30.6893 2 32 2 Ok

32 2 34.8028 3 33 3 Ok

33 2 34.8028 3 33 3 Ok

34 2 33.5003 3 33 3 Ok

35 2 34.7605 3 33 2 Not Ok

36 2 32.3439 3 33 3 Ok

37 2 32.3439 3 34 3 Ok

38 2 32.3439 3 34 3 Ok

39 2 34.3304 3 29 2 Not Ok

40 2 34.3304 3 33 3 Ok

41 3 50.7439 1 48 1 Ok

42 3 55.0936 1 53 1 Ok

77

43 3 57.2888 2 55 2 Ok

44 3 54.8786 2 55 2 Ok

45 3 54.8786 2 55 2 Ok

46 3 53.0439 2 55 2 Ok

47 3 56.224 2 55 2 Ok

48 3 55.6893 2 56 2 Ok

49 3 55.6893 2 56 2 Ok

50 3 58.5264 2 58 2 Ok

51 3 58.5264 2 58 2 Ok

52 3 56.3439 2 57 2 Ok

53 3 56.3439 2 57 2 Ok

54 3 58.5801 2 58 2 Ok

55 3 60.6936 2 58 2 Ok

56 3 59.2098 2 58 2 Ok

57 3 60.9727 2 60 2 Ok

58 3 65.0145 2 65 2 Ok

59 3 63.8632 2 63 2 Ok

60 3 61.7047 2 61 2 Ok

4.10 Comparison Result with Existing SQL-LES Systems

We have compared our system with the existing SQL learning and evaluation system. We

have tested our proposed model in two ways. First we have changed parameter value for all

database items. Then we have changed our formula for sensitive parameter.

4.10.1 Comparison Result with Existing SQL-LES Systems by Changing

Parameter Values using Table 4.1

To calculate complexity value, we have collected complexity value of individual database

clause, function, predicate and others from three Database specialists. Table 4.1 has shown

details about the all parameter value collected from different data specialists. Table 4.31

contrasts the performance comparison of new technique to that of previous methods. This

model defined equivalence of problems maximum 83.3% of similarity compared to manually

defined equivalence of problems.

78

Table 4.31: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values

Test

Case

Total

Problem

No. of Similar

Problem

No. of Dissimilar

Problem

% of

Similarity

% of

Dissimilarity

Case-1 60 46 14 76.6% 23.3%

Case-2 60 46 14 76.6% 23.3%

Case-3 60 45 15 75% 25%

Case-4 60 50 10 83.3% 18.6%

We have changed the parameter value for test case one, two and three using collected

parameter value from first, second and third database specialist.

Case-1: We have calculated complexity value using parameter value collected from first

database expert one. In this case, complexity model define equivalence of problems 76.6% of

similarity compared to manually defined equivalence of problems.

Case-2: This test has calculated complexity value using parameter value collected from

second database expert. This case has also defined same result as test case-1.

Case-3: In this case, we have calculated complexity value using parameter value collected

from third database expert. This case has defined equivalence of problems 75% of similarity

compared to manually defined equivalence of problems.

Case-4: We have used the most approving value from database specialists to calculate

complexity value. This case has defined equivalence of problems 83.3% of similarity

compared to manually defined equivalence of problems.

0

10

20

30

40

50

60

70

80

90

Test Case 1 Test Case 2 Test Case 3 Test Case 4

Total Problems

No. of Similar Problems

No. of dissimilar Problems

% of Similarity

% of Dissimilarity

79

Fig. 4.15: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values

4.10.2 Comparison Result with Existing SQL-LES Systems by Changing

Formula and Parameter Values using Table 4.1

We have used different formula to calculate complexity value of a SQL problem. Predicate is

the most sensitive parameter in SQL statements. We have changed formula for the most

sensitive parameter using different parameter values from database specialists. Test case one,

two, three and four has shown complexity value by changing formula for sensitive parameter.

Test case four is used average parameter value from database specialists. Table 4.32 contrasts

the performance comparison of new technique to that of previous methods. This model

defined equivalence of problems maximum 91.6% of similarity compared to manually

defined equivalence of problems.

Table 4.32: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values and Formula

Test

Case

Total

Problem

No. of Similar

Problem

No. of Dissimilar

Problem

% of

Similarity

% of

Dissimilarity

Case-1 60 44 16 73.3% 26.6%

Case-2 60 46 14 76.6% 23.4%

Case-3 60 49 11 81.6% 18.3%

Case-4 60 55 5 91.6% 8.3%

We have changed formula for the most sensitive parameter using different parameter values

collected from first, second and third database specialists. We have changed the formula to

calculate the complexity value of predicate from –

Pv = 𝑝𝑤𝑡
𝑛
𝑡=0

to

Pv = 𝑝𝑤𝑡
𝑛
𝑡=0 × log2(1 + 𝑛).

Case-1: We have calculated complexity value using parameter value collected from first

database expert one. In this case, complexity model define equivalence of problems 73.3% of

similarity compared to manually defined equivalence of problems.

Case-2: This test has calculated complexity value using parameter value collected from

second database expert. This test has defined equivalence of problems 76.6% of similarity

compared to manually defined equivalence of problems.

80

Case-3: In this case, we have calculated complexity value using parameter value collected

from third database expert. In this case, complexity model has defined equivalence of

problems 81.6% of similarity compared to manually defined equivalence of problems.

Case-4: We have used the most approving value from database specialists to calculate

complexity value. This case has defined equivalence of problems 91.6% of similarity

compared to manually defined equivalence of problems.

Fig. 4.16: Comparing Complexity Value with Existing SQL-LES Systems by Changing

Parameter Values and Formula

4.10.3 Summary of the Comparison Results

The comparison result has shown that result of the proposed system is very close to manually

define complexity of SQL problems. New system has defined problem complexity with

91.6% of similarity compared to manual systems using test case 4 of table 4.32. The

minimum similarity is 73% using test case 1 of table 4.32. We have got the best result using

average parameter value with changed formula. Our model behaves similar to the existing

SQL-LES. We have included details about the test result in appendix section.

0

10

20

30

40

50

60

70

80

90

100

Test Case 1 Test Case 2 Test Case 3 Test Case 4

Total Problems

No. of Similar Problems

No. of dissimilar Problems

% of Similarity

% of Dissimilarity

81

Chapter 5

Conclusion

The distribution of problems in problem-based education raises many issues for PBL

implementation. Problems are the main element in problem-based learning. Student will learn

through analyzing the assigned problem. They find out what need to learn, how they will get

the resource, where they need to communicate to collect resource or information, how they

will utilize their thinking power and others. By finishing those items, student will achieve

their desired goal from learning. To evaluate student’s performance in PBL session, it is

important to distribute similar problems among the students. Complexity model will be very

helpful to define equivalence of problems by analyzing complexity value.

In Problem-based Learning and Evaluation of SQL, students are assigned multiple

assignments with a varying complexity. Existing SQL Learning and Evaluation systems

assign the complexity values of SQL problems manually based on domain knowledge of the

instructors. If the class size is large multiple instructors produce multiple assignments then it

is difficult to have an equivalence of assignments. Students’ performance sometime varies

because of the dissimilarities of the assignments given by different instructors. At the same

time, if the SQL question bank contains hundreds of questions, it is extremely difficult to

obtain a global complexity value of each SQL problem to reuse the problems.

5.1 Contributions

Our contributions in this thesis can be described as follows:

 We have developed Complexity Model to find out the equivalence of problems using

the complexity value of SQL problems. The equivalence of problems are same when

whose problems fall into a given boundary of complexity value. To calculate the

complexity value of a SQL problem, we have analyzed the problem in top-down

fashion to find out the complexity of usages domain knowledge. To calculate

complexity value, we have collect complexity value of individual database clause

from three Database specialists.

 We have applied our proposed Complexity Model on existing problem based SQL

learning and evaluation system question bank and found comparable result. This

model defined equivalence of problems maximum 91% of similarity compared to

82

manually defined equivalence of problems. The minimum similarity is 73%. Our

model behaves similar to the existing SQL-LES.

 Present system assigns the complexity value of SQL problems manually. Different

instructors can assign different complexity values of the same problem. This will

affect the student performance. The use of the complexity model will result uniform

complexity values for all students.

 Manual assignment of complexity values increases the teacher workload. The

application of our model will reduce the teacher workload in problem setting.

5.2 Future Research Direction

In this thesis we have found out the equivalence of SQL problems using the complexity value

of different problems. To find out the complexity value of a SQL problem, we have parsed

SQL query in sub-query and details. We can use the same concept for partial evaluation in

problem based SQL learning and evaluation systems. In this work, we have find out the

equivalence of SQL problems of Database course only. A generic Complexity Model can be

developed to find out the equivalence of problems in problem based learning of other courses

of engineering education by analyzing the problem in depth to find out the required domain

and general knowledge.

83

References

[01] Cindy E. Hmelo-Silver, ―Problem-Based Learning: What and How Do Students

Learn?,‖ Educational Psychology, 2004, vol. 16, No. 3, pp. 235 – 266.

[02] M. Qiu and L. Chen, ―A problem-based learning approach to teaching an advanced

software engineering course,‖ in Proceedings of 2010 Second International Workshop

on Education Technology and Computer Science (ETCS), 2010, pp. 252 – 255.

[03] I. Richardson and Y. Delaney, ―Problem based learning in the software engineering

classroom,‖ in Proceedings of 22
nd

 Conference on Software Engineering Education

and Training, CSEET, 2009, pp. 174 – 181.

[04] R. Lacuesta, G. Palacios, and L. Fernandez, ―Active learning through problem based

learning methodology in engineering education,‖ in Proceedings of 2009 Frontiers in

Education Conference, 2009, pp. 1-6.

[05] X. Qian, ―A framework for designing problem-based learning environments,‖ in

Proceedings of 2009 first International Workshop on Education Technology and

Computer Science (ETCS), 2009, vol. 2, pp. 16 – 20.

[06] W. Hung, ―The 3c3r model: a conceptual framework for designing in PBL,‖ The

Interdisciplinary Journal of Problem-based Learning, vol. 1, no. 1, pp. 55 – 77, 2006.

[07] H. P. Yueh and W. J. Lin, ―Developing a web-based environment in supporting

students team-working and learning in a problem-based learning approach,‖ in

Proceedings of Third IEEE International Conference on Creating, Connecting and

Collaborating through Computing, 2005, pp. 145 – 149.

[08] L. Qiu and C.K Riesbeck, ―Designing web-based interactive learning environments for

problem-based learning,‖ in Proceedings of Fifth IEEE International Conference on

Advanced Learning Technologies, ICALT 2005. pp. 333 – 337.

[09] R. Garcia-Robles, F. Diaz-del-Rio, S. Vicente-Diaz, and A. Linares-Barranco, ―An e-

learning standard approach for supporting pbl in computer engineering,‖ IEEE Journal

of Education, vol. 52, Issues: 3, pp. 328 – 339, 2009.

[10] L. He, C. Wu, J. Yue, Z. Cai, and J. Liu, ―Research & development of e-learning

system for problem-based education,‖ in Proceedings of Education Technology and

Computer Science, ETCS, 2009, vol. 1, pp. 517 – 520.

[11] L. Hoque, M. Islam, I. Hossain, and F. Ahmed, ―Problem-Based e-Learning and

Evaluation System for Database Design and Programming in SQL,‖ Interbational

Journal of e-Education, e-Management and e-Learning, 2012, vol. 2, no.6, pp. 537 –

542.

[12] K. Hiekata, H. Yamato, P. Rojanakamolsan, and W. Oishi, ―A framework for design

engineering education with workflow-based e-learning system,‖ Journal of Software,

vol. 2, no. 4, pp. 88 – 5, Oct 2009.

84

[13] O. Fontes, F. Neto, and A. Pontes, ―A Multiagent System to Support Problem-based

Learning,‖ Scientific Research, Creative Education 2011. vol.2, no.5, pp. 452 – 457

[14] M. Asanok, P. Kitrakan, and C. Brahmawong, ―Building a critical components for
successful multimedia-based collaborative e-learning design framework,‖ International
Journal of the Computer, the Internet and Management, vol. 16, no. SP3, pp. 37.1-
37.10, 2008.

[15] N. Vivekananthamoorthy, S. Sankar, R. Siva, and S. Sharmila, ―An effective e-learning

framework model - a case study,‖ in Proceedings of 2009 7th International Conference

on ICT and Knowledge Engineering, 2009, pp. 8-14

[16] L. Jantschi, S.D. Bolboaca, M.M. Marta, and A. Laszlo, ―E-Learning and E-

Evaluation: A Case Study,‖ in Proceedings of 2008 Conference on Human System

Interactions, 2008, pp. 840 – 845.

[17] M.A. Jabr and H.K. Al-Omari, ―Design and implementation of e-learning management

system using service oriented architecture,‖ in Proceedings of World Academy of

Science, Engineering and Technology, vol. 64, pp. 59 – 64, 2010.

[18] D. Tavangarian, M. Leypold, K. Nölting, and M. Röser, ―Is e-learning the solution for

individual learning?,‖ Journal of e-learning, vol. 2, Issue: 2, pp.273 – 280, 2004.

[19] M. Wiggberg, ―A method for analyzing learning outcomes in project courses,‖ in

Proceedings of 2010 IEEE Frontiers in Education Conference (FIE), 2010, pp. T4H-1

- T4H-2

[20] R. Laughlin, C. Hatch, S. Silver, and B. Lee, ―Groups Perform Better Than the Best

Individuals on Letters-to-Numbers Problems: Effects of Group Size,‖ Journal of

Personality and Social Psychology, 2006, vol. 90 ,no. 4, pp. 644 – 651

[21] P. Lai and C. Tang , ―Constraints Affecting the Implementation of problem-based

learning (PBL) Strategy in University Courses,‖ in Proceedings of the First Asia

Pacific Conference on Problem Based Learning, 1999, (pp. 49 – 54).

[22] M. Archana, D. Sunil, G. Chitkara, and Madhu, ―Designing problems for problem-

based learning courses in analogue electronics: Cognitive and pedagogical issues,‖

Australasian Journal of Engineering Education, 2008, vol. 14 ,no. 2, pp. 33 – 41

[23] E. Kaldoudi1, P. Bamidis, M. Papaioakeim, and V. Vargemezis, ―Problem-Based

Learning via Web 2.0 Technologies,‖ in Proceedings of 21st IEEE International

Symposium on Computer-Based Medical Systems, 2008, pp. 391 – 396.

[24] WIKIPEDEA, The Free Encyclopedia. Problem-based learning

 [Online]. Available: http://en.wikipedia.org/wiki/Problem-based_learning

85

Appendix

SQL Statements

No SQL Statements

1. select * from lib_book

2. Select sname,address from suppliers

3. Select sid, sname,address from suppliers

4.
Select firstName,lastName,dateofBirth,district from sc_student

where dateOfBirth<'01-jan-1989'

5.
select DId from Lib_Department where DName ='Mechanical

Engineering'

6. Select bookId from Lib1_book order by volume desc

7. Select BookCopyId from Lib1_bookcopy order by PriceTaka desc

8.
Select AccessionNumber, AccessionDate from Lib1_bookcopy order by

Binding desc

9. Select bookid, title from Lib1_book order by YearOfPublication desc

10.
select DId, location from Lib_Department where DName ='Mechanical

Engineering'

11. Select max(pricetaka) from Lib1_bookcopy where YearOfprint = 2000

12. Select count(*) from Lib1_bookcopy where YearOfprint = 2000

13.
Select courseNo, courseName from sc_course where courseNo like

'EEE%'

14. Select avg(CGPA) from sc_student where slevel = 1 and term =2

15. Select volume, count(*) from Lib1_book group by volume

16. Select Binding, count(*) from Lib1_bookcopy group by Binding

17.
Select PlaceOfPublication, count(*) from Lib1_book group by

PlaceOfPublication

18. Select count(*) from Lib1_Publisher where PCountry = 'USA'

19.
Select studentId,firstName,lastName from sc_student where district

in ('Chittangong', 'Rangpur', 'Dhaka')

20. Select count(*) from Lib1_Book where BookGroup = 'Programming'

21.

select title,pname from Lib1_bookcopy,Lib1_book,Lib1_publisher

where Lib1_bookcopy.bookid=Lib1_book.bookid and

Lib1_book.pid=Lib1_publisher.pid and accessiondate>'01-JAN-2008'

and accessiondate<'31-DEC-2008'

22.
select Title from Lib1_book,Lib1_bookdepartment,Lib1_department

where Lib1_book.bookid=Lib1_bookdepartment.bookid and

Lib1_bookdepartment.did=Lib1_department.did and dcodename='CSE'

23.
select title,afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.yearofpublication=2006

24.
select title,afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.yearofpublication>2006

25.
select title,afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.purchaseDate>'01-JAN-2008'

26.
select title,afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.pricebase between 200 and 500

27.
select ISBN,Title,BookGroup,DcodeName from

Lib1_book,Lib1_bookdepartment,Lib1_department where

Lib1_book.bookid=Lib1_bookdepartment.bookid and

86

Lib1_bookdepartment.did=Lib1_department.did

28.
select firstName, lastName, floor (months_between

(sysdate,dateOfBirth)/12) from sc_student where slevel=3 and term=2

order by studentId desc

29.

select Title,Dcodename from

Lib1_book,Lib1_bookdepartment,Lib1_department where

Lib1_book.bookid=Lib1_bookdepartment.bookid and

Lib1_bookdepartment.did=Lib1_department.did and dcodename = 'EEE'

and purchaseDate > to_date('31-12-2007', 'dd-mm-yyyy')

30.
select title,afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.PlaceOfPublication='USA'

31.
select slevel,term,avg(CGPA) from sc_student group by slevel,term

order by slevel,term

32.

select afirstname,alastname from Lib1_book a,Lib1_book

b,Lib1_author au,Lib1_bookauthor ba where a.bookid=ba.bookid and

au.aid=ba.aid and a.yearofpublication=b.yearofpublication and

b.title='Database'

33.

select afirstname,alastname from Lib1_book a,Lib1_book

b,Lib1_author au,Lib1_bookauthor ba where a.bookid=ba.bookid and

au.aid=ba.aid and a.placeofpublication=b.placeofpublication and

b.title='Artificial Intelligence'

34.
select title from Lib1_book b,Lib1_bookauthor ba,Lib1_author a

where b.bookid=ba.bookid and a.aid=ba.aid and a.alastname like 'K%'

35.
select afirstname,alastname from Lib1_book b,Lib1_bookauthor

ba,Lib1_author a where b.bookid=ba.bookid and a.aid=ba.aid and

b.BookKeywords='Structured Programming'

36.
select count(eid), avg(months_between(sysdate, birthdate)/12) from

e1_employee where district like 'R%' and gender = 'M'

37.
select avg(months_between(sysdate, birthdate)/12), count(eid) from

e1_employee where district like 'C%' and gender = 'F'

38.
select avg(months_between(sysdate, dateofbirth)/12),

count(studentid) from sc_student where telephone like '011%' and

sex = 'M'

39.

select DcodeName,DCodeNumber from

Lib1_book,Lib1_bookdepartment,Lib1_department where

Lib1_book.bookid=Lib1_bookdepartment.bookid and

Lib1_bookdepartment.did=Lib1_department.did and placeofpublication

like '%US%'

40.

select placeofpublication,yearofprint from

Lib1_bookcopy,Lib1_book,Lib1_publisher where

Lib1_bookcopy.bookid=Lib1_book.bookid and

Lib1_book.pid=Lib1_publisher.pid and pemail like'%yahoo%'

41.

select title from Lib1_book where pricebase >(select

min(avg(pricebase)) from Lib1_book group by yearofpublication) and

yearofpublication > (select yearofpublication from Lib1_book where

title='Database')

42.

select did, count(*) from Lib1_booking,Lib1_borrower where

Lib1_booking.bid = Lib1_borrower.bid and did in (select did from

Lib1_borrower, Lib1_booking, Lib1_book where Lib1_book.bookid =

Lib1_booking.bookid and Lib1_booking.bid = Lib1_borrower.bid and

title = 'Combinatorial Optimization') group by did

43.

select title,afirstname,alastname from lib_book b,lib_author

a,lib_bookauthor ba where a.aid=ba.aid and b.bookid=ba.bookid and

b.pricebase>400 and b.yearofpublication between (select

yearofpublication from lib_book where title ='Database') and

(select yearofpublication from lib_book where title ='Artificial

Intelligence') order by title desc, afirstname desc

44.
select distinct pName, title from

lib_bookcopy,lib_book,lib_publisher where

lib_bookcopy.bookid=lib_book.bookid and

87

lib_book.pid=lib_publisher.pid and yearofprint < some (select

yearofpublication from lib_book where bookkeywords like

'%Programming%') order by pname desc,title desc

45.

select distinct pName, title from

lib_bookcopy,lib_book,lib_publisher where

lib_bookcopy.bookid=lib_book.bookid and

lib_book.pid=lib_publisher.pid and yearofpublication < (select

min(yearofprint) from lib_book where bookkeywords like '%AI%')

order by pname desc,title desc

46.

select title from lib_book where pricebase <(select

max(avg(pricebase)) from lib_book group by yearofpublication) and

purchasedate > (select purchasedate from lib_book where

title='Programming with C')

47.

select distinct pName, title from

Lib1_bookcopy,Lib1_book,Lib1_publisher where

Lib1_bookcopy.bookid=Lib1_book.bookid and

Lib1_book.pid=Lib1_publisher.pid and yearofprint < (select

min(yearofpublication) from Lib1_book where bookkeywords like

'%Programming%') order by pname desc,title desc

48.

select title from Lib1_book where pricebase >(select

min(avg(pricebase)) from Lib1_book group by yearofpublication) and

yearofpublication > (select yearofpublication from Lib1_book where

title='Database')

49.

select did, count(*) from Lib1_booking,Lib1_borrower where

Lib1_booking.bid = Lib1_borrower.bid and did in (select did from

Lib1_borrower, Lib1_booking, Lib1_book where Lib1_book.bookid =

Lib1_booking.bookid and Lib1_booking.bid = Lib1_borrower.bid and

title = 'Combinatorial Optimization') group by did

50.

select title,afirstname,alastname from lib_book b,lib_author

a,lib_bookauthor ba where a.aid=ba.aid and b.bookid=ba.bookid and

b.pricebase>400 and b.yearofpublication between (select

yearofpublication from lib_book where title ='Database') and

(select yearofpublication from lib_book where title ='Artificial

Intelligence') order by title desc, afirstname desc

51.

select distinct pName, title from

lib_bookcopy,lib_book,lib_publisher where

lib_bookcopy.bookid=lib_book.bookid and

lib_book.pid=lib_publisher.pid and yearofprint < some (select

yearofpublication from lib_book where bookkeywords like

'%Programming%') order by pname desc,title desc

52.

select distinct pName, title from

lib_bookcopy,lib_book,lib_publisher where

lib_bookcopy.bookid=lib_book.bookid and

lib_book.pid=lib_publisher.pid and yearofpublication < (select

min(yearofprint) from lib_book where bookkeywords like '%AI%')

order by pname desc,title desc

53.

select title from lib_book where pricebase <(select

max(avg(pricebase)) from lib_book group by yearofpublication) and

purchasedate > (select purchasedate from lib_book where

title='Programming with C')

54.

select distinct pName, title from

Lib1_bookcopy,Lib1_book,Lib1_publisher where

Lib1_bookcopy.bookid=Lib1_book.bookid and

Lib1_book.pid=Lib1_publisher.pid and yearofprint < (select

min(yearofpublication) from Lib1_book where bookkeywords like

'%Programming%') order by pname desc,title desc

55.

select title from lib_book where pricebase >(select

min(avg(pricebase)) from lib_book group by yearofpublication) and

placeofpublication in (select placeofpublication from lib_book

where title='Programming with C')

56. select title from Lib1_book where pricebase >(select

88

min(avg(pricebase)) from Lib1_book group by yearofpublication) and

placeofpublication in (select placeofpublication from Lib1_book

where title='Programming with C')

57.

select distinct title,pname,yearofprint from

lib_bookcopy,lib_book,lib_publisher where

lib_bookcopy.bookid=lib_book.bookid and

lib_book.pid=lib_publisher.pid and pricetaka = (select

max(pricetaka) from lib_bookcopy where pricetaka < (select

max(pricetaka) from lib_bookcopy)) order by yearofprint,title,pname

58.

select distinct title,pname,yearofprint from

Lib1_bookcopy,Lib1_book,Lib1_publisher where

Lib1_bookcopy.bookid=Lib1_book.bookid and

Lib1_book.pid=Lib1_publisher.pid and pricetaka = (select

max(pricetaka) from Lib1_bookcopy where pricetaka < (select

max(pricetaka) from Lib1_bookcopy)) order by

yearofprint,title,pname

59.

select title from lib_book where pricebase >(select

min(avg(pricebase)) from lib_book group by yearofpublication) and

yearofpublication > (select yearofpublication from lib_book where

title='Database') order by title desc

60.

select title from lib_book where pricebase >(select

min(avg(pricebase)) from lib_book group by yearofpublication) and

yearofpublication > (select yearofpublication from lib_book where

title='Machine Learning') order by title desc

Test Result

P.

No

CP from

SQL-LES

Test1

Test2

Test3

Test4

Test5

Test6

Test7

Test8

1 5 8.6 8.6 7.6 8.2 8.6 8.6 7.6 8.2

2 7 10.6 10.6 9.6 10.2 10.6 10.6 9.6 10.2

3 9 11.2439 11.2439 10.2439 10.8439 11.2439 11.2439 10.2439 10.8439

4 13 14.7699 14.7699 14.7699 14.6699 14.7699 14.7699 14.7699 14.6699

5 13 14.9 14.9 14.9 14.8 14.9 14.9 14.9 14.8

6 14 15.0699 14.0699 16.0699 14.9699 15.0699 14.0699 16.0699 14.9699

7 14 15.0699 14.0699 16.0699 14.9699 15.0699 14.0699 16.0699 14.9699

8 15 15.9 14.9 16.9 15.8 15.9 14.9 16.9 15.8

9 15 15.9 14.9 16.9 15.8 15.9 14.9 16.9 15.8

10 16 16.0699 16.0699 16.0699 15.9699 16.0699 16.0699 16.0699 15.9699

11 17 16.7699 16.7699 16.7699 16.9699 16.7699 16.7699 16.7699 16.9699

12 17 17.7699 17.7699 16.7699 17.2699 17.7699 17.7699 16.7699 17.2699

13 17 18.6 17.6 16.6 17.5 18.6 17.6 16.6 17.5

14 19 18.7699 18.7699 18.7699 18.9699 19.9398 19.9398 19.9398 20.1399

15 18 19.9 20.9 17.9 19.4 19.9 20.9 17.9 19.4

16 18 19.9 20.9 17.9 19.4 19.9 20.9 17.9 19.4

17 18 19.9 20.9 17.9 19.4 19.9 20.9 17.9 19.4

18 19 20.8248 20.8248 19.2398 20.0908 20.8248 20.8248 19.2398 20.0908

19 20 19.8439 19.8439 18.8439 20.3439 19.8439 19.8439 18.8439 20.3439

89

20 19 21.0699 21.0699 20.0699 20.8699 21.0699 21.0699 20.0699 20.8699

21 26 28.2 28.2 29.2 28.4 30.3699 30.3699 32.3699 30.8699

22 30 28.6699 28.6699 29.6699 28.8699 31.2549 31.2549 32.8399 31.6304

23 32 28.8439 28.8439 29.8439 29.0439 31.4288 31.4288 33.0138 31.8043

24 32 28.8439 28.8439 29.8439 29.0439 30.5987 30.5987 32.1837 30.9742

25 32 28.8439 28.8439 29.8439 29.0439 30.5987 30.5987 32.1837 30.9742

26 31 28.8439 28.8439 29.8439 29.0439 31.0138 31.0138 33.0138 31.5138

27 32 29.3699 29.3699 30.3699 29.5699 30.5399 30.5399 31.5399 30.7398

28 31 28.0699 27.0699 31.0699 29.5699 29.2398 28.2398 32.2398 30.7398

29 34 29.5 29.5 30.5 29.7 32.5 32.5 34.5 33

30 32 30.1439 30.1439 31.1439 30.3439 32.7288 32.7288 34.3138 33.1043

31 32 30.4893 30.4893 30.4893 30.6893 30.4893 30.4893 30.4893 30.6893

32 32 30.6589 30.6589 31.6589 30.8589 34.3028 34.3028 36.3028 34.8028

33 33 30.6589 30.6589 31.6589 30.8589 34.3028 34.3028 36.3028 34.8028

34 32 32.3699 31.3699 31.3699 31.5699 34.1248 33.1248 33.7098 33.5003

35 33 31.5 31.5 32.5 32 34.085 34.085 35.6699 34.7605

36 33 32.5439 31.5439 29.5439 32.3439 32.5439 31.5439 29.5439 32.3439

37 34 32.5439 31.5439 29.5439 32.3439 32.5439 31.5439 29.5439 32.3439

38 34 32.5439 31.5439 29.5439 32.3439 32.5439 31.5439 29.5439 32.3439

39 29 33.2 32.2 32.2 32.4 34.9549 33.9549 34.5398 34.3304

40 33 33.2 32.2 32.2 32.4 34.9549 33.9549 34.5398 34.3304

41 48 50.4439 51.4439 49.4439 50.7439 50.4439 51.4439 49.4439 50.7439

42 53 50.5497 51.5497 49.5497 51.1497 54.1936 55.1936 54.1936 55.0936

43 55 52.6264 51.6264 55.6264 52.9264 56.5922 55.5922 60.9142 57.2888

44 55 52.6482 50.6482 52.6482 52.9482 54.4031 52.4031 54.9881 54.8786

45 55 52.6482 50.6482 52.6482 52.9482 54.4031 52.4031 54.9881 54.8786

46 55 52.4439 53.4439 51.4439 53.0439 52.4439 53.4439 51.4439 53.0439

47 55 53.8181 51.8181 53.8181 54.2936 55.573 53.573 56.158 56.224

48 56 54.6138 55.6138 52.6138 55.6893 54.6138 55.6138 52.6138 55.6893

49 56 54.6138 55.6138 52.6138 55.6893 54.6138 55.6138 52.6138 55.6893

50 58 54.6905 53.6905 55.6905 55.766 57.2755 56.2755 58.8604 58.5264

51 58 54.6905 53.6905 55.6905 55.766 57.2755 56.2755 58.8604 58.5264

52 57 55.7439 55.7439 56.7439 56.3439 55.7439 55.7439 56.7439 56.3439

53 57 55.7439 55.7439 56.7439 56.3439 55.7439 55.7439 56.7439 56.3439

54 58 57.5838 59.5838 53.9988 56.6498 59.3386 61.3386 56.3386 58.5801

55 58 55.8497 55.8497 56.8497 56.7497 59.4936 59.4936 61.4936 60.6936

56 58 56.9699 56.9699 52.9699 56.8699 59.8947 59.3098 54.7248 59.2098

57 60 58.6028 59.6028 59.6028 59.8028 59.7727 60.7727 60.7727 60.9727

58 65 60.7181 61.7181 62.1332 61.0842 64.473 65.473 66.473 65.0145

90

59 63 59.9028 60.9028 60.9028 61.1028 62.4878 63.4878 64.0727 63.8632

60 61 60.2292 62.2292 59.2292 61.7047 60.2292 62.2292 59.2292 61.7047

