M.Sc. Engg. Thesis

Energy-aware Path-Planning for a Mobile Data Collector in Wireless Sensor Network

by
Md. Shaifur Rahman

Submitted to
Department of Computer Science and Engineering
in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)
Dhaka 1000

January 2013
Dedicated to my loving parents

Author’s Contact

Md. Shaifur Rahman
Lecturer
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology (BUET).
Email: shaifur.at.buet@gmail.com
The thesis titled “Energy-aware Path-Planning for a Mobile Data Collector in Wireless Sensor Network”, submitted by Md. Shaifur Rahman, Roll No. 0409052028P, Session April 2009, to the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, has been accepted as satisfactory in partial fulfilment of the requirements for the degree of Master of Science in Computer Science and Engineering and approved as to its style and contents. Examination held on January 16, 2013.

Board of Examiners

1. ______________________________
Dr. Mahmuda Naznin
Associate Professor
(Supervisor)
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

2. ______________________________
Dr. A.S.M. Latiful Hoque
Head and Professor
(Ex-Officio)
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

3. ______________________________
Dr. Md. Mostofa Akbar
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

4. ______________________________
Dr. Masud Hasan
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

5. ______________________________
Dr. Md. Monzur Morshed
Associate Professor
(External)
Department of Accounting and Information Systems
Dhaka University, Dhaka.
Candidate’s Declaration

This is hereby declared that the work titled “Energy-aware Path-Planning for a Mobile Data Collector in Wireless Sensor Network” is the outcome of research carried out by me under the supervision of Dr. Mahmuda Naznin, in the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000. It is also declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Md. Shaifur Rahman
Candidate
Abstract

Data gathering or the process of collecting and delivering data packet in a resource constrained Wireless Sensor Network (WSN) is a very challenging task as the sensors become out of power anytime during the data gathering period. One of the methods of addressing this problem is to use a dedicated mobile element called Mobile Data Collector (MDC) which travels along the network, collects data packets directly from the sensor nodes and carry the data to the sink. The use of MDC has become popular as it elongates the lifetime of the sensor network, reduces the cost of deployment etc. Besides, it can gather data even in a disconnected and sparse sensor network.

Using an MDC in a WSN is challenging in various aspects. It’s mobility can be pre-planned or random. In the case of random mobility, one or more sensor nodes may not be visited by the MDC at all. In the case of pre-planned mobility, the most important objective is to cover all the sensor nodes. However, given the infinite number of points in the region, the optimal path-planning of an MDC becomes intractable. In that case, we can use the Travelling Salesman Problem tour or TSP-tour to find the solution for a good path which ensures the data gathering from all of the sensor nodes. In this thesis, we prove that, a TSP-tour ensures the maximum lifetime for the WSN if data is collected by the MDC.

There is another risk involved in using an MDC in the WSN, which is called data delivery latency. The MDC has to halt and collect data from the sensor nodes. The period of a complete tour is comparatively higher than the time required to send packets to the sink by multi-hop forwarding. The packet delivery latency in the case of TSP-tour by the MDC may be too high for some real-time applications of the WSN. Therefore, we need to shorten the TSP-tour by the MDC.

In our research, we present a shorter tour than the TSP-tour by the MDC. Our method iteratively shortens the tour by finding Shortcuts. We find that, to communicate with a sensor node, the MDC
does not have to visit the exact location of the sensor node; instead, visiting any point within the transmission region suffices for the data collection.

We use OMNET++ simulator to verify the performance of our algorithm. We design a realistic test bed, we compare our tours with the relevant tours and we find that our method has the lower data delivery latency. The lifetime of the WSN in our method is as good as that of the TSP-tour. In addition to that, we find the packet-drop rate, the throughput, the tour-time better in using our method.

The running time of our algorithm is polynomial \((O(mn^2))\), where \(m\) is the number of iteration and \(n\) is the number of sensor nodes). Even though the problem of finding the minimum length TSP-tour is NP-Complete, there exist many approximate algorithm for this computation which runs in polynomial time. Therefore, Our method runs in polynomial time.
Contents

Board of Examiners
Candidate’s Declaration

Abstract

1 Introduction

1.1 Overview of Data Gathering
1.1.1 Data Gathering Methods
1.1.2 Comparison of Different Data Gathering Methods in a WSN

1.2 WSN with Mobile Elements (ME)
1.2.1 Advantage of Using Mobile Elements in a WSN
1.2.2 Challenges of Using Mobile Elements in a WSN

1.3 Taxonomy of Mobile Elements in a WSN

1.4 Applications of Mobile Elements in the WSN

1.5 Motivation

1.6 Thesis Outline

2 Related Work

2.1 Overview

2.2 Approaches Using Message Ferry

2.3 Path-planning of Different Types of Mobile Elements in a WSN

2.3.1 Work on Mobile Relocatable Nodes
2.3.2 Work on Mobile Sinks (MDC)

- Page 17

2.3.3 Implication of Mobile Sink

- Page 18

2.4 Controlled vs. Uncontrolled Mobility

- Page 19

2.5 Work on Mobile Data Collector (MDC)

- Page 19

2.6 Summary

- Page 26

3 System Model

- Page 28
 - 3.1 Overview
 - Page 28
 - 3.2 Preliminaries
 - 3.2.1 Modeling of the Sensor Network and the Tour
 - Page 28
 - 3.2.2 Energy Modeling of the Sensor Network
 - Page 31
 - 3.3 Problem Statement
 - Page 32
 - 3.4 Research Objective
 - Page 35

4 An Efficient Path Planning

- Page 36
 - 4.1 Overview
 - Page 36
 - 4.2 Improving Latency by Finding a Shortcut
 - 4.2.1 Linear Shortcut of a Tour
 - Page 36
 - 4.2.2 Linear Shortcut Tour in the Context of MDC
 - Page 40
 - 4.3 Label Covering Tour [Sugihara et. al. 2008]
 - 4.3.1 Label Covering Tour as a Result of Linear Shortcut
 - Page 43
 - 4.4 Tight Label Covering Tour (TLC-tour)
 - 4.4.1 Representation of the Contact Interval
 - Page 48
 - 4.4.2 Critical Contact Interval (CCI)
 - Page 49
 - 4.4.3 Finding Shortcut by Bypassing the Visited Nodes
 - Page 52
 - 4.4.4 A Complete Shortcut Tour
 - Page 52
 - 4.4.5 Iterative Improvement of TLC-tour
 - Page 56
 - 4.4.6 Selecting the Anchor Points
 - Page 66
 - 4.4.7 Computational Time Complexity
 - Page 67
5 Energy-efficient Communication

5.1 Overview ... 69
5.2 Communication Layers 69
5.3 Data Deposition Method 70
5.4 Adaptive Duty Cycle in MAC Layer 71

6 Experimental Result .. 74

6.1 Experimental Setup ... 74
 6.1.1 The Test Bed ... 74
 6.1.2 Traffic Generation 76
 6.1.3 PHY and MAC Parameters 76
 6.1.4 Network and Application Layer Parameters 78

6.2 Results and Analysis ... 79
 6.2.1 Impact on Packet Delivery Latency (PDL) 79
 6.2.2 Impact on Packet Delivery Rate (PDR) 80
 6.2.3 Impact on Tour Time 83
 6.2.4 Impact on Energy Consumption 85
 6.2.5 Overhead of Computation 86

6.3 Discussion ... 88

7 Conclusion .. 89

7.1 Summary ... 89

7.2 Future Research Extension 91

A Result Per Simulation Scenario 92
List of Figures

1.1 A typical WSN ... 2

1.2 Data gathering by direct contact method in a WSN 3

1.3 Data gathering by multi-hop forwarding in a WSN 3

1.4 Ordinary Sensor Node (Mica2 Mote) 5

1.5 Sink of a WSN .. 5

1.6 Robotic car for data collection in a WSN 5

1.7 Detection of Mobile Element (ME) within the range of the transmission .. 8

1.8 Relocatable Nodes in a WSN [1] ... 8

1.9 (a) A WSN with mobile sinks and (b) A WSN with mobile relays [1] ... 9

1.10 Mobile Peers in WSN [1] .. 10

2.1 (a) The straight line path of SenCar, (b) The curved path of SenCar ... 20

2.2 The method of making a shortcut of the TSP-tour [2] 23

 (a) Calculating the centroid C ... 23

 (b) Generating Inner Bend Substitution points 23

 (c) Substituting Concave Bends ... 23

 (d) Making shortcut of tour-edges 23

2.3 The scenario where inner bend (I_2I_3) is greater than the outer tour-edge (n_2n_3) .. 24

2.4 Approximate TSPN consisting of clockwise (solid line) and anti-clockwise(dotted line) traversals 25

3.1 TSP-tour by MDC in sensor network 29

3.2 Examples of complete and incomplete tour by MDC 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>An example of a Linear Shortcut tour</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Examples of derived tours which are not Linear Shortcut tours</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Examples of different Linear Shortcut tours</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Example of different strategies for finding Linear Shortcut tour</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Corner-cutting in Linear Shortcut Tour</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Label Covering tour in a cluster with five nodes</td>
<td>42</td>
</tr>
<tr>
<td>4.7</td>
<td>Anchor Points in an LC-tour as a result of finding a Linear Shortcut</td>
<td>44</td>
</tr>
<tr>
<td>4.8</td>
<td>Making a Linear Shortcut of a Label Covering tour</td>
<td>45</td>
</tr>
<tr>
<td>4.9</td>
<td>Deriving TLC-tour from LC-tour</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(a) LC-tour</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(b) Anchor Points in LC-tour</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(c) TLC-tour generated from the LC-tour</td>
<td>46</td>
</tr>
<tr>
<td>4.10</td>
<td>Selecting an Anchor Point from an edge with no overlapping circle</td>
<td>47</td>
</tr>
<tr>
<td>4.11</td>
<td>Contact Interval $< ln_k, rn_k >$ of Node n_k on a tour-edge</td>
<td>47</td>
</tr>
<tr>
<td>4.12</td>
<td>Contact Intervals of different nodes on a tour-edge</td>
<td>48</td>
</tr>
<tr>
<td>4.13</td>
<td>Contact Intervals of intermediate nodes of the edge connecting Nodes n_i and n_j.</td>
<td>49</td>
</tr>
<tr>
<td>4.14</td>
<td>Critical Contact Interval for a given list of intervals starting from Node n_{i+1}</td>
<td>50</td>
</tr>
<tr>
<td>4.15</td>
<td>Connecting the Critical Contact Intervals of successive edges to form a Shortcut tour</td>
<td>52</td>
</tr>
<tr>
<td>4.16</td>
<td>Updated l and r points to cover visited nodes</td>
<td>54</td>
</tr>
<tr>
<td>4.17</td>
<td>TLC-tour derived in Iteration 1</td>
<td>55</td>
</tr>
<tr>
<td>4.18</td>
<td>Updating the l and r point in the path derived in Figure 4.17</td>
<td>57</td>
</tr>
<tr>
<td>4.19</td>
<td>TLC-tour derived in Iteration 2</td>
<td>58</td>
</tr>
<tr>
<td>4.20</td>
<td>Updating the l and r Points after Iteration 2</td>
<td>58</td>
</tr>
<tr>
<td>4.21</td>
<td>TLC-tour derived in Iteration 3</td>
<td>59</td>
</tr>
<tr>
<td>4.22</td>
<td>Updating the l and r Points after Iteration 3</td>
<td>60</td>
</tr>
<tr>
<td>4.23</td>
<td>TLC-tour derived in Iteration 4</td>
<td>60</td>
</tr>
<tr>
<td>4.24</td>
<td>Comparison between input LC-tour(doted path) and TLC-tour derived in Iteration 4</td>
<td>61</td>
</tr>
<tr>
<td>4.25</td>
<td>Example of re-association process for generating TLC-tour</td>
<td>62</td>
</tr>
<tr>
<td>4.26</td>
<td>Special check for computing CCI for Iteration $i > 1$</td>
<td>65</td>
</tr>
</tbody>
</table>
4.27 Selection of Anchor Points for nodes after TLC-tour is generated.............. 66
4.28 Time complexity of the algorithms for generating TLC-tour....................... 67
4.29 Sample input and output of our method of generating TLC-tour.................... 68
 (a) Input ... 68
 (b) Output ... 68
5.1 Communication between different layers.. 69
5.2 Duty cycle modulation in MAC Layer during data packet retrieval by the MDC.... 72
6.1 Simulation steps.. 74
6.2 A (4 × 4) grid of path-loss cells which cover the circular transmission range...... 75
6.3 The average Packet Delivery Latency vs. TXR... 80
6.4 The maximum Packet Delivery Latency vs. TXR... 81
6.5 Impact on Packet Delivery Rate (PDR)... 81
6.6 The impact on the total number of packets collected by the MDC.................... 82
6.7 The impact on the total number of packets dropped by nodes......................... 83
6.8 The average tour time of the MDC... 84
6.9 The total number of tours by the MDC... 84
6.10 Average Energy Consumed by the Sensor Nodes vs. TXR......................... 85
6.11 No of iterations vs. TXR (Total nodes 100)... 86
6.12 No of iterations vs. TXR (Total nodes 75)... 86
6.13 No of iterations vs. TXR (Total nodes 50)... 87
6.14 Computation Time vs. TXR.. 87
List of Tables

1.1 Comparison among different data gathering methods in the WSN 4

4.1 Sorted Contact Intervals for Figure 4.13 . 49

4.2 The node-list with associated edges for the LC and TLC-tour for Figure 4.17 62
 (a) The list for the given LC-tour . 62
 (b) The list after updating Labels in Iteration 1 . 62
 (c) The list after re-associating with edges in Iteration 1 62

6.1 Experimental setup parameters . 76

6.2 The list of parameters used for Physical and MAC Layers in the experiment 77

6.3 The list of parameters used for Network and Application Layers in the experiment . . 78
List of Algorithms

<table>
<thead>
<tr>
<th></th>
<th>Generating a Linear Shortcut Tour</th>
<th></th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Generating the Minimum Length Label-Covering Tour</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Generating sorted Contact Interval for any tour-edge</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Generating Critical Contact Interval (CCI)</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Generating Tight Label Covering Tour</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Re-associating nodes with edges</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Generating Critical Contact Interval for Iteration $i > 1$</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Generating TLC-tour for Iteration $i > 1$</td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. The sensor nodes then pass data through the network to a location known as sink which aggregates and permanently records all the sensed data. There are many applications as well as many challenges of a WSN. In this work, we address the particular problem of collecting data packets from the static sensor nodes. In fact, there are a lot of approaches to address this problem ([8, 4]). We propose a method in which a dedicated mobile element called Mobile Data Collector (MDC) is used for collecting data from the sensor nodes and depositing those to the sink. Planning a path for the MDC such that all the sensor nodes can use it to send data to the sink is challenging. It is even more challenging if some other requirements like increasing lifetime of the network, decreasing delay of sending packets to the sink etc. are to be met.

In this chapter, we introduce different methods for collecting data from the sensor nodes, different types of mobile elements which can be present in a WSN, pros and cons of using mobile elements for collecting data and finally few projects involving use of mobile elements.

1.1 Overview of Data Gathering

Usually, the sensor nodes in a Wireless Sensor Network (WSN) monitor their environment, sample data, and forward data packets to a remotely located base station called sink. A typical WSN
containing sensors and sink is depicted in Figure 1.1. Collecting data packets from the sensor nodes by the sink is known as *Data Gathering* problem [3, 4].

![Figure 1.1: A typical WSN](image)

The data packets which cannot be sent from the sensor nodes to the sink, have to be ultimately discarded as tiny sensor nodes suffer from the buffer and power constraint ([5, 6]). Data contained in those packets are then lost. In many applications like monitoring or targets tracking, if packets cannot be sent to the sink within a certain time period, the data contained in those packets become useless. Therefore, data gathering from the sensor nodes is very important and challenging in the power and buffer constrained WSN.

1.1.1 Data Gathering Methods

There are many approaches of data gathering in a WSN. We can classify them as follows.

Direct Contact: If the sink and the sensor nodes are within each others range, then those nodes can communicate directly. This is depicted in Figure 1.2. This method is known as *data gathering by direct contact*. But, this is not very practical as sensor nodes are usually deployed far away from the sink, and the nodes suffer from the limited radio range.

Multihop Forwarding: Sensor nodes can act as relay nodes by forwarding packets received from the other sensor nodes. To forward packets, a path has to exist from the target source node to the sink. The sensor nodes in this path are within the transmission range of each other. Such a path is depicted in Figure 1.3. The problem of finding a suitable forwarding path is known as *routing problem* in a
WSN. However, multi-hop forwarding or routing is not possible for disconnected clusters or nodes in the WSN. This scenario is very common in a connectivity failure-prone WSN.

Mobile Elements: Packets can be collected from sensor nodes by mobile elements. The sink can itself be mobile, and travel through the network. When the mobile sink comes within the range of a sensor node, the sink collects packets from the sensor node. Some or all of the sensor nodes can be mobile. These mobile sensors can travel to the sink, deposit packets and return to its area of interest in the WSN. Yet, in another approach, there may be one or more dedicated agents for data collection from the sensor nodes. Different types of mobile elements in a WSN is discussed in Section 1.3.

1.1.2 Comparison of Different Data Gathering Methods in a WSN

We present a summary of pros and cons of different data gathering methods in a WSN in Table 1.1. As shown in the comparison, using Mobile Element is the best choice for energy-savings and increasing
CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Direct Contact</th>
<th>Multi-hop Forwarding</th>
<th>Mobile Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Delivery Latency</td>
<td>Very low, sink is a direct neighbor, packets are delivered almost instantly</td>
<td>Low, depends on the hop-count of the path from the sensor to the sink</td>
<td>High, depends on the speed and path-length of the mobile element</td>
</tr>
<tr>
<td>Energy Requirement</td>
<td>Very High, the radio range has to be large to match the width of the WSN</td>
<td>Moderate, the number of sensor nodes has to be sufficient to cover any holes in the network</td>
<td>Low, can be minimal if there is no multi-hop forwarding to the mobile elements</td>
</tr>
<tr>
<td>Overhead</td>
<td>No overhead</td>
<td>Overhead for finding path to the sink</td>
<td>Overhead for path-planning of the mobile element</td>
</tr>
</tbody>
</table>

Table 1.1: Comparison among different data gathering methods in the WSN

the lifetime of the sensor nodes. But, high latency is a big challenge in this method. Besides, there is overhead involved in path-planning. Therefore, planning an energy-efficient path with low-latency for the mobile elements for data collection in the WSN is a challenging task which attracts the network researchers in the recent years.

1.2 WSN with Mobile Elements (ME)

A WSN with Mobile Elements (ME) usually has three types of nodes:

Regular Sensor Nodes: These nodes are the sources of information. The main task of these nodes is sensing. These nodes may also forward or relay messages in the network with the multi-hop forwarding. Now a days, different types of sensor nodes are commercially available (6, 5). Picture of widely used low-powered *Mica* mote is depicted in Figure 1.4.

Sink or Base Station: This node is the destination of information. It collects data packets generated by sensor nodes either *directly* (i.e., by visiting sensor nodes and collecting data from those nodes) or *indirectly* (i.e., through intermediate nodes or mobile elements). The sink can use data collected from the sensors autonomously or make the data available to the interested users through an Internet connection. A sink node with provision for internet gateway is depicted in Figure 1.5.
CHAPTER 1. INTRODUCTION

Figure 1.4: Ordinary Sensor Node (Mica2 Mote)

Figure 1.5: Sink of a WSN

Figure 1.6: Robotic car for data collection in a WSN
Support Nodes: These nodes perform a specific task, such as acting as intermediate data collectors or mobile gateways. These nodes are not the sources nor the destinations of messages, but exploit mobility to support network operations such as data collection. A robotic car with navigation capability and a sensor node mounted on top of it, can be used as a mobile data collector. Such an assembly is depicted in Figure 1.6.

We note that mobility might be involved at the different network components. For instance, sensor nodes may be mobile and sinks might be static, or vice-versa. Depending on the specific scenario, the support nodes might be present or not. We term such network as WSN-ME. When there are only regular nodes, the resulting WSN-ME architecture is *homogeneous* or *flat*. On the other hand, when support nodes are present, the resulting WSN-ME architecture is *non-homogeneous* or *tiered*. Furthermore, WSN-MEs can be very sparse as there is no concern for coverage. Instead, the mobile elements can cover any network holes.

1.2.1 Advantage of Using Mobile Elements in a WSN

Any element in a WSN which is mobile and can communicate with other nodes is called a *Mobile Element* or *ME*. There are many advantages of using *ME*’s in a WSN. A few of those are outlined as follows.

Better Connectivity Irrespective of the Number of Nodes: If an *ME* is used in a WSN, the requirement of dense WSN can be relaxed. The *ME* can travel to the farthest disconnected nodes or clusters of the network and fetch the data packets to the sink. Thus, this is a very feasible solution for data collection in a sparse sensor network or clustered sensor network.

Cost Reduction: If *ME*’s are used in a WSN, the network can be very sparse and only the required number of sensor nodes need to be deployed. We only have to deploy sensor nodes in the region of interest instead of covering the whole region for full-connectivity. The sensor nodes and the sinks do not have to be mobile which reduces deployment-cost [6, 5].

Handling the Funnelling Effect: In a WSN, traffic streams are created from all sensor nodes towards the sinks. Without an *ME* in the network, sensor nodes have to forward other nodes’ packets. Routing paths are created from each sensor node to the sink for this purpose. The forwarding nodes that are closed to the sink has to transmit more packets than the peripheral ones. As a result, energy of these
nodes deplete fast. The neighbors of the sink cause the bottleneck for traffic and this problem is known as the *Funnelling Effect* [7]. If Mobile Elements are used in the WSN, the nodes closer to the sink are not overloaded with traffic. Besides, in a desired scenario, the ME can collect data packets directly from each node. Therefore, there is no forwarding in the network and the sensor node can save power.

Increase in Reliability: A WSN without the ME’s is usually dense for full coverage and connectivity ([1]). In that type of WSNs, reliability is penalized by interference and collisions. Communication paradigm in such a WSN is multi-hop routing where the packet loss increases with the increase of the number of hops ([8]). If the WSN uses Mobile Elements, the MEs can visit nodes in the network and collect data directly through the single-hop transmission. This reduces not only the contention and collisions, but also the message loss.

1.2.2 Challenges of Using Mobile Elements in a WSN

There are some challenges involved in using ME’s in a WSN. We discuss these challenges as follows.

Path-planning of a Mobile Element: The ME can be in many forms ([9, 5, 6]). For example, it can be another sensor node mounted on a robotic car or it can be a smart vehicle with advanced navigation capability. Planning path for the ME for collecting data packets from the sensor nodes is challenging as it is difficult to obtain an optimized path with the increasing network life-time and with the decreasing latency of data packets. A whole gamut of literature addressing path-planning has been presented in Chapter 2.

Contact Detection: Establishing a contact between a static sensor node and a mobile element requires special architecture. As shown in Figure 1.7, the ME comes within contact of the sensor node only for a finite interval of time. If the interval is not known to the sensor node, it has to poll for the presence of the ME. If the sensor node continuously polls for the ME, its power depletes fast. Another approach may be to use the ME to wake up a sleeping sensor node. However, if the sleep-cycle of the sensor node is not synchronized with that of the ME, the contact fails. This implies that many of the popular MAC’s such as S-MAC, T-MAC etc. are not very useful in this scenario, since those protocols exploit synchronized schedules for energy-efficient communications [8].

Coordination Among Multiple Mobile Elements: If there are more than one ME present in the
network, a robust coordination is required among them so that no sensor node is left out. Scheduling these ME’s for data gathering is a very challenging research problem.

1.3 Taxonomy of Mobile Elements in a WSN

In this section, we introduce different types of Mobile Elements which collect data in a WSN. We present the classification proposed in [I].
1. **Relocatable Nodes**: These are the mobile nodes which change their locations to characterize the sensing area in a better way, or to forward data from the source nodes to the sink. Relocatable nodes do not carry data as they can move in the network. Rather, they only change the topology of the network. A WSN architecture based on relocatable nodes is depicted in Figure 1.8. Although the ordinary nodes might be relocatable, in most of the cases, special mobile elements (e.g., Support Nodes) are used as relocatable nodes.

![Figure 1.9: (a) A WSN with mobile sinks and (b) A WSN with mobile relays](image)

2. **Mobile Data Collector (MDC)**: These are the Mobile Elements which visit the network to collect data from sensor nodes. Depending on whether the MDC’s are endpoint or target nodes for communication, these are classified as either *Mobile Sinks* or *Mobile Relays*.

 Mobile Sinks: These are the mobile nodes which are the ultimate destinations of all messages
CHAPTER 1. INTRODUCTION

originated by sensors, i.e., they represent the endpoints of data collection in a WSN with Mobile Elements. They can autonomously consume collected data for their own purposes, or they can make them available to the remote users by using a long range wireless internet connection. The architecture is depicted in Figure 1.9(a).

Mobile Relays: These are the support nodes which gather and store packets, and carry those to the sinks. These nodes are not the endpoints of communication and only act as Mobile Forwarders. In this case, the collected data packets move along with them, until the Mobile Relays get in contact with the sink. The architecture is depicted in Figure 1.9(b).

![Figure 1.10: Mobile Peers in WSN](image)

3. Mobile Peers: MobilePeers are ordinary mobile sensor nodes in a WSN. These nodes can both generate and relay messages in the network. When there is a peer in the communication range of the base station, it transfers its own data as well as those gathered from other peers while moving in the sensing area. A WSN architecture based on MobilePeers is depicted in Figure 1.10.

In this thesis, we address the issues of data gathering technique using a Mobile Element with the goal of the energy saving.
1.4 Applications of Mobile Elements in the WSN

Mobile Elements have been successfully employed in the context of wildlife monitoring applications, such as tracking of zebras in the ZebraNet project [10] or whales in the SWIM system [11]. Sensor nodes are attached to the animals and act as peers, so that not only do they generate their own data, but also carry and forward all data coming from other nodes which they have been previously in contact with. When the ME’s get closed to the base station, they transfer all the gathered data. Data which have already been transferred to the base station are flushed by those in order to save storage. ME’s can also be used for opportunistic data collection in urban sensing scenarios [12]. Sample applications include personal monitoring (e.g., physical exercise tracking), civil defense (e.g., hazards and hot-spot reporting to police officers) and collaborative applications (e.g., information sharing for tourism purposes). In this context, sensors are not used mainly for monitoring the environment, but are rather exploited to characterize the people in terms of both interactions and context (or state) information. An example is represented by handheld mobiscopes [13] where handheld devices such as cell phones or PDAs gather data from the surrounding environment and report them to servers, which provide services to remote users.

1.5 Motivation

The advantages of using Mobile Elements (ME) in the WSN in presented in Section 1.2.1. The main challenge of using the ME is planning an optimal path for it. However, a major disadvantage of using the ME is the delay in delivering data packets to the sink. In this thesis, we present an energy-efficient path-planning for the ME so that the time required to deliver data packets to the sink is minimized. In many applications of the WSN, it is required that the data packets from the sensor nodes must be deposited to the sink node within a particular interval. This type of WSN is called Real-time WSN (RT-WSN). RT-WSNs are used in monitoring and tracking applications [14]. Because of the reduced delay in data delivery in our method, the ME’s can be used in the RT-WSNs and, consequently, the lifetime of the network will increase.

In this thesis, we propose a method called Linear Shortcut to reduce the path-length of the MDC and thus, the delay in data delivery. We analyze the performance of our method by simulation. The
experimental results show that the resulting tour for the MDC ensures the maximum lifetime of the network, and at the same time, reduces delay in data delivery, packet drop rate etc.

1.6 Thesis Outline

The remaining of this thesis is organized as follows.

Chapter 2 reviews the recent related research work in this area to analyze the strengths and drawbacks.

Chapter 3 elaborately describes the problem domain. The analysis presented in this chapter justifies using a *TSP-tour* as a starting point for generating a Shortcut tour.

Chapters 4 and 5 describe our method in details. We provide the logical support for our claim.

In Chapter 6, we provide the detail results of the experiments.

Finally, in Chapter 7, we give the conclusions with some future directions of our research.
Chapter 2

Related Work

2.1 Overview

This chapter provides a thorough review of the work related to the path-planning of the Mobile Elements which collect data in a WSN. Historically, path-planning problem was first addressed in the case of Ad hoc Network and it was termed as Message Ferry [15]. Therefore, at first, we present the relevant work in the domain of Ad hoc network. Then, we review the work on path-planning of the mobile elements in a WSN according to the taxonomy presented in Chapter 1. We also shed light on the problems for the mobility property of the sink. The findings in this section justify our approach of using a dedicated Mobile Element as a data collector in a WSN. Finally, critical appraisals of some contemporary work on Mobile Data Collector or MDC are also made in this chapter. Limitations of these work are discussed in details. Findings in this Chapter form the foundation of our research.

2.2 Approaches Using Message Ferry

Like Mobile Ad hoc Network (MANET) and Delay Tolerant Network (DTN), mobility has been introduced to the field of Wireless Sensor Network ([15]). In MANET, the concept of Message-Ferrying is introduced by [16]. In this work, the Mobile Element that is used to transfer information among different nodes is called Message Ferry. In this work, the authors assume that all other nodes are static, and the Message Ferry is the only medium of message passing between nodes. Here, a TSP-
tour is computed for a single Message Ferry which visits every node in the network to collect data. In this work, the average delay is formulated and it is shown that the problem of finding an optimal tour for the Message Ferry, which minimizes the average delay is a NP-hard problem. The authors provide a sub-optimal tour solution for the Message Ferry. Their algorithm takes an approximate TSP-tour as input, applies two kinds of heuristics. One of the heuristics is involving swapping of edges and the other heuristic is involving the swapping of nodes to minimize the average delay. Their derived tour is modified further to meet the bandwidth requirement of each node. Experiment results show that as network size and network load increase, so does the average delay.

However, Message Ferrying approach is not very suitable for addressing the data gathering problem in a WSN. Because, the objective of the data gathering in a WSN is to deposit collected packets to the sink ([3, 4]). But, a Message Ferry carries packets between nodes. The problem formulation and the optimization function presented in this work incorporate the delay for the message passing between every pairs of nodes instead of between the sink and a sensor node. This approach does not capture the real scenario of a WSN. Besides, all the heuristics presented in this work are redundant if an exact TSP-tour is given as input.

In [17], the authors use the concept of a Mobile Element in a WSN. The Mobile Element is called Mobile Ubiquitous LAN Extensions or MULE. In this work, a three-tier architecture for data collection is proposed- the top tier consists of WAN connected access points or sinks, the middle tier consists of MULEs and the bottom tier consists of static wireless sensor nodes. In this network model, data MULEs move in a random fashion on a 2D grid. It is assumed that from a grid position, the MULE has an equal probability for moving to any of the adjacent grid positions. Based on a simple mobility model, closed forms for different quantity of interests are derived. For example, the average inter-arrival time of data transfer from the MULEs to sensor nodes, the average visiting time of sinks by data MULEs can be derived etc. The authors define the fraction of data packets which are successfully delivered to the sinks, the success rate. In their method, as the number of grids increases, so does the requirement for the number of data MULEs and the number of access points to sustain the similar success rate. The authors also show that the buffer requirement for the sensor nodes is inversely proportional to the buffer capacity of the data MULEs and when the number of sensor nodes is large, sensor buffer capacity can be traded off with the number of data mules to sustain the similar success
rate.

But, the very important issue which is not addressed in this paper is the data delivery latency. Therefore, this approach is not applicable for time-critical operation of the WSN ([14]). The authors also do not explain how the sensor nodes and the data MULEs can communicate to each other. Besides, in their method, they assume that the sensor nodes would be always 'ON'. Thus, the authors have ignored the major challenging issue of the sensor network - the power limitation, which causes the network connectivity failure. Moreover, the random walk model of mobility of the MULE is not helpful for optimizing the MULE’s path.

In [18], authors give two approaches for message passing in a disconnected sparse network via Mobile Element. The first approach is called Node-Initiated Message Ferrying Approach (NIMF). In this approach, the node that needs to send a message to another distant node transmits a request to the Message Ferry by a long-range radio transmitter. The Ferry travels in its own path periodically. When the Ferry comes close to the node that has sent the request for message passing, the node proactively comes close to the moving Ferry. The node uses the short-range low-powered radio to transmit data to the Ferry. The Ferry periodically advertises its tour path using a long-range radio signal. Therefore, when it comes close to any receiving node, that node also proactively comes closer to the ferry and retrieves the data from it. In the second approach named Node-Initiated Message Ferrying Approach or NIMF, the ferry moves proactively closer to the sending and receiving node by detouring from its original tour-path. However, the sending node still has to send out a request to the ferry using a long-range radio. In both of the approaches, the authors calculate the message loss in a particular interval due to the buffer overflows and the timeout of the packets sent by the source nodes. Experimental results show that, the both of the approaches result in a higher number of messages delivered per unit time and per unit energy compared to [19] and its variants.

However, the requirement of this approach is expensive as sensor nodes with mobility and/or multi-range radios are very costly ([6],[5]). Besides, the data delivery latency is not considered in the performance measurement of this work. Therefore, this method cannot be applied to a delay-sensitive applications ([14]). This work also does not discuss how the coordination between the Ferry and the mobile nodes is done.
CHAPTER 2. RELATED WORK

2.3 Path-planning of Different Types of Mobile Elements in a WSN

We present some work on data gathering using Mobile Elements in a WSN classified according to the taxonomy presented in Chapter 1.

2.3.1 Work on Mobile Relocatable Nodes

In [20], a system with relocatable nodes targeted for topology management has been proposed. Particularly, special Predefined, Intelligent, Lightweight Topology Management (PILOT) nodes are used to re-establish network connectivity for faulty links. In details, PILOT nodes move to regions where the connection between nodes is unstable or failed, and they act as bridges. As a consequence, they actively change the WSN topology in order to improve both communication reliability and energy efficiency. Algorithms for placement of relocatable nodes in the context of improving network connectivity have been investigated in [21], [22], [23] and [24].

In [22], the authors address the problem of a sensor deployment with load-balancing. The movement-assisted sensor deployment deals with the moving sensors from an initial unbalanced state to a balanced state. In this paper, a Scan-based Movement-Assisted Sensor Deployment (SMART) has been proposed. SMART addresses the problem of communication holes in sensor networks. Although the proposed method deals with the optimal placement of relocatable nodes, it addresses only the network coverage problem and does not discuss the data-gathering issue at all.

In [23], the authors address the problem of disconnected partitions in a WSN which are caused by the failure of one or more nodes. According to this method, existing mobile sensor nodes reposition themselves to repair the partitions. In this work, the solution involves proper placement of the relocatable nodes to address the issue of connectivity, and it also does not address the issue of data delivery to the sink.

Another method proposed in [24] involves repositioning of the relocatable nodes. Given a network containing one or more source nodes which store data, a number of mobile relay nodes and a static sink, the method presented in this work finds the optimal positions to move the mobile relays in order to minimize the total energy consumed by transmitting a data chunk from the sources to the sink and the energy consumed by the mobile relays to reach their new locations. Assuming a single
data-flow from the source to the sink, the authors propose an iterative algorithm that repositions the intermediate nodes one at a time to minimize the cost. Later, the authors extend the problem to the multiple flows of data.

However, this method cannot be applied to a WSN if any node is not mobile. The issue of latency has not been addressed also. Therefore, this method cannot be applied to delay-sensitive WSN too. In this method, the formulation for the optimization function is based on the size of the data packet. But, in most of the applications of WSNs, the sensor nodes have to send data packets intermittently, therefore, the size of the data packet does not contribute to energy efficiency much [25].

Mobile relay based approaches for opportunistic networks have been surveyed in [26]. However, due to the difference with WSN, many of the assumptions are costly and are not suitable for WSN.

2.3.2 Work on Mobile Sinks (MDC)

Both mobile sinks and mobile relays have been discussed in existing literature to address the issue of data gathering in WSN. Mobile sinks have been considered extensively in the existing literature [27], [28] etc. In these cases, ordinary sensor nodes are static and densely deployed in the sensing area. One or multiple mobile sinks move throughout the WSN to gather data coming from all nodes. We note that the paths between the source nodes and the mobile sinks are multi-hopped, although the actual paths change with time, since the positions of the sinks are not fixed.

In [27], the authors explore the idea of exploiting the mobile sinks for the purpose of increasing the lifetime of a wireless sensor network with energy-constrained nodes. They give a linear programming formulation for the joint problems of determining the movement of the sink and the sojourn time at different points in the network that result in the maximum overall network lifetime (here defined as the time till the first node dies because of energy depletion) rather than minimizing the energy consumption at the nodes.

In [28] and [29], the authors present a generalized formulation for analyzing stability and performance trade-offs inherent to multi-hop routing in mobile sink based sensor data collection systems. The paper parameterizes the extent of multi-hop routing as a hop-bound factor which is used for representing a wide spectrum of design options including single-hop with mobile sink, multi-hop with static sink, and different levels of mobile sink based multi-hop routing in between. A performance model is
developed for studying the impacts of multi-hop routing on energy and collection delay performance. Also, a number of thresholds are derived from the model for determining the amount of multi-hop routing that can be used for stable and efficient data collection in the context of constantly moving sinks. The second part of the paper develops a distributed network-assisted framework for mobile sink trajectory planning and navigation without relying on geographical sensor and sink localizations.

A different approach targeted for data collection in urban scenarios has been considered in [30]. In this case, people act as mobile sink by collecting environmental data (such as pollutants concentration and weather conditions) for their own purposes. The reference WSN scenario is represented by a sparse WSN where multiple mobile sinks can be in contact with a single sensor node at the same time.

Mobile relay based approaches have been used in [17] and [31] as Data-MULE. Methods proposed in [17] has been discussed in earlier section. In [31], authors use the same three-tier architecture i.e. sink, data-mule and sensors but present an analytical model to understand the key performance metrics such as data transfer, latency to the destination, and power.

In [16] and [32], message-ferrying approach for data collection has been outlined. In [32], an extensive power-management scheme for the message-ferry has been developed and performance measure has been compared with dynamic source routing (DSR) [33].

2.3.3 Implication of Mobile Sink

In [34], the authors investigate the real-world applicability of theoretical findings concerning sink mobility. They analytically demonstrate that from the small to the mid size square-shaped WSNs implementing virtual grid topology, the (outer) periphery is not necessarily the best performing mobile-sink trajectory. In such networks, the diagonal-cross appears to be at least as effective as the outer peripheral trajectory. Their OPNET-based study of IEEE 802.15.4 / ZigBee WSNs suggests that in these networks, once all of the protocol overhead is accounted for, no actual benefits can be achieved by deploying a mobile sink. According to this paper, it is proposed that the minimization of protocol overhead must be considered first when mobile sink is deployed in ZigBee-based sensor networks. Therefore, using the mobile sink has the implication of redeeming the MAC-protocol overhead for energy-efficiency. However, adapting the MAC-protocol to suit sink mobility is not always viable. This is why, we have used path-planning algorithm for mobile data collectors or relays instead of
mobile sinks.

2.4 Controlled vs. Uncontrolled Mobility

An important characterization of Mobile Elements that collect data in the WSN is the ability of controlling mobility. We can classify those into two categories- Controlled Mobility and Uncontrolled Mobility.

There are two main patterns for Uncontrolled Mobility- Deterministic and Random Mobility. The Deterministic Mobility pattern is characterized by the regularity in the contacts of the mobile element, which enters the communication range of sensor nodes at a specific time periodically. This can happen when the ME is placed on a shuttle for public transportation, as in [35]. On the other hand, the Random Mobility pattern is characterized by contacts which take place not regularly, but with a distribution probability. For instance, Poisson arrivals of a Mobile Element have been investigated in [36], while Random Mobility has been considered in [37].

Different from the former Case, Controlled Mobility exploits nodes which can actively change their location, because they can control their trajectory and speed. As a consequence, motion becomes an additional factor which can be effectively exploited for designing data collection protocols specific to Mobile Elements of WSN.

2.5 Work on Mobile Data Collector (MDC)

In [38], an energy-efficient data gathering mechanism for large-scale multi-hop network has been proposed. In this work, the mobile data collector is called as SenCar. This paper deals with the path-planning of the SenCar, balancing the traffic load from the sensors to the SenCar to prolong the network lifetime, and clustering the network along the path of the SenCar. The method is applicable to a network of homogeneous sensor network where data generation-rate and the locations are predefined.

In this research, to fix a path, for any two points A and B are taken in such a way that the x-coordinates of the all sensor nodes’ locations are bound by the x-coordinates of the points A and B. Two paths of the SenCar are shown in Figure 2.1 Path shown in Figure 2.1(a) is a straight
line between points A and B. Sensor nodes those are reachable from the points of this straight line transmit to the SenCar directly, but the other nodes use relay nodes closer to the points of the straight line.

As shown in Figure 2.1(a), the depth of one such tree rooted as Node 1 is 2 and this node has to relay many packets of its children. On the other hand, Figure 2.1(b) shows a smooth path of the SenCar that minimizes the tree-depth and also the number of children. Thus, the possible load-balancing is better in this path. In other words, this path minimizes the energy depletion of the sensor nodes due to the packet forwarding, which also maximizes the network-lifetime. The authors call this path as optimal traffic-relaying path in [38]. Since, there are infinite number of candidate points for path construction of the SenCar, smoothening the straight line path into an optimal one is intractable. Therefore, the finite number of line segments connected in series between points A and B are used to approximate the optimal path. To select this finite set of line segments, the authors propose a bisector heuristic described as follows.

Initially, a single straight line is chosen. A series of two line segments between Points A and B are derived from it. From a finite set of points which are Δy distance away on the bisector of the current line segment, one point is chosen as the common endpoints of the two line segments. The point is called Turning Point. To choose a Turning Point, MF-trees rooted at the nodes directly reachable from the SenCar in its current path are generated. The graphs generated in the previous step is transformed into a Capacitated Flow Network using quantities like packet generation rate and
energy-level of sensor nodes etc. Solving this flow network, the maximum life time of the network for the current connectivity scenario is derived. For each candidate Turning Point, the maximum lifetime of the network (the time after which the first node dies in the network due to energy depletion) is computed. The Turning Point for which this lifetime is of the highest value is selected. For network with disconnected clusters, the authors give a formulation of the Inter-cluster Travelling tour and show that finding the shortest tour is NP-complete. The experimental results show that, as the number of Turning Points in the path of the SenCar increases, the network lifetime decreases. But the gain in lifetime is not that much after the number of Turning Points is eight or more.

However, the paper has some serious limitations described as follows. Although the authors have proved that the problem of finding a inter-cluster tour is NP-hard, no approximation algorithm is given for this computation. Therefore, the optimal solution by this method for a network with disconnected clusters is also NP-hard. The SenCar travels on the planned path periodically. If the path of the SenCar is long, tour time will be high. In sensor nodes, packets will be lost due to buffer-overflow, or collected data will become useless due to the high latency. Moreover, the authors do not provide any solution to handle data latency which leaves the method unsuitable for delay-sensitive wireless network. The authors consider the starting and ending points of the tour by the SenCar to be distinct for each cluster in their formulation of the optimization problem. These endpoints are chosen to be the leftmost and rightmost nodes of a cluster. Here, selection of these points do not contribute to the energy-efficiency and to the path-length minimization. Nothing is mentioned about choosing the value of Δy. If it is too small, the number of candidate Turning Points will be high and so will be the complexity of computation. On the other hand, a large value of it may cause the algorithm to overstep suitable Turning Points. The bi-sector heuristic as proposed in this paper may generate line segments from which not a single sensor node may be reachable. Then, the computation of this line segment will be futile.

In [39] and [40], the issue of latency was considered while planning path for the Mobile Data Collector. The authors term the Mobile Data Collector as Data Mule. In these works, the path selection problem of Data Mule is formalized into a framework termed as Data Mule Scheduling Problem or DMS-problem. The authors observe that Data Mules can be used as an alternative to multihop forwarding in sensor networks and that the use of Data Mules introduces the trade-off
between energy consumption and Data Delivery Latency.

In this approach, for the given connectivity graph of the WSN, a near optimal TSP tour is generated using an approximate TSP-solver\cite{41}. Using dynamic programming which runs in $O(n^3)$ time, a tour called Label Covering tour or LC-tour is generated from the TSP tour. The authors consider three cost metrics for optimization: the number of edges, the total length of the path, and the total uncovered distance i.e. the total length of interval in an edge that is not within the range of any sensor nodes. It is shown that finding the minimum-cost LC tour is NP-hard by showing that the TSP-tour is a special case of LC-tour. Experimental results of this work show that the tour length of the Data Mule and the latency decrease with the increase in the transmission range of the sensor nodes.

However, the methods in \cite{39} and \cite{40} suffer from some serious limitations described as follows. Instead of visiting the exact position of the sensor node, the Data Mule can communicate with the sensor node from any position within its transmission range. The value of this range is typically from 5 to 50 meters \cite{6}. In the LC tour, these values of transmission ranges of the visited nodes add up to the tour-length. The higher the length, the greater the delay of packet delivery. The authors claim their method as energy-efficient. But, they do not mention anything about using any energy-efficient measures in the mode of communication between the Data Mule and sensor nodes.

In \cite{2}, authors propose an approximation algorithm which is based on the TSP route constructed from the locations of the deployed sensor nodes. By using some set of heuristics and a shortcut finding step, the authors try to optimize the obtained TSP route within $O(n)$ computation time. This algorithm is applicable only to a sensor network with the static sensor nodes.

The method proposed in \cite{2} is illustrated in Figure 2.2. As shown in Figure 2.2a, there are five sensor nodes n_1 to n_5 and a sink S. Transmission regions of the nodes are shown by circles centered at those nodes. The given TSP-tour is also shown in this figure. First, the centroid C of the polygon generated by the TSP-tour is calculated. In the next step, a straight line is drawn from C to each node position. This line intersects the circle centered at node n_i at point I_i. This point is called Inner-lane Substitution Point or ISP. In Figure 2.2b all the ISP’s are shown. Then, a shorter tour is derived by connecting the ISP’s in the order of visiting the nodes in the given TSP-tour. In the third step, concave bends are identified. As shown in Figure 2.2c two edges $<I_2,I_3>$ and $<I_3,I_4>$
form a concave bend with respect to point C. Using a heuristic, the point I_3 is substituted by point B_3 which is called *Bend Substitution Point* or *BSP*. Finally, using a dynamic program, shortcuts of the tour edges are made. As shown in Figure 2.2d, the tour edge $<I_2, I_4>$ is within the range of the circle centered at n_3. Therefore, this edge is a shortcut of the successive edges $<I_2, B_3>$ and $<B_3, I_4>$. The final tour is derived by successively connecting the points S, I_1, I_2, I_4, I_5 and S. If the running time of the TSP-approximation algorithm is $O(n^2)$, the running time of the whole path-finding algorithm is $O(n^2)$.

However, we find some limitations of this method: The simple polygon bounded by the edges of the TSP-tour is termed as *TSP-polygon*. In this work, in the proof of a theorem regarding the heuristic for generating the *Inner-lane Substitution Point* (step of Figure 2.2b), it is assumed that the centroid C always lie within the TSP-polygon. This makes method inapplicable for the cases where
Figure 2.3: The scenario where inner bend \((I_2I_3)\) is greater than the outer tour-edge \((n_2n_3)\)

centroïd \(C\) lies outside the TSP-polygon. Therefore, the method of this work cannot be generalized. Even in case where the centroïd \(C\) lies within the TSP-polygon, the steps of the theorem which proves that- the inner lanes are always shorter than the outer edges, is flawed. A counter example is shown in Figure 2.3. In this figure, all the objects are drawn to the scale. Straight lines drawn from \(C\) to the point \(n_2\) and \(n_3\) intersect the corresponding circles at point \(I_2\) and \(I_3\). The inner-lane of the tour-edge \(<n_2,n_3>\) is \(<I_2,I_3>\). Using the coordinates of those points, we calculate the lengths of both the line segments and find that inner-lane is longer than the tour-edge. Therefore, it cannot be guaranteed that the tour derived by this method is always shorter than the given tour. The step of finding the Bend Substitution Points (step of Figure 2.2c) becomes \(NP\)-hard when more than one such bends exist successively. The authors give an approximate solution which depends only on the two endpoints of the surrounding convex bends and which ignores the endpoints of the successive concave bends. An optimal path covering those concave bends would be affected by the concave property of each of those successive bends. However, the authors do not address the effect of this local decision on the global outcome. Making shortcuts at the last step (step of Figure 2.2d) eliminates the gains achieved by the application of heuristics in the previous steps. The Bends or edges with steep concavity may be introduced by the newly added shortcut edges.

The above analysis shows that, the basis of the heuristics applied in this work is poor and, most importantly, the derived tour cannot be guaranteed to be shorter than the input tour.

In [42], the authors address the problem of planning paths of multiple robots to collect data from all sensors in the least amount of time. The solution is applicable to a wireless sensor network with
static nodes, static sink and one or more robotic data collectors.

The authors first give an optimal solution for scheduling \(k \) data collector robots for a network of \(n \) sensors in 1-Dimension (1-D). An equation for dynamic programming is formulated to distribute non-overlapping 1-D paths among the \(k \)-robots. However, the solution given for the case of 1-D is trivial and cannot be generalized for the cases with higher dimensions of mobility.

![Figure 2.4: Approximate TSPN consisting of clockwise (solid line) and anti-clockwise(dotted line) traversals](image)

In the case of 2-D plane, an approximation solution is given combining earlier works of \cite{43} and \cite{44}. The research work of \cite{13} is used to approximately construct a solution for the TSP with neighborhood (TSPN) problem. The circles/disks representing the radio range of the sensor nodes represent the objects of the TSPN problem. First, a maximal independent set \(I \) of non-intersecting disks from the given set of disks is computed such that each of the given disks has an overlap with at least one disk included in set \(I \). This is illustrated in Figure 2.4. In this case set \(I \) includes four disks shown in bold boundaries. Then, a TSP-tour on the centers of all the disks included in set \(I \) is computed. Using this tour, a solution instance for the TSPN problem is generated. This is illustrated in Figure 2.4. The robot or data collector first travels along the outer boundaries of the disks of the set \(I \) and the edges of the TSP-tour in the clockwise direction (shown in Figure 2.4 by directed solid outer paths) and then along the inner boundaries of the disks of the set \(I \) and the edges of the TSP-tour in counter-clockwise direction (shown in Figure 2.4 by directed dashed inner paths). Other than the edges of the TSP-tour, there is no overlap between the clockwise and counter-clockwise paths. Travels in two types of orientations ensure that all the disks that are neighbors of at least one
disk of set I are covered by the robot.

In the next step, the data-collection points for the robot are determined for sensor nodes both within and not within set I. These points are basically intersection of boundaries and edges. In the final step, the whole TSPN-tour is split into k-subtours for simultaneous data collection by k robots. This division is done according to the works of [44] which originally involved splitting the TSP-tour into k-subtours.

However, the method also has the following limitations: When there is only one data mule or robot, the method is not anything different than that proposed in [43]. Considering an approximate ratio of 11.5, the resulting tour may be as worse as 11.5 times the length of the TSP-tour on the centers of the disks. The method fails to utilize the available location information of the sensor nodes to the fullest since it allows traversals of the boundaries. There may be many disks in a sparse network where the boundary of a disk does not overlap with any other disk and as a result, the traversal of the boundary is futile and only adds up to the tour-length. Considering the typical radio range from 5 to 50 meters for motes [6, 5], the redundancy of paths is significant for a node (the circumference of the disk or about 34 to 340 meters). The selection of anchor points for the robot is not done carefully to minimize the tour-length. For a dense network with a good coverage, a single anchor point may cover more than one disks. Therefore, visiting the point of intersection of each neighboring disk is redundant. Since, this method does not keep track of nodes already visited or make any shortcut of the TSPN-tour, the redundant paths persist in the final solution. No experimental results are provided other than coverage time for this method. The authors do not provide how much path-gain and energy efficiency can be obtained from their method.

2.6 Summary

All these research work conclude with the challenge to find a good path for a mobile data collector in a power constraint static sensor network where nodes may be connected or may not be connected. Different research work set objectives for different types of goodness of the path. Some work address the issue of meeting bandwidth requirement, some work address maximizing network lifetime, yet some address increasing through-put. However, the only few of these works address the issue of network
lifetime and data delivery latency at the same time. Work presented in [25] conclude that most of the energy-saving measures increase the latency. Because of this trade-off between the latency and the network lifetime, finding a data collection method using Mobile Elements which increases network lifetime and, at the same time, decreases data delivery latency is indeed challenging.
Chapter 3

System Model

3.1 Overview

In this chapter, we present some definitions to describe the problem domain. We present the required parameters of the system architecture and data collecting procedures in a WSN. We show that shortening the tour of the MDC reduces the data delivery latency to the sink. Finally, we formulate the problem statement and set our research objectives.

3.2 Preliminaries

3.2.1 Modeling of the Sensor Network and the Tour

Definition 3.1: A walk in a given graph $G = (V, E)$ is a sequence $v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$ where $v_i \in V$ are vertices, $e_i \in E$ are edges and for all i, e_i connects the vertices v_{i-1} and v_i. A tour T in a given graph $G = (V, E)$ is a walk with no repeated edges. A closed tour is a tour where the starting and ending vertices are the same i.e. $v_0 = v_n$. A cycle is a walk with no repeated vertices except for the starting and ending vertices i.e. $v_0 = v_n$.

We use the terms cycle and tour interchangeably for the travels related to the MDC.

Definition 3.2: A sensor network of n nodes is a complete weighted undirected graph K_n where the weight of the edge e_{ij} connecting two nodes n_i and n_j in graph K_n is the Euclidian distance between the i-th and j-th sensor nodes.
Definition 3.3: A *Hamiltonian Cycle* in a given graph $G = (V, E)$ is a cycle that includes all the vertices of the set V exactly once.

Definition 3.4: The *weight* of the cycle C in a weighted graph G is the sum of the weights of all the edges forming C.

Definition 3.5: A *TSP-tour* or *TSP-cycle* in a given weighted graph G is a Hamiltonian cycle with the minimum weight. If the given graph is undirected, the *TSP-tour* is called *symmetric TSP-tour* or *STSP-tour*.

In a sensor network, there are two kinds of nodes, *sensor nodes* and *sink nodes*. *Sensor nodes* perform sensing, buffering the sensed data and forwarding data packets to the sinks. The *sink node* accumulates the data packets from the sensor nodes. We assume that there is only one *sink node* in our sensor network and each of the sensor sensor nodes sends data packets the sink.

Definition 3.6: Given K_n, a *TSP-tour by the MDC* is a *TSP-tour* where the tour starts and ends to the sink node.

In Figure 3.1(a), the circles denote the transmission range r of the sensor nodes. The corresponding graph representation K_6 is shown in Figure 3.1(b). A possible *TSP tour* by the MDC is shown in Figure 3.1(c). Here, the MDC starts out from sink node n_0 and after completing the *TSP-tour*, returns to the same node.

In any arbitrary type of tour, the visiting MDC may never be within the transmission range of all the
CHAPTER 3. SYSTEM MODEL

Therefore, some nodes must have to forward packets of other sensor nodes. These nodes are known as Forwarding or Relay nodes. Packets must be forwarded by more than one forwarding nodes i.e via multiple hops. We call this Multi-hop Forwarding (MF). If a node is not directly reachable from the MDC, it has to choose one of its neighbors as a forwarding node. This Multi-hop Forwarding path must all the way end up at the node n_{MDC} representing the visiting MDC. In this process, a tree rooted at node n_{MDC} is formed where all the non-leaf nodes are forwarding nodes. This tree is called Multi-hop Forwarding Tree or MF-tree.

Observation: The maximum hop count of the MF-tree in TSP-tour is 1.

Definition 3.7: A tour T by the MDC is complete if each of the sensor nodes can send data packets to either the sink node or the visiting MDC directly or via the MF-tree. Otherwise, the tour is incomplete.

Three tours are shown in Figure 3.2. The TSP-tour shown in Figure 3.2(a) is a complete tour. The tour shown in Figure 3.2(b) is also complete because Nodes n_3 and n_4 can send packets to the visiting MDC via Node n_2. But, the tour shown in Figure 3.2(c) is incomplete as none of the nodes n_1, n_2 and n_3 can send data packets to either the MDC or the sink.

Observation: A TSP-tour by the MDC is complete. (By Definition 3.5)
3.2.2 Energy Modeling of the Sensor Network

We adopt the energy model presented in [25]. The energy to send one packet from Node n_i to Node n_j is:

$$E_{i,j} = k_0 + [(h(n_i, n_j))^w]$$ \hspace{1cm} (3.1)

where w is the path-loss exponent, the function $h(n_i, n_j)$ returns the hop-count of the path between Nodes n_i and n_j. We call k_0 the energy constant, which includes all energy consumption, such as receiving energy, idle-state energy, processing circuitry energy etc. which are unrelated to the distance or path of transmission. A node n_j has to transmit its own packets in addition to the packets of all the descendant nodes of the subtree T_{n_j} rooted at n_j in the MF-tree.

Let us assume that the data generation rate of all the sensor nodes are the same and the sensor nodes are homogeneous. Therefore, the leaf-nodes in the MF-tree expend the least amount of energy as they don’t forward other nodes’ packets. The nodes nearest to the MDC i.e. at Level 1 consume the highest amount of energy. According to this model, the total energy consumption by a node n_j for a period of MDC’s travel is:

$$E_{n_j} = \sum_{\forall \text{ node } m \in T_{n_j}} (k_0 + 1^w) = |T_{n_j}|(1 + k_0)$$ \hspace{1cm} (3.2)

Here, $|T_{n_j}|$ is the total number of nodes in the subtree T_{n_j} rooted at the node n_j. From Equation 3.2 it is clear that the total energy consumption by a sensor node is directly proportional to the number of packets it relays in addition to its own packets. Deducing similar equations, we can show that, in case of heterogeneous network and in scenarios where traffic generation rates are different, the energy consumption is still proportional to the frequency of packet forwarding actions. In other words, the life-time of the sensor node is proportional to the number of forwarded packets in addition to its own packets.

Definition 3.8: m-lifetime is defined as the period after which exactly m nodes of a sensor network die due to energy depletion.

Lemma 3.1: TSP-tour has the maximum m-lifetime of all the complete tours by the MDC in a
sensor network.

Proof: Let us compare 1-life-time of the TSP-tour T_{TSP} with that of an arbitrary complete tour T_i. There may be two cases described as follows:

Case (a): The maximum hop-count of all the MF-trees of tour $T_i > 1$.

In this case, let n_j be the nearest node to the root i.e. a node at depth 1 in the MF-tree with the maximum hop count in tour T_i. Under the similar traffic scenario and the similar network topology, this node dies faster than the first node n_k to die in TSP-tour; because node n_k does not forward other nodes’ packets whereas node n_j forwards all the packets of the nodes of the MF-tree sub-rooted at node n_j. Thus, 1-lifetime of tour T_i which is the lifetime of node n_j is shorter than that of TSP-tour T_{TSP}.

Case (b): The hop-count of all MF-trees of tour T_i is 1.

In this case, the TSP-tour can still beat the 1-lifetime of tour T_i by decreasing the transmission radius (TXR) r by a small amount ϵ. TSP-tour is invariant to the value of TXR. When all other things are equal, the energy consumption by a node is directly proportional to the value of TXR according to the our adopted energy model. Therefore, the 1-lifetime of TSP-tour with $TXR = (r - \epsilon)$ is higher than that of tour T_i with $TXR = r$. Using the similar approach, we can show that 2, 3, \ldots, m-lifetime of TSP-tour are higher than 2, 3, \ldots, m-lifetime respectively of any arbitrary complete tour T_i. ■

Observation on TSP-tour by MDC: Now, we find the following observations in a TSP-tour of the MDC:

A. The tour is complete,

B. The tour ensures that there is no forwarding or relay action in the network,

C. The tour is invariant to the transmission range TXR

Due to the Observations A, B and C, the tour ensures the maximum m-lifetime of the network.

3.3 Problem Statement

Observation: The problem of finding a complete tour for the MDC for a sensor network is intractable.

The above observation follows from the innumerable possible Anchor or Halting Points for the
MDC in the whole network. Finding the order of node visit is an \textit{NP-hard} problem. However, TSP-Tour is complete and has the maximum \(m\)-lifetime. These facts motivate us to use the TSP-Tour for offline or static path-planning of the MDC. Though finding a TSP-tour is \textit{NP-complete}, there exist good heuristics approximation and software tools to find TSP-tour for thousands of nodes in a reasonable amount of time.

We use the solution of the TSP-Tour as the basis of our tour because it ensures the maximum lifetime of the WSN. There is a penalty to pay for the maximum \(m\)-lifetime of the TSP-tour. In the TSP-tour, the delay of delivering packets to the sink is at most the time the MDC takes to complete the current tour (tour-time). The speed of the MDC is lower than the speed at which packets are forwarded to the neighbors in the wireless medium. Therefore, the tour-time of the MDC is higher than the time it takes to send packets to the sink via multi-hop forwarding. But we know that TSP-Tour does not allow any forwarding of packets. Therefore, Data Delivery Latency is comparatively higher in TSP-Tour than any other tours which allow multi-hop forwarding.

\textbf{Definition 3.9:} Data Delivery Latency (DDL) of a data-packet is the time-difference between packet generation and delivery.

Let a packet \(i\) be generated at \(t_g\) time after the MDC sets out from the sink node position. The MDC completes the current tour in \(t_T\) time according to some tour plan \(T\). The Packet Delivery Latency \(t_l\) for this particular packet \(i\) is given by:

\[
t_l(i) = t_T - t_g(i)
\] (3.3)

If \(n\) packets in total are collected in this tour \(T\), the average Packet Delivery Latency denoted by \(t_{avg}\) is computed as follows:

\[
t_{avg} = \frac{\sum_{i=1}^{n} [t_T - t_g(i) \frac{n}{n}]}{t_T - \sum_{i=1}^{n} t_g(i) \frac{n}{n}}
\] (3.4)

The quantity \(\frac{\sum_{i=1}^{n} t_g(i)}{n}\) in Equation 3.4 known as the average packet generation time is not controllable as it depends on the sampling rate of sensor nodes and event frequencies. However, we can improve
both the per packet delivery latency and the average packet delivery latency by decreasing the tour-time t_T as evident from both Equation 3.3 and 3.4.

The tour-time of the TSP-tour i.e. t_{TSP} has two components: the fraction of tour-time t_h that the MDC halts and collects data from nearby nodes and the fraction of tour-time t_m that the MDC travels between the node positions. Therefore, we can calculate the TSP-tour time t_{TSP} as follows:

$$t_{TSP} = t_h + t_m$$

(3.5)

When the number of nodes is very high and/or the network is sparse, $t_h << t_m$, and thus, t_m dominates tour-time t_{TSP}. This assumption is logical for practical scenario where the speed of a commercially available robotic car used as MDC is usually at most $5 \, m/s$ where as packet transfer from a sensor node to the MDC happens in the order of miliseconds [42, 8]. Thus, decreasing motion time t_m contributes to decreasing the latency. If the speed of the MDC is v_{MDC}, and if we assume that it accelerates to this speed instantly and also stops instantly, then,

$$t_m = \frac{|t_{TSP}|}{v_{MDC}}$$

(3.6)

where $|t_{TSP}|$ is the path-length of the TSP-tour. We can always come up with a speed v_{MDC} that can approximate the case where acceleration and halting both take finite time. Usually, given a particular MDC, v_{MDC} is fixed [1]. Therefore, the only way to decrease the tour-time is decreasing the length of the tour i.e. $|t_{TSP}|$ (see Equation 3.6). However, by decreasing the tour length, we have the risk of making the resulting tour incomplete. Therefore, we address the issue carefully so that, the resulting tour is complete and shorter than the TSP-tour.

Now, we formulate the problem of balancing the lifetime of the network and the data delivery latency described as follows:

Problem Statement: Given a TSP-tour by the MDC, we find a tour T_d that is complete and shorter than the TSP-tour.
3.4 Research Objective

The given TSP-tour can be modified in many ways to derive a tour which is shorter and complete. Now, we provide the reasons discussed as follows:

Reason 1: The number of nodes visited in the TSP-tour can be decreased by making shortcut of the TSP-tour.

Reason 2: The length of the edges in the resulting tour can be decreased by taking into consideration the value of the transmission radius TXR. ■

In our thesis, we present two algorithms for the two steps stated above. For both of the purposes, we present the notion of finding Linear Shortcuts on any given tour to derive a complete tour. For Reason 1, we present the notion of Label Covering tour \[^{39, 40}\]. For Reason 2, we present the notion of Tight Label-covering tour. Finally, we show that both of the tours are equally energy-efficient in terms of \(m\)-lifetime for a constant TXR. But, Tight Label Covering tour has the least data delivery latency among the three tours. Though, the TSP-tour computation is NP-Complete \[^{45}\], our algorithms can be computed in polynomial time.
Chapter 4

An Efficient Path Planning

4.1 Overview

In this chapter, we present our method in details. At first, we present a simple strategy of finding Shortcuts in an arbitrary tour. We call this Linear Shortcut method. Then, using Linear Shortcut, we derive a tour shorter than the TSP-tour. We give a framework which can shorten any tour iteratively. We illustrate the steps of this iterative improvement. Finally, we analyze the time complexity of our method.

4.2 Improving Latency by Finding a Shortcut

4.2.1 Linear Shortcut of a Tour

Definition 4.1: Given a cycle or tour T in an undirected graph, a Linear Shortcut T_s is a tour that is derived by selecting some finite number of points on the path of the tour T, and joining them by straight lines successively in the order of the edges of T.

In Figure 4.1, an example of a Linear Shortcut Tour is shown. Here, the tour constitutes five edges which successively connect five nodes each denoted by n_i where $i = 1, \ldots, 5$. At first, to form a linear shortcut tour, we choose zero or more points from each edge. We call each of these points Anchor Points. Here, five Anchor Points are chosen, each from one of the five edges. These Anchor Points are denoted by p_i where $i = 1, \ldots, 5$. We then join these p_i’s by straight lines to derive a Linear Shortcut.
CHAPTER 4. AN EFFICIENT PATH PLANNING

Figure 4.1: An example of a Linear Shortcut tour

tour. However, the label \(p_i \) reflects their order of choosing as follows:

1. If \(p_i < p_j \) and both the points are on the same edge connecting nodes \(n_k \) and \(n_l \) such that \(n_k \) is visited before \(n_l \), then \(p_i \) is closer to \(n_k \) than \(p_j \) is to \(n_k \), or in other words, \(p_i \) is farther to \(n_l \) than \(p_j \) is to \(n_l \).

2. If \(p_i < p_j \) and, \(p_i \) and \(p_j \) lie on edges \(e_k \) and \(e_l \) respectively, then the edge \(e_k \) is visited before edge \(e_l \) in the tour.

Thus, the order of choosing any number of Anchor Points from any edges of the given tour must be according to the above rule, and the Anchor Points must also be connected successively by the edges in the same order to form a Linear Shortcut Tour.

In Figure 4.2(a), the labels of Anchors \(p_2 \) and \(p_3 \) are swapped and thus, the resulting tour is not a Linear Shortcut Tour. In Figure 4.2(b), the order of connecting the Anchor Points by edges successively is \(< p_1, p_4, p_3, p_2, p_5, p_1 > \). Therefore, this is not a Linear Shortcut Tour either. There is no condition attached to the total number of Anchor Points or the number of Anchor Points from each edge.

For example in Figure 4.3(a), the Anchor Points selected are the same as the node positions, hence the given and the derived tour are the same. But in Figure 4.3(b), the edge \(< n_1, n_2 > \) does not contain any Anchor Point, whereas edge \(< n_4, n_0 > \) contains three Anchor Points. The total number
Algorithm 4.1 generates a Linear Shortcut Tour according to some Anchor Point Selection Strategy S. S controls the points and their number on a tour edge. For example, if the strategy is to choose the middle-point of each edge then the derived Linear Shortcut tour is as shown in Figure 4.4(a). If the strategy is to choose the midpoint of each odd numbered edge of the given tour, then the derived
Algorithm 4.1 Generating a Linear Shortcut Tour

Input: A tour T with K edges in undirected graph $G = (V, E)$, a strategy S for choosing Anchor Points

1: for all i-th edge in tour T where $i = 1, \ldots, K$ do
2: choose a_i Anchor Points according to strategy S and label them accordingly
3: end for
4: for all $i = 1, \ldots, \left(\sum_{i=1}^{K} a_i\right) - 1$ do
5: connect Anchor Points p_i and p_{i+1} by an edge and add it to tour T_s
6: end for
7: connect the first and last Anchor Points of tour T_s to make it a cycle

Output: T_s is a linear shortcut tour of tour T

Figure 4.4: Example of different strategies for finding Linear Shortcut tour

Linear Shortcut tour is as shown in Figure 4.4(b).

Lemma 4.1 The length of a Linear Shortcut Tour is at most that of the given tour.

Proof: This can be proved by Triangle Inequality \[46\]. As shown in Figure 4.5, the Anchor Points p_m and p_{m+1} lie on Edges $< n_i, n_{i+1} >$ and $< n_{i+1}, n_{i+2} >$ respectively. These are also the last and the first Anchor Point of their respective edges. Using Triangle Inequality we get,

$$|n_i p_m| + |p_m p_{m+1}| + |p_{m+1} n_{i+2}| \leq |n_i n_{i+1}| + |n_{i+1} n_{i+2}|$$
Thus, the edge connecting Anchor Points p_m and p_{m+1} effectively corner-cuts node n_{i+1}. This can be proved for all the Corner-cutting edges in the derived tour. If there is no Corner-cutting edge then the Anchor Points coincide with the nodes and the resulting tour is of the equal length of the given tour. Thus, if T_s is the Linear Shortcut tour of T then $|T_s| \leq |T|$, where the length of a tour T is given by $|T|$.

4.2.2 Linear Shortcut Tour in the Context of MDC

At the Anchor Points, the MDC stops and collects data from adjacent nodes. The first and the last Anchor Points of an edge of a given tour are the two points where the MDC changes direction. For example, MDC stops at all Anchor Points but changes direction or rotates itself for alignment with a new path segment at all Anchor Points except p_5 shown in Figure 4.3(b).

Anchor Point Choosing Strategy: The strategy S is such that the derived Shortcut tour is complete i.e. MDC can collect data from all sensor nodes. For example, if TXR of node n_1 is so small that the MDC fails to communicate while traveling on the Shortcut tour shown in Figure 4.3(b), then, the derived tour becomes incomplete. If TXR is so large that each node is reachable from point p_1, the MDC can rather stop at p_1 and collect each node’s data. The resulting Linear Shortcut tour has only one Anchor Point and is thus of length zero.

In the following sections, we present our strategy for making a Linear Shortcut. We term the resulting
tour as **Tight Label Covering Tour** or **TLC-tour**.

4.3 Label Covering Tour [Sugihara et. al. 2008]

Let us consider a complete graph \(G_l = (V_l, E_l) \) which have the set of vertices \(V_l = V \) of a graph \(G = (V, E) \). There is an edge between any two nodes of the graph i.e \(E_l = \{ e_{n_i, n_j} \mid i \neq j \text{ and } n_i, n_j \in V_l \} \).

The cost function associated with each edge is the Euclidian distance between the nodes connected by that edge; that is \(f(e_{n_i, n_j}) = \text{distance}(n_i, n_j) \) \(\forall n_i, n_j \in V_l \). Each node is given a unique label from 1 to \(|V_l| \). The set of all labels is \(L = \{ 1, 2, 3, \ldots, |V_l| \} \). Associated with each edge \(e_{n_i, n_j} \) is a set of labels \(L(e_{n_i, n_j}) \subseteq L \) which represents the set of nodes whose communication ranges intersect with this edge. We determine the set of labels as follows: \(k \in L(e_{n_i, n_j}) \) if Node \(n_k \)'s communication range intersects the edge \(e_{n_i, n_j} \). If \(\text{distance}(n_k, e_{n_i, n_j}) \leq r \), where \(r \) is the transmission range of the communication. For any edge \(e_{n_i, n_j} \), we have \(i, j \in L(e_{n_i, n_j}) \). In Figure 4.6, a complete graph is generated for the network. Each edge in this graph is marked with the associated labels. For example, edge between Nodes 1 and 2 passes through the transmission ranges of Nodes 1, 2, 3 and 5. Similarly, the edge between Nodes 2 and 5 passes through the transmission ranges of all the nodes of this cluster.

Hence, its label is \(\{1, 2, 3, 4, 5\} \). Now, instead of the intractable task of finding the shortest tour of the MDC using arbitrary number of Anchor Points from a domain of infinite points, we have to find the shortest tour on this complete Labeled graph so that the union of the labels of the edges in this tour forms the set of all labels \(L \). Let us formally define this tour as follows.

Definition 4.2: A tour \(t_{LC} \) defined on a graph \(G = (V, E) \) is **Label Covering Tour** when it satisfies at least one of the following conditions for \(k = 1, 2, \ldots, |V| \):

1. \(\exists e_{n_i, n_j} \in t(E), k \in L(e_{n_i, n_j}) \), where \(t(E) \) is the set of edges of tour \(t \), or
2. Euclidian distance between Nodes \(n_s \) and \(n_k \) i.e. \(\text{distance}(n_s, n_k) \leq r \) where \(n_s \) is the starting node of the tour \(t \)
Label-Covering Tour Problem: Given graph $G = (V, E)$ with all its edges labeled, we find a label-covering tour t_{LC} in this graph so that the cost of the tour is the minimum i.e.

$$\min \sum_{e \in t_{LC}(E)} f(e)$$

where $f(e)$ is a cost function $f : E \to \mathbb{R}$ defined on the edges and $t_{LC}(E)$ is the set of edges of the Label Covering Tour t_{LC}.

In Figure 4.6, the MDC starts from the node 1 and travels the minimum cost tour $[1, 2, 5, 1]$. The union of the labels of these edges is the set of all labels i.e. $L(1) \cup L(2) \cup L(5) = \{1, 2, 3, 5\} \cup \{1, 2, 3, 4, 5\} \cup \{1, 2, 4, 5\} = \{1, 2, 3, 4, 5\}$. Therefore, this tour is the minimum-cost Label Covering tour.

NP-hardness of Label Covering Tour Problem: In [39], the authors show that the Label Covering Tour problem is NP-hard. If we choose a small TXR, we find a Label Covering Tour to include all the nodes. Thus it becomes a Travelling Salesman Tour. For this new value of TXR, the optimal Label Covering Tour is also an optimal TSP-tour. Since finding a Travelling Salesman Tour is NP-hard [45], so is finding a Label Covering Tour.
Algorithm 4.2 Generating the Minimum Length Label-Covering Tour

Input: A TSP tour T_{TSP}

1. $d[0] ← 0$
 \[\triangleright \text{Array } d[i] \text{ stores the path-cost from Node 0 to } i \]
2. $d[1 \ldots n] ← +\infty$
3. $tour[0] ← \{ T_{TSP}[0] \}$
4. $tour[1 \ldots n] ← \emptyset$
5. for all $i = 0, \ldots, n - 1$
6. for all $j = i + 1, \ldots, n$
7. shortCuttable ← true
8. anchorSet ← \emptyset
9. for all $k = i + 1, \ldots, j$
10. if line segment $T_{TSP}(i)T_{TSP}(j)$ is NOT within range r of node $T_{TSP}(k)$ then
11. shortCuttable ← false
12. break-loop
13. else
14. $a_k ← \text{Anchor Point for node } T_{TSP}(k)$
15. anchorSet ← anchorSet $\cup \{ a_k \}$
16. end if
17. end for
18. if shortCuttable = true & $d[i] + |T_{TSP}(i)T_{TSP}(j)| < d[j]$ then
19. $d[j] ← d[i] + |T_{TSP}(i)T_{TSP}(j)|$
20. tour[j] ← $\{ tour[i], T_{TSP}(j) \}$
21. $a[i][j] ← \text{anchorSet} \cup \{ T_{TSP}(i), T_{TSP}(j) \}$
22. end if
23. end for
24. $T_{LC} ← tour[n]$

Output: T_{LC} is the minimum length LC-tour

4.3.1 Label Covering Tour as a Result of Linear Shortcut

In [39], Sugihara and Gupta introduce Label Covering (LC) tour as a measure to reduce the data delivery latency. Given a TSP-tour, the authors give a polynomial-time algorithm for finding a shorter tour of the TSP-tour which they call Label Covering Tour (LC-tour). However, we are approaching the problem from the perspective of finding a linear shortcuts of a given TSP-tour, the challenge is how to derive LC-tour from TSP-tour by means of finding Linear Shortcuts. Given a TSP-tour T_{TSP}, Algorithm 4.2 generates LC-tour in polynomial time $O(n^3)$. There is a strategy S that describes finding shortcuts of a given TSP-tour to derive LC-tour. We summarize the strategy as follows:

1. Given a TSP-tour T_{TSP}, we select an Edge set E_{LC} according to Algorithm 4.2. Each edge $e \in E_{TSP}$ may be included to E_{LC} or not.
2. If an edge of E_{TSP} is included, it will have exactly two Anchor Points on it. As shown in Figure 4.7, the edge $<n_{i+5}, n_{i+6}>$ cannot not be a Shortcut, Therefore, it is included in the set E_{LC}. Hence, it has exactly two Anchor Points i.e. its two end-points n_{i+5} and n_{i+6}.

3. If an edge $e \in E_{LC}$ is derived by finding Shortcut among two or more edges of E_{TSP}, then it has two or more Anchor Points. Two anchor-points are its end-points. Let n_j be a node that is not visited at its position due to the Shortcut on Edge e. The other Anchor Points on e are derived by calculating the intersection between the normal from node n_j and the edge e or, in case the intersection lies outside the line segment of e, the intersection of the circle of radius r centered at node n_j and edge e. As shown in Figure 4.7, the edge $<n_i, n_{i+5}>$ is derived by finding shortcuts on five consecutive edges of TSP-tour. Two Anchor Points of this edge are its endpoints. At these two points, the MDC collects data from node n_i and n_{i+5}. There are four more Anchor Points on this edge i.e. a_{i+1}, \ldots, a_{i+4}. For example, the normal drawn from node n_{i+1} to this edge intersects it at point a_{i+1} and hence this Anchor Point. But, the normal drawn from node n_{i+4} intersects this Shortcut outside its line segment. Therefore, the corresponding Anchor Point a_{i+4} is derived by the intersection of the circle of radius r centered at node n_{i+4} and the line segment of the edge itself.
We give Algorithm 4.2 to generate the minimum cost Label Covering Tour. Here, Line 14, 15 and 21 track the computation of Anchor Points for each prospective edge selected but does not affect the running time of the algorithm. If an edge in resulting LC-tour connects node n_i and n_j, the Anchor Points for the MDC on this particular edge can be found in the array element $a[i][j]$.

Lemma 4.2: If TXR of only the visited nodes in the LC-tour is zero, any tour derived by making linear shortcut of the LC-tour will not be complete.

Proof: As shown in Figure 4.8, we choose two Anchor Points a_l and a_m on two different successive edges of our tour T_{LC}. Connecting the two Anchor Points, we derive a tour T_d which is shorter than the min-cost LC-tour. The set of edges of the derived tour is as follows:

$$E_d = E_{LC} - \{<n_i, n_j>, <n_j, n_k>\} \cup \{<n_i, a_l>, <a_l, a_m>, <a_m, n_k>\}$$

using Triangle Inequality, $|T_d| < |T_{LC}|$. As shown in Figure 4.8 if $TXR \neq 0$, it is always possible to choose two such Anchor Points a_l and a_m different from the node n_j such that the resulting tour is shorter and complete. However, when $TXR = 0$, the derived tour T_d misses Node n_j unless $a_l = a_m = n_j$. Thus, when $TXR = 0$ for the visited nodes, any Linear Shortcut results in an Incomplete Tour.

Lemma 4.2 shows that, there is further scope of Linear Shortcut if $TXR \neq 0$. Let us explore this opportunity in the following sections.
4.4 Tight Label Covering Tour (TLC-tour)

Goal: Given an LC-tour for the MDC in a sensor network with the non-zero TXR, we derive a tour by making linear shortcut such that the resulting tour is *complete*.

We present two possible cases of making linear shortcuts in the following sections.

Case I: There are no overlapping intermediate nodes

If there is no overlapping intermediate nodes in any edge of the resulting LC-tour derived from a TSP-tour, then the number of nodes visited in it is the same as in the TSP-tour, so is the length of the tour. But in our approach, it is also possible to shorten the length even further.

As shown in Figure 4.9a, the initial TSP-tour and LC-tour are the same. The MDC visits all the nodes from n_1 to n_4 in the order of the minimum cost TSP-tour. To derive a Tight Label Covering
Tour, at first, we find the intersection of the incoming edge with the circles of radius \(TXR \) centered at the nodes. For example, the edge connecting Nodes \(n_1 \) and \(n_2 \) is incoming to the circle centered at \(n_2 \). This edge intersects the circle at \(p_1 \). However, this edge is not incoming to the circle centered at \(n_1 \), rather the edge connecting \(n_4 \) and \(n_1 \) is incoming to that circle. Thus, we derive the Anchor Points \(p_1, p_2, p_3 \) and \(p_4 \). Connecting these points, we derive a tour that is shorter than the \(LC \)-tour.

To generalize the rule, if there is no overlapping circle in any edge connecting nodes \(n_i \) and \(n_j \), we pick only one point for finding Shortcut on that edge- this point is the intersection of the circle centered at node \(n_j \). This is illustrated in Figure 4.10. Here, \(p_k \) is the intersection of circle centered at \(n_j \) and the edge connecting \(n_i \) and \(n_j \). Therefore, \(p_k \) is the only point chosen from this edge. In the next section, we discuss the other case and the technique of iterative improvement.

Case II: There are overlapping intermediate nodes.

When there is one or more overlapping intermediate circles in an edge of the given \(LC \)-tour, the number of points \(p_i \) for finding Shortcuts can be more than one. To illustrate the technique, at first, let us define some terms related to the technique.

Definition 4.3: A line segment of a tour on which any particular node is reachable from the MDC is called the Contact Interval or \(CI \) for that node.

For example, in Figure 4.11 the node \(n_k \) is only reachable on the line segment \(< ln_k, rn_k > \) on the

![Figure 4.10: Selecting an Anchor Point from an edge with no overlapping circle](image)

![Figure 4.11: Contact Interval \(< ln_k, rn_k > \) of Node \(n_k \) on a tour-edge](image)
tour edge connecting n_i and n_j. Hence, it is the Contact Interval for this node n_k. We represent any Contact Interval for any intermediate node n_k by two points on that edge as follows:

Definition 4.4: The point which is encountered first by the MDC on the CI of a Node n is called the l-Point of the CI and it is denoted by ln. Similarly, the point encountered last by the MDC on the CI is called the r-Point and it is denoted by rn. These two points i.e. l and r Points mark the boundary of a CI.

![Figure 4.12: Contact Intervals of different nodes on a tour-edge](image)

If the edge is tangent to the intermediate circle, we have $ln_k = rn_k$ as shown in Figure 4.12. Here l and r Points for the Contact Interval are the same for the node n_t as the edge is a tangent to its transmission circle. If the intersection of the edge and the circle lies outside the line segment of the edge, the Contact Interval contains at least one end-point of the edge. For example, the Contact Interval of Node n_k, as shown in the same figure, is $< n_i, rn_k >$.

4.4.1 Representation of the Contact Interval

From the given *LC-tour*, we can identify the intermediate nodes with circles having overlaps with the particular tour-edge. Then, we determine l and r Points of the CI for each such node and sort those CIs according to the non-decreasing distance of l Points from the first visited node on that edge.

As shown in Figure 4.13, there are five intermediate nodes whose transmission radii intersect with the tour edge connecting nodes n_i and n_j. For node n_{i+1}, the CI is given by $ln_{i+1} = (316, 122)$ and $rn_{i+1} = (398, 120)$. For node n_{i+5}, the right intersection point lies beyond the line segment of the edge. Therefore, r Point of its CI is the position of node n_j. In Table 4.1, the sorted CIs of the intermediate nodes are shown. For example, the coordinate of the first visited node of this edge n_i is $(234, 120)$. The l Point of any CI closer to Node n_i is that of the Node n_{i+1}. Therefore, its entry
comes first in the sorted list. The l Point of Node \(n_{i+5} \) is the farthest from node \(n_i \). Therefore, it is the last entry in the sorted list.

The Algorithm 4.3 generates the sorted CI’s for any particular edge. If the sorting function in Line 12 runs in \(O(n \log n) \) (there are many sorting algorithms available like heapsort) then its running time is \(O(n + n \log n) = O(n \log n) \). The number of edges in the given LC-tour is \(O(n) \). Therefore, determining the sorted Contact Intervals for the tour takes \(O(n^2 \log n) \) time.

4.4.2 Critical Contact Interval (CCI)

Once we have determined the sorted list of Contact Intervals, the next step is to find the Critical Contact Interval.

Definition 4.5 Given a list of Contact Intervals \(CI_e \) of an edge \(e \) in a tour, **Critical Contact Interval**
Algorithm 4.3 Generating sorted Contact Interval for any tour-edge

Input: An edge $e \in E$ that connects Node n_i and Node n_j in an LC-tour and the list of intermediate nodes I_e

1. $CI_e \leftarrow \{\}$
2. for all node $n_k \in I_e$ do
3. Find intersections (ln_k, rn_k) of edge e and circle of radius TXR centered at n_k
4. if ln_k is outside of line segment of edge e then
5. $ln_k \leftarrow n_i$
6. end if
7. if rn_k is outside of line segment of edge e then
8. $rn_k \leftarrow n_j$
9. end if
10. $CI_e \leftarrow CI_e \cup \{(n_k, ln_k, rn_k)\}$
11. end for
12. sort CI_e using ln_k as key

Output: CI_e is the sorted Contact Intervals

or CCI is the interval of the minimum length that has at least one point from each the Contact Interval.

![Critical Contact Interval](image)

Figure 4.14: Critical Contact Interval for a given list of intervals starting from Node n_{i+1}

In Figure 4.14, the critical Contact Interval for the edge described in Figure 4.13 is shown. Here, the CCI has the left endpoint $lcci = rn_{i+2}$ and the right end point $rcci = ln_{i+5}$. If we assume that, the MDC travels along this edge, any interval having left endpoint any farther than the $lcci$ from n_i or right endpoint closer than the $rcci$ to n_i will not cover one or more intermediate nodes. For example, if $lcci = (388, 120)$ instead of $rn_{i+2} = (382, 120)$, the MDC misses the intermediate Node n_{i+2}’s CI along this edge.

Generating CCI may be quite simple- for example, taking the rn of the leftmost interval and ln
Algorithm 4.4 Generating Critical Contact Interval (CCI)

Input: List of sorted intervals \(CI_e \) of an edge \(e \in E \) of a tour

1: \((n_i, l_{n_i}, r_{n_i}) \leftarrow \text{firstElementOf}(CI_e) \)
2: \(l_{cci_e} \leftarrow r_{n_i} \)
3: \((n_k, l_{n_k}, r_{n_k}) \leftarrow \text{nextElementOf}(CI_e) \)
4: while \(l_{n_k} \) closer to \(n_i \) than \(r_{n_i} \) do \(\triangleright \) scan all the intervals contained within the leftmost interval
5: if \(r_{n_k} \) closer to \(n_i \) than \(l_{cci_e} \) then
6: \(l_{cci_e} \leftarrow r_{n_k} \)
7: end if
8: \((n_k, l_{n_k}, r_{n_k}) \leftarrow \text{nextElementOf}(CI_e) \)
9: end while
10: \((n_s, l_{n_s}, r_{n_s}) \leftarrow \text{lastElementOf}(CI_e) \)
11: \(r_{cci_e} \leftarrow l_{n_s} \)
12: if \(r_{cci_e} \) closer to \(n_i \) than \(l_{cci_e} \) then
13: \(r_{cci_e} \leftarrow l_{cci_e} \)
14: end if

Output: \(CCI_e = (l_{cci_e}, r_{cci_e}) \) is the Critical Contact Interval of edge \(e \)

of the rightmost interval. Since, the intervals are already sorted, this takes \(O(1) \) time.

\[
\begin{align*}
l_{cci} &\leftarrow r_{n_i} \text{ of the leftmost interval} \\
r_{cci} &\leftarrow l_{n_s} \text{ of the rightmost interval}
\end{align*}
\]

However, we have sorted the intervals according to \(ln \) values. Therefore, assigning \(ln \) of the rightmost interval to \(r_{cci} \) is correct, but assigning the \(rn \) of the leftmost interval may result in missing one or more intervals totally contained within the leftmost interval. For example, in Figure 4.14, the leftmost \(CI \) is of intermediate node \(n_{i+1} \). However, Contact Interval of node \(n_{i+2} \) is fully contained within this interval. If we assign \(l_{cci} = r_{n_i+1} \), then the resulting interval misses \(CI \) of Node \(n_{i+2} \). Therefore, unlike \(r_{cci} \), the value of \(l_{cci} \) cannot be determined in \(O(1) \) time. We have to scan the sorted list starting from the beginning till all intervals contained within the leftmost intervals are checked for the leftmost \(rn \) value. This will be the correct value for \(l_{cci} \). Algorithm 4.4 does the job in \(O(n) \) time for any edge.

If there is no intermediate node having overlapping circle with any edge, the \(CCI \) of that edge is Null. It is to be noted that, we have deliberately left out the nodes visited by the \(LC \)-tour. The next section deals with the incorporation of non-intermediate nodes.
4.4.3 Finding Shortcut by Bypassing the Visited Nodes

Let us ignore the visited nodes which are the endpoints of the edges of the LC-tour. Then, we can connect the CCI’s of successive edges of the LC-tour to derive a shortcut tour. This has been illustrated in Figure 4.15. We have already derived the CCI of the edge connecting Nodes n_2 and n_8 in the previous section. The CCI on edge $<n_8,n_{11}>$ is a single point according to Algorithm 4.4, which is the r point of the circle centered at n_{10}. So is the case for edge $<n_{11},n_{13}>$. However, edges $<n_1,n_2>$ and $<n_{13},n_1>$ do not have any intermediate nodes with overlapping circles. Therefore, they have no CCI’s. If we connect the endpoints of the CCI’s of successive edges, we derive a Shortcut tour that covers only the intermediate nodes in the LC-tour. This tour is shown by solid lines in Figure 4.15. We denote the lcci of i-th edge (as ordered in a given tour) as the point lcc_i and rcci of i-th edge as rcc_i.

4.4.4 A Complete Shortcut Tour

The tour derived in the previous section is shorter than the LC-tour but is not complete. To make the tour complete, we have to extend its path to cover nodes visited in LC-tour; for example, Nodes n_1,n_2,n_8,n_{11} and n_{13} must also be covered in the example given by Figure 4.15. To do this, we
Algorithm 4.5 Generating Tight Label Covering Tour

Input: A tour t with CCT's associated with each edge

1: for all node n_i visited in the tour t do
2: \hspace{1em} if both the edges e_s (incoming) and e_t (outgoing) incident with n_i have CCI then
3: \hspace{2em} if line l_{st} connecting r point and l point of the CCI's of edges e_s and e_t respectively does not intersect circle centered at n_i then
4: \hspace{3em} l_{n_i} is the line parallel to l_{st} and tangent to the circle centered at n_i
5: \hspace{3em} update r point of edge e_s as the intersection of l_{n_i} and e_s
6: \hspace{3em} update l point of edge e_t as the intersection of l_{n_i} and e_t
7: \hspace{2em} end if
8: \hspace{1em} else
9: \hspace{2em} p_{n_i} is the intersection of the incoming edge e_s and circle centered at n_i
10: \hspace{2em} if p_{n_i} is closer to n_i than r point of the CCI of incoming edge e_s OR CCI for incoming edge e_s does not exist then
11: \hspace{3em} update r point of edge e_s as p_{n_i}
12: \hspace{3em} if CCI for incoming edge e_s does not exist then
13: \hspace{4em} update l point of edge e_s as its r point
14: \hspace{3em} end if
15: \hspace{2em} end if
16: \hspace{1em} end if
17: end for
18: $t_{TLC} \leftarrow \{\}$
19: Join r point of an edge to the l point of the next edge successively and add it to tour t_{TLC}

Output: t_{TLC} is a TLC tour

choose one or more Anchor Points p_i's both from the edges which have CCI's and edges which do not. Algorithm 4.5 is used to generate a shorter tour from the given LC-tour provided that the CCI's of the edges are already calculated according to Algorithm 4.4.

To cover the visited nodes in the resulting Shortcut tour, we take different actions depending on the status of the CCI's of the two edges adjacent with the visited node n_i:

1. If both of the edges have non-null CCI's, i.e. there are intermediate nodes on both the edges, then we just add the r point of the incoming edge with the l point of the outgoing edge. We call this line segment r-l line segment.

 (a) If r-l line segment is intersecting with the node n_i under inspection, then we do nothing. For example, in Figure 4.16 Node n_8 has both the edges with non-null CCI's. We connect r-point of the incoming edge rcc_2 with the l-point of the outgoing edge lcc_3. The resulting r-l line segment intersects the circle centered at n_8. Hence, Node n_8 is covered by this
(b) If \(r-l \) line segment is non-intersecting with the Node \(n_i \), then we draw a straight line that is parallel to the \(r-l \) line segment and tangent to the circle centered at \(n_i \). Let this line intersects the incoming and outgoing edges at Points \(p_i \) and \(p_o \) respectively. We, then, add a new edge connecting \(p_i \) and \(p_o \), which is a tangent to the circle centered at \(n_i \) and therefore, covers Node \(n_i \). We also update the \(r \) point of the incoming edge as \(p_i \) and \(l \) point of the outgoing edge as \(p_o \). For example, in Figure 4.16, for Node \(n_{11} \), the \(r \) point of incoming edge and the \(l \) point of the outgoing edge are \(rcc_3 \) and \(lcc_4 \) respectively. The straight line connecting these two points does not intersect the circle centered at \(n_{11} \). Therefore, we draw a line segment parallel to this straight line and tangent to the circle stated before. The resulting edge covers the node \(n_{11} \). We also update the \(r \) point of the incoming edge as \(rcc_3 \) which is the intersection of this newly added edge and the incoming edge. Before, the \(l \) and \(r \) Points were similar for this incoming edge, but now, the two points become different. The \(l \) point of the outgoing edge is also updated as \(lcc_i \) which is the intersection of the newly added edge and the outgoing edge.

2. If the incoming edge does not have any intermediate Node with overlapping circle or (if it has then) its \(r \) Point is farther from Point \(n_i \) by at least \(TXR \), then we compute \(p_i \) as the intersection
CHAPTER 4. AN EFFICIENT PATH PLANNING

between the incoming edge and the circle centered at \(n_i \). If the incoming edge has a non-null \(CCI \), then we update its \(r \) Point as \(p_i \). Otherwise, we set the incoming edge’s \(r \) and \(l \) Point as \(p_i \). For example, in Figure 4.16, \(n_{13} \) has only one adjacent edge i.e. the incoming edge with non-null \(CCI \). Previously, the \(r \) Point of this edge was the intersection of \(n_{12} \) with this edge that lies closer to \(n_{13} \). We update this \(r \) Point as \(rcc_4 \), which is the intersection of this edge with Node \(n_{13} \). In the same figure, Node \(n_1 \) has both the adjacent edges with null \(CCI \). Therefore, we update both the \(l \) and \(r \) Point of the incoming edge as the intersection of this edge with the circle centered at \(n_1 \) i.e. the Point \(lcc_5 = rcc_5 \). For Node \(n_2 \), the outgoing edge has a non-null \(CCI \) but the incoming edge does not. Therefore, we determine the \(r \) and \(l \) Point of its incoming edge as \(lcc_1 = rcc_1 \).

Now, we have all the edges with non-null \(CCI \) i.e. with both \(l \) and \(r \) points and we can join the \(r \) Point of the previous edge with the \(l \) Point of the next edge. The final edges are shown by solid lines in Figure 4.17. The resulting path will be a cycle and has been derived according to the strategy of the Algorithm 4.1 since we have chosen at most two Anchor Points from each edge and connected them in succession. Therefore, the resulting tour will be shorter than the given tour according to Lemma 4.1. In other word, we have derived a tour that is shorter in length than the given tour. We call this process tightening of the given tour by Linear Shortcut. We call the shorter tour derived
from the Label Covering Tour *Tight Label Covering* tour or *TLC-tour*.

The process of deriving the *TLC-tour* is formally presented in Algorithm 4.5. For an *LC-tour*, we compute *CCI* for each edge according to Algorithm 4.4. Then, using Algorithm 4.5, we compute the *TLC-tour*. Algorithm 4.5 updates the *l* and *r* Points, and adds new edge if necessary, for each visited node in the given tour. This computation takes $O(n)$ time. The successive joining in Line 19 takes $O(n)$ time. Therefore, Algorithm 4.5 takes $O(n)$ time.

4.4.5 Iterative Improvement of *TLC-tour*

The path found in Figure 4.17 can be further shortened using method of finding Linear Shortcut outlined before. To apply Linear Shortcut, we select 0, 1 or 2 points from each tour edge and connect them successively. We divide each iteration of improvement into two steps:

1. We connect the *r* Point *rcc* of *i*-th edge with *l* Point *lcc* of the next edge (*j*-th edge such that $j > i$) with non-Null *CCI* and include the edge connecting *lcc* and *rcc* in the edge set.
2. We re-associate the intermediate circles with the resulting edges and recompute the *CCI*’s for each edge.

We outline the steps of generating sorted *CI* of each associated circle in Algorithm 4.3 and the steps to compute *CCI* in Algorithm 4.4. However, we need a policy to re-associate the circles when existing tour-edges break into shorter ones and new edges are added. Let us illustrate the method by applying on the tour derived in Figure 4.17.

As shown in Figure 4.18, there are eight edges. We label the edge that connects points within the range of Nodes n_1 and n_2 as the first edge, the edge next to it as the second edge and so on. Node n_1 overlaps both of the first edge (outgoing) and the last edge (incoming). The outgoing first edge has a non-zero overlap with the circle centered at Node n_1, but the incoming last edge does not. Therefore, we associate Node n_1 with the first edge rather than the last one in the tour. Node n_2 has zero overlap with both of the first (incoming) and the second edge (outgoing). As a tie-breaker, we associate it with the incoming first edge. Therefore the first edge is associated with two circles- one centered at n_1 and the other at n_2. Their *CI*’s are computed according to Algorithm 4.3. The *CCI* is also computed for the first edge according to Algorithm 4.4. The *l* and *r* Points of the first edge is
The second edge of the given tour broke at the boundary of the circle centered at n_4 to give out the second edge and the third edge. We need to decide which of these two edges to associate to circles centered at n_3 and n_4. Both of the circles have bigger CI’s with the second edge than with the third one. Therefore, we associate both the circles with the second edge. Now, the CI’s of both of these circles border on the right end point of the second edge. There are no other CI’s on this edge. Therefore, we select both of the l and r Point of CCI as the rightmost l Point of the CI’s of these two circles, this point is $lcc_2 = rcc_2$, as shown in Figure 4.18.

The third tour edge has CI’s of circles centered at n_5, n_6, n_7 and n_8. Since, n_8 has larger CI with the next edge than this edge, we don’t associate it with this edge. The circle centered at n_7 has CI with both of this third edge and the next edge. In both of the cases, the CI is a single point. Since, the third edge is incoming, we associate this circle with the third edge. In the similar fashion as done in previous tour edges, the l and r Points of this tour edge is determined as lcc_3 and rcc_3 respectively.

In the same way, we determine the l and r points of the CCI’s of the remaining edges. It is to be noted that, the edge exiting circle centered at node n_{10} has no CCI and hence, it has no l and r Points.
Therefore, this edge will be skipped out of the resulting tour. After this round of re-associating of circles and computation of l and r Points of CCI’s of respective edges, we join the r Point of an edge with the l Point of the next edge with CCI. Thus, the resulting tour is shown in Figure 4.19. Now, there are one more edge than the given tour but since it is derived by finding Linear Shortcut, it is shorter than the given tour.

Figure 4.19: TLC-tour derived in Iteration 2

Figure 4.20: Updating the l and r Points after Iteration 2
We can continue in this way to successively tighten the given tour. For example, in Figure 4.20, the \(l \) and \(r \) Points of the tour derived in Iteration 2 are computed after re-associating the circles. We note that, of the nine tour edges, only two have distinct \(l \) and \(r \) Points for the CCI’s, one edge has none of those and the rest of the edges have \(lcc_i = rcc_i \).

![Figure 4.20: TLC-tour derived in Iteration 3](image)

Using the same method as in the previous iteration, we connect the \(r \) points with then next edge’s \(l \) Point to derive a tightened tour as shown in Figure 4.21. We note that, the amount of path saving has decreased in successive iterations, the highest saving being attained in the very first iteration.

We, again re-associate the circles and compute the CCI’s on the tour derived after Iteration 3, as shown in Figure 4.22. After Iteration 4, we derive the tightened tour shown in Figure 4.23. We note that, the path savings have become even more smaller. Therefore, we stop our iterative improvement here and choose Anchor Points for the MDC.

From each node position \(n_i \), we draw perpendicular to the edge with which the corresponding circle is associated with. The intersection of this perpendicular with the edge is the Anchor Point \(a_i \) for that node \(n_i \). When the MDC reaches the point \(a_i \), it polls the target node \(n_i \) for data packets. If the point \(a_i \) is out of the line segment of the edge, we choose the intersection of the corresponding circle and the edge as the Anchor Point. For example, in Figure 4.23 node \(n_7 \) has no such perpendicular on its associated incoming edge. Therefore, we choose this edge’s endpoint that intersects the circle.
centered at node \(n_7 \).

\[l_{cc1} = r_{cc1} \]
\[l_{cc2} = r_{cc2} \]
\[l_{cc3} = r_{cc3} \]
\[l_{cc4} = r_{cc4} \]
\[l_{cc6} = r_{cc6} \]
\[l_{cc7} = r_{cc7} \]
\[l_{cc9} = r_{cc9} \]

Figure 4.22: Updating the \(l \) and \(r \) Points after Iteration 3

Figure 4.23: TLC-tour derived in Iteration 4
We have already noticed that, in successive iterations, the path gain decreases. We can define the path gain $g_i(t_{TLC})$ for a derived TLC-tour in iteration i as follows:

$$g_i(t_{TLC}) = \frac{|t_{TLC}|_{i-1} - |t_{TLC}|_i}{|t_{TLC}|_i}$$ \hspace{1cm} (4.1)

Here, $|t_{TLC}|_i$ is the length of the TLC-tour derived in Iteration i. Nevertheless, the resulting gain is a significant improvement over the given LC-tour. The given LC-tour and the TLC-tour derived after Iteration 4 are over-imposed on each other for comparison (see Figure 4.24).

We have described our method for successive iterative tightening. Now, we give the formal algorithm. In Iteration 1, we use Algorithm 4.3 to generate sorted CI’s for each circle associated with each edge and use Algorithm 4.4 to derive CCI’s from the list of sorted CI’s and finally, use Algorithm 4.5 to generate the first TLC-tour. For successive iterations, we also need to do the similar things except we don’t have to sort all the CI’s; rather we have checked only few marginal circles for re-association and when those are associated with a different edge, their CI’s are re-computed and inserted into the list of CI’s of the respective edge in non-decreasing order of the l value (the distance between the first endpoint and the l Point of a CI).

To speed up the task of re-association, specially the process of updating contact interval of each node, we maintain a node-list where current associated edge of each node is also kept. For example,
after the first iteration as shown in Figure 4.17, the list of node associated with the edge after re-association step is shown in Table 4.2. This table allows the retrieval of the associated edge with a node in $O(1)$ time and helps us avoid searching the edge list repeatedly. After the first iteration, the number of edges change, Therefore, we need to scan this list and update the edge number. This scan takes $O(n)$ time. Then, we can scan the list again and re-associate a node, which is currently associated with edge e_i, with either the previous edge e_{i-1} or the next edge e_{i+1} or just keep its current association with edge e_i. Again, this step takes $O(n)$ time. The decision regarding the re-association has been illustrated in Figure 4.25.

<table>
<thead>
<tr>
<th>Node</th>
<th>Associated Edge</th>
<th>Node</th>
<th>Associated Edge</th>
<th>Node</th>
<th>Associated Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>e_5</td>
<td>n_1</td>
<td>e_8</td>
<td>n_1</td>
<td>e_1</td>
</tr>
<tr>
<td>n_2</td>
<td>e_1</td>
<td>n_2</td>
<td>e_1</td>
<td>n_2</td>
<td>e_1</td>
</tr>
<tr>
<td>n_3</td>
<td>e_2</td>
<td>n_3</td>
<td>e_3</td>
<td>n_3</td>
<td>e_2</td>
</tr>
<tr>
<td>n_4</td>
<td>e_2</td>
<td>n_4</td>
<td>e_3</td>
<td>n_4</td>
<td>e_2</td>
</tr>
<tr>
<td>n_5</td>
<td>e_2</td>
<td>n_5</td>
<td>e_3</td>
<td>n_5</td>
<td>e_3</td>
</tr>
<tr>
<td>n_6</td>
<td>e_2</td>
<td>n_6</td>
<td>e_3</td>
<td>n_6</td>
<td>e_3</td>
</tr>
<tr>
<td>n_7</td>
<td>e_2</td>
<td>n_7</td>
<td>e_3</td>
<td>n_7</td>
<td>e_3</td>
</tr>
<tr>
<td>n_8</td>
<td>e_2</td>
<td>n_8</td>
<td>e_3</td>
<td>n_8</td>
<td>e_3</td>
</tr>
<tr>
<td>n_{10}</td>
<td>e_3</td>
<td>n_{10}</td>
<td>e_5</td>
<td>n_{10}</td>
<td>e_4</td>
</tr>
<tr>
<td>n_{11}</td>
<td>e_3</td>
<td>n_{11}</td>
<td>e_6</td>
<td>n_{11}</td>
<td>e_6</td>
</tr>
<tr>
<td>n_{12}</td>
<td>e_4</td>
<td>n_{12}</td>
<td>e_7</td>
<td>n_{12}</td>
<td>e_7</td>
</tr>
<tr>
<td>n_{13}</td>
<td>e_4</td>
<td>n_{13}</td>
<td>e_7</td>
<td>n_{13}</td>
<td>e_8</td>
</tr>
</tbody>
</table>

(a) The list for the given LC-tour (b) The list after updating Labels in Iteration 1 (c) The list after re-associating with edges in Iteration 1

Table 4.2: The node-list with associated edges for the LC and TLC-tour for Figure 4.17

Figure 4.25: Example of re-association process for generating TLC-tour
As shown in Figure 4.25, in the previous iteration all the nodes from n_1 through n_5 were associated with edge e_j. After addition of new edges and deletion of existing edges, this edge e_j is labeled as e_i in the current iteration. We run the re-association test for all the five nodes of edge e_i as follows:

1. We compute the intersections between circle centered at n_1 and straight line representing edge e_i. We check that these two points are not the same as the l and r Points of the circle with respect to this edge. This tells us that, the circle is not fully contained with edge e_i. Since the l Point is different from the intersection, we infer that the circle has an overlap with the previous Edge e_{i-1}. Therefore, we determine the l and r Points for this circle with respect to Edge e_{i-1}. Finally, we determine the length of CI's for both of the edges and find that it is longer for edge e_{i-1}. Therefore, we delete this node’s CI from the list of Edge e_i and add it the corresponding list of Edge e_{i-1}. We also update the node-association list.

2. For Node n_2, we find that the l and r points are same and is aligned with the first endpoint of Edge e_i. Therefore, its a candidate for checking with previous Edge e_{i-1} and we find the same case for this edge too i.e. l and r Points are same. This means that the CI’s are of same length for these two edges. In this case, we associate this node with the incoming edge e_{i-1}. This is our tie-breaking measure.

3. Using the test as outlined in above cases, we find that Node n_3 is fully contained by endpoints of edge e_i. Therefore, it is kept associated with it.

4. Just like node n_2, node n_4 is associated with the incoming edge e_i.

5. Like the case for Node n_1, Node n_5 is associated with Edge e_{i+1} because its CI is longer for this edge.

These steps have been outlined in Algorithm 4.6. It does the above computation in $O(1)$ time for each node, however, we have sorted the list of CI’s for each edge by the non-decreasing l-values. Therefore, when we insert the new interval in an existing or new list during re-association, we still keep the list sorted by maintaining data structure like heap keyed on the l-values and it is done in $O(\log n)$ time. This computation is done for each of the n nodes. Therefore, the total running time of Algorithm 4.6 is $O(n \log n)$.
Algorithm 4.6 Re-associating nodes with edges

Input: Set of all nodes V with each node $n_i \in V$ indexed with associated edge e_j and set of tour edge E of TLC-tour, with each edge $e \in E$ having Contact Interval CI_e sorted on l points

1: for all node $n_i \in V$ do
2: $e_j \leftarrow$ current associated edge of node n_i
3: $l_j \leftarrow$ updated l point of node n_i with respect to edge e_j
4: $r_j \leftarrow$ updated r point of node n_i with respect to edge e_j
5: if $l_j =$ left-end point of edge e_j then \triangledown node’s CI aligned with left end-point of the edge
6: $l_{j-1} \leftarrow$ updated l point of node n_i with respect to edge e_{j-1}
7: $r_{j-1} \leftarrow$ updated r point of node n_i with respect to edge e_{j-1}
8: if $distance(l_{j-1}, r_{j-1}) > distance(l_j, r_j)$ then
9: remove node n_i from I_{e_j}
10: add node n_i to list $I_{e_{j-1}}$ in non-decreasing order of l_{j-1}
11: update n_i’s associated edge as e_{j-1}
12: end if
13: end if
14: if $r_j =$ left-end point of edge e_j then \triangledown node’s CI aligned with right end-point of the edge
15: $l_{j+1} \leftarrow$ updated l point of node n_i with respect to edge e_{j+1}
16: $r_{j+1} \leftarrow$ updated r point of node n_i with respect to edge e_{j+1}
17: if $distance(l_{j+1}, r_{j+1}) > distance(l_j, r_j)$ then
18: remove node n_i from I_{e_j}
19: add node n_i to list $I_{e_{j+1}}$ in non-decreasing order of l_{j+1}
20: update n_i’s associated edge as e_{j+1}
21: end if
22: end if
23: end for

Output: Set of nodes V with each node $n_i \in V$ with updated associated edge, Set of tour edges E with each edge $e \in E$ with updated Contact Interval CI_e

After re-association and updating of CI’s, we update the CCI for each edge. We may use the same algorithm used in Iteration 1. However, in Iteration 1, nodes visited in the LC-tour are not considered; rather those are handled specially (in generating TLC-tour) by drawing tangents to those nodes and finding intersections of the tangent with the existing edges. We also speed up the computation as follows.

As shown in Figure 4.26, both of the circles’ r Points are the right endpoint of the associated edge and this point is also the l point of the CCI i.e. lcc_i. The computed r Point of the CCI is the l Point of the second circle. Because r Point is encountered before the l Point, according to the Algorithm 4.4 of Iteration 1, we may set $rci \leftarrow lcc_i$. Instead, we attempt to put the coincident l and r Points of the CCI closer to middle of the edge as possible. For this reason, we choose to set
lcci ← rcci. Similar step is followed for the case involving left end point of the edge. Other than this check, the computation is similar to that of Iteration 1 by Algorithm 4.4. Algorithm 4.7 does this job for Iteration \(i > 1\) in \(O(n)\) time for each edge and \(O(n^2)\) time for the complete tour.

Algorithm 4.7 Generating Critical Contact Interval for Iteration \(i > 1\)

Input: List of sorted intervals \(CI_e\) of an edge \(e \in E\) of a tour

1. \((n_l, l_n, r_n) \leftarrow \text{firstElementOf}(CI_e)\)
2. \(lcci_e \leftarrow r_n\)
3. \((n_k, l_n, r_n) \leftarrow \text{nextElementOf}(CI_e)\)
4. while \(l_n\) closer to \(n_i\) than \(r_n\) do ▶ scan all the intervals contained within the leftmost interval
5. if \(r_n\) closer to \(n_i\) than \(lcci_e\) then
6. \(lcci_e \leftarrow r_n\)
7. end if
8. \((n_k, l_n, r_n) \leftarrow \text{nextElementOf}(CI_e)\)
9. end while
10. \((n_s, l_s, r_s) \leftarrow \text{lastElementOf}(CI_e)\)
11. \(rcci_e \leftarrow l_s\)
12. if \(lcci_e = \text{right end point of edge } e\) then
13. \(lcci_e \leftarrow rcci_e\)
14. else if \(rcci_e\) closer to \(n_i\) than \(lcci_e\) OR \(rcci_e = \text{left end point of Edge } e\) then
15. \(rcci_e \leftarrow lcci_e\)
16. end if

Output: \(CCI_e = (lcci_e, rcci_e)\) is the \(CCI\) of Edge \(e\)

The next step is connecting the \(r\) Points with the \(l\) Points successively. The complete steps of generating \(TLC\)-tour is shown in Algorithm 4.8. According to this algorithm, we always keep the \(CCI\)’s of the edges updated for the next iteration. Therefore, in the beginning of any iteration, we join the \(r\) Points with the \(l\) Points successively. This is done in Lines 1 - 5 in \(O(n)\) time. In Line 6, the circles are re-associated in \(O(n \log n)\) time. Finally, the \(CCI\)’s are updated for each edge in Lines 7 - 9 in \(O(n^2)\) time. Therefore, the total running time of the Algorithm 4.8 is \(O(n^2)\).
Algorithm 4.8 Generating TLC-tour for Iteration $i > 1$

Input: Set of all nodes V and set of all edges E_{i-1} of TLC-tour of iteration $(i-1)$

1: $E_i \leftarrow \{\}$
2: **for all** edge $e \in E_i$ with non-null CCI **do**
3: \hspace{1em} add CCI of edge e to E_i
4: \hspace{1em} connect r point of edge e to the l point of next edge with CCI and add it to E_i
5: **end for**
6: Re-associate nodes for the set of edge E_i according to Algorithm 4.6
7: **for all** edge $e \in E_i$ **do**
8: \hspace{1em} Update CCI according to Algorithm 4.7
9: **end for**

Output: Set of all nodes V and set of all edges E_i of TLC-tour of iteration i

4.4.6 Selecting the Anchor Points

![Anchor Points Diagram](image)

Figure 4.27: Selection of Anchor Points for nodes after TLC-tour is generated

After our algorithm has generated a TLC-tour, we fix some points in each edge where the MDC halts and initiates communication with one or more nodes attached to that particular tour edge. Each of these points is called Anchor Point and is denoted by a_i. A set of nodes $\{n_i\}$ is attached with Anchor Point a_i.

For example, in Figure 4.27, the Anchor Points for Edge e_2 are shown. Three nodes n_2, n_3 and n_4 are attached to this edge. We draw a perpendicular from the centers of the circles to the edge and the resulting intersections are the Anchor Points for the corresponding nodes. For example a_2 and a_3 are two Anchor Points for Nodes n_2 and n_3 respectively. MDC halts at Point a_2 and communicates with Node n_2 for data packets. But, the intersection of the perpendicular drawn from the circle centered at n_4 with the straight line representing Edge e_2 lies outside the line segment representing this edge. Therefore, instead of drawing a perpendicular, we use the right endpoint of this edge as the Anchor
Point \(a_4 \) for Node \(n_4 \).

After completion of the iteration generating \(TLC\)-tour, we determine the Anchor Point \(a_i \) for each node \(n_i \). Computation for each node takes \(O(1) \) time. Therefore, the whole tour including finding the Anchor Points for all nodes \(O(n) \) time.

4.4.7 Computational Time Complexity

In Iteration 1, we use Algorithm 4.3 which runs in \(O(n \log n) \) time and Algorithm 4.4 which runs in \(O(n^2) \) time and finally, Algorithm 4.5 to generate the first \(TLC\)-tour, which runs in \(O(n) \) time. Therefore, the time complexity for generating the \(TLC\)-tour in Iteration 1 is \(O(n \log n) + O(n^2) + O(n) = O(n^2) \). As explained previously, the running time for computation in Iteration \(i > 1 \) is \(O(n^2) \). Therefore, we generalize that, the running time for generating \(TLC\)-tour by \(m \) iterations is \(O(mn^2) \).

We can stop the iterative improvement as soon as the path gain as defined by Equation 4.1 is below a certain threshold like 5%, 1% etc.

![Figure 4.28: Time complexity of the algorithms for generating TLC-tour](image)

The stages of computing \(TLC\)-tour is shown in Figure 4.28. The time complexity of the computation depends on two factors- the time complexity of the algorithm used to find the \(TSP\)-tour and the number of iterations \(m \) in the steps of making a Linear Shortcut. However, the combined stages of computation after finding the \(TSP\)-tour runs in polynomial time \((O(n^3 + mn^2)) \). If the algorithm
to find \(TSP\)-tour does not run in polynomial time, then its time complexity dominates that of our algorithm.

In Figure 4.29 a sample input and a sample output of our method of generating \(TLC\)-tour are shown. The input consists of nodes and their coordinates. The \(TSP\)-tour is generated from this information. The output is a set of coordinates, each of which is associated with some actions. For example, the first point in the list is the starting point or sink. The \(MDC\) starts its tour from this point. Since, the tour is a cycle, the first point is also the last point in the tour. The second point is an Anchor Point that is associated with node \(n_{60}\). The third point is an Anchor Point for both the nodes \(n_{75} \) and \(n_{80} \). The \(MDC\) moves from one point of the list to the next point and does the job associated with the point. This is the final output of our algorithm that minimizes data delivery latency and maximizes node lifetime by avoiding packet-forwarding.

<table>
<thead>
<tr>
<th>Node</th>
<th>x-Coord.</th>
<th>y-Coord.</th>
<th>anchor-x</th>
<th>anchor-y</th>
<th>Node-list</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1)</td>
<td>100.4</td>
<td>201.9</td>
<td>302</td>
<td>308</td>
<td>starting point (sink)</td>
</tr>
<tr>
<td>(n_2)</td>
<td>30</td>
<td>10</td>
<td>290</td>
<td>205</td>
<td>(n_{60})</td>
</tr>
<tr>
<td>(n_3)</td>
<td>95</td>
<td>2</td>
<td>202</td>
<td>192</td>
<td>(n_{75}, n_{80})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(n_{100})</td>
<td>301</td>
<td>202</td>
<td>302</td>
<td>308</td>
<td>starting point (sink)</td>
</tr>
</tbody>
</table>

Figure 4.29: Sample input and output of our method of generating \(TLC\)-tour
Chapter 5

Energy-efficient Communication

5.1 Overview

Medium Access Control (MAC) Layer plays an important role for energy conservation of the sensor nodes in a WSN [25]. In this chapter, we present a novel design for the MAC Layer for energy-efficient communication between a sensor node and the visiting MDC. Typically, a sensor node’s radio is turned “off” for an interval to conserve energy [8]. The interval is known as sleep-interval. We present a MAC Layer for the MDC in which the interval is dynamically modified to reduce the delay related to data collection, and at the same time, to save energy of the sensor nodes.

5.2 Communication Layers

Typically, there are three layers in the communication module of a Wireless Sensor Network:
Network Layer, Medium Access Control or MAC Layer and Physical Layer. Application Layer runs on top of the communication module and it is responsible for gathering data packets which are generated as a result of sensing activity. In our network scenario, the MDC is supposed to collect data packets directly from each of the sensor node. Therefore, Network Layer, which is responsible for discovering adjacent neighbors and maintain various routing information for forwarding, is optional in our scenario. Even, if it is present, we can bypass Network Layer by directly handing over the data packets from the Application Layer to the MAC layer as shown in Figure 5.1 and vice versa. This approach relieves the sensor nodes from all the overhead related to maintaining routing tables and building path to the sink. On the other hand, it does not result in packet loss as all the sensor nodes are covered by the visiting MDC.

5.3 Data Deposition Method

Every sensor node buffers data packets until it comes in contact with the visiting MDC. Then, it can upload or transmit all of the data packets to the MDC that brings those to the sink which is its starting point of the tour. We have designed the mode of communication between the MDC and the target sensor node. Therefore, uploading data is

- quick to minimize the overall PDL, and
- energy-efficient to maximize the life-time of the network

With each Anchor Point programmed into the MDC, there is attached one or more target sensor node. Suppose that, node n_i is tied to Anchor Point a_i. As the MDC reaches the point a_i, at first, it tries to draw the attention of the target node. For this purpose, it sends out a unicast packet of type RESPOND_NOW with n_i embedded in the header. As soon as n_i picks up the packet, it responds with the same type of packet with totalPackets flag set. For example, if there is the total of 130 data packets in the buffer of the sensor node n_i, its RESPOND_NOW packet contains totalPackets \leftarrow 130. As soon as the MDC picks up this RESPOND_NOW packet from n_i, it sends out unicast packet of type DATA_REQUEST with allowedPackets field set.

For example, if the MDC has time to collect only 80 data packets from n_i, it sets allowedPackets \leftarrow 80 in DATA_REQUEST packet. The rest $130 - 80 = 50$ packets is left the buffer of the sensor node
for the next visit. In response to this *DATA_REQUEST* packet from MDC, Node \(n_i \) starts sending its chosen 80 packets at a stretch. As soon as the *MDC* has collected a total of *allowedPackets* or a certain time have elapsed (the time required for receiving such packets computed based on the system parameters), it starts for its next Anchor Point. Sometimes, the *MDC* may bring some instruction or information from the sink for the sensor node, these are also passed over to the sensor node by packets of type *CONTROL_PACKET*. It is sent before the *DATA_REQUEST* packet.

As outlined above, sensor nodes are passive in the communication between those and the *MDC* in the sense that, they never send out any kind of packets spontaneously but only in response to requests by the *MDC*. There is no Application-level acknowledgement packet because according to design of communication mode, the shared medium is supposed to be contention-free as only the *MDC* and the target sensor node take turn in using it. For these reasons, the data uploading to the *MDC* is quick and energy-efficient for the sensor nodes.

5.4 Adaptive Duty Cycle in MAC Layer

There are many energy-efficient MAC protocols for sensor nodes like S-MAC, T-MAC [8] etc. However, most of these protocols abide by strict time synchronization and data packets are transmitted only at the beginning of each synchronized interval. Thus, the above protocols are not suitable for the wandering MDC; because when it starts its journey from the sink, many sensor nodes are out of its reach. The schedule of those nodes are clearly different from the MDC’s. When the MDC comes in their vicinity, those node become out of sync with the MDC. Therefore, no data collection is possible for the MDC.

For the reason stated above, instead of existing MAC protocols, we adopt a duty-cycled CSMA MAC protocol that is simple and energy-efficient.

The periodic interval \(P \) (in milisecond) is the same for the sensor nodes and the mobile *MDC*, so is the percent of this interval \(\lambda \) that the wireless radio will be in listening mode. This is called *duty cycle* of the physical layer. Every sensor node and the MDC maintains these values by MAC layer. The value \(a \) is called *stable duty cycle*. During the rest of the time \(P(1 - \lambda) \), the radio is in “sleep mode” and does not receive or transmit any signal. When any node or the *MDC* tries to transmit
any packet, it sends out a packet known as beacon packet that takes at least $P(1 - \lambda)$ time. When neighboring nodes wake up and picks up this train of beacons, it’s radio stays in receiving mode and abandon sleep schedule for the current interval. The node that sent the beacon trains, then starts to send the data packets to the target node. Every other node except the target node then goes to its normal sleep cycle in the next interval. This way, there is no requirement for synchronization of “wake-up” or “sleep” cycles. When the MAC Layer finds the medium busy or detects collision, it starts backs-off timer; otherwise it transmits with 1-persistence.

We integrated changing duty cycle into MAC Layer. During data packet uploading to the MDC, the duty cycle is changed to 100% from stable duty cycle λ and after uploading finishes, duty cycle is restored to λ. This allows quick uploading of the data packets to the MDC and minimizes latency. This is illustrated in Figure 5.2.

Two schedules of MAC are shown in Figure 5.2, one belongs to the MDC and the other to a sensor node. Though stable duty cycle is the same for the MDC and the sensor node, the “wake-up” or “sleep” time is not synchronized. MDC initiates communication with the potentially sleeping target
sensor node by sending out beacon trains. When the sensor node wakes up after a time of $P(1 - \lambda)$, it receives the beacon packets and cancel sleep schedule in the current interval. The MDC then sends out the `RESPOND_NOW` packet. As soon as the transmission of this packet is over, MDC’s MAC changes duty-cycle to 100%. As soon as the sensor node receives `RESPOND_NOW` packet, its MAC changes the duty cycle to 100%. The sensor node then replies with the number of packets it want to upload to the MDC. MDC sends out the `DATA_REQUEST` packet and after receiving it, the sensor node starts sending out the data packets. After the last data packet is uploaded, it changes its duty cycle to stable duty cycle λ. After receiving the last data packet from the sensor node, MDC also changes its duty cycle to λ and starts for its next Anchor Point. If duty cycle is not changed to 100%, packet uploading is delayed by a factor of sleep cycle fraction i.e $(1 - \lambda)$. For simplicity and the lack of potential contention, we discard the provision for per-packet acknowledgement. Instead, when collision is detected and/or signal quality is poor, MAC attempts a fixed number of retries.
Chapter 6

Experimental Result

In this chapter, we report the experimental results and provide the analysis. We also present the details of the test bed of experiments.

6.1 Experimental Setup

6.1.1 The Test Bed

We use Castalia 3.2, a very latest and reliable sensor network framework which is run on one of the most widely used network simulator Omnet++ 4.2.2. The steps of the experiment are shown in Figure 6.1. We use Concorde TSP Solver to find the exact TSP-tour. The output qSplatter of file containing the TSP-tour and node coordinates is fed into the LC-tour solver whose
output is fed into our TLC-tour solver. LC-tour and TLC-tour produces the Anchor Points which are the intermediate points of the tours where the MDC halts to retrieve packets from the nearby nodes.

To compare the performance among TSP-tour, LC-tour and our TLC-tour, we keep the node positions same across scenarios and vary the transmission radius TXR from 2m to 32m. When TXR is only 2m, the network is sparse and the path lengths for all kinds of tours are of the highest values. When TXR is 32m, the network becomes dense and the path lengths for all kinds of tours are of the shortest values.

Castalia 3.2 uses realistic radio modeling, and simulates the signal fall due to distance by square-shaped Path Loss Cell [47]. The signal reception quality measured by RSSI value is the same in a particular cell. The smaller the path-loss cells are, the more fine-grained is the signal propagation model. However, memory requirement increases drastically with the number of such cells. Therefore, we peg the cell-size (length of a side of the square) with the value of the TXR as follows

\[
\text{cellSize} = \frac{TXR}{2}
\]

Equation 6.1 ensures that there are exactly \(2 \times 2 \times 2 = 16\) cells within each circular transmission range, as shown in Figure 6.2. We vary the scenarios just changing the TXR, but keep the radio model of CC2420 intact. As a result, the energy consumption per packet reception and transmission are the same across scenarios and thus comparisons related to the energy measures across scenarios are also fair. All other network parameters are also similar across the scenarios. The experimental setup parameters are illustrated in Table 6.1.
CHAPTER 6. EXPERIMENTAL RESULT

6.1.2 Traffic Generation

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulator Name</td>
<td>Castalia 3.2 on OMNET++ 4.2.2</td>
</tr>
<tr>
<td>Operating System</td>
<td>Linux Fedora Core 14</td>
</tr>
<tr>
<td>Hardware Type</td>
<td>Processor: Intel Core i5, RAM: 2 GigaByte, Standard Workstation</td>
</tr>
<tr>
<td>Simulation Run Time</td>
<td>7200 seconds for each run</td>
</tr>
<tr>
<td>Pseudo-Random Number Generator (RNG)</td>
<td>Mersenne Twister (Period length $2^{19937} - 1$)</td>
</tr>
<tr>
<td>Total Number of Runs</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 6.1: Experimental setup parameters

We generate the traffic at the sensor nodes randomly. For each value of TXR and for each type of tours (TSP, LC, TLC), we use a common Pseudo-Random Number Generator (RNG) for random packet generation in sensor nodes. This RNG’s provided by OMNET++ is Mersenne Twister type and has a long period of $2^{19937} - 1$. The event of random packet generation in the simulation is free from the repetition and correlation to other events. The RNG has been used to produce a packet in the interval between 15 seconds and 30 seconds. All output measures are averaged over 10 simulation runs.

We set the total time of each run as 7200 seconds. The MDC set out from the initial point and continuously travels in constant speed (1 meter/second) and complete as many tour as possible in this 2-hour time and gather as many packets as possible from all sensor nodes.

The same set of 10 seeds is used in all tour-types and TXR values for fairness of comparison.

We provide the histograms of packet delivery latency for each scenario and for each simulation run in Appendix A. The number of entries in the buckets of the histogram are almost the same across different simulation runs for the similar scenario. We continue each run of the simulation for such a long time (2-hour) that the output measures become independent of the traffic generation pattern.

6.1.3 PHY and MAC Parameters

The parameters used for physical layer and MAC layer are shown in Table 6.2. The widely used CC2420 radio model is chosen. The data-rate of the radio is set to be 250-kbps. This radio model along with the underlying wireless channel of *Castalia* simulates signal interference, path-loss, cross-
Protocol Layers

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Layer</td>
<td></td>
</tr>
<tr>
<td>Radio Type</td>
<td>CC2420</td>
</tr>
<tr>
<td>Transmitting Power</td>
<td>57.42 miliWatt</td>
</tr>
<tr>
<td>Receiving Power</td>
<td>62 miliWatt</td>
</tr>
<tr>
<td>Data Rate</td>
<td>250 kbps</td>
</tr>
<tr>
<td>Base-band</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Noise-bandwidth</td>
<td>194 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-95 dBm</td>
</tr>
<tr>
<td>Idle Power Consumption</td>
<td>1.4 miliWatt</td>
</tr>
<tr>
<td>Modulation Type</td>
<td>Ideal</td>
</tr>
<tr>
<td>PHY-Frame Overhead</td>
<td>6 Byte</td>
</tr>
<tr>
<td>MAC Layer</td>
<td></td>
</tr>
<tr>
<td>MAC Type</td>
<td>Tunable MAC</td>
</tr>
<tr>
<td>MAC Buffer Size</td>
<td>32 Protocol Data Unit</td>
</tr>
<tr>
<td>Access Type</td>
<td>CSMA</td>
</tr>
<tr>
<td>CS-Persistence</td>
<td>1-persistent</td>
</tr>
<tr>
<td>Delay for Valid CS</td>
<td>128 mili-second</td>
</tr>
<tr>
<td>Transmission Retries</td>
<td>only 1</td>
</tr>
<tr>
<td>Stable Duty Cycle</td>
<td>0.1</td>
</tr>
<tr>
<td>Listen Interval</td>
<td>10 mili-second</td>
</tr>
<tr>
<td>Back-off Type</td>
<td>Random Interval Drawn From Constant Range</td>
</tr>
<tr>
<td>Back-off Base Value</td>
<td>16 mili-second</td>
</tr>
<tr>
<td>Random offset Time before Retransmission</td>
<td>5 mili-second</td>
</tr>
<tr>
<td>MAC Packet Overhead</td>
<td>9 Byte</td>
</tr>
<tr>
<td>MAC Beacon Frame size</td>
<td>125 Byte</td>
</tr>
<tr>
<td>Mobility Controller</td>
<td></td>
</tr>
<tr>
<td>Stable Speed</td>
<td>1 meter/second</td>
</tr>
<tr>
<td>Acceleration Type</td>
<td>Instant</td>
</tr>
</tbody>
</table>

Table 6.2: The list of parameters used for Physical and MAC Layers in the experiment

fading and other PHY phenomena present in a shared wireless medium [49].

The parameters used for the MAC layer is also listed in Table 6.2. 1-persistent Carrier Sense Multiple Access (CSMA) is used with only 1 transmission retries as explained in Chapter 5. The sensor nodes modulate their duty cycle from 10% (stable duty-cycle) to 100% when they come in to the contact of the visiting MDC and receive its RESPOND_NOW packet. After data transaction with the MDC is over, the sensor nodes reset their duty-cycle to the stable one (10%). To wake up the target sensor node, MDC continuously sends out beacon frames. The total time length of the beacon trains must be at least equal to the sleep-interval (90%) of the stable duty cycle. Values for beacon frame size, listen interval, sleep interval etc. are chosen carefully to this end.
The MAC Layer has its own timer for back-off. When carrier sensing detects the medium as busy, MAC Layer is backed off for some random time drawn from a constant interval (16 milisecond) using a separate RNG. The MAC buffer-size is set to 32 PDU.

<table>
<thead>
<tr>
<th>Protocol Layers</th>
<th>Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Layer</td>
<td>Address Translation</td>
<td>Node ID (constant)</td>
</tr>
<tr>
<td></td>
<td>Network Packet Overhead</td>
<td>10 Byte</td>
</tr>
<tr>
<td>Application Layer (Sensor Node)</td>
<td>Sensor Sampling Type</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>Maximum Interval of Sampling</td>
<td>30 second</td>
</tr>
<tr>
<td></td>
<td>Minimum Interval of Sampling</td>
<td>15 second</td>
</tr>
<tr>
<td></td>
<td>Application Buffer Size</td>
<td>120 Application Packets</td>
</tr>
<tr>
<td></td>
<td>Duty Cycle Modulation</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td>Hibernation After Contact with MDC</td>
<td>10 second</td>
</tr>
<tr>
<td>Application Layer (MDC)</td>
<td>Packet Overhead</td>
<td>5 Byte</td>
</tr>
<tr>
<td></td>
<td>Pre-tour Delay</td>
<td>30 second</td>
</tr>
<tr>
<td></td>
<td>RESPOND_NOW Packet Retries</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Waiting Time After Sending RESPOND_NOW packet</td>
<td>333 mili-second</td>
</tr>
<tr>
<td></td>
<td>Waiting Time After Sending DATA_REQUEST packet</td>
<td>343 mili-second</td>
</tr>
</tbody>
</table>

Table 6.3: The list of parameters used for Network and Application Layers in the experiment

6.1.4 Network and Application Layer Parameters

The parameters used for Network and Application Layers are shown in Table 6.3. The Application Layer is completely built for our experiment. The Application Layer programs are in the MDC and in the sensor node and these are different. These are known as MdcApp and ResponseApp respectively. In MdcApp, there are provisions for sending RESPOND_NOW packet targeting a particular sensor node, collecting packets from the target sensor node based on the number of packets field set by the target sensor node in response to the RESPOND_NOW packet, calculating the number of packets dropped or not received from the sensor nodes based on the sequence number of the Application Layer packet etc. Another improvisation builds the mobility manager of the MDC so that it can send interrupts to
Application Layer when a particular anchor or halting point is reached and when a tour is complete. Prior to the beginning of a run, this mobility manager known as MDCMobilityManager loads the Anchor Points generated by the relevant programs to find TSP, LC and TLC tours. The MDC sends and receives packets only in halting states. No data packet is sent or received in motion. The acceleration type from halting to motion state is instant. The MDC sets out from the sink, travels along the tour-path, stops at the anchor points, collect data from the sensor nodes and return to the sink to deliver packets. A time delay of 10-second is kept for the delivery operation. There are few other timers related to the waiting time for a reply packet from the target sensor node in response to RESPOND_NOW packet and data packets as explained in Chapter 4. Values for these time windows are also listed in Table 6.3. Since, reply to the RESPOND_NOW packet is vital for data transaction in a particular tour, it is sent with two retries. ResponseApp generates packets randomly within an interval from 15 seconds to 30 seconds and buffer packets.

6.2 Results and Analysis

6.2.1 Impact on Packet Delivery Latency (PDL)

Packet Delivery Latency (PLD) in brief, is the time difference between the packet generation and the packet delivery to the sink. There is a time-stamp of the packet-creation embedded in the packet header. As MDC completes a single tour, it calculates PDL for each packet using this time-stamp value. This statistics gathered by the MDC per run is represented by PDL histogram shown in the Appendix A. We observe that in those 10 buckets of the histograms, the bucket with the highest packet count is either the 5-th or 6-th one in almost all of the cases. Thus, the skewness of the PDL distribution in those long-running simulations is almost zero, and the average value is very close to the median value. This indicates that, we can reliably compare the central tendency values for the different measures from different kinds of tours of the MDC.

In Figure 6.3 the average PDL is compared for TSP, LC and TLC tours for different TXR’s. The average PDL does not vary much for TSP-tour as its path does not change in response to the change in TXR. However, as TXR increases, the network becomes dense and both the LC and TLC-tour paths decrease, so does the tour-time of the MDC. As a result, the average PDL also decreases
CHAPTER 6. EXPERIMENTAL RESULT

Figure 6.3: The average Packet Delivery Latency vs. TXR

for LC and TLC tours. However, average PDL for TLC-tour outperforms that of LC-tour by at most 150 seconds and TSP-tour by at most 500 seconds.

The comparisons of the maximum PDL for different TXR’s for TSP, LC and TLC tours are shown in Figure 6.4. The maximum PDL decreases for both LC and TLC tours as the network becomes dense. Here also, TLC-tour beats LC-tour by 200 seconds. This happens because the maximum PDL cannot be larger than the tour time of the MDC which is roughly proportional to the tour-length, and TLC-tour has the shortest tour-length among the three tours. TSP-tour is not affected by the change of TXR, so maximum PDL does not vary much with the change in TXR.

6.2.2 Impact on Packet Delivery Rate (PDR)

Since we generate traffic randomly, it is important to measure the throughput which we define as the number of packets delivered to the sink by the MDC per second. In Figure 6.5 the throughput has been plotted for TSP, LC and TLC-tour for different TXR’s. Because of the random traffic, throughput does not consistently change for varied TXR. However, the throughput in TLC-tour is always the highest whereas the throughput in TSP-tour is always the lowest among the three kinds
CHAPTER 6. EXPERIMENTAL RESULT

Figure 6.4: The maximum Packet Delivery Latency vs. TXR

Figure 6.5: Impact on Packet Delivery Rate (PDR)
of tours across all scenarios. The throughput for TLC-tour is higher than LC-tour by a significant margin (as much as 0.15 packets/second). As the network becomes dense, the path savings by TLC-tour is minimal and the length of LC-tour gets decreased; therefore throughputs are almost the same but still better than TSP-tour.

\[
\begin{align*}
\text{Figure 6.6: The impact on the total number of packets collected by the MDC} \end{align*}
\]

In Figure 6.6, the total number of packets collected by the MDC is compared for three types of tours. Here, we find that throughput is directly proportional to the total number of packets collected. Here, the MDC in TLC-tour collects the highest number of packets (500 more packets than LC-tour and 800 more packets than TSP-tour).

In Figure 6.7, the total packets dropped by nodes due to buffer constraint has been plotted. Here, the TLC-tour has significant upper-hand than the other two types of tours. When TXR is small and the network is sparse, the path savings by TLC is significant. The resulting tour-time is also smaller. Thus, the MDC can make more number of tours and visit the sensor nodes more frequently than the other two types of tours. This significantly reduces the number of packets dropped at sensor nodes. As the network becomes dense, the spread of values for total number of packets dropped between TLC and LC-tour decreases but TLC-tour always has the least value.
6.2.3 Impact on Tour Time

In Figure 6.8, the average tour time of the MDC for TSP, LC and TLC-tour are compared. Since, the path-length of the MDC is the shortest among these three types of tours, the tour-time of TLC-tour is also the smallest. However, as the TXR increases and the network becomes dense, the difference in the path-lengths of TLC-tour and LC-tour becomes smaller. For TSP-tour, the path-length is unaffected as the MDC must visit the exact position of the nodes every time.

For the similar reason stated in the above paragraph, the number of tours covered by the MDC is always the highest in TLC-tour and the lowest in TSP-tour as shown in Figure 6.9. Here, the tour count is shown as the percentage of the total path length of a single tour. For example, for TXR = 8.00m, the MDC covers about 550% of the single tour that is roughly equal to five complete tours plus 1/2 of a single tour. As TXR increases, the path lengths for both of the LC and TLC-tour decrease and the tour count increases accordingly. For TSP-tour, this value is invariant to the change in TXR.
CHAPTER 6. EXPERIMENTAL RESULT

Figure 6.8: The average tour time of the *MDC*

Figure 6.9: The total number of tours by the *MDC*
6.2.4 Impact on Energy Consumption

In Figure 6.10, the average energy consumed by the sensor nodes are compared for TSP-tour, LC-tour and TLC-tour. Since, in all of the cases, there is no packet forwarding by sensor nodes but only direct sending to the visiting MDC, the variations in the average energy consumed among TSP-tour, LC-tour and TLC-tour are the minimal. In fact, the spread is so small that the three lines almost overlap with each other. However, due to the randomness of traffic pattern and differences in tour-time of the MDC, there is a considerable variation among different scenarios. It is to be noted that we set the energy consumption for sensing and generating a single packet as 10% of that for the transmission of a single packet. The idle power consumption by Radio is $16mJ$ whereas the power for radio-TX and radio-RX are $57.42mJ$ and $62mJ$ respectively. Therefore, the energy consumption is dominated by radio transmission and reception activities or the number of packets transmitted or received by the sensor nodes. The average energy consumption pattern shown in Figure 6.10 matches the graph pattern of Figure 6.6 where the total number of packets sent to the MDC by the sensor nodes is shown. Also to be noted that, we changed the TXR by varying the property of the wireless medium but not by varying the radio model or power levels. Therefore, this comparison among scenarios are
fair and valid.

6.2.5 Overhead of Computation

![Figure 6.11: No of iterations vs. TXR (Total nodes 100)](image)

Figure 6.11: No of iterations vs. TXR (Total nodes 100)

![Figure 6.12: No of iterations vs. TXR (Total nodes 75)](image)

Figure 6.12: No of iterations vs. TXR (Total nodes 75)

In Figure 6.11, the number of iterations after which the path-gain falls below 5% is plotted against TXR for the scenario with 100 nodes. For example, when TXR is 10m, the path-gain falls below 5% after the 7th Iteration, which is the maximum for all the scearios. This value is very small compared to the number of nodes in the scenario. Therefore, our algorithm converges quite fast irrespective of the types of the network. Similar plots are shown in Figure 6.12 and 6.13 when the number of nodes...
Figure 6.13: No of iterations vs. TXR (Total nodes 50)

Figure 6.14: Computation Time vs. TXR
are 75 and 50 respectively.

In Figure 6.14, computation time for different tours are plotted. As shown in this figure, the marginal overhead of computation time for both LC-tour and TLC-tour are small compared to that of the exact TSP-tour. Therefore, our method does not impose any significant overhead of computation.

6.3 Discussion

Now, we can summarize our findings as follows:

1. The shortcut TLC-tour ensures the lower Packet Delivery Latency (See Figure 6.3).
2. The packet drop-rate by the sensor nodes is, on the average, lower in TLC-tour as evident from Figure 6.7
3. The tour time and the maximum Packet Delivery Latency in TLC-tour are the minimum compared to LC-tour and TSP-tour as evident from Figure 6.9 and 6.4 respectively
4. TLC-tour ensures the higher throughput as evident from Figure 6.5
5. The energy consumption and thus the network life-time in TLC-tour is as good as those in LC and TSP-tour as evident from Figure 6.10

The summary stated above points out that, TLC-tour should be always used instead of LC or TSP-tour since there exists algorithms which run in polynomial time. We can remember that we derive LC-tour from TSP-tour and TLC-tour from LC-tour.
Chapter 7

Conclusion

In this chapter, we provide our research summary. Meeting the latency requirement by using the Mobile Data Collector or MDC in the WSN depends on how fast the MDC can complete its tour, which in turn depends on how short the tour-length is. The advantages of using the MDC has been already stated in Chapter 1. To achieve these advantages in our application of the WSN, we minimize the data delivery latency which is a major downside of using the MDC. In Chapter 3, we prove that shortening the path of the MDC is the only viable option to minimize the latency. Therefore, research in shortening the tour of the MDC is of utmost significance for energy-efficient data collection in a WSN.

7.1 Summary

We provide a simple data collection method based on TSP-tour. In our method, to communicate with a sensor node, the MDC does not have to visit the exact location of the sensor node; instead visiting any point of the transmission region suffices for the communication. We adopt the disk model of the transmission range whose radius is denoted by TXR. The value of the TXR typically ranges from 5 to 50 meters. This distance adds up to the length of the TSP-tour for each visited node. In our method, we save this distance by making a shortcut of the tour. On one hand, the MDC does not have to visit each node. Though we have used the similar disk model to represent the sensor nodes arbitrary shapes of sensor transmission area can be applicable. The MDC can halt at a sensor node
and collect data from its neighborhood. For example, for elliptical shape, the eccentricity and the foci are required to compute the intersections between the edge and the ellipse. Our method can also be extended to the 3-dimension. In that case, the third coordinate or z-coordinate is required for each point. This may be helpful for aerial or underwater MDC.

We also test the performance of our algorithm using realistic test beds. The objective is to measure to what degree latency has been minimized as a result of shortening the tour-path. We compare the performance measures for the TLC-tour derived by our method with those of the TSP-tour and LC-tour. Our TLC-tour is the shortest of the three types of tours under comparison.

From the experimental results, among all tours, we find that the average packet delivery latency is the smallest in the case of TLC-tour. The TLC-tour has the shortest path, therefore, the MDC takes the minimum time to complete a tour on the path compared to TSP-tour and LC-tour. Since packet delivery latency is directly proportional to the tour-time as explained in Chapter 3, it is logical that TLC-tour ensures the minimum data delivery latency among the three types of tours. For the same reason, maximum packet delivery latency is also the minimum for TLC-tour.

Because of the minimum tour-time in the case of TLC-tour, the MDC visits the nodes most frequently than the other two types of tours. Consequently, the time interval between two successive visits by the MDC is the smallest and the least number of packets are dropped by the sensor nodes in the case of TLC-tour. Therefore, the packet drop-rate is the smallest in the case of TLC-tour.

Since the packet drop rate and the tour-time are the smallest in the case of TLC-tour, the MDC can collect the most number of packets in that tour. Therefore, the throughput is the highest in the case of TLC-tour compared to the other two tours.

In our strategy for data collection, no nodes forward packets of the neighboring nodes. The MDC collects packets directly from each node. Therefore, the m-lifetime of the WSN in the case of the TLC-tour is the same as those of TSP-tour and LC-tour. In other word, like TSP-tour, TLC-tour is the most energy-efficient tour.
7.2 Future Research Extension

For future work, we plan to test our method in real scenarios using sensor motes [6, 5] and iRobot [9] used as a low-cost MDC. We also plan to compute path for multiple MDC’s. In our approach, we do not ration the time allocated by the MDC for a particular sensor node for data collection. Rather, the MDC collects all the packets buffered in the sensor node currently in its contact. In future, we plan to develop a framework by which the MDC can learn, from its initial periodic tours, some parameters like- how much time to allocate for a sensor node for data collection and which nodes to visit and which ones to skip in a particular tour.
Appendix A

Result Per Simulation Scenario

In this appendix, we present the histograms of latencies in different scenarios of our simulation runs for the three types of tours. We use 10 buckets for each histogram. In all the cases, the maximum counts occur in either the 5^{th} or the 6^{th} buckets. The skewness of the histogram is almost zero. Therefore, the average value is very close to the median value and we can reliably compare the values of the average packet delivery latency among different types of tours.
APPENDIX A. RESULT PER SIMULATION SCENARIO

Figure A.1: Comparison of Latency Histogram for TXR=2.00 m

(a) TSP Tour for TXR=2.00
(b) Latency Histogram for TSP Tour of TXR=2.00
(c) LC Tour for TXR=2.00
(d) Latency Histogram for LC Tour of TXR=2.00
(e) TLC Tour for TXR=2.00
(f) Latency Histogram for LC Tour of TXR=2.00
APPENDIX A. RESULT PER SIMULATION SCENARIO

Figure A.2: Comparison of Latency Histogram for TXR=8.00 m

(a) TSP Tour for TXR=8.00

(b) Latency Histogram for TSP Tour of TXR=8.00

(c) LC Tour for TXR=8.00

(d) Latency Histogram for LC Tour of TXR=8.00

(e) TLC Tour for TXR=8.00

(f) Latency Histogram for LC Tour of TXR=8.00
Figure A.3: Comparison of Latency Histogram for TXR=14.00m
Figure A.4: Comparison of Latency Histogram for TXR=22.00 m
APPENDIX A. RESULT PER SIMULATION SCENARIO

97

Figure A.5: Comparison of Latency Histogram for TXR=30.00m
Bibliography

