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Abstract

Data gathering or the process of collecting and delivering data packet in a resource constrained

Wireless Sensor Network (WSN) is a very challenging task as the sensors become out of power anytime

during the data gathering period. One of the methods of addressing this problem is to use a dedicated

mobile element called Mobile Data Collector (MDC) which travels along the network, collects data

packets directly from the sensor nodes and carry the data to the sink. The use of MDC has become

popular as it elongates the lifetime of the sensor network, reduces the cost of deployment etc. Besides,

it can gather data even in a disconnected and sparse sensor network.

Using an MDC in a WSN is challenging in various aspects. It’s mobility can be pre-planned or

random. In the case of random mobility, one or more sensor nodes may not be visited by the MDC at

all. In the case of pre-planned mobility, the most important objective is to cover all the sensor nodes.

However, given the infinite number of points in the region, the optimal path-planning of an MDC

becomes intractable. In that case, we can use the Travelling Salesman Problem tour or TSP-tour to

find the solution for a good path which ensures the data gathering from all of the sensor nodes. In

this thesis, we prove that, a TSP-tour ensures the maximum lifetime for the WSN if data is collected

by the MDC.

There is another risk involved in using an MDC in the WSN, which is called data delivery

latency. The MDC has to halt and collect data from the sensor nodes. The period of a complete tour

is comparatively higher than the time required to send packets to the sink by multi-hop forwarding.

The packet delivery latency in the case of TSP-tour by the MDC may be too high for some real-time

applications of the WSN. Therefore, we need to shorten the TSP-tour by the MDC.

In our research, we present a shorter tour than the TSP-tour by the MDC. Our method iteratively

shortens the tour by finding Shortcuts. We find that, to communicate with a sensor node, the MDC

iv



does not have to visit the exact location of the sensor node; instead, visiting any point within the

transmission region suffices for the data collection.

We use OMNET++ simulator to verify the performance of our algorithm. We design a realistic

test bed, we compare our tours with the relevant tours and we find that our method has the lower

data delivery latency. The lifetime of the WSN in our method is as good as that of the TSP-tour.

In addition to that, we find the packet-drop rate, the throughput, the tour-time better in using our

method.

The running time of our algorithm is polynomial (O(mn2), where m is the number of iteration

and n is the number of sensor nodes). Even though the problem of finding the minimum length

TSP-tour is NP-Complete, there exist many approximate algorithm for this computation which runs

in polynomial time. Therefore, Our method runs in polynomial time.
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Chapter 1

Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous sensors to monitor

physical or environmental conditions, such as temperature, sound, pressure, etc. The sensor nodes

then pass data through the network to a location known as sink which aggregates and permanently

records all the sensed data. There are many applications as well as many challenges of a WSN. In

this work, we address the particular problem of collecting data packets from the static sensor nodes.

In fact, there are a lot of approaches to address this problem ([3, 4]). We propose a method in which

a dedicated mobile element called Mobile Data Collector (MDC) is used for collecting data from the

sensor nodes and depositing those to the sink. Planning a path for the MDC such that all the sensor

nodes can use it to send data to the sink is challenging. It is even more challenging if some other

requirements like increasing lifetime of the network, decreasing delay of sending packets to the sink

etc. are to be met.

In this chapter, we introduce different methods for collecting data from the sensor nodes, different

types of mobile elements which can be present in a WSN, pros and cons of using mobile elements for

collecting data and finally few projects involving use of mobile elements.

1.1 Overview of Data Gathering

Usually, the sensor nodes in a Wireless Sensor Network (WSN) monitor their environment, sample

data, and forward data packets to a remotely located base station called sink. A typical WSN

1



CHAPTER 1. INTRODUCTION 2

containing sensors and sink is depicted in Figure 1.1. Collecting data packets from the sensor nodes

by the sink is known as Data Gathering problem [3, 4].

Figure 1.1: A typical WSN

The data packets which cannot be sent from the sensor nodes to the sink, have to be ultimately

discarded as tiny sensor nodes suffer from the buffer and power constraint ([5, 6]). Data contained

in those packets are then lost. In many applications like monitoring or targets tracking, if packets

cannot be sent to the sink within a certain time period, the data contained in those packets become

useless. Therefore, data gathering from the sensor nodes is very important and challenging in the

power and buffer constrained WSN.

1.1.1 Data Gathering Methods

There are many approaches of data gathering in a WSN. We can classify them as follows.

Direct Contact: If the sink and the sensor nodes are within each others range, then those nodes

can communicate directly. This is depicted in Figure 1.2. This method is known as data gathering by

direct contact. But, this is not very practical as sensor nodes are usually deployed far away from the

sink, and the nodes suffer from the limited radio range.

Multihop Forwarding: Sensor nodes can act as relay nodes by forwarding packets received from the

other sensor nodes. To forward packets, a path has to exist from the target source node to the sink.

The sensor nodes in this path are within the transmission range of each other. Such a path is depicted

in Figure 1.3. The problem of finding a suitable forwarding path is known as routing problem in a
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l

b

b

b

b

Figure 1.2: Data gathering by direct contact method in a WSN

l

b
b

b

b

b
b

Disconnected Cluster

b

b

Sink

Figure 1.3: Data gathering by multi-hop forwarding in a WSN

WSN. However, multi-hop forwarding or routing is not possible for disconnected clusters or nodes in

the WSN. This scenario is very common in a connectivity failure-prone WSN.

Mobile Elements: Packets can be collected from sensor nodes by mobile elements. The sink can

itself be mobile, and travel through the network. When the mobile sink comes within the range of a

sensor node, the sink collects packets from the sensor node. Some or all of the sensor nodes can be

mobile. These mobile sensors can travel to the sink, deposit packets and return to its area of interest

in the WSN. Yet, in another approach, there may be one or more dedicated agents for data collection

from the sensor nodes. Different types of mobile elements in a WSN is discussed in Section 1.3.

1.1.2 Comparison of Different Data Gathering Methods in a WSN

We present a summary of pros and cons of different data gathering methods in a WSN in Table 1.1.

As shown in the comparison, using Mobile Element is the best choice for energy-savings and increasing
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Attribute Direct Contact Multi-hop Forward-
ing

Mobile Elements

Data Delivery
Latency

Very low, sink is a
direct neighbor, pack-
ets are delivered al-
most instantly

Low, depends on the
hop-count of the path
from the sensor to the
sink

High, depends on the
speed and path-length
of the mobile element

Energy Require-
ment

Very High, the radio
range has to be large to
match the width of the
WSN

Moderate, the number
of sensor nodes has to
be sufficient to cover
any holes in the net-
work

Low, can be minimal
if there is no multi-hop
forwarding to the mo-
bile elements

Overhead No overhead Overhead for finding
path to the sink

Overhead for path-
planning of the mobile
element

Table 1.1: Comparison among different data gathering methods in the WSN

the lifetime of the sensor nodes. But, high latency is a big challenge in this method. Besides, there is

overhead involved in path-planning. Therefore, planning an energy-efficient path with low-latency for

the mobile elements for data collection in the WSN is a challenging task which attracts the network

researchers in the recent years.

1.2 WSN with Mobile Elements (ME)

A WSN with Mobile Elements (ME) usually has three types of nodes:

Regular Sensor Nodes: These nodes are the sources of information. The main task of these nodes

is sensing. These nodes may also forward or relay messages in the network with the multi-hop for-

warding. Now a days, different types of sensor nodes are commercially available ([6, 5]). Picture of

widely used low-powered Mica mote is depicted in Figure 1.4.

Sink or Base Station: This node is the destination of information. It collects data packets gen-

erated by sensor nodes either directly (i.e., by visiting sensor nodes and collecting data from those

nodes) or indirectly (i.e., through intermediate nodes or mobile elements). The sink can use data

collected from the sensors autonomously or make the data available to the interested users through

an Internet connection. A sink node with provision for internet gateway is depicted in Figure 1.5.
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Figure 1.4: Ordinary Sensor Node (Mica2 Mote)

Figure 1.5: Sink of a WSN

Figure 1.6: Robotic car for data collection in a WSN
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Support Nodes: These nodes perform a specific task, such as acting as intermediate data collectors

or mobile gateways. These nodes are not the sources nor the destinations of messages, but exploit

mobility to support network operations such as data collection. A robotic car with navigation ca-

pability and a sensor node mounted on top of it, can be used as a mobile data collector. Such an

assembly is depicted in Figure 1.6.

We note that mobility might be involved at the different network components. For instance, sensor

nodes may be mobile and sinks might be static, or vice-versa. Depending on the specific scenario,

the support nodes might be present or not. We term such network as WSN-ME. When there are

only regular nodes, the resulting WSN-ME architecture is homogeneous or flat. On the other hand,

when support nodes are present, the resulting WSN-ME architecture is non-homogeneous or tiered.

Furthermore, WSN-MEs can be very sparse as there is no concern for coverage. Instead, the mobile

elements can cover any network holes.

1.2.1 Advantage of Using Mobile Elements in a WSN

Any element in a WSN which is mobile and can communicate with other nodes is called a Mobile

Element or ME. There are many advantages of using ME’s in a WSN. A few of those are outlined

as follows.

Better Connectivity Irrespective of the Number of Nodes: If an ME is used in a WSN, the re-

quirement of dense WSN can be relaxed. The ME can travel to the farthest disconnected nodes or

clusters of the network and fetch the data packets to the sink. Thus, this is a very feasible solution

for data collection in a sparse sensor network or clustered sensor network.

Cost Reduction: If ME’s are used in a WSN, the network can be very sparse and only the required

number of sensor nodes need to be deployed. We only have to deploy sensor nodes in the region of

interest instead of covering the whole region for full-connectivity. The sensor nodes and the sinks do

not have to be mobile which reduces deployment-cost [6, 5].

Handling the Funnelling Effect : In a WSN, traffic streams are created from all sensor nodes towards

the sinks. Without an ME in the network, sensor nodes have to forward other nodes’ packets. Routing

paths are created from each sensor node to the sink for this purpose. The forwarding nodes that are

closed to the sink has to transmit more packets than the peripheral ones. As a result, energy of these
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nodes deplete fast. The neighbors of the sink cause the bottleneck for traffic and this problem is

known as the Funnelling Effect [7]. If Mobile Elements are used in the WSN, the nodes closer to the

sink are not overloaded with traffic. Besides, in a desired scenario, the ME can collect data packets

directly from each node. Therefore, there is no forwarding in the network and the sensor node can

save power.

Increase in Reliability : A WSN without the ME’s is usually dense for full coverage and connectiv-

ity ([1]). In that type of WSNs, reliability is penalized by interference and collisions. Communication

paradigm in such a WSN is multi-hop routing where the packet loss increases with the increase of the

number of hops ([8]). If the WSN uses Mobile Elements, the MEs can visit nodes in the network and

collect data directly through the single-hop transmission. This reduces not only the contention and

collisions, but also the message loss.

1.2.2 Challenges of Using Mobile Elements in a WSN

There are some challenges involved in using ME’s in a WSN. We discuss these challenges as follows.

Path-planning of a Mobile Element : The ME can be in many forms ([9, 5, 6]). For example, it

can be another sensor node mounted on a robotic car or it can be a smart vehicle with advanced

navigation capability. Planning path for the ME for collecting data packets from the sensor nodes

is challenging as it is difficult to obtain an optimized path with the increasing network life-time and

with the decreasing latency of data packets. A whole gamut of literature addressing path-planing has

been presented in Chapter 2.

Contact Detection: Establishing a contact between a static sensor node and a mobile element

requires special architecture. As shown in Figure 1.7, the ME comes within contact of the sensor

node only for a finite interval of time. If the interval is not known to the sensor node, it has to poll

for the presence of the ME. If the sensor node continuously polls for the ME, its power depletes

fast. Another approach may be to use the ME to wake up a sleeping sensor node. However, if the

sleep-cycle of the sensor node is not synchronized with that of the ME, the contact fails. This implies

that many of the popular MAC’s such as S-MAC, T -MAC etc. are not very useful in this scenario,

since those protocols exploit synchronized schedules for energy-efficient communications [8].

Coordination Among Multiple Mobile Elements: If there are more than one ME present in the
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Figure 1.7: Detection of Mobile Element (ME) within the range of the transmission

network, a robust coordination is required among them so that no sensor node is left out. Scheduling

these ME’s for data gathering is a very challenging research problem.

1.3 Taxonomy of Mobile Elements in a WSN

In this section, we introduce different types of Mobile Elements which collect data in a WSN. We

present the classification proposed in [1].

Figure 1.8: Relocatable Nodes in a WSN ([1])
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1. Relocatable Nodes: These are the mobile nodes which change their locations to characterize

the sensing area in a better way, or to forward data from the source nodes to the sink. Relocat-

able nodes do not carry data as they can move in the network. Rather, they only change the

topology of the network. A WSN architecture based on relocatable nodes is depicted in Figure

1.8. Although the ordinary nodes might be relocatable, in most of the cases, special mobile

elements (e.g., Support Nodes) are used as relocatable nodes.

Figure 1.9: (a) A WSN with mobile sinks and (b) A WSN with mobile relays [1]

2. Mobile Data Collector (MDC): These are the Mobile Elements which visit the network to

collect data from sensor nodes. Depending on whether the MDC’s are endpoint or target nodes

for communication, these are classified as either Mobile Sinks or Mobile Relays.

Mobile Sinks: These are the mobile nodes which are the ultimate destinations of all messages
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originated by sensors, i.e., they represent the endpoints of data collection in a WSN with Mobile

Elements. They can autonomously consume collected data for their own purposes, or they can

make them available to the remote users by using a long range wireless internet connection. The

architecture is depicted in Figure 1.9(a).

Mobile Relays: These are the support nodes which gather and store packets, and carry those

to the sinks. These nodes are not the endpoints of communication and only act as Mobile

Forwarders. In this case, the collected data packets move along with them, until the Mobile

Relays get in contact with the sink. The architecture is depicted in Figure 1.9(b).

Figure 1.10: Mobile Peers in WSN [1]

3. Mobile Peers: MobilePeers are ordinary mobile sensor nodes in a WSN. These nodes can

both generate and relay messages in the network. When there is a peer in the communication

range of the base station, it transfers its own data as well as those gathered from other peers

while moving in the sensing area. A WSN architecture based on MobilePeers is depicted in

Figure 1.10.

In this thesis, we address the issues of data gathering technique using a Mobile Element with the goal

of the energy saving.



CHAPTER 1. INTRODUCTION 11

1.4 Applications of Mobile Elements in the WSN

Mobile Elements have been successfully employed in the context of wildlife monitoring applications,

such as tracking of zebras in the ZebraNet project [10] or whales in the SWIM system [11]. Sensor

nodes are attached to the animals and act as peers, so that not only do they generate their own

data, but also carry and forward all data coming from other nodes which they have been previously in

contact with. When the ME’s get closed to the base station, they transfer all the gathered data. Data

which have already been transferred to the base station are flushed by those in order to save storage.

ME’s can also be used for opportunistic data collection in urban sensing scenarios [12]. Sample

applications include personal monitoring (e.g., physical exercise tracking), civil defense (e.g., hazards

and hot-spot reporting to police officers) and collaborative applications (e.g., information sharing for

tourism purposes). In this context, sensors are not used mainly for monitoring the environment, but

are rather exploited to characterize the people in terms of both interactions and context (or state)

information. An example is represented by handheld mobiscopes [13] where handheld devices such

as cell phones or PDAs gather data from the surrounding environment and report them to servers,

which provide services to remote users.

1.5 Motivation

The advantages of using Mobile Elements (ME) in the WSN in presented in Section 1.2.1. The main

challenge of using the ME is planning an optimal path for it. However, a major disadvantage of

using the ME is the delay in delivering data packets to the sink . In this thesis, we present an

energy-efficient path-planning for the ME so that the time required to deliver data packets to the

sink is minimized. In many applications of the WSN, it is required that the data packets from the

sensor nodes must be deposited to the sink node within a particular interval. This type of WSN is

called Real-time WSN (RT-WSN ). RT-WSNs are used in monitoring and tracking applications [14].

Because of the reduced delay in data delivery in our method, the ME’s can be used in the RT-WSNs

and, consequently, the lifetime of the network will increase.

In this thesis, we propose a method called Linear Shortcut to reduce the path-length of the MDC

and thus, the delay in data delivery. We analyze the performance of our method by simulation. The
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experimental results show that the resulting tour for the MDC ensures the maximum lifetime of the

network, and at the same time, reduces delay in data delivery, packet drop rate etc.

1.6 Thesis Outline

The remaining of this thesis is organized as follows.

Chapter 2 reviews the recent related research work in this area to analyze the strengths and drawbacks.

Chapter 3 elaborately describes the problem domain. The analysis presented in this chapter justifies

using a TSP-tour as a starting point for generating a Shortcut tour.

Chapters 4 and 5 describe our method in details. We provide the logical support for our claim.

In Chapter 6, we provide the detail results of the experiments.

Finally, in Chapter 7, we give the conclusions with some future directions of our research.



Chapter 2

Related Work

2.1 Overview

This chapter provides a thorough review of the work related to the path-planning of the Mobile

Elements which collect data in a WSN. Historically, path-planning problem was first addressed in the

case of Ad hoc Network and it was termed as Message Ferry [15]. Therefore, at first, we present the

relevant work in the domain of Ad hoc network. Then, we review the work on path-planning of the

mobile elements in a WSN according to the taxonomy presented in Chapter 1. We also shed light on

the problems for the mobility property of the sink. The findings in this section justify our approach

of using a dedicated Mobile Element as a data collector in a WSN. Finally, critical appraisals of some

contemporary work on Mobile Data Collector or MDC are also made in this chapter. Limitations of

these work are discussed in details. Findings in this Chapter form the foundation of our research.

2.2 Approaches Using Message Ferry

Like Mobile Ad hoc Network (MANET) and Delay Tolerant Network (DTN), mobility has been

introduced to the field of Wireless Sensor Network ([15]). In MANET, the concept of Message-

Ferrying is introduced by [16]. In this work, the Mobile Element that is used to transfer information

among different nodes is called Message Ferry. In this work, the authors assume that all other nodes

are static, and the Message Ferry is the only medium of message passing between nodes. Here, a TSP -

13
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tour is computed for a single Message Ferry which visits every node in the network to collect data. In

this work, the average delay is formulated and it is shown that the problem of finding an optimal tour

for the Message Ferry, which minimizes the average delay is a NP -hard problem. The authors provide

a sub-optimal tour solution for the Message Ferry. Their algorithm takes an approximate TSP -tour

as input, applies two kinds of heuristics. One of the heuristics is involving swapping of edges and the

other heuristic is involving the swapping of nodes to minimize the average delay. Their derived tour

is modified further to meet the bandwidth requirement of each node. Experiment results show that

as network size and network load increase, so does the average delay.

However, Message Ferrying approach is not very suitable for addressing the data gathering problem

in a WSN. Because, the objective of the data gathering in a WSN is to deposit collected packets to the

sink ([3, 4]). But, a Message Ferry carries packets between nodes. The problem formulation and the

optimization function presented in this work incorporate the delay for the message passing between

every pairs of nodes instead of between the sink and a sensor node. This approach does not capture

the real scenario of a WSN. Besides, all the heuristics presented in this work are redundant if an exact

TSP-tour is given as input.

In [17], the authors use the concept of a Mobile Element in a WSN. The Mobile Element is called

Mobile Ubiquitous LAN Extensions or MULE. In this work, a three-tier architecture for data collection

is proposed- the top tier consists of WAN connected access points or sinks, the middle tier consists

of MULEs and the bottom tier consists of static wireless sensor nodes. In this network model, data

MULEs move in a random fashion on a 2D grid. It is assumed that from a grid position, the MULE

has an equal probability for moving to any of the adjacent grid positions. Based on a simple mobility

model, closed forms for different quantity of interests are derived. For example, the average inter-

arrival time of data transfer from the MULEs to sensor nodes, the average visiting time of sinks by

data MULEs can be derived etc. The authors define the fraction of data packets which are successfully

delivered to the sinks, the success rate. In their method, as the number of grids increases, so does the

requirement for the number of data MULEs and the number of access points to sustain the similar

success rate. The authors also show that the buffer requirement for the sensor nodes is inversely

proportional to the buffer capacity of the data MULEs and when the number of sensor nodes is large,

sensor buffer capacity can be traded off with the number of data mules to sustain the similar success
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rate.

But, the very important issue which is not addressed in this paper is the data delivery latency.

Therefore, this approach is not applicable for time-critical operation of the WSN ([14]). The authors

also do not explain how the sensor nodes and the data MULEs can communicate to each other.

Besides, in their method, they assume that the sensor nodes would be always ’ON’. Thus, the authors

have ignored the major challenging issue of the sensor network- the power limitation, which causes

the network connectivity failure. Moreover, the random walk model of mobility of the MULE is not

helpful for optimizing the MULE’s path.

In [18], authors give two approaches for message passing in a disconnected sparse network via

Mobile Element. The first approach is called Node-Initiated Message Ferrying Approach (NIMF ). In

this approach, the node that needs to send a message to another distant node transmits a request to

the Message Ferry by a long-range radio transmitter. The Ferry travels in its own path periodically.

When the Ferry comes closed to the node that has sent the request for message passing, the node

proactively comes closed to the moving Ferry. The node uses the short-range low-powered radio to

transmit data to the Ferry. The Ferry periodically advertise its tour path using a long-range radio

signal. Therefore, when it comes closer to any receiving node, that node also proactively comes closer

to the ferry and retrieves the data from it. In the second approach named Node-Initiated Message

Ferrying Approach or NIMF, the ferry moves proactively closer to the sending and receiving node

by detouring from its original tour-path. However, the sending node still has to send out a request

to the ferry using a long-range radio. In both of the approaches, the authors calculate the message

loss in a particular interval due to the buffer overflows and the timeout of the packets sent by the

source nodes. Experimental results show that, the both of the approaches result in a higher number

of messages delivered per unit time and per unit energy compared to [19] and its variants.

However, the requirement of this approach is expensive as sensor nodes with mobility and/or

multi-range radios are very costly ([6],[5]) Besides,the data delivery latency is not considered in the

performance measurement of this work. Therefore, this method can not be applied to a delay-sensitive

applications ([14]). This work also does not discuss how the coordination between the Ferry and the

mobile nodes is done.
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2.3 Path-planning of Different Types of Mobile Elements in a WSN

We present some work on data gathering using Mobile Elements in a WSN classified according to the

taxonomy presented in Chapter 1.

2.3.1 Work on Mobile Relocatable Nodes

In [20], a system with relocatable nodes targeted for topology management has been proposed. Par-

ticularly, special Predefined, Intelligent, Lightweight Topology Management (PILOT ) nodes are used

to re-establish network connectivity for faulty links. In details, PILOT nodes move to regions where

the connection between nodes is unstable or failed, and they act as bridges. As a consequence, they

actively change the WSN topology in order to improve both communication reliability and energy

efficiency. Algorithms for placement of relocatable nodes in the context of improving network connec-

tivity have been investigated in [21], [22], [23] and [24].

In [22], the authors address the problem of a sensor deployment with load-balancing. The

movement-assisted sensor deployment deals with the moving sensors from an initial unbalanced state

to a balanced state. In this paper, a Scan-based Movement-Assisted Sensor Deployment (SMART )

has been proposed. SMART addresses the problem of communication holes in sensor networks. Al-

though the proposed method deals with the optimal placement of relocatable nodes, it addresses only

the network coverage problem and does not discuss the data-gathering issue at all.

In [23], the authors address the problem of disconnected partitions in a WSN which are caused by

the failure of one or more nodes. According to this method, existing mobile sensor nodes reposition

themselves to repair the partitions. In this work, the solution involves proper placement of the

relocatable nodes to address the issue of connectivity, and it also does not address the issue of data

delivery to the sink.

Another method proposed in [24] involves repositioning of the relocatable nodes. Given a network

containing one or more source nodes which store data, a number of mobile relay nodes and a static

sink, the method presented in this work finds the optimal positions to move the mobile relays in

order to minimize the total energy consumed by transmitting a data chunk from the sources to the

sink and the energy consumed by the mobile relays to reach their new locations. Assuming a single
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data-flow from the source to the sink, the authors propose an iterative algorithm that repositions the

intermediate nodes one at a time to minimize the cost. Later, the authors extend the problem to the

multiple flows of data.

However, this method cannot be applied to a WSN if any node is not mobile. The issue of latency

has not been addressed also. Therefore, this method cannot be applied to delay-sensitive WSN too.

In this method, the formulation for the optimization function is based on the size of the data packet.

But, in most of the applications of WSNs, the sensor nodes have to send data packets intermittently,

therefore, the size of the data packet does not contribute to energy efficiency much ([25]).

Mobile relay based approaches for opportunistic networks have been surveyed in [26]. However,

due to the difference with WSN, many of the assumptions are costly and are not suitable for WSN.

2.3.2 Work on Mobile Sinks (MDC)

Both mobile sinks and mobile relays have been discussed in existing literature to address the issue of

data gathering in WSN. Mobile sinks have been considered extensively in the existing literature [27],

[28] etc. In these cases, ordinary sensor nodes are static and densely deployed in the sensing area.

One or multiple mobile sinks move throughout the WSN to gather data coming from all nodes. We

note that the paths between the source nodes and the mobile sinks are multi-hopped, although the

actual paths change with time, since the positions of the sinks are not fixed.

In [27], the authors explore the idea of exploiting the mobile sinks for the purpose of increasing the

lifetime of a wireless sensor network with energy-constrained nodes. They give a linear programming

formulation for the joint problems of determining the movement of the sink and the sojourn time

at different points in the network that result in the maximum overall network lifetime (here defined

as the time till the first node dies because of energy depletion) rather than minimizing the energy

consumption at the nodes.

In [28] and [29], the authors present a generalized formulation for analyzing stability and perfor-

mance trade-offs inherent to multi-hop routing in mobile sink based sensor data collection systems.

The paper parameterizes the extent of multi-hop routing as a hop-bound factor which is used for repre-

senting a wide spectrum of design options including single-hop with mobile sink, multi-hop with static

sink, and different levels of mobile sink based multi-hop routing in between. A performance model is



CHAPTER 2. RELATED WORK 18

developed for studying the impacts of multi-hop routing on energy and collection delay performance.

Also, a number of thresholds are derived from the model for determining the amount of multi-hop

routing that can be used for stable and efficient data collection in the context of constantly moving

sinks. The second part of the paper develops a distributed network-assisted framework for mobile

sink trajectory planning and navigation without relying on geographical sensor and sink localizations.

A different approach targeted for data collection in urban scenarios has been considered in [30]. In

this case, people act as mobile sink by collecting environmental data (such as pollutants concentration

and weather conditions) for their own purposes. The reference WSN scenario is represented by a sparse

WSN where multiple mobile sinks can be in contact with a single sensor node at the same time.

Mobile relay based approaches have been used in [17] and [31] as Data-MULE. Methods proposed

in [17] has been discussed in earlier section. In [31], authors use the same three-tier architecture

i.e. sink, data-mule and sensors but present an analytical model to understand the key performance

metrics such as data transfer, latency to the destination, and power.

In [16] and [32], message-ferrying approach for data collection has been outlined. In [32], an exten-

sive power-management scheme for the message-ferry has been developed and performance measure

has been compared with dynamic source routing (DSR) [33].

2.3.3 Implication of Mobile Sink

In [34], the authors investigate the real-world applicability of theoretical findings concerning sink

mobility. They analytically demonstrate that from the small to the mid size square-shaped WSNs im-

plementing virtual grid topology, the (outer) periphery is not necessarily the best performing mobile-

sink trajectory. In such networks, the diagonal-cross appears to be at least as effective as the outer

peripheral trajectory. Their OPNET-based study of IEEE 802.15.4 / ZigBee WSNs suggests that in

these networks, once all of the protocol overhead is accounted for, no actual benefits can be achieved

by deploying a mobile sink. According to this paper, it is proposed that the minimization of protocol

overhead must be considered first when mobile sink is deployed in ZigBee-based sensor networks.

Therefore, using the mobile sink has the implication of redeeming the MAC-protocol overhead for

energy-efficiency. However, adapting the MAC-protocol to suit sink mobility is not always viable.

This is why, we have used path-planning algorithm for mobile data collectors or relays instead of
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mobile sinks.

2.4 Controlled vs. Uncontrolled Mobility

An important characterization of Mobile Elements that collect data in the WSN is the ability of

controlling mobility. We can classify those into two categories- Controlled Mobility and Uncontrolled

Mobility.

There are two main patterns for Uncontrolled Mobility- Deterministic and Random Mobility.

The Deterministic Mobility pattern is characterized by the regularity in the contacts of the mobile

element, which enters the communication range of sensor nodes at a specific time periodically. This

can happen when the ME is placed on a shuttle for public transportation, as in [35]. On the other hand,

the Random Mobility pattern is characterized by contacts which take place not regularly, but with a

distribution probability. For instance, Poisson arrivals of a Mobile Element have been investigated in

[36], while Random Mobility has been considered in [37].

Different from the former Case, Controlled Mobility exploits nodes which can actively change their

location, because they can control their trajectory and speed. As a consequence, motion becomes an

additional factor which can be effectively exploited for designing data collection protocols specific to

Mobile Elements of WSN.

2.5 Work on Mobile Data Collector (MDC)

In [38], an energy-efficient data gathering mechanism for large-scale multi-hop network has been

proposed. In this work, the mobile data collector is called as SenCar. This paper deals with the

path-planning of the SenCar, balancing the traffic load from the sensors to the SenCar to prolong

the network lifetime, and clustering the network along the path of the SenCar. The method is

applicable to a network of homogeneous sensor network where data generation-rate and the locations

are predefined.

In this research, to fix a path, for any two points A and B are taken in such a way that the

x-coordinates of the all sensor nodes’ locations are bound by the x-coordinates of the points A and

B. Two paths of the SenCar are shown in Figure 2.1. Path shown in Figure 2.1(a) is a straight
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line between points A and B. Sensor nodes those are reachable from the points of this straight line

transmit to the SenCar directly, but the other nodes use relay nodes closer to the points of the straight

line.

Figure 2.1: (a) The straight line path of SenCar, (b) The curved path of SenCar

As shown in Figure 2.1(a), the depth of one such tree rooted as Node 1 is 2 and this node has

to relay many packets of its children. On the other hand, Figure 2.1(b) shows a smooth path of

the SenCar that minimizes the tree-depth and also the number of children. Thus, the possible load-

balancing is better in this path. In other words, this path minimizes the energy depletion of the

sensor nodes due to the packet forwarding, which also maximizes the network-lifetime. The authors

call this path as optimal traffic-relaying path in [38]. Since, there are infinite number of candidate

points for path construction of the SenCar, smoothening the straight line path into an optimal one is

intractable. Therefore, the finite number of line segments connected in series between points A and

B are used to approximate the optimal path. To select this finite set of line segments, the authors

propose a bisector heuristic described as follows.

Initially, a single straight line is chosen. A series of two line segments between Points A and B

are derived from it. From a finite set of points which are ∆y distance away on the bisector of the

current line segment, one point is chosen as the common endpoints of the two line segments. The

point is called Turning Point. To choose a Turning Point, MF-trees rooted at the nodes directly

reachable from the SenCar in its current path are generated. The graphs generated in the previous

step is transformed into a Capacitated Flow Network using quantities like packet generation rate and
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energy-level of sensor nodes etc. Solving this flow network, the maximum life time of the network for

the current connectivity scenario is derived. For each candidate Turning Point, the maximum lifetime

of the network (the time after which the first node dies in the network due to energy depletion) is

computed. The Turning Point for which this lifetime is of the highest value is selected. For network

with disconnected clusters, the authors give a formulation of the Inter-cluster Travelling tour and show

that finding the shortest tour is NP-complete. The experimental results show that, as the number of

Turning Points in the path of the SenCar increases, the network lifetime decreases. But the gain in

lifetime is not that much after the number of Turning Points is eight or more.

However, the paper has some serious limitations described as follows. Although the authors have

proved that the problem of finding a inter-cluster tour is NP-hard, no approximation algorithm is given

for this computation. Therefore, the optimal solution by this method for a network with disconnected

clusters is also NP-hard. The SenCar travels on the planned path periodically. If the path of the

SenCar is long, tour time will be high. In sensor nodes, packets will be lost due to buffer-overflow,

or collected data will become useless due to the high latency. Moreover, the authors do not provide

any solution to handle data latency which leaves the method unsuitable for delay-sensitive wireless

network. The authors consider the starting and ending points of the tour by the SenCar to be distinct

for each cluster in their formulation of the optimization problem. These endpoints are chosen to be

the leftmost and rightmost nodes of a cluster. Here, selection of these points do not contribute to

the energy-efficiency and to the path-length minimization. Nothing is mentioned about choosing the

value of ∆y. If it is too small, the number of candidate Turning Points will be high and so will be

the complexity of computation. On the other hand, a large value of it may cause the algorithm to

overstep suitable Turning Points. The bi-sector heuristic as proposed in this paper may generate line

segments from which not a single sensor node may be reachable. Then, the computation of this line

segment will be futile.

In [39] and [40], the issue of latency was considered while planning path for the Mobile Data

Collector. The authors term the Mobile Data Collector as Data Mule. In these works,the path

selection problem of Data Mule is formalized in to a framework termed as Data Mule Scheduling

Problem or DMS-problem. The authors observe that Data Mules can be used as an alternative

to multihop forwarding in sensor networks and that the use of Data Mules introduces the trade-off
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between energy consumption and Data Delivery Latency.

In this approach, for the given connectivity graph of the WSN, a near optimal TSP tour is

generated using an approximate TSP-solver[41]. Using dynamic programming which runs in O(n3)

time, a tour called Label Covering tour or LC-tour is generated from the TSP tour. The authors

consider three cost metrics for optimization: the number of edges, the total length of the path, and

the total uncovered distance i.e. the total length of interval in an edge that is not within the range

of any sensor nodes. It is shown that finding the minimum-cost LC tour is NP -hard by showing

that the TSP -tour is a special case of LC-tour. Experimental results of this work show that the tour

length of the Data Mule and the latency decrease with the increase in the transmission range of the

sensor nodes.

However, the methods in [39] and [40] suffer from some serious limitations described as follows.

Instead of visiting the exact position of the sensor node, the Data Mule can communicate with the

sensor node from any position within its transmission range. The value of this range is typically from

5 to 50 meters [6]. In the LC tour, these values of transmission ranges of the visited nodes add up to

the tour-length. The higher the length, the greater the delay of packet delivery. The authors claim

their method as energy-efficient. But, they do not mention any thing about using any energy-efficient

measures in the mode of communication between the Data Mule and senor nodes.

In [2], authors propose an approximation algorithm which is based on the TSP route constructed

from the locations of the deployed sensor nodes. By using some set of heuristics and a shortcut

finding step, the authors try to optimize the obtained TSP route within O(n) computation time.

This algorithm is applicable only to a sensor network with the static sensor nodes.

The method proposed in [2] is illustrated in Figure 2.2. As shown in Figure 2.2a, there are five

sensor nodes n1 to n5 and a sink S. Transmission regions of the nodes are shown by circles centered

at those nodes. The given TSP-tour is also shown in this figure. First, the centroid C of the polygon

generated by the TSP-tour is calculated. In the next step, a straight line is drawn from C to each

node position. This line intersects the circle centered at node ni at point Ii. This point is called

Inner-lane Substitution Point or ISP . In Figure 2.2b, all the ISP ’s are shown. Then, a shorter tour

is derived by connecting the ISP ’s in the order of visiting the nodes in the given TSP-tour. In the

third step, concave bends are identified. As shown in Figure 2.2c, two edges < I2, I3 > and < I3, I4 >
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Figure 2.2: The method of making a shortcut of the TSP -tour [2]

form a concave bend with respect to point C. Using a heuristic, the point I3 is substituted by point

B3 which is called Bend Substitution Point or BSP . Finally, using a dynamic program, shortcuts

of the tour edges are made. As shown in Figure 2.2d, the tour edge < I2, I4 > is within the range

of the circle centered at n3. Therefore, this edge is a shortcut of the successive edges < I2, B3 >

and < B3, I4 >. The final tour is derived by successively connecting the points S, I1, I2, I4, I5 and

S. If the running time of the TSP -approximation algorithm is O(n2), the running time of the whole

path-finding algorithm is O(n2).

However, we find some limitations of this method: The simple polygon bounded by the edges

of the TSP -tour is termed as TSP -polygon. In this work, in the proof of a theorem regarding the

heuristic for generating the Inner-lane Substitution Point (step of Figure 2.2b), it is assumed that the

centroid C always lie within the TSP -polygon. This makes method inapplicable for the cases where
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Figure 2.3: The scenario where inner bend (I2I3) is greater than the outer tour-edge (n2n3)

centroid C lie outside the TSP-polygon. Therefore, the method of this work cannot be generalized.

Even in case where the centroid C lies within the TSP-polygon, the steps of the theorem which proves

that- the inner lanes are always shorter than the outer edges, is flawed. A counter example is shown

in Figure 2.3. In this figure, all the objects are drawn to the scale. Straight lines drawn from C to the

point n2 and n3 intersect the corresponding circles at point I2 and I3. The inner-lane of the tour-edge

< n2, n3 > is < I2, I3 >. Using the coordinates of those points, we calculate the lengths of both the

line segments and find that inner-lane is longer than the tour-edge. Therefore, it cannot be guaranteed

that the tour derived by this method is always shorter than the given tour. The step of finding the

Bend Substitution Points (step of Figure 2.2c) becomes NP -hard when more than one such bends

exist successively. The authors give an approximate solution which depends only on the two endpoints

of the surrounding convex bends and which ignores the endpoints of the successive concave bends.

An optimal path covering those concave bends would be affected by the concave property of each of

those successive bends. However, the authors do not address the effect of this local decision on the

global outcome. Making shortcuts at the last step (step of Figure 2.2d) eliminates the gains achieved

by the application of heuristics in the previous steps. The Bends or edges with steep concavity may

be introduced by the newly added shortcut edges.

The above analysis shows that, the basis of the heuristics applied in this work is poor and, most

importantly, the derived tour cannot be guaranteed to be shorter than the input tour.

In [42], the authors address the problem of planning paths of multiple robots to collect data from

all sensors in the least amount of time. The solution is applicable to a wireless sensor network with
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static nodes, static sink and one or more robotic data collectors.

The authors first give an optimal solution for scheduling k data collector robots for a network of

n sensors in 1-Dimension (1-D). An equation for dynamic programming is formulated to distribute

non-overlapping 1-D paths among the k-robots. However, the solution given for the case of 1-D is

trivial and cannot be generalized for the cases with higher dimensions of mobility.

Figure 2.4: Approximate TSPN consisting of clockwise (solid line) and anti-clockwise(dotted line)
traversals

In the case of 2-D plane, an approximation solution is given combining earlier works of [43] and

[44]. The research work of [43] is used to approximately construct a solution for the TSP with

neighborhood (TSPN) problem. The circles/disks representing the radio range of the sensor nodes

represent the objects of the TSPN problem. First, a maximal independent set I of non-intersecting

disks from the given set of disks is computed such that each of the given disks has an overlap with

at least one disk included in set I. This is illustrated in Figure 2.4. In this case set I includes four

disks shown in bold boundaries. Then, a TSP -tour on the centers of all the disks included in set

I is computed. Using this tour, a solution instance for the TSPN problem is generated. This is

illustrated in Figure 2.4. The robot or data collector first travels along the outer boundaries of the

disks of the set I and the edges of the TSP -tour in the clockwise direction (shown in Figure 2.4 by

directed solid outer paths) and then along the inner boundaries of the disks of the set I and the edges

of the TSP -tour in counter-clockwise direction (shown in Figure 2.4 by directed dashed inner paths).

Other than the edges of the TSP-tour, there is no overlap between the clockwise and counter-clockwise

paths. Travels in two types of orientations ensure that all the disks that are neighbors of at least one
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disk of set I are covered by the robot.

In the next step, the data-collection points for the robot are determined for sensor nodes both

within and not within set I. These points are basically intersection of boundaries and edges. In the

final step, the whole TSPN -tour is split into k-subtours for simultaneous data collection by k robots.

This division is done according to the works of [44] which originally involved splitting the TSP -tour

into k-subtours.

However, the method also has the following limitations: When there is only one data mule or

robot, the method is not anything different than that proposed in [43]. Considering an approximate

ratio of 11.5, the resulting tour may be as worse as 11.5 times the length of the TSP -tour on the

centers of the disks. The method fails to utilize the available location information of the sensor nodes

to the fullest since it allows traversals of the boundaries. There may be many disks in a sparse network

where the boundary of a disk does not overlap with any other disk and as a result, the traversal of

the boundary is futile and only adds up to the tour-length. Considering the typical radio range from

5 to 50 meters for motes [6, 5], the redundancy of paths is significant for a node (the circumference of

the disk or about 34 to 340 meters). The selection of anchor points for the robot is not done carefully

to minimize the tour-length. For a dense network with a good coverage, a single anchor point may

cover more than one disks. Therefore, visiting the point of intersection of each neighboring disk is

redundant. Since, this method does not keep track of nodes already visited or make any shortcut

of the TSPN -tour, the redundant paths persist in the final solution. No experimental results are

provided other than coverage time for this method. The authors do not provide how much path-gain

and energy efficiency can be obtained from their method.

2.6 Summary

All these research work conclude with the challenge to find a good path for a mobile data collector

in a power constraint static sensor network where nodes may be connected or may not be connected.

Different research work set objectives for different types of goodness of the path. Some work address

the issue of meeting bandwidth requirement, some work address maximizing network lifetime, yet some

address increasing through-put. However, the only few of these works address the issue of network



CHAPTER 2. RELATED WORK 27

lifetime and data delivery latency at the same time. Work presented in [25] conclude that most of

the energy-saving measures increase the latency. Because of this trade-off between the latency and

the network lifetime, finding a data collection method using Mobile Elements which increases network

lifetime and, at the same time, decreases data delivery latency is indeed challenging.



Chapter 3

System Model

3.1 Overview

In this chapter, we present some definitions to describe the problem domain. We present the required

parameters of the system architecture and data collecting procedures in a WSN. We show that short-

ening the tour of the MDC reduces the data delivery latency to the sink. Finally, we formulate the

problem statement and set our research objectives.

3.2 Preliminaries

3.2.1 Modeling of the Sensor Network and the Tour

Definition 3.1: A walk in a given graph G = (V,E) is a sequence v0, e1, v1, e2, v2, . . . , vn−1, en, vn

where vi ∈ V are vertices, ei ∈ E are edges and for all i, ei connects the vertices vi−1 and vi. A tour

T in a given graph G = (V,E) is a walk with no repeated edges. A closed tour is a tour where the

starting and ending vertices are the same i.e. v0 = vn. A cycle is a walk with no repeated vertices

except for the starting and ending vertices i.e. v0 = vn.

We use the terms cycle and tour interchangeably for the travels related to the MDC.

Definition 3.2: A sensor network of n nodes is a complete weighted undirected graph Kn where the

weight of the edge eij connecting two nodes ni and nj in graph Kn is the Euclidian distance between

the i-th and j-th sensor nodes.

28
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Definition 3.3: A Hamiltonian Cycle in a given graph G = (V,E) is a cycle that includes all the

vertices of the set V exactly once.

Definition 3.4: The weight of the cycle C in a weighted graph G is the sum of the weights of all the

edges forming C.

Definition 3.5: A TSP -tour or TSP -cycle in a given weighted graph G is a Hamiltonian cycle with

the minimum weight. If the given graph is undirected, the TSP -tour is called symmetric TSP -tour

or STSP -tour.

In a sensor network, there are two kinds of nodes, sensor nodes and sink nodes. Sensor nodes

perform sensing, buffering the sensed data and forwarding data packets to the sinks. The sink node

accumulates the data packets from the sensor nodes. We assume that there is only one sink node in

our sensor network and each of the sensor sensor nodes sends data packets the sink.

Definition 3.6: Given Kn, a TSP -tour by the MDC is a TSP -tour where the tour starts and ends

to the sink node.

In Figure 3.1(a), the circles denote the transmission range r of the sensor nodes. The corresponding
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Figure 3.1: TSP-tour by MDC in sensor network

graph representation K6 is shown in Figure 3.1(b). A possible TSP tour by the MDC is shown in

Figure 3.1(c). Here, the MDC starts out from sink node n0 and after completing the TSP -tour,

returns to the same node.

In any arbitrary type of tour, the visiting MDC may never be within the transmission range of all the
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nodes. Therefore, some nodes must have to forward packets of other sensor nodes. These nodes are

known as Forwarding or Relay nodes. Packets must be forwarded by more than one forwarding nodes

i.e via multiple hops. We call this Multi-hop Forwarding (MF ). If a node is not directly reachable

from the MDC, it has to choose one of its neighbors as a forwarding node. This Multi-hop Forwarding

path must all the way end up at the node nMDC representing the visiting MDC . In this process, a

tree rooted at node nMDC is formed where all the non-leaf nodes are forwarding nodes. This tree is

called Multi-hop Forwarding Tree or MF -tree.

Observation: The maximum hop count of the MF -tree in TSP -tour is 1.

Definition 3.7: A tour T by the MDC is complete if each of the sensor nodes can send data packets

to either the sink node or the visiting MDC directly or via the MF -tree. Otherwise, the tour is

incomplete.

Three tours are shown in Figure 3.2. The TSP -tour shown in Figure 3.2(a) is a complete tour. The
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Figure 3.2: Examples of complete and incomplete tour by MDC

tour shown in Figure 3.2(b) is also complete because Nodes n3 and n4 can send packets to the visiting

MDC via Node n2. But, the tour shown in Figure 3.2(c) is incomplete as none of the nodes n1, n2

and n3 can send data packets to either the MDC or the sink.

Observation: A TSP -tour by the MDC is complete. (By Definition 3.5)
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3.2.2 Energy Modeling of the Sensor Network

We adopt the energy model presented in [25]. The energy to send one packet from Node ni to Node

nj is:

Ei,j = k0 + [(h(ni, nj)]
w (3.1)

where w is the path-loss exponent, the function h(ni, nj) returns the hop-count of the path between

Nodes ni and nj . We call k0 the energy constant, which includes all energy consumption, such as

receiving energy, idle-state energy, processing circuitry energy etc. which are unrelated to the distance

or path of transmission. A node nj has to transmit its own packets in addition to the packets of all

the descendant nodes of the subtree Tnj rooted at nj in the MF-tree.

Let us assume that the data generation rate of all the sensor nodes are the same and the sensor

nodes are homogeneous. Therefore, the leaf-nodes in the MF-tree expend the least amount of energy

as they don’t forward other nodes’ packets. The nodes nearest to the MDC i.e. at Level 1 consume

the highest amount of energy. According to this model, the total energy consumption by a node nj

for a period of MDC’s travel is:

Enj =
∑

∀ node m ∈ Tnj

(k0 + 1w)

= |Tnj |(1 + k0) (3.2)

Here, |Tnj | is the total number of nodes in the subtree Tnj rooted at the node nj . From Equation 3.2

it is clear that the total energy consumption by a sensor node is directly proportional to the number

of packets it relays in addition to its own packets. Deducing similar equations, we can show that, in

case of heterogeneous network and in scenarios where traffic generation rates are different, the energy

consumption is still proportional to the frequency of packet forwarding actions. In other words, the

life-time of the sensor node is proportional to the number of forwarded packets in addition to is own

packets.

Definition 3.8: m-lifetime is defined as the period after which exactly m nodes of a sensor network

die due to energy depletion.

Lemma 3.1: TSP-tour has the maximum m-lifetime of all the complete tours by the MDC in a
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sensor network.

Proof: Let us compare 1-life-time of the TSP -tour TTSP with that of an arbitrary complete tour Ti.

There may be two cases described as follows:

Case (a): The maximum hop-count of all the MF -trees of tour Ti > 1.

In this case, let nj be the nearest node to the root i.e. a node at depth 1 in the MF -tree with the

maximum hop count in tour Ti. Under the similar traffic scenario and the similar network topology,

this node dies faster than the first node nk to die in TSP -tour; because node nk does not forward other

nodes’ packets whereas node nj forwards all the packets of the nodes of the MF -tree sub-rooted at

node nj . Thus, 1-lifetime of tour Ti which is the lifetime of node nj is shorter than that of TSP -tour

TTSP .

Case(b): The Hop-count of all MF -trees of tour Ti is 1.

In this case, the TSP -tour can still beat the 1-lifetime of tour Ti by decreasing the transmission

radius (TXR) r by a small amount ε. TSP -tour is invariant to the value of TXR. When all other

things are equal, the energy consumption by a node is directly proportional to the value of TXR

according to the our adopted energy model. Therefore, the 1-lifetime of TSP -tour with TXR = (r−ε)

is higher than that of tour Ti with TXR = r. Using the similar approach, we can show that 2, 3, . . . ,m-

lifetime of TSP -tour are higher than 2, 3, . . . ,m-lifetime respectively of any arbitrary complete tour

Ti. �

Observation on TSP-tour by MDC : Now, we find the following observations in a TSP-tour of

the MDC:

A. The tour is complete,

B. The tour ensures that there is no forwarding or relay action in the network,

C. The tour is invariant to the transmission range TXR

Due to the Observations A, B and C, the tour ensures the maximum m-lifetime of the network.

3.3 Problem Statement

Observation: The problem of finding a complete tour for the MDC for a sensor network is intractable.

The above observation follows from the innumerable possible Anchor or Halting Points for the
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MDC in the whole network. Finding the order of node visit is an NP-hard problem. However, TSP-

Tour is complete and has the maximum m-lifetime. These facts motivate us to use the TSP-Tour

for offline or static path-planning of the MDC. Though finding a TSP-tour is NP-complete, there

exist good heuristics approximation and software tools to find TSP-tour for thousands of nodes in a

reasonable amount of time. �

We use the solution of the TSP-Tour as the basis of our tour because it ensures the maximum

lifetime of the WSN. There is a penalty to pay for the maximum m-lifetime of the TSP-tour. In the

TSP-tour, the delay of delivering packets to the sink is at most the time the MDC takes to complete

the current tour (tour-time). The speed of the MDC is lower than the speed at which packets are

forwarded to the neighbors in the wireless medium. Therefore, the tour-time of the MDC is higher

than the time it takes to send packets to the sink via multi-hop forwarding. But we know that TSP-

Tour does not allow any forwarding of packets. Therefore, Data Delivery Latency is comparatively

higher in TSP-Tour than any other tours which allow multi-hop forwarding.

Definition 3.9: Data Delivery Latency (DDL) of a data-packet is the time-difference between packet

generation and delivery.

Let a packet i be generated at tg time after the MDC sets out from the sink node position. The

MDC completes the current tour in tT time according to some tour plan T . The Packet Delivery

Latency tl for this particular packet i is given by:

tl(i) = tT − tg(i) (3.3)

If n packets in total are collected in this tour T , the average Packet Delivery Latency denoted by tavg

is computed as follows:

tavg =

∑n
i=1[tT − tg(i)]

n

= tT −
∑n

i=1 tg(i)

n
(3.4)

The quantity
∑n

i=1 tg(i)
n in Equation 3.4 known as the average packet generation time is not controllable

as it depends on the sampling rate of sensor nodes and event frequencies. However, we can improve
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both the per packet delivery latency and the average packet delivery latency by decreasing the tour-

time tT as evident from both Equation 3.3 and 3.4.

The tour-time of the TSP -tour i.e. tTSP has two components: the fraction of tour-time th that

the MDC halts and collects data from nearby nodes and the fraction of tour-time tm that the MDC

travels between the node positions. Therefore, we can calculate the TSP-tour time tTSP as follows:

tTSP = th + tm (3.5)

When the number of nodes is very high and/or the network is sparse, th << tm, and thus, tm

dominates tour-time tTSP . This assumption is logical for practical scenario where the speed of a

commercially available robotic car used as MDC is usually at most 5 ms−1 where as packet transfer

from a sensor node to the MDC happens in the order of miliseconds [42, 8]. Thus, decreasing motion

time tm contributes to decreasing the latency. If the speed of the MDC is vMDC , and if we assume

that it accelerates to this speed instantly and also stops instantly, then,

tm =
|tTSP |
vMDC

(3.6)

where |tTSP | is the path-length of the TSP -tour. We can always come up with a speed vMDC that can

approximate the case where acceleration and halting both take finite time. Usually, given a particular

MDC, vMDC is fixed [1]. Therefore, the only way to decrease the tour-time is decreasing the length

of the tour i.e. |tTSP | (see Equation 3.6). However, by decreasing the tour length, we have the risk of

making the resulting tour incomplete. Therefore, we address the issue carefully so that, the resulting

tour is complete and shorter than the TSP -tour.

Now, we formulate the problem of balancing the lifetime of the network and the data delivery latency

described as follows:

Problem Statement: Given a TSP -tour by the MDC, we find a tour Td that is complete and shorter

than the TSP -tour.
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3.4 Research Objective

The given TSP -tour can be modified in many ways to derive a tour which is shorter and complete.

Now, we provide the reasons discussed as follows:

Reason 1 : The number of nodes visited in the TSP-tour can be decreased by making shortcut of

the TSP-tour.

Reason 2 : The length of the edges in the resulting tour can be decreased by taking into consider-

ation the value of the transmission radius TXR. �

In our thesis, we present two algorithms for the two steps stated above. For both of the purposes,

we present the notion of finding Linear Shortcuts on any given tour to derive a complete tour. For

Reason 1, we present the notion of Label Covering tour [39, 40]. For Reason 2, we present the notion of

Tight Label-covering tour. Finally, we show that both of the tours are equally energy-efficient in terms

of m-lifetime for a constant TXR. But, Tight Label Covering tour has the least data delivery latency

among the three tours. Though, the TSP-tour computation is NP-Complete [45], our algorithms can

be computed in polynomial time.



Chapter 4

An Efficient Path Planning

4.1 Overview

In this chapter, we present our method in details. At first, we present a simple strategy of finding

Shortcuts in an arbitrary tour. We call this Linear Shortcut method. Then, using Linear Shortcut, we

derive a tour shorter than the TSP-tour. We give a framework which can shorten any tour iteratively.

We illustrate the steps of this iterative improvement. Finally, we analyze the time complexity of our

method.

4.2 Improving Latency by Finding a Shortcut

4.2.1 Linear Shortcut of a Tour

Definition 4.1: Given a cycle or tour T in an undirected graph, a Linear Shortcut Ts is a tour that

is derived by selecting some finite number of points on the path of the tour T , and joining them by

straight lines successively in the order of the edges of T .

In Figure 4.1, an example of a Linear Shortcut Tour is shown. Here, the tour constitutes five edges

which successively connect five nodes each denoted by ni where i = 1, . . . , 5. At first, to form a linear

shortcut tour, we choose zero or more points from each edge. We call each of these points Anchor

Points. Here, five Anchor Points are chosen, each from one of the five edges. These Anchor Points are

denoted by pi where i = 1, . . . , 5. We then join these pi’s by straight lines to derive a Linear Shortcut

36
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Figure 4.1: An example of a Linear Shortcut tour

tour. However, the label pi reflects their order of choosing as follows:

1. If pi < pj and both the points are on the same edge connecting nodes nk and nl such that nk is

visited before nl, then pi is closer to nk than pj is to nk, or in other words, pi is farther to nl

than pj is to nl.

2. If pi < pj and, pi and pj lie on edges ek and el respectively, then the edge ek is visited before

edge el in the tour.

Thus, the order of choosing any number of Anchor Points from any edges of the given tour must be

according to the above rule, and the Anchor Points must also be connected successively by the edges

in the same order to form a Linear Shortcut Tour.

In Figure 4.2(a), the labels of Anchors p2 and p3 are swapped and thus, the resulting tour is

not a Linear Shortcut Tour. In Figure 4.2(b), the order of connecting the Anchor Points by edges

successively is < p1, p4, p3, p2, p5, p1 >. Therefore, this is not a Linear Shortcut Tour either. There

is no condition attached to the total number of Anchor Points or the number of Anchor Points from

each edge.

For example in Figure 4.3(a), the Anchor Points selected are the same as the node positions, hence

the given and the derived tour are the same. But in Figure 4.3(b), the edge < n1, n2 > does not

contain any Anchor Point, whereas edge < n4, n0 > contains three Anchor Points. The total number
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Figure 4.2: Examples of derived tours which are not Linear Shortcut tours
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Figure 4.3: Examples of different Linear Shortcut tours

of Anchor Points can also be only one, a point that lies on the path of the given tour, therefore, the

derived tour is effectively of zero length.

Algorithm 4.1 generates a Linear Shortcut Tour according to some Anchor Point Selection Strategy

S. S controls the points and their number on a tour edge. For example, if the strategy is to choose

the middle-point of each edge then the derived Linear Shortcut tour is as shown in Figure 4.4(a). If

the strategy is to choose the midpoint of each odd numbered edge of the given tour, then the derived
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Algorithm 4.1 Generating a Linear Shortcut Tour

Input: A tour T with K edges in undirected graph G = (V,E), a strategy S for choosing Anchor
Points

1: for all i-th edge in tour T where i = 1, . . . ,K do
2: choose ai Anchor Points according to strategy S and label them accordingly
3: end for
4: for all i = 1, . . . ,

(∑K
i=1 ai

)
− 1 do

5: connect Anchor Points pi and pi+1 by an edge and add it to tour Ts
6: end for
7: connect the first and last Anchor Points of tour Ts to make it a cycle

Output: Ts is a linear shortcut tour of tour T
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Figure 4.4: Example of different strategies for finding Linear Shortcut tour

Linear Shortcut tour is as shown in Figure 4.4(b).

Lemma 4.1 The length of a Linear Shortcut Tour is at most that of the given tour.

Proof : This can be proved by Triangle Inequality [46]. As shown in Figure 4.5, the Anchor Points

pm and pm+1 lie on Edges < ni, ni+1 > and < ni+1, ni+2 > respectively. These are also the last and

the first Anchor Point of their respective edges. Using Triangle Inequality we get,

|nipm|+ |pmpm+1|+ |pm+1ni+2| ≤ |nini+1|+ |ni+1ni+2|
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Figure 4.5: Corner-cutting in Linear Shortcut Tour

Thus, the edge connecting Anchor Points pm and pm+1 effectively corner-cuts node ni+1. This can be

proved for all the Corner-cutting edges in the derived tour. If there is no Corner-cutting edge then

the Anchor Points coincide with the nodes and the resulting tour is of the equal length of the given

tour. Thus, if Ts is the Linear Shortcut tour of T then |Ts| ≤ |T |, where the length of a tour T is

given by |T |. �

4.2.2 Linear Shortcut Tour in the Context of MDC

At the Anchor Points, the MDC stops and collects data from adjacent nodes . The first and the last

Anchor Points of an edge of a given tour are the two points where the MDC changes direction. For

example, MDC stops at all Anchor Points but changes direction or rotates itself for alignment with a

new path segment at all Anchor Points except p5 shown in Figure 4.3(b).

Anchor Point Choosing Strategy: The strategy S is such that the derived Shortcut tour is

complete i.e. MDC can collect data from all sensor nodes. For example, if TXR of node n1 is so small

that the MDC fails to communicate while traveling on the Shortcut tour shown in Figure 4.3(b), then,

the derived tour becomes incomplete. If TXR is so large that each node is reachable from point p1,

the MDC can rather stop at p1 and collect each node’s data. The resulting Linear Shortcut tour has

only one Anchor Point and is thus of length zero.

In the following sections, we present our strategy for making a Linear Shortcut. We term the resulting
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tour as Tight Label Covering Tour or TLC-tour.

4.3 Label Covering Tour [Sugihara et. al. 2008]

Let us consider a complete graph Gl = (Vl, El) which have the set of vertices Vl = V of a graph G =

(V,E). There is an edge between any two nodes of the graph i.e El = {eni,nj |i 6= j and ni, nj ∈ Vl}.

The cost function associated with each edge is the Euclidian distance between the nodes connected

by that edge; that is f(eni, nj ) = distance(ni, nj) ∀ni, nj ∈ Vl. Each node is given a unique label

from 1 to |Vl|. The set of all labels is L = {1, 2, 3, . . . , |Vl|}. Associated with each edge eni, nj is a

set of labels L(eni, nj ) ⊆ L which represents the set of nodes whose communication ranges intersect

with this edge. We determine the set of labels as follows: k ∈ L(eni, nj ) if Node nk’s communication

range intersects the edge eni, nj . If distance(nk, eni, nj ) ≤ r, where r is the transmission range of the

communication. For any edge eni, nj , we have i, j ∈ L(eni, nj ). In Figure 4.6, a complete graph is

generated for the network. Each edge in this graph is marked with the associated labels. For example,

edge between Nodes 1 and 2 passes through the transmission ranges of Nodes 1, 2, 3 and 5. Similarly,

the edge between Nodes 2 and 5 passes through the transmission ranges of all the nodes of this cluster.

Hence, its label is {1, 2, 3, 4, 5}. Now, instead of the intractable task of finding the shortest tour of

the MDC using arbitrary number of Anchor Points from a domain of infinite points, we have to find

the shortest tour on this complete Labeled graph so that the union of the labels of the edges in this

tour forms the set of all labels L. Let us formally define this tour as follows.

Definition 4.2: A tour tLC defined on a graph G = (V,E) is Label Covering Tour when it satisfies

at least one of the following conditions for k = 1, 2, . . . , |V |:

1. ∃eni, nj ∈ t(E), k ∈ L(eni, nj ), where t(E) is the set of edges of tour t, or

2. Euclidian distance between Nodes ns and nk i.e. distance(ns, nk) ≤ r where ns is the starting

node of the tour t
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Figure 4.6: Label Covering tour in a cluster with five nodes

Label-Covering Tour Problem: Given graph G = (V,E) with all its edges labeled, we find a

label-covering tour tLC in this graph so that the cost of the tour is the minimum i.e

min
∑

∀e ∈ tLC(E)

f(e) where tLC(E) is the set of edges in this tour,

where f(e) is a cost function f : E → R defined on the edges and tLC(E) is the set of edges of the

Label Covering Tour tLC .

In Figure 4.6, the MDC starts from the node 1 and travels the minimum cost tour [1, 2, 5, 1].

The union of the labels of these edges is the set of all labels i.e. L(1) ∪ L(2) ∪ L(5) = {1, 2, 3, 5} ∪

{1, 2, 3, 4, 5} ∪ {1, 2, 4, 5} = {1, 2, 3, 4, 5}. Therefore, this tour is the minimum-cost Label Covering

tour.

NP-hardness of Label Covering Tour Problem: In [39], the authors show that the Label Covering

Tour problem is NP-hard. If we choose a small TXR, we find a Label Covering Tour to include all the

nodes. Thus it becomes a Travelling Salesman Tour. For this new value of TXR, the optimal Label

Covering Tour is also an optimal TSP-tour. Since finding a Travelling Salesman Tour is NP-hard

[45], so is finding a Label Covering Tour.
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Algorithm 4.2 Generating the Minimum Length Label-Covering Tour

Input: A TSP tour TTSP

1: d[0]← 0 . Array d[i] stores the path-cost from Node 0 to i
2: d[1 . . . n]← +∞
3: tour[0]← {TTSP [0]}
4: tour[1 . . . n]← ∅
5: for all i = 0, . . . , n− 1 do
6: for all j = i+ 1, . . . , n do
7: shortCuttable← true
8: anchorSet← ∅
9: for all k = i+ 1, . . . , j do

10: if line segment TTSP (i)TTSP (j) is NOT within range r of node TTSP (k) then
11: shortCuttable← false
12: break-loop
13: else
14: ak ← Anchor Point for node TTSP (k) . Anchor Point Computation
15: anchorSet← anchorSet ∪ {ak} . Anchor Point Computation
16: end if
17: end for
18: if shortCuttable = true & d[i] + |TTSP (i)TTSP (j)| < d[j] then
19: d[j]← d[i] + |TTSP (i)TTSP (j)|
20: tour[j]← {tour[i], TTSP (j)}
21: a[i][j]← anchorSet ∪ {TTSP (i), TTSP (j)} . Anchor Point Computation
22: end if
23: end for
24: end for
25: TLC ← tour[n]
Output: TLC is the minimum length LC-tour

4.3.1 Label Covering Tour as a Result of Linear Shortcut

In [39], Sugihara and Gupta introduce Label Covering (LC) tour as a measure to reduce the data

delivery latency. Given a TSP -tour, the authors give a polynomial-time algorithm for finding a shorter

tour of the TSP-tour which they call Label Covering Tour (LC-tour). However, we are approaching

the problem from the perspective of finding a linear shortcuts of a given TSP-tour, the challenge is how

to derive LC-tour from TSP-tour by means of finding Linear Shortcuts. Given a TSP -tour TTSP ,

Algorithm 4.2 generates LC-tour in polynomial time O(n3). There is a strategy S that describes

finding shortcuts of a given TSP-tour to derive LC-tour. We summarize the strategy as follows:

1. Given a TSP-tour TTSP , we select an Edge set ELC according to Algorithm 4.2. Each edge

e ∈ ETSP is may be included to ELC or not.
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Figure 4.7: Anchor Points in an LC-tour as a result of finding a Linear Shortcut

2. If an edge of ETSP is included, it will have exactly two Anchor Points on it. As shown in Figure

4.7, the edge < ni+5, ni+6 > cannot not be a Shortcut, Therefore, it is included in the set ELC .

Hence, it has exactly two Anchor Points i.e. its two end-points ni+5 and ni+6.

3. If an edge e ∈ ELC is derived by finding Shortcut among two or more edges of ETSP , then it

has two or more Anchor Points. Two anchor-points are its end-points. Let nj be a node that

is not visited at its position due to the Shortcut on Edge e. The other Anchor Points on e are

derived by calculating the intersection between the normal from node nj and the edge e or, in

case the intersection lies outside the line segment of e, the intersection of the circle of radius r

centered at node nj and edge e. As shown in Figure 4.7, the edge < ni, ni+5 > is derived by

finding shortcuts on five consecutive edges of TSP-tour. Two Anchor Points of this edge are its

endpoints. At these two points, the MDC collects data from node ni and ni+5. There are four

more Anchor Points on this edge i.e. ai+1, . . . , ai+4. For example, the normal drawn from node

ni+1 to this edge intersects it at point ai+1 and hence this Anchor Point. But, the normal drawn

from node ni+4 intersects this Shortcut outside its line segment. Therefore, the corresponding

Anchor Point ai+4 is derived by the intersection of the circle of radius r centered at node ni+4

and the line segment of the edge itself.
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We give Algorithm 4.2 to generate the minimum cost Label Covering Tour. Here, Line 14, 15 and

21 track the computation of Anchor Points for each prospective edge selected but does not affect the

running time of the algorithm. If an edge in resulting LC-tour connects node ni and nj , the Anchor

Points for the MDC on this particular edge can be found in the array element a[i][j].

Lemma 4.2: If TXR of only the visited nodes in the LC-tour is zero, any tour derived by making

b

b

b

ni

nj

nk

al
am

Figure 4.8: Making a Linear Shortcut of a Label Covering tour

linear shortcut of the LC-tour will not be complete.

Proof: As shown in Figure 4.8, we choose two Anchor Points al and am on two different successive

edges of our tour TLC . Connecting the two Anchor Points, we derive a tour Td which is shorter than

the min-cost LC-tour. The set of edges of the derived tour is as follows:

Ed = ELC − {< ni, nj >,< nj , nk >} ∪ {< ni, al >,< al, am >,< am, nk >}

using Triangle Inequality, |Td| < |TLC |. As shown in Figure 4.8, if TXR 6= 0, it is always possible

to choose two such Anchor Points al and am different from the node nj such that the resulting tour

is shorter and complete. However, when TXR = 0, the derived tour Td misses Node nj unless

al = am = nj . Thus, when TXR = 0 for the visited nodes, any Linear Shortcut results in an

Incomplete Tour. �

Lemma 4.2 shows that, there is further scope of Linear Shortcut if TXR 6= 0. Let us explore this

opportunity in the following sections.
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4.4 Tight Label Covering Tour (TLC-tour)

Goal: Given an LC-tour for the MDC in a sensor network with the non-zero TXR, we derive a

tour by making linear shortcut such that the resulting tour is complete.

We present two possible cases of making linear shortcuts in the following sections.

Case I: There are no overlapping intermediate nodes

If there is no overlapping intermediate nodes in any edge of the resulting LC-tour derived from a

TSP -tour, then the number of nodes visited in it is the same as in the TSP -tour, so is the length of

the tour. But in our approach, it is also possible to shorten the length even further.
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Figure 4.9: Deriving TLC-tour from LC-tour

As shown in Figure 4.9a, the initial TSP -tour and LC-tour are the same. The MDC visits all the

nodes from n1 to n4 in the order of the minimum cost TSP -tour. To derive a Tight Label Covering
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Tour, at first, we find the intersection of the incoming edge with the circles of radius TXR centered

at the nodes. For example, the edge connecting Nodes n1 and n2 is incoming to the circle centered

at n2. This edge intersects the circle at p1. However, this edge is not incoming to the circle centered

at n1, rather the edge connecting n4 and n1 is incoming to that circle. Thus, we derive the Anchor

Points p1, p2, p3 and p4. Connecting these points, we derive a tour that is shorter than the LC-tour.

To generalize the rule, if there is no overlapping circle in any edge connecting nodes ni and nj ,

b b
pk

⊗

⊗

ni nj

Figure 4.10: Selecting an Anchor Point from an edge with no overlapping circle

we pick only one point for finding Shortcut on that edge- this point is the intersection of the circle

centered at node nj . This is illustrated in Figure 4.10. Here, pk is the intersection of circle centered

at nj and the edge connecting ni and nj . Therefore, pk is the only point chosen from this edge. In

the next section, we discuss the other case and the technique of iterative improvement.

Case II: There are overlapping intermediate nodes.

When there is one or more overlapping intermediate circles in an edge of the given LC-tour, the

number of points pi for finding Shortcuts can be more than one. To illustrate the technique, at first,

let us define some terms related to the technique.

Definition 4.3: A line segment of a tour on which any particular node is reachable from the MDC

is called the Contact Interval or CI for that node.

For example, in Figure 4.11, the node nk is only reachable on the line segment < lnk, rnk > on the

b b
lnk

⊗⊗
ni nj

b

rnk

nk

Figure 4.11: Contact Interval < lnk, rnk > of Node nk on a tour-edge



CHAPTER 4. AN EFFICIENT PATH PLANNING 48

tour edge connecting ni and nj . Hence, it is the Contact Interval for this node nk. We represent any

Contact Interval for any intermediate node nk by two points on that edge as follows:

Definition 4.4: The point which is encountered first by the MDC on the CI of a Node n is called

the l-Point of the CI and it is denoted by ln. Similarly, the point encountered last by the MDC on

the CI is called the r-Point and it is denoted by rn. These two points i.e. l and r Points mark the

boundary of a CI.

b b
lnt = rnt

⊗⊗
ni nj

b

rnk

nk b
nt

Figure 4.12: Contact Intervals of different nodes on a tour-edge

If the edge is tangent to the intermediate circle, we have lnk = rnk as shown in Figure 4.12. Here

l and r Points for the Contact Interval are the same for the node nt as the edge is a tangent to its

transmission circle. If the intersection of the edge and the circle lies outside the line segment of the

edge, the Contact Interval contains at least one end-point of the edge. For example, the Contact

Interval of Node nk, as shown in the same figure, is < ni, rnk >.

4.4.1 Representation of the Contact Interval

From the given LC-tour, we can identify the intermediate nodes with circles having overlaps with the

particular tour-edge. Then, we determine l and r Points of the CI for each such node and sort those

CI’s according to the non-decreasing distance of l Points from the first visited node on that edge.

As shown in Figure 4.13, there are five intermediate nodes whose transmission radii intersect with

the tour edge connecting nodes ni and nj . For node ni+1, the CI is given by lni+1 = (316, 122) and

rni+1 = (398, 120). For node ni+5, the right intersection point lies beyond the line segment of the

edge. Therefore, r Point of its CI is the position of node nj . In Table 4.1, the sorted CI’s of the

intermediate nodes are shown. For example, the coordinate of the first visited node of this edge ni

is (234, 120). The l Point of any CI closer to Node ni is that of the Node ni+1. Therefore, its entry
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Figure 4.13: Contact Intervals of intermediate nodes of the edge connecting Nodes ni and nj

Node ln(x,y) rn(x,y)

ni N/A N/A

ni+1 (316, 120) (398, 120)

ni+2 (337, 120) (382, 120)

ni+3 (422, 120) (494, 120)

ni+4 (461, 120) (554, 120)

ni+5 (613, 120) (647, 120)

nj N/A N/A

Table 4.1: Sorted Contact Intervals for Figure 4.13

comes first in the sorted list. The l Point of Node ni+5 is the farthest from node ni. Therefore, it is

the last entry in the sorted list.

The Algorithm 4.3 generates the sorted CI’s for any particular edge. If the sorting function in

Line 12 runs in O(n log n) (there are many sorting algorithms available like heapsort) then its running

time is O(n + n log n) = O(n log n). The number of edges in the given LC-tour is O(n). Therefore,

determining the sorted Contact Intervals for the tour takes O(n2 log n) time.

4.4.2 Critical Contact Interval (CCI)

Once we have determined the sorted list of Contact Intervals, the next step is to find the Critical

Contact Interval.

Definition 4.5 Given a list of Contact Intervals CIe of an edge e in a tour, Critical Contact Interval
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Algorithm 4.3 Generating sorted Contact Interval for any tour-edge

Input: An edge e ∈ E that connects Node ni and Node nj in an LC-tour and the list of intermediate
nodes Ie

1: CIe ← {}
2: for all node nk ∈ Ie do
3: Find intersections (lnk, rnk) of edge e and circle of radius TXR centered at nk
4: if lnk is outside of line segment of edge e then
5: lnk ← ni
6: end if
7: if rnk is outside of line segment of edge e then
8: rnk ← nj
9: end if

10: CIe ← CIe ∪ {(nk, lnk, rnk)}
11: end for
12: sort CIe using lnk as key
Output: CIe is the sorted Contact Intervals

or CCI is the interval of the minimum length that has at least one point from each the Contact

Interval.

lni+1 rni+1

lni+2 rni+2

lni+3 rni+3

lni+4 rni+4

lni+5 rni+5

lcci = rni+2 rcci = lni+5

Figure 4.14: Critical Contact Interval for a given list of intervals starting from Node ni+1

In Figure 4.14, the critical Contact Interval for the edge described in Figure 4.13 is shown. Here,

the CCI has the left endpoint lcci = rni+2 and the right end point rcci = lni+5. If we assume that,

the MDC travels along this edge, any interval having left endpoint any farther than the lcci from ni or

right endpoint closer than the rcci to ni will not cover one or more intermediate nodes. For example

if lcci = (388, 120) instead of rni+2 = (382, 120), the MDC misses the intermediate Node ni+2’s CI

along this edge.

Generating CCI may be quite simple- for example, taking the rn of the leftmost interval and ln
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Algorithm 4.4 Generating Critical Contact Interval (CCI)

Input: List of sorted intervals CIe of an edge e ∈ E of a tour
1: (nt, lnt, rnt)← firstElementOf(CIe)
2: lccie ← rnt
3: (nk, lnk, rnk)← nextElementOf(CIe)
4: while lnk closer to ni than rnt do . scan all the intervals contained within the leftmost interval
5: if rnk closer to ni than lccie then
6: lccie ← rnk
7: end if
8: (nk, lnk, rnk)← nextElementOf(CIe)
9: end while

10: (ns, lns, rns)← lastElementOf(CIe)
11: rccie ← lns
12: if rccie closer to ni than lccie then
13: rccie ← lccie
14: end if
Output: CCIe = (lccie, rccie) is the Critical Contact Interval of edge e

of the rightmost interval. Since, the intervals are already sorted, this takes O(1) time.

lcci← rn of the leftmost interval

rcci← ln of the rightmost interval

However, we have sorted the intervals according to ln values. Therefore, assigning ln of the

rightmost interval to rcci is correct, but assigning the rn of the leftmost interval may result in

missing one or more intervals totally contained within the leftmost interval. For example, in Figure

4.14, the leftmost CI is of intermediate node ni+1. However, Contact Interval of node ni+2 is fully

contained within this interval. If we assign lcci = rni+1, then the resulting interval misses CI of Node

ni+2. Therefore, unlike rcci, the value of lcci cannot be determined in O(1) time. We have to scan

the sorted list starting from the beginning till all intervals contained within the leftmost intervals are

checked for the leftmost rn value. This will be the correct value for lcci. Algorithm 4.4 does the job

in O(n) time for any edge.

If there is no intermediate node having overlapping circle with any edge, the CCI of that edge is

Null. It is to be noted that, we have deliberately left out the nodes visited by the LC-tour. The next

section deals with the incorporation of non-intermediate nodes.
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4.4.3 Finding Shortcut by Bypassing the Visited Nodes
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Figure 4.15: Connecting the Critical Contact Intervals of successive edges to form a Shortcut tour

Let us ignore the visited nodes which are the endpoints of the edges of the LC-tour. Then, we

can connect the CCI’s of successive edges of the LC-tour to derive a shortcut tour. This has been

illustrated in Figure 4.15. We have already derived the CCI of the edge connecting Nodes n2 and n8

in the previous section. The CCI on edge < n8, n11 > is a single point according to Algorithm 4.4,

which is the r point of the circle centered at n10. So is the case for edge < n11, n13 >. However, edges

< n1, n2 > and < n13, n1 > do not have any intermediate nodes with overlapping circles. Therefore,

they have no CCI’s. If we connect the endpoints of the CCI’s of successive edges, we derive a

Shortcut tour that covers only the intermediate nodes in the LC-tour. This tour is shown by solid

lines in Figure 4.15. We denote the lcci of i-th edge (as ordered in a given tour) as the point lcci and

rcci of i-th edge as rcci.

4.4.4 A Complete Shortcut Tour

The tour derived in the previous section is shorter than the LC-tour but is not complete. To make

the tour complete, we have to extend its path to cover nodes visited in LC-tour; for example, Nodes

n1, n2, n8, n11 and n13 must also be covered in the example given by Figure 4.15. To do this, we
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Algorithm 4.5 Generating Tight Label Covering Tour

Input: A tour t with CCI’s associated with each edge
1: for all node ni visited in the tour t do
2: if both the edges es (incoming) and et(outgoing) incident with ni have CCI then
3: if line lst connecting r point and l point of the CCI’s of edges es and et respectively does

not intersect circle centered at ni then
4: lni is the line parallel to lst and tangent to the circle centered at ni
5: update r point of edge es as the intersection of lni and es
6: update l point of edge et as the intersection of lni and et
7: end if
8: else
9: pni is the intersection of the incoming edge es and circle centered at ni

10: if pni is closer to ni than r point of the CCI of incoming edge es OR CCI for incoming
edge es does not exist then

11: update r point of edge es as pni

12: if CCI for incoming edge es does not exist then
13: update l point of edge es as its r point
14: end if
15: end if
16: end if
17: end for
18: tTLC ← {}
19: Join r point of an edge to the l point of the next edge successively and add it to tour tTLC

Output: tTLC is a TLC tour

choose one or more Anchor Points pi’s both from the edges which have CCI’s and edges which do

not. Algorithm 4.5 is used to generate a shorter tour from the given LC-tour provided that the CCI’s

of the edges are already calculated according to Algorithm 4.4.

To cover the visited nodes in the resulting Shortcut tour, we take different actions depending on the

status of the CCI’s of the two edges adjacent with the visited node ni:

1. If both of the edges have non-null CCI’s, i.e. there are intermediate nodes on both the edges,

then we just add the r point of the incoming edge with the l point of the outgoing edge. We

call this line segment r-l line segment.

(a) If r-l line segment is intersecting with the node ni under inspection, then we do nothing.

For example, in Figure 4.16, Node n8 has both the edges with non-null CCI’s. We connect

r-point of the incoming edge rcc2 with the l-point of the outgoing edge lcc3. The resulting

r-l line segment intersects the circle centered at n8. Hence, Node n8 is covered by this
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Figure 4.16: Updated l and r points to cover visited nodes

newly added edge.

(b) If r-l line segment is non-intersecting with the Node ni, then we draw a straight line that

is parallel to the r-l line segment and tangent to the circle centered at ni. Let this line

intersects the incoming and outgoing edges at Points pi and po respectively. We, then, add a

new edge connecting pi and po, which is a tangent to the circle centered at ni and therefore,

covers Node ni. We also update the r point of the incoming edge as pi and l point of the

outgoing edge as po. For example, in Figure 4.16, for Node n11, the r point of incoming

edge and the l point of the outgoing edge are rcc3 and lcc4 respectively. The straight line

connecting these two points does not intersect the circle centered at n11. Therefore, we

draw a line segment parallel to this straight line and tangent to the circle stated before.

The resulting edge covers the node n11. We also update the r point of the incoming edge

as rcc3 which is the intersection of this newly added edge and the incoming edge. Before,

the l and r Points were similar for this incoming edge, but now, the two points become

different. The l point of the outgoing edge is also updated as lcci4 which is the intersection

of the newly added edge and the outgoing edge.

2. If the incoming edge does not have any intermediate Node with overlapping circle or (if it has

then) its r Point is farther from Point ni by at least TXR, then we compute pi as the intersection
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between the incoming edge and the circle centered at ni. If the incoming edge has a non-null

CCI, then we update its r Point as pi. Otherwise, we set the incoming edge’s r and l Point

as pi. For example, in Figure 4.16, n13 has only one adjacent edge i.e. the incoming edge with

non-null CCI. Previously, the r Point of this edge was the intersection of n12 with this edge

that lies closer to n13. We update this r Point as rcc4, which is the intersection of this edge with

Node n13. In the same figure, Node n1 has both the adjacent edges with null CCI. Therefore,

we update both the l and r Point of the incoming edge as the intersection of this edge with the

circle centered at n1 i.e. the Point lcc5 = rcc5. For Node n2, the outgoing edge has a non-null

CCI but the incoming edge does not. Therefore, we determine the r and l Point of its incoming

edge as lcc1 = rcc1.
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Figure 4.17: TLC-tour derived in Iteration 1

Now, we have all the edges with non-null CCI i.e. with both l and r points and we can join the r

Point of the previous edge with the l Point of the next edge. The final edges are shown by solid lines

in Figure 4.17. The resulting path will be a cycle and has been derived according to the strategy of

the Algorithm 4.1, since we have chosen at most two Anchor Points from each edge and connected

them in succession. Therefore, the resulting tour will be shorter than the given tour according to

Lemma 4.1. In other word, we have derived a tour that is shorter in length than the given tour. We

call this process tightening of the given tour by Linear Shortcut. We call the shorter tour derived
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from the Label Covering Tour Tight Label Covering tour or TLC-tour.

The process of deriving the TLC-tour is formally presented in Algorithm 4.5. For an LC-tour, we

compute CCI for each edge according to Algorithm 4.4. Then, using Algorithm 4.5, we compute the

TLC-tour. Algorithm 4.5 updates the l and r Points, and adds new edge if necessary, for each visited

node in the given tour. This computation takes O(n) time. The successive joining in Line 19 takes

O(n) time. Therefore, Algorithm 4.5 takes O(n) time.

4.4.5 Iterative Improvement of TLC-tour

The path found in Figure 4.17 can be further shortened using method of finding Linear Shortcut

outlined before. To apply Linear Shortcut, we select 0, 1 or 2 points from each tour edge and connect

them successively. We divide each iteration of improvement into two steps:

1. We connect the r Point rcci of i-th edge with l Point lccj of the next edge (j-th edge such that

j > i) with non-Null CCI and include the edge connecting lccj and rccj in the edge set.

2. We re-associate the intermediate circles with the resulting edges and recompute the CCI’s for

each edge.

We outline the steps of generating sorted CI of each associated circle in Algorithm 4.3 and the steps

to compute CCI in Algorithm 4.4. However, we need a policy to re-associate the circles when existing

tour-edges break into shorter ones and new edges are added. Let us illustrate the method by applying

on the tour derived in Figure 4.17.

As shown in Figure 4.18, there are eight edges. We label the edge that connects points within the

range of Nodes n1 and n2 as the first edge, the edge next to it as the second edge and so on. Node

n1 overlaps both of the first edge (outgoing) and the last edge (incoming). The outgoing first edge

has a non-zero overlap with the circle centered at Node n1, but the incoming last edge does not.

Therefore, we associate Node n1 with the first edge rather than the last one in the tour. Node n2 has

zero overlap with both of the first (incoming) and the second edge (outgoing). As a tie-breaker, we

associate it with the incoming first edge. Therefore the first edge is associated with two circles- one

centered at n1 and the other at n2. Their CI’s are computed according to Algorithm 4.3. The CCI

is also computed for the first edge according to Algorithm 4.4. The l and r Points of the first edge is
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Figure 4.18: Updating the l and r point in the path derived in Figure 4.17

lcc1 and rcc1 respectively.

The second edge of the given tour broke at the boundary of the circle centered at n4 to give out

the second edge and the third edge. We need to decide which of these two edges to associate to

circles centered at n3 and n4. Both of the circles have bigger CI’s with the second edge than with the

third one. Therefore, we associate both the circles with the second edge. Now, the CI’s of both of

these circles border on the right end point of the second edge. There are no other CI’s on this edge.

Therefore, we select both of the l and r Point of CCI as the rightmost l Point of the CI’s of these

two circles, this point is lcc2 = rcc2, as shown in Figure 4.18.

The third tour edge has CI’s of circles centered at n5, n6, n7 and n8. Since, n8 has larger CI with

the next edge than this edge, we don’t associate it with this edge. The circle centered at n7 has CI

with both of this third edge and the next edge. In both of the cases, the CI is a single point. Since,

the third edge is incoming, we associate this circle with the third edge. In the similar fashion as done

in previous tour edges, the l and r Points of this tour edge is determined as lcc3 and rcc3 respectively.

In the same way, we determine the l and r points of the CCI’s of the remaining edges. It is to be

noted that, the edge exiting circle centered at node n10 has no CCI and hence, it has no l and r Points.
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Figure 4.19: TLC-tour derived in Iteration 2

Therefore, this edge will be skipped out of the resulting tour. After this round of re-associating of

circles and computation of l and r Points of CCI’s of respective edges, we join the r Point of an edge

with the l Point of the next edge with CCI. Thus, the resulting tour is shown in Figure 4.19. Now,

there are one more edge than the given tour but since it is derived by finding Linear Shortcut, it is

shorter than the given tour.
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Figure 4.20: Updating the l and r Points after Iteration 2
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We can continue in this way to successively tighten the given tour. For example, in Figure 4.20,

the l and r Points of the tour derived in Iteration 2 are computed after re-associating the circles. We

note that, of the nine tour edges, only two have distinct l and r Points for the CCI’s, one edge has

none of those and the rest of the edges have lcci = rcci.
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Figure 4.21: TLC-tour derived in Iteration 3

Using the same method as in the previous iteration, we connect the r points with then next edge’s

l Point to derive a tightened tour as shown in Figure 4.21. We note that, the amount of path saving

has decreased in successive iterations, the highest saving being attained in the very first iteration.

We, again re-associate the circles and compute the CCI’s on the tour derived after Iteration 3, as

shown in Figure 4.22. After Iteration 4, we derive the tightened tour shown in Figure 4.23. We note

that, the path savings have become even more smaller. Therefore, we stop our iterative improvement

here and choose Anchor Points for the MDC.

From each node position ni, we draw perpendicular to the edge with which the corresponding circle

is associated with. The intersection of this perpendicular with the edge is the Anchor Point ai for

that node ni. When the MDC reaches the point ai, it polls the target node ni for data packets. If the

point ai is out of the line segment of the edge, we choose the intersection of the corresponding circle

and the edge as the Anchor Point. For example, in Figure 4.23, node n7 has no such perpendicular

on its associated incoming edge. Therefore, we choose this edge’s endpoint that intersects the circle
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Figure 4.22: Updating the l and r Points after Iteration 3

centered at node n7.
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Figure 4.23: TLC-tour derived in Iteration 4
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Figure 4.24: Comparison between input LC-tour(doted path) and TLC-tour derived in Iteration 4

We have already noticed that, in successive iterations, the path gain deceases. We can define the

path gain gi(tTLC) for a derived TLC-tour in iteration i as follows:

gi(tTLC) =
|tTLC |i−1 − |tTLC |i

|tTLC |i
(4.1)

Here, |tTLC |i is the length of the TLC-tour derived in Iteration i. Nevertheless, the resulting gain is a

significant improvement over the given LC-tour. The given LC-tour and the TLC-tour derived after

Iteration 4 are over-imposed on each other for comparison (see Figure 4.24).

We have described our method for successive iterative tightening. Now, we give the formal algo-

rithm. In Iteration 1, we use Algorithm 4.3 to generate sorted CI’s for each circle associated with each

edge and use Algorithm 4.4 to derive CCI’s from the list of sorted CI’s and finally, use Algorithm 4.5

to generate the first TLC-tour. For successive iterations, we also need to do the similar things except

we don’t have to sort all the CI’s; rather we have checked only few marginal circles for re-association

and when those are associated with a different edge, their CI’s are re-computed and inserted into the

list of CI’s of the respective edge in non-decreasing order of the l value (the distance between the

first endpoint and the l Point of a CI).

To speed up the task of re-association, specially the process of updating contact interval of each

node, we maintain a node-list where current associated edge of each node is also kept. For example,
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after the first iteration as shown in Figure 4.17, the list of node associated with the edge after re-

association step is shown in Table 4.2. This table allows the retrieval of the associated edge with

a node in O(1) time and helps us avoid searching the edge list repeatedly. After the first iteration,

the number of edges change, Therefore, we need to scan this list and update the edge number. This

scan takes O(n) time. Then, we can scan the list again and re-associate a node, which is currently

associated with edge ei, with either the previous edge ei−1 or the next edge ei+1 or just keep its current

association with edge ei. Again, this step takes O(n) time. The decision regarding the re-association

has been illustrated in Figure 4.25.

Node Associated
Edge

n1 e5
n2 e1
n3 e2
n4 e2
n5 e2
n6 e2
n7 e2
n8 e2
n10 e3
n11 e3
n12 e4
n13 e4

(a) The list for the given LC-tour

Node Associated
Edge

n1 e8
n2 e1
n3 e3
n4 e3
n5 e3
n6 e3
n7 e3
n8 e3
n10 e5
n11 e6
n12 e7
n13 e7

(b) The list after updating La-
bels in Iteration 1

Node Associated
Edge

n1 e1
n2 e1
n3 e2
n4 e2
n5 e3
n6 e3
n7 e3
n8 e4
n10 e4
n11 e6
n12 e7
n13 e8

(c) The list after re-associating
with edges in Iteration 1

Table 4.2: The node-list with associated edges for the LC and TLC-tour for Figure 4.17
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Figure 4.25: Example of re-association process for generating TLC-tour
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As shown in Figure 4.25, in the previous iteration all the nodes from n1 through n5 were associated

with edge ej . After addition of new edges and deletion of existing edges, this edge ej is labeled as ei

in the current iteration. We run the re-association test for all the five nodes of edge ei as follows:

1. We compute the intersections between circle centered at n1 and straight line representing edge

ei. We check that these two points are not the same as the l and r Points of the circle with

respect to this edge. This tells us that, the circle is not fully contained with edge ei. Since the l

Point is different from the intersection, we infer that the circle has an overlap with the previous

Edge ei−1. Therefore, we determine the l and r Points for this circle with respect to Edge ei−1.

Finally, we determine the length of CI’s for both of the edges and find that it is longer for edge

ei−1. Therefore, we delete this node’s CI from the list of Edge ei and add it the corresponding

list of Edge ei−1. We also update the node-association list.

2. For Node n2, we find that the l and r points are same and is aligned with the first endpoint of

Edge ei. Therefore, its a candidate for checking with previous Edge ei−1 and we find the same

case for this edge too i.e. l and r Points are same. This means that the CI’s are of same length

for these two edges. In this case, we associate this node with the incoming edge ei−1. This is

our tie-breaking measure.

3. Using the test as outlined in above cases, we find that Node n3 is fully contained by endpoints

of edge ei. Therefore, it is kept associated with it.

4. Just like node n2, node n4 is associated with the incoming edge ei.

5. Like the case for Node n1, Node n5 is associated with Edge ei+1 because its CI is longer for

this edge.

Theses steps have been outlined in Algorithm 4.6. It does the above computation in O(1) time for

each node, however, we have sorted the list of CI’s for each edge by the non-decreasing l-values.

Therefore, when we insert the new interval in an existing or new list during re-association, we still

keep the list sorted by maintaining data structure like heap keyed on the l-values and it is done in

O(log n) time. This computation is done for each of the n nodes. Therefore, the total running time

of Algorithm 4.6 is O(n log n).
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Algorithm 4.6 Re-associating nodes with edges

Input: Set of all nodes V with each node ni ∈ V indexed with associated edge ej and set of tour
edge E of TLC-tour, with each edge e ∈ E having Contact Interval CIe sorted on l points

1: for all node ni ∈ V do
2: ej ← current associated edge of node ni
3: lj ← updated l point of node ni with respect to edge ej
4: rj ← updated r point of node ni with respect to edge ej
5: if lj = left-end point of edge ej then . node’s CI aligned with left end-point of the edge
6: lj−1 ← updated l point of node ni with respect to edge ej−1

7: rj−1 ← updated r point of node ni with respect to edge ej−1

8: if distance(lj−1, rj−1) > distance(lj , rj) then
9: remove node ni from Iej

10: add node ni to list Iej−1 in non-decreasing order of lj−1

11: update ni’s associated edge as ej−1

12: end if
13: end if
14: if rj = left-end point of edge ej then . node’s CI aligned with right end-point of the edge
15: lj+1 ← updated l point of node ni with respect to edge ej+1

16: rj+1 ← updated r point of node ni with respect to edge ej+1

17: if distance(lj+1, rj+1) > distance(lj , rj) then
18: remove node ni from Iej
19: add node ni to list Iej+1 in non-decreasing order of lj+1

20: update ni’s associated edge as ej+1

21: end if
22: end if
23: end for
Output: Set of nodes V with each node ni ∈ V with updated associated edge, Set of tour edges E

with each edge e ∈ E with updated Contact Interval CIe

After re-association and updating of CI’s, we update the CCI for each edge. We may use the same

algorithm used in Iteration 1. However, in Iteration 1, nodes visited in the LC-tour are not considered;

rather those are handled specially (in generating TLC-tour) by drawing tangents to those nodes and

finding intersections of the tangent with the existing edges. We also speed up the computation as

follows.

As shown in Figure 4.26, both of the circles’ r Points are the right endpoint of the associated

edge and this point is also the l point of the CCI i.e. lcci. The computed r Point of the CCI is

the l Point of the second circle. Because r Point is encountered before the l Point, according to the

Algorithm 4.4 of Iteration 1, we may set rcci ← lcci. Instead, we attempt to put the coincident l

and r Points of the CCI closer to middle of the edge as possible. For this reason, we choose to set
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Figure 4.26: Special check for computing CCI for Iteration i > 1

lcci ← rcci. Similar step is followed for the case involving left end point of the edge. Other than this

check, the computation is similar to that of Iteration 1 by Algorithm 4.4. Algorithm 4.7 does this job

for Iteration i > 1 in O(n) time for each edge and O(n2) time for the complete tour.

Algorithm 4.7 Generating Critical Contact Interval for Iteration i > 1

Input: List of sorted intervals CIe of an edge e ∈ E of a tour
1: (nt, lnt, rnt)← firstElementOf(CIe)
2: lccie ← rnt
3: (nk, lnk, rnk)← nextElementOf(CIe)
4: while lnk closer to ni than rnt do . scan all the intervals contained within the leftmost interval
5: if rnk closer to ni than lccie then
6: lccie ← rnk
7: end if
8: (nk, lnk, rnk)← nextElementOf(CIe)
9: end while

10: (ns, lns, rns)← lastElementOf(CIe)
11: rccie ← lns
12: if lccie = right end point of edge e then
13: lccie ← rccie
14: else if rccie closer to ni than lccie OR rccie = left end point of Edge e then
15: rccie ← lccie
16: end if
Output: CCIe = (lccie, rccie) is the CCI of Edge e

The next step is connecting the r Points with the l Points successively. The complete steps of

generating TLC-tour is shown in Algorithm 4.8. According to this algorithm, we always keep the

CCI’s of the edges updated for the next iteration. Therefore, in the beginning of any iteration, we

join the r Points with the l Points successively. This is done in Lines 1 - 5 in O(n) time. In Line 6,

the circles are re-associated in O(n log n) time. Finally, the CCI’s are updated for each edge in Lines

7 - 9 in O(n2) time. Therefore, the total running time of the Algorithm 4.8 is O(n2).
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Algorithm 4.8 Generating TLC-tour for Iteration i > 1

Input: Set of all nodes V and set of all edges Ei−1 of TLC-tour of iteration (i− 1)
1: Ei ← {}
2: for all edge e ∈ Ei with non-null CCI do
3: add CCI of edge e to Ei

4: connect r point of edge e to the l point of next edge with CCI and add it to Ei

5: end for
6: Re-associate nodes for the set of edge Ei according to Algorithm 4.6
7: for all edge e ∈ Ei do
8: Update CCI according to Algorithm 4.7
9: end for

Output: Set of all nodes V and set of all edges Ei of TLC-tour of iteration i

4.4.6 Selecting the Anchor Points

b

b

b

b ⊗ ⊗ ⊗

n2

n3

n4

n1

a3

a2
a4

e2

e3

e1

Figure 4.27: Selection of Anchor Points for nodes after TLC-tour is generated

After our algorithm has generated a TLC-tour, we fix some points in each edge where the MDC

halts and initiates communication with one or more nodes attached to that particular tour edge. Each

of these points is called Anchor Point and is denoted by ai. A set of nodes {ni} is attached with

Anchor Point ai.

For example, in Figure 4.27, the Anchor Points for Edge e2 are shown. Three nodes n2, n3 and n4

are attached to this edge. We draw a perpendicular from the centers of the circles to the edge and the

resulting intersections are the Anchor Points for the corresponding nodes. For example a2 and a3 are

two Anchor Points for Nodes n2 and n3 respectively. MDC halts at Point a2 and communicates with

Node n2 for data packets. But, the intersection of the perpendicular drawn from the circle centered

at n4 with the straight line representing Edge e2 lies outside the line segment representing this edge.

Therefore, instead of drawing a perpendicular, we use the right endpoint of this edge as the Anchor
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Point a4 for Node n4.

After completion of the iteration generating TLC-tour, we determine the Anchor Point ai for each

node ni. Computation for each node takes O(1) time. Therefore, the whole tour including finding

the Anchor Points for all nodes O(n) time.

4.4.7 Computational Time Complexity

In Iteration 1, we use Algorithm 4.3 which runs in O(n log n) time and Algorithm 4.4 which runs

in O(n2) time and finally, Algorithm 4.5 to generate the first TLC-tour, which runs in O(n) time.

Therefore, the time complexity for generating the TLC-tour in Iteration 1 is O(n log n) + O(n2) +

O(n) = O(n2). As explained previously, the running time for computation in Iteration i > 1 is O(n2).

Therefore, we generalize that, the running time for generating TLC-tour by m iterations is O(mn2).

We can stop the iterative improvement as soon as the path gain as defined by Equation 4.1 is

below a certain threshold like 5%, 1% etc.

TSP -tour generator

LC-tour generator

TLC-tour generator

O(TSP )

O(n3)

O(n2)

for m iteration: O(mn2)

O(TSP ) +O(n3) +O(mn2)

Figure 4.28: Time complexity of the algorithms for generating TLC-tour

The stages of computing TLC-tour is shown in Figure 4.28. The time complexity of the compu-

tation depends on two factors- the time complexity of the algorithm used to find the TSP-tour and

the number of iterations m in the steps of making a Linear Shortcut. However, the combined stages

of computation after finding the TSP-tour runs in polynomial time (O(n3 +mn2)). If the algorithm
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Node x-Coord. y-Coord.

n1 100.4 201.9

n2 30 10

n3 95 2

. . . . . . . . .

n100 301 202

(a) Input

anchor-x anchor-y Node-list

302 308 starting point(sink)

290 205 n60
202 192 n75, n80
. . . . . . . . .

302 308 starting point(sink)

(b) Output

Figure 4.29: Sample input and output of our method of generating TLC-tour

to find TSP-tour does not run in polynomial time, then its time complexity dominates that of our

algorithm.

In Figure 4.29, a sample input and a sample output of our method of generating TLC-tour are

shown. The input consists of nodes and their coordinates. The TSP-tour is generated from this

information. The output is a set of coordinates, each of which is associated with some actions. For

example, the first point in the list is the starting point or sink. The MDC starts its tour from this

point. Since, the tour is a cycle, the first point is also the last point in the tour. The second point

is an Anchor Point that is associated with node n60. The third point is an Anchor Point for both

the nodes n75 and n80. The MDC moves from one point of the list to the next point and does the

job associated with the point. This is the final output of our algorithm that minimizes data delivery

latency and maximizes node lifetime by avoiding packet-forwarding.



Chapter 5

Energy-efficient Communication

5.1 Overview

Medium Access Control (MAC) Layer plays an important role for energy conservation of the sensor

nodes in a WSN [25]. In this chapter, we present a novel design for the MAC Layer for energy-

efficient communication between a sensor node and the visiting MDC. Typically, a sensor node’s

radio is turned “off” for an interval to conserve energy [8]. The interval is known as sleep-interval.

We present a MAC Layer for the MDC in which the interval is dynamically modified to reduce the

delay related to data collection, and at the same time, to save energy of the sensor nodes.

5.2 Communication Layers

Application Layer

Network Layer

MAC Layer

PHY Layer

Figure 5.1: Communication between different layers

Typically, there are three layers in the communication module of a Wireless Sensor Network:

69
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Network Layer, Medium Access Control or MAC Layer and Physical Layer. Application Layer runs

on top of the communication module and it is responsible for gathering data packets which are

generated as a result of sensing activity. In our network scenario, the MDC is supposed to collect

data packets directly from each of the sensor node. Therefore, Network Layer, which is responsible for

discovering adjacent neighbors and maintain various routing information for forwarding, is optional

in our scenario. Even, if it is present, we can bypass Network Layer by directly handing over the data

packets from the Application Layer to the MAC layer as shown in Figure 5.1 and vice versa. This

approach relieves the sensor nodes from all the overhead related to maintaining routing tables and

building path to the sink. On the other hand, it does not result in packet loss as all the sensor nodes

are covered by the visiting MDC.

5.3 Data Deposition Method

Every sensor node buffers data packets until it comes in contact with the visiting MDC. Then, it

can upload or transmit all of the data packets to the MDC that brings those to the sink which is its

starting point of the tour. We have designed the mode of communication between the MDC and the

target sensor node. Therefore, uploading data is

• quick to minimize the overall PDL, and

• energy-efficient to maximize the life-time of the network

With each Anchor Point programmed into the MDC, there is attached one or more target sensor

node. Suppose that, node ni is tied to Anchor Point ai. As the MDC reaches the point ai, at first, it

tries to draw the attention of the target node. For this purpose, it sends out a unicast packet of type

RESPOND NOW with ni embedded in the header. As soon as ni picks up the packet, it responds

with the same type of packet with totalPackets flag set. For example, if there is the total of 130 data

packets in the buffer of the sensor node ni, its RESPOND NOW packet contains totalPackets← 130.

As soon as the MDC picks up this RESPOND NOW packet from ni, it sends out unicast packet of

type DATA REQUEST with allowedPackets field set.

For example, if theMDC has time to collect only 80 data packets from ni, it sets allowedPackets←

80 in DATA REQUEST packet. The rest 130− 80 = 50 packets is left the buffer of the sensor node
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for the next visit. In response to this DATA REQUEST packet from MDC, Node ni starts sending

its chosen 80 packets at a stretch. As soon as the MDC has collected a total of allowedPackets or a

certain time have elapsed (the time required for receiving such packets computed based on the system

parameters), it starts for its next Anchor Point. Sometimes, the MDC may bring some instruction

or information from the sink for the sensor node, these are also passed over to the sensor node by

packets of type CONTROL PACKET. It is sent before the DATA REQUEST packet.

As outlined above, sensor nodes are passive in the communication between those and the MDC in

the sense that, they never send out any kind of packets spontaneously but only in response to requests

by the MDC. There is no Application-level acknowledgement packet because according to design of

communication mode, the shared medium is supposed to be contention-free as only the MDC and

the target sensor node take turn in using it. For these reasons, the data uploading to the MDC is

quick and energy-efficient for the sensor nodes.

5.4 Adaptive Duty Cycle in MAC Layer

There are many energy-efficient MAC protocols for sensor nodes like S-MAC, T-MAC [8] etc. However,

most of these protocols abide by strict time synchronization and data packets are transmitted only

at the beginning of each synchronized interval. Thus, the above protocols are not suitable for the

wandering MDC; because when it starts its journey from the sink, many sensor nodes are out of its

reach. The schedule of those nodes are clearly different from the MDC’s. When the MDC comes in

their vicinity, those node become out of sync with the MDC. Therefore, no data collection is possible

for the MDC.

For the reason stated above, instead of existing MAC protocols, we adopt a duty-cycled CSMA

MAC protocol that is simple and energy-efficient.

The periodic interval P (in milisecond) is the same for the sensor nodes and the mobile MDC, so

is the percent of this interval λ that the wireless radio will be in listening mode. This is called duty

cycle of the physical layer. Every sensor node and the MDC maintains these values by MAC layer.

The value a is called stable duty cycle. During the rest of the time P (1 − λ), the radio is in “sleep

mode” and does not receive or transmit any signal. When any node or the MDC tries to transmit
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DATA REQUEST packet

MDC stops at anchor point MDC leaves anchor point

Figure 5.2: Duty cycle modulation in MAC Layer during data packet retrieval by the MDC

any packet, it sends out a packet known as beacon packet that takes at least P (1 − λ) time. When

neighboring nodes wake up and picks up this train of beacons, it’s radio stays in receiving mode and

abandon sleep schedule for the current interval. The node that sent the beacon trains, then starts

to send the data packets to the target node. Every other node except the target node then goes to

its normal sleep cycle in the next interval. This way, there is no requirement for synchronization of

“wake-up” or “sleep” cycles. When the MAC Layer finds the medium busy or detects collision, it

starts backs-off timer; otherwise it transmits with 1-persistence.

We integrated changing duty cycle into MAC Layer. During data packet uploading to the MDC,

the duty cycle is changed to 100% from stable duty cycle λ and after uploading finishes, duty cycle

is restored to λ. This allows quick uploading of the data packets to the MDC and minimizes latency.

This is illustrated in Figure 5.2.

Two schedules of MAC are shown in Figure 5.2- one belongs to the MDC and the other to a sensor

node. Though stable duty cycle is the same for the MDC and the sensor node, the “wake-up” or

“sleep” time is not synchronized. MDC initiates communication with the potentially sleeping target
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sensor node by sending out beacon trains. When the sensor node wakes up after a time of P (1− λ),

it receives the beacon packets and cancel sleep schedule in the current interval. The MDC then sends

out the RESPOND NOW packet. As soon as the transmission of this packet is over, MDC’s MAC

changes duty-cycle to 100%. As soon as the sensor node receives RESPOND NOW packet, its MAC

changes the duty cycle to 100%. The sensor node then replies with the number of packets it want to

upload to the MDC. MDC sends out the DATA REQUEST packet and after receiving it, the sensor

node starts sending out the data packets. After the last data packet is uploaded, it changes its duty

cycle to stable duty cycle λ. After receiving the last data packet from the sensor node, MDC also

changes its duty cycle to λ and starts for its next Anchor Point. If duty cycle is not changed to

100%, packet uploading is delayed by a factor of sleep cycle fraction i.e (1 − λ). For simplicity and

the lack of potential contention, we discard the provision for per-packet acknowledgement. Instead,

when collision is detected and/or signal quality is poor, MAC attempts a fixed number of retries.



Chapter 6

Experimental Result

In this chapter, we report the experimental results and provide the analysis. We also present the

details of the test bed of experiments.

6.1 Experimental Setup

6.1.1 The Test Bed

Concorde TSP Solver

R
an

do
m

n
N

od
es

qSplatter File (.qs)

LC-tour Solver

TLC-tour Solver

TSP-tour Anchor Maker

M
D

C
M

ob
ili

ty
-M

an
ag

er
Castalia

(OMNET++

CastaliaPlotOutput Graphs

Framework)

Figure 6.1: Simulation steps

We use Castalia 3.2 [47], a very latest and reliable sensor network framework which is run on

one of the most widely used network simulator Omnet++ 4.2.2 [48]. The steps of the experiment

are shown in Figure 6.1. We use Concorde TSP Solver [41] to find the exact TSP-tour. The output

qSplatter of file containing the TSP-tour and node coordinates is fed into the LC-tour solver whose
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output is fed into our TLC-tour solver. LC-tour and TLC-tour produces the Anchor Points which

are the intermediate points of the tours where the MDC halts to retrieve packets from the nearby

nodes.

To compare the performance among TSP-tour, LC-tour and our TLC-tour, we keep the node

positions same across scenarios and vary the transmission radius TXR from 2m to 32m. When TXR

is only 2m, the network is sparse and the path lengths for all kinds of tours are of the highest values.

When TXR is 32m, the network becomes dense and the path lengths for all kinds of tours are of the

shortest values.

Castalia 3.2 uses realistic radio modeling, and simulates the signal fall due to distance by square-

shaped Path Loss Cell [47]. The signal reception quality measured by RSSI value is the same in a

particular cell. The smaller the path-loss cells are, the more fine-grained is the signal propagation

model. However, memory requirement increases drastically with the number of such cells. Therefore,

we peg the cell-size (length of a side of the square) with the value of the TXR as follows

cellSize = TXR/2 (6.1)

Equation 6.1 ensures that there are exactly 2 × 2 × 2 = 16 cells within each circular transmission

2× TXR

2×
T
X
R

Figure 6.2: A (4× 4) grid of path-loss cells which cover the circular transmission range

range, as shown in Figure 6.2. We vary the scenarios just changing the TXR, but keep the radio

model of CC2420 intact. As a result, the energy consumption per packet reception and transmission

are the same across scenarios and thus comparisons related to the energy measures across scenarios

are also fair. All other network parameters are also similar across the scenarios.

The experimental setup parameters are illustrated in Table 6.1.
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6.1.2 Traffic Generation

Parameter Name Value/Description

Simulator Name Castalia 3.2 on OMNET++ 4.2.2

Operating System Linux Fedora Core 14

Hardware Type Processor: Intel Core i5, RAM: 2 GigaByte,
Standard Workstation

Simulation Run Time 7200 seconds for each run

Pseudo-Random Number Generator (RNG) Mersenne Twister (Period length 219937 − 1)

Total Number of Runs 10

Table 6.1: Experimental setup parameters

We generate the traffic at the sensor nodes randomly. For each value of TXR and for each type

of tours (TSP,LC, TLC), we use a common Pseudo-Random Number Generator (RNG) for random

packet generation in sensor nodes. This RNG’s provided by OMNET++ is Mersenne Twister type

and has a long period of 219937 − 1. The event of random packet generation in the simulation is free

from the repetition and correlation to other events. The RNG has been used to produce a packet in

the interval between 15 seconds and 30 seconds. All output measures are averaged over 10 simulation

runs.

We set the total time of each run as 7200 seconds. The MDC set out from the initial point and

continuously travels in constant speed (1 meter/second) and complete as many tour as possible in

this 2-hour time and gather as many packets as possible from all sensor nodes.

The same set of 10 seeds is used in all tour-types and TXR values for fairness of comparison.

We provide the histograms of packet delivery latency for each scenario and for each simulation run

in Appendix A. The number of entries in the buckets of the histogram are almost the same across

different simulation runs for the similar scenario. We continue each run of the simulation for such a

long time (2-hour) that the output measures become independent of the traffic generation pattern.

6.1.3 PHY and MAC Parameters

The parameters used for physical layer and MAC layer are shown in Table 6.2. The widely used

CC2420 radio model is chosen. The data-rate of the radio is set to be 250-kbps. This radio model

along with the underlying wireless channel of Castalia simulates signal interference, path-loss, cross-
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Protocol Layers Parameter Name Parameter Value

Physical Layer Radio Type CC2420
Transmitting Power 57.42 miliWatt
Receiving Power 62 miliWatt
Data Rate 250 kbps
Base-band 20 MHz
Noise-bandwidth 194 MHz
Sensitivity -95 dBm
Idle Power Consumption 1.4 miliWatt
Modulation Type Ideal
PHY-Frame Overhead 6 Byte

MAC Layer MAC Type Tunable MAC
MAC Buffer Size 32 Protocl Data Unit
Access Type CSMA
CS-Persistence 1-persistent
Delay for Vaid CS 128 mili-second
Transmission Retries only 1
Stable Duty Cycle 0.1
Listen Interval 10 mili-second
Back-off Type Random Interval Drawn From

Constant Range
Back-off Base Value 16 mili-second
Random offset Time before
Retransmission

5 mili-second

MAC Packet Overhead 9 Byte
MAC Beacon Frame size 125 Byte

Mobility Controller Stable Speed 1 meter/second
Acceleration Type Instant

Table 6.2: The list of parameters used for Physical and MAC Layers in the experiment

fading and other PHY phenomena present in a shared wireless medium [49].

The parameters used for the MAC layer is also listed in Table 6.2. 1-persistent Carrier Sense

Multiple Access (CSMA) is used with only 1 transmission retries as explained in Chapter 5. The

sensor nodes modulate their duty cycle from 10% (stable duty-cyle) to 100% when they come in to

the contact of the visiting MDC and receive its RESPOND NOW packet. After data transaction

with the MDC is over, the sensor nodes reset their duty-cycle to the stable one (10%). To wake up the

target sensor node, MDC continuosly sends out beacon frames. The total time length of the beacon

trains must be at least equal to the sleep-interval (90%) of the stable duty cycle. Values for beacon

frame size, listen interval, sleep interval etc. are chosen carefully to this end.
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The MAC Layer has its own timer for back-off. When carrier sensing detects the medium as busy,

MAC Layer is backed off for some random time drawn from a constant interval (16 milisecond) using

a separate RNG. The MAC buffer-size is set to 32 PDU.

Protocol Layers Parameter Name Parameter Value

Network Layer Address Translation Node ID (constant)
Network Packet Overhead 10 Byte

Application Layer
(Sensor Node)

Sensor Sampling Type Random

Maximum Interval of Sam-
pling

30 second

Minimum Interval of Sam-
pling

15 second

Application Buffer Size 120 Application Packets
Duty Cycle Modulation Present
Hibernation After Contact
with MDC

10 second

Application Layer
(MDC)

Packet Overhead 5 Byte

Pre-tour Delay 30 second
RESPOND NOW Packet Re-
tries

2

Waiting Time After Sending
RESPOND NOW packet

333 mili-second

Waiting Time After Sending
DATA REQEUST packet

343 mili-second

Table 6.3: The list of parameters used for Network and Application Layers in the experiment

6.1.4 Network and Application Layer Parameters

The parameters used for Network and Application Layers are shown in Table 6.3. The Application

Layer is completely built for our experiment. The Application Layer programs are in the MDC and in

the sensor node and these are different. These are known as MdcApp and ResponseApp respectively. In

MdcApp, there are provisions for sending RESPOND NOW packet targeting a particular sensor node,

collecting packets from the target sensor node based on the number of packets field set by the target

sensor node in response to the RESPOND NOW packet, calculating the number of packets dropped

or not received from the sensor nodes based on the sequence number of the Application Layer packet

etc. Another improvisation builds the mobility manager of the MDC so that it can send interrupts to
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Application Layer when a particular anchor or halting point is reached and when a tour is complete.

Prior to the beginning of a run, this mobility manager known as MDCMobilityManager loads the

Anchor Points generated by the relevant programs to find TSP, LC and TLC tours. The MDC

sends and receives packets only in halting states. No data packet is sent or received in motion. The

acceleration type from halting to motion state is instant. The MDC sets out from the sink, travels

along the tour-path, stops at the anchor points, collect data from the sensor nodes and return to the

sink to deliver packets. A time delay of 10-second is kept for the delivery operation. There are few

other timers related to the waiting time for a reply packet from the target sensor node in response to

RESPOND NOW packet and data packets as explained in Chapter 4. Values for these time windows

are also listed in Table 6.3. Since, reply to the RESPOND NOW packet is vital for data transaction

in a particular tour, it is sent with two retries. ResponseApp generates packets randomly within an

interval from 15 seconds to 30 seconds and buffer packets.

6.2 Results and Analysis

6.2.1 Impact on Packet Delivery Latency (PDL)

Packet Delivery Latency (PLD) in brief, is the time difference between the packet generation and

the packet delivery to the sink. There is a time-stamp of the packet-creation embedded in the packet

header. As MDC completes a single tour, it calculates PDL for each packet using this time-stamp

value. This statistics gathered by the MDC per run is represented by PDL histogram shown in the

Appendix A. We observe that in those 10 buckets of the histograms, the bucket with the highest

packet count is either the 5-th or 6-th one in almost all of the cases. Thus, the skewness of the PDL

distribution in those long-running simulations is almost zero, and the average value is very close to

the median value. This indicates that, we can reliably compare the central tendency values for the

different measures from different kinds of tours of the MDC.

In Figure 6.3, the average PDL is compared for TSP, LC and TLC tours for different TXR’s.

The average PDL does not vary much for TSP-tour as its path does not change in response to the

change in TXR. However, as TXR increases, the network becomes dense and both the LC and TLC-

tour paths decrease, so does the tour-time of the MDC. As a result, the average PDL also decreases
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Figure 6.3: The average Packet Delivery Latency vs. TXR

for LC and TLC tours. However, average PDL for TLC-tour outperforms that of LC-tour by at most

150 seconds and TSP-tour by at most 500 seconds.

The comparisons of the maximum PDL for different TXR’s for TSP, LC and TLC tours are shown

in Figure 6.4. The maximum PDL decreases for both LC and TLC tours as the network becomes

dense. Here also, TLC-tour beats LC-tour by 200 seconds. This happens because the maximum PDL

cannot be larger than the tour time of the MDC which is roughly proportional to the tour-length,

and TLC-tour has the shortest tour-length among the three tours. TSP-tour is not affected by the

change of TXR, so maximum PDL does not vary much with the change in TXR.

6.2.2 Impact on Packet Delivery Rate (PDR)

Since we generate traffic randomly, it is important to measure the throughput which we define as

the number of packets delivered to the sink by the MDC per second. In Figure 6.5 the throughput

has been plotted for TSP, LC and TLC-tour for different TXR’s. Because of the random traffic,

throughput does not consistently change for varied TXR. However, the throughput in TLC-tour is

always the highest whereas the throughput in TSP-tour is always the lowest among the three kinds
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Figure 6.4: The maximum Packet Delivery Latency vs. TXR

Figure 6.5: Impact on Packet Delivery Rate (PDR)
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of tours across all scenarios. The throughput for TLC-tour is higher than LC-tour by a significant

margin (as much as 0.15 packets/second). As the network becomes dense, the path savings by TLC-

tour is minimal and the length of LC-tour gets decreased; therefore throughputs are almost the same

but still better than TSP-tour.

Figure 6.6: The impact on the total number of packets collected by the MDC

In Figure 6.6, the total number of packets collected by the MDC is compared for three types of

tours. Here, we find that throughput is directly proportional to the total number of packets collected.

Here, the MDC in TLC- tour collects the highest number of packets (500 more packets than LC-tour

and 800 more packets than TSP-tour).

In Figure 6.7, the total packets dropped by nodes due to buffer constraint has been plotted. Here,

the TLC-tour has significant upper-hand than the other two types of tours. When TXR is small and

the network is sparse, the path savings by TLC is significant. The resulting tour-time is also smaller.

Thus, the MDC can make more number of tours and visit the sensor nodes more frequently than the

other two types of tours. This significantly reduces the number of packets dropped at sensor nodes.

As the network becomes dense, the spread of values for total number of packets dropped between

TLC and LC-tour decreases but TLC-tour always has the least value.
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Figure 6.7: The impact on the total number of packets dropped by nodes

6.2.3 Impact on Tour Time

In Figure 6.8, the average tour time of the MDC for TSP, LC and TLC-tour are compared. Since, the

path-length of the MDC is the shortest among these three types of tours, the tour-time of TLC-tour

is also the smallest. However, as the TXR increases and the network becomes dense, the difference

in the path-lengths of TLC-tour and LC-tour becomes smaller. For TSP-tour, the path-length is

unaffected as the MDC must visit the exact position of the nodes every time.

For the similar reason stated in the above paragraph, the number of tours covered by the MDC

is always the highest in TLC-tour and the lowest in TSP-tour as shown in Figure 6.9. Here, the

tour count is shown as the percentage of the total path length of a single tour. For example, for

TXR = 8.00m, the MDC covers about 550% of the single tour that is roughly equal to five complete

tours plus 1/2 of a single tour. As TXR increases, the path lengths for both of the LC and TLC-tour

decrease and the tour count increases accordingly. For TSP-tour, this value is invariant to the change

in TXR.
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Figure 6.8: The average tour time of the MDC

Figure 6.9: The total number of tours by the MDC
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Figure 6.10: Average Energy Consumed by the Sensor Nodes vs. TXR

6.2.4 Impact on Energy Consumption

In Figure 6.10, the average energy consumed by the sensor nodes are compared for TSP-tour, LC-tour

and TLC-tour. Since, in all of the cases, there is no packet forwarding by sensor nodes but only direct

sending to the visiting MDC, the variations in the average energy consumed among TSP-tour, LC-

tour and TLC-tour are the minimal. In fact, the spread is so small that the three lines almost overlap

with each other. However, due to the randomness of traffic pattern and differences in tour-time of the

MDC, there is a considerable variation among different scenarios. It is to be noted that we set the

energy consumption for sensing and generating a single packet as 10% of that for the transmission

of a single packet. The idle power consumption by Radio is 16mJ whereas the power for radio-TX

and radio-RX are 57.42mJ and 62mJ respectively. Therefore, the energy consumption is dominated

by radio transmission and reception activities or the number of packets transmitted or received by

the sensor nodes. The average energy consumption pattern shown in Figure 6.10 matches the graph

pattern of Figure 6.6 where the total number of packets sent to the MDC by the sensor nodes is

shown. Also to be noted that, we changed the TXR by varying the property of the wireless medium

but not by varying the radio model or power levels. Therefore, this comparison among scenarios are
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fair and valid.

6.2.5 Overhead of Computation

Figure 6.11: No of iterations vs. TXR (Total nodes 100)

Figure 6.12: No of iterations vs. TXR (Total nodes 75)

In Figure 6.11, the number of iterations after which the path-gain falls below 5% is plotted against

TXR for the scenario with 100 nodes. For example, when TXR is 10m, the path-gain falls below 5%

after the 7th Iteration, which is the maximum for all the scearios. This value is very small compared

to the number of nodes in the scenario. Therefore, our algorithm converges quite fast irrespective of

the types of the network. Similar plots are shown in Figure 6.12 and 6.13 when the number of nodes
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Figure 6.13: No of iterations vs. TXR (Total nodes 50)

Figure 6.14: Computation Time vs. TXR
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are 75 and 50 respectively.

In Figure 6.14, computation time for different tours are plotted. As shown in this figure, the

marginal overhead of computation time for both LC-tour and TLC-tour are small compared to that of

the exact TSP-tour. Therefore, our method does not impose any significant overhead of computation.

6.3 Discussion

Now, we can summarize our findings as follows:

1. The shortcut TLC-tour ensures the lower Packet Delivery Latency (See Figure 6.3).

2. The packet drop-rate by the sensor nodes is, on the average, lower in TLC-tour as evident from

Figure 6.7

3. The tour time and the maximum Packet Delivery Latency in TLC-tour are the minimum com-

pared to LC-tour and TSP-tour as evident from Figure 6.9 and 6.4 respectively

4. TLC-tour ensures the higher throughput as evident from Figure 6.5

5. The energy consumption and thus the network life-time in TLC-tour is as good as those in LC

and TSP-tour as evident from Figure 6.10

The summary stated above points out that, TLC-tour should be always used instead of LC or TSP-

tour since there exists algorithms which run in polynomial time. We can remember that we derive

LC-tour from TSP-tour and TLC-tour from LC-tour.



Chapter 7

Conclusion

In this chapter, we provide our research summary. Meeting the latency requirement by using the

Mobile Data Collector or MDC in the WSN depends on how fast the MDC can complete its tour,

which in turn depends on how short the tour-length is. The advantages of using the MDC has been

already stated in Chapter 1. To achieve these advantages in our application of the WSN, we minimize

the data delivery latency which is a major downside of using the MDC. In Chapter 3, we prove that

shortening the path of the MDC is the only viable option to minimize the latency. Therefore, research

in shortening the tour of the MDC is of utmost significance for energy-efficient data collection in a

WSN.

7.1 Summary

We provide a simple data collection method based on TSP-tour. In our method, to communicate with

a sensor node, the MDC does not have to visit the exact location of the sensor node; instead visiting

any point of the transmission region suffices for the communication. We adopt the disk model of the

transmission range whose radius is denoted by TXR. The value of the TXR typically ranges from

5 to 50 meters. This distance adds up to the length of the TSP-tour for each visited node. In our

method, we save this distance by making a shortcut of the tour. On one hand, the MDC does not

have to visit each node. Though we have used the similar disk model to represent the sensor nodes

arbitrary shapes of sensor transmission area can be applicable. The MDC can halt at a sensor node

89



CHAPTER 7. CONCLUSION 90

and collect data from its neighborhood. For example, for elliptical shape, the eccentricity and the

focci are required to compute the intersections between the edge and the ellipse. Our method can

also be extended to the 3-dimension. In that case, the third coordinate or z-coordinate is required for

each point. This may be helpful for aerial or underwater MDC.

We also test the performance of our algorithm using realistic test beds. The objective is to measure

to what degree latency has been minimized as a result of shortening the tour-path. We compare the

performance measures for the TLC-tour derived by our method with those of the TSP-tour and

LC-tour. Our TLC-tour is the shortest of the three types of tours under comparison.

From the experimental results, among all tours, we find that the average packet delivery latency

is the smallest in the case of TLC-tour. The TLC-tour has the shortest path, therefore, the MDC

takes the minimum time to complete a tour on the path compared to TSP-tour and LC-tour. Since

packet delivery latency is directly proportional to the tour-time as explained in Chapter 3, it is logical

that TLC-tour ensures the minimum data delivery latency among the three types of tours. For the

same reason, maximum packet delivery latency is also the minimum for TLC-tour.

Because of the minimum tour-time in the case of TLC-tour, the MDC visits the nodes most

frequently than the other two types of tours. Consequently, the time interval between two successive

visits by the MDC is the smallest and the least number of packets are dropped by the sensor nodes

in the case of TLC-tour. Therefore, the packet drop-rate is the smallest in the case of TLC-tour.

Since the packet drop rate and the tour-time are the smallest in the case of TLC-tour, the MDC

can collect the most number of packets in that tour. Therefore, the throughput is the highest in the

case of TLC-tour compared to the other two tours.

In our strategy for data collection, no nodes forward packets of the neighboring nodes. The MDC

collects packets directly from each node. Therefore, the m-lifetime of the WSN in the case of the

TLC-tour is the same as those of TSP-tour and LC-tour. In other word, like TSP-tour, TLC-tour is

the most energy-efficient tour.
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7.2 Future Research Extension

For future work, we plan to test our method in real scenarios using sensor motes [6, 5] and iRobot [9]

used as a low-cost MDC. We also plan to compute path for multiple MDC’s. In our approach, we

do not ration the time allocated by the MDC for a particular sensor node for data collection. Rather,

the MDC collects all the packets buffered in the sensor node currently in its contact. In future,

we plan to develop a framework by which the MDC can learn, from its initial periodic tours, some

parameters like- how much time to allocate for a sensor node for data collection and which nodes to

visit and which ones to skip in a particular tour.



Appendix A

Result Per Simulation Scenario

In this appendix, we present the histograms of latencies in different scenarios of our simulation runs

for the three types of tours. We use 10 buckets for each histogram. In all the cases, the maximum

counts occur in either the 5 th or the 6 th buckets. The skewness of the histogram is almost zero.

Therefore, the average value is very close to the median value and we can reliably compare the values

of the average packet delivery latency among different types of tours
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(a) TSP Tour for TXR=2.00 (b) Latency Histogram for TSP Tour of TXR=2.00

(c) LC Tour for TXR=2.00 (d) Latency Histogram for LC Tour of TXR=2.00

(e) TLC Tour for TXR=2.00 (f) Latency Histogram for LC Tour of TXR=2.00

Figure A.1: Comparison of Latency Histogram for TXR=2.00m
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(a) TSP Tour for TXR=8.00 (b) Latency Histogram for TSP Tour of TXR=8.00

(c) LC Tour for TXR=8.00 (d) Latency Histogram for LC Tour of TXR=8.00

(e) TLC Tour for TXR=8.00 (f) Latency Histogram for LC Tour of TXR=8.00

Figure A.2: Comparison of Latency Histogram for TXR=8.00m
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(a) TSP Tour for TXR=14.00 (b) Latency Histogram for TSP Tour of TXR=14.00

(c) LC Tour for TXR=14.00 (d) Latency Histogram for LC Tour of TXR=14.00

(e) TLC Tour for TXR=14.00 (f) Latency Histogram for LC Tour of TXR=14.00

Figure A.3: Comparison of Latency Histogram for TXR=14.00m
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(a) TSP Tour for TXR=22.00 (b) Latency Histogram for TSP Tour of TXR=22.00

(c) LC Tour for TXR=22.00 (d) Latency Histogram for LC Tour of TXR=22.00

(e) TLC Tour for TXR=22.00 (f) Latency Histogram for LC Tour of TXR=22.00

Figure A.4: Comparison of Latency Histogram for TXR=22.00m
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(a) TSP Tour for TXR=30.00 (b) Latency Histogram for TSP Tour of TXR=30.00

(c) LC Tour for TXR=30.00 (d) Latency Histogram for LC Tour of TXR=30.00

(e) TLC Tour for TXR=30.00 (f) Latency Histogram for LC Tour of TXR=30.00

Figure A.5: Comparison of Latency Histogram for TXR=30.00m
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