
M.Sc. Engg. Thesis

An HPSG Analysis on Declension of Nominals and

Verbs in Arabic Grammar

by

Mahmudul Hasan Masum

Submitted to

Department of Computer Science and Engineering

in partial fulfilment of the requirments for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

January 2013

The thesis titled “An HPSG Analysis on Declension of Nominals and Verbs in
Arabic Grammar,” submitted by Mahmudul Hasan Masum, Roll No. 100705074P, Session
October 2007, to the Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology, has been accepted as satisfactory in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science and Engineering and
approved as to its style and contents. Examination held on December 22, 2012.

Board of Examiners

1.
Dr. M. Sohel Rahman Chairman
Associate Professor (Supervisor)
Department of Computer Science and Engineering
BUET, Dhaka 1000

2.
Dr. Abu Sayed Md. Latiful Hoque Member
Professor & Head (Ex-officio)
Department of Computer Science and Engineering
BUET, Dhaka 1000

3.
Dr. Muhammad Masroor Ali Member
Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

4.
Dr. Md. Monirul Islam Member
Assistant Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

5.
Dr. Mohammad Nurul Huda Member
Associate Professor (External)
Department of Computer Science & Engineering
United International University, Bangladesh

i

Candidate’s Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

Mahmudul Hasan Masum

Candidate

ii

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgements ix

Abstract x

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Scope of the Work . 3

1.4 Contributions . 4

1.5 Organization . 5

2 Background and Related Works 6

2.1 Linguistic Background . 6

2.1.1 Morphology . 7

2.1.2 Syntax . 9

2.1.3 Semantics . 10

iii

CONTENTS iv

2.2 Arabic Declension . 13

2.2.1 Grammatical States . 13

2.2.2 Arabic Declension . 14

2.2.3 Role of Declension in Arabic Grammar 15

2.2.4 Case Marking . 16

2.3 HPSG Preliminaries . 22

2.3.1 HPSG and Other Grammars . 22

2.3.2 Sign Based Construction Grammar 22

2.3.3 Feature Structure . 22

2.3.4 Sign . 24

2.3.5 Construct . 26

2.3.6 The Sign Principle . 27

2.4 Related Works . 27

3 HPSG Formalism 30

3.1 Type Hierarchy . 30

3.1.1 Type Hierarchy for Noun Lexemes 30

3.1.2 Type Hierarchy for Verb Lexeme 32

3.2 Mapping Type Hierarchy to Declension Type 32

3.2.1 Noun Type Hierarchy to Declension Type Mapping 32

3.2.2 Verb Type Hierarchy to Declension Type Mapping 34

3.3 Algorithm to Find Declension Type of Nouns 36

3.4 Arabic AVM . 37

3.4.1 AVM for Arabic Noun . 37

CONTENTS v

3.4.2 AVM for Arabic Verb . 43

3.5 Construction Rules to Capture Condition of Declension 45

3.5.1 Construction by Tn1 Declension . 48

3.5.2 Construction by Tn3 Declension . 51

3.5.3 Construction by Tv1 Declension . 55

3.6 Construction Rules for Definiteness . 56

3.7 Summary . 56

4 Implementation 61

4.1 Introduction to TRALE . 61

4.2 TRALE Basics . 63

4.2.1 Signature File . 63

4.2.2 Lexical Rule Compiler . 64

4.3 Implementation Methodologies . 67

4.3.1 Signature File . 68

4.3.2 Theory File . 69

5 Conclusion 77

5.1 Contributions . 77

5.2 Future Directions . 78

Appendix A 86

Appendix B 87

List of Figures

2.1 Example of AVM . 23

2.2 Feature structure with sort description ‘sort1’ 24

2.3 Example of structure sharing . 24

2.4 HPSG sign . 25

2.5 Example of syntactic object . 26

2.6 Example of semantic object . 26

2.7 HPSG construct . 27

3.1 Lexical type hierarchy of noun lexemes . 31

3.2 Lexical type hierarchy of verb lexemes . 33

3.3 Mapping of declension type from type hierarchy of noun lexeme 34

3.4 Mapping of declension types from type hierarchy of verb lexemes 35

3.5 Algorithm to find the declension type of a noun lexeme 36

3.6 AVM for English noun . 37

3.7 AVM for an Arabic noun (extended from English noun AVM) 38

3.8 SBCG Arabic noun example: naasirun . 44

3.9 AVM for Arabic verb . 46

3.10 AVM for a sample root verb - kaataba . 47

vi

LIST OF FIGURES vii

3.11 Lexical rule for accusative construction using Tn1 construct 49

3.12 Example of lexical rule for accusative construction by Tn1 declension . . . 50

3.13 Lexical rule for genitive construction by Tn1 construction 52

3.14 Lexical rule for accusative construction by Tn3 declension 53

3.15 Lexical rule for genitive construction by Tn3 declension 54

3.16 Lexical rule for subjunctive construction by Tv1 declension 57

3.17 Lexical rule for jussive construction by Tv1 declension 58

3.18 Lexical rule for nominative definite construction 59

4.1 Example of signature file . 64

4.2 TRALE output for type hierarchy of noun-lexemes 68

4.3 TRALE output for type hierarchy of verb-lexemes 68

4.4 TRALE output for parsing kaatiban . 72

4.5 TRALE output for parsing kaatibin . 73

4.6 TRALE output for parsing naasiran . 73

4.7 TRALE output for parsing naasirin . 74

4.8 TRALE output for parsing aktuba . 74

4.9 TRALE output for parsing aktub . 75

4.10 TRALE output for parsing alkaatibu . 75

4.11 TRALE output for parsing alkaatiba . 76

List of Tables

2.1 Declension of alumnus . 8

2.2 Declension of pronoun . 9

2.3 Example of cases . 11

2.4 Example of moods . 11

2.5 Different cases for same word H. A
��J»� . 13

2.6 Different moods for same word �H. Q�å
	���
 . 14

2.7 Different declensions in sentence
�é�J. ��

	mÌ'AK.� B
�
C
�
K.�
�YK
 	P �H. Qå

	� 16

2.8 Different dimensions of declension . 19

2.9 Noun classes according to 9 declension types 20

2.10 Verb classes according to 4 declension types 21

5.1 Transliteration Table of Arabic Alphabet 86

viii

Acknowledgments

In the name of Allah, most Gracious, most Compassionate.

I express my heart-felt gratitude to my supervisor, Dr. M. Sohel Rahman for his constant

supervision of this work. He helped me a lot in every aspect of this work and guided me with

proper directions whenever I sought one. His patient hearing of my ideas, critical analysis of my

observations and detecting flaws in my thinking and writing have made this thesis a success.

I would also want to thank the members of my thesis committee for their valuable suggestions.

I thank Dr. Abu Sayed Md. Latiful Hoque, Dr. Muhammad Masroor Ali, Dr. Md. Monirul

Islam and specially the external member Dr. Mohammad Nurul Huda.

I also thank one of my friend Md. Sadiqul Islam, who was my partner in the early works of

my research. We jointly wrote a paper on HPSG formalism of verbal noun and got the paper

published in HPSG conference ([22]), which is the only international conference of HPSG.

We have also submitted part of this research work on journal Transactions on Asian Language

Information Processing (TALIP). Also parts of this thesis are published in ACIT’2009 ([23])

and ACIT’2012 ([31]). Verbal declension part is accepted in ICECE’2012 ([32]).

I also thank Professor Ivan A. Sag of Stanford University, Prof. Dr. Stefan Müller of Institut

ü Deutsche und Niederlndische Philologie and Frank M. Richter of Universität Tbingen for their

kind help in HPSG framework application and also in implementation phase.

In this regard, I remain ever grateful to my family, who always exists as sources of inspiration

behind every success of mine I have ever made.

ix

Abstract

Natural language processing (NLP) deals with computational linguistic modeling of large

coverage of vocabulary of human languages. Among the living languages, Semitic lan-

guages can construct numerous lexemes by demonstrating rich morphology, which is an

important branch of NLP. Derivation and inflection, for example, are two such morpho-

logical operations by which Semitic languages can generate numerous inflected or derived

lexemes respectively. Declension is one kind of inflection to construct one form from an-

other. Among Semitic languages, Arabic is very rich in grammatical declension of nouns

and verbs. In classical Arabic, noun lexemes are declined by nine distinct ways and verb

lexemes are declined by four ways. Modeling the morphological effect of such a rich de-

clension system is a challenging problem and is essential for intelligent and automated

processing of Arabic language. But this declension phenomenon of Arabic nouns and

verbs has not been captured yet by computational modeling.

In this thesis, we analyze the declension system of Arabic nouns and verbs and design

lexical type hierarchy by which the declension type of any noun or verb lexeme will be

determined from the lexical type. We develop an algorithm to determine declension type

of a noun lexeme. We also show construction rules to capture the morphological and

syntactic effect of declension types dynamically. We also analyze Nominal definiteness

and present construction rules to generate definite lexemes from indefinite. We use Head-

Driven Phase Structure Grammar (HPSG) which provides a versatile, multidimensional,

constraint-based architecture for supporting morphological, syntactic and semantic fea-

tures of a language. We show implementation of lexical type hierarchy and construction

x

LIST OF TABLES xi

rules in TRALE, an implementation platform which was developed specially for the gram-

mars of HPSG. We believe our work effectively extends the capabilities of existing HPSG

framework for supporting declension of Nominals and verbs in Arabic.

Chapter 1

Introduction

Natural language processing (NLP), which is a combination several well established re-

search areas such as computer science, artificial intelligence and linguistics, deals with

interaction between human language and computer. It is an enormous research field

consisting of several branches, for example, linguistics, artificial intelligence, philosophy

etc. There are lots of research tasks in NLP and some of these have significant con-

tributions in several real-world applications, namely speech recognition, text to speech

generation, automatic summarization, language translation, natural language interfaces

to computer systems, optical character recognition, question answering, e-mail filtering,

intelligent search engines and many more. For formalizing NLP, Head-driven Phrase

Structure Grammar (HPSG) [40] has a significant position as it integrates all the essen-

tial linguistic layers. There are significant reasons behind choosing HPSG formalism of

Arabic declension. Section 1.1 describes our motivation for this thesis followed by problem

statement (Section 1.2), scope of work (Section 1.3) and major contributions (1.4).

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Semitic languages exhibit rich morphological operations for construction of lexicons. We

can have a large coverage of vocabulary in these languages by computational linguistic

modeling of their morphology. In this thesis we focus on Arabic for morphological analysis.

It is one of the best instances of morphology among the living languages. Arabic is the

mother tongue of more than two hundred and twenty million people and it ranks fourth

by number of native speakers ([29]). Despite these facts, the morphological analysis of

Arabic language is relatively a new research field.

Grammatical declension is one kind o morphological operation and resides at the

heart of Arabic grammar ([24]). Grammatical declension is known in Arabic as I’rab.

By definition, declension is the process of disambiguating the grammatical roles of words

by slightly changing their end vowels. Details about I’rab is discussed in Section 2.2.

For modeling Arabic morphology, we have chosen Head-driven Phrase Structure Gram-

mar (HPSG) which is an attractive tool for capturing complex linguistic constructs. It

combines the best ideas from its predecessors: Generalized Phrase Structure Grammar

(GPSG) [18], Lexical Functional Grammar (LFG) [8] and Government and Binding theory

(GB) [12]. It plays a vital role in NLP because of its flexibility for adding different data

types for grammatical description, changing individual components of a grammar and

applying the framework to new languages. We have worked on Sign Based Construction

Grammar (SBCG) [47] version of HPSG.

1.2 Problem Statement

In classical Arabic, there are nine ways to represent nominal declension and based on these

there are sixteen classes of nouns. These are addressed from Type 1 to Type 9 (Tn1 - Tn9).

Each of these sixteen classes is not partitioned because some of these noun classes have

conditions depending on its placement in a phrase and declension type is applicable based

on fulfillment of these conditions. As an example, declension type Tn9 will not appear in

lexeme level. It is applicable to sound masculine plural if it is used as possession of first

person singular number. Otherwise, in lexeme level sound masculine plural will use Tn6

declension type. Thus same lexical type follows two different declension types based on

CHAPTER 1. INTRODUCTION 3

its position in phrase or sentence. Furthermore, in some cases, these conditions are not

explicitly mentioned in these sixteen noun classes. As an example, a singular triptote noun

lexeme which is not pseudo sound but ends with waw is not addressed in the classification

of sixteen types. Another example is �H.
�
@ (abun) which is a triptote singular sound and

follows Tn1 declension in lexeme level. But if it is used in a phrase then it becomes ñ�K.
�
@

(abuw) and follows Tn4 declension. Thus, these sixteen classes of nouns is a complex

system to identify right declension type of a noun lexeme. Our objective is to classify

Arabic noun lexemes in such a way that each of these classes form a partition. This

classification will capture these conditions computationally and eventually, identification

of a declension type will be easier.

1.3 Scope of the Work

The diversity and importance of Arabic nominals is much broader than that of their

counterparts in other languages. In Arabic, modifiers, such as adjectives and adverbs, are

also treated as nominals. Like others, Arabic nominals show two types of morpho-syntactic

operations: derivation and inflection. Derivation is the primary means of forming Arabic

nouns. In Arabic, nouns can be derived from verbs or other nouns. On the other hand,

Inflection refers to the variation in the form of a word, typically by means of an affix,

that expresses a grammatical contrast which is obligatory for the stems in some given

grammatical context. As an example, ‘speakers’ is inflected from the stem ‘speaker’. This

inflection is necessary if ‘speaker’ is used in plural form. Here a suffix, ‘s’ is used for

the inflection. The word ‘speakers’ is not a stem. But its category is the same as the

CHAPTER 1. INTRODUCTION 4

category of ‘speaker’. Thus, this process is different from derivation as syntactic category

does not change here. Formation of dual or plural from singular, formation of feminine

gender from masculine and declension are some examples of inflection.

Declension is the process of disambiguating the grammatical roles of words by slightly

changing their end vowels. Arabic declension has some unique features. In this thesis we

limit our discussion of inflection on declension only.

In this thesis, we capture declension phenomena of Arabic grammar. Lexical construc-

tion by declension is significant part of this thesis. This includes construction of genetives

and accusatives from nominative lexemes. Also for verb, from indicative lexemes, jussive

and subjunctive lexemes can be constructed. For lexical construction of 16 noun classes

of classical Arabic we consider singular noun classes that captures lexical constructions.

This is because there is no regular pattern for declension of plural nouns. Analyzing plural

declension needs further research. Phrasal construction is not included in the scope of this

thesis as it is a vast area and needs further research. For verbs, we have also considered

singular verb classes. We also analyze on lexical construction for definiteness, that is,

construction of definite lexemes from indefinite lexemes.

1.4 Contributions

Our contributions in this research are as follows:

• We show the HPSG type hierarchy of Arabic noun and verb lexemes. This hierarchy

maps noun and verb lexeme type to declension type.

• We propose Attribute Value Matrix (AVM) for Arabic nouns and verbs which cap-

tures morphological, syntactic and semantic effects.

• Classical sixteen categories is very complex system to identify declension types of

nouns. To make it simple, we devise an algorithm which identifies declension type

CHAPTER 1. INTRODUCTION 5

of a noun lexme. That is, this algorithm will be used to find the position of noun

lexeme in type hierarchy. This will also show the completeness of this classification.

• Different types of nouns follow different declension types. We analyze this phe-

nomenon and propose lexical construction rules for particular declension types of

nouns and verbs. This will help to avoid numerous lexical entries. Because thou-

sands of lexical entries will be replaced by only few rules. Hence lexical entry

database will be smaller and performance will be improved.

• We design lexical construction rules to construct definite lexeme from indefinite.

• We verify the partial type hierarchy and construction rules in TRALE, which is a

freeware platform developed in Prolog for HPSG implementation and validation.

1.5 Organization

Rest of the document is organized as follows. Chapter 2 provides preliminary discussion

required for this thesis. It first discusses basic idea of linguistics and its different subfields.

Then it discusses Arabic declension system and its effect on grammar. Lastly it discusses

preliminaries of HPSG.

Chapter 3 is our contribution chapter. Firstly this chapter presents our proposed type

hierarchy and mapping of type hierarchy to declension types. We also propose AVMs for

both Arabic nouns and verbs. We provide an algorithm to identify declension type of a

noun lexeme. Finally we propose construction rules to capture declension and definiteness.

We have implemented our research in TRALE platform as mentioned in Chapter 4.

It starts with TRALE introduction and preliminaries. After that, it describes implemen-

tation procedures. In Appendix detail implementation has been presented.

Chapter 5 draws conclusion by mentioning our concrete contributions followed by

future direction for further research.

Chapter 2

Background and Related Works

This chapter serves as a background for rest of the thesis, particularly related with linguis-

tics, Arabic declension and HPSG. Hence this chapter is very important to understand

the thesis. Section 2.1 provides background idea of linguistics by describing major sub-

fields. Section 2.2 provides Arabic declension, its significance and different declension

types. Here we start to use Arabic alphabet. A table for transliteration is given in Ap-

pendix A. We give HPSG basics in Section 2.3. Lastly, we present the state of the research

works on HPSG modeling with emphasis on the Arabic language. For exhaustive study-

ing and capturing related background information of this chapter we have used different

publications [15,16,20,24,30,38,44–47,49].

2.1 Linguistic Background

Linguistic means scientific and systematic study of human language. It is an interface

between science and humanities. Linguistics has the following subfields ([30]):

• Phonology: The study of specific sounds that make up words.

• Morphology: The study of word structures and variations.

6

CHAPTER 2. BACKGROUND AND RELATED WORKS 7

• Syntax: How words are arranged into sentences.

• Semantics: The meaning of words.

• Pragmatics: How sentences are used to communicate messages in specific contexts.

• Discourse analysis: The highest level of analysis, looking at texts.

Among these, this thesis only highlights morphology, syntax and semantics. So we

need to know some more details about these three subfields.

2.1.1 Morphology

Morphology is the subfield of linguistics which focuses on the study of formations of word

in a language. It includes study of morpheme which is the smallest indivisible unit of

a language that retains meaning. For example, the word “imperfections” is composed

of four morphemes: im + perfect + ion + s. The root, perfect, is transformed from an

adjective into a noun by the addition of ion, made negative with im, and pluralized by

s. There are two types of morphemes: bound morpheme and free morpheme. Bound

morpheme is the morpheme that cannot occur without any other morpheme. In our

example s is a bound morpheme because it cannot be used alone. Bound morphemes

are called affix. Free morpheme can occur alone. For example here perfect is free

morpheme. Root means smallest meaningful word from where all affixes are removed

and that cannot be analyzed further.

Using morphology new words can be formed from existing by any of two operations:

• Inflection: Inflection is variation in word form with an affix which is mandatory to

express a grammatical context in sentence. For example “He writes”. Here write is

used with inflectional affix -s. Here we cannot write sentence like “He write” because

it will be grammatically wrong. Again “They are writers”: here s is inflectional affix.

CHAPTER 2. BACKGROUND AND RELATED WORKS 8

• Derivation: By derivation new word is created from existing word by changing

grammatical category (e.g verb to noun). For example “’He is a writer”. Here

writer is derived from word write with affix -r.

Based on two morpho-syntactic operations there are two types of affixes: inflectional

affix and derivational affix.

A stem is the root or roots of a word, together with any derivational affixes, to which

inflectional affixes are added. A root is also a stem. For example, write is a root and also

a stem. Derivational affix -r has been added to write to form writer. So writer is also a

stem. We can add inflectional affix -s to writer to convert to writers to express certain

grammatical context.

A complete set of related word forms is called linguistic paradigm.

Declension

Declension is one of the morphological features by which one form converts to another. It

is the process of disambiguating grammatical roles of a word. It is the inflection of nouns,

pronouns, adjectives or articles to express person, number, gender or case.

For example: alumnus is a singular masculine gender. Its declension for different

numbers and genders is shown in Table 2.1.

Gender/Number Singular Plural

Masculine alumnus alumni

Faminine alumna alumnae

Table 2.1: Declension of alumnus

Again, declension of a pronoun according to case and person is shown in Table 2.2.

CHAPTER 2. BACKGROUND AND RELATED WORKS 9

Case/Person First Second Third

Nominative I you he

Accusative me you him

Genitive my your his

Reflexive myself yourself himself

Table 2.2: Declension of pronoun

2.1.2 Syntax

Syntax is the study of the structure of sentences. To know about syntax we need to get

idea about some syntactic terms such as sentence, phrase, clause, grammatical categories

etc.

Sentence, Clause and Phrase

In natural language, a sentence is an expression. It is composed of some words that

indicate minimal syntactic relation between the words.

A clause is the smallest grammatical unit that can express a complete proposition.

It is a group of words that is either a whole sentence or is a part of a sentence.

A phrase is a key grammatical unit. A phrase expresses one complete element of a

proposition. It will be made up of one or more words and occupy a particular syntactic

slot within its clause or sentence, e.g. as subject, predicate or object. The word that

determines syntactic type of a phrase is called a head. Phrases are classified according to

their head. For example Noun phrase is a phrase whose head is either noun or pronoun,

Verb phrase is a phrase whose head is verb and Prepositional phrase is a phrase

whose head is preposition.

CHAPTER 2. BACKGROUND AND RELATED WORKS 10

Grammatical Category

Grammatical Category is a class of units such as noun, verb, prepositional phrase, finite

clause and features such as case, mood, countability, gender, number. These may in turn

be subcategorized into kinds of noun, case, mood etc. Here we discuss about the two

important features case and mood.

Grammatical case means change in forms to indicate relative relation or role or

grammatical function in a phrase, clause or sentence. For example, in the sentence “I

have lost my pen” there are three cases or roles:

• Subject: I

• Object: pen

• Possessor: my

There are different types of cases which are listed in Table 2.3.

Different languages have different numbers of cases. For example Indo-European lan-

guages has 8 cases, Sanskrit has 6 different cases and Arabic has 3 cases.

Case is often marked by inflection. That is, in some language each case has a specific

inflected form by which the case is identified. This is not true for all languages though.

Grammatical mood indicates relation of verbs to reality or intent in speaking. Pos-

sible moods are described in Table 2.4:

Different languages have different numbers of moods. Many languages indicate dis-

tinctions of moods by inflection of the verb form.

2.1.3 Semantics

Semantics is the study of meaning in language. In particular, it is the study of how

meaning is structured in sentences, phrases, and words.

CHAPTER 2. BACKGROUND AND RELATED WORKS 11

Case Significance Example

Nominative Subject Belal has bought the doll

Accusative Direct object Belal has bought the doll

Genitive Possession Belal has bought Matin’s doll

Dative Indirect object Belal has bought the doll for Salam

Locative Place/time related Belal has bought the doll at Super market

Ablative Movement from something or cause Belal has bought the doll from Matin

Instrumental Instrument used to perform action Belal wrote it by hand

Vocative Addressing Hello Sir! Listen to me.

Table 2.3: Example of cases

Mood Significance Example

Indicative State of factuality and reality Karim is good

Interrogative Asking questions Will you go?

Imperative Command/request or prohibitions Please help me

Conditional Dependent upon another condition He will come if I go

Optative Hope/wishes May you live long

Jussive Pleading, wish, command or purpose etc (1st & 3rd person) He shall help

Potential Probability He may do it

Table 2.4: Example of moods

CHAPTER 2. BACKGROUND AND RELATED WORKS 12

Semantics is very much related with reference that are used for agreement. Some of

these are-

1. Index agreement: It arises when indices are required to be token identical. That

is, the value of semantic index of a lexicon needs to similar with the same value of

semantic index of other lexicon.

2. Syntactic agreement: There are some strictly syntactic objects (e.g. case, verb

form, mood). That is, a lexicon has some syntactic requirements and these require-

ments can be fulfilled by other lexicons which has certain syntactic object values.

3. Pragmatic agreement: It arises when contextual background assumptions are

required to be consistent.

In many languages, agreements are semantic rather than being sytactic only. For

example, the faculty is voting itself a raise and the faculty are voting themselves a raise.

In the two sentences, same faculty is used in two different numbers and this needs to be

captured in semantic level. Like English, agreement in Arabic language is not syntactic;

rather it is semantic. Which properties of referents are encoded by agreement features is

subject to cross-linguistic variation, but common choices include person, number, gender,

shape, humanness, animate/inanimate.

There are two types of semantic relationships holding between predicates and their

arguments. The semantic role of the subject is actor, and indicates the entity responsible

for the event. The semantic role of the object is undergoer, and indicates the entity which

experiences the state or change of state described by the verb ([44,45]). In other words,

the argument structure of an English transitive verb requires two arguments: the first

argument (i.e., the subject) must be a semantic agent, and the second argument (i.e., the

object) must be a semantic undergoer.

CHAPTER 2. BACKGROUND AND RELATED WORKS 13

2.2 Arabic Declension

2.2.1 Grammatical States

In Arabic, there are three grammatical states of nouns i.e. three cases ([46]):

• The state of © 	̄ �P (raf↪) - nominative case

• The state of I.
��
�	� (nas.ab) - accusative case

• The state of �Qk. (ǧrr) - genitive case

Table 2.5 shows example of three cases for same noun H. A
��J»� (kitāb).

Case Sentence Word form

Nominative �H. A
��J»� @

�	Y �ë (had
¯
ā kitābun) �H. A

��J»� (kitābun)

Meaning: This is a book

Accusative A�K. A
��J»�

�
ÈC

�
K.�

�l� 	� �ð (wad. h. a bilālun kitāban) A�K. A
��J»� (kitāban)

Meaning: Bilal put a book

Genitive H.� A
��J»�

��I�ê 	® �� @
�	Y �ë (had

¯
ā s.ofhatu kitābin) H.� A

��J»� (kitābin)

Meaning: This is a page of a book

Table 2.5: Different cases for same word kitāb

There are three states of Arabic verbs i.e. three moods ([46]):

CHAPTER 2. BACKGROUND AND RELATED WORKS 14

• The state of © 	̄ �P (raf↪) - Indicative mood

• The state of I.
��
�	� (nas.ab) - Subjunctive mood

• The state of Ð �	Q �k. (ǧazam) - Jussive mood

Table 2.6 shows example of three moods for same verb �H. Q�å
	���
 (yad. ribu)

Mood Sentence Word form

Indicative �H. Q�å
	���
 �ñ �ë (huwa yad. ribu) �H. Q�å

	���
 (yad. ribu)

Meaning: He beats

Subjunctive
�
½�K. Q�å

	���
 	à@ �YK
Q�
�K
 �ñ �ë (huwa yuriydu ’n yad. ribaka) �H. Q�å

	���
 (yad. riba)

Meaning: He wants to beat you

Jussive
�
½K. Q�å

	���
 	à@ ú

	G�
Q�.�

	g
�
@ (ah

˘
birniy in yad. ribka) H. Q�å

	���
 (yad. rib)

Meaning: Inform me if he beats you

Table 2.6: Different moods for same word yad. ribu

2.2.2 Arabic Declension

Grammatical declension is known in Arabic as I’rab (H. @ �Q«@� - i↪rāb). By definition, i’rab

is the process of disambiguating the grammatical roles of words by slightly changing their

end vowels. According to declension, we can classify Arabic lexemes into two types -

CHAPTER 2. BACKGROUND AND RELATED WORKS 15

declinable (H. �Qª �Ó - mu↪rab) and indeclinable (ú

	æ J.
�Ó - mabny). If a word experiences

declension it is called declinable, and if it does not experience declension, or experiences

it but does not show it, it is called indeclinable.

2.2.3 Role of Declension in Arabic Grammar

Declension plays more significant role in Arabic than most other languages. Because

in Arabic, subject, object, predicate everything is determined by the end vowel. As

an example, in English, subject and object are determined by sequence of words in a

sentence. For example, “Zayeed beat Belal” and “Belal beat Zayeed”. In the former

sentence, Zayeed is the subject and Belal is the object whereas in the latter sentence,

‘Belal’ is the subject and ‘Zayeed’ is the object. But in Arabic, B
�
C
�
K.�

�YK
 	P �H. Qå
	� (d. rba

zydun bilālan) and
�YK
 	P B

�
C
�
K.�

�H. Qå
	� (d. rba bilālan zydun) these two sentences have same

meaning - Zayeed beat Belal. In both sentences,
�YK
 	P (zydun) is the subject as it is ended

with short form of ð@ �ð (wāw) and B
�
C
�
K.� (bilālan) is the object as it is ended with short

form of
	Ë
�
@ (alif). Thus end vowel implies grammatical cases for nominals in Arabic.

Let us see another example -
�é� J. ��

	mÌ'AK.� B
�
C
�
K.�

�YK
 	P �H. Qå
	� (d. rba zydun bilālan biālh

˘
šbti -

Zayeed beat Belal by stick). In this sentence,
�YK
 	P (zydun) is in nominative case. So here

no change occurs and the ending remains the same. But
�
ÈC

�
K.� (bilālun) is in accusative

case. So
�
ÈC

�
K.� (bilālun) declines to B

�
C
�
K.� (bilālan). On the other hand �H. Qå

	� (d. rba) is

indeclinable. So its ending vowel always remains the same.
��éJ. ��

	mÌ'@ (ālh
˘
šbtun) is in genitive

case. So
��éJ. ��

	mÌ'@ (ālh
˘
šbtu) declines to

�é� J. ��
	mÌ'@ (ālh

˘
šbti). Table 2.7 shows these declension

CHAPTER 2. BACKGROUND AND RELATED WORKS 16

forms.

Nominative form Case in sentence Declined form

�YK
 	P (zydun) Nominative
�YK
 	P (zydun)

�
ÈC

�
K.� (bilālun) Accusative B

�
C
�
K.� (bilālan)

��éJ. ��
	mÌ'@ (ālh

˘
šbtun) Genitive �é�J. ��

	mÌ'@ (ālh
˘
šbti)

Table 2.7: Different declensions in sentence
�é�J. ��

	mÌ'AK.� B
�
C
�
K.�
�YK
 	P �H. Qå

	�

2.2.4 Case Marking

In Section 2.2.3 we have seen that grammatical function of a word in a sentence is de-

termined by the end vowel. It is called case marking. For subject and object there are

separate case marking. Each case marker corresponds to one of the three different cases

that described in Section 2.2.1. There are three case markers:

1. Damma (�� - u)

2. Kasra (�� - i)

3. Fatha (�� - a)

CHAPTER 2. BACKGROUND AND RELATED WORKS 17

For some cases, the marker is nunated. For example, for indefinite noun, Damma is

pronounced as un (��) instead of u (��), Kasra is pronounced as in (��) instead of i (��),

Fatha is pronounced as an (��) instead of a (��). As an example �I.
��Jº �ÜÏ

�
@ (almaktubu -

“the book”) is definite which is ended with u (��). On the other hand, �I.
��Jº�Ó (maktubun

- “book”) is indefinite and it is ended with un (��).

Declension Types

Arabic declension can be classified according to three dimensions based on different forms

of vowels which are used for declension. These dimensions are described below.

• Visibility of declension: This dimension determines whether all possible forms

of vowels are explicitly shown on the final letter of a noun for all three cases. Along

this dimension, declension can be classified into three categories: Visible declension,

Partially invisible declension and Completely invisible declension.

There are nouns which cannot explicitly show one or more vowels on their final

letters. In this case, it is assumed that if the noun were able to show vowels on its

final letter, then it would do so. So, here assumed vowels are used to reflect the

declension type. For example, ú �	æ� �k (h. usnā) cannot show �� (u) and �� (i) on its

final letter because of the presence of ø (ā) (Ya maqsura). So, ú �	æ� �k (h. usnā)

follows completely invisible declension. On the other hand,
�	á �� �k (h. asanun) can

show all short forms of vowels on its final letter:
�	á �� �k (h. asanun) is in nominative

case; when it is in accusative case it becomes A �	J �� �k (h. asanan) and when it is in

genitive case it becomes 	á
�
�� �k (h. asanin). So,

�	á �� �k (h. asanun) follows visible

declension. There are some declension types where some forms are visible and rest

are invisible. We call it partially invisible. For example, A �J
 	�� A
��̄

(qā d. iy) cannot

CHAPTER 2. BACKGROUND AND RELATED WORKS 18

show �� (u) and �� (i) on its final letter because of the presence of ø (ā) (Ya

maqsura) in Genitive and Nominative case.

• Vowel form used to decline: This dimension determines whether the vowel used

for declension is in short or long form. There are some words which use ð@ �ð (waw)

to reflect the nominative case,
	Ë
�
@ (alf) to reflect accusative and ZA�K
 (yā↩) to reflect

the genitive case. For example, ð
�	X (d

¯
uw) is in nominative case, @

�	X (d
¯
ā) is in

accusative case and ø

	X� (d

¯
iy) is in genitive case. On the other hand,

�	á �� �k (h. asanun

) shows declension with a short vowel.

• Completeness of declension: This dimension determines whether all vowels are

used in the declension forms. There are words which do not use all vowels to show

all cases; rather same vowel is used to reflect accusative and genitive cases. For

example,
�Yg.� A

�� �Ó (masāǧidu) uses �� (a) to reflect both accusative and genitive

cases. Here �� (u) is not used. For this reason this is an example of incomplete

declension. On the other hand,
�	á �� �k (h. asanun) is an example of complete declen-

sion as it can use all forms of short vowels to reflect the declensions. Notably, if a

declension type is partially or completely invisible, then the completeness dimension

will not be applicable to that declension type.

Table 2.8 shows examples of the above three dimensions of declensions [24]. Through

inheriting different combination of divisions of these dimensions, nine ways can be found

by which grammatical cases are represented. For example, visible complete declension

with long vowel, partially invisible with long vowel, invisible declension with these short

vowel etc. These nine declension types can be expressed as Tn1, Tn2, Tn3, . . . , Tn9, as

shown in Table 2.9. In traditional Arabic, nouns are categorized into sixteen classes which

are shown in Table 2.9. These noun classes can be declined by these nine declension types

as shown in Table 2.9.

CHAPTER 2. BACKGROUND AND RELATED WORKS 19

Dimensions Partitions Genitive Accusative Nominative

Visibility

Visible declension
	á
�
�� �k A�	J �� �k �	á �� �k

h. asanin h. asanan h. asanun

Completely invisible declension
ú �	æ� �k ú �	æ� �k ú �	æ� �k

h. usnā h. usnā h. usnā

Partially invisible declension
ú
æ

	�� A
��̄ A�J
 	�� A

��̄ ú
æ
	�� A

��̄

qā d. iy qā d. iyan qā d. iy

Vowel form

Declension with short vowel
	á
�
�� �k A�	J �� �k �	á �� �k

h. asanin h. asanan h. asanun

Declension with long vowel
ø

	X� @
�	X ð

�	X

d
¯
iy d

¯
ā d

¯
uw

Completeness

Complete declension
	á
�
�� �k A�	J �� �k �	á �� �k

h. asanin h. asanan h. asanun

Incomplete declension

�Yg.� A
���Ó �Yg.� A

���Ó �Yg.� A
���Ó

masāǧida masāǧida masāǧidu

Table 2.8: Different dimensions of declension

Some grammatical terms in this table are explained below.

• Triptote refers to words that take all three short vowel case endings, where each one

differentiates a particular case. For example,
�YK

�	P (zaydun) is in nominative case

and @ �YK

�	P (zaydan) and Y� K

�	P (zaydin) are in accusative and genitive respectively.

• Diptote only exhibits two case markers: �� (u) for nominative and �� (a) for both

CHAPTER 2. BACKGROUND AND RELATED WORKS 20

Types Declension Noun class Genitive Accusative Nominative

Type 1 T1

1. Triptote sound singular

�

�

�
�

�
�2. Singular noun pseudo sound

3. Triptote broken plural

Type 2 T2 4. Sound feminine plural �

�

�

�

�
�

Type 3 T3

5. Diptote without prefixed by definite markness È
�
@

�
�

�
�

�
�

or not a possessed in a possessive phrase

Type 4 T4

6. ð 	X Õ 	̄ 	áë Ñk p
�
@ H.

�
@ possessed

ø
 @ ð
not towards first person singular number possessor

Type 5 T5

7. Dual noun

ø
 ø
 @8. C
�
¿ and A��JÊ¿ possessed towards pronoun

9. 	àA�	J�K @� and 	àA��J
�	��K @�

Type 6 T6

10. Sound masculine plural

ø
 ø
 ð11. Multiple of ten between twenty and ninety

12. ñËð
�
@ (plural of possessor)

Type 7 T7

13. Noun possessed towards

�

�

�
�

�
�first person personal pronoun

14. ending with ya maqsoora (ø)

Type 8 T8 15. Noun ending with ø
 �

�

�
�

�
�

Type 9 T9

16. Sound masculine plural
ø
 ø
 ð

possessed towards personal pronoun

Table 2.9: Noun classes according to 9 declension types

CHAPTER 2. BACKGROUND AND RELATED WORKS 21

genitive and accusative. For example,
�
É 	̄
� @ñ

��̄
(qa’’filu) is in nominative case and

�
É 	̄
� @ñ

��̄
(qa’’fila) is used for both genitive and accusative case.

• Ending type denotes type of end letter- whether consonant or vowel. Sound nouns

are those where end letters are consonants, for example,
�Y K

�	P (zaydun). For an

unsound noun, end letter is a vowel (@ (ā) or ð (w) or ø
 (y)). For example, A
��̄

ú
æ
	�� (qā d. iy) is a unsound noun.

• Pseudo sound ends with ð (w) or ø
 (y) and there is sakin 2 on the letter before

the last letter. It is actually unsound, but it follows declension like a sound noun.

For example, �ñË �X (da lwun).

In Arabic, possessive phrase is called Mudaf-Mudaf Ilayh, where possessed is called

Mudaf and possessor is called Mudaf Ilayh. For example, é�
��<Ë A �K. A

��J»� (kitābu’l-lahi - ‘The

book of Allah’). �H. A
��J»� (kitābu - ‘book’) is the possessed and é�

��<Ë
�
@ (al-lahi - ‘Allah’) is the

possessor.

There are 4 possible ways by which Arabic verbs can be declined and 5 classes of

Arabic verbs. Mapping of these 5 classes to 4 declension types is shown in Table 2.10.

Types Verb class Jussive Subjunctive Indicative

Type 1 1. Sound singular jawazim �� ��

Type 2
2. Unsound by ð

Extinction È �� ��
3. Unsound by ø
 not ending with 	à

Type 3 4. Unsound by
�
@ Extinction È �� ��

Type 4 5. Imperfect ending with 	à Extinction 	à Extinction 	à 	à

Table 2.10: Verb classes according to 4 declension types

2Sakin is absence of short vowel on a letter

CHAPTER 2. BACKGROUND AND RELATED WORKS 22

2.3 HPSG Preliminaries

2.3.1 HPSG and Other Grammars

To formalize natural language a grammar is required. Probable grammars for natural

language processing are ([49]):

• Generalized Phrased Structure Grammar (GPSG) ([18])

• Lexical Functional Grammar (LFG) ([8])

• Head Driven Phrase Structure Grammar (HPSG) ([40])

Among the above, HPSG is very different from GB, GPSG, LFG and other contem-

porary grammar models in architecture as well as formal and linguistic content. HPSG is

the immediate successor to GPSG.

HPSG is flexible for adding different data types for grammatical description, changing

individual components of a grammar, applying the framework to new languages and fur-

ther development of the overall framework. Moreover, grammar model, universal grammar

and particular grammars are expressed in a uniform powerful formalism.

2.3.2 Sign Based Construction Grammar

In this thesis we use Sign Based Construction Grammar (SBCG) ([47]) version of HPSG.

SBCG is an attempt to adapt ideas developed in HPSG after long research. It is an

alternative to derivational (movement-based) theories of grammar. It synthesizes ideas

developed in HPSG for its theoretical foundations.

2.3.3 Feature Structure

A feature structure is essentially a set of attribute-value pairs. For example, a probable

value of attribute gender is masculine. A value of an attribute can be atomic/single

CHAPTER 2. BACKGROUND AND RELATED WORKS 23

symbol or another feature structure. Feature’s value can be any of the four possible types

([20]):

• Atomic sort or single value

• A feature structure

• A set of feature structures

• List of feature structures

Attribute value pairs can also be expressed using Attribute value matrix (AVM).

In Figure 2.1 we can see example of a AVM. There are two columns in the matrix. First

is for attributes (which is also called features) and another is its value. In the example we

can see values of feature of CAT (category) is noun, that is a single symbol. The value

is atomic. But value of feature AGR (agreement) is another AVM or feature structure.

The inner feature structure contains three features person, gender and number and value

of these are 1st, masc (masculine) and sing (singular) respectively.

cat noun

agr

person 1st

gender masc

number sing

Figure 2.1: Example of AVM

Sort Description

The type of each feature structure can be expressed by sort description. Sort description

is an atomic value and written at top left position of a feature structure. For example,

sort description for third person singular nouns can be 3rd− sg− noun− lex. Figure 2.2

shows a feature structure with sort description sort1.

CHAPTER 2. BACKGROUND AND RELATED WORKS 24

sort1

Feature1 value1

Feature2 value3

Figure 2.2: Feature structure with sort description ‘sort1’

Structure Sharing

The main explanatory mechanism in HPSG is that of structure-sharing, equating two

features as having the exact same value (token-identical). An example of structure sharing

is shown in Figure 2.3. Here in Feature4 is sharing value with Feature3B and Feature5 is

sharing value with Feature2. That means, the value of Feature4 will be same as the value

of Feature3B, i.e., value3b.

sort1

Feature1 value1

Feature2 2 value3

Feature3

Feature3a value3a

Feature3b 1 value3b

Feature4 1

Feature5 2

Figure 2.3: Example of structure sharing

2.3.4 Sign

SBCG describes language in terms of constraints on linguistic expressions which is called

sign. Sign has PHON, MORPH, SYN and SEM feature to express phonological, morpho-

logical, syntactic, semantic subfields of linguistics respectively. A typical sign has been

shown in Figure 2.4.

The value of PHON is phonological phrase φ−phr. The values of other three features

is feature structure of type of corresponding object i.e. morphological-object (morph-obj),

CHAPTER 2. BACKGROUND AND RELATED WORKS 25

phon φ− phr

morph morph-obj

syn syn-obj

sem sem-obj

Figure 2.4: HPSG sign

syntax-object (syn-obj) and semantic-object (sem-obj).

ARG-ST (Argument structure) is a feature of sign which lists syntactico-semantic

arguments. For example, for transitive verb donate has an ARG-ST list as follows: <

NP, NP, PP >. Here first NP is verb’s subject, second NP is verb’s direct object and the

last one is prepositional phrase.

SYN feature structure includes features like CAT (category), VAL (valence) and

MRKG (marking). CAT is a complex feature which includes CASE to indicate cases

of nouns, MOOD to indicate mood of verbs, VFORM to specify morpho-syntactic cate-

gory of a verb, AUX (auxiliary) to indicate whether a verb is an auxiliary and VOICE

for verb.

VAL expresses degree of saturation. The value of MRKG can be unmk (unmarked)

in case of unmarked signs or any of that, whether, than, det etc. For example, that Pat

wrote: its MRKG value is that but Pat wrote: its MRKG value is unmk.

An example of syn-obj is shown in Figure 2.5

SEM feature structure includes two features: INDEX and FRAMES. INDEX is to

indicate the referent of an expression. For a noun phrase (NP) it indicates the subject

and for verb phrase it indicates the verb.

In HPSG, the semantic information is expressed in Minimal Recursion Semantics

(MRS), as developed in CSLI’s Linguistic Grammars Online (LinGO) project [15, 16].

Most semantic information in MRS is contained under the feature FRAMES. That is,

FRAMES is to indicate predications that together determine meaning of a sign. Value

CHAPTER 2. BACKGROUND AND RELATED WORKS 26

syn-obj

cat

verb

mood subj

vf fin

aux +

val none

mrkg unmk

Figure 2.5: Example of syntactic object

of FRAMES is list of frames. A frame is an elementary scene in which certain semantic

roles are specified and specific participants are assigned to them. As an example, in eating

frame, participants are an actor (who does the eating) and the food (which is eaten). SIT

(situation) is used to indicate verb index in a frame. Figure 2.6 shows an example of

sem-obj.

sem-obj

index i

frames

〈

eat-fr

sit s

actor i

undergoer j

〉

Figure 2.6: Example of semantic object

2.3.5 Construct

Derivational and inflectional constructions fit uniformly into a two-level mode, one that

is articulated in terms of a mother and its daughter(s). For example, the verbal word

CHAPTER 2. BACKGROUND AND RELATED WORKS 27

whose form is laughed is constructed from the verbal lexeme whose form is laugh. The

resulting mother-daughter configuration is a construct ([47]).

In order to express constructional generalizations in a systematic way, it is useful, as

indicated above, to model constructs as feature structures of the form sketched in Figure

2.7. mtr sign

DTRS list(sign)

Figure 2.7: HPSG construct

The value of MTR (mother) is a sign which is constructed from a given construct.

The value of DTRS (daughters) is a list of signs which are used to form the mother.

2.3.6 The Sign Principle

Signs in SBCG are licensed by a general grammatical principle ([47]) which can be

formulated as follows ([48]): Every sign must be lexically or constructionally licensed,

where:

• A sign is lexically licensed only if it satisfies some lexical entry

• And a sign is constructionally licensed only if it is the mother of some construct

A lexical entry is thus a feature structure description that describes a class of lexical

signs: lexemes or words that is lexical entry is used to formulate a sign.

2.4 Related Works

HPSG analysis of Semitic language is comparatively a new area of research. Few research

works address the problem of HPSG modeling for Semitic languages. Among these lan-

guages, HPSG modeling of Hebrew is not new but it lacks its coverage on morphology. In

CHAPTER 2. BACKGROUND AND RELATED WORKS 28

2000, Nathan Vaillette presented a paper on Hebrew relative clauses [51]. In this paper,

he nicely modeled the phrasal construction rules to capture Hebrew relative clauses. He

did not put emphasis on morphological operation.

Morphology of Sierra Miwok and French were modeled in HPSG by phonological

realization [6]. The author also showed how nonconcatenative morphology can be captured

by his framework. He further mentioned the idea how consonant and vowel melody forms

the word in Arabic. But he did not show any construction rule for any language.

An HPSG formalism of morphologically complex predicate is outlined in [13]. Here

the author mostly focused on syntax and semantics of causative construction. He used

lexical rule with semantic frames to capture morphological effect. As Japanese is an

Agglutinative language, the morphology used here is concatenative morphology.

Intricate nature of Arabic morphology attracts several series of research projects [1,

9, 50]. These research projects are mainly based on development of toolkit for Arabic

morphological analysis. These projects are not based on compiler development, rather

these are dedicated for morphological analyzer which designs and implements finite state

morphological models. From linguistic perspective, these models describe rules of lexicon

development and derive lexicons.

Riehemann modeled concatenative morphology in German and English using HPSG

formalism in 1998 [42,43]. In that paper, the author captured the morphological derivation

by a special feature called MORPH-B, which means morphological base. MORPH-B

feature serves the purpose of derivation. MORPH-B feature can also be used to capture

nonconcatenative morphology. In 2001, Riehemann extended the previous work and added

nonconcatenative morphology for Hebrew verbal nouns [43].

In 2006, an HPSG analysis of Arabic broken plurals and gerunds were presented [27].

Main assumption in that work revolves around the Concrete Lexical Representations

(CLRs) located between an HPSG type lexicon and phonological realization. Here, HPSG

sign was represented using CLR function and not by AVM. This function put more em-

CHAPTER 2. BACKGROUND AND RELATED WORKS 29

phasis on phonology instead of morpho-syntactic operations.

HPSG modeling of Arabic triliteral strong verbs was proposed in 2008 [3–5]. In these

papers, the authors have shown regular morphology of Arabic verbs. The authors designed

the SBCG AVM of Arabic verbs. The authors also designed several constructions of verb

lexeme and morphologically complex predicates (MCP). The authors did not propose

any implementation methodologies to implement the construction rules proposed in their

works.

In [36], HPSG formalization for Arabic nominal sentences has been presented. That

formalization covers seven types of simple Arabic nominal sentences while taking care of

the agreement aspect. The formalization presented in [36] has been implemented using the

Linguistic Knowledge Building (LKB) ([14]) system. Additionally, Mutawa et al.’s work

is based on the assumption that agreement information in Arabic arises from syntactic

rules. However in Section 3.4, we have established that agreement in Arabic is not always

syntactic and the agreement feature needs another feature, humanness (HUM), which is

not mentioned in that work.

In [21], authors has studied the typology of the Arabic relative sentences and proposed

an Arabic HPSG Grammar. That work has specified an Arabic lexicon and proposed the

grammar in Type Description Language (TDL) ([28]).

An in-depth analysis of declensions of Arabic nouns has been presented in [23]. Here

the authors discussed different dimensions of declension. But they did not show or discuss

any mapping of lexical types to declension types, which is necessary to implement the

declension phenomenon in HPSG.

Thus to the best of our knowledge, the rich declension phenomenon of Arabic Nominals

has not yet been explored in the literature. This motivates us to do research in this

particular area.

Chapter 3

HPSG Formalism

In this chapter, we show the type hierarchy of Arabic noun lexemes and verb lexemes.

We propose AVM for Arabic nouns and verbs. Then we show the mapping from type

hierarchy to DEC and VDEC feature for nouns and verbs respectively. We show the

algorithm which identifies the declension type of a noun lexeme from the type hierarchy.

From this algorithm, we show that any type of noun lexemes must have one distinct

declension type in a particular condition. We also show construction rules for each case

or mood and definiteness to eliminate lexical entries.

3.1 Type Hierarchy

In this section, we discuss about type hierarchy for both nouns and verbs.

3.1.1 Type Hierarchy for Noun Lexemes

We can classify Arabic nouns based on several dimensions. For example:

• Number

• Derivation

30

CHAPTER 3. HPSG FORMALISM 31

• Gender

• Declension

• Ending type

noun

WEAK ENDINGDERIVATION GENDERNUMBER DECLENSION

non-derived d li blnon-derived
(ism jaamid) derived unsound soundsg dual pl mascfem indeclinable declinable

derived
from noun

derived
from

root letters

ism
maqsoor

ending with
ya/waw

verbal noun
المصدر)

al-maasdar)

unit noun
Or noun

of instance
(with ة)

abstraction
with iyaa (ي)

diminutive
التصغير)

al-taasghir)

participle
(mustaq) purepseudo

Figure 3.1: Lexical type hierarchy of noun lexemes

The type hierarchy of Arabic noun lexemes is shown in Figure 3.1 based on this

dimensions. Derivation is explored by [22]. In fact, classification along derivation is

not subjected to declension. Among these dimensions, end letter type deserves some

explanation. The first level of classification along this dimension is as follows:

• Sound (end letter is consonant)

CHAPTER 3. HPSG FORMALISM 32

• Unsound (end letter is vowel i.e @ (ā) or ð (w) or ø
 (y)). It can be classified as

follows:

– Ism maqsoor (alif ending)

– Ending with ya/waw. It can be further classified to:

∗ Pseudo sound (ending with ø
 (y) or ð (w) and its letter has sakin)

∗ Pure unsound.

3.1.2 Type Hierarchy for Verb Lexeme

Arabic verbs can be classified into two dimensions based on declension pattern. These

are:

• Number: Three possible values of number are: sg, dual and pl to denote singular,

dual or plural respectively.

• Ending type: Ending type can be sound or unsound. If it is unsound then we can

again divide into two types: ending with
�
@ (a) and ending with ø
 (y) or ð (w)

Type hierarchy of Arabic verb lexemes is shown in Figure 3.2 based on these dimensions.

3.2 Mapping Type Hierarchy to Declension Type

In this section, we map our type hierarchy to declension type for both nouns and verbs.

From the type hierarchy, we first form lexical types that formed by multiple inheritances.

Then we map each lexical type to a particular declension type.

3.2.1 Noun Type Hierarchy to Declension Type Mapping

As discussed in Section 2.2.4, there can be nine possible declension types of noun lexemes.

Figure 3.3 shows the mapping of these declension types from lexical type hierarchy. Note

CHAPTER 3. HPSG FORMALISM 33

verb-lex

ENDING TYPENUMBER

unsoundsoundsgpldual unsoundsoundsgpldual

ending with ending with
alif ya/waw

Figure 3.2: Lexical type hierarchy of verb lexemes

that, derivation has no effect on declension. So dimension along derivation is not shown in

Figure 3.3. This figure shows subtypes which are formed by multiple inheritances indicated

by dotted lines. For example, triptote− sound− sg−noun− lex is type of a noun lexeme

which is a subtype of triptote, sound and singular. Declension type for each sub type is

shown inside parenthesis. Declension type of lexical type triptote−sound−sg−noun−lex

is Tn1 which indicates that lexical type triptote−sound−sg−noun−lex follows declension

type 1.

For simplicity, we have not mentioned lexical type for other subtypes though we have

shown corresponding declension types. We can also observe that there are three lexical

types which follow declension type 1. These are - triptote − sound − sg − noun − lex,

triptote − pseudo − sg − noun − lex and triptote − broken − pl − noun − lex. Notably,

Tn4 and Tn9 declension types are only found in phrase levels. That is why, these are not

shown in this mapping.

CHAPTER 3. HPSG FORMALISM 34

noun-lex

DECLENSION ENDING TYPENUMBERGENDER Derivation

unsoundsoundpldualmascfem indeclinable declinable

diptotetriptote

ism

ending with
ya/waw

sg
brokenstrong

maqsoor

pure pseudo

(Tn3)(Tn5) (Tn6)(Tn2) triptote-sound-sg-noun-lex
(Tn1)

(Tn7) (Tn1)(Tn1) (Tn8)

Figure 3.3: Mapping of declension type from type hierarchy of noun lexeme

3.2.2 Verb Type Hierarchy to Declension Type Mapping

Mapping of declension type from type hierarchy of verb lexeme is shown in Figure 3.4.

Here we can see mapping to 4 declension types that are mentioned in Table 2.10. Type of

verb lexemes is formed by multiple hierarchies and each type has a particular declension

type. For example, type sound − sg − verb − lex is formed from sound and singular by

multiple inheritance and it follows declension type Tv1.

CHAPTER 3. HPSG FORMALISM 35

verb-lex

ENDING TYPENUMBER ENDING TYPE

unsoundsound

NUMBER

sgpldual
unsound

ending with
lif

ending with
/

sound

alif ya/waw

(imperfect
ending with nun)

Tv4
Tv2Tv3Tv1

(imperfect
ending with nun)

Tv4

Figure 3.4: Mapping of declension types from type hierarchy of verb lexemes

CHAPTER 3. HPSG FORMALISM 36

3.3 Algorithm to Find Declension Type of Nouns

In Section 3.2, we have shown mapping of declension types from lexical type hierarchy.

From this mapping, we devise an algorithm which determines the declension type of a

noun lexeme. The flowchart of this algorithm is shown in Figure 3.5. This will be an

offline method by which the declension type of a lexeme will be identified.

From this flowchart, it is clear that each noun lexeme must have a declension type.

This is because, at each decision maker, the noun lexemes are subjected to two new

partitions. Thus, all noun lexemes are completely partitioned. In other words, every

noun lexeme must have a declension type which can be determined from this flow chart.

start

IsIs
declinable

?
none N

Y

Is
diptote?Tn3

Y

N

NumberTn5
dual Broken /

strong
pl broken

strong
sg

Tn1

Is
sound

masc/
fem

MF

Tn1
Y

N

Tn6Tn2

ya
maksura
ending?

N

Is
pseudo?

N Y
Tn1

Y N

Tn7
Tn8

Figure 3.5: Algorithm to find the declension type of a noun lexeme

CHAPTER 3. HPSG FORMALISM 37

3.4 Arabic AVM

In this section we first mention SBCG AVM for English nouns and then extend it for

Arabic. Then we will propose AVM for Arabic verbs.

3.4.1 AVM for Arabic Noun

We modify the SBCG feature geometry for English and adopt it for Arabic. The SBCG

AVMs for nouns in English [47] and in Arabic are shown in Figure 3.6 and Figure 3.7,

respectively.

noun-lex

phon []

form []

arg-st list(sign)

syn

cat

noun

case . . .

select . . .

xarg . . .

lid . . .

val list(sign)

mrkg mrk

sem

index i

frames list(frame)

Figure 3.6: AVM for English noun

The PHON deals with phonology and hence, it is not related to morphology and its

effect. For this reason, this feature is out of the scope of this thesis. Three main function

features - MORPH, SYN and SEM are discussed here.

The MORPH feature captures the morphological information of signs and replaces

the FORM feature of English AVMs. This feature is similar to MORPH feature used for

Hebrew verbal nouns [43]. The value of the feature FORM is a sequence of morphological

CHAPTER 3. HPSG FORMALISM 38

noun-lex

phon []

morph

root list(letter)

skeleton list(letter)

dec . . .

arg-st list(sign)

syn

cat

noun

case . . .

def . . .

select . . .

xarg . . .

lid . . .

val list(sign)

mrkg mrk

sem

index

person . . .

number . . .

gender . . .

hum . . .

frames list(frame)

Figure 3.7: AVM for an Arabic noun (extended from English noun AVM)

CHAPTER 3. HPSG FORMALISM 39

objects (formatives); these are the elements that will be phonologically realized within

the sign’s PHON value [47]. On the other hand, MORPH is a function feature. It does

not only contain these phonologically realized elements but also contains their origins.

MORPH contains three features - ROOT, SKELETON and DEC.

1. ROOT feature contains root letters for the following cases:

(a) The root is characterized as a part of a lexeme, and is common to a set of

derived or inflected forms

(b) The root cannot be further analyzed into meaningful units when all affixes are

removed

(c) The root carries the principal portion of the meaning of the lexeme

In other cases, the value of this feature is empty.

2. SKELETON contains not only stem but also inflected word. That is, it contains

all the letters that constitutes the word. It is a sequence of morphological objects

which are phonologically realized. It will include both lexical formatives and affixes.

For example, for Arabic word A�J. �K� A
�
¿ (kātiban), value of FORM will be < kaatib+an >.

For �I.
�K� A
�
¿ (kātibun), value of FORM will be < kaatib + un >. This feature is very

much similar to the feature SKELETON used in [42].

3. DEC feature is a significant addition in MORPH of Arabic AVM. This feature

indicates the declension type as discussed in Section 2.2.4. Declension type is a

morphological feature. Hence DEC is placed under MORPH. It determines how

the end vowel of a noun lexeme changes to reflect its case. The change of end

CHAPTER 3. HPSG FORMALISM 40

vowel changes the form of a lexicon. As discussed in Section 2.2.4, there exists nine

possible ways in which grammatical cases can be represented on an Arabic noun.

So for a declinable noun, the value of the DEC feature will be one of Tn1, Tn2, Tn3,

. . . , Tn9, corresponding to the nine declension types presented in Table 2.9. The

value of this DEC feature can be determined from the type hierarchy mentioned in

Figure 3.3. For indeclinable nouns, the value of the DEC feature will be none.

ARG-ST feature contains syntactico-semantic arguments. In our case, a noun lexeme

doesn’t have any arguments as it is detached. Though accusative lexeme has a governor

requirement but it will be captured by the AVM of the governor. That is governor lexeme

will contain governed as an argument in ARG-ST. For example, A�K. A
��J»� (kitāban - book) is

in accusative case and it’s ARG-ST will be empty. But �I.
��J
�
» (kataba - write) is the

governor of A�K. A
��J»� (kitāban). So ARG-ST of �I.

��J
�
» (kataba) will contain A�K. A

��J»� (kitāban).

SYN feature contains CAT, VAL and MRKG features. We modify the CAT feature of

SBCG to adopt it for Arabic language. Note that, for all kinds of verbal nouns, the sort

description of the CAT feature is noun. In Arabic there are only three parts of speech

(POS) for lexemes or words: noun (in Arabic, pronoun is also considered as noun), verb

and particle. In the case of the Arabic noun, the CAT feature consists of CASE, DEF,

SELECT, XARG and LID features. As Arabic has three cases for noun, the value of

CASE will be either nominative, accusative or genitive.

Among these features, we introduce the DEF feature, which is used for syntactic

agreement in phrasal construction. This feature also strengthens our design. The DEF

feature denotes the value of definiteness of an Arabic noun. There are eight ways for a

noun word or lexeme to become definite [25]:

CHAPTER 3. HPSG FORMALISM 41

1. A word made definite by means of the definite article: È
�
@ (al)

2. A sentence can be made definite by means of a relative pronoun: “the car that was

driven”

3. Demonstrative pronouns: “This”, “That”

4. Proper nouns are also definite.

5. Personal pronouns such as “he”, “I” and “you” are inherently definite.

6. Objects of vocation: “O car!”

7. A noun which is possessive to any of the above: “Zahid’s car”

8. Special category:
�é
��<Ë
�
@ (↩al-lāhu) is another instance of definite lexeme.

The last category confirms that definiteness must be specifiable at the lexeme level.

Thus if the state of a noun is definite, the noun lexeme contains yes as the value of DEF,

otherwise its value will be no.

In Arabic, there is a significant role of the definiteness (DEF) feature for syntactic

agreement. A noun and its modifier must agree on the value of the DEF feature. For

example, �Q�Ôg
�
B@ �H. A

��Jº� Ë
�
@ (alkitābu ’l-↩ah.maru) means “the red book”. Here, �H. A

��Jº� Ë
�
@ (alkitābu

) means “the book” and �Q�Ôg
�
@ (↩ah.maru) means “red”. As “red” is used as a modifier for

“the book”, the definiteness prefix ‘al’ has been added to �Q�Ôg
�
@ (↩ah.maru) yielding �Q�Ôg

�
B
�
@

(al-↩ah.maru).

CHAPTER 3. HPSG FORMALISM 42

Like SBCG in English, SEM feature in Arabic contains two function features - INDEX

and FRAMES. The INDEX is used for index based semantic agreement and FRAMES

contains the list of frames which contain semantic information.

Throughout this whole formalism, we use the event frame for verb and verbal nouns to

capture their semantic content efficiently. This event frame takes an event or situational

index variable (SIT) and index-valued features such as actor, undergoer, instrument,

location. In case of write-fr, this event frame contains three indices: action or event

(SIT), actor (ACTOR) and undergoer of the action (UNDGR) i.e. the object of the verb.

We use this index based agreement [40] as opposed to putting the agreements under

AGR feature [26]. This is because index based agreement is more customary in HPSG

and most of the scholars use index based agreement.

Depending on languages, agreement may have gender, human/non-human, animate/inanimate

or shape features [40]. In Arabic, person, number, gender and human/nonhuman - these

information must be kept for semantic agreement. So, INDEX feature is composed of

PERSON, NUMBER, GENDER and HUM and it is contained under SEM. Notably,

the first three features (PERSON, NUMBER and GENDER) are also used for semantic

agreement in English [40].

We introduce HUM feature for Arabic which denotes humanness. In Arabic, Human-

ness is a crucial grammatical factor for predicting certain kinds of plural formation and for

the purpose of agreement with other components of a phrase or clause within a sentence.

The grammatical criterion of humanness only applies to nouns in the plural forms. As an

example, consider the sentences, “these boys are intelligent” (Z
�
A�J
»�

	X
�
@ �XB

�
ðB
�
@ Z

�
B
� �ñ �ë - ha↩ulā↩

alāwlādu ↩ad
¯
kiyā↩) and “these birds are intelligent” (

��é ��J
»�
�	X �PñJ
 �¢Ë@ è�

	Y�
�ë - had

¯
ihi ’lt.uywru

d
¯
akiyyatun). Both of these sentences are plural. But the former refers to human beings

whereas the latter refers to non-humans. So the same word “intelligent” (d
¯
akiyyun) has

taken two different plural forms in two sentences, namely, Z
�
A �J
 »�

	X
�
@ (↩ad

¯
kiyā↩) and

��é ��J
 »�
�	X

(d
¯
akiyyatun), respectively. In case of boys, it is in the third person masculine plural form

CHAPTER 3. HPSG FORMALISM 43

(Z
�
A�J
»�

	X
�
@ - ↩ad

¯
kiyā↩) whereas in case of birds, it is in the third person feminine singular form

(
��é��J
»�

�	X - d
¯
akiyyatun). Also, note that from the third person feminine singular form (

��é��J
»�
�	X -

d
¯
akiyyatun), we cannot readily say that it refers to feminine. In fact, it may refer plural

of nonhuman beings too. This is why, along with PERSON, NUMBER and GENDER,

we keep HUM as a semantic agreement feature.

If the noun refers to a human being then the value of HUM is yes, otherwise it is no.

The value of PERSON for Arabic nouns can be 1st, 2nd or 3rd. There are three number

values in Arabic. So, the value of NUMBER can be sg, dual or pl denoting singular,

dual or plural, respectively. The GENDER feature contains either masc or fem denoting

masculine and feminine, respectively. It should be noted that there is no neutral gender

in Arabic.

A complete example of noun �Qå�� A
�	K (nās. irun) is shown in Figure 3.8. Type of this

AVM is triptote− sound− sg − noun− lex.

MORPH contains ROOT, STEM and DEC. ROOT contains root letters i.e. n, s, r.

FORM contains two morphemes: naasir and −un. DEC contains Tn1 denoting declension

type 1. It’s CASE is nom denoting nominative and DEF is no that is indefinite. Values

of SELECT, XARG, LID are none. As it is detached noun, it’s ARG-ST (argument

structure) and VAL (valance) are empty. FRAMES contains a frame of type help− fr.

3.4.2 AVM for Arabic Verb

We modify the verb AVM proposed by Bhuyan et al. [2], particularly the INDEX feature.

We try to align the design of the verb AVM with that of the noun AVM. Figure 3.9 shows

the SBCG AVM of an Arabic verb.

The MORPH feature in the verb AVM is similar to that in the noun AVM except

for the VDEC feature. It captures the declension type of verbs and it replaces the DEC

feature of the noun AVM which captures the declension type of nouns. Like DEC, it

CHAPTER 3. HPSG FORMALISM 44

triptote-sound-sg-naasirun-lex

morph

root

〈
n,s,r

〉
skeleton

〈
naasir + un

〉
dec Tn1

arg-st []

syn

cat

noun

case nom

def no

select none

xarg none

lid none

val []

mrkg unmk

sem

index i

frames

〈

help-fr

sit s

actor i

undgr j

〉

Figure 3.8: SBCG Arabic noun example: naasirun

CHAPTER 3. HPSG FORMALISM 45

determines how the end vowel of a verb lexeme changes to reflect the mood. As we can

see from Table 2.10, there are 4 declension types for verbs. So possible values for VDEC

feature are Tv1, Tv2 . . . Tv4 denoting four declension types of verbs. As it is for verb, the

AVM doesn’t contain CASE. Rather, it contains VFORM (verbform), VOICE, MOOD.

Value of VFORM can be perf or imperf to denote perfect and imperfect verb. Value of

VOICE can be active or passive. Value of MOOD can be any of three moods in Arabic

i.e. subjunctive, indicative or jussive.

The SEM feature in this AVM is the same as it is in the SBCG English verb AVM.

SIT-INDEX, i.e., situation index is used for index based semantic agreement. SBCG

does not show any distinction between INDEX and SIT-INDEX. Also, it does not show

the feature description of SIT-INDEX. We put it as a function feature but currently

it has only one atomic attribute. This attribute is SITUATION. It contains the name

of the verb. This SIT-INDEX is used in event-frames of the verb and the verbal noun

lexemes. Thus, ultimately it is very similar to Davidsonian event variable [17]. Like AVM

for noun, FRAMES contains the list of frames which contain semantic information in

Minimal Recursion Semantics (MRS). These frames contain indices of both INDEX and

SIT-INDEX. A sample AVM of verb �I.
��J
�
» (kataba) is shown in Figure 3.10.

3.5 Construction Rules to Capture Condition of De-

clension

In Table 2.7 we have seen different types of declension follows different case markings.

Section 3.2 shows different types of lexemes follows different declension types. Based on

the mapping, for a particular type of lexeme, we develop construction rules to construct

accusative and genitive from nominative lexemes. For simplicity, in this thesis we have

analyzed singular noun classes. So our construction rules will not cover any plural noun

classes i.e. class 4 which follows declension type 2. In this section, we show sample con-

CHAPTER 3. HPSG FORMALISM 46

verb-lex

phon []

morph

root list(letter)

skeleton list(letter)

vdec list(letter)

arg-st list(sign)

syn

cat

verb

vform . . .

voice . . .

mood . . .

select . . .

xarg . . .

lid . . .

val list(sign)

mrkg mrk

sem

sit-index

[
situation . . .

]
frames list(frame)

Figure 3.9: AVM for Arabic verb

CHAPTER 3. HPSG FORMALISM 47

kataba-form-IA-triliteral-sound-active-perfect-3rd-sg-masc-verb-lex

phon []

morph

root

〈
k, t, b

〉
SKELETON

〈
k, a, t, a, b, a

〉
VDEC Tv1

arg-st

〈
1

syn

cat

noun

case accusative

opt −

sem

[
index j

]

〉

syn

cat

verb

vform perfect

voice active

mood indicative

select none

xarg none

lid none

val

〈
1

〉
mrkg none

sem

sit-index s

[
situation writing

]

frames

〈

write-fr

sit s

actor i

person 3rd

number sg

gender masc

hum yes

undgr j

location k

instrument l

〉

Figure 3.10: AVM for a sample root verb - kaataba

CHAPTER 3. HPSG FORMALISM 48

struction rules for nouns and verbs. For nouns, we show construction rules for declension

type 1 and 3 and for verbs we show construction rules for declension type 1.

3.5.1 Construction by Tn1 Declension

In this section, we show construction rules to construct accusative and genitive lexemes

from nominatives by Tn1 declension.

Accusative Construction by Tn1

A construction rule to construct accusatives from nominative lexemes is shown in Figure

3.11 following Tn1 declension. Here MTR (mother) is in accusative case and DTRS

(daughter) contains only one lexeme which is in nominative case. MTR (accusative) is

formed from DTRS (nominative) using Tn1 declension.

As in Table 2.7, case marking of nominative is �� (un). But for accusative, case

marking of is �� (an). Our construction rule captures this change by changing SKELETON

feature under MORPH (morphology) from DTRS to MTR. SKELETON of MTR is ended

with −an but SKELETON of DTRS lexeme is ended with −un. Another change we can

identify in CASE under CAT (category) to denote the case of the lexemes. All other

features are same for MTR and DTRS.

An example of this construction rule is shown in is shown in Figure 3.12 where A �J. �K� A
�
¿

(kātiban) is constructed from �I.
�K� A
�
¿ (kātibun) . �I.

�K� A
�
¿ (kātibun) is in nominative case and

ended with �� (un). But in accusative case, it is modified to A�J. �K� A
�
¿ (kātiban) which is ended

with �� (an).

CHAPTER 3. HPSG FORMALISM 49

triptote − sound − sg − acc − Tn1 − noun − cxt

mtr

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 + an

〉
root 6

dec Tn1

arg-st 5

syn

cat

noun

case acc

def 4

val 3

mrkg 2

sem 1

dtrs

〈

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 + un

〉
root 6

dec Tn1

arg-st 5

syn

cat

noun

case nom

def 4

val 3

mrkg 2

sem 1

〉

Figure 3.11: Lexical rule for accusative construction using Tn1 construct

CHAPTER 3. HPSG FORMALISM 50

triptote − sound − sg − acc − Tn1 − noun − cxt

mtr

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 + an

〉
root 6

dec Tn1

arg-st 5 〈〉

syn

cat

noun

case acc

def 4

val 3 〈〉

mrkg 2

sem 1

dtrs

〈

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 kaatib + un

〉
root 6

〈
k,t,b

〉
dec Tn1

arg-st 5 〈〉

syn

cat

noun

case nom

def 4 no

val 3 〈〉

mrkg 2 unmk

sem 1

index i

frames

〈

help-fr

sit s

actor i

undgr j

〉

〉

Figure 3.12: Example of lexical rule for accusative construction by Tn1 declension

CHAPTER 3. HPSG FORMALISM 51

Genitive Construction by Tn1

Genitive lexeme construction is same as accusative construction. The only difference is

in SKELETON under MORPH and CASE under CAT. As in Table 2.7, for Tn1 declen-

sion nominative case marking is -un whereas genitive case marking is -in. To capture

this, FORM of DTRS is ended with −un and FORM of MTR is ended with −an. The

construction rule is shown in Figure 3.13.

3.5.2 Construction by Tn3 Declension

In this section we show construction of accusative and genitive lexemes from nominative

lexemes by Tn3 declension.

Accusative Construction by Tn3

Table 2.7 shows, for Tn3 declension nominative case marking is �� (u) whereas accusative

case marking is �� (a). To capture this, SKELETON of DTRS is ended with −u and

SKELETON of MTR is ended with −a. Figure 3.14 shows the construct rule. Here we

can see significance change in SKELETON and also CASE under CAT.

Genitive Construction by Tn3

Table 2.7 shows, for Tn3 declension, the case marking for nominative is �� (u) but genitive

and accusative case marking is same which is �� (a). So construction rule for genitives

is same as accusatives for Tn3 declension. Figure 3.15 shows construction rule for geni-

CHAPTER 3. HPSG FORMALISM 52

triptote − sound − sg − gen − Tn1 − noun − cxt

mtr

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 + in

〉
root 6

dec Tn1

arg-st 5

syn

cat

noun

case gen

def 4

val 3

mrkg 2

sem 1

dtrs

〈

triptote − sound − sg − noun − lex

morph

SKELETON

〈
7 + un

〉
root 6

dec Tn1

arg-st 5

syn

cat

noun

case nom

def 4

val 3

mrkg 2

sem 1

〉

Figure 3.13: Lexical rule for genitive construction by Tn1 construction

CHAPTER 3. HPSG FORMALISM 53

diptote − acc − Tn3 − noun − cxt

mtr

diptote − noun − lex

morph

SKELETON

〈
7 + a

〉
root 6

dec Tn3

arg-st 5

syn

cat

noun

case acc

def 4

val 3

mrkg 2

sem 1

dtrs

〈

diptote − noun − lex

morph

SKELETON

〈
7 + u

〉
root 6

dec Tn3

arg-st 5

syn

cat

noun

case nom

def 4

val 3

mrkg 2

sem 1

〉

Figure 3.14: Lexical rule for accusative construction by Tn3 declension

CHAPTER 3. HPSG FORMALISM 54

tive construction by Tn3. Difference between Figure 3.14 and Figure 3.15 is only in CASE.

diptote − gen − Tn3 − noun − cxt

mtr

diptote − noun − lex

morph

SKELETON

〈
7 + a

〉
root 6

dec Tn3

arg-st 5

syn

cat

noun

case gen

def 4

val 3

mrkg 2

sem 1

dtrs

〈

diptote − noun − lex

morph

SKELETON

〈
7 + u

〉
root 6

dec Tn3

arg-st 5

syn

cat

noun

case nom

def 4

val 3

mrkg 2

sem 1

〉

Figure 3.15: Lexical rule for genitive construction by Tn3 declension

CHAPTER 3. HPSG FORMALISM 55

3.5.3 Construction by Tv1 Declension

Subjunctive Construction by Tv1

Figure 3.16 shows construction rule to construct subjunctives from indicatives. Major

difference between MTR and DTRS is in SKELETON and MOOD. From Table 2.10, we

can see for declension type 1, the case marking of indicatives is

CHAPTER 3. HPSG FORMALISM 56

Here we show construction rules for verbal declension using Tv1 declension. �� (u) but the

case marking of subjunctives is �� (a). So SKELETON of DTRS ended with −u whereas

SKELETON of MTR is ended with −a.

Jussive Construction by Tv1

Figure 3.17 shows jussive construction from indicative. From Table 2.10, for declension

type 1, the case marking of indicatives is �� (u) but the case marking of subjunctives is

jawazim. So SKELETON of DTRS ended with −u whereas affix −u is removed from the

SKELETON of MTR.

3.6 Construction Rules for Definiteness

We now show construction rules to capture definiteness. In section 3.4, we have seen, an

Arabic lexeme is made definite by adding È
�
@ (al) affix. Also nunation is removed from

definite lexeme construction. That is, if an indefinite lexeme ends with �� (un) then a

definite lexeme ends with �� (u). Figure 3.18 shows definite construction rule for nomi-

native case. DTRS lexeme is indefinite and MTR is definite. Here we can see significant

change in SKELETON. In DTRS, SKELETON is ended with −un where is in MTR is

prefixed with −al and nunation is removed i.e. ended with −u.

Construction rule to capture definiteness of accusative and genitive cases is same as

nominatives with changes in SKELETON.

3.7 Summary

This chapter has depicted our contributions for HPSG formalism of our research of Ara-

bic declension. We have presented HPSG type hierarchy for both nouns and verbs after

analyzing their dimensions. We have mapped lexical types to declension types for both

CHAPTER 3. HPSG FORMALISM 57

sound − sg − subjunctive − Tv1 − verb − cxt

mtr

sound − sg − verb − lex

morph

SKELETON

〈
11 + a

〉
root 10

vdec Tv1

arg-st 9

syn

cat

verb

vform 8

voice 7

mood subjunctive

select 6

xarg 5

lid 4

val 3

mrkg 2

sem 1

dtrs

〈

sound − sg − verb − lex

morph

SKELETON

〈
11 + u

〉
root 10

vdec Tv1

arg-st 9

syn

cat

verb

vform 8

voice 7

mood indicative

select 6

xarg 5

lid 4

val 3

mrkg 2

sem 1

〉

Figure 3.16: Lexical rule for subjunctive construction by Tv1 declension

CHAPTER 3. HPSG FORMALISM 58

sound − sg − jussive − Tv1 − verb − cxt

mtr

sound − sg − verb − lex

morph

SKELETON

〈
11

〉
root 10

vdec Tv1

arg-st 9

syn

cat

verb

vform 8

voice 7

mood jussive

select 6

xarg 5

lid 4

val 3

mrkg 2

sem 1

dtrs

〈

sound − sg − verb − lex

morph

SKELETON

〈
11 + u

〉
root 10

vdec Tv1

arg-st 9

syn

cat

verb

vform 8

voice 7

mood indicative

select 6

xarg 5

lid 4

val 3

mrkg 2

sem 1

〉

Figure 3.17: Lexical rule for jussive construction by Tv1 declension

CHAPTER 3. HPSG FORMALISM 59

triptote − sound − sg − nom − def − noun − cxt

mtr

triptote − sound − sg − noun − lex

morph

skeleton

〈
al + 7 + u

〉
root 6

arg-st 5

syn

cat

noun

case 4

def yes

val 3

mrkg 2

sem 1

dtrs

〈

triptote − sound − sg − noun − lex

morph

skeleton

〈
7 + un

〉
root 6

arg-st 5

syn

cat

noun

case 4 nom

def no

val 3

mrkg 2

sem 1

〉

Figure 3.18: Lexical rule for nominative definite construction

CHAPTER 3. HPSG FORMALISM 60

nouns and verbs. This mapping is necessary for capturing declension phenomenon in

HPSG. We have also proposed algorithm to find out declension types of nouns easily. We

have proposed HPSG AVM for nouns and verbs. We have proposed construction rules to

construct accusative and genitive lexemes from nominatives and subjunctive and jussive

lexemes from indicatives. Lastly, we have proposed construction rule for construction of

definite from indefinite lexemes. In next chapter, we will show implementation method-

ologies for implementing our HPSG formalism i.e. type hierarchy, signs and construction

rules.

Chapter 4

Implementation

In this chapter, we show implementation methodologies of HPSG formalism which is

proposed in previous chapter. Section 4.1 describes possible choices of implementation

platforms followed by TRALE introduction. Section 4.2 discusses TRALE basics by

describing its basic components. Section 4.3 provides methodologies that we follow to

implement proposed HPSG formalism in TRALE. We give some sample input and output.

Detail input files are given in Appendix B.

4.1 Introduction to TRALE

HPSG can be implemented in several grammar development systems i.e. TFS, CUF,

ALE, ALEP, PAGE, ProFIT, CL-ONE and ConTroll. Among these, ConTroll ([19]) and

ALE ([10, 37]) show better behaviour than the others considering type system, syntax

and feature terms and other computational aspects ([7]). Both of these compilers are

designed based on the formalism of HPSG’87 ([39]).

ALE is an integrated phrase structure parsing and definite clause logic programming

system in which the terms are typed feature structures. Typed feature structures com-

bine type inheritance and appropriateness specifications for features and their values.

61

CHAPTER 4. IMPLEMENTATION 62

At the term level, ALE has variables, types, feature value restrictions, path equations,

inequations, general constraints, and disjunction. The definite clause programs allow dis-

junction, negation and cut, specified with Prolog syntax. For Parsing, ALE compiles from

the grammar specification a Prolog-optimized bottom-up, dynamic chart parser. Definite

clauses are also compiled into Prolog.

TRALE is an extension of ALE that supports extra functionality i.e. complex-

antecedent constraints which adds extra constraints to grammars in order to enforce

the view of subtyping standardly assumed in HPSG. TRALE is implemented as a pre-

processor for ALE that intercepts certain grammar clauses at compile-time to generate

extra code for the ALE compiler ([11]).

We use TRALE on Grammix operation system version of June, 2007 [35]. There is

another new version of TRALE which is not complete but can be run stand alone on

Linux platform. This new version was published on 2008 [41]. Grammix is developed

for grammar development and contains two complete grammar development systems -

TRALE and LKB.

In [33], author has explored to two leading implementation platforms for implementing

HPSG grammars. One is Linguistic Knowledge Building (LKB) system ([14]) is devel-

oped not particularly for implementing HPSG grammars, but rather, as a framework

independent environment for typed feature structures grammar. On the other hand,

TRALE ([41]), an extension of the Attribute Logic Engine (ALE) system, is a grammar

implementation platform that was developed as part of the MiLCA project ([34]), specif-

ically for the implementation of theoretical HPSG grammars. Considering these, we have

decided to use TRALE for implementation of our grammar.

CHAPTER 4. IMPLEMENTATION 63

4.2 TRALE Basics

In this section, we discuss about TRALE preliminaries, particularly TRALE compo-

nents and implementation procedure. This is helpful to understand our implementation

methodologies.

4.2.1 Signature File

To capture type hierarchy of a grammar, TRALE reads a special signature file, which

follows a specific format. Signature file should be a separate text file where subtyping

indicated by indentation.

Signature file starts with type hierarchy which indicates type hierarchy. Type hierarchy

begins with most general element bot. Sub-types of a type are shown by adding indentation

with the indentation of parent type.

For each type there may be zero or more features. Feature and value is separated

by colon (:) that is, feature:value. All feature value pairs are separated by white-space.

An example is shown in Figure 4.2.1. The example shows a type hierarchy with a most

general element bot, which immediately subsumes types a and bool. Type a introduces

two features F and G whose values must be of type bool. Type a also subsumes two other

types b and c. The value of F of the former is always plus and value of G is always minus.

The feature values of type c are the inverse of type b. Finally, bool has two subtypes plus

and minus.

A type can occur as a subtype of two or more different super types which is called

multiple inheritance. In this case, one prefixes the subtype with an ampersand (&) to in-

dicate that the multiple inheritance is intended. Lastly a single period (.) in an otherwise

blank line signals the end of a signature declaration.

CHAPTER 4. IMPLEMENTATION 64

type_hierarchy

bot

a f:bool g:bool

b f:plus g:minus

c f:minus g:plus

bool

plus

minus

Figure 4.1: Example of signature file

4.2.2 Lexical Rule Compiler

In TRALE, theory.pl file works as a mother file which is used to load all other files. For

lexical entries and rules separate file can be used or can be written in theory.pl. If we use

more than one file for declaring our grammar (i.e. signature file, theory.pl) then multifile

declaration needs to be used at top of theory.pl.

Lexical Rule Depth Bound

ALE lexical rules are productive because here lexical rules are applied sequentially to their

own output or the output of other lexical rules. Thus, it is possible to derive the nominal

writer from the verb write, and then to derive the plural nominal writers from writer, and

so on. At the same time, the lexical system is leashed to a fixed depth-bound, which may

be specified by the user. This bound limits the number of rules that can be applied to

any given category. The bound on application of rules is defined by lex rule depth, that

is, in theory.pl we need to write like this:

:-lex_rule_depth(2).

CHAPTER 4. IMPLEMENTATION 65

Loading Signature File

Signature file is loaded by calling signature like following:

signature(signature).

Chart Display

TRALE can show AVMs of signs or construction rules in standard output which is called

Grisu. By Grisu an AVM and its structure sharing is clearly visible.

Feature Ordering

To specify order in which features are displayed by the pretty printer, we need to include

statement like this:

• f <<< g: This means f will be ordered before g.

• <<< h: This means h has lowest precedence and will be ordered last.

• >>> k: This means k has highest precedence and will be ordered first.

Lexical Entries

In TRALE lexical entries are listed by following format:

<word> ~~> <desc>.

As an example, a lexical entry for john is shown below. Here for john, SYN and SEM

feature are described. SYN includes CAT and VAL feature and their values. A lexical

entry is ended with a dot (.).

CHAPTER 4. IMPLEMENTATION 66

john ~~>

(syn:

(cat:noun,

val:VAL),

sem:j).

Lexical Rules

In TRALE lexical rules is specified by following format:

<lex_rule_name>##<lex_rewrite>

morphs <morphs>

Here lex rewrite denotes conversion from one type to another type denoting DTRS

and MTR respectively and separated by ∗∗ .

<lex_rewrite> ::= <desc> **> <desc>

On the other hand, morphs denotes morphological changes for DTRS to MTR. It is

described by the following pattern:

<morph> ::= (<string_pattern>) becomes (<string_pattern>)

string pattern can be atomic pattern like atom, variable or list. Here is an example

of lexical rule written in TRALE.

plural_n##

(n,

num:sg)

**>

(n,

num:pl)

CHAPTER 4. IMPLEMENTATION 67

morphs

goose becomes geese,

(X) becomes (X,s),

(X,man) becomes (X,men),

(X,ey) becomes (X,[i,e,s]).

In the example, singular to plural conversion is shown. Four cases has been mentioned

for morphological change i.e. plural can be formed from singular by intermediate character

change or adding -s or adding -ies instead of -y.

Commands

After developing signaute and theory.pl a grammar can be compiled using following com-

mand in TRALE:

| ?- compile_gram(GramFile).

Here GramFile denotes the grammar file which is actually theory.pl.

A word or lexeme or phrase can be parsed using command rec like following:

| ?- rec([big,kid]).

This will also start GRISU output of the AVM.

4.3 Implementation Methodologies

In this section, we discuss about the input files that we have implemented. Later, we

show verification of our AVM and construction rules.

CHAPTER 4. IMPLEMENTATION 68

4.3.1 Signature File

For implementation we have to develop signature file according to type hierarchy. Com-

plete signature file of our research is shown in Appendix B. To match an AVM it starts

with sign. Type sign has features like morph, arg st, syn and sem. Again syn contains

cat (category), val (valence) and mrkg (marking). cat contains case, def (definiteness),

mood, vform (verb form) and voice. char type contains only English alphabets which are

required for our lexeme formation. Possible values of case, person, number, gender, def

(definiteness), hum (humanness), vform (verb form), mood, mrkg are shown. Feature sem

contains index and frames.

TRALE output for type hierarchy of noun lexeme is shown in 4.2 and type hierarchy

of verb lexeme is shown in 4.3.

Figure 4.2: TRALE output for type hierarchy of noun-lexemes

Figure 4.3: TRALE output for type hierarchy of verb-lexemes

CHAPTER 4. IMPLEMENTATION 69

4.3.2 Theory File

In this section we show how we have implemented lexical entries and corresponding lexical

rules in theory.pl.

Preliminaries

For the implementation purpose we are using two files: signature which contains type

hierarchy and theory.pl which loads all other files, lexical entries and lexical rules. As we

are using two files so we have used multifile declaration in theory.pl.

%:- multifile ’##’/2.

%:- multifile ’~~>’/2.

After that we have loaded TRALE extension using following command:

:- [trale_home(tree_extensions)].

We have restrict depth of lexical rules to 4.

:-lex_rule_depth(4).

After that we have loaded our signature file.

signature(signature).

We want show MORPH at the beginning of AVM of sign. After MORPH we want to

show ARG ST, SYN, SEM. In MORPH we want to show ROOT first, then FORM and

then DEC feature. In CAT (category) of verb, ordering will be VFORM, VOICE and

then MOOD. In SYN, first CAT will be shown and after that VAL and lastly MRKG. In

SEM, INDEX will come before FRAMES. So we have set precedence order as follows:

CHAPTER 4. IMPLEMENTATION 70

>>>morph.

morph <<< arg_st.

arg_st <<< syn.

syn <<< sem.

root <<< form.

form <<< dec.

vform <<< voice.

voice <<< mood.

cat <<< val.

val <<< mrkg.

index <<< frames.

Lexical Entries

In our experiment we have given several lexical entries of verb and noun.

We have given lexical entries for several nouns. 3 examples entries have been shown

in Appendix B. These entries are for �I.
�K� A
�
¿ (kātibun), �Qå�� A

�	K (nās. irun) and
�Yg.� A

�� (sāǧidun

) respectively. Each of these has 3 root letters i.e. k, t, b or n, s, r or s, j, d respectively.

As type of these AVM is triptote sound sg noun lex, so these will follow declension type

Tn1. Argument structure and valance will be empty. These are in nominative case and

CHAPTER 4. IMPLEMENTATION 71

indefinite. Semantic index of these is same as index of actor. These entries follow AVM

of Figure 3.7.

For verb we have also given several entries. 3 examples lexical entries are shown in

Appendix B. These entries are for �I.
��J »

�
@ (aktubu), �Qå�� 	�

�
@ (ansuru) and

�Y �m.��
�
@ (asǧudu

) respectively. All these are sound sg verb lex type verb (sound singular verb lexeme).

So all these follow Tv1 declension type as discussed in Section 3.2.2. Each of these has

separate root letters: k, t, b, n, s, r, s, j, d, respectively. All these are in indicative mood,

verb form is imperfect and in active voice. As all these are verbs, so semantic index will

be same as SIT of FRAMES. Verb entries follow AVM of Figure 3.9.

Lexical Construction Rules

In our implementation, we have shown several construction rules to justify our research.

There are three types of rules in theory.pl file:

1. Noun construction rules: In Appendix B we have shown 2 example construction rules

to implement rules of Figure 3.11 and 3.13, respectively. These rules are named as

triptote− sound− sg − acc− tn1− noun− cxt and triptote− sound− sg − gen−

tn1− noun− cxt, respectively.

2. Verb construction rules: We have used several construction rules for verb based on

moods. Verb of subjunctive or jussive moods can be constructed from indicative

verbs. In Appendix B, we show two sample rules written in TRALE. Implementa-

tion of Figure 3.16 is shown first which is construction of subjunctive mood from

indicative. It’s type is sound− sg− subjunctive− tv1− verb− cxt Then implemen-

CHAPTER 4. IMPLEMENTATION 72

tation of Figure 3.17 is shown which is construction of jussive from indicative.

3. Definiteness construction rule: In Appendix B, we have shown implementation of

our rule of Figure 3.18 and named as triptote− sound− sg − def − noun− cxt.

Verification of Construction Rules of Nouns

We have done verification for AVM and construction rules of nouns. In our signature

file, there is an entry for kaatibun which is in nominative case. We have construc-

tion rule triptote − sound − sg − acc − tn1 − noun − cxt to construct accusative lex-

eme from nominative. Resulting accusative of kaatibun is kaatiban. We run command

rec([’kaatiban’]) then we got successful parsing result from TRALE. The screenshot for

this inflected lexeme is shown in Figure 4.4. Similarly, we have tested construction

kaatibin which is in genetive case and constructed from kaatibun by construction rule

triptote− sound− sg − gen− tn1− noun− cxt. We run command rec([’kaatibin’]) then

we got successful parsing result from TRALE as in Figure 4.5.

Figure 4.4: TRALE output for parsing kaatiban

As we have lexical entry for naasirun so TRALE can parse naasiran and naasirin.

Resulting AVM from TRALE is given in Figure 4.6 and 4.7 respectively.

CHAPTER 4. IMPLEMENTATION 73

Figure 4.5: TRALE output for parsing kaatibin

Figure 4.6: TRALE output for parsing naasiran

We have also tested construction of saajidan and saajidin from saajidin.

Verification of Construction Rules of Verbs

We have tested verb construction rules. We have lexical entry for aktubu which is in

indicative mood. By our construction rule sound − sg − subjunctive − tv1 − verb − cxt

CHAPTER 4. IMPLEMENTATION 74

Figure 4.7: TRALE output for parsing naasirin

and sound− sg− jussive− tv1−verb− cxt, we can license aktuba and aktub which are in

subjunctive and jussive mood respectively. So if we run rec([’aktuba’]) and rec([’aktub’]),

then we will get result as in Figure 4.8 and 4.9, respectively.

Figure 4.8: TRALE output for parsing aktuba

CHAPTER 4. IMPLEMENTATION 75

Figure 4.9: TRALE output for parsing aktub

Verification of Construction Rules of Definiteness

We have lexical entry for kaatibun which is nominative indefinite lexeme. We generate

alkaatibu from it which is nominative definite lexeme by construction rule triptote sound sg def noun cxt.

Resulting AVM is shown in Figure 4.10.

Figure 4.10: TRALE output for parsing alkaatibu

CHAPTER 4. IMPLEMENTATION 76

We have also tested alkaatiba which is accusative definite lexeme. Here 2 rules are

applied successively for this generation. First, triptote−sound−sg−acc−tn1−noun−cxt

is used to construct kaatiban from kaatibun. Then definiteness rule triptote − sound −

sg − def − noun − cxt is used to construct alkaatiba from kaatiban. Resulting AVM is

shown in Figure 4.11.

Figure 4.11: TRALE output for parsing alkaatiba

Chapter 5

Conclusion

This thesis is a part of a big ongoing research of HPSG modeling of Arabic nominal and

verbal declension. It is mainly focused on type hierarchy to declension type mapping and

construction rules to eliminate lexical entries. In this last chapter, we draw conclusion of

our thesis by describing major contributions followed by some direction for future research.

5.1 Contributions

Our major contributions are enumerated as follows:

• We have discussed dimensions of Arabic nouns and verbs. Based on the dimensions

we have proposed a detail type hierarchy for nouns and verbs.

• We have analyzed declension types of nouns and verbs and based on that, we have

shown mapping of type hierarchy to declension types.

• We have devised an algorithm identify the declension type of a noun lexeme. This

algorithm also proofs completeness of nine declension types and hence, completeness

of classical 16 categories.

77

CHAPTER 5. CONCLUSION 78

• We have shown AVM for English nouns and extend it for Arabic noun. In this AVM,

we capture morphology, syntactic and semantic effect for an Arabic noun. Later,

we have shown AVM for Arabic verbs.

• We have captured Arabic declension phenomenon and proposed construction rules

for construction of genitive and accusative lexemes from accusative lexemes and

for construction of jussive and subjunctive verb lexemes from indicative lexemes.

These construction rules will eliminate numerous lexical entries and hence database

of lexical entries will be much optimized.

• We have proposed construction rules to construct definite lexemes from indefinites.

• We have implemented our type hierarchy, AVM and construction rules in TRALE.

We have verified construction rules for declension and definiteness in TRALE. Here

we have also verified two level construction. For example, construction of alkaatiba

from kaatibun. At top level, alkaatiba is verified from kaatiban using a definiteness

rule. Then, kaatiban is verified from kaatibun using a declension rule.

5.2 Future Directions

Though linguistic modeling of Arabic language is a massive task, we believe this work will

pave the way of it. Much scope is still open for research following this thesis. Following

directions can be considered as future directions for further research:

• In this thesis, we have omitted analysis on plural number to preserve simplicity.

There are five plural noun classes among 16 classes. These are 3, 4, 10, 12, 16. So

scope to explore declension of these classes is still open and this can be a future

extension of this thesis.

• The thesis has considered only lexical construction that is, a lexeme is generated

from another lexeme. For example, we have analyzed construction of A�J. �K� A
�
¿ (kātiban

CHAPTER 5. CONCLUSION 79

) from �I.
�K� A
�
¿ (kātibun). We have not considered any phrasal construction. For

example, construction of A�K. A
��J»� �I.

��J
�
» (kataba kitāban) from two lexemes: �I.

��J
�
» (kataba

) and A �K. A
��J»� (kitāban). So, research on phrasal construction can also be a future

extension.

Bibliography

[1] Kenneth R. Beesley. Finite-State Morphological Analysis and Generation of Arabic

at Xerox Research: Status and Plans in 2001. In Proceedings of the Workshop on

Arabic Language Processing: Status and Prospects, Association for Computational

Linguistics, 2001.

[2] Md. Shariful Islam Bhuyan and Reaz Ahmed. An HPSG Analysis of Arabic Passive.

In Proceedings of the 11th International Conference on Computer and Information

Technology, 2008.

[3] Md. Shariful Islam Bhuyan and Reaz Ahmed. An HPSG analysis of arabic passive.

In Proceedings of the 11th International Conference on Computer and Information

Technology, 2008.

[4] Md. Shariful Islam Bhuyan and Reaz Ahmed. An HPSG analysis of arabic verb. In

The International Arab Conference on Information Technology, 2008.

[5] Md. Shariful Islam Bhuyan and Reaz Ahmed. Nonconcatenative morphology: An

HPSG analysis. In the 5th International Conference on Electrical and Computer

Engineering, 2008.

[6] Steven Bird and Ewan Klein. Phonological Analysis in Typed Feature Systems.

Computational Linguistics, 20:455–491, 1994.

[7] Leonard Bolc, Krzysztof Czuba, Anna Kupsc, Malgorzata Marciniak, Agnieszka

Mykowiecka, and Adam Przepirkowski. A survey of systems for implementing

80

BIBLIOGRAPHY 81

HPSG grammars. Technical report, IPI PAN (Institute of Computer Science, Polish

Academy of Sciences, 1996.

[8] Joan Bresnan. The Mental Representation of Grammatical Relations. Cambridge,

MA, USA: MIT Press, 1982.

[9] Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 2.0. In Lin-

guistic Data Consortium, Philadelphia, PA, USA, 2004.

[10] Bob Carpenter and Gerald Penn. The logic of typed feature structures. Cambridge

Tracts in Theoretical Computer Science, 1993.

[11] Bob Carpenter and Gerald Penn. The Attribute Logic Engine (Version 4.0). User’s

Guide. Carnegie Mellon University, Pittsburgh, December, 2003.

[12] Noam Chomsky. Lectures on Government and Binding, 1981.

[13] Domenic Cipollone. Morphologically complex predicates in Japanese and what they

tell us about grammar architecture. In OSU Working Papers in Lingusitics 56, pages

1–52. Ohio State University, 2001.

[14] Ann Copestake. Implementing Typed Feature Structure. Stanford: CSLI Publications,

2002.

[15] Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Riehemann, and Ivan Sag.

Translation using minimal recursion semantics. In Proceedings of the 6th Interna-

tional Conference on Theoretical and Methodological Issues in Machine Translation,

Leuven, 1995.

[16] Ann Copestake, Dan Flickinger, Susanne Riehemann, and Ivan Sag. Minimal recur-

sion semantics: An introduction. Research on Language and Computation, 3(4):281–

332, 2006.

[17] Anthony R. Davis. Linking and the Hierarchical Lexicon. PhD thesis, Stanford

University, 1996.

BIBLIOGRAPHY 82

[18] Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan A. Sag. Generalized Phrase

Structure Grammar. Chicago: University of Chicago Press, 1985.

[19] Thilo Goetz. The ConTroll User’s Guide and Manual: First Draft. Seminar fü r

Sprachwissenschaft, Universitä t Tü bingen, 1995.

[20] Georgia M. Green. Elementary principles of HPSG. In FIPS PUB, pages 140–1,

1999.

[21] Kais Haddar and Ines Zalila. An HPSG parser generation with the lkb for arabic rel-

atives. In 3rd International Conference on Arabic Language Processing (CITALA09),

Rabat, Morocco, 2009.

[22] Md. Sadiqul Islam, Mahmudul Hasan Masum, Reaz Ahmed, and Shariful Islam

Bhuyan. Arabic nominals in HPSG: A verbal noun perspective. In Proceedings

of the 17th International Conference on Head-Driven Phrase Structure Grammar,

Paris, France, 2010.

[23] Md. Sadiqul Islam, Mahmudul Hasan Masum, Md. Shariful Islam Bhuyan, and Reaz

Ahmed. An HPSG analysis of declension in arabic grammar. In Proceedings of the

9th International Arab Conference on Information Technology, 2009.

[24] Mohtanick Jamil. Declension. Website, 2003-2011.

http://www.learnarabiconline.com/reflection.shtml.

[25] Mohtanick Jamil. Definiteness. Website, 2003-2011.

http://www.learnarabiconline.com/definiteness.shtml.

[26] Andreas Kathol. Agreement and the syntax-morphology interface in HPSG. In

Studies in contemporary phrase structure grammar, pages 223–274. UC Berkeley,

1999.

[27] Alain Kihm. Nonsegmental Concatenation: A Study of Classical Arabic Broken

Plurals and Verbal Nouns . Morphology, 16:69–105, 2006.

BIBLIOGRAPHY 83

[28] Hans-Ulrich Krieger and Ulrich Schǎfer. Tdl: A type description language for HPSG

(part 1 and part 2). Research Report, RR-94-37, 1994.

[29] M. Paul Lewis. Ethnologue: Languages of the world. Website, 2009. http :

//www.ethnologue.org/ethnodocs/distribution.asp.

[30] Eugene E. Loos, Susan Anderson, Jr. Dwight H., Day, Paul C. Jordan,

and J. Douglas Wingate. Glossary of linguistic terms. Website, 2011.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/.

[31] Mahmudul Hasan Masum, Muhammad Sadiqul Islam, and Reaz Ahmed M. So-

hel Rahman. HPSG analysis of type-based arabic nominal declension. In Proceedings

of the 12th International Arab Conference on Information Technology, 2012.

[32] Mahmudul Hasan Masum, Muhammad Sadiqul Islam, M Sohel Rahman, and Reaz

Ahmed. Type-based HPSG analysis of arabic verbal declension. In the 7th Interna-

tional Conference on Electrical and Computer Engineering, 2012.

[33] Nurit Melnik. From “hand-written” to computationally implemented HPSG theories.

In Proceedings of the 12th International HPSG Conference, University of Lisbon,

pages 311–321. On-line: CSLI Publications, 2005.

[34] W. Detmar Meurers, Gerald Penn, and Frank Richter. A web-based instructional

platform for constraint-based grammar formalisms and parsing. In InProc. of the

Effective Tools and Methodologies for Teaching NLP and CL. ACL, pages 18–25,

New Brunswick, NJ, 2002.

[35] Stefan Muller. Grammix. Website, 2007.

http://hpsg.fu-berlin.de/Software/Grammix/.

[36] A.M. Mutawa, Salah Alnajem, and Fadi Alzhouri. An HPSG approach to arabic

nominal sentences. Journal of the American Society for Information Science and

Technology, 59(3):422–434, 2008.

BIBLIOGRAPHY 84

[37] Gerald Penn and Mohammad Haji-Abdolhosseini. ALE Documentation. Website,

2003. http://www.ale.cs.toronto.edu/docs/.

[38] Carl J. Pollard. Lectures on the foundations of HPSG. Chicago: University of Chicago

Press, 1997.

[39] Carl J. Pollard and Ivan A. Sag. Information-based syntax and semantics. Stanford:

Center for the Study of Language and Information (CSLI), 1:262–267, 1987.

[40] Carl J. Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Chicago:

University of Chicago Press, 1994.

[41] Frank Richter. Priliminary TRALE Page. Website, 2008.

http://milca.sfs.uni-tuebingen.de/A4/Course/trale/.

[42] Susanne Z. Riehemann. Type-Based Derivational Morphology. Journal of Compar-

ative Germanic Linguistics, 2:49–77, 1998.

[43] Susanne Z. Riehemann. A Constructional Approach to Idioms and Word Formation.

PhD thesis, Stanford University, 2001.

[44] Jr. Robert D. Van Valin. Aspects of Lakhota syntax. PhD dissertation, University of

California, Berkeley, 1977.

[45] Jr. Robert D. Van Valin. Semantic macroroles in role and reference grammar. In

University at Buffalo, New York, 2001.

[46] Karin C. Ryding. Modern Standard Arabic. Cambridge University Press, UK, 2005.

[47] Ivan A. Sag. Sign-Based Construction Grammar. Stanford University, August 2010.

[48] Ivan A. Sag and Thomas Wasow. Syntactic Theory: A Formal Introduction. Stanford

University Center for the Study, 1999.

BIBLIOGRAPHY 85

[49] Stuart M. Shieber. Natural-language processing: Grammar formalisms. In William

Bright, editor, The Oxford International Encyclopedia of Linguistics, pages 61–64.

Oxford University Press, New York, 1991.

[50] Otakar Smrž. Functional Arabic Morphology. Formal System and Implementation.

PhD thesis, Charles University in Prague, 2007.

[51] Nathan Vaillette. Hebrew relative clauses in HPSG. In Proceedings of the 7th In-

ternational HPSG Conference, UC Berkeley (2223), pages 305–324. On-line: CSLI

Publications, 2000.

Appendix A

Arabic Alphabet Transliteration

Romanized transliteration of Arabic alphabet is given below.

Table 5.1: Transliteration Table of Arabic Alphabet

Arabic Letter Transliteration Arabic Letter Transliteration

@ ā t.

H. b 	 z.

�H t ¨ ↪

�H t
¯

	̈
ġ

h. ǧ
	¬ f

h h.
�� q

p h
˘

¼ k

X d È l

	X d
¯

Ð m

P r 	à n

	P z ð w

� s �« ↩

�� š è h

� s. ø
 y

	� d. ø ā

86

Appendix B

Signature file

type_hierarchy
bot

list
ne_list hd:bot tl:list
e_list

char
k
t
b
a
i
u
n
r
s
j
d

sign morph:morph arg_st:list syn:syn sem:sem
word dtrs:list dtr:sign
lexeme

noun_lex
masc_noun_lex
triptote_strong_masc_noun_lex

fem_noun_lex
triptote_strong_fem_noun_lex

dual_noun_lex
sg_noun_lex
triptote_sound_sg_noun_lex
triptote_pseudo_sg_noun_lex
pure_sg_noun_lex
triptote_ism_maqsoor_sg_noun_lex

pl_noun_lex
strong_noun_lex
broken_noun_lex
triptote_broken_noun_lex

indeclinable_noun_lex
declinable_noun_lex
triptote_noun_lex

87

BIBLIOGRAPHY 88

diptote_noun_lex
sound_noun_lex
&triptote_sound_sg_noun_lex

unsound_noun_lex
ism_maqsoor_noun_lex
unsound_ending_with_ya_waw_noun_lex

verb_lex
sg_verb_lex
sound_sg_verb_lex

dual_verb_lex
sound_dual_verb_lex

pl_verb_lex
sound_pl_lex

sound_verb_lex
&sound_sg_verb_lex
&sound_dual_verb_lex
&sound_pl_lex

unsound_verb_lex
unsound_alif_ending_verb_lex
unsound_waw_ya_ending_verb_lex

morph root:list form:list dec:dec
syn cat:cat val:list mrkg:mrkg
cat case:case def:def mood:mood vform:vform voice:voice

noun
verb

case
nom
acc
gen

dec
tn1
tn2
tn3
tn4
tn5
tn6
tn7
tn8
tn9
tv1
tv2
tv3
tv4

person
first
second
third

number
sg
dual
plural

gender
male
female

BIBLIOGRAPHY 89

def
yes
no

hum
y
n

vform
perf
imperf

voice
active
passive

mood
subjunctive
indicative
jussive

mrkg
none
that

lid
select
sem index:index frames:list
index pers:person num:number gen:gender hum:hum
frame sit:index actor:index undgr:index
ref_fr ref_index:cat

.

Lexical entries for noun:

kaatibun ~~> (triptote_sound_sg_noun_lex,
(morph:

(
root:[k,t,b],
form:[k,a,a,t,i,b,u,n],
dec:tn1
),

arg_st:[],
syn:

(
cat:

(noun,
case:nom,
def:no
)

,
val:[]
),

sem:(
index:SUB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

)

BIBLIOGRAPHY 90

)
).

naasirun ~~> (triptote_sound_sg_noun_lex,
(morph:

(
root:[n,s,r],
form:[n,a,a,s,i,r,u,n],
dec:tn1
),

arg_st:[],
syn:

(
cat:

(noun,
case:nom,
def:no
)

,
val:[]
),

sem:(
index:SUB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

)
)
).

saajidun ~~> (triptote_sound_sg_noun_lex,
(morph:

(
root:[s,j,d],
form:[s,a,a,j,i,d,u,n],
dec:tn1
),

arg_st:[],
syn:

(
cat:

(noun,
case:nom,
def:no
)

,
val:[]
),

sem:(
index:SUB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

BIBLIOGRAPHY 91

)
)
).

Lexical entries for verb:

aktubu ~~> (sound_sg_verb_lex,
(morph:

(
root:[k,t,b],
form:[a,k,t,u,b,u],
dec:tv1
),

arg_st:[(OBJ_SIGN,(syn:(cat:(case:acc)), sem:(index:OBJ_INDEX)))],
syn:

(
cat:

(verb,
vform:imperf,
voice:active,
mood:indicative
)

,
val:[OBJ_SIGN]
),

sem:(
index:VERB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

)
)
).

ansuru ~~> (sound_sg_verb_lex,
(morph:

(
root:[n,s,r],
form:[a,n,s,u,r,u],
dec:tv1
),

arg_st:[(OBJ_SIGN,(syn:(cat:(case:acc)), sem:(index:OBJ_INDEX)))],
syn:

(
cat:

(verb,
vform:imperf,
voice:active,
mood:indicative
)

,
val:[OBJ_SIGN]

BIBLIOGRAPHY 92

),
sem:(

index:VERB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

)
)
).

asjudu ~~> (sound_sg_verb_lex,
(morph:

(
root:[s,j,d],
form:[a,s,j,u,d,u],
dec:tv1
),

arg_st:[(OBJ_SIGN,(syn:(cat:(case:acc)), sem:(index:OBJ_INDEX)))],
syn:

(
cat:

(verb,
vform:imperf,
voice:active,
mood:indicative
)

,
val:[OBJ_SIGN]
),

sem:(
index:VERB_INDEX,
frames:[

(sit:VERB_INDEX,actor:SUB_INDEX, undgr:OBJ_INDEX)
]

)
)
).

Noun construction rules:

triptote-sound-sg-acc-tn1-noun-cxt##
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:nom,

BIBLIOGRAPHY 93

def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
**>
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:acc,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
morphs
(X,u,n) becomes (X,a,n)
.

triptote-sound-sg-gen-tn1-noun-cxt##
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:nom,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)

BIBLIOGRAPHY 94

**>
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:gen,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
morphs
(X,u,n) becomes (X,i,n)
.

Verb construction rules:

sound-sg-subjunctive-tv1-verb-cxt##
(

morph:
(

root:ROOTS,
dec:tv1

),
arg_st:ARGST,
syn:

(
cat:

(verb,
mood:indicative,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
**>
(

morph:
(

BIBLIOGRAPHY 95

root:ROOTS,
dec:tv1

),
arg_st:ARGST,
syn:

(
cat:

(verb,
mood:subjunctive,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
morphs
(X,u) becomes (X,a)
.

sound-sg-jussive-tv1-verb-cxt##
(

morph:
(

root:ROOTS,
dec:tv1

),
arg_st:ARGST,
syn:

(
cat:

(verb,
mood:indicative,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
**>
(

morph:
(

root:ROOTS,
dec:tv1

),
arg_st:ARGST,
syn:

(
cat:

(verb,

BIBLIOGRAPHY 96

mood:jussive,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
morphs
(X,u) becomes (X)
.

Definiteness construction rule:

triptote-sound-sg-def-noun-cxt##
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:CASE,
def:no
)

,
val:VAL,
mrkg:MRKG
),

sem:SEM
)
**>
(

morph:
(

root:ROOTS,
dec:tn1

),
arg_st:ARGST,
syn:

(
cat:

(noun,
case:CASE,
def:yes
)

,
val:VAL,

BIBLIOGRAPHY 97

mrkg:MRKG
),

sem:SEM
)
morphs
(X,a,n) becomes (a,l,X,a),
(X,u,n) becomes (a,l,X,u),
(X,i,n) becomes (a,l,X,i)
.

