
M.Sc. Engg. Thesis

PRACTICAL MODELS AND
ALGORITHMS FOR THE DNA

FRAGMENT ASSEMBLY PROBLEM

By

Jesun Sahariar Firoz
Student No.: 1009052026

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka-1000.

June 2012

The thesis titled “Practical Models and Algorithms for the DNA
Fragment Assembly Problem,” submitted by Jesun Sahariar Firoz, Roll No.
1009052026P, Session October 2009, to the Department of Computer Science and
Engineering, Bangladesh University of Engineering and Technology, has been ac-
cepted as satisfactory in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering and approved as to its
style and contents. Examination held on June 16, 2012.

Board of Examiners

1.
Dr. M. Sohel Rahman Chairman
Associate Professor (Supervisor)
Department of Computer Science and Engineering
BUET, Dhaka 1000

2.
Dr. Abu Sayed Md. Latiful Hoque Member
Professor & Head (Ex-officio)
Department of Computer Science and Engineering
BUET, Dhaka 1000

3.
Dr. M. Kaykobad Member
Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

4.
Dr. Mohammed Eunus Ali Member
Assistant Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

5.
Dr. Md. Shazzad Hosain Member
Assistant Professor (External)
Department of Electrical Engineering & Computer Science
North South University, Dhaka

i

Candidate’s Declaration

It is hereby declared that this thesis or any part of it has not been sub-
mitted elsewhere for the award of any degree or diploma.

Jesun Sahariar Firoz
Candidate

ii

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgements x

Abstract xi

1 Introduction 1
1.1 DNA Sequencing and Its Application 1
1.2 DNA Fragment Assembly Problem in the Context of DNA

Sequencing . 3
1.3 Our Contribution . 4
1.4 Organization . 6

2 Preliminaries 7
2.1 Introduction . 7
2.2 Definitions . 7
2.3 DNA Sequencing Process . 10

2.3.1 Biological Part . 11
2.3.2 Computational Part 12
2.3.3 An Example . 14

2.4 Sanger Sequencing Process . 14
2.5 454 Sequencing Process . 19
2.6 Summary . 21

3 Meta-heuristics 22
3.1 Introduction . 22
3.2 Meta-heuristics . 22
3.3 Classification . 23
3.4 Single-solution Based Algorithms 25
3.5 Population-based Methods . 25

iii

3.6 Summary . 27

4 Related Works 28
4.1 Introduction . 28
4.2 State-of-the-art . 28
4.3 Summary . 33

5 Error Models 34
5.1 Introduction . 34
5.2 Sanger Sequencing Error Model 34
5.3 454 Sequencing Error Model 35
5.4 Exact Error Models . 36
5.5 Summary . 36

6 Meta-heuristics for the DNA FAP 38
6.1 Introduction . 38
6.2 Swarm Intelligence . 38
6.3 Bee Colony Algorithms . 41

6.3.1 Behaviour of a Honey Bee Swarm 41
6.4 Overview of Bee Based Algorithms 43
6.5 Artificial Bee Colony (ABC) Algorithm for the DNA FAP . . 45

6.5.1 Formulation of the Problem and Objective 45
6.5.2 Initialization . 45
6.5.3 Iteration Using PALS 46
6.5.4 Fitness Calculation . 50
6.5.5 Probability Calculation for Food Source 50

6.6 Queen-bee Evaluation Based on Genetic Algorithm (QEGA)
for DNA FAP . 51

6.7 Summary . 54

7 Hybrid Meta-heuristics for the DNA FAP 55
7.1 Introduction . 55
7.2 Genetic algorithm (GA) . 56
7.3 Hill Climbing . 56
7.4 Simulated Annealing . 58
7.5 Hybrid Algorithms for the DNA FAP 60
7.6 Summary . 61

8 Experimental Results 62
8.1 Introduction . 62
8.2 Experimental Setup . 63

iv

8.2.1 Datasets . 63
8.2.2 Score Matrix Calculation 65
8.2.3 ABC Control Parameters 67
8.2.4 GA+SA and GA+HC Implementation Details in Par-

adisEO . 67
8.3 Results Obtained for Noiseless Data 68

8.3.1 Results Obtained by ABC FAP and QEGA FAP for
Noiseless Instances (Fitness Criteria: Overlap and No.
of Contigs) . 69

8.3.2 Results Obtained by GA+SA and GA+HC for Noise-
less Instances (Fitness Criteria: Overlap) 71

8.4 Barchart Representation of the Results Obtained for Noiseless
Instances . 74

8.5 Results Obtained For Noisy Data 74
8.5.1 Results Obtained by ABC FAP and QEGA FAP for

Noisy Instances (Fitness Criteria: Overlap and No. of
Contigs) . 78

8.5.2 Results Obtained by GA, GA+SA and GA+HC for
Noisy Instances (Fitness Criteria: Overlap) 81

8.6 Barchart Representation of the Results Obtained for Noisy
Instances . 82

8.7 Overall Performance of the Algorithms for Noisy and Noiseless
Datasets . 82

8.8 Statistical Analysis by One Way ANOVA 83
8.9 Summary . 91

9 Conclusion and Future Works 92

v

List of Figures

2.1 Double Stranded DNA [44]. 8
2.2 Formation of contigs and a final layout (figure borrowed from [41]) 9
2.3 Graphical representation of DNA sequencing and assembly

(figure borrowed from [44]) . 10
2.4 Biological part of the DNA sequencing process [41]. 12
2.5 Layout and Consensus for the example in Section 2.3.3. 14
2.6 Schematic principle of the Sanger sequencing method 16
2.7 Sanger sequencing pipeline. 17
2.8 454 sequencing process (Figure borrowed from [1]). 20
2.9 Flowgram obtained from 454 sequencing process (Figure bor-

rowed from [1]). 20

6.1 Example of ordered crossover [2]. 54

7.1 Example of swap mutation. 60

8.1 Relation between no. of iterations and fitness for acin2 by
GA+HC for noiseless data. 73

8.2 Relation between no. of iterations and fitness for acin2 by
GA+SA for noiseless data. 74

8.3 Barcharts showing best fitness obtained by the algorithms for
noiseless data . 75

8.4 Barcharts showing best fitness obtained by the algorithms for
noiseless data (cont.) . 76

8.5 Barcharts showing best fitness obtained by the algorithms for
noiseless data (cont.) . 77

8.6 Iteration vs Fitness graph for j02459 7 noiseless data using
QEGA FAP . 81

8.7 Iteration vs Fitness graph for j02459 7 noisy data(454 error
model) using QEGA FAP . 82

8.8 Relation between Contig number and Cutoff value for m15421 7
instance using ABC FAP algorithm in 454 error model 83

vi

8.9 Barcharts showing best fitness obtained by the algorithms for
noisy data (454 Sequencing Error Model) 84

8.10 Barcharts showing best fitness obtained by the algorithms for
noisy data (454 Sequencing Error Model)(cont.) 85

8.11 Barcharts showing best fitness obtained by the algorithms for
noisy data (Sanger Sequencing Error Model) 86

8.12 Barcharts showing best fitness obtained by the algorithms for
noisy data (Sanger Sequencing Error Model)(cont.) 87

8.13 Barcharts showing best fitness obtained by the algorithms for
noisy data (Exact Sequencing Error Model) 88

8.14 Barcharts showing best fitness obtained by the algorithms for
noisy data (Exact Sequencing Error Model)(cont.) 89

8.15 ANOVA table (showing p-value) 90

vii

List of Tables

8.1 Information of datasets. Accession numbers are used as the
name of the instances . 64

8.2 Configuration of MetaSim for different error models and no.
of generations used by the algorithms 66

8.3 Best final contig number and fitness for noiseless data 70
8.4 Best fitness obtained by GA+HC, GA+SA and PALS for

noiseless data . 72
8.5 Fitnesses obtained for acin2 by GA+HC for noiseless data . . 72
8.6 Fitnesses obtained for acin2 by GA+SA for noiseless data . . . 73
8.7 Best fitness obtained by the algorithms for noisy data 80

viii

List of Algorithms

1 Generic ABC Algorithm . 46
2 PALS [13] . 47
3 CalculateDelta Function . 48
4 QEGA Algorithm . 52
5 The Genetic Algorithm . 57
6 The Hill climbing Algorithm 58
7 The Simulated Annealing Algorithm 59
8 Tournament selection Algorithm 61

ix

Acknowledgments

All praises due to Allah, the most benevolent and merciful.

I express my heart-felt gratitude to my supervisor, Dr. M. Sohel Rahman for

his constant supervision of this work. He helped me a lot in every aspect of this

work and guided me with proper directions whenever I sought one. His patient

hearing of my ideas, critical analysis of my observations and detecting flaws (and

amending thereby) in my thinking and writing have made this thesis a success.

I would also want to thank the members of my thesis committee for their valu-

able suggestions. I thank Professor Dr. Abu Sayed Md. Latiful Hoque, Dr. M.

Kaykobad, Dr. Mohammed Eunus Ali and specially the external member Dr. Md.

Shazzad Hosain.

I also thank one of my friend Tanay Kumar Saha, who was my partner in the

early works of my research. He was always there for me when I needed.

In this regard, I remain ever grateful to my beloved mother, who always exists
as sources of inspiration behind every success of mine I have ever made.

x

Abstract

DNA fragment assembly problem is one of the crucial challenges faced by com-
putational biologists where, given a set of DNA fragments, we have to construct a
complete DNA sequence from them. As it is an NP-hard problem, accurate DNA
sequence is hard to find. Moreover, due to experimental limitations, the frag-
ments considered for assembly are exposed to additional errors while reading the
fragments. In such scenarios, meta-heuristic based algorithms can come in handy.
In this thesis, we have taken the first ever approach to generate noisy datasets
using three realistic error models namely Sanger Sequencing error model, 454 Se-
quencing error model and Exact error model. Next, we analyze the performance
of two swarm intelligence based algorithms namely Artificial Bee Colony (ABC)
algorithm and Queen Bee Evolution Based on Genetic Algorithm (QEGA) to solve
the fragment assembly problem and report quite promising results. We also pro-
pose two hybrid algorithms namely Genetic Algorithm with Simulated Annealing
(GA+SA) and Genetic Algorithm with Hill Climbing (GA+HC) for noiseless and
noisy datasets. Additionally, we evaluate the performance of Genetic algorithm
with noisy datasets. Our main focus is to design meta-heuristic based techniques
to efficiently handle DNA fragment assembly problem for noisy and noiseless data.

xi

Chapter 1

Introduction

1.1 DNA Sequencing and Its Application

According to modern molecular biology and genetics, an organism’s hered-

itary information is mainly encoded in Deoxyribonucleic Acid (DNA). The

DNA is formed by a sequence of four types of molecules, called nucleotides or

bases, namely, Adenine (A), Thymine (T), Cytosine (C) and Guanine (G).

The process of DNA sequencing provides us with the most basic information

of all: the sequence of nucleotides. With this knowledge, for example, we

can locate regulatory and gene sequences, make comparisons between ho-

mologous genes across species and identify mutations. Moreover, decoding a

DNA sequence is vital to understand the function as well as malfunction of

living things [3].

The DNA sequence information is vital for medical, agricultural and many

other research areas. Inexpensive, time-efficient and accurate DNA sequenc-

ing will be a major accomplishment not only for the field of Genomics, but

for the entire human civilization because, for the first time, individuals will

be able to have their entire DNA sequenced. Utilizing this information, it

1

CHAPTER 1. INTRODUCTION 2

is speculated that health care professionals, such as physicians and genetic

counselors, will eventually be able to use genomic information to predict

what diseases a person may get in the future and attempt to either minimize

the impact of that disease or avoid it altogether through the implementa-

tion of personalized, preventive medicine. DNA sequencing will allow health

care professionals to analyze the entire human genome of an individual and

thereby detect all disease-related genetic variants, regardless of the genetic

variant’s prevalence or frequency. This will enable the rapidly emerging med-

ical fields of Predictive Medicine and Personalized Medicine and will mark

a significant leap forward for the clinical genetic revolution. So, DNA se-

quencing is clearly of great importance for research into the basis of genetic

disease because it will enable us to test for genetic markers associated with

the disease [3].

Now-a-days, screening of newborn for childhood diseases allows detection

of rare disorders that can be prevented or better treated by early detection

and intervention. Specific genetic tests are also available to determine when

a child’s symptoms appear to have a genetic basis. Full DNA sequencing,

in addition has the potential to reveal a large amount of information (such

as carrier status for autosomal recessive disorders, genetic risk factors for

complex adult-onset diseases, and other predictive medical and non-medical

information) that is currently not completely understood, may not be clin-

ically useful to the child during childhood, but may become useful for the

individual upon reaching adulthood [3].

Accordingly, the Human Genome Project (HGP) was launched in Octo-

ber 1990 with a primary goal of determining the sequence of chemical base

pairs which make up DNA, and of identifying and mapping the approxi-

mately 20,000-25,000 genes of the human genome from both a physical and

functional standpoint [4]. All humans have unique gene sequences. There-

fore the data published by the HGP does not represent the exact sequence of

every individual’s genome. It is the combined “reference genome” of a small

number of anonymous donors [4]. The HGP genome is a scaffold for future

work in identifying differences among individuals. So automating DNA se-

CHAPTER 1. INTRODUCTION 3

quencing,for knowing individual’s DNA in feasible time, by using computer

software is imperative.

1.2 DNA Fragment Assembly Problem in the

Context of DNA Sequencing

In DNA sequencing, assembling fragments or “reads” of DNA for the re-

construction of long continuous and least ambiguous contigs (i.e., groups of

overlapping fragments of a DNA) is a difficult but an important step. In

this context, DNA fragment assembly problem is one of the crucial chal-

lenges faced by computational biologists. To illustrate the problem with a

metaphor, let us consider a scenario [36]: imagine several copies of a maga-

zine cut into millions of pieces. Each copy is cut in a different way, so a piece

from one copy may overlap pieces from another. Assuming that some large

number of pieces are just sort of lost, and the remaining pieces are splashed

with ink, can we recover the original text? This, essentially, is the problem

of fragment assembly in DNA sequencing.

To read the DNA fragments, a process named shotgun sequencing [60] is

used. In this method, multiple copies of the DNA sequence are first gener-

ated through a process called amplification. Then these sequences are cut

at random points keeping in mind that we can only directly read a sequence

of several hundred base pairs (bps) long. With these fragments, we try to

reconstruct the overlapping DNA sequence as accurately as possible. So, in

DNA Fragment Assembly Problem (FAP), we are given a set of large number

of DNA fragments, possibly with errors and we are asked to find the correct

sequence of the DNA by finding the permutation of fragments that best rep-

resent the original DNA sequence.

DNA FAP finds its motivation from the limitation of current technology,

which enables us to read only several hundred of bps of a single DNA at

a time. Consequently, we need to read fragments of the DNA but not the

CHAPTER 1. INTRODUCTION 4

whole sequence at a time. During this process base pairs may be removed,

misread or inserted. Even if we disregard the presence of noise, this problem

is NP-hard [44]. Note that, given k fragments, there are 2k ∗k! combinations.

1.3 Our Contribution

In this thesis, we focus on evaluating the performance of various meta-

heuristics for solving the DNA fragment assembly problem with noiseless and

noisy data. Notably, the recent work of [50] also focused on noisy dataset

with an important drawback. The drawback of this technique is that no

particular sequencing error model was taken into consideration. To over-

come this drawback and for the construction of a realistic read data set, here

we use a sequencing simulator MetaSim [59]. In this simulator, the user is

able to choose from different (adaptable) error models of current sequencing

technologies (e.g. Sanger [47, 48], Rochei’s 454 [45] and Illumina (former

Solexa) [17]). We have used Sanger, 454 and Exact error models of MetaSim

to generate the noisy dataset. Beside this, we have collected noiseless dataset

generated with the help of another simulator Genfrag [29].

After generating the datasets with and without errors, we have used Par-

adisEO [22], a software framework for meta-heuristics, to solve the DNA

fragment assembly problem (FAP). ParadisEO is a C++ white-box object-

oriented framework dedicated to the reusable design of meta-heuristics. We

have implemented genetic algorithm with simulated annealing and genetic

algorithm with hill climbing for solving FAP in the ParadisEO framework

and compared the relative fitness achieved in each case.

Additionally, we have implemented Artificial Bee Colony (ABC) algo-

rithm and Queen Bee Evolution Based on Genetic Algorithm (QEGA) in

C++ to solve the DNA fragment assembly problem as accurately as possible

and compared the relative fitness achieved in noisy and noiseless case.

As we have mentioned before, in most of the literature it was assumed

CHAPTER 1. INTRODUCTION 5

that, the fragments being read are correct. We have eliminated this assump-

tion by incorporating error models in generating artificial fragments to be

sequenced [59]. We use either simulated annealing or hill climbing along with

genetic algorithm so that worse individuals in the population are taken into

consideration. In this way, the chance of completely eliminating a probably

misread fragment is minimized and we are bound to find more realistic solu-

tions. We exploit the probabilistic behavior of ABC or QEGA for the same

purpose. Also, using forward and backward read technique of MetaSim [59],

we have been able to emulate a more realistic input sequence mimicking

experimental output. These facts give us a promising insight about the fea-

sibility of using meta-heuristics to solve DNA fragment assembly problem.

In particular, Our contributions are summarized as follows.

� We have taken the first ever approach to generate noisy datasets using

realistic error models namely:

– Sanger Sequencing Error Model

– 454 Sequencing Error Model

– Exact Error Model

� We have used MetaSim and Genfrag tools for generating noisy and

noiseless data respectively.

� We have tried to solve the DNA Fragment Assembly Problem (DNA

FAP) for noisy and noiseless datasets with the following algorithms:

– Artificial Bee colony Algorithm (ABC FAP)

– Queen Bee Evolution Based on Genetic Algorithm (QEGA FAP)

– Genetic Algorithm with Simulated Annealing (GA+SA)

– Genetic Algorithm with Hill Climbing (GA+HC)

– Genetic Algorithm (for noisy datasets)

� We have implemented GA, GA+SA and GA+HC in ParadisEO frame-

work, which is a template-based meta-heuristic library.

CHAPTER 1. INTRODUCTION 6

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides background

information, problem definition and overview of two sequencing techniques.

Chapter 3 gives a general overview of meta-heuristics. Chapter 4 discusses

previous works related to DNA FAP. Chapter 5 introduces the three models

that have been used to generate noisy datasets. Chapter 6 describes two of

our meta-heuristic algorithms namely Artificial Bee Colony (ABC) algorithm

and Queen-bee Evaluation based on Genetic Algorithm (QEGA). Chapter 7

presents our hybrid meta-heuristic based algorithms namely genetic algo-

rithm with simulated annealing (GA+SA) and genetic algorithm with hill

climbing (GA+HC). In Chapter 8, we report the results obtained by our

algorithms and present a comparative study. Chapter 9 concludes the thesis

with future research directions.

Chapter 2

Preliminaries

2.1 Introduction

Now-a-days, genomic data analysis using computational approaches is very

popular. The primary goal of any genomic project is to determine the com-

plete sequence of the genome (mainly DNA) and its genetic content. Thus,

a genome project is accomplished in two steps: the first step is the genome

sequencing and the second is the genome annotation (i.e., the process of iden-

tifying the boundaries between genes and other features in raw DNA). The

DNA fragment assembly is performed at the very beginning of the process.

In this chapter, we present some background and preliminaries. Most of

the definitions and procedures presented in this section follows from[44].

2.2 Definitions

The DNA fragment assembly occurs in the frame of determining the specific

function of every gene composing a given DNA chain. Other steps depend

on its accuracy. The input of the DNA fragment assembly problem is a set

of fragments that are randomly cut from a DNA sequence. The DNA is

7

CHAPTER 2. PRELIMINARIES 8

Figure 2.1: Double Stranded DNA [44].

a double helix of two anti-parallel and complementary nucleotide sequences

(Figure 2.1). One strand is read from 5′ to 3′ and the other from 3′ to

5′. There are four kinds of nucleotides in any DNA sequence:Adenine (A),

Thymine (T), Guanine (G), and Cytosine (C).

To further understand the problem, we need to know the following basic

terminology:

� Fragment: A short sequence of DNA with length up to 1000 bps.

� Shotgun data: A set of fragments.

� Prefix: A substring comprising the first k characters of a fragment f .

� Suffix: A substring comprising the last k characters of a fragment f .

� Overlap: Common sequence between the suffix of one fragment and

the prefix of another fragment.

� Layout: An alignment, i.e., placement of a collection of fragments based

on the overlap order, i.e., the fragment order in which the fragments

must be joined (see Figure 2.2).

CHAPTER 2. PRELIMINARIES 9

Figure 2.2: Formation of contigs and a final layout (figure borrowed from [41])

� Contig: A layout consisting of contiguous overlapping fragments, i.e.,

a sequence in which the overlap between adjacent fragments is greater

than a predefined threshold (see Figure 2.2).

� Consensus: A sequence or string derived from the layout by taking the

majority vote for each column of the layout.

� x–mer: The term x–mer (where x can be virtually any consonant of

choice) usually refers to a specific x–tuple of nucleotides that can be

used to identify certain regions within DNA. For example, A sequence

of dimers = AGAGAGAGAGAGAG and A sequence of trimers = AA-

GAAGAAGAAG. Here AG and AAG are dimers and trimers respec-

tively.

To measure the quality of a consensus, we can look at the distribution

of the coverage. Coverage at a base position is defined as the number of

fragments at that position. It is a measure of the redundancy of the fragment

data. It denotes the number of fragments, on average, in which a given

nucleotide in the target DNA is expected to appear and is computed as

follows [60]:

Coverage =

∑n
i=0 length of the fragment i

target sequence length
(2.1)

CHAPTER 2. PRELIMINARIES 10

Figure 2.3: Graphical representation of DNA sequencing and assembly (figure

borrowed from [44])

Where n denotes no. of fragments. For example, a hypothetical genome

with 2,000 base pairs reconstructed from 8 reads with an average fragment

length of 500 nucleotides will have coverage of 2.

2.3 DNA Sequencing Process

To determine the function of specific genes, scientists read the sequence of

nucleotides comprising a DNA sequence in a process called DNA sequencing

(Figure 2.3). At present, strands of DNA that are longer than 600 base pairs

cannot routinely be sequenced accurately. Hence, large strands of DNA need

CHAPTER 2. PRELIMINARIES 11

to be broken into small fragments for sequencing. Logically, the whole pro-

cess of DNA sequencing is divided into two parts: one is the biological part

of cloning, fragmenting, and reading, and the other one is the computational

part of assembling the fragments.

2.3.1 Biological Part

The basic procedure starts with a large number of copies of DNA whose se-

quence we need to find out. The genome is then physically cut into a large

number of random fragments. Fragments that are too large or too small are

then discarded. The length of short fragments are about 2Kbp, and the long

ones are about 10Kbp. The fragments are then inserted into the DNA of

a bacterial virus (phage), called vector. Typically one vector contains one

fragment. The fragments are called inserts and the set of inserts with simi-

lar size, a library. Next, a bacterium is infected with a single vector, which

generates clones of the vector as well as the insert (the fragment) within it.

Then, the base pair at both ends of all the fragments are read with DNA

sequencer as shown in Figure 2.4. Only about 500 to 600 bps can be read

using present sequencer technology. This read length depends on the passing

speed in the capillary of the sequencer. But even if done meticulously, a read

length of more than 1000 bp is not possible. The base sequence at each of

the ends of fragment read by the sequencer is called a read, and the pair of

reads from the two ends is called mate–pairs.

In summary, multiple exact copies of the original DNA sequence are made.

Each copy is then cut into short fragments at random positions (duplicate

and sonicate phases). Then this biological material is “converted” to com-

puter data (sequence and call bases phases). Base calling is the process of

assigning bases. All these steps take place in the laboratory.

CHAPTER 2. PRELIMINARIES 12

Figure 2.4: Biological part of the DNA sequencing process [41].

2.3.2 Computational Part

After the set of fragments are obtained, traditional assembly approach is fol-

lowed in the following phases in the given order: overlap, layout, and then

consensus. To ensure that enough fragments overlap, the reading of frag-

ments continues until the coverage is satisfied. In the overlap phase, the best

or longest match between the suffix of one sequence and the prefix of another

are found. Layout phase consists of finding the order of fragments based on

the computed similarity score. Consensus phase consists of deriving the DNA

sequence from the layout. In what follows, we give a brief description of each

of the three phases.

Overlap Phase

This phase consists in finding the best or longest match between the suffix

of one sequence and the prefix of another. In this step, we compare all pos-

sible pairs of fragments to determine their similarity. Usually, the dynamic

programming algorithm applied to semiglobal alignment is used in this step.

The intuition behind finding the pairwise overlap is that fragments with a

significant overlap score are very likely to be next to each other in the target

sequence.

CHAPTER 2. PRELIMINARIES 13

Layout Phase

Layout phase consists of finding the order of fragments based on the com-

puted similarity score. Several issues complicate this layout phase. These

are discussed below:

� Unknown orientation: After the original sequence is cut into many

fragments, the orientation is lost. The sequence can be read in either 5′

to 3′ or 3′ to 5′. One does not know which strand should be selected. If

one fragment does not have any overlap with another, it is still possible

that its reverse complement might have such an overlap.

� Base call errors: There are three types of base call errors, namely,

substitution, insertion, and deletion errors. They occur due to ex-

perimental errors in the electrophoresis procedure. Errors affect the

detection of fragment overlaps. The consensus determination requires

multiple alignments in high coverage regions.

� Incomplete coverage: It happens when the algorithm is not able to

assemble a given set of fragments into a single contig.

� Repeated regions: Repeats are sequences that appear two or more

times in the target DNA. Repeated regions have caused problems in

many DNA sequencing projects, and none of the current assembly pro-

grams can handle them perfectly [44].

� Chimeras and contamination: Chimeras arise when two fragments

that are not adjacent or overlapping on the target molecule join to-

gether into one fragment. Contamination occurs due to the incomplete

purification of the fragment from the vector DNA.

After the order is determined, progressive alignment is applied to combine

all the pairwise alignments obtained in the overlap phase.

Consensus Phase

Consensus phase consists of deriving the DNA sequence from the layout.

The most common technique used in this phase is to apply the majority rule

CHAPTER 2. PRELIMINARIES 14

Figure 2.5: Layout and Consensus for the example in Section 2.3.3.

in building the consensus. The majority rule states that, given a specific

location of overlapping fragments, we put the base (A, T, C or G) at that

specific location with maximum appearance.

2.3.3 An Example

We now give an example borrowed from [44]. Given a set of fragments {F1

= GTCAG, F2 = TCGGA, F3 = ATGTC, F4 = CGGATGg}, assume the

four fragments are read from 5′ to 3′ direction. First, we need to determine

the overlap of each pair of the fragments by the using semiglobal alignment

algorithm. Next, we determine the order of the fragments based on the

overlap scores, which are calculated in the overlap phase. Suppose we have

the following order: F2 F4 F3 F1. Then, the layout and the consensus for

this example can be constructed as shown in Figure 2.5. In this example, the

resulting order allows to build a sequence having just one contig.

2.4 Sanger Sequencing Process

In 1974, two DNA sequencing methods were invented independently and

simultaneously in Cambridge, England by Fred Sanger and in Cambridge,

Massachusetts by Walter Gilbert. Gilbert, used a “chemical cleavage pro-

tocol”, while Sanger, designed a procedure similar to the natural process of

CHAPTER 2. PRELIMINARIES 15

DNA replication. Even though both teams shared the 1980 Nobel Prize,

Sanger’s method became the standard because of its practicality [5].

Sangers method takes advantage of how cells make copies of DNA [36].

Cells copy a strand of DNA nucleotide by nucleotide in a reaction that adds

one base at a time. Sanger realized that he could make copies of DNA frag-

ments of different lengths if he starved the reaction of one of the four bases:

a cell can only copy its DNA while it has all of the bases in supply. For

a sequence ACGTAAGCTA, starving at T would produce a mixture of the

fragments ACG and ACGTAAGC. By running one starvation experiment for

each of A, T , G and C and then separating the resulting DNA fragments by

length, one can read the DNA sequence. Each of the four starvation exper-

iments produces a ladder of fragments of varying lengths called the Sanger

ladder. For example The Sanger ladder for T shows the lengths of all sub-

fragments ending at T and therefore reveals the set of positions where T oc-

curs. The DNA sequencing machines measure the lengths of DNA fragments

in the Sanger ladder, but even this task is difficult; we cannot measure a

single DNA fragment, but must measure billions of identical fragments. The

technique to create identical fragments is described in Subsection 2.3.1. After

creating the identical fragments, they are read by two machines: automated

gel sequencers that use electrophoresis and fluorescent markers. These ma-

chines are used to determine the sequence of the nucleotides in one fragment.

The ability of these machines to read consecutive pieces of DNA degrades

quickly with the length of the sequence, and today a sequencing machine can

read up to ≈700 consecutive base pairs of a fragment of DNA, depending on

the degree of accuracy desired.

The Sanger approach culminated in the sequencing of a 5386-nucleotide

virus in 1977 and a Nobel Prize shortly thereafter. Since then the amount

of DNA sequence data has been increasing exponentially, particularly after

the launch of the Human Genome Project in 1989. By 2001, it had produced

roughly 3 billion nucleotide sequence of the human genome.

Classical Sanger sequencing relies on base-specific chain terminations in

CHAPTER 2. PRELIMINARIES 16

Figure 2.6: Schematic principle of the Sanger sequencing method. (a) Four

separate DNA extension reactions are performed, each containing a single-

stranded DNA template, primer, DNA polymerase, and all four dNTPs to

synthesize new DNA strands. Each reaction is spiked with a correspond-

ing dideoxynucleoside triphosphate (ddATP, ddCTP, ddTTP, or ddGTP).

In the presence of dNTPs, one of which is radioactively labeled (in this case,

dATP), the newly synthesized DNA strand would extend until the available

ddNTP is incorporated, terminating further extension. Radioactive products

are then separated through four lanes of a polyacrylamide gel and scored ac-

cording to their molecular masses. Deduced DNA sequence is shown on the

left. (b) In this case, instead of adding radioactive dATP, all four ddNTPs

are labeled with different fluorescent dyes. The extension products are then

electrophoretically separated in a single glass capillary filled with a polymer.

Similar to the previous example, DNA bands move inside the capillary ac-

cording to their masses. Fluorophores are excited by the laser at the end

of the capillary. The DNA sequence can be interpreted by the color that

corresponds to a particular nucleotide (Figure borrowed from [35]).

CHAPTER 2. PRELIMINARIES 17

Figure 2.7: Sanger sequencing pipeline. (a) DNA clone preparation usually

starts with the isolation of total DNA (e.g., whole genomic DNA from an

organism or already fragmented DNA, cDNA, etc.), followed by further frag-

mentation and cloning into a vector for DNA amplification in bacterial cells.

As a result, millions of individual bacterial colonies are produced and indi-

vidually picked into multiwell plates by liquid-handling robots for isolation of

amplified DNA clones. This DNA then goes through a sequencing reaction

described in Figure 2.6(b) Processed sequenced DNA undergoes capillary

electrophoresis where labeled nucleotides (bases) are collected and scanned

by the laser producing raw sequencing traces. (c) Raw sequencing informa-

tion is converted into computer files showing the final sequence and quality

of every scanned base. The resultant information is stored on dedicated

servers and also is usually submitted into free public databases, such as the

GeneBank and Trace Archive (Figure borrowed from [35]).

CHAPTER 2. PRELIMINARIES 18

four separate reactions (A, G, C and T) corresponding to the four different

nucleotides in the DNA makeup (Figure 2.6) [35]. In the presence of all four

2′ deoxynucleotide triphosphates (dNTPs), a specific 2′, 3′-dideoxynucleotide

triphosphate (ddNTP) is added to every reaction, for example, ddATP to

the “A” reaction and so on. The extension of a newly synthesized DNA

strand terminates every time the corresponding ddNTP is incorporated. As

the ddNTP is present in minute amounts, the termination happens rarely

and stochastically, resulting in a cocktail of extension products where every

position of an “N” base would result in a matching product terminated by in-

corporation of ddNTP at the 3′ end. The second novel aspect of the method

is the use of radioactive phosphorus or sulfur isotopes incorporated into the

newly synthesized DNA strand through a labeled precursor (dNTP or the

sequencing primer), therefore, making every product detectable by radiogra-

phy. Finally, as each extension reaction results in a very complex mixture of

large radioactive DNA products, probably the most crucial achievement is

the development of ways to individually separate and detect these molecules.

The innovative use of a polyacrylamide gel (PAG) allowed very precise sizing

of termination products by electrophoresis followed by in situ autoradiog-

raphy. Later, the autoradiography is partially replaced by less hazardous

techniques such as silver staining of DNA in PAGs.

But slab PAGs are very slow and laborious and cannot be readily applied

to interrogating large genomes. The next two major technological break-

throughs took place in (i) 1986 when a Caltech team (led by Leroy Hood) and

ABI developed an automated platform using fluorescent detection of termina-

tion products separating four-color-labeled termination reactions in a single

PAG tube and in (ii) 1990 when the fluorescent detection was combined with

electrophoresis through a miniaturized version of PAGs, namely, capillaries.

Capillary electrophoresis (CE), by taking advantage of a physically compact

DNA separation device coupled with laser-based fragment detection, even-

tually became compatible with 96- and 384-well DNA plate format making

highly parallel automation a feasible reality. Finally, the combination of

dideoxy-based termination chemistry, fluorescent labeling, capillary separa-

tion, and computer-driven laser detection of DNA fragments has established

CHAPTER 2. PRELIMINARIES 19

the four elegant cornerstones. on which modern building of high-throughput

Sanger sequencing stands today. Figure 2.7 shows the Sanger Sequencing

pipeline.

2.5 454 Sequencing Process

Recently, 454 Life Sciences announced a new, highly parallel sequencing sys-

tem with significantly higher throughput than achievable with previous meth-

ods. The name 454 was the code name by which the project was referred to

at CuraGen Corporation and the numbers have no special meaning.

Using the current Sanger method of cloning DNA in bacteria, the amplifica-

tion process currently takes approximately three weeks and also introduces

bias in the DNA samples. On the other hand, 454 sequencing takes only

eight hours to do the same job. It uses emulsion-based PCR amplification

of a large number of DNA fragments and high-throughput parallel pyro-

sequencing. A detailed description of emulsion-based PCR amplification and

pyro-sequencing is out of scope of this thesis and hence not given here. The

system is reportedly able to sequence 25 million bases within four hours.

Cloning of the target DNA fragments is not necessary and the method is

much cheaper, per base, than other existing methods. Drawbacks of the

method are shorter read lengths of about 100 bases, in contrast to 800 bases

using Sanger sequencing, and a higher error rate. Further, sequencing of

paired-end reads is not yet possible.

In pyro-sequencing, the intensity of emitted light is used to estimate the

length of homopolymers, i.e., runs of identical nucleotides in a sequence. Dur-

ing sequencing, the four DNA composing nucleotides are periodically flowed

over the inserts (i.e. small pieces of DNA) to be sequenced. A nucleotide

complementary to the template strand generates a light signal. The light

signal is recorded by the CCD camera (Figure 2.8). The signal strength is

proportional to the number of nucleotide incorporated. So, within each flow,

the intensity of the signal emitted reflects the number of nucleotides incor-

porated and thus the length of the homopolymer under consideration.The

CHAPTER 2. PRELIMINARIES 20

Figure 2.8: 454 sequencing process (Figure borrowed from [1]).

Figure 2.9: Flowgram obtained from 454 sequencing process (Figure bor-

rowed from [1]).

CHAPTER 2. PRELIMINARIES 21

intensity of light generated during the flow of a single nucleotide varies pro-

portionately with the consecutive number of complementary nucleotides on

the single-stranded DNA fragment being analyzed. For example, if there are

three consecutive As in the single-stranded fragment, the amount of light

generated would be three times that of a single A in the fragment (Fig-

ure 2.9). The signals created in the sequencing process are then analyzed by

the 454 Sequencing Systems software to generate millions of sequenced bases

per hour from a single run.

For 454 sequencing [6] process, let r denote the length of a given ho-

mopolymer. The emitted light intensity can be modeled by a normal distri-

bution N(µ, σ), with mean µ = σ and standard deviation σ = k ∗√r, where

k is a fixed proportionality factor (k ≈ 0.15) [45].

Although basic statistics imply that the standard deviation should grow

with the square root of r, for the light intensity emitted during 454-sequencing,

it is reported to be σ = k ∗ r.

2.6 Summary

In this chapter, we have given background information and concepts required

to understand the DNA fragment assembly problem. We briefly discussed

the DNA sequencing process and introduced the fragment assembly problem

in its context. We have discussed the errors that occur during the fragment

assembly. Lastly, we have mentioned two sequencing process, namely the

Sanger and 454 sequencing. In the next chapter, we give an overview of

the basics of different meta-heuristic techniques. Later, we apply various

meta-heuristics to solve the DNA FAP.

Chapter 3

Meta-heuristics

3.1 Introduction

In this chapter, we give an introduction to meta-heuristics for solving dif-

ferent problems. We briefly discuss on single-solution and population-based

approaches.

3.2 Meta-heuristics

For many optimization problems, computing optimal solutions is intractable.

For this reason, we are generally interested in reasonably “good” solutions,

which are obtained by heuristic or meta-heuristic algorithms. Meta-heuristics

provide acceptable solutions in a reasonable time for solving hard and com-

plex problems [63]. Meta-heuristics are different from exact optimization

algorithms in that they do not guarantee the optimality of the obtained so-

lutions. On the other hand, unlike approximation algorithms, meta-heuristics

do not define how close are the obtained solutions from the optimal ones.

The word heuristic originates from the old Greek word heuriskein, which

means the art of discovering new strategies (rules) to solve problems. The

suffix meta, which is also a Greek word, means upper level methodology. Meta-

22

CHAPTER 3. META-HEURISTICS 23

heuristic search methods can be defined as upper level general methodologies

(templates) that can be used as guiding strategies in designing underlying

heuristics to solve specific optimization problems [63].

Of great importance for the functioning of a meta-heuristic are the con-

cepts called diversification and intensification [18]. The term diversification

generally refers to the exploration of the search space, whereas the term in-

tensification refers to the exploitation of the accumulated search experience.

Each meta-heuristic application is characterized by a balance between di-

versification and intensification. This is important, on one side to quickly

identify regions in the search space with high quality solutions, and on the

other side not to waste too much time in regions of the search space which

are either already explored or which do not provide high quality solutions.

3.3 Classification

There are different ways to classify and describe meta-heuristic algorithms,

each of them being the result of a specific viewpoint. Some classifications are

described below [63]:

� Nature inspired versus non-nature inspired: Many meta-heuristics

are inspired by natural processes: evolutionary algorithms and artificial

immune systems from biology; ants, bee colonies, and particle swarm

optimization from swarm intelligence into different species (social sci-

ences); and simulated annealing from physics.

� Memory usage versus memoryless methods: Some meta-heuristic

algorithms are memoryless ; that is, no information extracted dynami-

cally is used during the search. Some representatives of this class are

local search, GRASP, and simulated annealing. While other meta-

heuristics use a memory that contains some information extracted on-

line during the search. Examples include short-term and long-term

memories in tabu search.

� Deterministic versus stochastic: A deterministic meta-heuristic

CHAPTER 3. META-HEURISTICS 24

solves an optimization problem by making deterministic decisions (e.g.,

local search, tabu search). In stochastic meta-heuristics, some random

rules are applied during the search (e.g., simulated annealing, evolu-

tionary algorithms). In deterministic algorithms, using the same ini-

tial solution will lead to the same final solution, whereas in stochastic

meta-heuristics, different final solutions may be obtained from the same

initial solution. This characteristic must be taken into account in the

performance evaluation of meta-heuristic algorithms.

� Population-based search versus single-solution based search:

Single-solution based algorithms (e.g., local search, simulated anneal-

ing) manipulate and transform a single solution during the search while

in population-based algorithms (e.g., particle swarm, evolutionary algo-

rithms) a whole population of solutions is evolved. These two families

have complementary characteristics as discussed below. Single-solution

based meta-heuristics are exploitation oriented; they have the power to

intensify the search in local regions. Population-based meta-heuristics

are exploration oriented; they allow a better diversification in the whole

search space. Generally, algorithms that work on a single solution

at any time are referred to as trajectory methods. They comprise all

meta-heuristics that are based on local search, such as tabu search,

iterated local search and variable neighborhood search. They all share

the property that the search process describes a trajectory in the search

space. Population-based meta-heuristics, on the contrary, either per-

form search processes which can be described as the evolution of a set

of points in the search space (as for example in evolutionary compu-

tation), or they perform search processes which can be described as

the evolution of a probability distribution over the search space (as for

example in ant colony optimization).

� Iterative versus greedy: In iterative algorithms, we start with a

complete solution (or population of solutions) and transform it at each

iteration using some search operators. Greedy algorithms start from an

empty solution, and at each step a decision variable of the problem is

assigned until a complete solution is obtained.

CHAPTER 3. META-HEURISTICS 25

3.4 Single-solution Based Algorithms

As stated previously, Single-solution based algorithms manipulate and trans-

form a single solution during the search procedure. Examples include simu-

lated annealing and hill climbing. To optimize a candidate solution we need

to be able to do four things [43]:

� Provide one or more initial candidate solutions. This is known as the

initialization procedure.

� Assess the quality of a candidate solution. This is known as the assess-

ment procedure.

� Make a copy of a candidate solution.

� Tweak a candidate solution, which produces a randomly slightly differ-

ent candidate solution. This, plus the copy operation are collectively

known as the modification procedure.

The single-solution based meta-heuristics algorithms typically provide a

selection procedure that decides which candidate solutions to retain and

which to reject as it wanders through the space of possible solutions to the

problem.

3.5 Population-based Methods

Population-based meta-heuristics, (e.g., particle swarm, genetic algorithms,

bee base algorithms etc.) at each iteration, deal with a set of solutions

rather than a single solution. From this set of solutions the population of

the next iteration is produced by the application of certain operators. Most

population-based methods steal concepts from biology. One particularly pop-

ular set of techniques, collectively known as Evolutionary Computation (EC),

borrows liberally from population biology, genetics, and evolution. An algo-

rithm chosen from this collection is known as an Evolutionary Algorithm

(EA). Most EAs may be divided into generational algorithms, which update

CHAPTER 3. META-HEURISTICS 26

the entire sample once per iteration, and steady-state algorithms, which up-

date the sample a few candidate solutions at a time. Common EAs include

the Genetic Algorithm (GA) and Evolution Strategies (ES); and there are

both generational and steady-state versions of each. Some definitions related

to population based methods are described below [43]:

� Individual: A candidate solution.

� Child and Parent: A child is the tweaked copy of a candidate solution

(its parent).

� Population: Set of candidate solutions.

� Fitness: Quality.

� Fitness landscape: Quality function.

� Fitness assessment or evaluation: Computing the fitness of an

individual.

� Selection: Picking individuals based on their fitness.

� Mutation: Plain tweaking. We will give details about the mutation

operator we use in our algorithms in Section 7.5.

� Recombination or Crossover: A special tweak which takes two

parents, swaps sections of them, and (usually) produces two children.

This is mostly related to vector representation. We will give details

about the crossover operator we use in our algorithms in Section 6.6.

� Breeding: Producing one or more children from a population of par-

ents through an iterated process of selection and tweaking (typically

mutation or recombination).

� Genotype: An individuals data structure, as used during breeding.

The basic generational evolutionary computation algorithm first con-

structs an initial population, then iterates through three procedures. First,

it assesses the fitness of all the individuals in the population. Second, it

uses this fitness information to breed a new population of children. Third, it

CHAPTER 3. META-HEURISTICS 27

joins the parents and children in some fashion to form a new next-generation

population, and the cycle continues. Breed operation usually has two parts:

Selecting parents from the old population, then Tweaking them (usually

Mutating or Recombining them in some way) to make children. The Join

operation usually either completely replaces the parents with the children,

or includes fit parents along with their children to form the next generation.

3.6 Summary

This chapter has presented a high level introduction to meta-heuristics for

solving different problems. We have discussed on single-solution and population-

based approaches. In the following chapters, we propose algorithms based

on population-based approaches to solve DNA FAP. Before that, in the next

chapter, we mention different methods in the literature, previously employed,

to solve the FAP.

Chapter 4

Related Works

4.1 Introduction

In this chapter, we give descriptions of various state-of-the-art techniques

found in the literature for solving DNA fragment assembly problem. Most of

the techniques applied different heuristics. Some assemblers are also devel-

oped in the last couple of years to automate the computational part of DNA

sequencing process.

4.2 State-of-the-art

Many deterministic and stochastic search techniques have been proposed to

solve DNA fragment assembly problems [46]. For instance, [61] and [67]

proposed deterministic greedy search algorithm to solve the problem. But

a drawback of this type of algorithm is that manual manipulation on the

computer-generated result is required to obtain a biologically plausible final

result. Others investigated deterministic search algorithms like a branch-

and-cut algorithm [31] and an overlap-graph based algorithm [20]. Although

mathematical analyses of these two algorithms indicate that the algorithms

are capable to solve the assembly problem, neither algorithm has as yet been

successfully applied to problems generated using real data. Researchers also

investigated stochastic search algorithms such as a simulated annealing algo-

28

CHAPTER 4. RELATED WORKS 29

rithm [25, 21] and a genetic algorithm [54] for DNA FAP. Promising results

have been reported in [54] where the genetic algorithm has shown to have

outperformed a greedy search technique. Additionally, the need for manual

intervention is also eliminated in this case. Although a significant improve-

ment over the greedy search result has been achieved, later, it was pointed out

that the search efficiency could be further improved if the redundancy in the

solution representation could be eliminated from the search algorithm [54].

In [46], approaches based on Ant Colony System (ACS) are proposed

to solve FAP. The authors in [46] formulated the DNA fragment assembly

problem as a special kind of the Traveling Salesman problem (TSP) that is

generally referred to as an asymmetric TSP. They used ACS to solve the

FAP and showed that the performance of the ACS algorithm and that of the

nearest neighbour heuristic rule at solving single-contig problems are approx-

imately the same. In contrast, the ant colony system algorithm outperforms

the nearest neighbour heuristic search when multiple-contig problems are

considered. However, it was reported that the multiple-contig problems with

large number of fragments cannot always be solved using the ant colony sys-

tem algorithm.

In [44], the authors present several methods - a canonical genetic algo-

rithm, a CHC (Cross generational elitist selection, Heterogeneous recombi-

nation and Cataclysmic mutation) method, a scatter search algorithm, and a

simulated annealing method, to solve accurately some problem instances that

are 77K base pairs long. Since the work of [44], the problem of DNA fragment

assembly has been tackled with different other heuristics and meta-heuristics

in the literature [13, 27, 50]. We give a brief overview of the techniques pro-

posed in [13, 27, 50] shortly. Nonetheless, the quest for new more accurate

and faster techniques still continues.

A lot of tools have been invented to automate DNA sequencing. Among

these tools, PHRAP [32], TIGR assembler [62], STROLL [23], CAP3 [33],

Celera assembler [51] and EULER [55] may be cited. All of these tools focus

on coping with different problems faced during fragment assembly.

CHAPTER 4. RELATED WORKS 30

PHRAP (PHRagment Assembly Program) [32, 7] is originally designed

for and mostly used in the assembly of data from shotgun sequencing, but

has been used in EST clustering, genotyping, and to identify sequence poly-

morphisms. In the assembly process it allows the use of entire reads; not

just trimmed high quality parts of the sequences. To improve accuracy

in the assembly process of PHRAP, in the presence of repeats, a combina-

tion of user supplied information and internal information is used, like clone

name, the direction of the read, and the dye chemistry used to generate the

read. PHRAP provides extensive information about the assembly to assist

in trouble-shooting.

As mentioned earlier, PHRAP purely assembles complete reads, that is,

it does not trim the reads prior to assembly, and problematic reads, such

as vector contaminated reads, must be dealt with before assembly (e.g., by

cross match, a part of the phrap package). PHRAP uses read quality data

(from phred, also part of the phrap package) and uses this to assign “qual-

ity” values (Log Likelihood Ratios (LLR)) to matches, it then assembles the

matching reads into contigs by using a greedy algorithm based on the LLR

values.

The CAP3 (Contig Assembly Program 3) [33, 7] clips 5′ and 3′ low quality

end regions in reads. The overlap detection is performed by finding chains

of ungapped segment identical alignment. The overlaps are processed with

a banded Smith-Waterman algorithm and scored, taking quality values into

account. Reads are then joined to form contigs in decreasing order of over-

lap scores, and forward-reverse constraints are used to make corrections to

contigs. Finally a multiple sequence alignment of the reads is constructed,

and a consensus sequence, along with a quality value for each base, is com-

puted for each contig. Notably, In construction of the multiple alignment

and consensus sequence the quality scores are used. CAP3 produces fewer

errors than PHRAP.

CHAPTER 4. RELATED WORKS 31

TIGR Assembler [62] is a tool capable of using quality values and assem-

bles data with greater care to repeat detection and contig-level overlapping.

While assembler programs like PHRAP, CAP3, TIGR and the Celera as-

sembler are based on a heuristic algorithm and “overlap-layout-consensus”

paradigm, the Euler assembler [55] uses a very different approach, namely,

an Eulerian Superpath approach. It uses clone end sequencing by using dou-

ble barreled (DB) data to perform the assembly. The result is an assembler

capable of assembling repeat regions, which is complicated for other assem-

blers [7]. The Euler assembler creates a virtual Sequencing By Hybridization

(SBH) problem, by breaking the reads into overlapping n-mers. A special

graph called de Bruijn graph is build, in which each edge corresponds to an

n-mer from one of the original sequence reads. The source and destination

nodes corresponds respectively to the n−1 prefix and n−1 suffix of the cor-

responding n-mer. The original DNA sequence is reconstructed, by finding

a path that uses all the edges exactly once i.e., an Eulerian path.

It is important to note that the classical DNA fragment assemblers stated

above use fitness functions that favor solutions having strong overlaps be-

tween adjacent fragments in the layouts. But we also need to obtain an

order of the fragments that minimizes the number of contigs, with the goal

of reaching one single contig, i.e., a complete DNA sequence composed of

all the overlapping fragments. PALS [13] (Problem Aware Local Search) is a

simple, fast and accurate heuristic solution that is recently proposed with the

objective of achieving this goal. In PALS, the number of contigs is used as a

high-level criterion to judge the whole quality of the results since it is difficult

to capture the dynamics of the problem into other mathematical functions.

However, the calculation of the number of contigs is quite time-consuming,

and this fact definitely precludes any algorithm to use such calculation. A

solution to this problem was introduced in [13] as an utilization of a method

that should not need to know the exact number of contigs and thus be com-

putationally light. The key contribution of PALS [13] is to indirectly estimate

the number of contigs by measuring the actual number of contigs that are

created or destroyed when tentative solutions are manipulated. The authors

CHAPTER 4. RELATED WORKS 32

in [13] used a variation of a heuristic algorithm for TSP (Traveling Salesman

Problem) for the DNA field, which does not only use the overlaps among the

fragments, but also takes into account (in an intelligent manner) the number

of contigs that has been created or destroyed.

In [27], the authors proposed a new method combining a general purpose

meta-heuristic with a local search method specifically designed for this prob-

lem, namely, PALS of [13]. They presented a new approach of cellular genetic

algorithms (cGA) that regulates the intensity on the search while solving a

problem, outperforming the compared cGAs with static populations. This

model also has the advantage that it requires almost no additional cost with

respect to the canonical cGA, since it basically consists of changing the pop-

ulation shape (which has zero cost if the population is implemented as a list

of individuals) in order to keep an appropriate balance between the intensi-

fication and diversification performed during the search.

While the sequential genetic algorithm has given good results, it is un-

able to sequence very large DNA molecules efficiently. As a result, several

authors have proposed parallel and distributed versions of genetic algorithm

to overcome this difficulty. In [14], the authors have presented two parallel

methods,a distributed genetic algorithm and a parallel simulated annealing

algorithm,to solve accurately problem instances that are 77K base pairs long.

Another work [57] has proposed a new parallel asynchronous cellular genetic

algorithm model for multi-core processors. The algorithm has been used for

solving the DNA FAP with the aim to find highly accurate solutions in lesser

computational effort. Also, several new local search methods have been de-

signed, and their influence on the performance of the algorithm has been

analyzed.

Another paper [42] proposed evolutionary based iterative optimization

method called Prototype Optimization with Evolved Improvement Steps

(POEMS) to solve the DNA fragment assembly problem. POEMS is an it-

erative algorithm that seeks for the best modification of the current solution

CHAPTER 4. RELATED WORKS 33

in each iteration. The modifications are evolved by means of an evolutionary

algorithm.

All of the above mentioned previous works consider operations on noise-

less data. Recently, in [50], performance of various meta-heuristic based algo-

rithms were discussed where a uniform random error model was introduced

in the fitness score matrix. Moreover, the authors have used constructive

heuristic seeding strategies to generate initial solutions with an aim to ex-

ploit promising regions of the search space.

4.3 Summary

This chapter has discussed different techniques found in the literature to

solve DNA FAP. In the next chapter, we discuss the error models that have

been used to generate noisy datasets.

Chapter 5

Error Models

5.1 Introduction

In this chapter, we discuss about the error models that have been used to

generate noisy datasets for experimentation. We first mention the errors

introduced during Sanger Sequencing. Next, we explain the errors being

generated due to fluctuation of light signal in 454 Sequencing. Lastly, we

discuss about the errors due to misread orientation. These three models

have been simulated in MetaSim to generate noisy datasets. No previous

work take these error models into consideration, during the generation of

datasets. We have taken the first ever approach to generate realistic datasets

by incorporating error models in the fragmentation process of DNA instances.

5.2 Sanger Sequencing Error Model

In Sanger Sequencing, fragments are read by two machines: automated gel

sequencers that use electrophoresis and fluorescent markers. These machines

determine the sequence of the nucleotides in one fragment. The ability of

these machines to read consecutive pieces of DNA degrades quickly with the

length of the sequence, and today a sequencing machine can read up to ≈700

consecutive base pairs of a fragment of DNA, depending on the degree of

accuracy desired.

34

CHAPTER 5. ERROR MODELS 35

So, the error profile of Sanger sequencing is modeled as follows [6]:

1. The probability of an error occurring at position i of a read increases

linearly with i, and

2. If an error occurs at position i, then with some fixed probabilities, it is

either a substitution, a deletion or an insertion.

In this error model, the following parameters concerning different prob-

ability values, P must be set because of the two assumptions mentioned

above:

1. P (error at i) for positions i = 1 and i = 1000

2. P (deletion | error), deletion error rate.

3. P (insertion | error), insertion error rate.

4. P (substitution | error) = 1 - P (deletion | error) - P (insertion | error),

substitution error rate.

5.3 454 Sequencing Error Model

As discussed previously, In pyro-sequencing, the intensity of emitted light

signal is used to estimate the length of homopolymers. For chemical and

technical reasons, this signal is subject to fluctuations that lead to sequenc-

ing errors. The term noise flow values (in literature sometimes referred to

as negative flow values) is used to refer to the fact that the light signal is

weak. An important factor in modeling error in generating fragments using

454 sequencing technique is to properly reflect the behaviour of negative flow.

Light intensities of negative flows follow a lognormal distribution, with

mean µ = 0.23, and standard deviation σ = 0.15. A random variable X is

said to be lognormally distributed, if the random variable ln X is normally

CHAPTER 5. ERROR MODELS 36

distributed. Let µ and σ be the mean and standard deviation of X and let

m and s be the mean and standard deviation of ln(X). Then,

m = ln(
µ2

√
σ2 + µ2

) (5.1)

and

s =

√
ln((

σ

µ
)2 + 1) (5.2)

The probability density function of a lognormally distributed random

variable is usually specified with mean m and standard deviation s of the

underlying normally distributed ln(X). Based on this, the base calling in-

tensities of negative flows are simulated and the misinterpretation of nullmers

can be modeled as homopolymers of length one.

So far, we have discussed how to simulate the light intensities for negative

flow. We also need to model the base calling process. In the base calling

process, the intersections of the density functions of the normal distributions

for different homopolymer lengths r1 and r2 are calculated and stored in

an intersection matrix M . Then, these values are used to decide which

homopolymer length is called.

5.4 Exact Error Models

The Exact Error Model is suitable for sampling reads without modifying any

bases, i.e. in contrast to the other provided error models, no substitution,

insertion or deletion is applied to the read sequences. But orientations may

be changed during reading.

5.5 Summary

In this chapter, we have discussed the three error models that have been

used to generate noisy datasets. In the next chapter, we present two of our

CHAPTER 5. ERROR MODELS 37

algorithms, based on meta-heuristics, for solving DNA Fragment Assembly

problem.

Chapter 6

Meta-heuristics for the DNA

Fragment Assembly Problem

6.1 Introduction

In this chapter we present an Artificial Bee Colony (ABC) algorithm and a

Queen-bee Evaluation based on Genetic Algorithm (QEGA) for solving the

DNA FAP. These two algorithms belong to a special class of techniques based

on swarm intelligence. We start with a brief review of swarm intelligence

techniques in the following subsection. Then we briefly review the ABC

algorithm before presenting our approach.

6.2 Swarm Intelligence

Many existing meta-heuristic algorithms in the literature are nature-inspired.

The behavior of a single ant, bee, termite and wasp often is too simple, but

their collective and social behavior is of paramount significance. The collec-

tive and social behavior of living creatures motivated researchers to undertake

the study of swarm intelligence (SI) [26]. SI systems are typically made up

of a population of simple agents (an entity capable of performing/executing

certain operations) interacting locally with one another and with the environ-

38

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 39

ment. Although there is normally no centralized control structure dictating

how individual agents should behave, local interactions between such agents

often lead to the emergence of global behavior. Many biological creatures

such as fish schools and bird flocks clearly display structural order, with the

behavior of the organisms so integrated that even though they may change

shape and direction, they appear to move as a single coherent entity. The

main properties of the collective behavior are homogeneity, locality, collision

avoidance, velocity matching and flock centering [26].

A swarm can be viewed as a group of agents cooperating to attain some

goal through achieving some purposeful behavior. This collective intelligence

seems to emerge from what are often large groups. According to Milonas [49],

five basic principles define the SI paradigm. First is the proximity principle:

the swarm should be able to carry out simple space and time computations.

Second is the quality principle: the swarm should be able to respond to qual-

ity factors in the environment. Third is the principle of diverse response:

the swarm should not commit its activities along excessively narrow chan-

nels. Fourth is the principle of stability : the swarm should not change its

mode of behavior every time the environment changes. Fifth is the principle

of adaptability : the swarm must be able to change behavior when it is worth

the computational price. The 4th and the 5th principles are the opposite sides

of the same coin.

Two fundamental concepts, self-organization and division of labour, are

necessary and sufficient properties to obtain swarm intelligent behaviour.

Self-organization is one of the fundamental features of any SI system. In

general, it refers to the various mechanisms by which pattern, structure and

order emerge spontaneously in complex systems. Self-organization results in

structures at the global level of a system by means of interactions among its

low-level components. These mechanisms establish basic rules for the inter-

actions between the components of the system. The rules ensure that the

interactions are executed on the basis of purely local information without

any relation to the global pattern. Bonabeau et al. have tried to define self-

organization using the following words [19]:

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 40

Self-organization is a set of dynamical mechanisms whereby structures

appear at the global level of a system from interactions of its lower-level com-

ponents .

There are four main features that govern the self-organization in insect

colonies:

1. Positive feedback (amplification): It is a simple behavioural rules

of thumb that promotes the creation of convenient structures. Re-

cruitment and reinforcement such as trail laying and following in some

ant species or dances in bees can be cited as the examples of positive

feedback.

2. Negative feedback: It counterbalances positive feedback and helps

to stabilize the collective pattern. In order to avoid the saturation

which might occur in terms of available foragers, food source exhaus-

tion, crowding or competition at the food sources, a negative feedback

mechanism is needed.

3. Amplification of fluctuations: Fluctuations like random walks, er-

rors, random task switching among swarm individuals are vital for

creativity and innovation. Randomness is often crucial for emergent

structures since it enables the discovery of new solutions.

4. Multiple interactions: Self organization requires a minimal density

of mutually tolerant individuals, enabling them to make use of the

results from their own activities as well as others.

The agents use simple local rules to govern their actions and via the in-

teractions of the entire group, the swarm achieves its objectives.

The second unique feature of SI system is division of labour : inside a

swarm, there are different tasks, which are performed simultaneously by spe-

cialized individuals. Simultaneous task performance by cooperating special-

ized individuals is believed to be more efficient than the sequential task per-

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 41

formance by unspecialized individuals [19]. Division of labour also enables

the swarm to respond to changed conditions in the search space.

6.3 Bee Colony Algorithms

The classical example of a swarm is bees swarming around their hive. A

family of swarm algorithms, known as Bee Colony algorithms, tries to model

the natural behaviour of real honey bees. Honey bees use several mechanisms

like waggle dance that makes them a good candidate for developing new

intelligent search algorithms.

6.3.1 Behaviour of a Honey Bee Swarm

The minimal model of forage (food) selection that leads to the emergence of

collective intelligence of honey bee swarms consists of three essential com-

ponents: food sources, employed foragers and unemployed foragers. The

model defines two leading modes of the behaviour: the recruitment to a nec-

tar source and the abandonment of a source [38]. A brief description of the

components are given below.

1. Food Sources: The value of a food source depends on many factors,

such as, its proximity to the nest, its richness or concentration of its

energy, and the ease of extracting this energy. For the sake of simplicity,

the “profitability” of a food source can be represented with a single

quantity.

2. Employed Foragers: They are associated with a particular food

source which they are currently exploiting or are “employed” at. They

carry with them information about this particular source, its distance

and direction from the nest, the profitability of the source and share

these information with a certain probability.

3. Unemployed Foragers: They are continually at the look out for

a food source to exploit. There are two types of unemployed foragers,

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 42

namely, scouts and onlookers. Scouts search the environment surround-

ing the nest for new food sources and onlookers wait in the nest and

establish a food source through the information shared by employed

foragers. The mean number of scouts of total bees is about 5− 10% .

The exchange of information among bees is the most important occur-

rence in the formation of the collective knowledge. While examining the en-

tire hive it is possible to distinguish between some parts that commonly exist

in all hives. The most important part of the hive with respect to exchanging

information is the dancing area. Communication among bees related to the

quality of food sources takes place in the dancing area. This dance is called

a waggle dance.

Since information about all the current rich sources are available to an

onlooker on the dance floor, probably she can watch numerous dances and

decides to employ herself at the most profitable source. Employed foragers

share their information with a probability proportional to the profitability of

the food source, and the sharing of this information through waggle dancing

is longer in duration. So, there is a greater probability of onlookers choosing

more profitable sources since more information is circulated about the more

profitable sources. Hence, the recruitment is proportional to the profitability

of the food source. In order to understand the basic behaviour characteristics

of foragers better, let us adopt an example. Assume that there are two

discovered food sources: A and B. At the very beginning, a potential forager

will start as unemployed forager. That bee will have no knowledge about the

food sources around the nest. There are two possible options for such a bee:

1. It can be a scout and starts searching around the nest spontaneously

for a food due to some internal motivation or possible external clue.

2. After watching the waggle dances, it can be recruited to search for a

food source.

After locating the food source, the bee utilizes its own capability to mem-

orize the location and then immediately starts exploiting it. Hence, the bee

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 43

will become an “employed forager”. The foraging bee takes a load of nectar

from the source and returns to the hive and unloads the nectar to a food

store. After unloading the food, the bee has the following three options:

1. It becomes an uncommitted follower after abandoning the food source.

2. It dances and then recruits nest mates before returning to the same

food source.

3. It continues to forage at the food source without recruiting other bees.

It is important to note that not all bees start foraging simultaneously.

The experiments confirmed that new bees begin foraging at a rate propor-

tional to the difference between the eventual total number of bees and the

number of current foragers [38].

In the case of honey bees, the basic properties on which self-organization

relies are as follows:

1. Positive feedback: As the nectar amount of food sources increases, the

number of onlookers visiting them increases, too.

2. Negative feedback: The exploitation process of poor food sources is

stopped by bees.

3. Fluctuations: The scouts carry out a random search process for discov-

ering new food sources.

4. Multiple interactions: Bees share their information about food sources

with their nest mates on the dance area.

6.4 Overview of Bee Based Algorithms

The Bee Colony meta-heuristic belongs to the class of nature-inspired algo-

rithms which are inspired by various biological and natural processes observed

in honey bee swarm. Bee-inspired approaches in this narrower sense can be

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 44

roughly classified into three different main types [15]. The first group is in-

spired by the foraging behaviour of honey bee. The basic idea behind this

approach is to create a colony of artificial bees able to efficiently solve hard

combinatorial optimization problems. A number of algorithms in this regard

appeared during the last decade, namely, Bee System (BS) [53], BeeHive [66],

Bee Colony Optimization (BCO) [65], Artificial Bee Colony (ABC) [38], Bee

Swarm Optimization (BSO) [28], Virtual Bee Algorithm (VBA) [68], Honey

Bee Colony Algorithm (HBCA) [24], Bee Algorithm (BA) [56] etc.

The second group of bee-based algorithm is indirectly inspired by the mat-

ing behaviour of honey bees. Each honey bee colony consists of the queen,

drones, workers, and broods. The marriage process starts with a dance per-

formed by the queen who then starts a mating flight. During this flight the

drones follow the queen and mate with her in the air. In each mating, sperm

accumulates there to form the genetic pool of the colony. Each time a queen

lays eggs, she retrieves at random a mixture of the sperms accumulated to

fertilize the egg. Marriage Bee Optimization (MBO) [12] is the first search

algorithm inspired by this behaviour. In the artificial analogue model, the

mating flight can be visualized as a set of transitions in a state space where

the queen moves between the different states in the space and mate with the

drone encountered at each state probabilistically. The probability of mating

is high when either the queen is still in the start of her mating flight and

therefore her speed is high, or when the fitness of the drone is as good as

the queen’s one. The algorithm starts with initializing the queen’s genotype

at random. After that, a heuristic is used to improve the queen’s genotype

realized by workers. In [64] the marriage of honey bee is analysed as the

continuation of the work presented in [12].

The third type of bee-based algorithm is studied in [37] and [16]. In [37],

the authors presented a new search algorithm inspired by the queen bee

evolution process and have used it to enhance the optimization capability

of genetic algorithms. The queen-bee evolution makes it possible for genetic

algorithms to quickly attain the global optimum as well as to decrease the

probability of premature convergence. The authors of [16] have subsequently

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 45

modified the queen bee evolution technique of [37].

6.5 Artificial Bee Colony (ABC) Algorithm

for the DNA FAP

In this section, we describe the Artificial Bee Colony (ABC) algorithm for

solving the DNA FAP. In what follows, we will use ABC FAP algorithm to

refer to our ABC algorithm to solve DNA FAP. Recall that, in the ABC

algorithm [39], the colony of artificial bees contains three groups of bees:

employed bees, onlookers and scouts. A bee which waits at the dance area

for making decision to choose a food source depending on waggle dance of

employed bee, is called an onlooker and a bee going to the food source visited

by itself previously is named an employed bee. A bee which performs ran-

dom search for food is called a scout. In the ABC algorithm (Algorithm 1),

first half of the colony consists of employed artificial bees and the second

half constitutes the onlookers. For every food source around the hive, there

is only one employed bee. An employed bee becomes a scout when its food

source is exhausted.

6.5.1 Formulation of the Problem and Objective

For the DNA FAP, given a set of fragments, our target is to find the permu-

tation of fragments that minimize the number of contigs and maximize the

fitness. The solution achieving these two objectives best represents the DNA

sequence instance.

6.5.2 Initialization

In the ABC FAP algorithm, each of the food sources represents a permuta-

tion of fragments of a DNA sequence. A food source represents a possible

solution and the nectar amount of a food source corresponds to the quality

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 46

Algorithm 1 Generic ABC Algorithm

1: Initialize potential food sources for employed bees.

2: while Requirements are not met do

3: Each employed bee goes to a food source in her memory and determines

a neighbour source, then evaluates its nectar amount and dances in the

hive

4: Each onlooker watches the dance of employed bees and chooses one

of their sources depending on the dances, and then goes to that

source. After choosing a neighbour around that, she evaluates its nec-

tar amount.

5: Abandoned food sources are determined and are replaced with the new

food sources discovered by scouts.

6: The best food source found so far is registered

7: end while

(fitness) of the associated solution. Initially we generate the food sources

(i.e., permutations) randomly. We don’t assume that the initial seeds are

taken from the best of some previous executions of some other algorithm.

This is more realistic assumption compared to [50] where they use seeding

strategies to find good solutions beforehand to exploit promising regions, for

both noisy and noiseless data. Our algorithm is robust in the sense that,

although we do not make any such preprocessing, as will be reported in a

later section, our algorithm converges to almost same fitness compared to

that of [50] in reasonable time.

6.5.3 Iteration Using PALS

After the initialization, the food sources are repeatedly searched by employed

bees, onlooker bees and scout bees. An employed or onlooker bee produces a

modification of the solution for finding a new food source and tests the nectar

amount (fitness value) of the new solution. For the modification, we have

used problem aware local search (PALS) [13] on the permutation µ under

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 47

Algorithm 2 PALS [13]

1: s ← GenerateInitialSolution()

2: while there are changes do

3: L ← ∅
4: for i = 0 to N do

5: for j = 1 to N do

6: ∆c, ∆f ← CalculateDelta(s, i, j)

7: if ∆c ≥ 0 then

8: L ← L∪ < i, j, ∆f , ∆c >

9: end if

10: end for

11: end for

12: if L <> ∅ then

13: < i, j, ∆f , ∆c >← Select(L)

14: Applymovement(s, i, j)

15: end if

16: end while

17: return s

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 48

Algorithm 3 CalculateDelta Function
1: ∆c ← 0

2: ∆f ← 0

3: ∆f = ws[i−1]s[j] + ws[i]s[j+1]

4: ∆f = ∆f − ws[i−1]s[i] − ws[j]s[j+1]

5: if ws[i−1]s[i] > cutoff then

6: ∆c = ∆c + 1

7: end if

8: if ws[j]s[j+1] > cutoff then

9: ∆c = ∆c + 1

10: end if

11: if ws[i−1]s[j] > cutoff then

12: ∆c = ∆c − 1

13: end if

14: if ws[i]s[j+1] > cutoff then

15: ∆c = ∆c − 1

16: end if

17: return ∆f , ∆c

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 49

consideration (Algorithm 2). We have done so because, besides considering

fitness value, we also take the number of contigs of a solution into consider-

ation (Algorithm 3).

The calculation of the number of contigs is quite a time-consuming opera-

tion. A solution to this problem is the utilization of the method which should

not need to know the exact number of contigs and thus be computationally

light. PALS [13] indirectly estimate the number of contigs by measuring the

number of contigs that are created or destroyed when tentative solutions are

manipulated.

PALS (Algorithm 2) works on a single solution (an integer permutation

encoding a sequence of fragment numbers, where consecutive fragments over-

lap) which is generated using the GenerateInitialSolution method (see Algo-

rithm 2), and it is iteratively modified by the application of movements in a

structured manner. A movement is a perturbation (ApplyMovement method

of Algorithm 2) that, given a solution s, and two positions i and j, reverses

the subpermutation between the positions i and j.

The key step in PALS is the calculation of the variation in the overlap

(∆f) and in the number of contigs (∆c) among the current solution and the

resulting solution after applying a movement (see Algorithm 3). This cal-

culation is computationally light since we do not calculate either the fitness

function or the number of contigs, but instead we estimate the variation of

these values. To do this, we only need to analyze the affected fragments by

the tentative movement (i, j, i−1 and j+1), removing the overlap score of the

affected fragments of the current solution and adding the one of the modified

solution to ∆f (equations of lines 3–4 of Algorithm 3) and checking whether

some current contig is broken (first two if statements of Algorithm 3) or two

contigs are merged (last two if statements of Algorithm 3) by the movement

operator.

In each iteration, PALS makes these calculations for all possible move-

ments, storing the candidate movements in a list L. It only considers can-

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 50

didates to be applied the movements which reduce the number of contigs

(∆c ≤ 0). Once it has completed the previous calculations, the method se-

lects a movement of the list L and applies it. We select the best movement,

i.e., we choose the movement having the lowest ∆c (thus the movement main-

tains or reduces the number of contigs). In case that several movements have

the same ∆c, the applied movement will be the one with a higher ∆f value

(it increases the overlap among the fragments).

The algorithm stops when no more candidate movements are generated.

The cutoff value and its significance in Algorithm 3 will be discussed in

Chapter 8.

6.5.4 Fitness Calculation

Let us denote the set of fragments by an array f , so that the ith fragment

in the set is denoted by f [i]. Also let us denote the current solution under

consideration by µ. In all cases, we have used a fitness function (calculation

of the amount of nectar) that sums the overlap score for adjacent fragments

(f [i] and f [i + 1]) in a given solution. Let us denote the overlap score by

w(f [i], f [i + 1]) and fitness function of µ by Fµ. So, we have,

Fµ =
n−2∑
i=0

w(f [i], f [i + 1]), (6.1)

where n is the number of fragments in the solution.

6.5.5 Probability Calculation for Food Source

If the nectar amount of the new modified source is higher than that of the

previous one, the bee memorizes the new solution and forgets the old one.

Otherwise it keeps the previous food source. Onlooker bees choose the food

source for modification probabilistically, depending on the nectar amount of

the food source. The probability, pµ is calculated as follows:

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 51

pµ =
Fµ

globalmax

, (6.2)

where globalmax denotes the maximum fitness value found so far among

all food sources. If the nectar amount of a food source increases, the prob-

ability with which that food source is chosen by an onlooker increases, too.

Recall that, the dance of employed bees carrying higher nectar has higher

probability of being selected by onlookers for exploitation.

In Summary, ABC FAP algorithm, in conjunction with PALS, tries to

select the best fitness-valued solution with the goal of achieving minimum

number of contig.

6.6 Queen-bee Evaluation Based on Genetic

Algorithm (QEGA) for DNA FAP

Conventional genetic algorithm sometimes become unsuccessful to find a

globally optimal solution within limited number of evolutions. To overcome

this disadvantage, we have employed a queen-bee evolution based on genetic

algorithm (QEGA) ([37], [58]) for solving the DNA FAP. In what follows,

we will use QEGA FAP algorithm to refer to our QEGA algorithm to solve

DNA FAP.

The population of QEGA consists of several permutations of fragments

of a DNA sequence. To determine the fitness value of each individual in the

population, we have used Equation 6.1 as the fitness calculating function in

Steps 2 and 16 of QEGA FAP (Algorithm 4).

There are two major differences between conventional genetic algorithm

(CGA) and QEGA FAP. Firstly, the parents p(t) in CGA are composed of

the k individuals selected by a selection algorithm such as tournament selec-

tion. On the other hand, parents p(t) in QEGA FAP consist of the k
2

copies

of a queen-bee Iq(t−1), where q = arg max {Fµ, 1 ≤ µ ≤ k} and k
2

copies of

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 52

Algorithm 4 QEGA Algorithm

Input: time t, population size k, populations P , normal mutation rate

σ, normal mutation probability pm, strong mutation probability p′m, a

queen-bee Iq, selected bees Im

Output: best fitness solution

1: Initialize P (t)

2: Evaluate P (t)

3: while Condition not met do

4: t ← t + 1

5: Select P (t) from P (t− 1)

6: P (t) = {Iq(t− 1), Im(t− 1)

7: Recombine P (t)

8: Crossover

9: for i = 0 to k do

10: if i ≤ (σ ∗ k) then

11: Mutate with pm

12: else

13: Mutate with p′m

14: end if

15: end for

16: Evaluate P (t)

17: end while

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 53

bees Im(t−1) selected by a selection algorithm, where 1 ≤ m ≤ k
2
. Secondly,

all individuals in conventional genetic algorithm are mutated with a small

mutation probability pm, while in QEGA FAP only a part of the individuals

are mutated with normal mutation probability pm and the others are mutated

with strong mutation probability p′m. The ratio between pm and p′m is de-

noted by σ in QEGA. Generally, pm is less than 0.1 and p′m is greater than pm.

So, In QEGA FAP, the fittest individual in a generation, crossbreeds with

the bees selected as parents by means of a selection algorithm. This fea-

ture of queen-bee evolution reinforces the exploitation of genetic algorithms.

That is, fitness of the offsprings mainly rely on the crossover operation and

the fittest individual. Consequently, it also increases the probability of pre-

mature convergence. Nonetheless, the second feature of QEGA FAP helps

genetic algorithms search new space, i.e. it increases the exploration of ge-

netic algorithms through strong mutation. These two features enable genetic

algorithms to evolve quickly and simultaneously maintain good solutions. In

other words, the queen-bee evolution makes it possible for genetic algorithms

to quickly approach the global optimum as well as decreasing the probability

of premature convergence.

Ordered two-point crossover (Figure 6.1) is used as crossover operator

in Step 8 of Algorithm 4. In this scheme, given two parents, two random

crossover points are selected partitioning them into a left, middle and right

portion. Then ordered crossover is carried out in the following way: Child

1 inherits its left and right section from Parent 1, and its middle section is

determined by the fragments in the middle section of Parent 1 in the order

in which the fragments appear in Parent 2. A similar process is applied to

determine Child 2. Notably, the Ordered crossover operator is a pure recom-

bination operator [63]. For strong mutation, we have used problem aware

local search (PALS) [13]. For normal mutation, we have done random muta-

tion on the offspring.

CHAPTER 6. META-HEURISTICS FOR THE DNA FAP 54

Figure 6.1: Example of ordered crossover [2].

6.7 Summary

Swarm intelligence based meta-heuristic techniques have been found instru-

mental to solve different real-life problems. In this chapter we discuss Ar-

tificial Bee Colony (ABC) algorithm and Queen-bee Evaluation based on

Genetic Algorithm (QEGA) for solving the DNA FAP. In the next chapter

we present two hybrid meta-heuristics based on genetic algorithms to solve

the problem.

Chapter 7

Hybrid Meta-heuristics for the

DNA Fragment Assembly

Problem

7.1 Introduction

Recently, hybrid meta-heuristics have gained much interest of the researchers.

Hybrid meta-heuristic can be broadly defined as integration of a meta-heuristic

related concept with some other techniques (possibly another meta-heuristic) [18].

We may distinguish between two categories: the first consists in designing a

solver including components from a meta-heuristic into another one, while

the second combines meta-heuristics with other techniques typical of fields

such as operations research and artificial intelligence. A prominent represen-

tant of the first category is the use of trajectory methods into population

based techniques or the use of a specific local search method into a more

general trajectory method such as Iterated Local Search (ILS). The second

category includes hybrids resulting from the combination of meta-heuristics

with constraint programming (CP), integer programming (IP), tree-based

search methods, data mining techniques, etc.

55

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 56

We have used genetic algorithm with Hill climbing (GA+HC) and genetic

algorithm with Simulated annealing (GA+SA) for solving the DNA fragment

assembly problem. Before we proceed with our hybrid algorithms, we give

an overview of Genetic algorithm, Simulated annealing and Hill climbing

individually. Then we state our hybrid algorithms.

7.2 Genetic algorithm (GA)

In a genetic algorithm (Algorithm 5), a population of strings (called chro-

mosomes or the genotype of the genome), which encode candidate solutions

(called individuals, creatures, or phenotypes) to an optimization problem,

evolves toward better solutions [43]. Traditionally, solutions are represented

in binary as strings of 0s and 1s, but other encodings are also possible. The

evolution usually starts from a population of randomly generated individuals

and happens in generations. In each generation, the fitness of every indi-

vidual in the population is evaluated, multiple individuals are stochastically

selected from the current population (based on their fitness), and modified

(recombined and possibly randomly mutated) to form a new population. The

modification step is used to generate a second generation population of so-

lutions from those selected through genetic operators: crossover (also called

recombination), and/or mutation. The new population is then used in the

next iteration of the algorithm. Commonly, the algorithm terminates when

either a maximum number of generations has been produced, or a satisfac-

tory fitness level has been reached for the population. If the algorithm has

terminated due to a maximum number of generations, a satisfactory solution

may or may not have been reached.

7.3 Hill Climbing

This technique (Algorithm 6) is related to gradient ascent, but it doesn’t

require us to know the strength of the gradient or even its direction: we just

iteratively test new candidate solutions in the region of the current candi-

date, and adopt the new ones if they are better. This enables us to climb up

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 57

Algorithm 5 The Genetic Algorithm

1: popsize←desired population size

2: P ← {}
3: for popsize times do

4: P ← P ∪ {new random individual}
5: end for

6: Best← ¤
7: while Best is not the ideal solution or we have more time do

8: for each individual Pi ∈ P do

9: AssessFitness(Pi)

10: if Best=¤ or Fitness (Pi) > Fitness (Best) then

11: Best← Pi

12: end if

13: end for

14: Q ← {}
15: for popsize/2 times do

16: Parent Pa ←SelectWithReplacement(P)

17: Parent Pb ←SelectWithReplacement(P)

18: Children Ca, Cb ← Crossover(Copy(Pa),Copy(Pb))

19: Q ← Q ∪ {Mutate(Ca),Mutate(Cb)}
20: end for

21: P ← Q

22: end while

23: return Best

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 58

the hill until we reach a local optima [43].

Algorithm 6 The Hill climbing Algorithm

1: S ←Some initial candidate solution

2: while (S is not the ideal solution or we have more time) do

3: R ←Tweak(Copy(S))

4: if (Quality (R) > Quality(S)) then

5: S ← R

6: end if

7: end while

8: return S.

The Tweak operation in Step 3 of Algorithm 6 is the main factor in

achieving either exploitation or exploration. If we tweak a small amount,

then Hill-Climbing will march right up a local hill and be unable to make

the jump to the next hill because the bound is too small for it to jump that

far. Once it is on the top of a hill, everywhere it jumps will be worse than

where it is presently, so it stays put. Further, the rate at which it climbs the

hill will be bounded by its small size. On the other hand, if the tweaking is

large, then Hill-Climbing will bounce around a lot. Importantly, when it is

near the top of a hill, it will have a difficult time converging to the peak, as

most of its moves will be so large as to overshoot the peak. Thus small sizes

of the bound move slowly and get caught in local optima; and large sizes

on the bound bounce around too frenetically and cannot converge rapidly to

finesse the very top of peaks. Optimization algorithms which make largely

local improvements are exploiting the local gradient, and algorithms which

mostly wander about randomly are thought to explore the space.

7.4 Simulated Annealing

Simulated Annealing (Algorithm 7) varies from Hill-Climbing in its decision

of when to replace S, the original candidate solution, with R, its newly

tweaked child [43]. Specifically, if R is better than S, we always replace S

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 59

with R as usual. But if R is worse than S, we may still replace S with R

with a certain probability P (t, R, S) as follows.

P (t, R, S) = exp
Quality(R)−Quality(S)

t (7.1)

That is, the algorithm sometimes goes down hills. If R is not much worse

than S, we still select R with a reasonable probability. Here, we have a

tunable parameter t. If t is close to 0, the probability is close to 0. If t is

high, the probability is close to 1. The idea is to initially set t to a high

number, which causes the algorithm to move to every newly-created solution

regardless of how good it is, i.e., we are doing a random walk in the space.

Then, t decreases slowly, eventually to 0, at which point the algorithm is

doing nothing more than a plain Hill-Climbing.

Algorithm 7 The Simulated Annealing Algorithm

1: t ←temperature, initially a high number

2: S ←Some initial candidate solution

3: Best← S

4: while (Best is not the ideal solution or we have more time) do

5: R ←Tweak(Copy(S))

6: if (Quality (R) > Quality(S) or if a random number chosen from 0 to

1 < exp
Quality(R)−Quality(S)

t) then

7: S ← R

8: end if

9: Decrease t

10: if (Quality (S) > Quality(Best)) then

11: Best ← S

12: end if

13: end while

14: return Best

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 60

Figure 7.1: Example of swap mutation.

7.5 Hybrid Algorithms for the DNA FAP

Let us now discuss genetic algorithm with Hill climbing (GA+HC) and ge-

netic algorthm with Simulated annealing (GA+SA) that we have designed

for solving the DNA fragment assembly problem. These two hybrid algo-

rithms are implemented in ParadisEO [22] software framework. We have

also implemented pure Genetic algorithm (GA) for noisy instances with the

objective of comparing the performance of these three algorithms.

We have implemented our hybrid algorithms by incorporating both hill-

climbing algorithm and simulated annealing algorithm separately inside the

Genetic algorithm, after applying the mutation operator in Step 19 of Algo-

rithm 5. We have used Shift neighborhood technique [40] to generate neigh-

bors. In this technique, a shift operator sij is applied to a permutation

π = {π1, . . . πn} such that it moves the element in Position i of π to Posi-

tion j. Furthermore if i < j (i > j), the elements in position i + 1, . . . , j

(j, . . . , i−1) are shifted to one position to the left (right). The corresponding

neighbourhood is called the shift neighbourhood. Here we have used Ordered

crossover as crossover operator, similar to QEGA FAP. For each case we

have used tournament selection of size 2 and pure generational replacement.

Tournament selection (Algorithm 8) acts as the primary selection technique

of an individual from current population. In pure generational replacement,

no member of one population is allowed to pass to the next population. In

mutation step, we used a basic technique called swap mutation. In swap

mutation, two positions are selected at random and their contents are being

exchanged (See Figure 7.1).

The motivation of using simulated annealing and hill climbing inside a

CHAPTER 7. HYBRID META-HEURISTICS FOR THE DNA FAP 61

Algorithm 8 Tournament selection Algorithm

1: P ←population

2: t ← tournament size, t ≥ 1

3: Best ← Individual picked at random from P with replacement.

4: for i = 2 to t do

5: Next ← Individual picked at random from P with replacement.

6: if Fitness(Next) > Fitness (Best) then

7: Best ← Next

8: end if

9: end for

10: return Best

genetic algorithm is to compensate for the elitist selection [43]. We anticipate

that a global algorithm equipped with a local exploration inside can be ben-

eficial with respect to accidental errors introduced in the fragments during

fragmentation phase. Taking into consideration that various insertions, dele-

tions and substitutions of base pairs took place during fragment generation,

we can’t discard their effects and analyze our algorithm’s efficiency in an

utopian environment. To the best of our knowledge, none of the algorithms

in the literature takes this important factor into account. Our main goal was

to get a clear picture of and useful insight on how meta-heuristics perform

on noisy data to solve the FAP. Additionally, we evaluate the performance

of our algorithms for noiseless cases as well.

7.6 Summary

In this chapter, we have presented Genetic Algorithm with Hill Climbing

(GA+HC) and Genetic Algorithm with Simulated Annealing (GA+SA) for

solving the DNA FAP. In the next chapter, we present the experimental

results obtained by Artificial Bee Colony (ABC) algorithm, Queen-bee Eval-

uation based on Genetic Algorithm (QEGA), Genetic Algorithm with Hill

climbing (GA+HC) and Genetic Algorithm with Simulated annealing (GA+SA)

for solving the DNA FAP.

Chapter 8

Experimental Results

8.1 Introduction

In this chapter, we present our experimental setup and the results obtained by

our algorithms. The experiments were conducted in Ubuntu 11.04 running on

an Intel core i3 Processor with 2GB RAM. We have designed two frameworks

for evaluating fitness of the resulting solution. One framework solely used

consecutive fragment overlapping as the metric for fitness assessment. The

other framework used as fitness criteria: the number of final contig achieved

in conjunction with fragment overlap. Both of the approaches are prevalent in

the literature [46, 44]. The framework that uses only fragment overlapping as

fitness assessment criteria does not use contig calculation because if we want

to do so, we need exhaustive search for getting the best fragment suitable

for each of the iteration. This is not a feasible solution if we take time

into consideration. Moreover, contig calculation only ensure a continuous

sequence in terms of the threshold or cutoff defined previously. For noisy

instances, specially for longer datasets, ensuring single contig may not be

pragmatic because of the errors. If one wants a continuous sequence, he

can easily calculate the final contig number of the best fitness candidate and

lower the cutoff value according to his observation. On the other hand, the

framework that use both fragment overlapping and contig number as the

fitness measure, can do so in reasonable time because of the use of Problem

Aware Local Search (PALS) inside them. PALS is designed such that it

62

CHAPTER 8. EXPERIMENTAL RESULTS 63

only take into consideration the increment or decrement of total number of

contigs after applying a movement to current solution. In particular, instead

of exploring the whole search space, PALS enables us to only consider the

difference in the number of contigs, thus minimizing the exploration time.

8.2 Experimental Setup

8.2.1 Datasets

We have used GenFrag [29] and MetaSim [59] for generating noiseless and

noisy artificial fragments respectively.

Target Problem Instances

We collected the DNA sequences from NCBI [8, 9, 10, 11]. We have chosen

four sequences from the NCBI website as used in [50]: a human MHC class

II region DNA with fibronectin type II repeats HUMMHCFIB, with acces-

sion number X60189; a human apolopoprotein HUMAPOBF, with accession

number M15421; the complete genome of bacterio-phage lambda, with acces-

sion number J02459; a sequence of Neurospora crassa BAC, with accession

number BX842596 (GI38524243). Besides we have selected other sequences

from the NCBI web site similar to [50] and they correspond to a human mi-

crobion bacterium ATCC 49176 with accession numbers from ACIN02000001

to ACIN02000026. Particularly, we have used the longer sequences from this

genome. We give a summary on the different features of the datasets in

Table 8.1.

Noiseless input data generation

We have used GenFrag [29] for generating noiseless artificial fragments. Gen-

Frag takes a known DNA sequence and uses it as a parent strand from which

random fragments are generated according to the criteria supplied by the

user (mean fragment length and coverage of parent sequence).

CHAPTER 8. EXPERIMENTAL RESULTS 64

Table 8.1: Information of datasets. Accession numbers are used as the name

of the instances

Instances Coverage Mean

fragment

length

Number

of frag-

ments

Original

sequence

length (in

bps)

acin1 26 182 307 2170

acin2 3 1002 451 147200

acin3 3 1001 601 200741

acin5 2 1003 751 329958

acin7 2 1003 901 426840

acin9 7 1003 1049 156305

x60189 4 4 395 39

3835x60189 5 5 386 48

x60189 6 6 387 68

m15421 5 5 398 127
10089

m15421 7 7 383 177

j02459 7 7 700 352 48502

BX842596 4 4 708 442
77292

BX842596 7 5 703 773

CHAPTER 8. EXPERIMENTAL RESULTS 65

Noisy input data generation

We have used MetaSim [59] for noisy input data generation. We first dis-

cuss the motivation behind using Metasim as follows. We have consulted

different DNA sequence simulators like FASIM [34], GenFrag [29] and Cel-

sim [52]. In [34], the authors have showed various problems associated with

Celsim and GenFrag version 1.0 and 2.1. Mainly, these programs are de-

signed on the assumption that fragments are equally distributed on genome.

That is, clone sampling is uniformly carried out during fragment generation.

Thus, these programs do not sufficiently reflect actual conditions of WGSS

(Whole Genome Shotgun Sequencing). For FASIM, current release of the

software is only available upon request. On the other hand, MetaSim is a

freely available sequencing simulator for genomic and metagenomics. It can

be utilized to simulate fragments of real read experiments by incorporating

errors which occur at the Layout phase, i.e., unknown orientation, base call

errors, incomplete coverage, repeated regions, chimeras and contamination.

Here we have used three error models, namely, 454, Sanger and exact error

models considering configuration of all parameters. These configurations are

presented in Table 8.2.

8.2.2 Score Matrix Calculation

As the exact orientation of the generated fragments are not predictable, to

tackle the problem of unknown orientation, we have checked fragment over-

lapping in both forward and backward orientation during calculation of the

score matrix. For example, let us assume that we want to calculate overlap

between Fragment 1 and Fragment 2. We first calculate normal overlap be-

tween these two segments (suffix-prefix) and then compare the obtained value

with the overlap value calculated from the reverse direction of Fragment 2

(suffix-suffix). We take the best value from the above two options. The score

matrix (for both noisy and noiseless instances) is a matrix that is populated

with the overlap value of each pair of fragments, calculated in the way stated

above. The matrix is symmetric with respect to the diagonal. Each of the

row (column) of the matrix designate one fragment and the overlap score of

this fragment with each of the rest of the fragments. We use two different

CHAPTER 8. EXPERIMENTAL RESULTS 66

Table 8.2: Configuration of MetaSim for different error models and no. of

generations used by the algorithms

Parameter Considered Error Model
Instances

acin1 acin2 acin3 acin5 acin7 acin9 x60189 6 m15421 7 j02459 7

Number of reads or Mate pair 454, Sanger,

Exact

307 451 601 751 901 1049 68 177 352

DNA clone size distribution type a -do- Normal

Mean -do- 190 1020 1001 1003 1003 1003 387 387 700

Second Parameter -do- 10 30 100

Mate pair Probability -do- 0

Expected read length 454 190 1020 1007 1007 1005 1005 388 388 700

Mate pair read length -do- 20

Number of flow cycles -do- 75 400 395 395 394 394 152 152 275

Mean negative flow cyclesb -do- 0.23

Std. deviation for negative flow cyclec -do- 0.15

Signal std. deviation multiplier -do- 0.15

Read length distribution type Sanger Normal

Error rate at read start -do- 0.01

Error rate at end of read -do- 0.02

Insertion error rate -do- 0.2

Deletion error rate -do- 0.2

Insertion
454 1330 10460 13651 17146 20882 23872 604 1571 5694

Sanger 146 1433 1643 2147 2480 2860 71 157 666

Deletion
454 369 2758 3687 4438 5396 6373 125 388 1469

Sanger 162 1370 1679 2131 2467 2965 70 165 621

Substitutions Sanger 532 4095 5094 6409 7642 8969 216 537 1988

No. of base pair processed

454 57857 458964 594676 738514 889923 1034189 23719 63688 233127

Sanger 56414 452401 567768 710617 852423 997708 23145 61276 223168

Exact 55915 461288 596036 755338 903193 1050247 23719 69562 243163

No. of base pair generated

454 58818 466666 604640 751222 905409 1051688 24198 64871 237352

Sanger 56398 452464 567732 710633 852436 997603 23146 61268 223213

Exact 55915 461288 596036 755338 903193 1050247 24198 69562 243163

aA Clone in MetaSim is a DNA fragment that is randomly extracted from the source

genome sequence for read/mate-pair sampling.
bA negative flow is a flow of nucleotides in which the sequence to synthesize is not

elongated. Light intensities of negative flows follow a lognormal distribution. The default

value (µ = 0.23) is taken from [30].
cThe default value (0.15) is taken from [30].

CHAPTER 8. EXPERIMENTAL RESULTS 67

score matrices for each of the instances, based on noisy or noiseless datasets.

8.2.3 ABC Control Parameters

ABC algorithm has a few control parameters. We set Maximum number of

cycles (MCN), i.e., maximum number of generation to 4000 and the colony

size, i.e., population size to 256. The percentage of onlooker bees was set to

50% of the colony, the employed bees were 50% of the colony and the number

of scout bees was selected as one. Notably, an increase in the number of

scouts encourages the exploration whereas that in onlookers of a food source

increases the exploitation.

8.2.4 GA+SA and GA+HC Implementation Details in

ParadisEO

We have used templates of the paradisEO [22] software framework for im-

plementing our Genetic algorithm with Simulated Annealing (GA+SA) and

Genetic algorithm with Hill climbing (GA+HC) algorithms. ParadisEO is

based on EO (Evolving Objects), a template-based ANSI-C++ compliant

evolutionary computation library. EO mainly contains functors, that are ob-

jects which have a method called operator(). Such objects are used as if they

were functions, but the big differences are:

� functors are functions with private data.

� Users can have different functors objects of the same class, i.e. users can

use at the same time the same functionality with different parameters.

� Users can have a hierarchy of functors objects, which means that users

have a hierarchy of functions with defaults behaviors and specialized

sub-functions.

For conciseness, we very briefly outline the implementation details of

GA+SA and GA+HC in ParadisEO here. In ParadisEO, representation of

integer fragments for FAP has been done as follows. We use eoInt template to

CHAPTER 8. EXPERIMENTAL RESULTS 68

represent vector of integer fragments and eoInitPerc template for generating

the permutation of fragments consisting each individual. Ordered crossover

and swap mutation with probability 0.3 and 0.7 respectively have been used

for genetic algorithm. For this, we use eoSwapMutation and eoOrderXover.

These values have been obtained from some preliminary results. To define

our fitness function based on overlapping, we have to define a class inherited

from the eoEvalFunc<EOT>. As mentioned previously, EO uses a functor

style: the fitness function is computed in the method operator()(EOT& sol).

We compute the fitness value in this method, and put the fitness value in the

solution at the end by using its method fitness. For Simulated Annealing, we

use moSimpleCoolingSchedule for defining probability to accept an inferior

solution.

8.3 Results Obtained for Noiseless Data

Now, we present the results obtained by our algorithms : ABC FAP, QEGA FAP,

GA, GA+HC and GA+SA for solving different noiseless DNA instances.

There are two criteria found in the literature to assess the fitness value of

each individual. One of the most common criteria is based on assessing the

fitness value by considering the sum of the overlap score of each individuals

by Equation 6.1. We measure the quality of the solution by considering this

fitness criteria for all of the algorithms mentioned above. The second criteria

for fitness assessment is to also consider the number of contigs in an indi-

vidual. With the help of PALS, in QEGA FAP and ABC FAP algorithms,

we also take into consideration the number of contigs in the final sequence

obtained. The significance of contig calculation is to ensure that the solution

best represents a continuous assembled sequence.

CHAPTER 8. EXPERIMENTAL RESULTS 69

8.3.1 Results Obtained by ABC FAP and QEGA FAP

for Noiseless Instances (Fitness Criteria: Over-

lap and No. of Contigs)

For noiseless instances, we set a cutoff value, i.e., required overlap between

two adjacent fragments, to thirty [13] in CalculateDelta function of PALS

(see Subsection 6.5.3) used in QEGA FAP and ABC FAP algorithms. This

value provides one filter for spurious overlaps introduced by experimen-

tal errors [13]. Table 8.3 shows the results obtained for noiseless data by

QEGA FAP and ABC FAP algorithms as well as by simulated annealing

(SA) ([50]), Problem aware local search (PALS) ([50]) and pure Genetic al-

gorithm (GA) ([50]). In this case we have found that our implementation of

ABC FAP and QEGA FAP perform very competitively with the best algo-

rithm in the literature which is based on simulated annealing (SA) for noise-

less instances [50]. Similar behavior is observed in comparison to PALS [13],

a defacto standard to compare genome assemblers, in all cases. These exper-

iments validate our algorithms’ good performance. Moreover, QEGA FAP

algorithm performs better than ABC algorithm for most of the instances.

Notably, QEGA FAP produces better results for longer instances. In terms

of number of contigs, QEGA FAP does a better job at contig reduction than

the ABC FAP algorithm. But both of the algorithms perform worse than SA

and PALS in achieving reduced contig number, especially in case of larger

instances like the acinx (where x= 1,2,3,5,7,9) instances. This is because, for

larger instances, the cutoff value of thirty is much higher to ensure minimum

overlap. As fragments are generated from a single DNA sequence randomly

during dataset creation process, there is no guarantee that the consecutive

fragments are overlapped by a threshold value of thirty. This issue become

prominent when fragmenting larger instances as the coverage value is fixed at

the inception of fragmenting process and the probability of ensuring thresh-

old value of thirty decreases with the longer instances.

CHAPTER 8. EXPERIMENTAL RESULTS 70
T
ab

le
8.

3:
B

es
t

fi
n
al

co
n
ti

g
n
u
m

b
er

an
d

fi
tn

es
s

fo
r

n
oi

se
le

ss
d
at

a

In
st

an
ce

s
B

es
t

F
it

ne
ss

B
es

t
C

on
ti

g

A
B

C
Q

E
G

A
SA

P A
L
S

G
A

A
B

C
Q

E
G

A
SA

P A
L
S

G
A

x6
01

89
4

11
47

8
11

47
6

11
47

8
11

20
4

11
47

8
1

1
1

1
1

x6
01

89
5

14
01

6
14

02
7

14
02

7
12

89
8

13
50

2
1

1
1

1
1

x6
01

89
6

18
33

9
18

26
6

18
30

1
16

99
2

17
68

8
1

1
1

1
1

x6
01

89
7

21
18

4
21

20
8

21
27

1
20

42
4

20
88

4
1

1
1

1
1

m
15

42
1

5
38

42
3

38
57

8
38

58
3

36
54

0
37

71
4

3
1

1
1

1

m
15

42
1

6
47

51
5

47
88

2
48

04
8

45
77

3
46

94
9

2
1

1
1

2

m
15

42
1

7
54

60
7

55
02

0
55

04
8

51
45

4
52

69
5

2
1

1
1

2

j0
24

59
7

11
47

74
11

62
22

11
62

57
10

87
44

11
11

03
3

1
1

1
1

b x
84

25
96

4
22

54
31

22
72

52
22

65
38

21
17

92
22

05
58

13
8

1
1

6

b x
84

25
96

7
44

01
87

44
36

00
43

67
39

41
23

74
41

64
14

12
3

1
1

3

ac
in

1
45

40
3

47
11

5
46

95
5

44
65

6
45

56
5

8
4

1
1

5

ac
in

2
14

25
39

14
41

33
14

47
05

13
84

23
14

34
44

23
7

23
3

1
1

23
6

ac
in

3
15

54
13

15
61

38
15

66
30

15
19

28
15

49
47

36
2

35
8

1
1

35
8

ac
in

5
14

43
39

14
45

41
14

66
07

14
38

35
14

53
32

55
6

55
2

1
1

55
2

ac
in

7
15

51
82

15
53

22
15

79
84

15
50

89
15

58
73

72
6

72
2

1
1

72
2

ac
in

9
32

13
97

32
27

68
32

45
59

31
02

35
31

32
03

55
2

55
2

1
1

55
2

CHAPTER 8. EXPERIMENTAL RESULTS 71

8.3.2 Results Obtained by GA+SA and GA+HC for

Noiseless Instances (Fitness Criteria: Overlap)

We also executed Genetic algorithm with Simulated annealing (GA+SA) and

Genetic algorithm with Hill Climbing (GA+HC) for noiseless cases and com-

pared the results with PALS in Table 8.4. As mentioned earlier, PALS is the

defacto standard to compare DNA FAP algorithms. We have executed 100

iterations of GA+SA for each instance and 30000 iterations of GA+HC for

each instance. The results obtained in 30000 iterations of GA+HC is com-

parable to the results obtained by 100 iterations of GA+SA. In GA+HC,

hillclimbing is used as a mutation operator. In GA+SA, a cooling scheme is

employed as an operator to generate large local candidates within fewer gen-

erations so that we can achieve equal results as the previous one in smaller

steps. We present the best fitness obtained in each case. We have executed

our algorithms for longer instances like acinx, as these instances are more

challenging to assemble. As the results show, genetic algorithm with hill

climbing (GA+HC) outperforms genetic algorithm with simulated annealing

(GA+SA). GA+HC also performs better than PALS [13] for all instances

except acin9.

We also try to demonstrate the behaviour of the fitness improvement

over increment of number of iterations of GA+HC and GA+SA. Table 8.5

and 8.6 presents the results obtained by executing different iterations of

GA+HC and GA+SA for acin2 instance respectively. We have conducted

experiments on other instances as well but only chose to present the results

for acin2 for conciseness. Similar results are obtained for other instances.By

looking at Tables 8.5 and 8.6 in conjunction with Figures 8.1 and 8.2, we

can see that the fitness value improves significantly with the increment of

number of iterations. This suggest that, to get higher accuracy, we need to

increase the number of iterations of GA+HC or GA+SA, if time permits.

CHAPTER 8. EXPERIMENTAL RESULTS 72

Table 8.4: Best fitness obtained by GA+HC, GA+SA and PALS for noiseless

data

Instances
Best fitness obtained

GA+SA GA+HC PALS

acin1 44747 46259 44656

acin2 138464 144544 138423

acin3 151202 154761 151928

acin5 144194 146031 143835

acin7 156480 156480 155089

acin9 273011 273011 310235

Table 8.5: Fitnesses obtained for acin2 by GA+HC for noiseless data

No of

iterations

Fitness

obtained

10000 131047

15000 133807

20000 137525

25000 144541

30000 144544

45000 144553

CHAPTER 8. EXPERIMENTAL RESULTS 73

Figure 8.1: Relation between no. of iterations and fitness for acin2 by

GA+HC for noiseless data.

Table 8.6: Fitnesses obtained for acin2 by GA+SA for noiseless data

No of

iterations

Fitness

obtained

40 129407

50 132733

60 134477

70 135870

80 136889

90 137922

100 138464

110 138912

120 139911

CHAPTER 8. EXPERIMENTAL RESULTS 74

Figure 8.2: Relation between no. of iterations and fitness for acin2 by

GA+SA for noiseless data.

8.4 Barchart Representation of the Results

Obtained for Noiseless Instances

Figures 8.3, 8.4 and 8.5 represent the fitness values obtained by different

algorithms for noiseless datasets, with the help of barcharts. It is useful to

compare visually which algorithm perform better than others.

8.5 Results Obtained For Noisy Data

Next, we execute ABC FAP, QEGA FAP, GA, GA+SA, GA+HC for noisy

instances and present the results.

CHAPTER 8. EXPERIMENTAL RESULTS 75

(a) x60189 4 (b) x60189 5

(c) x60189 6 (d) x60189 7

(e) m15421 5 (f) m15421 6

Figure 8.3: Barcharts showing best fitness obtained by the algorithms for

noiseless data

CHAPTER 8. EXPERIMENTAL RESULTS 76

(a) m15421 7 (b) j02459 7

(c) bx842596 4 (d) bx842596 7

Figure 8.4: Barcharts showing best fitness obtained by the algorithms for

noiseless data (cont.)

CHAPTER 8. EXPERIMENTAL RESULTS 77

(a) acin1 (b) acin2

(c) acin3 (d) acin5

(e) acin7 (f) acin9

Figure 8.5: Barcharts showing best fitness obtained by the algorithms for

noiseless data (cont.)

CHAPTER 8. EXPERIMENTAL RESULTS 78

8.5.1 Results Obtained by ABC FAP and QEGA FAP

for Noisy Instances (Fitness Criteria: Overlap

and No. of Contigs)

As mentioned before, a cutoff value, i.e., required overlap between two ad-

jacent fragments, is set in the CalculateDelta function of PALS (see sub-

section 6.5.3), used in QEGA FAP and ABC FAP algorithms. It provides

one filter for spurious overlaps introduced by experimental errors [13]. It is

to be noted that, in noisy instances, a lot of insertions, deletions or sub-

stitutions can occur. For instance, if we refer back to Table 8.2, there are

5694 insertions, 1469 deletions and 1988 substitutions on j02459 7 instance

in 454 error model. So, empirically we set the cutoff value for noisy instances

to lower values than thirty, which was used as the cutoff value in noiseless

cases. Nonetheless, we also ensure overlapping adjacent fragments. The re-

sults obtained by our ABC FAP and QEGA FAP algorithms are presented in

Table 8.7. Previously, only [50] have introduced random error but there was

no indication of how much error was being introduced. As opposed to them,

we have clearly mentioned the parameters of our noisy dataset generation

in Table 8.2. Instead of introducing random error in score matrix [50], we

generated fragments with three error models (454, Sanger and Exact). These

models are standard and pragmatic for DNA fragment generation. We exe-

cute our algorithms on these instances. We also take into consideration that

DNA FAP is an off-line problem. So, instead of emphasizing on execution

time of the algorithms, we concern ourself with assessment of the solution

quality, based on number of contigs and fitness value.

As can be seen from Table 8.7, for most of the instances (except for

those with multiple final contigs), QEGA FAP outperforms ABC FAP algo-

rithm because of the elitist selection method imposed by QEGA FAP. Our

implementation of QEGA FAP breeds fittest parent (i.e. queen bee) with

other parents. The strong mutation of Algorithm 4 employs PALS to get the

fittest mutants from the offspring. So we perform exploitation in the vicin-

ity of the best solution of the current cycle. On the other hand, although

ABC FAP algorithm performs analogous action of mutation, but it does not

CHAPTER 8. EXPERIMENTAL RESULTS 79

do so with the fittest ones. Exploitation can sometime leads to local minima

and QEGA FAP countermeasures this by random mutation. All the fitness

values for QEGA FAP and ABC FAP algorithm shown in Table 8.7 are ob-

tained for a single contig i.e. one continuous sequence with some exceptions.

These exceptions can not reach single contig value and the final contig value

for each of these instances are shown in brackets just beside their fitness value

(obtained by QEGA FAP and ABC FAP) in Table 8.7. For QEGA FAP and

ABC FAP, all other instances reach single contig, hence not mentioned in

the Table for clarity (It is to be noted that GA, GA+SA and GA+HC, in

the next Section 8.5.2, use only overlap as fitness evaluation criteria, so no

value mentioned for contig number in the corresponding columns of GA,

GA+SA and GA+HC in Table 8.7 does not mean single contig obtained by

GA, GA+SA and GA+HC).

Effect of Cutoff Value on The Number of Contigs

As mentioned previously, to ensure overlapping between adjacent fragments,

we need to define a cutoff value for each instances. But as errors are in-

troduced, higher cutoff values cannot assure that we meet this criteria. So,

empirically we need to setup a suitable cutoff value. We show the trend of

decreased contig number with lower cutoff value in Figure 8.8. In this exper-

iment, we used ABC FAP algorithm to assemble the m15421 7 instance in

454 error model.

Fitness comparison for noisy and noiseless data using QEGA FAP

Figures 8.6 and 8.7 show the progressive improvement of fitness values for

the instance j02459 7 for noiseless and noisy data by applying QEGA FAP.

As can be seen from the figures, final fitness values for the noisy cases is

significantly smaller than that of noiseless cases. Figure 8.6 also shows that

QEGA FAP is able to overcome any local minima as is evident from the

transition of lower fitness value at almost 1100-th iteration to higher fitness

value at almost 1200-th iteration.

CHAPTER 8. EXPERIMENTAL RESULTS 80

Table 8.7: Best fitness obtained by the algorithms for noisy data

Instances
Error

Model

Best Fitness

ABC QEGA GA GA+SA GA+HC

acin1

454 4323 4631 162 3738 4611

Sanger 7758 8512 178 6744 8394

Exact 17354 160007(4) 214 14157 17914

acin2

454 2271 2418 260 1778 2208

Sanger 2981 3142 264 2413 2924

Exact 20570 20884 267 19140 20677

acin3

454 2960 3170 326 1972 2657

Sanger 3281 3661 344 2199 3095

Exact 26611 10605(237) 374 12865 13694

acin5

454 3759 3994 405 2220 3113

Sanger 4223 4533 430 2384 3540

Exact 14694 16182 431 7069 15001

acin7

454 3759(2) 4792 490 2528 3487

Sanger 3964 5177 516 2651 3817

Exact 15052(4) 18864 522 8212 16029

acin9

454 4671 6315 608 2838 3828

Sanger 5204 7881 623 2982 4735

Exact 31914(2) 48154(107) 625 11816 38262

x60189 6

454 353 363 41 358 362

Sanger 609 623 36 622 624

Exact 2292 2303 36 2289 2302

m15421 7

454 978 1029 88 939 1026

Sanger 1429 1467 97 1380 1455

Exact 7028 7181 93 6840 7170

j02459 7

454 1670 1776 183 1429 1673

Sanger 2466 2563 188 2095 2443

Exact 13353 13607 179 12659 13526

CHAPTER 8. EXPERIMENTAL RESULTS 81

Figure 8.6: Iteration vs Fitness graph for j02459 7 noiseless data using

QEGA FAP

8.5.2 Results Obtained by GA, GA+SA and GA+HC

for Noisy Instances (Fitness Criteria: Overlap)

The results obtained by our Genetic Algorithms (GA), Genetic Algorithm

with Simulated Annealing (GA+SA) and Genetic Algorithm with Hill Climb-

ing (GA+HC) are also shown in Table 8.7. As can be seen from Table 8.7,

GA+HC performs better than GA and GA+SA. GA+SA probabilistically

choose individuals with lower fitness. Although it is useful to overcome local

maxima, with significant error introduced in instances, sometimes choosing a

less fit individual can lead the result to astray. On the other hand, GA+HC

constantly chooses the best fittest individual. Our observation is that, for

this reason GA+HC performs better than GA+SA and GA. It is also to be

noted that, GA+HC performs comparatively with QEGA, in terms of sum

of overlap fitness criteria. Evidently, for noisy instances, elitism is better.

CHAPTER 8. EXPERIMENTAL RESULTS 82

Figure 8.7: Iteration vs Fitness graph for j02459 7 noisy data(454 error

model) using QEGA FAP

8.6 Barchart Representation of the Results

Obtained for Noisy Instances

Figures 8.9, 8.10, 8.11, 8.12, 8.13 and 8.14 represent the fitness values ob-

tained by different algorithms for noisy datasets, with the help of barcharts.

8.7 Overall Performance of the Algorithms

for Noisy and Noiseless Datasets

If we compare Tables 8.3, 8.4 and 8.7, we observe that the best fitness values

obtained by different instances for noisy cases are significantly less than the

best fitness obtained by them in case of noiseless cases. Among ABC FAP,

QEGA FAP, GA, GA+HC and GA+SA, QEGA FAP performs better for

both noisy and noiseless cases. The number of contigs obtained in case of

some noisy instances, by ABC FAP and QEGA FAP are much lower than

noiseless instances, which might seem counterintuitive. But note that, we

set lower cutoff values in case of noisy instances than noiseless instances. In

CHAPTER 8. EXPERIMENTAL RESULTS 83

Figure 8.8: Relation between Contig number and Cutoff value for m15421 7

instance using ABC FAP algorithm in 454 error model

particular, for comparison with SA and PALS for noiseless cases, we set the

cutoff value to a fixed value of thirty. This is not the case for noisy instances.

We reported the best fitness obtained by ABC FAP and QEGA FAP in case

of noisy datasets and empirically set the cutoff values to meet our fitness cri-

teria, for each individual instance. This is justified by the fact that different

amount of errors were being introduced for instances of various lengths, as

evident from Table 8.2. We executed GA+HC and GA+SA with the hope

of getting better solutions by occasionally considering bad solutions. Then

we employed ABC FAP with the objective of using collective intelligence to

develop better solutions. We observe that ABC FAP performs competitively

with GA+HC. Lastly, we implemented QEGA FAP to exploit elitism. This

algorithm performed best in terms of final overlapping fitness value.

8.8 Statistical Analysis by One Way ANOVA

ANalysis Of VAriance, or ANOVA can be used to test for significant differ-

ences among sample means when the independent (predictor) variable is a

set of discrete categories, and the dependent variable is continuous, ordinal,

or dichotomous. For example, it can be employed to test the null hypothesis

CHAPTER 8. EXPERIMENTAL RESULTS 84

(a) acin1 (b) acin2

(c) acin3 (d) acin5

(e) acin7 (f) acin9

Figure 8.9: Barcharts showing best fitness obtained by the algorithms for

noisy data (454 Sequencing Error Model)

CHAPTER 8. EXPERIMENTAL RESULTS 85

(a) x60189 6 (b) m15421 7

(c) j02459 7

Figure 8.10: Barcharts showing best fitness obtained by the algorithms for

noisy data (454 Sequencing Error Model)(cont.)

CHAPTER 8. EXPERIMENTAL RESULTS 86

(a) acin1 (b) acin2

(c) acin3 (d) acin5

(e) acin7 (f) acin9

Figure 8.11: Barcharts showing best fitness obtained by the algorithms for

noisy data (Sanger Sequencing Error Model)

CHAPTER 8. EXPERIMENTAL RESULTS 87

(a) x60189 6 (b) m15421 7

(c) j02459 7

Figure 8.12: Barcharts showing best fitness obtained by the algorithms for

noisy data (Sanger Sequencing Error Model)(cont.)

CHAPTER 8. EXPERIMENTAL RESULTS 88

(a) acin1 (b) acin2

(c) acin3 (d) acin5

(e) acin7 (f) acin9

Figure 8.13: Barcharts showing best fitness obtained by the algorithms for

noisy data (Exact Sequencing Error Model)

CHAPTER 8. EXPERIMENTAL RESULTS 89

(a) x60189 6 (b) m15421 7

(c) j02459 7

Figure 8.14: Barcharts showing best fitness obtained by the algorithms for

noisy data (Exact Sequencing Error Model)(cont.)

CHAPTER 8. EXPERIMENTAL RESULTS 90

Figure 8.15: ANOVA table (showing p-value)

that plumbers, electricians and carpenters all have roughly the same average

income. Note that the t-test would have been used if the null hypothesis

had concerned only two groups. In ANOVA test, we will be concerned with

situations in which three or more sample means are compared with each

other to test for statistically significant differences among those means and,

in turn, among the means for their populations. The one-way ANOVA is

used with one categorical independent variable and one continuous variable.

The independent variable can consist of any number of groups (levels).

In our analysis, the algorithms act as independent variables and fitness of

different DNA instances act as the continuous variable. The most interest-

ing parameter returned by ANOVA is called p-value that indicates if data is

statistically different (p-value is less than the confidence level) or if, on the

contrary, we can not ensure that the data is different (p-value is equal to

or greater than the confidence level). We use a confidence level of 5% and

this test shows that there exists a significant difference among the algorithms

(the p-value is always less than 0.05) (Figure 8.15).

CHAPTER 8. EXPERIMENTAL RESULTS 91

8.9 Summary

In this chapter, we have presented the results obtained by Artificial Bee

Colony (ABC FAP) algorithm, Queen-bee Evaluation based on Genetic Al-

gorithm (QEGA FAP), Genetic Algorithm with Hill climbing (GA+HC) and

Genetic Algorithm with Simulated annealing (GA+SA) for solving the DNA

FAP. We executed our algorithms on both noisy and noiseless dataset. For

noiseless instances, we compare our results with those obtained by the stan-

dard algorithms found in the literature. In the case of noisy dataset, we

introduce three error models for generating the dataset and compare our

algorithms. As has been mentioned before, in the recent and only previous

work of [50] on noisy instances, in order to obtain the noisy data, the authors

simulate the noise by changing the score for each instance randomly. In other

words, they choose and change some values inside each score matrix (over-

lapping information) in a uniform way. But this is not the realistic scenario.

In practice, the Sanger Sequencing and 454 Sequencing technologies are used

for DNA sequencing. During DNA fragment generation phase, each of the

Sanger Sequencing and 454 Sequencing technology, depending upon their se-

quencing technique, encounter errors introduced as insertions, deletions and

substitutions. In our work, these error models are simulated using MetaSim

to generate pragmatic datasets with noise. We, therefore, execute our algo-

rithms on these realistic datasets and observed that the fitnesses achieved

for noisy data are significantly lower than noiseless cases. This observation

is vital as it points out the weakness of the so far reported fitness values

obtained for noiseless data.

Chapter 9

Conclusion and Future Works

In this thesis, we have made an effort to solve the DNA Fragment Assembly

Problem with five algorithms namely Artificial Bee Colony (ABC FAP) al-

gorithm, Queen Bee Evolution Based on Genetic Algorithm (QEGA FAP),

Genetic algorithm, Genetic Algorithm with Simulated Annealing (GA+SA)

and Genetic Algorithm with Hill Climbing (GA+HC) for noiseless and noisy

datasets. In one hybrid algorithm (GA+HC) hillclimbing is used as a muta-

tion operator. In the other hybrid algorithm (GA+SA), a cooling scheme is

employed as an operator to generate large local candidates within fewer gen-

erations so that we can achieve equal results as the previous one in smaller

steps. In comparison of the five algorithms, QEGA FAP outperforms all

other algorithms for noisy cases. We have recorded the results obtained by

our algorithm, taking into consideration various standard error models nor-

mally used by DNA sequencing experiments. Previous works on DNA FAP

report their results for noiseless cases mostly. As has been mentioned before,

in the recent and only previous work of [50] on noisy instances, in order to

obtain the noisy data, the authors simulate the noise by changing the score

for each instance randomly. In other words, they choose and change some

values inside each score matrix (overlapping information) in a uniform way.

But this is not the realistic scenario. In practice, the Sanger Sequencing

and 454 Sequencing technologies are used for DNA sequencing. During DNA

fragment generation phase, each of the Sanger Sequencing and 454 Sequenc-

ing technology, depending upon their sequencing technique, encounter errors

92

CHAPTER 9. CONCLUSION AND FUTURE WORKS 93

introduced as insertions, deletions and substitutions. In our work, three

error models are simulated using MetaSim to generate pragmatic datasets

with noise. We, therefore, execute our algorithms on these realistic datasets

and observed that, although our algorithms perform very well for noiseless

data just like others, for noisy instances their obtained fitness value decrease

significantly for different error models. It is expected that, for noisy data,

the fitness value would decrease. We have pointed out the fact that errors in

DNA fragments significantly impact the performance of standard algorithms.

Future works should take this into account.

In future, we should try to design algorithms to achieve near-optimal fit-

ness for noisy instances, as we obtain for noiseless datasets. We can also

explore the influence of repeated fragments on the sequencing process. Ad-

ditionally, we can implement the parallel versions of our algorithms, as pop-

ulation based algorithms lend themselves suitable to be emulated in parallel

environments. In particular, we can use OpenMP for shared memory pro-

gramming and MPI as message passing interface for implementing parallel

versions.

Bibliography

[1] http://www.454.com/downloads/news-events/

how-genome-sequencing-is-done_FINAL.pdf. [Online; accessed

20-November-2011].

[2] http://www.scribd.com/doc/53306810/35/ORDERED-CROSSOVER.

[Online; accessed 16-January-2012].

[3] http://en.wikipedia.org/wiki/Genome_sequencing#Sequencing_

versus_analysis. [Online; accessed 16-April-2012].

[4] http://en.wikipedia.org/wiki/Human_Genome_Project. [Online;

accessed 16-April-2012].

[5] http://www.bio.davidson.edu/courses/molbio/molstudents/

spring2003/obenrader/sanger_method_page.htm. [Online; accessed

16-April-2012].

[6] http://ab.inf.uni-tuebingen.de/teaching/ss07/albi2/script/

readsim_2July2007.pdf. [Online; accessed 16-November-2011].

[7] http://genome.ku.dk/resources/assembly/methods.html. [Online;

accessed 16-April-2012].

[8] http://www.ncbi.nlm.nih.gov/nuccore/178817?report=

fasta(M15421.1). [Online; accessed 20-November-2011].

[9] http://www.ncbi.nlm.nih.gov/nuccore/34645?report=

fasta(X60189.1. [Online; accessed 20-November-2011].

[10] http://www.ncbi.nlm.nih.gov/nuccore/215104?report=

fasta(J02459.1. [Online; accessed 20-November-2011].

94

BIBLIOGRAPHY 95

[11] http://0-www.ncbi.nlm.nih.gov.ilsprod.lib.neu.edu/Traces/

wgs/?hide_master*=\&val=ACIN02000001\#9(ACIN_ALL). [On-

line; accessed 20-November-2011].

[12] Hussein A. Abbass. Mbo: Marriage in honey bees optimization a

haplometrosis polygynous swarming approach. In Proceedings of the

Congress on Evolutionary Computation, 2001.

[13] E. Alba and G. Luque. A new local search algorithm for the DNA

fragment assembly problem. In Evolutionary Computation in Combi-

natorial Optimization, EvoCOP’07, Lecture Notes in Computer Science

4446, pages 1–12, Valencia, Spain, April 2007. Springer.

[14] Enrique Alba, Gabriel Luque, and Sami Khuri. Assembling DNA frag-

ments with parallel algorithms. In Congress on Evolutionary Computa-

tion, pages 57–64, 2005.

[15] M. Adel Alimi Amira Hamdi, Nicolas Monmarch and Mohamed Sli-

mane. Bee-based algorithms: a review. In International Conference on

Metaheuristics and Nature Inspired Computing, META10.

[16] M.F. Azeem and A.M. Saad. Modified queen bee evolution based ge-

netic algorithm for tuning of scaling factors of fuzzy knowledge base

controller. IEEE INDICON 2004 Proceedings of the India Annual Con-

ference, pages 299–303.

[17] DR Bentley. Whole-genome re-sequencing. Current Opinion in Genetics

and Development, 16(6):545 – 552, 2006.

[18] Christian Blum, Maŕıa J. Blesa Aguilera, Andrea Roli, and Michael

Sampels, editors. Hybrid Metaheuristics, An Emerging Approach to

Optimization, volume 114 of Studies in Computational Intelligence.

Springer, 2008.

[19] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence:

from natural to artificial systems. Oxford University Press, Inc., New

York, NY, USA, 1999.

BIBLIOGRAPHY 96

[20] Maŕılia D. V. Braga and Joao Meidanis. An algorithm that builds a

set of strings given its overlap graph. In Proceedings of the 5th Latin

American Symposium on Theoretical Informatics, LATIN ’02, pages 52–

63, London, UK, 2002. Springer-Verlag.

[21] C. Burks, M. Engle, S. Forrest, R. I. Parsons, C. Soderlund, and

P. Stolorz. Stochastic optimization tools for genomic sequence assembly.

In M. D. Adams, C. Fields and J. C. Venter (Eds.), Automated DNA

Sequencing and Analysis Techniques. UK Academic Press.

[22] S. Cahon, N. Melab, and Talbi E.G. Paradiseo: A framework for the

reusable design of parallel and distributed metaheuristics. Journal of

Heuristics, 10:357–380, May 2004.

[23] Ting Chen and Steven S. Skiena. Trie-based data structures for se-

quence assembly. In The Eighth Symposium on Combinatorial Pattern

Matching, pages 206–223. Springer-Verlag, 1997.

[24] Chin Soon Chong, Appa Iyer Sivakumar, Malcolm Yoke Hean Low, and

Kheng Leng Gay. A bee colony optimization algorithm to job shop

scheduling. In Proceedings of the 38th conference on Winter simulation,

WSC ’06, pages 1954–1961. Winter Simulation Conference, 2006.

[25] G. Churchill, C. Burks, M. Eggert, M. Engle, and M. Waterman. As-

sembling DNA sequence fragments by shuffling and simulated annealing.

Technical report, Los Alamos National Lab, Los Alamos, NM.

[26] Swagatam Das, Ajith Abraham, and Amit Konar. Swarm intelligence

algorithms in bioinformatics. Computational Intelligence in Bioinfor-

matics, 147(2008):113–147, 2008.

[27] Bernabé Dorronsoro, Enrique Alba, Gabriel Luque, and Pascal Bou-

vry. A self-adaptive cellular memetic algorithm for the DNA fragment

assembly problem. In IEEE Congress on Evolutionary Computation,

pages 2651–2658, 2008.

[28] Habiba Drias, Souhila Sadeg, and Safa Yahi. Cooperative bees swarm

for solving the maximum weighted satisfiability problem. In IWANN,

pages 318–325, 2005.

BIBLIOGRAPHY 97

[29] M. L. Engle and C. Burks. Artificially generated data sets for testing

DNA sequence assembly algorithms. Genomics, 16(1):286–8, 1993.

[30] M. Margulies et al. Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 437(7057):376–80, 2005.

[31] C. E. Ferreira, C. C. de Souza, and Y. Wakabayashi. Rearrangement

of DNA fragments: a branch-and-cut algorithm. Discrete Appl. Math.,

116:161–177, February 2002.

[32] P. Green. Phrap. http://www.phrap.org/. [Online; accessed 20-

November-2011].

[33] Xiaoqiu Huang and Anup Madan. Cap3: A DNA sequence assembly

program. Genome Research, 9:868–877, 1999.

[34] Cheol-Goo Hur, Sunny Kim, Chang Hoon Kim, Sung Ho Yoon, Yong-

Ho In, Cheolmin Kim, and Hwan Gue Cho. Fasim: Fragments assem-

bly simulation using biased-sampling model and assembly simulation

for microbial genome shotgun sequencing. Journal of Microbiology and

Biotechnology, 16(5):683–688.

[35] Michal Janitz. Next-generation genome sequencing: Towards personal-

ized medicine. pages 1–282, 2008.

[36] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics

Algorithms. MIT Press, 2004.

[37] Sung Hoon Jung. Queen-bee evolution for genetic algorithms. Electron-

ics Letters, 39(6):575–576, 2003.

[38] D. Karaboga. An idea based on Honey Bee Swarm for Numerical Opti-

mization. Technical Report TR06, Erciyes University, October 2005.

[39] Dervis Karaboga and Bahriye Basturk. A powerful and efficient algo-

rithm for numerical function optimization: artificial bee colony (ABC)

algorithm. J. of Global Optimization, 39:459–471, November 2007.

[40] James P. Kelly. Meta-Heuristics: Theory and Applications. Kluwer

Academic Publishers, Norwell, MA, USA, 1996.

BIBLIOGRAPHY 98

[41] Satoko Kikuchi and Goutam Chakraborty. Heuristically tuned ga to

solve genome fragment assembly problem. In IEEE Congress on Evolu-

tionary Computation, Vancouver, BC, Canada, 2006.

[42] Jǐŕı Kubalik, Petr Buryan, and Libor Wagner. Solving the DNA frag-

ment assembly problem efficiently using iterative optimization with

evolved hypermutations. In Proceedings of the 12th annual conference

on Genetic and evolutionary computation, GECCO ’10, pages 213–214,

New York, NY, USA, 2010. ACM.

[43] Sean Luke. Essentials of Metaheuristics. Lulu, 2009. Available for free

at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[44] G. Luque and E. Alba. Metaheuristics for the DNA Fragment Assembly

Problem. International Journal of Computational Intelligence Research,

1(1-2):98–108, 2005.

[45] M Margulies, M Egholm, W E Altman, S Attiya, J S Bader, L A Bem-

ben, J Berka, M S Braverman, Yi-Ju Chen, Z Chen, and et al. Genome

sequencing in microfabricated high-density picolitre reactors. Nature,

437(7057):376–380, 2005.

[46] P. Meksangsouy and N. Chaiyaratana. DNA fragment assembly using an

ant colony system algorithm. In Proceedings of Congress on Evolutionary

Computation, volume 3, pages 1756–1763, 2003.

[47] Deirdre Meldrum. Automation for genomics, part one: Preparation for

sequencing. Genome Research, 10(8):1081–1092, 2000.

[48] Deirdre Meldrum. Automation for genomics, part two: Sequencers,

microarrays, and future trends. Genome Research, 10(9):1288–1303,

2000.

[49] M. M. Millonas. Swarms, Phase Transitions, and Collective Intelligence.

In C. Langton (Ed.), Artificial Life, volume 3, pages 417–445, June 1993.

[50] Gabriela Minetti and Enrique Alba. Metaheuristic assemblers of DNA

strands: Noiseless and noisy cases. In IEEE Congress on Evolutionary

Computation’10, pages 1–8, 2010.

BIBLIOGRAPHY 99

[51] Eugene W. Myers. Toward simplifying and accurately formulating frag-

ment assembly. Journal of Computational Biology, 2:275–290, 1995.

[52] Gene Myers. A dataset generator for whole genome shotgun sequencing.

In Proceedings of the Seventh International Conference on Intelligent

Systems for Molecular Biology, pages 202–210. AAAI Press, 1999.

[53] D. Teodorovic P. Lucic. Bee system: modelling combinatorial opti-

mization transportation engineering problems by swarm intelligence. In:

Preprints of the TRISTAN IV Triennial Symposium on Transportation

Analysis, Sao Miguel, Azores Islands, Portugal, pages 441–445.

[54] Rebecca J. Parsons, Stephanie Forrest, and Christian Burks. Genetic al-

gorithms, operators, and DNA fragment assembly. Mach. Learn., 21:11–

33, October 1995.

[55] Pavel A. Pevzner. Computational molecular biology - an algorithmic

approach. pages 1–314, 2000.

[56] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi.

The Bees Algorithm, A Novel Tool for Complex Optimisation Problems.

In Proceedings of the 2nd International Virtual Conference on Intelli-

gent Production Machines and Systems (IPROMS 2006), pages 454–459.

Elsevier, 2006.

[57] Frédéric Pinel, Bernabé Dorronsoro, and Pascal Bouvry. A new parallel

asynchronous cellular genetic algorithm for de novo genomic sequencing.

In Proceedings of the 2009 International Conference of Soft Comput-

ing and Pattern Recognition, SOCPAR ’09, pages 178–183, Washington,

DC, USA, 2009. IEEE Computer Society.

[58] L.D. Qin, Q.Y. Jiang, Z.Y. Zou, and Y.J Cao. A queen-bee evolution

based on genetic algorithm for economic power dispatch. In 39th Inter-

national Universities Power Engineering Conference, volume 1, pages

453–456, September 2004.

[59] Daniel C Richter, Felix Ott, Alexander F Auch, Ramona Schmid, and

Daniel H Huson. Metasim:a sequencing simulator for genomics and

metagenomics. PLoS ONE, 3(10):e3373+, 2008.

BIBLIOGRAPHY 100

[60] João Carlos Setubal and João Meidanis. Fragment assembly of DNA.

Introduction to Computational Molecular Biology, pages 105–139, 1997.

[61] R Staden. A new computer method for the storage and manipulation of

dna gel reading data. Nucleic acids research, 8:3673–3694, 1980.

[62] G.G. Sutton, White O., Adams M.D., and Kerlavage A.R. Tigr as-

sembler: A new tool for assembling large shotgun sequencing projects.

Genome Science and Tech, pages 9–19, 1995.

[63] El Ghazali Talbi. Metaheuristics from design to implementation. pages

1–593, 2009.

[64] Jason Teo and Hussein A. Abbass. A true annealing approach to the

marriage in honey-bees optimization algorithm. International Journal

of Computational Intelligence and Applications, 3(2):199–211, 2003.

[65] D. Teodorovic and M. Dell’Orco. Bee Colony Optimization – A Cooper-

ative Learning Approach to Complex Transportation Problems. In 10th

EWGT Meeting and 16th Mini-EURO Conference, 2005.

[66] Horst F. Wedde, Muddassar Farooq, and Yue Zhang. BeeHive: An

Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Be-

havior. pages 83–94. 2004.

[67] Xiaoqiu and Huang. A contig assembly program based on sensitive

detection of fragment overlaps. Genomics, 14(1):18 – 25, 1992.

[68] Xin-She Yang. Engineering Optimizations via Nature-Inspired Virtual

Bee Algorithms. pages 317–323. 2005.

