
M.Sc. Engg. Thesis

Optimal Placement of Unique
Restriction Sites in Synthetic Genomes

by

Mahfuza Sharmin
Student No.: 0409052026P

Submitted to

Department of Computer Science & Engineering

in partial fulfillment of the requirements for the degree of

Masters in Science in Computer Science and Engineering

Department of Computer Science & Engineering

Bangladesh University of Engineering & Technology(BUET)

Dhaka-1000.

July 2012

http://www.buet.ac.bd/cse
http://www.buet.ac.bd/cse
http://www.buet.ac.bd

Declaration of Authorship

This is to certify that the work presented in this thesis entitled “Optimal Placement of

Unique Restriction Sites in Synthetic Genomes” is the outcome of the investigation car-

ried out by me under the supervision of Dr. M. Sohel Rahman, Associate Professor,

Department of Computer Science and Engineering(BUET), Dhaka. It is also declared

that niether this thesis nor any part thereof has been submitted or being currently sub-

mitted anywhere else for the award of any degree or diploma.

(Author)

Mahfuza Sharmin

Student No.: 0409052026P

Department of Computer Science and Engineering (BUET),

Dhaka-1000

i

Board of Examiners
The thesis titled “Optimal Placement of Unique Restriction Sites in Synthetic Genomes,”

submitted by Mahfuza Sharmin, Roll No. 0409052026P, Session April 2009, to the De-

partment of Computer Science and Engineering, Bangladesh University of Engineering

and Technology, has been accepted as satisfactory in partial fulfillment of the require-

ments for the degree of Master of Science in Computer Science and Engineering and

approved as to its style and contents. Examination held on July 03, 2012.

Dr. M. Sohel Rahman

Associate Professor

Department of Computer Science and Engineering Chairman

BUET, Dhaka 1000 (Supervisor)

Dr. Abu Sayed Md. Latiful Hoque

Professor & Head

Department of Computer Science and Engineering Member

BUET, Dhaka 1000 (Ex-officio)

Dr. M. Kaykobad

Professor

Department of Computer Science and Engineering Member

BUET, Dhaka 1000

Dr. Masud Hasan

Associate Professor

Department of Computer Science and Engineering Member

BUET, Dhaka 1000

Dr. Mohammad Nurul Huda

Associate Professor

Department of Computer Science and Engineering Member

United International University, Dhaka (External)

ii

Acknowledgements

All praises due to Allah, the most benevolent and the most merciful.

I show my heartfelt gratitude toward my supervisor Dr. M. Sohel Rahman, who was

very helpful during the entire span of my research work. Without his direction, support

and advice, this work would not have been possible. I am especially grateful to him

for allowing me greater freedom in choosing the problems to work on, for his encour-

agement at times of disappointment, and for his patience with my wildly sporadic work

habits.

I would like to thank Bangladesh University of Engineering and Technology for its

generous support and research grant. The university also provided me with its library

facilities and online resource facilities. I would also like to thank Department of Com-

puter Science and Engineering for its support with resources and materials during the

research work.

I also remember my teachers and colleagues who earnestly provided me with encour-

agement and inspiration for achieving this goal.

Last but not the least, I am thankful to my parents, family and friends for their support

and tolerance.

iii

Abstract

There has been a number of research that has investigated the function of genes in a

sequence and how to synthesize genome sequence according to user specification. The

purpose of this thesis is to find a genome sequence which provides maximum amount

of flexibility and independence to biologists to run experiment with the sequence. An-

other aim is to give opportunity for investigation of vaccine invention. To this end, we

propose to apply metaheuristics process for making a genome sequence uniquely prone

to enzymes.

We have applied a family of local and global search techniques to investigate which

search technique is better applicable for the problem under consideration. All im-

plementation of our algorithms are incorporated in the existing sequence design tool,

namely, PRESTO. Finally in our study, the process are simulated on a number of vi-

ral sequences and the outcome is examined by statistical means. Through our extensive

experimental and statistical analysis, we have found that our local search techniques

perform better than the existing heuristics. Our findings also include that some global

search techniques do not perform as expected, even though they explores the search

space more. We have also found that multi-objective pareto optimization gives best out-

put in the current context.

Contents

Declaration of Authorship i

Board of Examiners ii

Acknowledgements iii

Abstract iv

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Synthetic Biology . 1

1.1.1 Computer Science and Synthetic Biology 2
1.2 Problem Background . 3
1.3 Contribution in this Thesis . 3
1.4 Organization of the Thesis . 4

1.4.1 Preliminaries . 4
1.4.2 Literature Survey . 4
1.4.3 URSPP in Synthetic Genomes by Metaheuristics 5
1.4.4 Experimental Results . 5
1.4.5 Conclusion . 5

2 Preliminaries 6
2.1 Synthetic biology . 6

2.1.1 Viral Genome Synthesis . 7
2.1.2 Refactoring: Genome Vs. Software 7
2.1.3 Restriction Enzymes and Restriction Sites 8
2.1.4 Protein and Amino acid . 8
2.1.5 Genetic Code: Codon . 9

v

Contents vi

2.1.6 Subcloning . 10
2.2 Problem Statement . 11
2.3 Definition of Metaheuristics . 12
2.4 Single State Methods . 13

2.4.1 Hill Climbing . 13
2.4.2 Steepest Ascent Hill Climbing 14
2.4.3 Steepest Ascent Hill Climbing with Replacement 14

2.5 Population Methods . 15
2.5.1 Genetic Algorithm . 15
2.5.2 Genetic Algorithm with Elitism 16
2.5.3 Steady State Genetic Algorithm 17

2.6 Evolutionary Multiobjective Optimization 18
2.7 Selection Procedure . 19

2.7.1 Tournament Selection . 19
2.7.2 Multiobjective Tournament Selection 19

2.8 Non-Dominated Sorting Genetic Algorithm 21
2.9 Summary . 22

3 Literature survey 23
3.1 Previous Results on URSPP . 23
3.2 Related Works on Gene Synthesis . 25
3.3 Summary . 30

4 URSPP in Synthetic Genomes by Metaheuristics 31
4.1 Motivation behind Application of Metaheuristics 31
4.2 Proposed Methodology . 32

4.2.1 Candidate Solution Representation 33
4.2.2 Breeding Operators . 34
4.2.3 Quality Assessment . 36

4.3 Algorithms . 38
4.3.1 Local Search Techniques . 38
4.3.2 Hybrid Genetic algorithm . 38
4.3.3 Non-Dominated Sorting Genetic Algorithm 39

4.4 Summary . 40

5 Experimental Results 41
5.1 Statistical Test . 41

5.1.1 Paired or Unpaired Test . 41
5.1.2 The T Test . 42
5.1.3 Concept of null hypothesis . 42
5.1.4 Significance levels . 43
5.1.5 One or Two sided P Value . 43
5.1.6 Confidence Interval (C.I.) . 44

5.2 Simulation Results . 45
5.2.1 Experimental set up and Representation 45

Contents vii

5.2.2 Results summary and Analysis 47
5.3 Summary . 84

6 Conclusion 85
6.1 Findings . 85
6.2 Future Direction . 86

List of Figures

2.1 EcoRV enzyme cuts at GATATC. 8
2.2 Insertion of a restriction site. 10
2.3 Sparsity of Individual B is higher than Individual A 21

3.1 Moving window algorithm. 26
3.2 SiteFind Screenshots. 27
3.3 KLF4 R390S mutant has a novel BglII restriction site. 27
3.4 KLF4 K225/229R mutant has a novel NheI restriction site. 28
3.5 User Interface of GeneJax . 28

4.1 Restriction enzyme, RE1 is already inserted 31
4.2 Deletion of RE1 might allow to insert RE2 and RE3 32
4.3 Mutation 1 . 34
4.4 Mutation 1 . 35
4.5 Mutation 2 . 35
4.6 Pareto ranks . 37
4.7 Selection of best solution from front 39

5.1 Confidence Interval . 45
5.2 Convergence of Objective, f3 . 47
5.3 Hill Climbing Vs Existing Heuristics for λ Phage Virus 48
5.4 Steepest Ascent HC Vs Existing Heuristics for λ Phage Virus 48
5.5 Steepest Ascent HC with Replacement Vs Existing Heuristics for λ

Phage Virus . 48
5.6 Hybrid GA Vs Existing Heuristics for λ Phage Virus 52
5.7 Hybrid GA with Elitism Vs Existing Heuristics for λ Phage Virus . . . 58
5.8 Hybrid Steady State GA Vs Existing Heuristics for λ Phage Virus . . . 58
5.9 Non-Domonated Sorting GA Vs Existing Heuristics for λ Phage Virus . 59
5.10 Non-Domonated Sorting GA Vs Local Search algorithms for λ Phage

Virus . 61
5.11 Hill Climbing Vs Existing Heuristics for Polio Virus 62
5.12 Steepest Ascent HC Vs Existing Heuristics for Polio Virus 64
5.13 Steepest Ascent HC with Replacement Vs Existing Heuristics for Polio

Virus . 64
5.14 Hybrid GA Vs Existing Heuristics for Polio Virus 64
5.15 Hybrid GA with Elitism Vs Existing Heuristics for Polio Virus 68

viii

List of Figures ix

5.16 Hybrid Steady State GA Vs Existing Heuristics for Polio Virus 68
5.17 Non-Domonated Sorting GA Vs Existing Heuristics for Polio Virus . . 68
5.18 Non-Domonated Sorting GA Vs Local Search algorithms for Polio Virus 72
5.19 Hill Climbing Vs Existing Heuristics for Equine Arteritis Virus 73
5.20 Steepest Ascent HC Vs Existing Heuristics for Equine Arteritis Virus . 73
5.21 Steepest Ascent HC with Replacement Vs Existing Heuristics for Equine

Arteritis Virus . 73
5.22 Non-Domonated Sorting GA Vs Existing Heuristics for Equine Arteri-

tis Virus . 77
5.23 Non-Domonated Sorting GA Vs Local Search algorithms for Equine

Arteritis Virus . 77
5.24 Hill Climbing Vs Existing Heuristics for Measles Virus 77
5.25 Steepest Ascent HC Vs Existing Heuristics for Measles Virus 79
5.26 Steepest Ascent HC with Replacement Vs Existing Heuristics for Measles

Virus . 81
5.27 Non-Domonated Sorting GA Vs Existing Heuristics for Measles Virus . 82
5.28 Non-Domonated Sorting GA Vs Local Search algorithms for Measles

Virus . 83

List of Tables

2.1 Standard Genetic Code . 9

4.1 One Candidate Solution . 33

5.1 Algorithms . 46
5.2 Prerence of Objective difference . 46
5.3 Hill Climbing Vs Existing Heuristics for λ Phage Virus 49
5.4 Steepest Ascent HC Vs Existing Heuristics for λ Phage Virus 50
5.5 Steepest Ascent HC with Replacement Vs Existing Heuristics for λ

Phage Virus . 51
5.6 Hybrid GA (low local improver) Vs Existing Heuristics for λ Phage Virus 53
5.7 Hybrid GA (moderate local improver) Vs Existing Heuristics for λ Phage

Virus . 54
5.8 Hybrid GA (high local improver) Vs Existing Heuristics for λ Phage

Virus . 55
5.9 Hybrid GA with Elitism Vs Existing Heuristics for λ Phage Virus . . . 56
5.10 Hybrid Steady State GA Vs Existing Heuristics for λ Phage Virus . . . 57
5.11 Non-Domonated Sorting GA Vs Existing Heuristics for λ Phage Virus . 60
5.12 Non-Domonated Sorting GA Vs Local Search algorithms for λ Phage

Virus . 61
5.13 Hill Climbing Vs Existing Heuristics for Polio Virus 63
5.14 Steepest Ascent HC Vs Existing Heuristics for Polio Virus 65
5.15 Steepest Ascent HC with Replacement Vs Existing Heuristics for Polio

Virus . 66
5.16 Hybrid GA Vs Existing Heuristics for Polio Virus 67
5.17 Hybrid GA with Elitism Vs Existing Heuristics for Polio Virus 69
5.18 Hybrid Steady State GA Vs Existing Heuristics for Polio Virus 70
5.19 Non-Domonated Sorting GA Vs Existing Heuristics for Polio Virus . . 71
5.20 Non-Domonated Sorting GA Vs Local Search algorithms for Polio Virus 72
5.21 Hill Climbing Vs Existing Heuristics for Equine Arteritis Virus 74
5.22 Steepest Ascent HC Vs Existing Heuristics for Equine Arteritis Virus . 75
5.23 Steepest Ascent HC with Replacement Vs Existing Heuristics for Equine

Arteritis Virus . 76
5.24 Non-Domonated Sorting GA Vs Existing Heuristics for Equine Arteri-

tis Virus . 78

x

List of Tables xi

5.25 Non-Domonated Sorting GA Vs Local Search algorithms for Equine
Arteritis Virus . 79

5.26 Hill Climbing Vs Existing Heuristics for Measles Virus 80
5.27 Steepest Ascent HC Vs Existing Heuristics for Measles Virus 80
5.28 Steepest Ascent HC with Replacement Vs Existing Heuristics for Measles

Virus . 81
5.29 Non-Domonated Sorting GA Vs Existing Heuristics for Measles Virus . 82
5.30 Non-Domonated Sorting GA Vs Local Search algorithms for Measles

Virus . 83

Chapter 1

Introduction

The use of biological techniques has grown explosively in the past few decades and

shows no sign of slowing down. The result of this growth is that the number of sources

of products, services, and information has increased to the point that keeping track of

(or locating) the numerous providers has become extremely time consuming. The sheer

volume of biological data makes it impossible to analyze them by hand. As a result,

computers have become indispensable to biological research. This chapter introduces

the reader with the state of the art of biological research and provides an overview

of what we have done in our thesis. In particular, we give an overview of a popular

branch of bioinformatics, namely, synthetic biology. It is the latter sub discipline of

bioinformatics, which the subject of this thesis belongs to.

1.1 Synthetic Biology

Synthetic biology is an emerging and exciting field in bioinformatics and genetic en-

gineering that involves redesigning of existing, natural biological systems for new pur-

poses as well as for the creation of entirely novel artificial living things. For several

decades, genetic modification technologies have been used to move genes from one

species and splice them into the DNA of another. Here the ultimate goal is to create

transgenic plants/animals/microorganisms with new and improved characteristics. The

focus in synthetic biology, however, is to create novel living systems (with a similar

goal as above) from standardized genetic parts. The research here poses various newer

algorithmic and computational problems and challenges. Viral genome synthesis, i.e.,

1

Chapter 1. Introduction 2

designing novel living organisms at the genetic level, is an important research area in

this field.

1.1.1 Computer Science and Synthetic Biology

In simple words, Synthetic biology is nothing but putting engineering into biology. An

engineered genetic toggle switch 1 developed by Tim Gardner and Jim Collins is a good

example of how engineering principles are driving the boat of synthetic biology [1]. Re-

searchers are now trying to adapt concepts developed in area of programming language

development and software engineering for synthetic biology applications. For example,

a recent paper in PLoS Computational Biology shows how methods used by computer

scientists to develop programming languages can be applied to DNA sequences [2].

Authors in [2] report an attribute grammar based formalism to model the structure-

function relationships in synthetic DNA sequences. An attribute grammar is constructed

as an extension of a context-free grammar and in computer science it is commonly used

to translate the text of a program source code or the syntax tree directly into the com-

putational operations or machine level instructions.

Another example of the study and research under the hood of synthetic biology is re-

designing Bacteria. Bacteria are the simplest known objects from the natural world that

are capable of replicating when provided with only simpler components (e.g., broth).

Still, bacteria are far from simple. Bacteria also provide the basic environment in which

synthetic biological systems exist and act; in some sense, they are like the power supply

and chassis of a computer. By re-designing/refactoring a simple living system we hope

to learn how to better couple (and decouple) our designed systems from their host en-

vironment. As engineers, we are much better at thinking and designing digital systems.

One reason we are better at digital system design is that such systems create an ‘ab-

straction barrier’ between the detailed device physics level and the system design and

operation levels.

1Genetic toggle switch is a synthetic, bistable gene-regulatory network-in an organism e.g. Es-
cherichia coli. The toggle is flipped between stable states using transient chemical or thermal induction
and exhibits a nearly ideal switching threshold.

Chapter 1. Introduction 3

1.2 Problem Background

Our problem has basically come from synthetic biology research. A large part of

synthetic biology research deals with genome synthesis and designing synthetic gene.

Genome synthesis has many interesting applications. One of such application is drug

or vaccine design. Our problem has direct relationship with viral vaccine design. As an

example, when a virus attacks the genome sequence os virus is combined with the our

genome sequence. This combination is the cause of our disease. To design a vaccine

for that virus what biologists do is compare two genome sequence and a part of viral

genome sequence is disturbed. The disturbance is done in such a way that the partly dis-

turbed genome sequence can act as a potential vaccine. Here, biologists need to analyze

and take some decision on which part of viral sequence should be disturbed and which

part should be kept intact. For making this decision computer science plays a role,

in particular it assists with genome refactoring which means creating a new genome

sequence which is functionally same to the original sequence but is much easier to

manipulate in the laboratory for chemical and biological test. The problem under con-

sideration has directly come from such a lab project. Here, our target is to find a genome

sequence from an existing genome sequence so that it becomes uniquely responsive to

some given chemical agents. this uniqueness is particularly prized, because if the new

but equivalent sequence is uniquely responsive to a chemical agent, the function of the

affected genetic part can be unambiguously understood.

1.3 Contribution in this Thesis

The main target of this thesis is to aid in drug designing, in particular vaccine designing.

To design an effective vaccine, we need to analyze functionality of genes and their parts

contained in a viral genome sequence. To better understand what a specific part in the

sequence does, what is does not, it is a biologically popular way to keep that specific

part in the sequence and temporarily remove/abrupt/make de-functional others using

some chemicals (enzymes). Synthesizing viral sequences in such a way so that specific

part of the sequence is responsive to some enzymes and others are non-responsive, is a

computationally hard problem. In this thesis, we apply high level search techniques, to

find such synthesized genome sequences. To achieve this, we first map the problem into

a multi-objective optimization problem and define problem specific genetic operators

so that efficient meta-heuristic techniques can be applied. We have designed suitable

Chapter 1. Introduction 4

hybrid meta-heuristic algorithms powered by local search techniques to solve the prob-

lem. Our implementation can serve as a sequence design tool for synthesized genomes.

Additionally, we have conducted extensive experiments to analyze the performance of

the designed algorithms using viral genome/DNA sequence. To the best of our knowl-

edge, the synthesized genome designed by this tool are most attractive to the biologists

because of cost and other criteria.

1.4 Organization of the Thesis

A brief overview of the organization of the rest of this thesis is presented in this section.

1.4.1 Preliminaries

A fundamental challenge in bioinformatics is transforming a biological problem into

a computational problem. Before such conversion, it is quite necessary to understand

the biological context so that they can smartly be applied in algorithmic context. Smart

application of one context to another refers to the fact that the rules-regulation and

conditions of the former branch does not violate due to pulling the problem into the

latter; rather such usage or pulling eases the original problem to solve. Chapter 2 deals

with some relevant concepts and notions meeting this challenge. Here, we also presents

basics of Metaheuristics. We discuss several types of local and global search algorithms

which we use later. Additionally, some selection procedure to find good solutions are

briefed.

1.4.2 Literature Survey

This chapter provides the short description of the work of Montes [3] on optimization of

restriction site placement. Some related works on genome synthesis are also discussed

in detail.

Chapter 1. Introduction 5

1.4.3 URSPP in Synthetic Genomes by Metaheuristics

As has been mentioned above in this thesis, we have tried to construct new genome

sequences applying different heuristic techniques. This chapter first presents our mo-

tivation behind using such search techniques. Then all the required notions to apply

the global search methods are introduced at length. Finally, we formally present our

algorithms in this chapter.

1.4.4 Experimental Results

We also design and conduct extensive experiments to analyze the performance of our al-

gorithms and provide insightful discussion based on the comparisons done with state of

the art algorithms on the same problem. Section 5 is dedicated to present the experimen-

tal results. Here, we have given our implementation set up and the supporting software

tools used for the simulating the algorithms. At the end, we have provided summary

results along with insightful discussions about the outcome followed by a comparative

analysis with other related results in the literature.

1.4.5 Conclusion

This chapter concludes our thesis and puts our results into the context of the state of

the art of the literature. Some future research directions are also identified and briefly

discussed.

Chapter 2

Preliminaries

In this chapter, we discuss some terminology, concepts and relevant notations that are

used throughout the thesis. The terms discussed here, belong to both biological and

algorithmic studies. The discussion in this chapter will help the readers to grasp the

significance and importance of our study and will aid in properly comprehending the

meaning of studied problem which are discussed throughout the subsequent chapters.

2.1 Synthetic biology

A brief description of synthetic biology has been given in Chapter 1. Since our focus is

on this particular branch of bioinformatics, here, we discuss about it more elaborately.

The new buzzword ‘Synthetic Biology’ entered the vocabulary of the scientific commu-

nity only a few years ago [4–7]. A consensus definition drafted by a group of European

experts [8] defined Synthetic Biology as follows:

Synthetic biology is the engineering of biology: the synthesis of complex,

biologically based (or inspired) systems, which display functions that do

not exist in nature. This engineering perspective may be applied at all levels

of the hierarchy of biological structures from individual molecules to whole

cells, tissues and organisms. In essence, synthetic biology will enable the

design of biological systems’ in a rational and systematic way.

Synthetic biology refers to both: (a) the design and fabrication of biological components

and systems that do not already exist in the natural world and (b) the re-design and

6

Chapter 2. Preliminaries 7

fabrication of existing biological systems. There are two types of synthetic biologists.

The first group uses unnatural molecules to mimic natural molecules with the goal of

creating artificial life. The second group uses natural molecules and assembles them

into a system that acts unnaturally. In general, the goal is to solve problems that are not

easily understood through analysis and observation alone and it is only comprehensible

by the manifestation of new models.

Synthetic biology studies how to build artificial biological systems for engineering ap-

plications, using many of the same tools and experimental techniques. But the work is

fundamentally an engineering application of biological science, rather than an attempt

to do more science. The focus is often on ways of taking parts of natural biological sys-

tems, characterizing and simplifying them, and using them as a component of a highly

unnatural, engineered, biological system.

2.1.1 Viral Genome Synthesis

Gene synthesis has become an important tool in many fields of recombinant DNA tech-

nology including vaccine development, gene therapy and molecular engineering. The

synthesis of nucleic acid sequences is often more economical than classical cloning and

mutagenesis procedures. Gene synthesis is the process of synthesizing a gene with-

out the need for initial template DNA samples. Genome synthesis technique is largely

used for virus vaccine development. For example, a team of molecular biologists and

computer scientists at Stony Brook University has modified the polio virus to create

a weakened version, which, when injected, went on to effectively immunize lab mice

[9]. They used a novel algorithm to sort through potential recordings of the genome

that would produce the desired proteins. The technique may lead to practical, system-

atic methods of developing future viral vaccines.

2.1.2 Refactoring: Genome Vs. Software

Refactoring [10] is a software engineering term for redesigning a program to improve

its internal structure for better ease of maintenance while leaving its external behavior

unchanged. Genome synthesis technology enables us to refactor biological organisms:

we seek to restructure the genome of an organism into a sequence which is function-

ally equivalent (i.e., behaves the same in its natural environment) while being easier to

manipulate [11, 12].

Chapter 2. Preliminaries 8

2.1.3 Restriction Enzymes and Restriction Sites

Restriction enzymes are reagents widely used by molecular biologists for genetic manip-

ulation and analysis. For diagnosing/synthesizing DNA sequence restriction enzymes

offer nonparallel opportunities. These special types of enzymes recognize and cut spe-

cific nucleotide sequences in DNA molecules. For example, the bacterium Hemophilus

aegypticus produces an enzyme named HaeIII that cuts DNA wherever it encounters the

sequence 5’GGCC3’/3’CCGG5’. The pattern, GGCC/CCGG, is called the restriction

enzyme recognition site or restriction site or recognition site. Unique restriction enzyme

cuts the DNA at exactly one place. Due to their unambiguous recognition property,

unique restriction enzymes are more interesting, useful and appealing to the scientists.

A sequence containing unique restriction sites at regular intervals is easier to manipu-

late in the laboratory. That is why, in many cases, before experimenting the original

sequence obtained from a living organism, such unique sites are artificially inserted

and/or deleted in the DNA sequence keeping it functionally equivalent to the original

one. Often, inserting (deleting) a recognition site for a restriction enzyme is referred

to as inserting (deleting) a restriction enzyme. Figure 2.1 shows an example of this

concept for EcoRv enzyme which can recognize the sequence, GATATC.

FIGURE 2.1: EcoRV enzyme cuts at GATATC.

2.1.4 Protein and Amino acid

Proteins are one of the building blocks of the body and Amino acids serve as the building

blocks of proteins, which are basically, linear chains of amino acids. Amino acids can

be linked together in varying sequences to form a vast varieties of proteins. A total of

20 different kinds of amino acids form proteins. These 20 amino acids are encoded by

the universal genetic code. To restructure the genome of an organism into a functionally

Chapter 2. Preliminaries 9

equivalent sequence, the amino acid sequence of it must be preserved. The redundancy

of the genetic code (to be described in the following section) plays an important role

in preserving the amino acid sequences or proteins even after the insertion of a new

restriction site at a certain place of the genome or after the removal of any restriction

site from it.

2.1.5 Genetic Code: Codon

Each amino acid is encoded by a series of three adjacent bases, called Codon. Codons

specify which amino acid will be added next during protein synthesis. With some ex-

ceptions, a three-nucleotide codon in a nucleic acid sequence specifies a single amino

acid. The genetic code has redundancy but no ambiguity (see the Table 2.1). For exam-

ple, although codons GAA and GAG both specify glutamic acid (redundancy), neither

of them specifies any other amino acid (no ambiguity). There are three amino acids

encoded by six different codons: serine, leucine, and arginine. Only two amino acids

are specified by a single codon. One of these is the amino-acid methionine, specified

by the codon ATG, which also specifies the start of translation; the other is tryptophan,

specified by the codon TGG.

TABLE 2.1: Standard Genetic Code

1st base 2nd base 3rd baseT C A G

T

TTT Phe/F TCT

Ser/S

TAT Tyr/Y TGT Cys/C T
TTC Phenylalanine TCC TAC Tyrosine TGC Cysteine C
TTA

Leu/L

TCA TAA Stop TGA Stop A
TTG TCG Serine TAG Stop TGG Trp/W Tryptophan G

C

CTT CCT

Pro/P

CAT His/H CGT

Arg/R

T
CTC CCC CAC Histidine CGC C
CTA Leucine CCA CAA Gln/Q CGA A
CTG CCG Proline CAG Glutamine CGG Arginine G

A

ATT
IIe/I

ACT

Thr/T

AAT Asn/N AGT Ser/S T
ATC ACC AAC Asparagine AGC Serine C
ATA Isoleucine ACA AAA Cys/k AGA Arg/R A
ATG Met/M Methionine ACG Threonine AAG Lysine AGG Arginine G

G

GTT

Val/V

GCT

Ala/A

GAT Asp/D GGT

Aly/G

T
GTC GCC GAC Aspartic acid GGC C
GTA GCA GAA Glu/E GGA A
GTG Valine GCG Alanine GAG Glutamic Acid GGG Glycine G

Degeneracy results because there are more codons than encodable amino acids. There

are only 20 different kinds of amino acids found in the proteins of living organisms

whereas 64 (43 = 64) possible codons are available. Multiple codons representing the

same amino acid are called Synonymous codons. These properties of the genetic code

make it more fault-tolerant for point mutations. For successful insertion and deletion

of restriction sites, synonymous codons must be used while placing one codon in lieu

Chapter 2. Preliminaries 10

of another. Figure 2.2 shows an example of this concept. GAG and GAA both are the

code for the aminoacid glutamic acid. Here a single nucleotide change introduces the

EcoRI restriction site, without modifying the amino acid sequence.

FIGURE 2.2: Insertion of a restriction site.

2.1.6 Subcloning

In molecular biology, subcloning is a technique used to move a particular gene of inter-

est from a parent vector to a destination vector in order to further study its functionality.

Restriction enzymes are used to excise the gene of interest (the insert) from the parent.

Simultaneously, the same restriction enzymes are used to digest (cut) the destination.

The insert and the destination vector are then mixed together with certain ratio. After

letting the reaction mixture sit for a set amount of time at a specific temperature, the

insert should become successfully incorporated into the destination plasmid.

Chapter 2. Preliminaries 11

2.2 Problem Statement

The problem of our interest originates from the laboratory of viral genome synthesis.

The original problem takes as input a viral plasmid sequence and a set of restriction

enzymes. The goal then is to find a new plasmid sequence containing unique recognition

sites for the given set of restriction enzymes such that (1) the number of unique sites

inserted is maximum, (2) amount of sequence editing required is as less as possible and

(3) the placement of the sites are as even as possible. This problem is referred to as the

Unique Restriction Site Placement Problem (URSPP) in the literature [3].

While editing the sequence some practical restrictions need to be considered. To retain

the original functionality of the genome, it’s amino acid sequence must remain unal-

tered. That’s why, synonymous codons are used to introduce a site to and/or delete a

site from the sequence through the change of one or more bases. During such deletions

and insertions no accidental occurrence of any of the restriction sites should be intro-

duced in the sequence. The difficulty of the problem, among others, arises from the

task of keeping track of exponential number of possibilities in the order of considering

restriction enzymes for insertion and/or deletion. We must also decide on which occur-

rence of a restriction site to keep so that the site serves as a unique one. This also adds

to the difficulty.

Another restriction is that a site in the so called locked region can’t be deleted, nor a

site can be inserted there. Locked region is the part of a genome without which the

virus dies/can never function as expected, though the actual function of such a region

is still a mystery to the biologists. Such locked regions include the places where RNA

Secondary structures, Multiple Open Reading Frames1 are found.

1The places where transcription process is paused.

Chapter 2. Preliminaries 12

In the rest of this chapter, we present basic definitions of metaheuristics and some search

techniques. Here, our discussion on metaheuristics in subsequent sections is confined

within the techniques that have been applied to solve the problem under consideration.

2.3 Definition of Metaheuristics

Metaheuristics have been established as one of the most practical approach to simulate

optimization and are designed to tackle complex optimization problems where other

optimization methods have failed to be either effective or efficient. These techniques are

often (though not necessarily) inspired by processes occurring in nature, e.g. Darwinian

Natural Selection, Annealing, Collective behavior of ants etc.

The term metaheuristic, first introduced in [13], derives from the composition of two

Greek words. ‘Heuristic’ derives from the verb heuriskein (euriskein) which means

“to find”, “art of discovering new”, while the suffix meta means “beyond, in an upper

level”. Before this term was widely adopted, metaheuristics were often called modern

heuristics [14]. Below we give some recent definitions of metaheuristics [15–17],

“A metaheuristic is formally defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space, learning strategies are used

to structure information in order to find efficiently near-optimal solutions.”

“A metaheuristic is an iterative master process that guides and modifies

the operations of subordinate heuristics to efficiently produce high-quality

solutions. It may manipulate a complete (or incomplete) single solution

or a collection of solutions at each iteration. The subordinate heuristics

may be high (or low) level procedures, or a simple local search, or just a

construction method.”

In summary, metaheuristics are high level strategies for exploring search spaces by using

different methods. Within the application of these techniques, there is a dynamic bal-

ance between diversification and intensification: on one side we have to quickly identify

regions in the search space with high quality solutions and on the other side we must not

waste too much time in regions of the search space which are either already explored or

Chapter 2. Preliminaries 13

which are unlikely to provide high quality solutions. The term diversification generally

refers to the exploration of the search space, whereas the term intensification refers to

the exploitation of the accumulated search experience [18–20]. The balance between

diversification and intensification is important in terms of time required to reach an

acceptable solution, usage of memory and other resources.

Typically, metaheuristics are approximation algorithms and hence they cannot always

produce provably optimal solutions. But they do have the potential to produce good

solutions in short amount of time (if used appropriately). Metaheuristics are different

from exact optimization algorithms in that they do not guarantee the optimality of the

obtained solutions. On the other hand, unlike approximation algorithms, nor does it

define how close are the obtained solutions from the optimal ones.

2.4 Single State Methods

This methods are often called local search techniques. Local Search metaheuristics be-

long to an emerging class of methods for tackling combinatorial search and optimization

problems. It has been shown to be very effective for a large number of combinatorial

problems. These techniques are based on the iterative exploration of a solution space:

at each iteration, the algorithm steps from one solution to one of its neighbors, i.e.,

solutions that are (in some sense) close to the former.

2.4.1 Hill Climbing

Hill climbing is a single state method. This technique is related to gradient ascent,

but it does not require to know the strength of the gradient or even its direction. New

candidate solutions are iteratively tested in the region of the current candidate and the

new ones are adopted if they are better. This enables to climb up the hill until the local

optima is reached. The basic structure of Hill climbing is outlined in Algorithm 1.

Algorithm 1 HILL CLIMBING

1: S← some initial candidate solution
2: repeat
3: R← Tweak(Copy(S))
4: if Quality(R) > Quality(S) then
5: S← R
6: untill S is the ideal solution or we have run out of time
7: return S
8: end

Chapter 2. Preliminaries 14

2.4.2 Steepest Ascent Hill Climbing

Steepest Ascent Hill Climbing is another single state method and almost similar to

Hill climbing. However, this algorithm is a little more aggressive than Hill Climbing.

It creates n tweaks to a candidate solution all at one time, and then adopt the best

one. The naming of this modified algorithm comes from the fact that it samples all

around the original candidate solution and then picks the best, i.e., it essentially samples

the gradient and marches straight up it. Algorithm 2 illustrates Steepest Ascent Hill

Climbing techniques.

Algorithm 2 STEEPEST ASCENT HILL CLIMBING

1: n← number of tweaks desired to sample the gradient
2: S← some initial candidate solution
3: repeat
4: R← Tweak(Copy(S))
5: for n times do
6: W ← Tweak(Copy(S))
7: if Quality(W) > Quality(R) then
8: R←W
9: if Quality(R) > Quality(S) then

10: S← R
11: untill S is the ideal solution or we have run out of time
12: return S
13: end

2.4.3 Steepest Ascent Hill Climbing with Replacement

This single state method is a popular variation of Hill Climbing and it allows more ex-

ploration. Unlike Algorithm 2, Algorithm 3 replaces S directly with R while sampling

the gradient and marching straight up it. Of course, this runs the risk of losing the best

solution of the run. So the algorithm is augmented to keep the best-discovered-so-far

solution stashed away, in a reserve variable calledBest. At the end of the run, we return

Best.

Chapter 2. Preliminaries 15

Algorithm 3 STEEPEST ASCENT HILL CLIMBING WITH REPLACEMENT

1: n← number of tweaks desired to sample the gradient
2: S← some initial candidate solution
3: Best← S
4: repeat
5: R← Tweak(Copy(S))
6: for n times do
7: W ← Tweak(Copy(S))
8: if Quality(W) > Quality(R) then
9: R←W

10: S ← R
11: if Quality(S) > Quality(Best) then
12: Best← S
13: untill S is the ideal solution or we have run out of time
14: return S
15: end

2.5 Population Methods

Evolutionary Algorithms (EA) are popular approaches to solving single and multi ob-

jective optimization problems [21–23]. These are search methods that take inspirations

from natural phenomenon of selection and survival of the fittest in the biological world.

They differ from the more traditional optimization techniques in that they employ a

search involving a “population” of solutions instead of a single point. Each iteration of

the algorithm involves a competitive selection that weeds out poor solutions. The solu-

tions with high “fitness” or “quality” are recombined with other solutions by swapping

parts of a solution with another. Solutions are also mutated by making a small change to

a single element of the solution. Recombination and mutation are used to generate new

solutions that are biased towards the regions of the search space at which good solutions

have already been seen. EAs are well suited for a wide range of combinatorial and con-

tinuous problems, though the different variations are tailored towards specific domains.

The variant, namely, Genetic algorithms are well suited for optimizing combinatorial

problems.

2.5.1 Genetic Algorithm

Genetic Algorithm is a common evolutionary algorithm which keep around a sample

of candidate solutions rather than a single candidate solution. The Genetic Algorithm

(GA), often referred to as genetic algorithms, was invented by John Holland at the

University of Michigan in the 1970s [24]. It is similar to a (µ, λ)2 Evolution Strategy

in many respects: it iterates through fitness assessment, selection and breeding, and

2Here, in each iteration, λ number of individuals comprise the population and only µ fittest individuals
participate to produce next generation through mutation.

Chapter 2. Preliminaries 16

population reassembly. The primary difference is in how selection and breeding takes

place. Whereas Evolution Strategies select the parents and then creates the children,

the Genetic Algorithm little-by-little selects a few parents and generates children until

enough children have been created. To breed, we begin with an empty population of

children. We then select two parents from the original population, copy them, cross

them over with one another, and mutate the results. This forms two children, which we

then add to the child population. We repeat this process until the child population is

entirely filled. Algorithm 4 provides the pseudo code for Genetic Algorithm.

Algorithm 4 GENETIC ALGORITHM

1: popsize← desired population size {This is basically . Make it even.}
2: P ← {}
3: for popsize times do
4: P ← P∪ new random individual
5: Best← null
6: repeat
7: for each individual Pi ∈ P do
8: AssessFitness(Pi)
9: if Best = nullor Fitness(Pi) > Fitness(Best) then

10: Best← Pi

11: Q← {}
12: for popsize

2
times do

13: Parent Pa ← SelectWithReplacement(P)
14: Parent Pb ← SelectWithReplacement(P)
15: Children Ca , Cb ← Crossover(Copy(Pa), Copy(Pb))
16: Q← Q∪Mutate(Ca), Mutate(Cb)
17: P ← Q
18: until Best is the ideal solution or we have run out of time
19: return Best
20: end

2.5.2 Genetic Algorithm with Elitism

The idea of Elitism is simple: we augment the Genetic Algorithm to directly inject into

the next population the fittest individual or individuals from the previous population

[25]. These individuals are called the elites. By keeping the best individual (or individ-

uals) around in future populations, this algorithm begins to resemble (µ + λ), and has

similar exploitation properties. This exploitation can cause premature convergence. To

overcome this problem different ideas like, increasing the mutation and crossover noise,

weakening the selection pressure, reducing how many elites, etc are employed. Elitism

is effective where exploitation can help to reach near optima. Algorithm 5 illustrates

Elitism.

Chapter 2. Preliminaries 17

Algorithm 5 GENETIC ALGORITHM WITH ELITISM

1: popsize← desired population size
2: n← desired number of elite individuals
3: P ← {}
4: for popsize times do
5: P ← P∪ new random individual
6: Best← null
7: repeat
8: for each individual Pi ∈ P do
9: AssessFitness(Pi)

10: if Best = nullor Fitness(Pi) > Fitness(Best) then
11: Best← Pi

12: Q← { the n fittest individuals in P , breaking ties at random }
13: for popsize

2
times do

14: Parent Pa ← SelectWithReplacement(P)
15: Parent Pb ← SelectWithReplacement(P)
16: Children Ca , Cb ← Crossover(Copy(Pa), Copy(Pb))
17: Q← Q∪Mutate(Ca), Mutate(Cb)
18: P ← Q
19: until Best is the ideal solution or we have run out of time
20: return Best
21: end

2.5.3 Steady State Genetic Algorithm

An alternative to applying a traditional generational approach in Genetic Algorithm is

to use a steady-state approach, updating the population in a piecemeal fashion rather

than all at one time. This approach was popularized by the Darrell Whitley and Joan

Kauths GENITOR system [26]. The idea here, is to iteratively breed a new child or two,

assess their fitness, and then reintroduce them directly into the population itself, killing

off some preexisting individuals to make room for them. Algorithm 6 is a version of

Steady State Genetic Algorithm which uses crossover and generates two children at a

time.

Chapter 2. Preliminaries 18

Algorithm 6 STEADY STATE GENETIC ALGORITHM

1: popsize← desired population size
2: P ← {}
3: for popsize times do
4: P ← P∪ new random individual
5: Best← null
6: repeat
7: Parent Pa ← SelectWithReplacement(P)
8: Parent Pb ← SelectWithReplacement(P)
9: Children Ca , Cb ← Crossover(Copy(Pa), Copy(Pb))

10: Ca ←Mutate(Ca)
11: Cb ←Mutate(Cb)
12: AssessFitness(Ca)
13: if Fitness(Ca) > Fitness(Best) then
14: Best← Ca

15: AssessFitness(Cb)
16: if Fitness(Cb) > Fitness(Best) then
17: Best← Cb

18: Individual Pd ← SelectForDeath(P)
19: Individual Pe ← SelectForDeath(P)
20: P ← P − {Pd, Pe}
21: P ← P ∪ {Ca, Cb}
22: until Best is the ideal solution or we have run out of time
23: return Best
24: end

2.6 Evolutionary Multiobjective Optimization

The process of optimizing systematically and simultaneously a collection of objective

functions is called multiobjective optimization. The underlying mechanisms of evolu-

tionary algorithms are simple. Still they have proven themselves as a general, robust

and powerful search mechanism [27]. In particular, they possess several characteristics

that are desirable for problems involving, i) multiple conflicting objectives, and ii) in-

tractably large and highly complex search spaces. The rapidly growing interest in the

area of multiobjective evolutionary algorithms (MOEAs) is reflected by, e.g., a confer-

ence series [28] and two recent books dedicated to this subject [21, 29]. For MOEAs

we need to do four things:

- Identify the objectives involved (the set of values that interest us),

- Determine how they interact (the fitness mapping or interconnections),

- Generate viable alternatives (the population of possible choices or niches), and

- Identify the best compromise (the Pareto optimum) in the current context.

Chapter 2. Preliminaries 19

2.7 Selection Procedure

In the metaheuristics algorithms the selection procedure plays a significant role. The

selection procedure decides which candidate solutions to retain and which to reject as

it wanders through the space of possible solutions to the problem. In what follows, we

discuss different selection procedure techniques and algorithms with specific focus to

the ones we use to solve our problem. The description that follows has mainly been

borrowed from [23] after slight modification.

2.7.1 Tournament Selection

This is a non-parametric selection algorithm which is both simple and robust (tunable)

[30]. It throws away the notion that fitness values mean anything other than bigger

is better, and just considers their rank ordering. The algorithm returns the fittest indi-

vidual of some t individuals picked at random, with replacement, from the population

[Algorithm 7].

Algorithm 7 TOURNAMENT SELECTION

1: P ← Population
2: t← tournament size, t ≥ 1
3: Best← individual picked at random from P with replacement
4: for i = 2 to t do
5: Next← individual picked at random from P with replacement
6: if Fitness(Next) > Fitness(Best) then
7: Best← Next
8: return Best
9: end

2.7.2 Multiobjective Tournament Selection

In a problem where there is a bundle of objectives, we can tie them into a single fitness

using some kind of linear function. But this requires us to come up with the degree to

which one objective is worth another. This is hard to do, and may be close to impossible

if the objectives are nonlinear. To solve the problem (having to come up with weights),

we could instead abandon linear functions and simply treat the objectives as uncom-

parable functions. Some variants of such methods are Multiobjective Lexicographic

Tournament Selection [Algorithm 8], Multiobjective Ratio Tournament Selection [Al-

gorithm 9] and Multiobjective Majority Tournament Selection [Algorithm 10].

Chapter 2. Preliminaries 20

Algorithm 8 MULTIOBJECTIVE LEXICOGRAPHIC TOURNAMENT SELECTION

1: Best← individual picked at random from population with replacement
2: O ← {O1, . . . , On} Objectives to assess with {In lexicographic order, most to least preferred.}
3: t← tournament size, t ≥ 1
4: for i = 2 to t do
5: Next← individual picked at random from P with replacement
6: for j = 1 to n do
7: if ObjectiveValue(Oj , Next) > ObjectiveValue(Oj ,Best) then {clearly superior}
8: Best← Next
9: break from inner for

10: else if ObjectiveValue(Oj , Next) < ObjectiveValue(Oj ,Best) then {clearly superior}
11: break from inner for
12: return Best
13: end

Algorithm 9 MULTIOBJECTIVE RATIO TOURNAMENT SELECTION

1: Best← individual picked at random from population with replacement
2: O ← {O1, . . . , On} Objectives to assess with {In lexicographic order, most to least preferred.}
3: t← tournament size, t ≥ 1
4: j ← random number picked uniformly from 1 to n
5: for i = 2 to t do
6: Next← individual picked at random from P with replacement
7: if ObjectiveValue(Oj , Next) > ObjectiveValue(Oj ,Best) then {Clearly superior}
8: Best← Next
9: return Best

10: end

Algorithm 10 MULTIOBJECTIVE MAJORITY TOURNAMENT SELECTION

1: Best← individual picked at random from population with replacement
2: O ← {O1, . . . , On} Objectives to assess with {In lexicographic order, most to least preferred.}
3: t← tournament size, t ≥ 1
4: for i = 2 to t do
5: Next← individual picked at random from P with replacement
6: c← 0
7: for each objective Oj ∈ O do
8: if ObjectiveValue(Oj , Next) > ObjectiveValue(Oj ,Best) then
9: c← c+ 1

10: else if ObjectiveValue(Oj , Next) < ObjectiveValue(Oj ,Best) then {clearly superior}
11: c← c− 1
12: if c > 0 then
13: Best← Next
14: return Best
15: end

In Multiobjective Lexicographic Tournament Selection [Algorithm 8], basically when

comparing two individuals, we run through the objectives (most important to least im-

portant) until we find one clearly superior to the other in that objective. Here, we have

an Objective Value (objective, individual) function which tells us the quality of individ-

ual with regards to the given objective. Algorithm 9 picks an objective at random each

time to use for fitness for this selection only and Algorithm 10 use voting: an individual

is preferred if it is ahead in more objectives.

Chapter 2. Preliminaries 21

2.8 Non-Dominated Sorting Genetic Algorithm

Before going into details of such Genetic Algorithm, we need some definitions. Indi-

vidual A Pareto dominates Individual B if A is at least as good as B in every objective

and better than B in at least one objective. Computing pareto domination and binary

tournament selection based on pareto domination is illustrated in Algorithm 11.

Algorithm 11 PARETO DOMINATION

1: A← individual A
2: B ← individual B
3: O ← {O1, . . . , On} Objectives to assess with
4: a← false
5: j ← random number picked uniformly from 1 to n
6: for each objective Oj ∈ O do
7: if ObjectiveValue(Oj , A) > ObjectiveValue(Oj ,B) then
8: a← true
9: else if ObjectiveValue(Oj , A) < ObjectiveValue(Oj ,B) then

10: return false
11: return a
12: end

The set of individuals that can not pareto dominate each other lies in the same pareto

front and individual on same pareto front has the same rank. The lower the rank the

better the candidate solution is. So the best candidate solutions in a population have

pareto front rank 1.

Non-Dominated Sorting is first proposed by N. Srinivas and Kalyanmoy Deb [31]. In

this sorting approach, the population P is first partitioned into ranks, with each rank

(a group of individuals) stored in the vector F . Then, a rank number is assigned to an

individual (perhaps the individual gets it written internally somewhere). So the fitness

of ith individual is, fitness(i) = 1
1+ParetoFrontRank(i)

.

FIGURE 2.3: Sparsity of Individual B is higher than Individual A

Chapter 2. Preliminaries 22

While selection in NSGA, along with the fitness defined above another measure, namely,

sparsity is used. It is assumed that, if the individuals in the population are being spread

more evenly across the front, the population can serve the purpose of searching a good

solution in a better way. The sparsity of an individual employs the following notion: an

individual is in a more sparse region if the closest individuals on either side of it in its

Pareto Front Rank are not too close to it (Please see the Figure 2.3). Individuals at the

far ends of the Pareto Front Rank are assigned an infinite sparsity. As a selection pro-

cedure, the tournament selection is used where based on Pareto Front Rank individuals

are selected first. If there is a tie, it is broken by using sparsity. These helps to get the

individuals which are not only close to the true Pareto front, but also nicely spread out

along it. Non-Dominated Sorting Lexicographic Tournament Selection With Sparsity is

shown in Algorithm 12.

Algorithm 12 NON-DOMINATED SORTING LEXICOGRAPHIC TOURNAMENT SELEC-
TION WITH SPARSITY

1: P ← Population with Pareto Front Ranks assigned
2: best← individual picked at random from P with replacement
3: t← tournament size, t ≥ 1
4: for i = 2 to t do
5: Next← individual picked at random from P with replacement
6: if ParetoFrontRank(Next) < ParetoFrontRank(Best) then
7: Best← Next
8: else if ParetoFrontRank(Next) = ParetoFrontRank(Best) then
9: if Sparsity(Next) > Sparsity(Best) then

10: Best← Next
11: return Best
12: end

Non-Dominated Sorting Genetic Algorithm keeps around all the best known individuals

so far, in a sort of (µ + λ) or elitist notion. The general idea is to hold in P an archive

of the best n individuals discovered so far. Then breeding a new population Q from P ,

and everybody in P and Q gets to compete for who gets to stay in the archive.

2.9 Summary

In summary, Chapter 2 has provided the readers an introduction to biological terms

which are directly related to our problem. This introduction has prepared the readers

to perceive the problem and related works on the same properly as briefed in the next

chapter. Also in this chapter we discuss various metaheuristics techniques. The discus-

sion of metaheuristics of this chapter also aids the reader to understand the meaning of

terms and notations used in Chapter 4.

Chapter 3

Literature survey

The goal of this chapter is to present and discuss the related literature. Here, in our

discussion we include previous works on the original problem we tackle in this thesis

as well as some other works related to gene synthesis.

3.1 Previous Results on URSPP

URSPP is a real life problem. This has originated very recently from the laboratory

while conducting viral genome synthesis. The computational version of the problem

has come into the computer science surface through the very recent work of [3]. And

to the best of our knowledge this is the only work on this problem in the literature. In

this paper, the authors describes URSPP from the combinatorial viewpoint which is can

be stated as follows. Given a text and a set of patterns, find a new text with maximum

number of patterns inserted, ensuring minimum editing of letters and that the maximum

distance between two consecutive inserted patterns (considering all insertions) is min-

imum. This is called the optimization version of URSPP. The decision version of the

same problem, as defined in [3], asks whether it is possible to insert all patterns from a

given set with gaps between patterns being at most K for a given integer, K.

The decision version of URSPP problem has been proved to be NP complete and it

has been shown that the optimization version can not be approximated within a factor

of 3/2 unless P=NP [3]. The best known result for the optimization version is a 2-

approximation algorithm [3]. Also a Dynamic Programming (DP) algorithm with an

exponential running time ofO(n22r) and some heuristic algorithms have been proposed

23

Chapter 3. Literature survey 24

in [3]. Here, n is the number of events1 and r is the number of unused restriction

enzymes.

The authors in [3] provided two types of approximate implementations of the DP algo-

rithm because of its exponential running time and memory requirement. In both of them

the DP algorithm is run in turns considering consecutive blocks of enzymes one after

another. In particular, at first the optimal placement is sought for the first block (set)

of enzymes and then for the following block, and so on. However, in one implemen-

tation the order of considering the enzymes gives the highest possible insertion points

(forward implementation) whereas the other gives the lowest possible insertion points

(backward implementation).

The other heuristic versions are implemented first by eliminating all but one restric-

tion site for each enzyme that appear in the genome initially and then inserting new

restriction sites for enzymes which do not exist in the initial genome. To insert the

enzymes they considered a greedy approach and the maximal bipartite matching tech-

nique. The greedy heuristic insertion selects unused restriction enzymes with least num-

ber of potential insertion points. The other approach, to insert enzymes, applies Hun-

garian algorithm [32] of Weighted Bipartite Matching on the weighted bipartite graph

G = (X
⋃
Y,E), where X is a set of unused restriction enzymes and Y is a list of ideal

places where enzymes should be inserted. The weight of an edge e ∈ E depends on the

distance between an ideal place, y ∈ Y and the location where x ∈ X can be inserted.

The authors also built a sequence design tool called PRESTO which contains imple-

mentation of four heuristics, forward, backward, greedy and matching. This tool takes

genome sequence, location of genes and locked region as input. Along with the new

sequence PRESTO gives list of base pair changes and list of enzymes that are cutting.

In each list, the location inside the genome sequence are also included.

1An event corresponds to either a location where a restriction enzyme is currently cutting or a place
where an unused restriction enzyme can be inserted [3].

Chapter 3. Literature survey 25

3.2 Related Works on Gene Synthesis

Although URSPP is a very recent problem, the works on synthetic gene design are not

new in the literature. So, here we give a brief literature review on some of these works.

Designing synthetic genes by hand is a time-consuming and error-prone process. In

the past, researchers used to send off their requirements of the separate steps of syn-

thetic gene design to a black box provided by a gene synthesis company and let it use

its proprietary programs to design genes. Now-a-days these syntheses are relatively

inexpensive commercialized services. It has become the most cost-effective, time and

resource-saving method for obtaining nearly any desired DNA construct, outperforming

conventional molecular biology techniques in many aspects from time and economiza-

tion to expression performance, stability, and quality.

Blue Heron [33], OriGene [34], GeneArt [35] are some of the leading commercial

vendors who continue to innovate with technologies to meet the growing demands of

the researchers for gene synthesis. Also, a large number of tools and algorithms are

being designed to provide a platform for synthetic gene design according to the user

requirements.

Since 1999, Blue Heron has delivered tens of millions of base pairs of perfectly accurate

genes to thousands of customers worldwide. Blue Heron can deliver to the customers

one gene or one thousand according to the order from them. The options for such de-

livery ranges from the simplest sequence to comprehensive codon substitutions creating

variants across hundreds of regions, . Now-a-days Blue Heron is a part of Origene.

OriGene Technologies was founded as a research tool company focused on the creation

of the largest commercial collection of full-length human cDNAs2 in a standard ex-

pression vector. OriGene Technologies uses high-throughput, genome wide approach

to develop products for pharmaceutical, biotechnology, and academic research. Their

flagship product is the cDNA clone collection, a searchable gene bank of over 30,000

human full-length TrueClone cDNA collection and over 25,000 TrueORF cDNA clones.

SiteFind is a free web-based software tool that enables the user to introduce a novel

restriction site into the mutation primers without changing the peptide nucleotide se-

quence so that the site can be used as a marker for successful mutation [36]. In this

software, there is an option for the user to choose a specific amino acid that should be

2Complementary DNA

Chapter 3. Literature survey 26

FIGURE 3.1: Moving window algorithm. a) Example of how the algorithm is imple-
mented with a 4 nucleotide restriction site. Each window is therefore 7 nucleotides
and each successive window is shifted forward 4 nucleotides, ensuring minimal over-
lap. b) Example of all the possible sequences generated for each of the first two search
windows using the moving window algorithm. [This figure has been borrowed from

[36].]

changed and to select the potential restriction site closest to the point mutation. Figures

3.1 to 3.3 show the interactive interface of the process

GeneJax is a JavaScript web application CAD tools for the parts extraction and visu-

alization stages of the genome re-designing/refactoring process [37]. At this point we

note that, unlike the introduction of a single restriction site, the problem we study in

this thesis tries to introduce as many restriction sites as possible as part of the redesign

process of a whole genome sequence. GeneJax has been inspried by google maps. It

can map a local region from a large data set and parts of the sequence can also be ma-

nipulated (e.g. created, deleted, renamed, exported). Figure 3.5 shows the GeneJax user

interface.

Refactored genomes offers a promising technological advance to better understand the

structures and functions of DNA sequences [11]. Redesign of bacteriophage genomes

is a recent approach that has been deployed to the T7 [12] and M13 phage (please refer

Chapter 3. Literature survey 27

FIGURE 3.2: SiteFind Screenshots. a) Sample input, showing translated nucleotide
sequence and a mutant residue highlighted in red. b) Sample output, showing a novel
BglII site discovered within the sequence. [This figure has been borrowed from [36].]

FIGURE 3.3: KLF4 R390S mutant has a novel BglII restriction site. a) pCS2-KLF4-
R390S construct diagram. b) ClaI / BglII Restriction digest of both wild-type and
successfully mutated plasmid DNA. c) a-Flag Western blot showing expression of mu-
tant construct in 293T cells. d) Sequencing result of the mutation, mutated residue is

highlighted in red. [This figure has been borrowed from [36].]

Chapter 3. Literature survey 28

FIGURE 3.4: KLF4 K225/229R mutant has a novel NheI restriction site. e) pCS2-
KLF4-K225/229R construct diagram. f) NheI / EcoRI Restriction digest of both wild-
type and successfully mutated plasmid DNA. g) a-Flag Western blot showing expres-
sion of mutant construct in 293T cells. h) Sequencing result of the mutation, mutated

residues are highlighted in red. [This figure has been borrowed from [36].]

FIGURE 3.5: User Interface of GeneJax

Chapter 3. Literature survey 29

to [11] and references therein). In [38] the author proposes an algorithm for optimally

removing restriction sites against sets of cutter sequences.

Chapter 3. Literature survey 30

3.3 Summary

To summarize, this chapter has introduced the readers to what this thesis deals with.

Additionally, the previous works have been discussed here. We also have presented a

gist of works conducted on gene synthesis. In the next chapter, we will present how we

are going to solve URSPP using idea of metaheuristics techniques.

Chapter 4

URSPP in Synthetic Genomes by
Metaheuristics

In this chapter, we present our algorithms. In particular, the application of various search

techniques to obtain the desired genome sequence is illustrated in this chapter. At first

we briefly present our motivation to apply metaheuristics. Then we elaborately dis-

cuss all the aspects of our algorithms: how we represent our solution, problem specific

breeding operator, how to asses the fitness of a solution and the algorithmic steps.

4.1 Motivation behind Application of Metaheuristics

A disadvantage of heuristic methods is that they either generate only a very limited

number of different solutions, or stop at poor quality local optima, which is the case

for iterative improvement methods. In this thesis, to solve the URSPP, metaheuristics

have been proposed with a goal to overcome these problems. A metaheuristic can be

seen as a general-purpose heuristic method focusing towards the promising regions of

the search space containing high-quality solutions. Metaheuristics have capability to

escape being stuck at a local minimum.

FIGURE 4.1: Restriction enzyme, RE1 is already inserted

31

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 32

FIGURE 4.2: Deletion of RE1 might allow to insert RE2 and RE3

To further understand our motivation to apply a metaheuristic below we discuss how

heuristic approaches in the literature fails to cover many areas of the search space. We

can divide the given set of restriction enzymes into three groups based on the existence

of restriction sites in the given sequence. The first group consists of the enzymes that

already have unique recognition sites in the original sequence. An enzyme having mul-

tiple sites in the sequence belongs to the second group and the enzymes belonging to

the third group have no such sites in the given sequence. The heuristic algorithms of

[3] considers the different groups of enzymes as follows. The first group of enzymes are

considered as inserted already. For an enzyme in the second group, all but one occur-

rences of the restriction sites are deleted so that it gets a unique restriction site. Finally,

for an enzyme belonging to the third group, one occurrence of the site is created which

serve as the unique recognition site for it. Clearly, in such heuristic approaches, various

(exponential number of) possibilities are completely ignored. For example, a deletion

of enzyme of the first group may lead to more than one insertion of enzymes from the

second and/or third group. Metaheuristics do not completely preclude the consideration

of these possibilities and hence are more likely to achieve better solutions. This concept

is illustrated in Figure 4.1 and 4.1. RE1 in the only restriction enzyme between REi
and REj and RE1 belongs to the first group of enzymes, i.e., it has already been there

in the genome sequence. None of the previous heuristics delete this enzyme. But due to

the presence of this enzyme any other enzymes might not be allowed to insert. Now, if

RE1 is deleted it is possible that two other unique sites for RE2 and RE3 enzymes are

being inserted. Here, the latter two enzymes belongs to third group. Hence, we have

been strongly motivated to apply concepts of metaheuristics to solve URSPP.

4.2 Proposed Methodology

Before starting the main algorithm, we pre-process the given set of restriction enzymes

to construct the Restriction Map [3]. Restriction Map is a data structure used to keep

track of the list of restriction enzymes, each with its name and its recognition site.The

map is built using a dictionary-matching algorithm, namely the Aho-Corasick algorithm

[39] to efficiently find all occurrences of a finite set of patterns P in a given text. When

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 33

we get the sequence further processing is done as follows. A simple O(nm) time al-

gorithm is implemented to find all the possible places where a given restriction enzyme

can be inserted, where n is the length of the sequence and m is the length of the recog-

nition site. Now, for each restriction enzyme, all the occurrences from Restriction Map

and all the possible insertion points are listed. This list is used as the potential insertion

list while applying breeding operators on candidate solutions as will be described in the

following sections.

4.2.1 Candidate Solution Representation

We represent each individual in a simple manner by a direct encoding of a fixed sized

double vector. One sub-vector, namely B, is boolean, which denotes the absence/p-

resence of restriction enzymes and the other, namely L, keeps track of the possible

locations to insert the enzymes. Each position of the whole vector is dedicated for a

particular restriction enzyme, referred to as a gene. The ith gene is denoted by gi. We

follow a left to right order while traversing a vector which means that the enzymes are

inserted from left to right.

Because of the constraint about a locked region, it has to be avoided and the sites in

locked regions are handled differently as follows. If the site in the locked region occurs

once for a restriction enzyme, it is taken as inserted. If for any restriction enzyme

more than one sites reside in the locked region, then, following the strategy of [3] it

is assumed that the enzyme ‘can never be inserted’. However, such different dealing

of the sites in the locked region follows from the fact that we can not alter any base in

these region. Rest of the restriction enzymes are used to construct candidate solutions.

The size, N , of each candidate solution is equal to the number of restriction enzymes

that are going to be inserted.

According to the sample candidate solution shown in Table 4.1, restriction enzyme,

RE1 is present and its location is `1. Note carefully that RE2 in Table 4.1 is absent and

hence the location `2 is currently insignificant. However, if the corresponding presence

bit is turned on (e.g., due to mutation), `2 will be RE2’s location.

TABLE 4.1: One Candidate Solution
Meaning of notation RE1, RE2, . . . REi, . . .

Gene for RE’s g1 g2 . . . gi . . .
Presence or Absence, B 1, 0, . . . 1, . . .

Possible location, L `1, `2, . . . `i, . . .

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 34

Here, the vector size, N is less than or equal to the cardinality of the given enzyme

set, S. As we have discussed earlier that the restriction site occurring in the locked

region is assumed to be either ‘inserted’ or ‘can never be inserted’ based on number of

occurrence in the locked region. Rest of the restriction enzymes are used to construct

candidate solutions and hence N ≤ |S|.

4.2.2 Breeding Operators

FIGURE 4.3: Mutation 1

For breeding of new candidate solutions we use both recombination/crossover and mu-

tation. For recombination we apply the standard two point crossover technique as fol-

lows. Say, N is the size of candidate solution vector. In two point crossover, we pick

two numbers i and j, where 1 ≤ i < j ≤ N and swap the genes between them. Figure

4.3 shows an example of two point crossover. From biology we know that, properties,

specially degeneracy, of the genetic code make a genome sequence more fault-tolerant

for point mutations [40]. Hence, for mutation we apply a variation of the point muta-

tion. Our mutation operators are problem specific and are described in Algorithms 13

and 14.

Algorithm 13 MUTATION1
1: G← < g1, g2, . . . , gN > vector to be mutated
2: r← random integer picked uniformly from 1 to N
3: α← probability of bit flip of presence
4:
5: p← pick a random value from 0.0 to 1 inclusive
6: if p < α
7: flip the presence bit, br
8: else
9: pick another random location from the list of potential insertion points

10: update the location, lr with newly chosen location
11: end

The process of mutation operations is further illustrated by Figure 4.4 and 4.5. Accord-

ing to Figure 4.4, an enzyme is randomly selected and with a certain probability the

corresponding presence is flipped and/or another certain probability it’s current loca-

tion in genome sequence is updated. According to Figure 4.4, along with the flipping

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 35

Algorithm 14 MUTATION2
1: G← < g1, g2, . . . , gN > vector to be mutated
2: r← random integer picked uniformly from 1 to N
3: 0 : α← probability of bit flip of presence
4: α : β← probability of modifying location presence
5: β : 1← probability of changing the order of restriction site insertion
6:
7: p← pick a random value from 0.0 to 1 inclusive
8: if (0 < p < α)
9: flip the presence bit, br

10: else if (α < p < β)
11: pick another random location from the list of potential insertion points
12: update the location, lr with newly chosen location
13: else
14: construct new candidate solution, G← < gr , gr+1, . . . , gN , g1, g2, . . . , gr−1 >
15: end

FIGURE 4.4: Mutation 1

FIGURE 4.5: Mutation 2

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 36

of presence bit flip and/or updating of position vector, the order of enzyme insertions is

also changed.

Here, the version of mutation described in Algorithm 14 considers the possibility of

changing the order of restriction sites to be inserted. Therefore, it might allow a larger

space to search. Notably, higher exploration can have both positive and negative effects

on the results based on the intensity of exploration.

4.2.3 Quality Assessment

Recall that, our goal is to place unique restriction sites for as many restriction enzymes

as possible allowing minimum number of base changes and to minimize the maximum

gap between the consecutive sites. So, to determine the quality of a candidate solu-

tion, we have to consider three criteria: (1) number of unique sites, (2) number of base

changes from the original genome sequence and (3) the maximum gap between the

consecutive sites. We define, the following notations for these criteria:

f1 = number of 1’s in the boolean sub-vector, B.

f2 = number of positions where the original sequence differs from the synthesized se-

quence.

f3 = the maximum among the distances between two consecutive restriction sites.

Fitness or quality of solution is higher when f1 is higher and f2 and f3 are lower. A

naive way to assess fitness could be to define the quality of a solution as a weighted

sum of how well it meets various objectives. This approach is used to locally find a

solution of better quality.

However, the linear parsimony pressure, which, in contrast to non-parametric parsi-

mony pressure [41], is created by selection function when candidates are selected based

on the size of fitness, and the difficulty of finding the degree to which one objective

is worth another encourages us to treat the objectives as incomparable functions. To

this end we plan to use variants of tournament selection to select highly qualified so-

lution from a population. Basically, tournament selection is a non-parametric selection

algorithm which returns the fittest ones among some t individuals picked at random,

with replacement, from the population. Here, t is called the tournament size. The ver-

sions used for our algorithms are, Multiobjective Lexicographic Tournament Selection

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 37

(mlts), Multiobjective Majority Tournament Selection (mmts) and Multiobjective Ratio

Tournament Selection (mrts).

For Multiobjective Lexicographic Tournament Selection, the objectives are assumed to

be ranked. A candidate solution is better if it is better with respect to a higher ranked

objective. For this purpose, we assume that the rank ordering as, f3 > f1 > f2. In brief

the motivation behind this ordering is as follows. Clearly, to facilitate manipulation

we need to insert large number of unique sites. However, if the insertion are uneven,

then large area of the sequence may remain unexplored experimentally. These two

statements leads us to the inequality that, f1 > f2 and f3 > f1. Combining them we

get, f3 > f1 > f2.

In Multiobjective Majority Tournament Selection, the candidate solution which is fitter

with respect to most of the objectives is selected as more qualified and the Multiobjec-

tive Ratio Tournament Selection selects the better candidate solution with respect to a

randomly chosen objective.

The other kind of fitness assessment we apply is the Pareto domination. Recall that,

Individual A pareto dominates Individual B if A is at least as good as B in every

objective and better than B in at least one objective. All individuals who can not

pareto dominate each other forms pareto front of same rank (Please see the Figure 4.6).

Pareto front of lowest rank gives the best individuals. So the fitness of ith individual is,

fitness(i) = 1
1+ParetoFrontRank(i)

.

FIGURE 4.6: Pareto ranks

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 38

4.3 Algorithms

URSPP has more than one goal to achieve. As has been discussed in Chapter 4, to

achieve more than one objectives, where the objectives are conflicting, use of MOEA

is most effective. However, before applying MOEA we tested some local search tech-

niques and hybrid genetic algorithms for our problem settings to probe the issues like,

falling in local optima by local search techniques, jumping out of local optima using

global search or exploration techniques etc.

4.3.1 Local Search Techniques

The local search algorithms considered in this work are simple Hill Climbing, Steep-

est Ascent hill Climbing and Steepest Ascent Hill Climbing with Replacement. Hill

Climbing is an iterative algorithm that starts with an arbitrary solution to a problem,

then attempts to find a better solution by incrementally changing a single element of

the solution. If the change produces a better solution, an incremental change is made

to the new solution, repeating until no further improvements can be found. In simple

hill climbing, the first closer node is chosen, whereas in steepest ascent hill climbing all

successors are compared and the closest to the solution is chosen. Steepest ascent hill

climbing is similar to best-first search, which tries all possible extensions of the current

path instead of only one. Both forms fail if there is no closer node, which may hap-

pen if there are local maxima in the search space which are not solutions. This failure

can be avoided sometimes by Steepest Ascent Hill Climbing with Replacement tech-

nique. Unlike the former, the latter always replaces the current solution by the closest

successor.

4.3.2 Hybrid Genetic algorithm

The genetic algorithms applied in URSPP are basic GA, GA with elitism and steady

state GA. Each version is hybridized by a popular local improver, namely, hill-climbing.

Among these, basic GA little-by-little selects a few parents and generates children until

enough children have been created. To breed, we begin with an empty population of

children. We then select two parents from the original population, copy them, cross

them over with one another, and mutate the results. This forms two children, which we

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 39

then add to the child population. We repeat this process until the child population is

entirely filled.

In GA with elitism we directly inject the fittest individual or individuals from the pre-

vious population into the next population. Finally, the steady-state approach updates

the population in a piecemeal fashion rather than all at one time. The idea here is to

iteratively breed a new child or two, assess their fitness, and then reintroduce them di-

rectly into the population itself, killing off some pre-existing individuals to make room

for them.

4.3.3 Non-Dominated Sorting Genetic Algorithm

The previous algorithms attempt to merge objectives into one single fitness value by

trading off one objective for another in some way. In NSGA we try to find which

candidate solution pareto dominates other and thus extract only solutions consisting the

pareto front. Since we return the lowest pareto front ranked solutions with sparsest

individual, most of the local and global optima individuals can be found.

FIGURE 4.7: Selection of best solution from front

Recall that, in NSGA, the notion of sparsity has been injected with an aim to push the

solutions towards the front. However, the URSPP has two conflicting goals which are f1
and f2. Therefore, if we try to increase the value of f1, it is likely that the value of f2 will

increase also whereas our’s target is to decrease f2. Due to the presence of conflicting

Chapter 4. URSPP in Synthetic Genomes by Metaheuristics 40

goals, size of front becomes comparatively larger. Unlike traditional algorithm, we

do not select a candidate solution arbitrarily from BestFront as our best candidate.

As shown in Figure 4.7, we always discard solutions (red colored) which has infinite

sparsity. Instead, we return the solutions which lies somewhat middle of the front.

Note that, when a potential insertion point for a recognition site of a given enzyme is

picked we may accidentally create a recognition site for another enzyme. Similar situ-

ation may happen when an enzyme with multiple occurrences are turned on and all but

the selected locations are deleted. To avoid this undesirable effect, each crossover and

mutation is accompanied/followed by a validate operation. In the validation operation,

if the creation of restriction site for so far inserted enzyme is detected, we choose next

possible insertion point from potential insertion list. If no such possibility can be found,

the presence bit of corresponding restriction enzyme is turned off. The other constraint,

like avoiding modifying locked regions and maintaining the amino acid sequence of

genes, are handled while constructing the potential insertion point list of enzymes.

4.4 Summary

In this chapter we have presented our algorithms along with a clear description of how

we represent candidate solution how to perform breeding and their assessment process.

In the next chapter, we will manifest the performance of our algorithms in compared to

other heuristics which exist in literature.

Chapter 5

Experimental Results

We have conducted extensive experiments to analyze the performance of our algorithm

and to compare it with the other state of the art algorithm. This chapter presents our

simulation results and related analysis with insight. In addition to a simple figurative

comparison, we also investigate the statistical significance of our results with respect to

other results. We start this chapter with a brief discussion of different statistical tests

performaned here. Then we go to the simulations results.

5.1 Statistical Test

A statistical test provides a mechanism for making quantitative decisions about a pro-

cess or processes. The intent is to determine whether there is enough evidence to “re-

ject” a conjecture or hypothesis about the process. The conjecture is called the null

hypothesis. Not rejecting may be a good result if we want to continue to act as if we

“believe” that the null hypothesis is true. Or it may be a disappointing result, possibly

indicating we may not yet have enough data to “prove” something by rejecting the null

hypothesis.

5.1.1 Paired or Unpaired Test

When comparing two groups, it should be decided whether to use a paired test. When

comparing three or more groups, the term paired is not apt and the term repeated mea-

sures is used instead.

41

Chapter 5. Experimental Results 42

An unpaired test should be used to compare groups when the individual values are

not paired or matched with one another. A paired or repeated-measures test should

be selected when values represent repeated measurements on one subject (before and

after an intervention) or measurements on matched subjects. The paired or repeated-

measures tests are also appropriate for repeated laboratory experiments run at different

times, each with its own control.

We should select a paired test when values in one group are more closely correlated

with a specific value in the other group than with random values in the other group. It is

only appropriate to select a paired test when the subjects were matched or paired before

the data were collected.

5.1.2 The T Test

To compare two paired values (such as in a before-after situation) where both obser-

vations are taken from the same or matched subjects, we can perform a paired t-test.

The t-test assesses whether the means of two groups are statistically different from each

other. This analysis is appropriate whenever you want to compare the means of two

groups. We need to construct a null hypothesis - an expectation - which the experiment

was designed to test.

5.1.3 Concept of null hypothesis

A classic use of a statistical test occurs in process control studies. For example, suppose

we are interested in ensuring that photo masks in a production process have mean line

widths of 500 micrometers. The null hypothesis, in this case, is that the mean line width

is 500 micrometers. Implicit in this statement is the need to flag photo masks which have

mean line widths that are either much greater or much less than 500 micrometers. This

translates into the alternative hypothesis that the mean line widths are not equal to 500

micrometers. This is a two-sided alternative because it guards against alternatives in

opposite directions; namely, that the line widths are too small or too large.

The testing procedure works this way. Line widths at random positions on the photo

mask are measured using a scanning electron microscope. A test statistic is computed

from the data and tested against pre-determined upper and lower critical values. If the

test statistic is greater than the upper critical value or less than the lower critical value,

Chapter 5. Experimental Results 43

the null hypothesis is rejected because there is evidence that the mean line width is not

500 micrometers.

Null and alternative hypotheses can also be one-sided. For example, to ensure that a

lot of light bulbs has a mean lifetime of at least 500 hours, a testing program is im-

plemented. The null hypothesis, in this case, is that the mean lifetime is greater than

or equal to 500 hours. The complement or alternative hypothesis that is being guarded

against is that the mean lifetime is less than 500 hours. The test statistic is compared

with a lower critical value, and if it is less than this limit, the null hypothesis is rejected.

Thus, a statistical test requires a pair of hypotheses; namely,

H0: a null hypothesis

Ha: an alternative hypothesis.

5.1.4 Significance levels

The null hypothesis is a statement about a belief. We may doubt that the null hypothesis

is true, which might be why we are “testing” it. The alternative hypothesis might, in

fact, be what we believe to be true. The test procedure is constructed so that the risk

of rejecting the null hypothesis, when it is in fact true, is small. Here, the risk is often

referred to as the significance level of the test and is denoted by α. By having a test with

a small value of α, we feel that we have actually “proved” something when we reject

the null hypothesis.

5.1.5 One or Two sided P Value

In statistical significance testing, the p-value is the probability of obtaining a test statis-

tic at least as extreme as the one that was actually observed, assuming that the null

hypothesis is true. One often “rejects the null hypothesis” when the p-value is less

than the significance level α (Greek alpha), which is often 0.05 or 0.01. When the null

hypothesis is rejected, the result is said to be statistically significant.

With many tests, we have to choose to calculate either a one- or two-sided P value

(same as one- or two-tailed P value). As we know, the P value is calculated for the

null hypothesis that the two population means are equal, and any discrepancy between

the two sample means is due to chance. If this null hypothesis is true, the one-sided P

Chapter 5. Experimental Results 44

value is the probability that two sample means would differ as much as was observed

(or further) in the direction specified by the hypothesis just by chance, even though the

means of the overall populations are actually equal. The two-sided P value also includes

the probability that the sample means would differ that much in the opposite direction

(i.e., the other group has the larger mean). The two-sided P value is twice the one-sided

P value.

A one-sided P value is appropriate when it can be stated with certainty (and before

collecting any data) that there either will be no difference between the means or that the

difference will go in a direction that is specified in advance (i.e., it is specified that which

group will have the larger mean). If such specification can not be made the direction of

any difference before collecting data, then a two-sided P value is more appropriate. If

in doubt, a two-sided P value is selected.

5.1.6 Confidence Interval (C.I.)

In statistical estimation, a confidence interval (C.I.) is a kind of interval estimate which

is used to indicate the reliability of an estimate. The selection of a confidence level for

an interval determines the probability that the confidence interval produced will contain

the true parameter value. Common choices for the confidence level C are 0.90, 0.95,

and 0.99. These levels correspond to percentages of the area of the normal density

curve. For example, a 95% confidence interval covers 95% of the normal curve – the

probability of observing a value outside of this area is less than 0.05. Because the

normal curve is symmetric, half of the area is in the left tail of the curve, and the other

half of the area is in the right tail of the curve. As shown in the Figure 5.1, for a

confidence interval with level C, the area in each tail of the curve is equal to (1-C)/2.

For a 95% confidence interval, the area in each tail is equal to 0.05/2 = 0.025. Here, ZH
is upper critical level and −ZH is upper critical level.

Chapter 5. Experimental Results 45

FIGURE 5.1: Confidence Interval

5.2 Simulation Results

5.2.1 Experimental set up and Representation

Our experiments were conducted on a computer having 3GHz Intel Pentium 4 processor

with 1GB DDR3 Memory. The program was written in Java (JDK Version 1.6.0 26)

and compiled on Netbeans IDE 7.0.1. We have run our experiments on a number of

viral sequences obtained from the website of the National Center for Biotechnology

Information [42] and a set of 145 restriction enzymes from the REBase restriction

enzyme database [43]. Each algorithm with different types of tournament selection

strategy is compared with previous heuristics with respect to the three objectives by

taking average of multiple runs (around 20 times). To analyze the results, a paired two-

sample t-tests has also been performed. The t-test assesses whether the means of two

groups are statistically (significantly) different from each other. To compare two paired

values (such as in a before-after situation) where both observations are taken from the

same or matched subjects, a paired t-test is applied. A small P-value indicates that the

result is significant [44, 45].

We present our results in a condensed form in the Tables 5.3 to 5.20 shown below. In

these tables, we use some abbreviated names (e.g. existing heuristics, our proposals)

whose meaning are given in the Table 5.1. Here, the existing algorithms from [3] have

not been implemented by us, rather we have collected the software package from the

authors [46]. Also viruses selected for our experiment are suggested by [3].

Chapter 5. Experimental Results 46

TABLE 5.1: Algorithms

Abbreviated Name Explanation

Greedy Heuristic algorithm of [3] using greedy search technique
Matching Heuristic algorithm of [3] using weighted bipartite matching
Forward Approximate Implementation of DP algorithm of [3] where en-

zymes of highet possible insertion points are considered first
Backward Approximate Implementation of DP algorithm [3] where en-

zymes of least possible insertion points are considered first
HC Hill Climbing
SAHC Steepest Ascent Hill Climbing
SAHCwR Steepest Ascent Hill Climbing with Replacement
Mutation type 1 Algorithm 13 of Chapter 5
Mutation type 2 Algorithm 14 of Chapter 5

TABLE 5.2: Difference between Objective value from proposed algorithm and objec-
tive value from existing algorithm

Objective Difference Positive Value Negative Value

∆f1 Preferable Not Preferable
∆f2 Not Preferable Preferable
∆f3 Not Preferable Preferable

The convention followed to present the results is as follows. For each objective, the

difference between the objective values obtained by the proposed algorithm and that

obtained by an existing algorithm is computed (∆fi, 1 ≤ i ≤ 3). Then the mean and

standard deviation (STD) of these differences are calculated and presented in the ta-

bles. For example, in Table 5.3 compares our Hill climbing algorithm with the different

heuristics of [3] on λ Phage virus. Here, for mutation type 1, the first row gives the

difference of mean values e.g. ∆f1 = 6.415 means Hill Climbing can insert 6.415 more

restriction sites than Greedy heuristics, ∆f2 = 12.32 denotes Hill Climbing causes

12.32 base changes more than Greedy heuristics and ∆f3 = −11.11 indicates Hill

Climbing provides genome sequence with 11.11 less f3 than Greedy heuristic.

Along with the tabular representation, figures are drawn for better visualization. In all

figures we have ploted mean values of each objectives for comparison.

Recall that, we want to insert larger number of enzymes with lower number of base

changes having lower maximum gap between consecutive enzymes. So, our aim is to

have higher f1 and lower f2 and f3. Therefore, in ∆f1 column, positive mean value is

preferred which means that the proposed algorithm can insert larger number of restric-

tion sites (Please see Table 5.2). On the other hand, negative mean values are preferable

Chapter 5. Experimental Results 47

for ∆f2 and ∆f3. To elaborate, negative value in ∆f2 (∆f3) column denotes that the

proposed algorithm costs lower in terms of base changes (offers a synthesized sequence

which has lower maximum distance of inserted enzymes). In the tables, along with

the mean values and standard deviations of the objective value differences, we also

present the confidence interval (C.I.) around the mean value using a 95% confidence

level. Additionally, P-values are provided which indicates the statistical significance of

our results.

5.2.2 Results summary and Analysis

Note that, the timing requirement of forward and backward implementations of DP

algorithm ([3]) (4-5 minutes) has been found to be is much higher than that of other

techniques (1-2 seconds). Therefore, in terms of timing, all other heuristics and meta-

heuristics are superior to forward and backward implementation of DP algorithm. Since

URSPP is an offline problem, the issue of performance is bigger than that of timing.

Hence, we did not compare the algorithms from running time point of view. We write

however that, the number of iterations used in each meta-heuristics are controlled in

such a way that the average running time remains less than twice the running time of

greedy and matching heuristics. Since within this period, the solution is converged. In

Figure 5.2 an example of such convergence is shown.

FIGURE 5.2: Convergence of Objective, f3 for rubella virus in NSGA algorithm

The experimental results for λ Phage virus are summarized in Tables 5.3 through 5.12.

Among these, Tables 5.3 to 5.5 presents comparison of local search algorithms with the

existing heuristics of [3]. In these tables we find that, local search has provided us

with a better synthesized sequence in terms of number of inserted restriction sites and

Chapter 5. Experimental Results 48

FIGURE 5.3: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for λ Phage Virus (Also see Table 5.3)

FIGURE 5.4: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for λ Phage Virus (Also see Table 5.4)

FIGURE 5.5: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for λ Phage Virus (Also see Table 5.5)

Chapter 5. Experimental Results 49

TABLE 5.3: Comparison of Hill Climbing (HC) Algorithm with existing heuristics for
λ Phage Virus (Also see Figure 5.3)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 6.415 12.32 -11.11
STD 4.736 15.44 164.622
C.I. 3.388 11.04 117.763

P Value 0.002 0.033 0.83576

2

mean 3.915 9.52 -39.11
STD 4.102 10.73 159.833
C.I. 2.935 7.679 114.338

P Value 0.015 0.021 0.4589

Matching

1

mean 3.775 8.4 -11.05
STD 4.509 13.19 144.7
C.I. 3.226 9.433 103.512

P Value 0.027 0.075 0.81459

2

mean 1.275 5.6 -39.05
STD 4.555 10.68 187.571
C.I. 3.258 7.641 134.18

P Value 0.399 0.132 0.5268

Forward

1

mean 34.2 85.1 -106.8
STD 5.731 16.95 282.62
C.I. 4.1 12.12 202.174

P Value 2E-08 7E-08 0.26263

2

mean 31.7 82.3 -134.8
STD 5.519 14.86 309.109
C.I. 3.948 10.63 221.123

P Value 2E-08 3E-08 0.20118

Backward

1

mean 34.3 85.8 -106.8
STD 5.599 15.98 282.62
C.I. 4.005 11.43 202.174

P Value 1E-08 4E-08 0.26263

2

mean 31.8 83 -134.8
STD 5.391 13.63 309.109
C.I. 3.857 9.75 221.123

P Value 2E-08 1E-08 0.20118

Chapter 5. Experimental Results 50

TABLE 5.4: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for λ Phage Virus (Also see Figure 5.4)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 6.215 14.22 -16.6
STD 5.591 23.47 138.4
C.I. 4 16.79 98.99

P Value 0.007 0.088 0.713

2

mean 1.515 7.62 -28.3
STD 3.19 11.93 177.4
C.I. 2.282 8.535 126.9

P Value 0.167 0.074 0.626

Matching

1

mean 3.575 10.3 -16.6
STD 4.66 20.69 152.7
C.I. 3.334 14.8 109.2

P Value 0.038 0.15 0.74

2

mean -1.13 3.7 -28.3
STD 1.97 9.28 172.9
C.I. 1.409 6.639 123.7

P Value 0.104 0.239 0.618

Forward

1

mean 34 87 -112
STD 4.295 16.52 206.8
C.I. 3.072 11.82 147.9

P Value 1E-09 5E-08 0.12

2

mean 29.3 80.4 -124
STD 2.869 14.7 303.9
C.I. 2.053 10.51 217.4

P Value 1E-10 3E-08 0.229

Backward

1

mean 34.1 87.7 -112
STD 4.383 17.74 206.8
C.I. 3.135 12.69 147.9

P Value 1E-09 8E-08 0.12

2

mean 29.4 81.1 -124
STD 2.633 13.47 303.9
C.I. 1.884 9.636 217.4

P Value 6E-11 1E-08 0.229

Chapter 5. Experimental Results 51

TABLE 5.5: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for λ Phage Virus (Also see Figure 5.5)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 5.915 8.02 -20.41
STD 6.491 13.85 101.254
C.I. 4.643 9.908 72.4328

P Value 0.018 0.1 0.53972

2

mean 0.015 1.32 -32.61
STD 4.363 8.648 83.8268
C.I. 3.121 6.186 59.9661

P Value 0.992 0.641 0.24981

Matching

1

mean 3.275 4.1 -20.35
STD 6.264 14.51 87.3954
C.I. 4.481 10.38 62.5189

P Value 0.133 0.395 0.48028

2

mean -2.63 -2.6 -32.55
STD 3.237 10.11 85.5634
C.I. 2.315 7.23 61.2084

P Value 0.03 0.437 0.25967

Forward

1

mean 33.7 80.8 -116.1
STD 7.379 17.95 220.404
C.I. 5.279 12.84 157.667

P Value 2E-07 2E-07 0.13011

2

mean 27.8 74.1 -128.3
STD 4.442 9.562 252.297
C.I. 3.178 6.84 180.482

P Value 1E-08 2E-09 0.14227

Backward

1

mean 33.8 81.5 -116.1
STD 7.239 17.04 220.404
C.I. 5.178 12.19 157.667

P Value 1E-07 1E-07 0.13011

2

mean 27.9 74.8 -128.3
STD 4.408 9.09 252.297
C.I. 3.154 6.502 180.482

P Value 9E-09 9E-10 0.14227

Chapter 5. Experimental Results 52

maximum distance between consecutive sites. For instance, in Table 5.3, against greedy

heuristic and Mutation type 1, the mean difference of f1 (mean=6.415, STD=4.736, P

Value=0.002) is significantly greater than zero. A 95% confidence interval (C.I.=3.388)

around the mean of ∆f1 is [3.027, 9.803]. Both the lowest and highest values (lower

and upper critical values) of ∆f1 are positive, i.e., the ∆f1 remains positive irrespective

of the value of the variance. Recall that, positive ∆f1, negative ∆f2 and negative ∆f3

are preferable (Please see the Table 5.2).

Similarly, from values of ∆f2 we can say that, local search techniques find solution

which is costly in terms of base changes. With respect to ∆f3 we also get better results

though with lower significance. For example, in case of comparison with Greedy and

Matching heuristics the P Value is high which does not reject the null hypothesis that

the mean difference is zero. But when comparison is made with forward and backward

implementation, the P value is much lower which proves higher significance of mean

difference.

Notably, in most cases, local search algorithms using the Algorithm 14 (i.e., MUA-

TION2) as the mutation operator shows better performance than those using the other

version of it (Algorithm 13). This is due to the fact that Mutation type 2 allows more

exploration. It is also worth-mentioning that, SAHCwR shows better performance that

SAHC which is better than HC. This can also be attributed to increased exploration.

FIGURE 5.6: Comparison of Hybrid Genetic Algorithm using different level of local
improver with existing heuristics for λ Phage Virus (Also see from Table 5.6 to 5.8)

For λ Phage virus, Tables 5.6 through 5.8 present the performance of Genetic Algorithm

(GA) against the heuristics of [3] differing the level of local improver. The results show

that even with multiobjective tournament selection, GA can not outperform others with

respect to all objectives. In each of the cases GA offers better sequence only with

Chapter 5. Experimental Results 53

TABLE 5.6: Comparison of Hybrid Genetic Algorithm using low local improver with
existing heuristics for λ Phage Virus (Also see Figure 5.6)

Using Low Local Improver

Heuristic Selection Type ∆f1 ∆f2 ∆f3

Greedy

mlts

mean -5.69 -2.78 -30
STD 7.228 15.09 79.55
C.I. 5.171 10.8 56.91

P Value 0.035 0.575 0.263

mrts

mean -6.29 -2.48 -36.1
STD 3.883 11.96 117.1
C.I. 2.778 8.559 83.74

P Value 6E-04 0.529 0.355

mmts

mean -7.29 -4.78 -33
STD 4.554 14.17 124.2
C.I. 3.257 10.14 88.82

P Value 7E-04 0.314 0.422

Matching

mlts

mean -8.33 -6.7 -30
STD 7.123 15.31 82.79
C.I. 5.095 10.95 59.23

P Value 0.005 0.2 0.282

mrts

mean -8.93 -6.4 -36.1
STD 4.18 9.814 117.1
C.I. 2.99 7.021 83.79

P Value 8E-05 0.069 0.356

mmts

mean -9.93 -8.7 -33
STD 3.501 11.92 138.7
C.I. 2.505 8.525 99.23

P Value 9E-06 0.046 0.472

Forward

mlts

mean 22.1 70 -126
STD 6.437 12.75 273.6
C.I. 4.605 9.124 195.7

P Value 2E-06 3E-08 0.18

mrts

mean 21.5 70.3 -132
STD 6.115 13.16 276.5
C.I. 4.374 9.412 197.8

P Value 1E-06 4E-08 0.166

mmts

mean 20.5 68 -129
STD 3.408 11.5 296.7
C.I. 2.438 8.226 212.3

P Value 1E-08 2E-08 0.203

Backward

mlts

mean 22.2 70.7 -126
STD 6.596 13.7 273.6
C.I. 4.719 9.797 195.7

P Value 2E-06 5E-08 0.18

mrts

mean 21.6 71 -132
STD 5.967 12.1 276.5
C.I. 4.268 8.657 197.8

P Value 1E-06 2E-08 0.166

mmts

mean 20.6 68.7 -129
STD 3.307 10.49 296.7
C.I. 2.365 7.503 212.3

P Value 1E-08 2E-08 0.203

Chapter 5. Experimental Results 54

TABLE 5.7: Comparison of Hybrid Genetic Algorithm using moderate local improver
with existing heuristics for λ Phage Virus (Also see Figure 5.6)

Using Moderate Local Improver

Heuristic Selection Type ∆f1 ∆f2 ∆f3

Greedy

mlts

mean -2.39 6.12 -77.8
STD 4.327 6.434 139.3
C.I. 3.096 4.603 99.64

P Value 0.115 0.026 0.111

mrts

mean -5.79 -1.08 -43.7
STD 3.892 13.92 50.19
C.I. 2.784 9.956 35.9

P Value 0.001 0.812 0.022

mmts

mean -5.83 -4.9 -101
STD 4.944 10.24 68.15
C.I. 3.537 7.324 48.75

P Value 0.005 0.164 0.001

Matching

mlts

mean -5.03 2.2 -77.8
STD 4.786 8.215 146.3
C.I. 3.424 5.876 104.7

P Value 0.009 0.409 0.127

mrts

mean -8.43 -5 -43.7
STD 3.399 9.943 62.93
C.I. 2.432 7.113 45.02

P Value 3E-05 0.146 0.056

mmts

mean -5.83 -4.9 -101
STD 4.944 10.24 68.15
C.I. 3.537 7.324 48.75

P Value 0.005 0.164 0.001

Forward

mlts

mean 25.4 78.9 -174
STD 4.671 9.41 292.7
C.I. 3.342 6.731 209.4

P Value 3E-08 1E-08 0.094

mrts

mean 22 71.7 -139
STD 3.464 11.62 249.9
C.I. 2.478 8.315 178.8

P Value 9E-09 1E-08 0.112

mmts

mean 24.6 71.8 -197
STD 6.769 15.17 214.3
C.I. 4.842 10.85 153.3

P Value 1E-06 1E-07 0.017

Backward

mlts

mean 25.5 79.6 -174
STD 4.453 7.734 292.7
C.I. 3.186 5.533 209.4

P Value 2E-08 2E-09 0.094

mrts

mean 22.1 72.4 -139
STD 3.381 10.66 249.9
C.I. 2.419 7.625 178.8

P Value 7E-09 5E-09 0.112

mmts

mean 24.7 72.5 -197
STD 6.684 14.34 214.3
C.I. 4.782 10.26 153.3

P Value 1E-06 6E-08 0.017

Chapter 5. Experimental Results 55

TABLE 5.8: Comparison of Hybrid Genetic Algorithm using high local improver with
existing heuristics for λ Phage Virus (Also see Figure 5.6)

Using High Local Improver

Heuristic Selection Type ∆f1 ∆f2 ∆f3

Greedy

mlts

mean 3.015 12.72 -79.2
STD 7.595 17.9 121
C.I. 5.433 12.81 86.58

P Value 0.241 0.098 0.068

mrts

mean 0.415 105.7 395.2
STD 4.489 32.48 203.3
C.I. 3.212 23.24 145.4

P Value 0.777 0.052 0.005

mmts

mean -1.19 2.72 -129
STD 4.079 9.395 75.77
C.I. 2.918 6.721 54.2

P Value 0.382 0.384 4E-04

Matching

mlts

mean 0.375 8.8 -79.2
STD 7.299 14.59 103.9
C.I. 5.221 10.44 74.3

P Value 0.875 0.16 0.039

mrts

mean -2.23 6 -86.2
STD 3.36 11.6 68.8
C.I. 2.403 8.3 49.22

P Value 0.066 0.136 0.003

mmts

mean -3.83 -1.2 -129
STD 4.176 8.983 69.31
C.I. 2.988 6.426 49.58

P Value 0.018 0.683 2E-04

Forward

mlts

mean 30.8 85.5 -175
STD 8.297 18.08 193.5
C.I. 5.935 12.93 138.4

P Value 9E-07 2E-07 0.019

mrts

mean 28.2 82.7 -182
STD 3.994 10.4 236.2
C.I. 2.857 7.442 168.9

P Value 3E-09 1E-09 0.038

mmts

mean 26.6 75.5 -225
STD 5.562 13.65 259.1
C.I. 3.979 9.763 185.3

P Value 1E-07 3E-08 0.023

Backward

mlts

mean 30.9 86.2 -175
STD 8.13 16.83 193.5
C.I. 5.816 12.04 138.4

P Value 8E-07 6E-08 0.019

mrts

mean 28.3 83.4 -182
STD 3.831 10.12 236.2
C.I. 2.741 7.242 168.9

P Value 2E-09 9E-10 0.038

mmts

mean 26.7 76.2 -225
STD 5.376 12.15 259.1
C.I. 3.846 8.695 185.3

P Value 8E-08 1E-08 0.023

Chapter 5. Experimental Results 56

TABLE 5.9: Comparison of Hybrid GA with Elitism with existing heuristics for λ
Phage Virus (Also see Figure 5.7)

Heuristic Selection f1 f2 f3

Greedy

mlts

mean -11.3 -24.6 65.99
STD 5.088 12.95 127.831
C.I. 3.64 9.261 91.445

P Value 6E-05 1E-04 0.13702

mrts

mean -10.4 -16.5 22.19
STD 2.839 9.804 104.043
C.I. 2.031 7.014 74.4281

P Value 1E-06 5E-04 0.51698

mmts

mean -10.8 -21.9 13.59
STD 4.447 8.987 94.1173
C.I. 3.181 6.429 67.3274

P Value 3E-05 3E-05 0.65877

Matching

mlts

mean -13.9 -28.5 66.05
STD 4.707 10.52 93.9951
C.I. 3.367 7.528 67.24

P Value 6E-06 7E-06 0.05338

mrts

mean -13 -20.4 22.25
STD 2.605 9.321 101.939
C.I. 1.864 6.668 72.9227

P Value 7E-08 7E-05 0.50746

mmts

mean -13.4 -25.8 13.65
STD 3.78 6.746 83.2349
C.I. 2.704 4.826 59.5427

P Value 1E-06 7E-07 0.61655

Forward

mlts

mean 16.5 48.2 -29.7
STD 3.923 8.904 271.913
C.I. 2.806 6.37 194.515

P Value 3E-07 6E-09 0.73773

mrts

mean 17.4 56.3 -73.5
STD 4.789 11.02 272.094
C.I. 3.426 7.88 194.644

P Value 1E-06 6E-08 0.41514

mmts

mean 17 50.9 -82.1
STD 6.394 10.43 193.616
C.I. 4.574 7.461 138.505

P Value 1E-05 0.012 0.0004

Backward

mlts

mean 16.6 48.9 -29.7
STD 4.061 9.146 271.913
C.I. 2.905 6.543 194.515

P Value 4E-07 1E-08 0.73773

mrts

mean 17.5 57 -73.5
STD 4.649 10.42 272.094
C.I. 3.326 7.457 194.644

P Value 8E-07 3E-08 0.41514

mmts

mean 17.1 51.6 -82.1
STD 6.226 9.812 193.616
C.I. 4.454 7.019 138.505

P Value 1E-05 5E-08 0.21281

Chapter 5. Experimental Results 57

TABLE 5.10: Comparison of Hybrid Steady State GA with existing heuristics for λ
Phage Virus (Also see Figure 5.8)

Heuristic Selection f1 f2 f3

Greedy

mlts

mean -4.49 1.32 -114
STD 4.592 6.689 55.58
C.I. 3.285 4.785 39.76

P Value 0.013 0.602 1E-04

mrts

mean -7.89 -3.08 21.09
STD 3.657 6.873 138.3
C.I. 2.616 4.917 98.92

P Value 8E-05 0.19 0.641

mmts

mean -7.29 -4.98 -28.2
STD 3.598 9.269 186.5
C.I. 2.574 6.631 133.4

P Value 1E-04 0.124 0.644

Matching

mlts

mean -7.13 -2.6 -114
STD 4.441 12.46 56.17
C.I. 3.177 8.916 40.18

P Value 7E-04 0.604 1E-04

mrts

mean -10.5 -7 21.15
STD 3.511 8.223 144.4
C.I. 2.511 5.882 103.3

P Value 6E-06 0.025 0.654

mmts

mean -9.93 -8.9 -28.2
STD 2.653 6.935 209.1
C.I. 1.898 4.961 149.6

P Value 9E-07 0.003 0.68

Forward

mlts

mean 23.3 74.1 -210
STD 4.523 12.92 218.7
C.I. 3.235 9.244 156.5

P Value 5E-08 2E-07 0.014

mrts

mean 19.9 69.7 -74.6
STD 5.065 8.982 211.6
C.I. 3.623 6.425 151.4

P Value 6E-07 1E-09 0.294

mmts

mean 20.5 67.8 -124
STD 5.642 11.2 300.6
C.I. 4.036 8.014 215

P Value 1E-06 1E-08 0.225

Backward

mlts

mean 23.4 74.8 -210
STD 4.452 11.9 218.7
C.I. 3.185 8.51 156.5

P Value 5E-08 1E-07 0.014

mrts

mean 20 70.4 -74.6
STD 4.83 7.336 211.6
C.I. 3.456 5.248 151.4

P Value 4E-07 2E-10 0.294

mmts

mean 20.6 68.5 -124
STD 5.502 9.969 300.6
C.I. 3.936 7.132 215

P Value 9E-07 4E-09 0.225

Chapter 5. Experimental Results 58

FIGURE 5.7: Comparison of Hybrid GA with Elitism with existing heuristics for λ
Phage Virus (Also see Table 5.9)

FIGURE 5.8: Comparison of Hybrid Steady State GA with existing heuristics for λ
Phage Virus (Also see Table 5.10)

respect to f3 which is our prime concern (Please see Subsection 4.2.3 of Chapter 4 for

explanation).

Although global search technique like GA should outperform local search techniques

like Hill Climbing, in our experiment we have found the reverse result. This might be

attributed to the fact that GA lacks in the degree of exploitation and URSPP requires

more exploitation than GA can provide. URSPP is a discrete optimization problem.

For discrete optimization problem the extent of exploration required to avoid premature

convergence is not very high. Notably, in our experiments, the explorative components

of local searches (e.g., Mutation type 2 and Steepest Ascent versions) has provided quite

good results (so as to outperform GA), we believe that the extent of exploration here

does not exceed the requirement which is necessary to avoid premature convergence for

URSPP. Hence, we also apply more genetic algorithm which exploits the search space

Chapter 5. Experimental Results 59

more that the other genetic algorithms. In particular, we inject the notion of elitism (to

increase exploitation) and also employ the steady state version of GA.

We show the results using GA with Elitism and Steady State GA in Tables 5.9 and 5.10

respectively. However, as can be realized, as unfortunate as it seems, the results are not

satisfactory. Despite our attempt to inject exploitation, a global search technique like

GA,From literature we know that global search techniques better perform than local

search techniques. But our experiments deviates from this fact. This deviation might

have the following reasons.

As breeding operator we use crossover in our global search, whereas local search tech-

niques use point mutation. From biology we know that, properties, specially degener-

acy, of the genetic code make a genome sequence more fault-tolerant for point mutations

[40]. Hence subsequently we plan to apply a algorithm where only point mutation will

be used as breeding operator.

The two objectives, f1 and f2 are inversely related to each other, i.e., higher insertion de-

creases the chance of lower costs (base change). Therefore, as we increase the number

of insertions of restriction sites using the local improver, the performance with respect

to f1 increases whereas the same with respect to f2 decreases. Due to this conflicting

dependency, multi-objective tournament selection alone can not provide very high qual-

ity solutions. To get even better results we move to another approach, namely NSGA (as

discussed in Chapter 5) where separate concentration on objectives are more prominent.

FIGURE 5.9: Comparison of Non-dominated Sorting Genetic Algorithm with existing
heuristics for λ Phage virus (Also see Table 5.11)

Tables 5.11 and 5.12 present comparison of NSGA with the heuristics of [3] and dif-

ferent local search techniques of [47], namely, Hill Climbing (HC) and Steepest Ascent

Hill Climbing with (SAHC) or without (SAHCwR) Replacement respectively.

Chapter 5. Experimental Results 60

TABLE 5.11: Comparison of Non-dominated Sorting Genetic Algorithm with existing
heuristics for λ Phage virus (Also see Figure 5.9)

Heuristic Mutation Type ∆f1 ∆f2 ∆f3

Greedy

1

mean 9.615 -7.58 -126
STD 6.038 11.13 77.3
C.I. 4.319 7.96 55.3

P Value 7E-04 0.06 6E-04

2

mean 9.615 -6.38 -140
STD 3.66 12.34 63.39
C.I. 2.618 8.828 45.35

P Value 2E-05 0.137 6E-05

Matching

1

mean 6.975 -11.5 -126
STD 5.729 9.354 56.46
C.I. 4.098 6.691 40.39

P Value 0.004 0.004 6E-05

2

mean 6.975 -10.3 -140
STD 3.675 7.808 91.07
C.I. 2.629 5.586 65.15

P Value 2E-04 0.002 9E-04

Forward

1

mean 37.4 65.2 -222
STD 6.535 7.052 217
C.I. 4.675 5.045 155.3

P Value 2E-08 3E-10 0.01

2

mean 37.4 66.4 -236
STD 4.169 7.792 256
C.I. 2.982 5.574 183.2

P Value 4E-10 6E-10 0.017

Backward

1

mean 37.5 65.9 -222
STD 6.311 6.19 217
C.I. 4.515 4.428 155.3

P Value 2E-08 9E-11 0.01

2

mean 37.5 67.1 -236
STD 4.007 6.919 256
C.I. 2.866 4.95 183.2

P Value 3E-10 2E-10 0.017

Chapter 5. Experimental Results 61

FIGURE 5.10: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for λ Phage virus (Also see Table 5.12)

TABLE 5.12: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for λ Phage virus (Also see Figure 5.10)

Heuristic Mutation Type ∆f1 ∆f2 ∆f3

HC

1

mean 3.2 -19.9 -115
STD 4.917 13.7 152.2
C.I. 3.517 9.799 108.8

P Value 0.07 0.001 0.041

2

mean 5.7 -15.9 -101
STD 4.448 14.47 134.2
C.I. 3.182 10.35 96.02

P Value 0.003 0.007 0.042

SAHC

1

mean 3.4 -21.8 -109
STD 8.072 18.55 157.8
C.I. 5.774 13.27 112.8

P Value 0.216 0.005 0.056

2

mean 8.1 -14 -112
STD 3.143 13.09 197.3
C.I. 2.248 9.364 141.1

P Value 2E-05 0.008 0.107

SAHCwR

1

mean 3.7 -15.6 -106
STD 5.774 17.35 61.5
C.I. 4.131 12.41 43.99

P Value 0.073 0.019 4E-04

2

mean 9.6 -7.7 -107
STD 5.91 11.43 105.4
C.I. 4.228 8.178 75.42

P Value 6E-04 0.062 0.011

Chapter 5. Experimental Results 62

Table 5.11 shows that NSGA gives us better synthesized sequence than greedy and

matching heuristics requiring lower number of base changes. Also the average num-

ber of inserted restrictions sites is higher and maximum gap is smaller. For example,

against greedy heuristic and mutation type 1, the mean difference of f1 (mean=9.615,

STD=6.038, P Value=7E-04) is significantly greater than zero. A 95% confidence in-

terval (C.I.=4.319) around the mean of ∆f1 is [5.296, 13.934]. Both the lowest and

highest values of ∆f1 are positive, i.e., ∆f1 remains positive irrespective of the value of

the variance. Similar inference holds for f2 and f3 except for f2, a small part of the 95%

confidence interval [0.38, -15.54] falls in the positive range. Recall that, positive ∆f1,

negative ∆f2 and negative ∆f3 are better (Please see the Table 5.2). However, NSGA,

is still costlier (in terms of base changes) than forward and backward implementation,

though it is superior to those in terms of f1, f3 and execution time. Notably, although

we did not compare the execution time, NAGS is found to be quite fast.

Table 5.12 shows that NSGA is less costlier (in terms of base changes) than local search

techniques keeping a very good maximum gap between the restriction sites. The base

changes are less in number because it intelligently inserts a slightly less number of

restriction sites than others.

Tables 5.13 through 5.30 and Figure 5.11 through 5.28 focus on similar comparisons

considering other viruses.

FIGURE 5.11: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Polio Virus (Also see Table 5.13)

Chapter 5. Experimental Results 63

TABLE 5.13: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Polio Virus (Also see Figure 5.11)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 14.86 16.43 -30.075
STD 2.947 8.217 33.753
C.I. 2.108 8.512 24.1454

P Value 7E-08 1E-04 0.02012

2

mean 12.36 16.73 -29.475
STD 4.363 11.97 51.9854
C.I. 3.121 8.563 37.1881

P Value 9E-06 0.002 0.10657

Matching

1

mean 15.34 17.34 -27.9
STD 2.559 7.746 37.7271
C.I. 1.831 7.429 26.9883

P Value 1E-08 6E-05 0.04412

2

mean 12.84 17.64 -27.3
STD 4.586 11.94 28.3819
C.I. 3.281 8.542 20.3032

P Value 1E-05 0.001 0.01398

Forward

1

mean 16.3 26.9 -38.1
STD 3.368 8.66 82.2117
C.I. 2.409 8.075 58.8107

P Value 9E-08 4E-06 0.17682

2

mean 13.8 27.2 -37.5
STD 5.203 13.68 93.0666
C.I. 3.722 9.784 66.5758

P Value 2E-05 1E-04 0.23451

Backward

1

mean 13.2 26.8 -39.9
STD 9.283 8.324 83.4059
C.I. 6.641 8.424 59.665

P Value 0.001 3E-06 0.16463

2

mean 10.7 27.1 -39.3
STD 9.405 12.98 88.8683
C.I. 6.728 9.287 63.5725

P Value 0.006 1E-04 0.19548

Chapter 5. Experimental Results 64

FIGURE 5.12: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Polio Virus (Also see Table 5.14)

FIGURE 5.13: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Polio Virus (Also see Table 5.15)

FIGURE 5.14: Comparison of Hybrid Genetic Algorithm using moderate local im-
prover with existing heuristics for Polio Virus (Also see Table 5.16)

Chapter 5. Experimental Results 65

TABLE 5.14: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Polio Virus (Also see Figure 5.12)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 13.66 10.53 -29.8
STD 2.99 19.44 47.22
C.I. 2.139 13.91 33.78

P Value 2E-07 0.121 0.077

2

mean 13.76 16.93 -18.1
STD 3.418 7.469 49.26
C.I. 2.445 5.343 35.24

P Value 5E-07 5E-05 0.276

Matching

1

mean 14.14 11.44 -27.6
STD 2.406 21.03 36.13
C.I. 1.721 15.04 25.85

P Value 2E-08 0.12 0.039

2

mean 14.24 17.84 -15.9
STD 3.826 7.563 47.89
C.I. 2.737 5.41 34.26

P Value 9E-07 4E-05 0.321

Forward

1

mean 15.1 21 -37.8
STD 3.929 22.84 97.27
C.I. 2.81 16.34 69.58

P Value 7E-07 0.017 0.25

2

mean 15.2 27.4 -26.1
STD 3.645 5.232 85.18
C.I. 2.608 3.743 60.93

P Value 3E-07 5E-08 0.358

Backward

1

mean 12 20.9 -39.6
STD 10.22 22.67 96.49
C.I. 7.311 16.22 69.03

P Value 0.005 0.017 0.227

2

mean 12.1 27.3 -27.9
STD 8.937 5.438 87.34
C.I. 6.393 3.89 62.48

P Value 0.002 7E-08 0.339

Chapter 5. Experimental Results 66

TABLE 5.15: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Polio Virus (Also see Figure 5.13)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 15.76 17.53 -12.075
STD 2.585 8.941 38.8062
C.I. 1.849 6.396 27.7602

P Value 1E-08 2E-04 0.35084

2

mean 13.26 15.43 -23.675
STD 1.941 11.34 54.4423
C.I. 1.388 8.112 38.9457

P Value 5E-09 0.002 0.20234

Matching

1

mean 16.24 18.44 -9.9
STD 2.508 10.1 31.4968
C.I. 1.794 7.227 22.5314

P Value 7E-09 3E-04 0.34621

2

mean 13.74 16.34 -21.5
STD 2.313 9.964 49.0692
C.I. 1.655 7.128 35.102

P Value 2E-08 6E-04 0.19925

Forward

1

mean 17.2 28 -20.1
STD 2.7 8.192 89.9894
C.I. 1.931 5.86 64.3746

P Value 9E-09 2E-06 0.49786

2

mean 14.7 25.9 -31.7
STD 2.71 11.18 85.7776
C.I. 1.939 7.998 61.3616

P Value 4E-08 4E-05 0.27257

Backward

1

mean 14.1 27.9 -21.9
STD 9.86 8.504 92.6924
C.I. 7.053 6.084 66.3081

P Value 0.001 3E-06 0.47405

2

mean 11.6 25.8 -33.5
STD 8.262 11.25 78.3429
C.I. 5.911 8.05 56.0431

P Value 0.002 5E-05 0.2093

Chapter 5. Experimental Results 67

TABLE 5.16: Comparison of Hybrid Genetic Algorithm using moderate local improver
with existing heuristics for Polio Virus (Also see Figure 5.14)

Heuristic Selection ∆f1 ∆f2 ∆f3

Greedy

mlts

mean 7.155 1.225 17.13
STD 7.181 14.61 48.74
C.I. 5.137 10.45 34.86

P Value 0.012 0.679 0.295

mrts

mean -2.95 -18.2 48.73
STD 4.728 13.6 82.17
C.I. 3.383 9.727 58.78

P Value 0.08 0.002 0.094

mmts

mean 2.035 -9.07 63.1
STD 5.923 12.98 57.08
C.I. 4.237 9.287 40.83

P Value 0.306 0.055 0.007

Matching

mlts

mean 7.635 2.135 19.3
STD 7.68 15.5 58.98
C.I. 5.494 11.09 42.19

P Value 0.012 0.615 0.328

mrts

mean -2.47 -17.3 50.9
STD 4.331 9.582 67.53
C.I. 3.098 6.855 48.31

P Value 0.105 3E-04 0.041

mmts

mean 2.035 -9.07 63.1
STD 5.923 12.98 57.08
C.I. 4.237 9.287 40.83

P Value 0.306 0.055 0.007

Forward

mlts

mean 8.6 11.7 9.1
STD 6.022 12.06 113.2
C.I. 4.308 8.624 81

P Value 0.001 0.027 0.805

mrts

mean -1.5 -7.7 40.7
STD 4.743 10.88 106.2
C.I. 3.393 7.786 75.99

P Value 0.343 0.052 0.257

mmts

mean 3 0.5 52.9
STD 5.944 13.53 114.9
C.I. 4.252 9.682 82.22

P Value 0.145 0.91 0.18

Backward

mlts

mean 5.5 11.6 7.3
STD 10.1 12.56 122
C.I. 7.227 8.987 87.3

P Value 0.119 0.03 0.854

mrts

mean -4.6 -7.8 38.9
STD 10.6 10.91 105.5
C.I. 7.58 7.806 75.47

P Value 0.203 0.05 0.274

mmts

mean -0.1 0.4 51.1
STD 6.607 13.31 114.9
C.I. 4.727 9.521 82.17

P Value 0.963 0.926 0.193

Chapter 5. Experimental Results 68

FIGURE 5.15: Comparison of Hybrid GA with Elitism with existing heuristics for
Polio Virus (Also see Table 5.17)

FIGURE 5.16: Comparison of Hybrid Steady State GA Algorithm with existing heuris-
tics for Polio Virus (Also see Table 5.18)

FIGURE 5.17: Comparison of Non-dominated Sorting Genetic Algorithm with exist-
ing heuristics for Polio virus (Also see Table 5.19)

Chapter 5. Experimental Results 69

TABLE 5.17: Comparison of Hybrid GA with Elitism with existing heuristics for Polio
Virus (Also see Figure 5.15)

Heuristic Selection ∆f1 ∆f2 ∆f3

Greedy

mlts

mean -5.25 -25 77.425
STD 2.74 16.01 59.4845
C.I. 1.96 11.46 42.5526

P Value 2E-04 0.002 0.00261

mrts

mean -4.75 -20.7 65.225
STD 4.849 13.02 51.3057
C.I. 3.469 9.316 36.7019

P Value 0.013 7E-04 0.00302

mmts

mean -4.15 -21.5 90.325
STD 3.876 12.91 101.775
C.I. 2.773 9.233 72.8052

P Value 0.008 5E-04 0.02049

Matching

mlts

mean -4.77 -24.1 79.6
STD 3.511 12.56 77.9916
C.I. 2.511 8.982 55.7918

P Value 0.002 7E-04 0.01036

mrts

mean -4.27 -19.8 67.4
STD 4.543 10.2 70.2483
C.I. 3.25 7.296 50.2526

P Value 0.016 2E-04 0.01415

mmts

mean -3.67 -20.6 92.5
STD 3.439 11.99 110.111
C.I. 2.46 8.58 78.7684

P Value 0.008 4E-04 0.02619

Forward

mlts

mean -3.8 -14.5 69.4
STD 3.458 13.99 115.265
C.I. 2.473 10.01 82.4557

P Value 0.007 0.015 0.08932

mrts

mean -3.3 -10.2 57.2
STD 4.945 10.27 104.635
C.I. 3.538 7.348 74.8511

P Value 0.064 0.012 0.11792

mmts

mean -2.7 -11 82.3
STD 4.923 14.59 144.487
C.I. 3.522 10.44 103.36

P Value 0.117 0.041 0.10518

Backward

mlts

mean -6.9 -14.6 67.6
STD 9.073 14.01 120.146
C.I. 6.491 10.02 85.9476

P Value 0.04 0.016 0.10891

mrts

mean -6.4 -10.3 55.4
STD 10.33 10.45 105.934
C.I. 7.39 7.473 75.7807

P Value 0.082 0.012 0.13256

mmts

mean -5.8 -11.1 80.5
STD 11.42 14.18 152.727
C.I. 8.169 10.14 109.254

P Value 0.143 0.035 0.12991

Chapter 5. Experimental Results 70

TABLE 5.18: Comparison of Hybrid Steady State GA Algorithm with existing heuris-
tics for Polio Virus (Also see Figure 5.16)

Heuristic Selection ∆f1 ∆f2 ∆f3

Greedy

mlts

mean -7.55 -29.8 89.23
STD 4.101 11.37 54.32
C.I. 2.934 8.137 38.86

P Value 3E-04 3E-05 6E-04

mrts

mean -5.55 -18.3 71.73
STD 2.883 12.41 80.96
C.I. 2.062 8.876 57.91

P Value 2E-04 0.001 0.021

mmts

mean -5.15 -21.9 82.43
STD 4.822 12.46 68.33
C.I. 3.449 8.915 48.88

P Value 0.008 4E-04 0.004

Matching

mlts

mean -7.07 -28.9 91.4
STD 4.418 10.53 61.62
C.I. 3.16 7.534 44.08

P Value 7E-04 2E-05 0.001

mrts

mean -5.07 -17.4 73.9
STD 3.672 10.7 66.69
C.I. 2.627 7.651 47.71

P Value 0.002 6E-04 0.007

mmts

mean -4.67 -21 84.6
STD 5.154 7.218 48.95
C.I. 3.687 5.164 35.01

P Value 0.019 7E-06 4E-04

Forward

mlts

mean -6.1 -19.3 81.2
STD 5.507 11.2 96.2
C.I. 3.939 8.009 68.82

P Value 0.007 0.001 0.026

mrts

mean -4.1 -7.8 63.7
STD 3.573 11.91 118
C.I. 2.556 8.523 84.44

P Value 0.005 0.068 0.122

mmts

mean -3.7 -11.4 74.4
STD 6.165 9.119 91.96
C.I. 4.41 6.523 65.79

P Value 0.09 0.003 0.031

Backward

mlts

mean -9.2 -19.4 79.4
STD 8.404 11.12 103.9
C.I. 6.012 7.953 74.31

P Value 0.007 0.001 0.039

mrts

mean -7.2 -7.9 61.9
STD 9.114 10.8 108.6
C.I. 6.52 7.723 77.69

P Value 0.034 0.046 0.105

mmts

mean -6.8 -11.5 72.6
STD 9.693 9.324 93.89
C.I. 6.934 6.67 67.16

P Value 0.054 0.004 0.037

Chapter 5. Experimental Results 71

TABLE 5.19: Comparison of Non-dominated Sorting Genetic Algorithm with existing
heuristics for Polio virus (Also see Figure 5.17)

Heuristic Mutation Type ∆f1 ∆f2 ∆f3

Greedy

1

mean 5.855 -10.2 -39.2
STD 2.606 12.61 31.41
C.I. 1.865 9.017 22.47

P Value 6E-05 0.031 0.003

2

mean 7.455 -9.58 -39.6
STD 3.672 12.47 43.52
C.I. 2.627 8.918 31.57

P Value 1E-04 0.038 0.018

Matching

1

mean 6.335 -9.27 -37
STD 3.589 8.162 32.98
C.I. 2.568 5.839 23.59

P Value 3E-04 0.006 0.006

2

mean 7.935 -8.67 -37.4
STD 3.898 12.63 46.83
C.I. 2.788 9.035 33.09

P Value 1E-04 0.058 0.032

Forward

1

mean 7.3 0.3 -47.2
STD 3.129 9.19 84
C.I. 2.238 6.574 60.09

P Value 4E-05 0.92 0.109

2

mean 8.9 0.9 -47.6
STD 3.107 12.59 76.08
C.I. 2.223 9.007 51.8

P Value 8E-06 0.826 0.079

Backward

1

mean 4.2 0.2 -49
STD 8.867 8.967 89.14
C.I. 6.343 6.414 63.77

P Value 0.168 0.945 0.116

2

mean 5.8 0.8 -49.4
STD 7.33 12.2 76.85
C.I. 5.244 8.727 51.84

P Value 0.034 0.84 0.073

Chapter 5. Experimental Results 72

FIGURE 5.18: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Polio virus (Also see Table 5.20)

TABLE 5.20: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Polio virus (Also see Figure 5.18)

Heuristic Mutation Type ∆f1 ∆f2 ∆f3

HC

1

mean -9 -26.6 -9.1
STD 3.528 9.857 44.9
C.I. 2.524 8.882 32.12

P Value 2E-05 1E-05 0.538

2

mean -4.9 -26.3 -10.1
STD 5.216 13.33 48.42
C.I. 3.732 9.538 34.52

P Value 0.016 2E-04 0.526

SAHC

1

mean -7.8 -20.7 -9.4
STD 4.341 24.15 35.56
C.I. 3.105 17.27 25.44

P Value 3E-04 0.024 0.425

2

mean -6.3 -26.5 -21.5
STD 3.86 10.29 52.45
C.I. 2.761 7.359 36.61

P Value 6E-04 2E-05 0.227

SAHCwR

1

mean -9.9 -27.7 -27.1
STD 4.04 14.61 37.82
C.I. 2.89 10.45 27.05

P Value 3E-05 2E-04 0.05

2

mean -5.8 -25 -15.9
STD 3.553 14.83 37.21
C.I. 2.542 10.61 27.56

P Value 6E-04 5E-04 0.21

Chapter 5. Experimental Results 73

FIGURE 5.19: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Equine Arteritis Virus (Also see Table 5.21)

FIGURE 5.20: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Equine Arteritis Virus (Also see Table 5.22)

FIGURE 5.21: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Equine Arteritis Virus (Also see

Table 5.23)

Chapter 5. Experimental Results 74

TABLE 5.21: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Equine Arteritis Virus (Also see Figure 5.19)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 6.1 -5.3 -199.5
STD 2.558 98.93 246.856
C.I. 2.505 70.77 176.59

P Value 4E-05 0.869 0.03091

2

mean 5.2 -18.5 -239
STD 3.425 95.69 196.101
C.I. 2.45 68.45 140.282

P Value 1E-03 0.556 0.00388

Matching

1

mean 6.9 -0.6 -99.6
STD 3.604 95.5 162.047
C.I. 2.578 68.32 115.921

P Value 2E-04 0.985 0.08382

2

mean 6 -13.8 -139.1
STD 3.916 92.22 123.292
C.I. 2.801 65.97 88.198

P Value 9E-04 0.647 0.00605

Forward

1

mean 6.8 -4.4 48.1
STD 3.706 96.44 181.662
C.I. 2.651 68.99 129.953

P Value 3E-04 0.888 0.4241

2

mean 5.9 -17.6 8.6
STD 3.315 92.39 111.733
C.I. 2.371 66.09 79.929

P Value 3E-04 0.562 0.81315

Backward

1

mean 6.8 -4.4 48.1
STD 3.706 96.44 181.662
C.I. 2.651 68.99 129.953

P Value 3E-04 0.888 0.4241

2

mean 5.9 -17.6 8.6
STD 3.315 92.39 111.733
C.I. 2.371 66.09 79.929

P Value 3E-04 0.562 0.81315

Chapter 5. Experimental Results 75

TABLE 5.22: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Equine Arteritis Virus (Also see Figure 5.20)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 8.7 -10.7 -218
STD 4.111 110.1 219.2
C.I. 2.941 78.75 156.8

P Value 9E-05 0.766 0.012

2

mean 7.8 -35.5 -249
STD 3.553 92.06 206.1
C.I. 2.542 65.86 147.4

P Value 7E-05 0.254 0.004

Matching

1

mean 9.5 -6 -118
STD 5.563 106.2 82.49
C.I. 3.979 75.97 59.01

P Value 4E-04 0.862 0.001

2

mean 8.6 -30.8 -149
STD 4.351 88.29 85.04
C.I. 3.113 63.16 60.83

P Value 1E-04 0.299 4E-04

Forward

1

mean 9.4 -9.8 30
STD 5.337 106.5 127.5
C.I. 3.818 76.15 91.2

P Value 3E-04 0.778 0.476

2

mean 8.5 -34.6 -1.6
STD 3.808 88.69 152.3
C.I. 2.724 63.44 108.9

P Value 6E-05 0.249 0.974

Backward

1

mean 9.4 -9.8 30
STD 5.337 106.5 127.5
C.I. 3.818 76.15 91.2

P Value 3E-04 0.778 0.476

2

mean 8.5 -34.6 -1.6
STD 3.808 88.69 152.3
C.I. 2.724 63.44 108.9

P Value 6E-05 0.249 0.974

Chapter 5. Experimental Results 76

TABLE 5.23: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Equine Arteritis Virus (Also see

Figure 5.21)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 7.8 -63.4 -280.5
STD 3.048 109.7 256.771
C.I. 2.18 78.47 183.683

P Value 2E-05 0.101 0.00722

2

mean 7.5 -67.1 -290.3
STD 3.375 59.05 213.729
C.I. 2.414 42.24 152.892

P Value 6E-05 0.006 0.002

Matching

1

mean 8.6 -58.7 -180.6
STD 4.377 108 78.3584
C.I. 3.131 77.28 56.0542

P Value 2E-04 0.12 4.6E-05

2

mean 8.3 -62.4 -190.4
STD 3.683 55.52 100.847
C.I. 2.635 39.72 72.1413

P Value 6E-05 0.006 0.00021

Forward

1

mean 8.5 -62.5 -32.9
STD 3.923 108.6 133.469
C.I. 2.806 77.7 95.4783

P Value 7E-05 0.102 0.4557

2

mean 8.2 -66.2 -42.7
STD 3.49 55.42 103.82
C.I. 2.496 39.64 74.2686

P Value 4E-05 0.004 0.22571

Backward

1

mean 8.5 -62.5 -32.9
STD 3.923 108.6 133.469
C.I. 2.806 77.7 95.4783

P Value 7E-05 0.102 0.4557

2

mean 8.2 -66.2 -42.7
STD 3.49 55.42 103.82
C.I. 2.496 39.64 74.2686

P Value 4E-05 0.004 0.22571

Chapter 5. Experimental Results 77

FIGURE 5.22: Comparison of Non-dominated Sorting Genetic Algorithm with exist-
ing heuristics for Equine Arteritis virus (Also see Table 5.24)

FIGURE 5.23: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Equine Arteritis virus (Also see Table 5.25)

FIGURE 5.24: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Measles Virus (Also see Table 5.26)

Chapter 5. Experimental Results 78

TABLE 5.24: Comparison of Non-dominated Sorting Genetic Algorithm with existing
heuristics for Equine Arteritis virus (Also see Figure 5.22)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 8.6 -84.3 -285
STD 3.3731 53.97 213.9
C.I. 2.41297 38.61 153

P Value 2.1E-05 8E-04 0.002

2

mean 8.9 -123 -317
STD 3.03498 13.62 201.7
C.I. 2.17109 9.746 144.3

P Value 6.7E-06 4E-10 8E-04

Matching

1

mean 9.4 -79.6 -186
STD 3.09839 51.11 163.4
C.I. 2.21645 36.56 116.9

P Value 5E-06 8E-04 0.006

2

mean 9.7 -118 -217
STD 3.40098 16.41 91.75
C.I. 2.43291 11.74 65.64

P Value 8.4E-06 3E-09 4E-05

Forward

1

mean 9.3 -83.4 -37.8
STD 2.94581 51.95 155.4
C.I. 2.1073 37.17 111.2

P Value 3.6E-06 7E-04 0.461

2

mean 9.6 -122 -68.9
STD 3.94968 17.68 134.1
C.I. 2.82543 12.64 95.93

P Value 3E-05 4E-09 0.139

Backward

1

mean 9.3 -83.4 -37.8
STD 2.94581 51.95 155.4
C.I. 2.1073 37.17 111.2

P Value 3.6E-06 7E-04 0.461

2

mean 9.6 -122 -68.9
STD 3.94968 17.68 134.1
C.I. 2.82543 12.64 95.93

P Value 3E-05 4E-09 0.139

Chapter 5. Experimental Results 79

TABLE 5.25: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Equine Arteritis virus (Also see Figure 5.23)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

HC

1

mean 2.5 -79 -85.9
STD 3.808 70.67 116
C.I. 2.724 50.56 82.96

P Value 0.068 0.006 0.044

2

mean 3.7 -104 -77.5
STD 4.057 102.2 96.04
C.I. 2.902 73.09 68.71

P Value 0.018 0.01 0.031

SAHC

1

mean -0.1 -73.6 -67.8
STD 5.99 66.86 104.6
C.I. 4.285 47.83 74.81

P Value 0.959 0.007 0.071

2

mean 1.1 -87.1 -67.3
STD 4.677 96.88 54.72
C.I. 3.346 69.31 39.15

P Value 0.476 0.019 0.004

SAHCwR

1

mean 0.8 -20.9 -4.9
STD 5.16 74.21 131.7
C.I. 3.691 53.09 94.24

P Value 0.636 0.396 0.909

2

mean 1.4 -55.5 -26.2
STD 2.797 66 55.62
C.I. 2.001 47.21 39.79

P Value 0.148 0.026 0.171

FIGURE 5.25: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Measles Virus (Also see Table 5.27)

Chapter 5. Experimental Results 80

TABLE 5.26: Comparison of Hill Climbing (HC) Algorithm with existing heuristics
for Measles Virus (Also see Figure 5.24)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean -1.8 178.2 -478
STD 4.442 34.87 315.406
C.I. 3.178 24.95 225.628

P Value 0.232 6E-08 0.00098

2

mean -0.1 151.8 -520.7
STD 4.771 69.67 218.773
C.I. 3.413 49.84 156.501

P Value 0.949 7E-05 3.6E-05

Matching

1

mean -0.3 179.7 -228.4
STD 5.187 39.99 255.76
C.I. 3.71 28.61 182.96

P Value 0.859 2E-07 0.01992

2

mean 1.4 153.3 -271.1
STD 4.835 73.59 145.717
C.I. 3.459 52.64 104.24

P Value 0.384 1E-04 0.00023

TABLE 5.27: Comparison of Steepest Ascent Hill Climbing (SAHC) Algorithm with
existing heuristics for Measles Virus (Also see Figure 5.25)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean -1.6 152 -498
STD 5.038 69.59 198.5
C.I. 3.604 49.78 142

P Value 0.341 7E-05 2E-05

2

mean -0.7 149.4 -526
STD 5.697 66.89 213.8
C.I. 4.075 47.85 152.9

P Value 0.707 6E-05 3E-05

Matching

1

mean -0.1 153.5 -248
STD 5.322 72.34 203.8
C.I. 3.807 51.75 145.8

P Value 0.954 9E-05 0.004

2

mean 0.8 150.9 -277
STD 5.514 74.35 243.5
C.I. 3.944 53.19 174.2

P Value 0.657 1E-04 0.006

Chapter 5. Experimental Results 81

FIGURE 5.26: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Measles Virus (Also see Table 5.28)

TABLE 5.28: Comparison of Steepest Ascent Hill Climbing with Replacement
(SAHCwR) Algorithm with existing heuristics for Measles Virus (Also see Figure

5.26)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean -1.3 141.3 -513.2
STD 3.02 62 286.591
C.I. 2.161 44.35 205.015

P Value 0.207 5E-05 0.00031

2

mean -1 132.9 -543.6
STD 3.972 39.26 264.11
C.I. 2.841 28.09 188.933

P Value 0.446 2E-06 0.00011

Matching

1

mean 0.2 142.8 -263.6
STD 2.616 66.07 216.977
C.I. 1.872 47.26 155.216

P Value 0.814 8E-05 0.00396

2

mean 0.5 134.4 -294
STD 4.601 40.65 261.546
C.I. 3.291 29.08 187.099

P Value 0.739 2E-06 0.00617

Chapter 5. Experimental Results 82

FIGURE 5.27: Comparison of Non-dominated Sorting Genetic Algorithm with exist-
ing heuristics for Measles virus (Also see Table 5.29)

TABLE 5.29: Comparison of Non-dominated Sorting Genetic Algorithm with existing
heuristics for Measles virus (Also see Figure 5.27)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

Greedy

1

mean 3.4 61.6 -665
STD 8.98394 142.8 165.9
C.I. 6.42672 102.2 118.7

P Value 0.26197 0.206 5E-07

2

mean 18.6 -139 -714
STD 4.74225 26.22 250.1
C.I. 3.3924 18.76 178.9

P Value 5.8E-07 4E-08 8E-06

Matching

1

mean 4.9 63.1 -416
STD 10.0383 147.3 170.1
C.I. 7.18094 105.4 121.7

P Value 0.15708 0.209 3E-05

2

mean 20.1 -138 -465
STD 3.92853 33.64 146.1
C.I. 2.8103 24.06 104.5

P Value 5.8E-08 4E-07 3E-06

Chapter 5. Experimental Results 83

FIGURE 5.28: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Measles virus (Also see Table 5.30)

TABLE 5.30: Comparison of Non-dominated Sorting Genetic Algorithm with local
search techniques for Measles virus (Also see Figure 5.28)

Heuristic Mutation type ∆f1 ∆f2 ∆f3

HC

1

mean 5.2 -117 -187
STD 9.727 150.7 252.9
C.I. 6.959 107.8 180.9

P Value 0.125 0.037 0.044

2

mean 18.7 -291 -193
STD 5.165 66.95 207.8
C.I. 3.695 47.89 148.7

P Value 1E-06 2E-07 0.016

SAHC

1

mean 5 -90.4 -168
STD 9.707 158.3 163.7
C.I. 6.944 113.3 117.1

P Value 0.138 0.104 0.01

2

mean 19.3 -289 -188
STD 5.314 56.17 229.2
C.I. 3.801 40.18 164

P Value 1E-06 6E-08 0.029

SAHCwR

1

mean 4.7 -79.7 -152
STD 8.769 173.3 206.9
C.I. 6.273 124 148

P Value 0.124 0.18 0.045

2

mean 19.6 -272 -171
STD 6.637 53.6 229.4
C.I. 4.748 38.35 164.1

P Value 6E-06 6E-08 0.043

Chapter 5. Experimental Results 84

5.3 Summary

This chapter mainly deals with our experimental techniques and the output of simulation

results. These are not only shown in tabular format but also a discussion have been done

revealing the reasons behind their behavior.

Chapter 6

Conclusion

This thesis deals with a topic which falls under the subfield of bioinformatics, namely

synthetic biology. The main idea of this study is to find a genome sequence which aids

the biologists to obtain maximum amount of flexibility and independence to conduct

experiments with the sequence in question. Another aim is to give opportunity for

investigation of vaccine invention. To this end, for making a genome sequence uniquely

prone to enzymes, we proposed to apply metaheuristics process. We conclude the thesis

presenting our findings from our research and future directions.

6.1 Findings

This is the first attempt taken for applying high level search techniques to solve optimal

placement of unique restriction sites in synthetic genomes. Our aim is to provide a

better genome sequence that the existing tool, PRESTO can provide. From our study

we have found that local search techniques performs better in terms of enzyme insertion

and maintaining uniform gap between consecutive unique sites. In case of local search,

as we increase the extent of exploration the improvement increases, i.e., Steepest Ascent

Hill climbing with Replacement is better than Steepest Ascent Hill Climbing which

performs better than basic Hill Climbing. In each case, we see that our 2nd breeding

operator (Mutation 2) leads to reach at a more qualitative candidate solution. Here, the

reason is again the ‘injection of higher exploration’.

85

Chapter 6. Conclusion 86

In case of variations of genetic algorithms, the results are not satisfactory even though

they explores the search space in higher order. Since URSPP is a discrete optimiza-

tion problem and discrete optimization does not require too much exploration genetic

algorithms can not provide expected results even with the ‘injection of exploitation’.

Here we have experimented with real viral sequence and to the degeneracy property of

codon make a genome sequence more fault-tolerant for point mutations. Hence, the use

of crossover instead of mutation as breeding operator here might affect the results. Fi-

nally, we see that Non-Dominating Sorting Genetic Algorithm offers best results among

all algorithms.

6.2 Future Direction

As discussed in previous section, impact of multi-objective tournament selections can

not be perceived properly due to the crossover effect. The Evolutionary Strategies

(λ + µ) algorithms1 use only mutations as their breeding operator. So, this family of

algorithms can be applied here to investigate which tournament selection among Mul-

tiobjective Lexicographic Tournament Selection (mlts), Multiobjective Majority Tour-

nament Selection (mmts) and Multiobjective Ratio Tournament Selection (mrts) works

better. Additionally, we have seen NSGA returns a comparatively larger front. Defining

an appropriate notion to select a good candidate solution among all candidates of same

rank might be a possible future work. Another future research issue can be the analysis

of the influence of using Strength Pareto Evolutionary Algorithms2 in URSPP.

Over the last few decades synthetic biology and computer science have made great

strides. Biologists are now in a position of being faced with biological information of

such volume that it is impossible to analyze the information by pen and paper. The next

step must be to create computational tools to use this information effectively. Hope-

fully this thesis will serve as a step in that direction. We believe that collaboration of

biologists and computer scientists will do wonders for mankind in this century.

1Here, in each iteration, λ number of individuals comprise the population and only µ fittest individuals
participate to produce next generation through mutation.

2Strength of an individual is how many other individuals it can pareto dominate. and SPEA algorithms
use notions related to strength to find a better quality candidate.

Bibliography

[1] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle

switch in escherichia coli. Nature, 403(6767):339–342, 2000.

[2] Y. Cai Y, M. W. Lux, L. Adam, and J. Peccoud. Modeling structure-function

relationships in synthetic dna sequences using attribute grammars. PLoS Comput

Biol, 5(10), 2009.

[3] P. Montes, H. Memelli, C. B. Ward, J. Kim, J. S. B. Mitchell, and S. Skiena.

Optimizing restriction site placement for synthetic genomes. In CPM, pages 323–

337, 2010.

[4] S. A. Benner and A. M. Sismour. Synthetic biology. Nat Rev Genet., 6(7):533–

543, 2005.

[5] D. Endy. Foundations for engineering biology. Nature, 438(7067):449–453, 2005.

[6] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss. Synthetic biology: new

engineering rules for an emerging discipline. Mol Syst Biol, pages 2–28, 2006.

[7] M. Heinemann and S. Panke. Synthetic biology–putting engineering into biology.

Bioinformatics, 22(22):2790–2799, 2006.

[8] http://ec.europa.eu/research/fp6/index_en.cfm?p=8_

nest3.

[9] http://commcgi.cc.stonybrook.edu/am2/publish/Medical_

Center_Health_Care_4/SBU_Team_Designs_Customized_

Wimpy_Polioviruses_A_Method_That_Could_Be_A_New_Path_

To_Vaccines.shtml.

[10] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans. Software

Eng., 30(2):126–139, 2004.

87

http://ec.europa.eu/research/fp6/index_en.cfm?p=8_nest3
http://ec.europa.eu/research/fp6/index_en.cfm?p=8_nest3
http://commcgi.cc.stonybrook.edu/am2/publish/Medical_Center_Health_Care_4/SBU_Team_Designs_Customized_Wimpy_Polioviruses_A_Method_That_Could_Be_A_New_Path_To_Vaccines.shtml
http://commcgi.cc.stonybrook.edu/am2/publish/Medical_Center_Health_Care_4/SBU_Team_Designs_Customized_Wimpy_Polioviruses_A_Method_That_Could_Be_A_New_Path_To_Vaccines.shtml
http://commcgi.cc.stonybrook.edu/am2/publish/Medical_Center_Health_Care_4/SBU_Team_Designs_Customized_Wimpy_Polioviruses_A_Method_That_Could_Be_A_New_Path_To_Vaccines.shtml
http://commcgi.cc.stonybrook.edu/am2/publish/Medical_Center_Health_Care_4/SBU_Team_Designs_Customized_Wimpy_Polioviruses_A_Method_That_Could_Be_A_New_Path_To_Vaccines.shtml

Bibliography 88

[11] N. Kuldell and N. Lerner. Genome refactoring. Morgan and Claypool Publishers.,

ISBN-10: 1598299476:126–139, 2009.

[12] L. Chan, S. Kosuri, and D. Endy. Refactoring bacteriophage t7. Mol. Syst. Biol.,

1, 2005.

[13] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers & OR, 13(5):533–549, 1986.

[14] C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. Black-

well Scientific Publishing, Oxford, England, 1993.

[15] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Opera-

tions Research, 63:513–623, 1996.

[16] S. Vo, S. Martello, I. H. Osman, and C. Roucairol. Meta-Heuristics - Advances and

Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers,

Dordrecht, The Nether-lands, 1999.

[17] T. Stützle. Local search algorithms for combinatorial problems - analysis, im-

provements, and new applications, volume 220 of DISKI. Infix, 1999. ISBN

978-3-89601-220-3.

[18] F. Glover and M. Laguna. TABU search. Kluwer, 1999. ISBN 978-0-7923-9965-0.

[19] A. E. Eiben and C. A. Schippers. On evolutionary exploration and exploitation.

Fundam. Inform., 35(1-4):35–50, 1998.

[20] C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels, editors. Hybrid Metaheuris-

tics, An Emerging Approach to Optimization, volume 114 of Studies in Computa-

tional Intelligence. Springer, 2008. ISBN 978-3-540-78294-0.

[21] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont. Evolutionary Algorithms

for Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002. ISBN

ISBN-10: 0306467623.

[22] D. A. V. Veldhuizen and B. G. Lamont. Multiobjective evolutionary algorithms:

Analyzing the state-of-the-art. Evolutionary Computation, 8(2):125–147, 2000.

[23] S. Luke. Essentials of metaheuristics. Genetic Programming and Evolvable Ma-

chines, 12(3):333–334, 2011.

Bibliography 89

[24] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, 1975.

[25] K. D. Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems.

PhD thesis, University of Michigan, 1975.

[26] D. Whitley and J. Kauth. GENITOR: A Different Genetic Algorithm. Colorado

State University Press, 1988.

[27] T. Bäck, U. Hammel, and H. P. Schwefel. Evolutionary computation: comments

on the history and current state. IEEE Trans. Evolutionary Computation, 1(1):

3–17, 1997.

[28] E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors. Evolutionary

Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich,

Switzerland, March 7-9, 2001, Proceedings, volume 1993 of Lecture Notes in

Computer Science, 2001. Springer. ISBN 3-540-41745-1.

[29] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley,

Chichester, UK, 2001.

[30] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University

of Alberta, 1981.

[31] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting

in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[32] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2:83–97, 1955.

[33] http://www.blueheronbio.com/.

[34] http://www.origene.com/about/corporate/.

[35] http://www.geneart.com.

[36] P. Evans and C. Liu. Sitefind: A software tool for introducing a restriction site as

a marker for successful site-directed mutagenesis. BMC Mol. Biol., 6(22), 2005.

[37] I. Anand, S. Kosuri, and D. Endy. Genejax: A prototype cad tool in support of

genome refactoring. Morgan and Claypool Publishers., 2006.

[38] S. Skiena. Designing better phages. Bioinformatics, 17:S253–S261, 2001.

http://www.blueheronbio.com/
http://www.origene.com/about/corporate/
http://www.geneart.com

Bibliography 90

[39] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975.

[40] http://en.wikipedia.org/wiki/Genetic_code.

[41] S. Luke and L. Panait. Lexicographic parsimony pressure. In Proc. of GECCO,

pages 148–157, 2002.

[42] http://www.ncbi.nlm.nih.gov/. [Online; accessed 16-January-2012].

[43] R. Roberts, T. Vincze, J. Posfai, and D. Macelis. Rebase-a database for dna re-

striction and modification: enzymes, genes and genomes. Nucl. Acids Res., 38:

D234–D236, 2010.

[44] M. O’Mahony. Sensory Evaluation of Food: Statistical Methods and Procedures.

CRC Press, 1986. ISBN 0-8247-7337-3.

[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.

ISBN 0-521-43108-5.

[46] http://www.algorithm.cs.sunysb.edu/presto/.

[47] M. Sharmin, M., and M. S. Rahman. Local search techniques for placing unique

restriction sites in synthetic genomes. In Proc of BICOB, 2012.

[48] N. C. Jones and P. Pevzner. Introduction to Bioinformatics Algorithms. The MIT

Press, 2004.

[49] M. Gerstein. Bioinformatics Introduction. University of Yale Press, 1999.

[50] http://www.metaheuristics.net/.

[51] E. Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009. ISBN

978-0-470-27858-1.

[52] J. R. Coleman, D. Papamichail, S. Skiena, B. Futcher, E. Wimmer, and S. Mueller.

Virus attenuation by genome-scale changes in codon pair bias. Science, 320

(5884):1784–1787, 2008.

[53] S. M. Richardson, S. J. Wheelan, R. M. Yarrington, and J. D. Boeke. Genedesign:

Rapid, automated design of multikilobase synthetic genes. Genome Res., 16(4):

550–556, 2006.

http://en.wikipedia.org/wiki/Genetic_code
http://www.ncbi.nlm.nih.gov/
http://www.algorithm.cs.sunysb.edu/presto/
http://www.metaheuristics.net/

Bibliography 91

[54] D. L. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone, A. Day, E. Nickerson,

E. J. Stajich, W. T. Harris, A. Arva, and S. Lewis. The generic genome browser:

A building block for a model organism system database. Genome Res., 12:1599–

1610, 2002.

[55] E. Wimmer, S. Mueller, T. Tumpey, and J. Taubenberger. Synthetic viruses: a

new opportunity to understand and prevent viral disease. Nature Biotech., 27(12),

2009.

[56] M. Dayhoff. Computer analysis of protein evolution. Sci Am, 221(1):86–95, 1969.

[57] R. D. Fleischmann, O. White M. D. Adams, R. A. Clayton, E. F. Kirkness, A. R.

Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, and et al.

Whole-genome random sequencing and assembly of haemophilus influenzae rd.

Science, 269(5223):496–512, 1995.

[58] R. F. Doolittle, M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A.

Aaronson, and H. N. Antoniades. Simian sarcoma virus onc gene, v-sis, is derived

from the gene (or genes) encoding a platelet-derived growth factor. Science, 221

(4607):275–277, 1983.

[59] M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Waste-

son, B. Westermark, C. H. Heldin, J. S. Huang, and T. F. Deuel. Platelet-derived

growth factor is structurally related to the putative transforming protein p28sis of

simian sarcoma virus. Nature, 304(5921):35–39, 1983.

[60] P. Hogeweg and D. B. Searls. The roots of bioinformatics in theoretical biology.

PLoS Computational Biology, 7(3):90–96, 2011.

[61] P. Hogeweg. Simulating the growth of cellular forms. Simulation, 31(3):90–96,

1978.

	Declaration of Authorship
	Board of Examiners
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Synthetic Biology
	1.1.1 Computer Science and Synthetic Biology

	1.2 Problem Background
	1.3 Contribution in this Thesis
	1.4 Organization of the Thesis
	1.4.1 Preliminaries
	1.4.2 Literature Survey
	1.4.3 URSPP in Synthetic Genomes by Metaheuristics
	1.4.4 Experimental Results
	1.4.5 Conclusion

	2 Preliminaries
	2.1 Synthetic biology
	2.1.1 Viral Genome Synthesis
	2.1.2 Refactoring: Genome Vs. Software
	2.1.3 Restriction Enzymes and Restriction Sites
	2.1.4 Protein and Amino acid
	2.1.5 Genetic Code: Codon
	2.1.6 Subcloning

	2.2 Problem Statement
	2.3 Definition of Metaheuristics
	2.4 Single State Methods
	2.4.1 Hill Climbing
	2.4.2 Steepest Ascent Hill Climbing
	2.4.3 Steepest Ascent Hill Climbing with Replacement

	2.5 Population Methods
	2.5.1 Genetic Algorithm
	2.5.2 Genetic Algorithm with Elitism
	2.5.3 Steady State Genetic Algorithm

	2.6 Evolutionary Multiobjective Optimization
	2.7 Selection Procedure
	2.7.1 Tournament Selection
	2.7.2 Multiobjective Tournament Selection

	2.8 Non-Dominated Sorting Genetic Algorithm
	2.9 Summary

	3 Literature survey
	3.1 Previous Results on URSPP
	3.2 Related Works on Gene Synthesis
	3.3 Summary

	4 URSPP in Synthetic Genomes by Metaheuristics
	4.1 Motivation behind Application of Metaheuristics
	4.2 Proposed Methodology
	4.2.1 Candidate Solution Representation
	4.2.2 Breeding Operators
	4.2.3 Quality Assessment

	4.3 Algorithms
	4.3.1 Local Search Techniques
	4.3.2 Hybrid Genetic algorithm
	4.3.3 Non-Dominated Sorting Genetic Algorithm

	4.4 Summary

	5 Experimental Results
	5.1 Statistical Test
	5.1.1 Paired or Unpaired Test
	5.1.2 The T Test
	5.1.3 Concept of null hypothesis
	5.1.4 Significance levels
	5.1.5 One or Two sided P Value
	5.1.6 Confidence Interval (C.I.)

	5.2 Simulation Results
	5.2.1 Experimental set up and Representation
	5.2.2 Results summary and Analysis

	5.3 Summary

	6 Conclusion
	6.1 Findings
	6.2 Future Direction

