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Abstract

A plane graph is a planar graph with a fixed embedding in the plane. In a

box- rectangular drawing of a plane graph, every vertex is drawn as a rectangle,

called a box, each edge is drawn as either a horizontal line segment or a vertical

line segment, and the contour of each face is drawn as a rectangle. A planar

graph is said to have a box-rectangular drawing if at least one of its plane

embeddings has a box-rectangular drawing. In this thesis we give a linear-time

algorithm to examine whether a planar graph G has a box-rectangular drawing

or not, and to find a box-rectangular drawing of G if it exists. We first give an

algorithm for box-rectangular drawings of planar graphs of the maximum degree

three. We then reduce the problem of box-rectangular drawings of planar graphs

of the maximum degree four or more to the problem of box-rectangular drawings

of planar graphs of the maximum degree three.
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Chapter 1

Introduction

A graph is a powerful tool to depict real life circumstances mathematically or

by visualization where real world objects and entities are represented by small

dots named vertices and relationships among them are represented by connect-

ing lines called edges . Graph theory is widely used in all branches of Computer

Science and Engineering. Uses of graphs are found not only in computer sci-

ence but also in other fields of engineering, genetics, bioinformatics, molecular

biology, chemistry, and even in geology and social sciences. One of the estab-

lished techniques of information visualization is to draw a graph representing

the information to be visualized with desired criteria. The field in which the

different aesthetic techniques of drawing graphs are vividly studied is known as

“Graph Drawing”.

Concept of Graph Drawing is very ancient, but the use of it in computer sci-

ence is not old enough. For the last two decades automatic drawings of graphs

have created intense interest due to their broad applications, and as a conse-

quence, a number of drawing styles and corresponding drawing algorithms have

emerged [DET99]. The graph in Fig. 1.1(a) having nine vertices and twelve

edges can easily be visualized in two ways as in Fig. 1.1(a) and in Fig. 1.1(b)

which are different drawing techniques generally used in graph drawing. Dif-

ferent drawing styles play a very important role in circuit layouts, database

diagrams, entity relationship diagrams etc. [B96, K96, S84, T87, TTV91], in

VLSI floorplanning [KK84, L90, RNN98, RNN00, RNN02, TTSS91], and in

architectural floorplanning [MKI00, BGPV08].

In the field of graph drawing, the geometric representations of graphs gener-
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Figure 1.1: Two different drawings (b) and (c) of a same graph (a) in VLSI

layout.

ated by graph drawing algorithms are constrained by some predefined geomet-

ric or aesthetic properties. The objective of graph drawing is to obtain a nice

representation of a graph such that the structure of the graph is easily under-

standable, moreover the drawing should help to resolve the question arises from

the application point of view using predefined properties.

A plane graph is a planar graph with a fixed embedding in the plane. A

box-rectangular drawing of a plane graph G is a drawing of G in which each

vertex is drawn as a rectangle, called a box, each edge is drawn as a hori-

zontal line segment or a vertical line segment, and the contour of each face

is drawn as a rectangle. A planar graph is said to have a box-rectangular

drawing if at least one of its plane embeddings has a box-rectangular drawing.

Box-rectangular drawings have many applications in VLSI floorplanning and in

architectural floorplanning. Not all graphs have box-rectangular drawings. In

this thesis we first address a necessary and sufficient condition for the existence

of box-rectangular drawing of a planar graph. Then we establish a linear-time

algorithm to find a box-rectangular drawing if it exists .

2



In the rest of this chapter, we provide with the necessary background and ob-

jectives for this thesis. We describe box-rectangular drawings of planar graphs in

Section 1.1. Section 1.2 depicts some interesting applications of box-rectangular

drawings. Section 1.3 presents the scope of this thesis with a brief overview of

the previous results related to the scope. The new results of the thesis are also

described in the same Section 1.3. Finally the thesis organization is narrated in

Section 1.4.

1.1 Box-Rectangular Drawings of Planar Graphs

In this section we describe the definitions of different types of drawings, and

differences between rectangular drawings and box-rectangular drawings of plane

graphs.

1.1.1 Rectangular Drawing of a Plane Graph

(b)(a)

a

h

d

i

fc

e

h ig

d
e

f

a b cb

g

Figure 1.2: (a) A plane graph G, (b) rectangular drawing of the plane graph G.

A rectangular drawing of a plane graph G is a drawing of G, where each

vertex is drawn as a point, each edge is drawn as a horizontal or vertical line

3



segment, and each face is drawn as a rectangle. Figure 1.2(b) is a rectangular

drawing of a planar graph G (Fig. 1.2(a)).

1.1.2 Box-Rectangular Drawing of a Plane graph

(b)(a)
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���

cb
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f

e

i

h

a

d

g

b

e

h

c

f

i

d

g

Figure 1.3: (a) A plane graph G, (b) box-rectangular drawing of the plane graph

G.

A box-rectangular drawing of a plane graph G is a drawing of G, where each

vertex is drawn as a rectangle, called a box, each edge is drawn as a horizontal

or vertical line segment, and the contour of each face is drawn as a rectangle.

Figure 1.3(b) is a box-rectangular drawing of the plane graph G in Fig. 1.3(a).

1.1.3 Differences Between Rectangular Drawings and Box-

Rectangular Drawings of Plane Graphs

If a plane graph G with ∆ ≤ 3 has a rectangular drawing, then the graph G must

have a box-rectangular drawing, and the drawings are same for G, as illustrated

in Fig. 1.4. But if a plane graph G with ∆ ≤ 3 has a box-rectangular drawing,

then the graph G may not have a rectangular drawing. The plane graph G in

Fig. 1.5(b) with ∆ ≤ 3 has a box-rectangular drawing as in Fig. 1.5(c) but not

a rectangular drawing. Similarly if a plane graph G for a planar graph in Fig.

4



(b)(a)

ba

c d

e

f

c d

f

e

a b

Figure 1.4: (a) A plane graph G with ∆ ≤ 3, (b) same rectangular drawing and

box-rectangular drawing of the plane graph G.

1.1(a) with ∆ = 4 has a rectangular drawing, then the graph G must have a

box-rectangular drawing, but the drawings are not same for G, as illustrated in

Figures 1.1(b) and 1.1(c). Because vertices of degree 4 or more are drawn as

real boxes in the box-rectangular of a plane graph with ∆ ≥ 4. If a plane graph

G with ∆ = 4 has a box-rectangular drawing, then the graph G may not have

a rectangular drawing. A multi graph does not have a rectangular drawing but

may have a box-rectangular drawing like Fig. 1.3. For a plane graph G with

∆ > 4, there is no rectangular drawing, but box-rectangular drawing may exist.

Figure 1.3 describes this case. Lastly a graph with a cut vertex does not have

a rectangular drawing but may have a box-rectangular drawing.

1.1.4 Box-Rectangular Drawing of a Planar Graph

A planar graph is said to have a box-rectangular drawing if at least one of

its plane embeddings has a box-rectangular drawing. Figure 1.5(a) is a planar

graph G. Figure 1.5(b) is a plane embedding of G for which G has a box-

rectangular drawing. Finally figure 1.5(c) is a box-rectangular drawing of the

planar graph G.
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Figure 1.5: (a) A planar graph G, (b) a plane embedding Γ of G for which

box-rectangular drawing exists, and (c) box-rectangular drawing of the planar

graph G.
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1.2 Applications of Box-Rectangular Drawings

Box-rectangular drawings of planar graphs have number of applications in the

areas of VLSI Layouts and architectural floorplanning .

1.2.1 VLSI Layout

d

(b) (c)

C F F’

(a)

a
d

b

c

e

g

f

h

a

b

d

c

e

g

f

h

a

b

d

c

e

g

f

h

a

b

e f

h

c

d g

G

a

b

c

e

g

f

h

D
(e)(d)

Figure 1.6: Floorplanning by a rectangular drawing.

Rectangular drawings have practical applications in VLSI floorplanning. In

a VLSI floorplanning problem, an input is a circuit schematic C as illustrated

in Figure 1.6(a) so that it can be transformed to a plane graph F as in Figure

1.6(b); F represents the functional entities of the chip, called modules , and

interconnections among the modules; each vertex of F represents a module,

and an edge between two vertices of F represents the interconnection between

the two corresponding modules. An output of the problem for the transformed

graph F is a partition of a rectangular chip area into smaller rectangles as

illustrated in Figure 1.6(e); each module is assigned to a smaller rectangle, and

furthermore, if two modules have interconnections, then their corresponding

rectangles must be adjacent, that is, must have common boundary.

A conventional floorplanning algorithm using rectangular drawings is out-

lined as follows. First, obtain a graph F ′ by triangulating all inner faces of

7



F as illustrated in Figure 1.6(c), where dotted lines indicate new edges added

to F . Then obtain a dual-like graph G of F ′ as illustrated in Figure 1.6(d).

Finally, by finding a rectangular drawing of G, obtain a possible floorplan for

F as illustrated in Figure 1.6(e).

In the conventional floorplan above, two rectangles are always adjacent if

the modules corresponding to them have interconnections. However, two rect-

angles may be adjacent even if the modules corresponding to them have no

interconnections. For example, modules a and e have no interconnection in

Figure 1.6(a), but their corresponding rectangles are adjacent in the floorplan

as in Figure 1.6(e). Such unwanted adjacencies are not desirable in some other

floorplanning problems. In floorplanning of an MCM , two chips generating ex-

cessive heat should not be adjacent, or two chips operating on high frequency

should not be adjacent to avoid malfunctioning due to their interference [S95].

(b)

FC

(a)

d

a

b

c

e

h

f

g

b

a

d

c

g

h

a

b

d

c

f

g

h

e

a

b

d

c

e

g

f

h

(c)

DG
(d)

fe

Figure 1.7: Floorplanning by a box-rectangular drawing.

We can avoid unwanted adjacencies if we obtain a floorplan for F by using

a box-rectangular drawing instead of a rectangular drawing, as follows. First,

without triangulating the inner faces of F , find a dual-like graph G of F as

8



illustrated in Figure 1.7(c). Then, by finding a box-rectangular drawing of G,

obtain a possible floorplan for F as illustrated in Figure 1.7(d). In Figure 1.7(d)

modules a and e are not adjacent. They are as separated by a dead space drawn

by a rectangular box corresponding to a vertex of G .

1.2.2 Architectural Floorplanning

Unwanted adjacencies may cause a dangerous situation in some architectural

floorplanning, too [FW74]. For example, in a chemical industry, a processing

unit that deals with poisonous chemicals should not be adjacent to a cafeteria.

Such a dead space as in Figure 1.7(d) to separate two rectangles in floorplanning

is desirable for ensuring safety in a chemical industry.

1.3 Scope of This Thesis

In this section we first mention the previous results related to box-rectangular

drawings of planar graphs. After that we will discuss the results obtained in

this thesis.

1.3.1 Previous Results

Thomassen [T84] obtained a necessary and sufficient condition for a plane graph

of ∆ ≤ 4 to have a rectangular drawing when a quadruplet of vertices of degree

two on the outer face are designated as convex corners. Linear-time algorithms

are given in [BS88, H93, KH97, RNN98] to obtain a rectangular drawing of such

a plane graph. We say that a plane graph G has a rectangular drawing if there

is a rectangular drawing of G for some quadruplet of vertices appropriately

chosen as corners. Rahman et al. [RNN02] gave a necessary and sufficient

condition for a plane graph of ∆ ≤ 3 to have a rectangular drawing (for some

appropriately chosen quadruplet), and developed a linear-time algorithm to

choose such a quadruplet and find a rectangular drawing of a plane graph for

the chosen corners if they exist. Rahman et al. [RNN00] gave a necessary and

sufficient condition for a plane graph to have a box-rectangular drawing, and

developed a linear-time algorithm to draw a box-rectangular drawing of a plane

graph if it exists. Xin He [H01] did the same task for proper box- rectangular

9



drawings of plane graphs. Rahman et al. [RNG04] gave a linear-time algorithm

to examine whether a planar graph G with ∆ ≤ 3 has a rectangular drawing

and to find a rectangular drawing of G if it exists. Since a planar graph G

may have an exponential number of embeddings, determining whether G has

a box-rectangular drawing or not using the linear algorithm of Rahman et al.

[RNN00] for each embedding of G takes exponential time. Thus to develop an

efficient algorithm to examine whether a planar graph has a box-rectangular or

not is a non-trivial problem. Rahman et al. mentioned that extending their

work in [RNG04], one can obtain a linear-time algorithm which can test whether

a planar graph has a box-rectangular drawing or not and find a box-rectangular

drawing if it exists. But such algorithm has not been developed till now.

1.3.2 Results in This Thesis
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(b)
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Figure 1.8: Box-rectangular drawing of a planar graph G with cut vertices.

In this thesis we mainly develop two different algorithms. We give linear-
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time algorithms to examine whether a planar graph G has a box-rectangular

drawing and to find a box-rectangular drawing of G if it exists. We can assume

in our thesis that, G is connected and has neither a vertex of degree 1 nor a

1-legged cycle; otherwise the planar graph G does not have a box-rectangular

drawing as all the faces of the graph can not be drawn as rectangular faces

simultaneously. If a planar graph G has neither a vertex of degree 1 nor a 1-

legged cycle, and if the graph G is 1-connected, then the cut vertex v must be

of degree 4 or more. In Fig. 1.8(a) G is a such kind of planar embedding. c1, c2,

and c3 are the cut vertices. If G is not a multi graph, then G1, G2, G3, and G4 are

the different 2-connected components of G with respect to cut vertices. If G has

a box-rectangular drawing DG, then all the cut vertices must reside on the outer

face FO(DG) of the drawing DG. All the connected components G1, G2, G3, and

G4 have box-rectangular drawings separately, as illustrated in Fig. 1.8(b). If

any of the components G1, G2, G3, and G4 contains exactly one cut vertex, then

that component must have a box-rectangular rectangular drawing with at least

one corner box containing two corners. G1 and G4 are such kind of components

drawn as box-rectangular drawings DG1
and DG4

, respectively as illustrated

in Fig 1.8(b). If any of the components G1, G2, G3, and G4 contains two cut

vertices, then that component must have a box-rectangular rectangular drawing

with exactly two corner boxes. Each corner box contains exactly two corners.

G2 and G3 are such kind of components drawn as box-rectangular drawings DG2

and DG3
, respectively as illustrated in Fig 1.8(b). No component contains 3 or

more cut vertices; otherwise box-rectangular drawing does not exist for G, as

the outer face FO(G) must be rectangular shape in the drawing. If all the box-

rectangular drawings DG1
, DG2

, DG3
and DG4

are merged together, then we will

get another box-rectangular drawing DG of the planar graph G, as illustrated

in Fig. 1.8(c). Similar box-rectangular drawing also exists for G, even if the

above planar 1-connected graph G is a multigraph. As the case, box-rectangular

drawing of a planar 1-connected graph, is a trivial observation, we consider only

2-connected graphs in our thesis.

• We first consider the case for a planar graph G where ∆ ≤ 3. At first we

consider the case where G is a ”subdivision” of a planar 3-connected cubic

graph. A subdivision of a planar 3-connected cubic graph G has exactly

one embedding for each face embedded as the outer face [NC88]. Hence

11



G has an O(n) number of embeddings, one for each each chosen outer

face. Thus, the straightforward algorithm takes O(n2) time to examine

whether the planar graph G has a box-rectangular drawing. We, however,

obtain a necessary and sufficient condition for a subdivision of a planar 3-

connected cubic graph G to have a box-rectangular drawing, which leads

to a linear-time algorithm to examine whether the planar graph G has a

box-rectangular drawing. If G is not a subdivision of a planar 3-connected

cubic graph, then G may have an exponential number of embeddings, and

hence a straightforward algorithm does not run in polynomial time. We,

however, develop a linear time algorithm to examine whether G has a

box-rectangular drawing or not; we indeed show that it suffices to examine

whether only four embeddings of G have box-rectangular drawings or not.

• We secondly consider the case for a planar 2-connected graph G where

∆ ≥ 4. In this portion we first consider the case where G is a ”subdivision”

of a planar 3-connected graph. We replace the vertices of degree 4 or more

by cycles in an arbitrary plane embedding Γ of G, call the planar graph

H, which takes linear-time. Then we develop a linear-time algorithm to

examine whether H has a box-rectangular drawing or not. We also show

that whether G has a box-rectangular drawing can be tested by whether H

has a box-rectangular drawing. Secondly if a graph G with ∆ ≥ 4 is not a

subdivision of a planar 3-connected graph, then the graph is 2-connected.

For this case we show here that, we need to check 81 number of graphs,

whether any one them has a box-rectangular drawing, to decide whether

the planar graph G has a box-rectangular drawing, leads to a linear-time

algorithm.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some

basic terminologies of graph theory, and algorithmic theory. Chapter 2 also

describes the algorithm for finding box-rectangular drawings of plane graphs,

and its related results. In Chapter 3, we describe a necessary and sufficient

condition with a linear-time algorithm for a planar graph G with ∆ ≤ 3 to have

a box-rectangular drawing and to do the drawing if drawing exists. Chapter 4

12



illustrates a necessary and sufficient condition for a planar 2-connected graph

G with ∆ ≥ 4 to have a box-rectangular drawing and describes also the linear-

time algorithm for finding out the drawing if drawing exists. Finally Chapter 5

concludes the thesis with a summary of the results and some future works.

13



Chapter 2

Preliminaries

In this chapter we define some basic terminologies of graph theory, graph draw-

ing, box-rectangular drawing, and algorithm theory, that we will use through-

out the rest of this thesis. In Section 2.1, we cover some definitions of stan-

dard graph-theoretical terms. We devote Section 2.2 to define terms related to

planar graphs. Section 2.3 defines some drawing conventions and Section 2.4

consists of the terms related to a box-rectangular drawing. Description about

box-rectangular drawings of plane graphs is told in Section 2.5. Finally we

introduce the notion of time complexity of algorithms in Section 2.6.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis. For readers interested in more details of graph theory

we refer to [NC88, NR04, Wes01].

2.1.1 Graphs and Subgraphs

A graph G is a tuple (V,E) which consists of a finite set V of vertices and a finite

set E of edges; each edge being an unordered pair of vertices. Figure 2.1 depicts

a graph G = (V,E) where each vertex in V = {v1, v2, . . . , v6} is drawn as a

small circle and each edge in E = {e1, e2, . . . , e8} is drawn by a line segment.

We denote an edge joining two vertices u and v of the graph G = (V,E) by

(u, v) or simply by uv. If uv ∈ E then the two vertices u and v of the graph G

are said to be adjacent; the edge uv is then said to be incident to the vertices

14
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Figure 2.1: (a) A graph G with six vertices and eight edges, (b) a subgraph G′

for G in (a).

u and v; also the vertex u is said to be a neighbor of the vertex v (and vice

versa). We denote the maximum degree of a graph G by ∆(G) or simply by

∆. The degree of a vertex v in G, denoted by d(v) or deg(v), is the number of

edges incident to v in G. In the graph shown in Figure 2.1(a) vertices v1 and

v2 are adjacent, and d(v6) = 4, since four of the edges, namely e5, e6, e7 and

e8 are incident to v6. A graph G is called cubic if d(v) = 3 for every vertex v.

A Subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V

and E ′ ⊆ E. If G′ contains all the edges of G that join vertices in V ′, then G′

is called the subgraph induced by V ′. Figure 2.1(b) depicts a subgraph of G in

Fig. 2.1(a) induced by v2, v3, v5, and v6. If V ′ = V , then G′ is called a spanning

subgraph of G. For V ′ ⊆ V , G−V ′ denotes a gaph obtained from G by deleting

all vertices in V ′ together with all edges incident to them. For a subgraph G′

of G, we denote by G − G′ the graph obtained from G by deleting all vertices

in G′.

2.1.2 Simple Graphs and Multigraphs

If a graph G has no “multiple edges” or “loops”, then G is said to be a simple

graph. Multiple edges join the same pair of vertices, while a loop joins a vertex

with itself. The graph in Figure 2.1(a) is a simple graph.

A graph in which loops and multiple edges are allowed is called a multi-

graph. Multigraphs can arise from various applications. One example is the

“call graph” that represents the telephone call history of a network. The graph

in Figure 2.2(a) is a call graph that represents the call history among six sub-
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Figure 2.2: Multigraphs.

scribers. Note that there is no loop in this graph. Figure 2.2(b) illustrates

another multigraph with multiple edges and loops.

Often it is clear from the context that the graph is simple. In such cases,

a simple graph is called a graph. In the remainder of thesis we will only be

concerned about graphs that may have multiple edges but no loops.

2.1.3 Paths and Cycles

A walk, w = v0, e1, v1, . . . , vl−1, el, vl, in a graph G is an alternating sequence

of vertices and edges of G, beginning and ending with a vertex, in which each

edge is incident to the two vertices immediately preceding and following it. The

vertices v0 and vl are said to be the end-vertices of the walk w.

If the vertices v0, v1, . . . , vl are distinct (except possibly v0 and vl), then the

walk is called a path and usually denoted either by the sequence of vertices

v0, v1, . . . , vl or by the sequence of edges e1, e2, . . . , el. The length of the path is

l, one less than the number of vertices on the path. For any two vertices u and

v of G, a uv-path in G is a path whose end-vertices are u and v.

A walk or path w is closed if the end-vertices of w are the same. A closed

path containing at least one edge is called a cycle.
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2.1.4 Chain and Support

Let P = w0, w1, w2, . . . , wk+1, k ≥ 1, be a path of G such that d(w0) ≥ 3,

d(w1) = d(w2) = . . . d(wk) = 2, and d(wk+1) ≥ 3. Then we call the subpath

P ′ = w1, w2, . . . , wk of P a chain of G and call vertices w0 and wk+1 the supports

of the chain P ′. If G is a subdivision of 3-connected graph, then any vertex of

degree 2 in G is contained in exactly one of the chains of G. Two chains of G

are adjacent if they have a common support.

2.1.5 Graph Subdivision

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge

(u, v) and adding a path u(= w0), w1, w2, . . . , wk, v(= wk+1) passing through

new vertices w1, w2, . . . , wk, k ≥ 1, of degree 2. A graph G is called a subdivision

of a graph G′ if G is obtained from G′ by subdividing some of the edges of G′.

2.1.6 Connectivity

A graph G is connected if for any two distinct vertices u and v of G, there is a

path between u and v. A graph which is not connected is called a disconnected

graph. A (connected) component of a graph is a maximal connected subgraph.

The graph in Figure 2.3(a) is a connected graph since there is a path between

every pair of distinct vertices of the graph. On the other hand, the graph in

Figure 2.3(b) is a disconnected graph since there is no path between, say, v1

and v5; v1 and v7; v1 and v9 . The graph in Figure 2.3(b) has four connected

components as indicated by the dotted lines. Note that every connected graph

has only one component; the graph itself.

The connectivity κ(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex graph K1. We say

that G is k-connected if κ(G) ≥ k. 2-connected and 3- connected graphs are also

called biconnected and triconnected graphs, respectively. A block is a maximal

biconnected subgraph of G. We call a set of vertices in a connected graph G

a separator or a vertex cut if the removal of the vertices in the set results in a

disconnected or single-vertex graph. If a vertex-cut contains exactly one vertex

then we call the vertex a cut vertex. A separation pair of 2-connected graph G

is a pair of vertices whose deletion disconnects G. A 3-connected graph has no
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Figure 2.3: (a) A connected graph, (b) a disconnected graph with four connected

components.

separation pair. A graph G is called cyclically 4-edge-connected if the removal of

C’

C’’

(a) (b)

C
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F

F

1

3

2

Figure 2.4: (a) A cyclically 4-edge-connected graph, and (b) a graph which is

not cyclically 4-edge-connected.

any three or fewer edges leaves a graph such that exactly one of the components

has a cycle [T92]. The graph in Fig. 2.4(a) is cyclically 4-edge-connected. On

the other hand, the graph in Fig. 2.4(b) is not cyclically 4-edge-connected, since

the removal of the three edges drawn by thick dotted lines leaves a graph with

two connected components each of which has a cycle.
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2.1.7 Vertex Replacement

We often use the the following operation on a planar graph G. Let v be a

(a) (b)
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v v

v
v v

v5

Figure 2.5: Replacement of a vertex v by a cycle.

vertex of degree d in a plane graph Γ of the planar graph G, let e1 = vw1, e2 =

vw2, . . . , ed = vwd be the edges incident to v, and assume that these edges

e1, e2, . . . , ed appear clockwise around v in this order as illustrated in Fig. 2.5(a).

Replace v with a cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1, and replace the edges vwi

with viwi for i = 1, 2, . . . , d, as illustrated in Fig. 2.5(b). We call the operation

above replacement of a vertex by a cycle. The cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1

in the resulting graph is called is called the replaced cycle corresponding to the

vertex v of Γ.

2.1.8 Removal of a Vertex of Degree 2

We often construct a new graph from a graph as follows. Let v be a vertex

of degree 2 in a connected graph G. We replace the two edges u1v and u2v

incident to v with a single edge u1u2 and delete v. We call the operation

above the removal of a vertex of degree 2 from G. A graph G′ is defined to

the homeomorphic to G if G′ is obtained from G by a sequence of removal

operations as illustrated in Fig. 2.6 . We call the graph G′ the minimal graph
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Figure 2.6: Removal of vertices of degree 2.

homeomorphic to G if G′ is obtained from G by repeatedly removing vertices

of degree 2 until either there is no vertex of degree 2 or the resulting graph has

exactly two vertices.

2.2 Planar Graphs

In this section we give some definitions related to planar graphs used in the

remainder of the thesis. For readers interested in more details of planar graphs

we refer to [NR04].

2.2.1 Planar Graphs and Plane Graphs

A planar drawing of a graph G is a two-dimensional drawing of G in which

no pair of edges intersect with each other except at their common end-vertex.

A planar graph is a graph that has at least one planar drawing. A planar

embedding of a graph G is a data structure that defines a clockwise (or counter

clockwise) ordering of the neighbors of each vertex of G that corresponds to a

planar drawing of the graph. Note that a planar graph may have an exponential

number of embeddings. Figure 2.7 shows two planar embeddings of the same

planar graph. A plane graph is a planar graph with a fixed planar embedding.
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Figure 2.7: Two plane embeddings of the same planar graph.

2.2.2 Face and Facial Cycle

The plane graph G divides the plane into connected regions called faces . A

finite plane graph G has one unbounded face and it is called the outer face of

G. The contour of a face is called a facial cycle.

2.2.3 Inner Subgraph and Outer Subgraph

Let G be a planar graph, and Γ be an arbitrary plane embedding of G. We

denote by FO(Γ) the outer face of Γ. For a cycle C of Γ, we call the plane

subgraph of Γ inside C (including C) the inner subgraph Γ1(C) for C, and we

call the plane subgraph of Γ outside C (including C) the outer subgraph ΓO(C)

for C.

2.2.4 Leg and k-Legged Cycle

An edge which is incident to exactly one vertex of a cycle C and located outside

C is called a leg of C. The vertex of C to which a leg is incident is called a

leg-vertex of C. A cycle C in Γ is called a k-legged cycle of Γ if C has exactly k

legs and there is no edge which joins two vertices on C and is located outside

C. In each of Figs. 2.4(a) and 2.4(b), a 3-legged cycle is drawn by thick solid

lines. The set of k legs of a k- legged cycle in Γ corresponds to a ”cutset” of k

edges.
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2.2.5 Peripheral Face

We call a face F of Γ a peripheral face for a 3-legged cycle C in Γ if F is in

ΓO(C) and the contour of F contains an edge on C. Clearly there are exactly

three peripheral faces for any 3-legged cycle in Γ. In Fig. 2.4(b) F1, F2, F3 are

the three peripheral faces for the 3-legged cycle C drawn by thick solid lines.

2.2.6 Minimal k-Legged Cycle, Independent Cycles, and

Regular 2- or 3-Legged Cycle

A k-legged cycle C is called a minimal k-legged cycle if G1(C) does not contain

any other k-legged cycle of G. The 3-legged cycle C drawn by thick lines in

Fig. 2.4(b) is not minimal, while the 3-legged facial cycle C ′′ in Fig. 2.4(b) is

minimal. We say that cycles C and C ′ in Γ are independent if Γ1(C) and Γ1(C
′)

have no common vertex. A set S of cycles is independent if any pair of cycles

in S are independent. The pair of leg-vertices of any 2-legged cycle in Γ is a

separation pair. A cycle C in Γ is called regular if the plane graph Γ − Γ1(C)

has a cycle. In the plane graph depicted in Fig. 2.4(b), the cycle C drawn by

thick solid lines is a regular 3-legged cycle, while the cycle C ′ indicated by a

thin dotted line in Fig. 2.4(b) is not regular. The 2-legged cycle indicated by

thin dotted line in Fig. 2.4(a) is not regular. Clearly a 2-legged cycle C in Γ

is not regular if and only if Γ − Γ1(C) is a chain of G, while a 3-legged cycle

C is not regular if and only if Γ − Γ1(C) contains exactly one vertex that has

degree 3 in G. Let Γ be a plane embedding of a subdivision G of a planar

3-connected cubic graph, then Γ has no regular 2-legged cycle, but may have a

regular 3-legged cycle, and Γ has no regular 3-legged cycle if and only if G is

cyclically 4-edge connected.

2.2.7 Hand, Hand-Vertex, 2-Handed Cycle, and Regular

2-Handed Cycle

Similarly an edge of Γ which is incident to exactly one vertex of a cycle C in Γ

and located inside C is called a hand of C. The vertex of C to which a hand is

incident is called a hand-vertex of C. A cycle C is called a 2-handed cycle if C

has exactly two hands in Γ and there is no edge which joins two vertices on C
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Figure 2.8: Regular 2-handed cycle C and regular 2-legged cycle C ′.

and is located inside C. We call a 2-handed cycle C a regular 2-handed cycle if

Γ − ΓO(C) contains a cycle. One can observe that any regular 2-handed cycle

C corresponds to a regular 2-legged cycle C ′ of Γ which does not contain any

vertex on FO(Γ). In Fig. 2.8 both C and C ′ are drawn by thick lines.

2.2.8 Some Previous Results on Planar Graph Drawings

Ungar [U53] showed that any plane embedding Γ of a cyclically 4-edge-connected

planar cubic graph G has a rectangular drawing if four vertices of degree 2 are

inserted on some edges on the outer face FO(Γ). Generalizing the results of Un-

gar, Thomassen [T84] obtained the following necessary and sufficient conditions

stated in Lemma 2.2.1 for a plane graph Γ with ∆ ≤ 3 to have a rectangular

drawing when a quadruplet of vertices of degree 2 on FO(Γ) are designated as

corners for a rectangular drawing.

Lemma 2.2.1 [T84] Let G be a connected plane graph such that all vertices

have degree 3 except four vertices of degree 2 on CO(G). Then G has a rectan-

gular drawing if and only if G satisfies the following three conditions.

(r1) G has no 1-legged cycle.

(r2) every 2-legged cycle in G contains at least two vertices of degree 2

(r3) every 3-legged cycle in G contains at least one vertex of degree 2.
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Generalizing the result of Thomassen, Rahman et al. [RNN02] gave a neces-

sary and sufficient condition for a plane graph Γ with ∆ ≤ 3 to have a rectangu-

lar drawing (for some quadruplet of vertices chosen as corners), and developed a

linear-time algorithm to choose a quadruplet and to find a rectangular drawing

of Γ for the chosen corners if they exist. A necessary and sufficient condition for

a planar graph G with ∆ ≤ 3 to have a rectangular drawing is given by [RNG04]

which runs in linear time. They also developed a linear-time algorithm for find-

ing out the rectangular drawing if drawing exists. On the other hand Rahman

at al. [RNN00] gave a necessary and sufficient condition for a plane graph Γ to

have a box-rectangular drawing, and developed an algorithm for drawing if it

exists, that runs in linear time. Necessary and sufficient conditions for a plane

connected graph Γ with ∆ ≤ 3 to have a box-rectangular drawing are in the

following lemma 2.2.2. It is assumed that Γ has a neither a vertex of degree 1

nor a 1-legged cycle; otherwise, Γ has no box-rectangular drawing.

Lemma 2.2.2 [RNN00] A plane connected graph G with ∆ ≤ 3 has a box-

rectangular drawing if and only if G satisfies the following two conditions:

(br1) every 2- or 3- legged cycle in G contains an edge on CO(G); and

(br2) 2c2 + c3 ≤ 4 for any independent set ξ of cycles in G, where c2 and c3 are

the numbers of 2− and 3− legged cycles in ξ respectively.

Although the results above for plane embeddings are known, it is difficult to

examine whether a planar graph has a box-rectangular drawing or not, since a

planar graph may have an exponential number of plane embeddings in general.

However, the following fact is known for subdivisions of planar 3-connected

cubic graphs.

Fact 2.2.3 [NC88] Let G be a subdivision of a 3-connected planar graph. Then

there is exactly one embedding of G for each face embedded as the outer face.

Furthermore, for any two plane embeddings Γ and Γ′ of G, any facial cycle in

Γ is a facial cycle in Γ′.

2.3 Drawing Conventions

In this section we introduce some conventional drawing styles, which are found

suitable in different application domain. The different drawing styles vary owing
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to different representations of vertices and edges. Depending on the purpose

and objective, the vertices are typically represented with points or boxes and

edges are represented with simple Jordan curves [NR04]. A few of the most

important drawing styles are introduced below.

2.3.1 Planar Drawing

A drawing Γ of a graph G is planar if no two edges intersect with each other

except at their common end-vertices. In Figures 2.9(a) and 2.9(b), we show a

planar and a non-planar drawing of the same graph respectively.
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Figure 2.9: (a) A planar drawing, (b) a non-planar drawing of the graph drawn

in (a), and (c) a graph which does not have a planar drawing.

Planar drawings of graphs are more convenient than non-planar drawings

because, as shown empirically in [Pur97], the presence of edge-crossings in a

drawing of a graph makes it more difficult for a person to understand the in-

formation being modeled. Unfortunately, not all graphs have a planar drawing.

Figure 2.9(c) is an example of one such graph.

2.3.2 Straight Line Drawing

A straight line drawing of a plane graph is a drawing in which each edge is

drawn as a straight line segment without edge crossings, as illustrated in Fig.

2.10. Wagner [Wag36], Fáry [Far48], and [Ste51] independently proved that

every planar graph G has a straight line drawing.
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(a) (b)

Figure 2.10: (a) A straight line drawing, (b) a convex drawing.

2.3.3 Convex Drawing

Some planar graphs can be drawn in such a way that each edge is drawn as a

straight line segment and each face is drawn as a convex polygon, as illustrated

in Fig. 2.10(b). Such a drawing is called a convex drawing.

2.3.4 Orthogonal Drawing

An orthogonal drawing of a planar graph G is a drawing of G, in which each

vertex of G is mapped to a point, each edge is drawn as a sequence of alternate

horizontal and vertical line segments, and any two edges do not cross except at

their common end, as illustrated in Fig. 2.11.
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Figure 2.11: (a) A planar graph G, (b) an orthogonal drawing of G.
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Clearly the maximum degree ∆ of G is at most four if G has an orthogonal

drawing. Conversely, every plane graph with ∆ ≤ 4 has an orthogonal drawing,

but may need bends, that is, points where an edge changes its direction in a

drawing. However, a plane graph with a vertex of degree 5 or more has no

orthogonal drawing.

2.3.5 Box-Orthogonal Drawing

An box-orthogonal drawing of a planar graph G is a drawing of G, in which

each vertex is drawn as a rectangle, called a box, and each edge is drawn as a

sequence of alternate horizontal and vertical line segments along grid lines, as

illustrated in Fig. 2.12.
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Figure 2.12: (a) A planar graph G, (b) a box-orthogonal drawing of G.

Some of the boxes may be degenerated rectangles i.e., points. A box-

orthogonal drawing is a natural generalization of an ordinary orthogonal draw-

ing, and moreover any planar graph has a box-orthogonal drawing even if there

is a vertex of degree 5. Several results are known for orthogonal drawings

[BK97, FKK96, PT98].

2.3.6 Rectangular Drawing

An orthogonal drawing of a plane graph G is called a rectangular drawing of

G if each edge of G is drawn as a straight line segment without bends and the

contour of each face of G is drawn as a rectangle, as illustrated in Fig. 1.2(b).
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Since a rectangular drawing has practical applications in VLSI floorplanning,

much attention has been paid to it [KK84, KK88, L90, TTSS91].

Thus a box-orthogonal drawing is a generalization of an orthogonal drawing,

while an orthogonal drawing is a generalization of a rectangular drawing. Hence

an orthogonal drawing is an intermediate of a box-orthogonal drawing and a

rectangular drawing. A box-rectangular drawing is a different style of drawing

as intermediate of the two drawing styles.

2.3.7 Box-Rectangular Drawing

A box-rectangular drawing of a plane graph G is a drawing of G on an integer

grid such that each vertex is drawn as a (possibly degenerated) rectangle, called

a box, and the contour of each face is drawn as a rectangle, as illustrated in

Fig. 1.3(b).

2.4 Box-Rectangular Drawing

We now give some definitions regarding box-rectangular drawings. We say that

a vertex of graph G is drawn as a degenerated box in a box-rectangular drawing

D if the vertex is drawn as a point in D. We often call a degenerated box

in D a point and call a nondegenerated box a real box. We call the rectangle

corresponding to CO(G) the outer rectangle, and we call a corner of the outer

rectangle simply a corner. A box in D containing at least one corner is called

a corner box. A corner box may be degenerated.

If n = 1, that is, G has exactly one vertex, then the box-rectangular drawing

is trivial: the drawing is just a degenerated box corresponding to the vertex.

Thus in the thesis, we may assume that n ≥ 2. We now have the following four

facts and a lemma.

Fact 2.4.1 Any box-rectangular drawing has two, three, or four corner boxes.

Fact 2.4.2 Any corner box in a box-rectangular drawing contains either one or

two corners.

Fact 2.4.3 In a box-rectangular drawing D of G, any vertex v of degree 2 or 3

satisfies
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(i) Vertex v is drawn as a point containing no corner;

(ii) v is drawn as a corner box containing exactly one corner; and

(iii) v is drawn as a real (corner) box containing exactly two corners.

Fact 2.4.4 In any box-rectangular drawing D of G, every vertex of degree 5 or

more is drawn as a real box.

In this regard, [RNN00] derived the following lemma which is depicted in figure

1.1(c).

Lemma 2.4.5 [RNN00] If G has box-rectangular drawing, then G has a box-

rectangular drawing in which every vertex of degree 4 or more is drawn as a real

box.

Fact 2.4.6 In a box-rectangular drawing D of G, any 2-legged cycle of G con-

tains at least two corners, any 3-legged cycle of G contains at least one corner,

and any cycle with four or more legs may contain no corner (See Fig. 2.13).

none

none

none

2−legged cycle

3−legged cycle

0 1 2 3 4

the number of corners containd in a drawing of a cycle

k−legged cycle

( k >= 4 )

Figure 2.13: Number of corners in drawing of cycles.

The choice of vertices as corner boxes plays an important role in finding a

box-rectangular drawing. For example, the graph in Fig. 2.14(a) has a box-
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Figure 2.14: A graph G and its box-rectangular drawing with four corner boxes

a, b, c, and d.

rectangular drawing if we choose vertices a, b, c, and d as corner boxes as illus-

trated in Fig. 2.14(b) however the graph in Fig. 2.14(a) has no box-rectangular

drawing if we choose vertices p, q, r, and s as corner boxes. If all vertices corre-

sponding to corner boxes are designated for a drawing, then it is rather easy to

determine whether G has a box-rectangular drawing with the designated corner

boxes. We deal with this case in Subsection 2.5.1. In Subsections 2.5.2 and

2.5.3 we deal with the general case where no vertex of G is designated corner

boxes.

2.5 Box-Rectangular Drawings of Plane Graphs

[RNN00] gave a necessary and sufficient condition for the existence of a box-

rectangular drawing of a plane graph G where all vertices of G corresponding

to corner boxes are designated and then gave a linear-time algorithm to obtain

such a drawing if it exists. Subsection 2.5.1 deals with this case. [RNN00] also

gave a necessary and sufficient condition for the existence of a box-rectangular

drawing of a plane graph G where no vertex of a plane graph G is designated as

a corner box. They first derived a necessary and sufficient condition for a plane

graph with maximum degree ∆ ≤ 3 and gave a linear-time algorithm to obtain

such a drawing if it exists. Then, they reduced the box-rectangular problem of a

plane graph G with ∆ ≥ 4 to that of a plane graph Φ with ∆ ≤ 3. Subsections
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2.5.2 and 2.5.3 describes the above cases where no vertex is designated as a

corner box, respectively.

2.5.1 Drawing with Exactly Four Designated Corner Boxes

In this subsection we assume that exactly four vertices a, b, c and d in a given

plane graph G, on the contour of the outer face are designated as corner boxes.

We construct a new graph G′′ from G through an intermediate graph G′ and re-

duce the problem of finding a box-rectangular drawing of G with four designated

vertices to a problem of finding a rectangular drawing of G′′.
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Figure 2.15: Illustration of G,G′, G′′, D′′, D′, and D.

We first construct G′ from G as follows. If a vertex v of degree 2 in G as
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vertex b in Fig. 2.15(a) is a designated vertex, then v is drawn as a corner point

in a box-rectangular drawing of G. Otherwise, the two edges incident to v must

be drawn on a straight line segment. We thus remove all nondesignated vertices

of degree 2 one by one from G. The resulting graph is G′. Thus all vertices of

degree 2 in G′ are designated vertices. Clearly, G has a box-rectangular drawing

with the four designated corner boxes if and only if G′ has a box-rectangular

drawing with the four designated corner boxes. Fig. 2.15(a) illustrates a plane

graph G with four designated vertices a, b, c, and d, and Fig. 2.15(b) illustrates

G′. Fig. 2.15(e) is a rectangular drawing as well as a box-rectangular drawing

D′′ of G′′ in Fig. 2.15(d), and Fig. 2.15(f) illustrates a box-rectangular drawing

D′ of G′. Fig. 2.15(g) illustrates a box-rectangular drawing D of G.

Since every vertex of degree 2 in G′ is a designated vertex, it is drawn as a

(corner) point in any box-rectangular drawing of G′. Every designated vertex

of degree 3 in G′, as vertex c in Fig. 2.15 (b) is drawn as a real box since it is

a corner. On the other hand, every nondesignated vertex of degree 3 in G′ is

drawn as point. These facts together with Lemma 2.4.5 imply that if G′ has a

box-rectangular drawing then G′ has a box-rectangular drawing D′ in which all

designated vertices of degree 3 and all vertices of degree 4 or more are drawn

as real boxes.

We now construct G′′ from G′. Replace by a cycle each of the designated

vertices of degree 3 and the vertices of degree 4 or more as illustrated in Fig.

2.15(c). The replaced cycle corresponding to a designated vertex x of degree

3 or more contains exactly one edge, say ex, on the contour of the outer face,

where x = a, b, c, or d. Put a dummy vertex x′ of degree 2 on ex. The resulting

graph is G′′. We let x′ = x if a designated vertex x has degree 2. (See Fig.

2.15(d)). Now G′′ has exactly four vertices a′, b′, c′, and d′ of degree 2 on C0(G
′′),

and all other vertices have degree 3.

[RNN00] states the theorem.

Theorem 2.5.1 [RNN00] Let G be a connected plane graph with four desig-

nated vertices a, b, c, and d on CO(G), and let G′′ be the graph transformed from

G′ as mentioned above. Then G has a box-rectangular drawing with four corner

boxes corresponding to a, b, c, and d if and only if G′′ has a rectangular drawing.
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2.5.2 Box-Rectangular Drawings of Plane Graphs with

No Designated Corner Boxes for ∆ ≤ 3

In this subsection we consider the general case where no vertex of a plane graph

G with ∆ ≤ 3 is designated as a corner box. By Fact 2.4.1 there are two, three,

or four corner boxes in any box-rectangular drawing of G. Therefore, consider-

ing all combinations of two, three, and four vertices on CO(G) as corner boxes

and applying the algorithm in the previous subsection for each of the combi-

nations, one can determine whether G has a box-rectangular drawing. Such a

straightforward method requires time O(n5) since there are O(n4) combinations

and the algorithm in Subsection 2.5.1 can determine in linear-time whether G

has a box-rectangular drawing for each of them.

[RNN00] states the following Lemmas.

Lemma 2.5.2 [RNN00] Let G be a plane cubic connected graph. Assume that

G satisfies (br1) and (br2) in Lemma 2.2.2, that is, G has four or more vertices

on CO(G), and that there is exactly one CO(G) component. Then

(a) G has a 3-legged cycle; and

(b) if G has two or more independent 3-legged cycles, then the set of a minimal

3-legged cycles in G is independent.

Lemma 2.5.3 [RNN00] Let G be a plane cubic graph. Assume that G satisfies

Conditions (br1) and (br2) in Lemma 2.2.2 and that G has four or more vertices

of degree 3 on CO(G). Then G has a box-rectangular drawing.

If G has a 2-legged cycle C then G has a pair of independent 2-legged cycles.

Let v be the end of any leg of C that is not on C. Since G is cubic, v has degree

3. Then G has a 2-legged cycle C ′ which has v as a leg-vertex. Clearly C and

C ′ are independent.

We can consider the following two cases.

Case 1: G has no 2-legged cycle. In this case G has exactly one CO(G)

component; otherwise, G would have a 2- legged cycle. Then by Lemma 2.5.2(a)

G has a 3-legged cycle. We choose four vertices on CO(G) as the four corner

boxes for a box-rectangular drawing of G, as follows.
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Figure 2.16: Illustration of Case 1.

We first consider the case where G has no pair of independent 3-legged

cycles. We arbitrarily choose four vertices on CO(G) as the four corner boxes

for a box-rectangular drawing of G. We now claim that every 3-legged cycle C

in G has at least one designated vertex. Since C has an edge on CO(G) , exactly

two of the three legs of C lie on CO(G). Let x and y be the two leg-vertices of

the two legs. Let P be the path on C starting at x and ending at y without

passing through any edge on C. Then P has exactly one intermediate vertex,

say z; otherwise, either G would have more than one CO(G) component or G

would have a pair of of independent 3-legged cycles, a contradiction. Thus one

can easily know that all three legs of C are incident to z. Therefore, all the

vertices on CO(G) except z lie on C. Hence regardless of whether z is one of the

four designated vertices or not. C contains at least one of the four designated

vertices.
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We then consider the case where G has a pair of independent 3-legged cycles.

Let M be the set of all minimal 3-legged cycles in G. By Lemma 2.5.2(b) M is

independent. Let k = |M|, then k ≤ 4 by condition (br2). For each 3-legged

cycle Cm in M, we arbitrarily choose a vertex on Cm which is also on CO(G). If

k < 4, we arbitrarily choose 4−k vertices on CO(G) which are not chosen so far.

Thus we have chosen exactly four vertices on Co(G), and we regard them as the

four designated vertices for a box-rectangular drawing of G. In Fig. 2.16(a) four

vertices a, b, c and d are on CO(G) are chosen as designated vertices. Vertices

a and b are chosen on two independent minimal 3-legged cycles indicated by

dotted lines, whereas vertices c and d are chosen arbitrarily on CO(G). We

now claim that every 3-legged cycle C of G has at least one designated vertex.

Clearly C contains a designated vertex if C is minimal, that is, C ∈ M. Thus

one may assume C is not minimal. Then G(C) contains a minimal 3-legged

cycle Cm ∈ M, and every vertex of Cm on CO(G) is also on C. Since Cm has a

designated vertex on CO(G), the vertex is also on C.

Thus we have chosen four designated vertics on CO(G). We now give a

method to find a box-rectangular drawing of G with the four designated vertices.

We replace each of the four vertices by a cycle and put a dummy vertex of

degree 2 on the edge of the cycle on the contour of the outer face. Let G′ be

the resulting graph (See Fig. 2.16(b) where the vertices of degree 2 are drawn

by white circles). G′ has exactly four vertices of degree 2 on CO(G′), and all

other vertices of G′ have degree 3. Since G has no 1-legged cycle , G′ has no

1-legged cycle and hence G′ satisfies Condition (r1) in Lemma 2.2.1. Since G

has no 2-legged cycle, any 2-legged cycle C in G′ contains all vertices on CO(G′)

except a vertex of degree 2. Therefore, C contains three vertices of degree 2,

and hence G′ satisfies Condition (r2) in Lemma 2.2.1. Moreover since any 3-

legged cycle in G′ contains at least one designated vertex, any 3-legged cycle in

G′ contains at least one vertex of degree 2 and hence G′ satisfies condition (r3).

Thus by Lemma 2.2.1 G′ has a rectangular drawing D′ as illustrated in Fig.

2.16(c). Regarding each face in D′ corresponding to a replaced cycle as a box,

we immediately obtain a box-rectangular drawing D of G from D′ as illustrated

in Fig. 2.16(d).

Case 2: G has a pair of independent 2-legged cycles. Let C1 and C2 be

independent 2-legged cycles in G. One may assume that both C1 and C2 are

35



minimal 2-legged cycles. By Condition (br2) at most two 2-legged cycles of G

are independent. Therefore, for any other 2-legged cycles C ′(6= C1, C2), G(C ′)

contains either C1 or C2.

Let ki, i = 1 or 2, be the number of all minimal (not always independent)

3-legged cycles in G′(Ci). Then we claim that ki ≤ 2. First consider the case

where Ci has exactly three vertices on CO(G). Then G(Ci) has exactly two

inner faces; otherwise, G(Ci) would have a cycle which has two or three legs

and has no edge on CO(G), contrary to condition (br1). The contour of the

two faces are minimal 3-legged cycles, and there is no other minimal 3-legged

cycle in G(Ci). Thus ki = 2. We next consider the case where Ci has four or

more vertices on CO(G). That is, the set of all minimal 3-legged cycles of G in

G(Ci) is independent. Furthermore, ki ≤ 2; otherwise, Condition (br2) would

not hold for the independent set ξ of ki +1 cycles: the ki ( ≥ 3 ) 3-legged cycles

in G(Ci) and the 2-legged cycle Cj, j = 1 or 2 and j 6= i.
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Figure 2.17: Illustration of Case 2.
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We choose two vertices on each Ci, 1 ≤ i ≤ 2, as follows. For each of the

ki, minimal 3-legged cycles in G(Ci) we arbitrarily choose exactly one vertex on

CO(G). If k < 2, then we arbitrarily choose 2−ki vertices in V (Ci)
⋂

V (CO(G))

which have not chosen so far. This can be done because Ci has at least two

vertices on CO(G). Thus we have chosen four vertices on CO(G), and we ragard

them as designated vertices for a box-rectangular drawing of G. In Fig. 2.17(a)

G has a pair of independent 2-legged cycles C1 and C2, and four vertices a, b, c,

and d on CO(G) are chosen as the designated vertices. Vertices a nad b are

chosen from the vertices on C1; each on a minimal 3-legged cycle in G(C1).

Vertices c and d are chosen from the vertices on C2; d is on a minimal 3-legged

cycle in G(C2) and c is an arbitrarily vertex in V (C2)
⋂

V (CO(G)) other than

d.

We now claim that any 2-legged cycle C in G has two designated vertices.

If C is C1 or C2 then clearly C has exactly two designated vertices. Otherwise,

G(C) has either cycle C1 or C2, and hence C has exactly two designated vertices.

We then claim that any 3-legged cycle C3 in G has a designated vertex. By

Condition (br2) {C1, C2, and C3} is not independent, and hence either G(C3)

contains C1 or C2, or C3 is contained in G(C1) or G(C2). If G(C3) contains

C1 or C2, then C3 contains a designated vertex. Otherwise, C3 is contained in

either G(C1) or G(C2). In this case C3 contains a designated vertex, since we

have chosen a designated vertex on each minimal 3-legged cycle inside G(C1)

and G(C2).

We can find a box-rectangular drawing as follows. We replace each of the

four designated vertices by a cycle and put a dummy white vertex of degree 2 on

Co(G
′), and all other vertices of G′ have degree 3. Since G has no 1-legged cycle,

G′ has no 1-legged cycle. Since any 2-legged cycle in G contains two designated

vertices, G′ satisfies Condition (r2) in Lemma 2.2.1. Since any 3-legged cycle

in G contains a designated vertex, G′ satisfies Condition (r3) in Lemma 2.2.1.

Thus G′ has a rectangular drawing D′ by Lemma 2.2.1 as illustrated in Fig.

2.17(c). Regarding each face in D′ corresponding to a replaced cycle as a box,

we immediately obtain a box-rectangular drawing D of G from D′ as illustrated

in Fig. 2.17 (d).

Using the Lemma 2.5.3 one can find a box-rectangular drawing of G if G

satisfies the Conditions in Lemma 2.2.2.
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Lemma 2.5.3 implies the following corollary.

Corollary 2.5.4 [RNN00] A plane connected graph G with ∆ ≤ 3 has a box-

rectangular drawing if and only if G satisfies the following four conditions.

(c1) every 2- or 3- legged cycle in G has an edge on CO(G);

(c2) at most two 2-legged cycles of G are independent of each other.

(c3) at most four 3-legged cycles of G are independent of each other;

and

(c4) if G has a pair of independent 2-legged cycles C1 and C2, then {C1, C2, C3}

is not independent for any 3-legged cycle C3 in G, and neither G(C1) nor

G(C2) has more than two independent 3-legged cycles of G.

2.5.3 Box-Rectangular Drawings of Plane Graphs with

No Designated Corner Boxes for ∆ ≥ 4

In this subsection we give a necessary and sufficient condition for a plane con-

nected graph G with ∆ ≥ 4 to have a box-rectangular drawing where no vertex

is designated as a corner box. We also give a linear-time algorithm to find the

drawing if it exists.

Let G be a plane graph with ∆ ≥ 4. We construct a new plane graph

Φ from G by replacing each vertex v of degree four or more in G by a cycle.

Figures 2.18(a) and 2.18(b) illustrate G and Φ respectively. A replaced cycle

corresponds to a real box in a box-rectangular drawing of G. We do not replace

a vertex of degree 2 or 3 by a cycle since such a vertex may be drawn as a point.

Thus ∆(Φ) ≤ 3. The following lemma is the main result of this subsection.

Lemma 2.5.5 [RNN00] Let G be a plane connected graph with ∆ ≥ 4, and let

Φ be the graph transformed from G as above. Then G has a box-rectangular

drawing if and only if Φ has a box-rectangular drawing.

If Φ has a box-rectangular drawing, then there exists a box-rectangular

drawing for G. But there is no easy method which directly transforms a box-

rectangular drawing DΦ of the plane graph Φ to a box-rectangular drawing DG

of the plane graph G. We give some definitions before giving the approach to
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Figure 2.18: Box-rectangular drawings of plane graphs with no designated cor-

ner boxes for ∆ ≥ 4

find DG from DΦ. We replace the vertices of degree 4 or more in G by cycles like

Figure 2.5. We call a vertex of degree 3 on a replaced cycle a replaced vertex.

The replaced cycle on CO(Φ) corresponding to a vertex of degree 4 or more in

G contains exactly one edge on CO(Φ). We call such an edge in Φ a green edge.

Each vertex of degree 2 or 3 in G has a corresponding vertex of the same degree

in Φ, and we call such a vertex in Φ an original vertex. Now each vertex in Φ is

either a replaced vertex or an original vertex. In the plane embedding Φ, for a

green edge e and a cycle C in Φ, we call e a green edge for C if both ends of e

are on C. Assume the plane graph Φ has a box-rectangular drawing DΦ, then

Φ satisfies (br1) and (br2) of Lemma 2.2.2. We can easily transform DΦ to a
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box-rectangular drawing DG of the plane graph G if only original vertices are

drawn as corner boxes in DΦ, because then each replaced vertex is a point in

DΦ, and each replaced cycle in Φ is a rectangular face in DΦ, and hence DΦ can

be transformed to DG by regarding each replaced cycle as a box. The problem

is the case where a replaced vertex is drawn as a corner box in DΦ. Because

such a drawing DΦ cannot always be transformed to a box-rectangular drawing

DG of G. However we show that a plane graph Φ∗ obtained from Φ with slight

modification has a particular box-rectangular drawing D∗

Φ which can be easily

transformed to a box-rectangular drawing of G. We need the support of the

following Lemma 2.5.6 given by [RNN00].

Lemma 2.5.6 [RNN00] Assume that the plane embedding Φ has a box-rectangular

drawing. Then the following (a)-(c) hold:

(a) Φ has four or more vertices of degree 3 on CO(Φ).

(b) If a 3-legged cycle C in Φ contains at least two replaced vertices on CO(Φ),

then there exists a green edge for C.

(c) If a 2-legged cycle C in Φ contains at least one replaced vertex on CO(Φ),

then there exists a green edge for C.

We are now ready to give the approach to find DG from DΦ

Assume that Φ has a box-rectangular drawing. Then Φ satisfies Conditions

(br1) and (br2) in Lemma 2.2.2. By Lemma 2.5.6(a) Φ has four or more vertices

of degree 3 on CO(Φ).

Let Φ′ be the minimal graph homeomorphic to Φ as illustrated in Fig.

2.18(c); then Φ′ is a cubic graph and satisfies Conditions (br1) and (br2). Us-

ing the algorithm mentioned in the description of Lemma 2.5.3, we choose four

designated vertices for a box-rectangular drawing of Φ′; as illustrated in Fig.

2.18(c). Then each 2-legged cycle in Φ′ contains exactly two designated vertices

and each 3-legged cycle in Φ′ contains at least one designated vertex.

If a designated vertex x in Φ′, such as vertex a or b in Fig. 2.18(c), is an

original vertex, then there is a vertex in the plane embedding G corresponding

to x, and hence we consider the vertex as a corner box in a box-rectangular

drawing DG of G.

40



On the other hand, if a designated vertex x is a replaced vertex such as

vertex c or d in Fig. 2.18(c), then instead of x we choose another vertex x′

(probably a dummy vertex on a green edge) as a corner box of DG. This can

be done as in the following three cases, depending on how x was chosen. Note

that the algorithm in the description of the Lemma 2.5.3 chooses a designated

vertex x either on a minimal 3-legged cycle, or on a minimal 2-legged cycle, or

arbitrarily.

Case 1 The replaced vertex x was chosen on a minimal 3-legged cycle C.

If C has a nondesignated original vertex on CO(Φ′), then we choose it as a

designated vertex x′ instead of x. Otherwise, C has either at least two replaced

vertices on CO(Φ′) or a designated original vertex.

In the former case where C has at least two replaced vertices on CO(Φ′),

by Lemma 2.5.6(b) there exists a green edge on CO(Φ′) for C and choose x′

as designated vertex instead of x. (In Fig. 2.18(c) a designated vertex d is a

replaced vertex on a minimal 3-legged cycle indicated by a dotted line, and we

choose the dummy vertex d′ on a green edge as a designated vertex instead of

d, as illustrated in Fig. 2.18(d). )

In the latter case where C contains a designated original vertex, it is not

necessary to choose a vertex on C as a corner of DG. In this case we need

to consider the following two subcases. We first consider the subcase where x

is on a minimal 2-legged cycle C ′. By Lemma 2.5.6(c) there is a green edge

for C ′. We put a dummy vertex x′ on a green edge for C ′ in such a way that

any green edge of Φ′ contains at most two dummy vertices. We choose x′ as

a designated vertex instead of x. ( In Fig. 2.18(c) a designated vertex c is a

replaced vertex on a minimal 2-legged cycle indicated by a dotted line, and we

choose the dummy vertex c′ as a designated vertex instead of c as illustrated in

Fig.2.18(d)). We now consider the other subcase where x is not on a minimal 2-

legged cycle C ′. Since x is replaced vertex on CO(Φ′), CO(Φ′) has a green edge.

If CO(Φ′) has nondesignated original vertex, then we choose it as a designated

vertex x′ instead of x. Otherwise, we put a dummy vertex x′ of degree 2 on a

green edge in a way that any green edge contains at most two dummy vertices.

This can be done since CO(Φ′) contains exactly four designated vertices. We

choose x′ as a designated vertex instead of x.

Case 2 x was chosen on a minimal 2-legged cycle C but not on a minimal
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3-legged cycle.

In this case, the replaced vertex x is on C and on CO(Φ). Then by Lemma

2.5.6 there is a green edge for C. We put a dummy vertex x′ of degree 2 on the

green edge in such a way that any green edge of Φ′ contains at most two dummy

vertices. This can be done since C contains exactly two designated vertices. We

now choose x′ as designated vertex instead of x.

Case 3 x was chosen arbitrarily on CO(Φ′) but not particularly chosen on

a minimal 2- or 3-legged cycle.

Since x is replaced vertex on CO(Φ′), CO(Φ′) has a green edge. If CO(Φ′)

has a nondesignated original vertex, then we choose it as a designated vertex

x′ instead of x. Otherwise, we put a dummy vertex x′ of degree 2 on a green

edge in such a way that any green edge contains at most two dummy vertices

and choose x′ as a designated vertex instead of x.

Thus, instead of each designated replaced vertex x, we have chosen another

vertex x′. Let Φ∗ be the resulting graph as illustrated in Fig. 2.18(d). Note

that each of the four designated vertices in Φ∗ is either an original vertex or

a dummy vertex of degree 2 on a green edge of Φ′. Clearly, every 2-legged

cycle in Φ∗ contains at least two designated vertices and every 3-legged cycle

in Φ∗ contains at least one designated vertex. Hence, Φ∗ has a box-rectangular

drawing DΦ∗with the four designated vertices as corner boxes, as illustrated in

Fig. 2.18(e). Inserting the removed vertices of degree 2 on some vertical and

horizontal line segments in DΦ∗ and regarding the drawing of each replaced

cycle as a box, we immediately obtain a box-rectangular drawing DG of the

plane embedding G from DΦ∗ as illustrated in Fig. 2.18(f).

2.6 Complexity of Algorithms

In this section we briefly introduce some terminologies related to complexity of

algorithms. For interested readers, we refer the book of Garey and Johnson

[GJ79].

The most widely accepted complexity measure for an algorithm is the run-

ning time, which is expressed by the number of operations it performs before

producing the final answer. The number of operations required by an algorithm

is not the same for all problem instances. Thus, we consider all inputs of a given
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size together, and we define the complexity of the algorithm for that input size

to be the worst case behavior of the algorithm on any of these inputs. Then

the running time is a function of size n of the input.

2.6.1 The Notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

“asymptotic behavior”, that is, the behavior of the algorithm when applied to

very large inputs. To deal with such a property of functions we shall use the

following notations for asymptotic running time. Let f(n) and g(n) are the

functions from the positive integers to the positive reals, then we write f(n) =

O(g(n)) if there exists positive constants c1 and c2 such that f(n) ≤ c1g(n)+ c2

for all n. Thus the running time of an algorithm may be bounded from above

by phrasing like “takes time O(n2)”.

2.6.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its

complexity is bounded by a polynomial of the size of a problem instance. Ex-

amples of such complexities are O(n), O(nlogn), O(n100), etc. The remaining

algorithms are usually referred as exponential or non-polynomial. Examples of

such complexity are O(2n), O(n!), etc. When the running time of an algo-

rithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.6.3 NP-complete Problems

There are a number of interesting computational problems for which it has not

been proved whether there is a polynomial time algorithm or not. Most of them

are “NP-complete”, which we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables

and the location of the current instruction to be executed. A deterministic

algorithm is one for which each state, upon execution of the instruction, uniquely

determines at most one of the following state (next state). All computers,

which exist now, run deterministically. A problem Q is in the class P if there

exists a deterministic polynomial-time algorithm which solves Q. In contrast, a
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non-deterministic algorithm is one for which a state may determine many next

states simultaneously. We may regard a non-deterministic algorithm as having

the capability of branching off into many copies of itself, one for the each next

state. Thus, while a deterministic algorithm must explore a set of alternatives

one at a time, a non-deterministic algorithm examines all alternatives at the

same time. A problem Q is in the class NP if there exists a non-deterministic

polynomial-time algorithm which solves Q. Clearly, P ⊆ NP .

Among the problems in NP are those that are hardest in the sense that if

one can be solved in polynomial-time then so can every problem in NP. These

are called NP-complete problems. The class of NP -complete problems has the

following interesting properties.

(a) No NP -complete problem can be solved by any known polynomial algo-

rithm.

(b) If there is a polynomial algorithm for any NP -complete problem, then

there are polynomial algorithms for all NP -complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial

time, all problems in NP are so, but we are unable to argue that Q ∈ NP . So

Q does not qualify to be called NP -complete. Yet, undoubtedly Q is as hard as

any problem in NP. Such a problem Q is called NP-hard.
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Chapter 3

Box-Rectangular Drawings of

Planar Graphs with ∆ ≤ 3

In this chapter we give a necessary and sufficient condition for a planar graph

G with ∆ ≤ 3 to have a box-rectangular drawing. We also give a linear-time

algorithm to find the drawing if it exists. Section 3.1 describes the necessary

and sufficient condition and Section 3.2 illustrates the algorithm.

3.1 Necessary and Sufficient Condition

In Subsection 3.1.1 we consider the case where G is a subdivision of a planar

3-connected cubic graph, and in Subsection 3.1.2 we consider the other case.

3.1.1 Case for a Subdivision of a Planar 3-Connected

Cubic Graph

Let G be a subdivision of a planar 3-connected cubic graph. Then by Fact

2.2.3 G has an O(n) number of embeddings, one for each chosen as outer face.

Examining by the linear algorithm in Lemma 2.2.2 whether the two conditions

(br1) and (br2) hold for each of the O(n) embeddings, one can examine in time

O(n2) whether the planar graph G has a box-rectangular drawing. However,

we obtain the following necessary and sufficient condition for G to have a box-

rectangular drawing, which leads to a linear-time algorithm.
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Theorem 3.1.1 Let G be a subdivision of a planar 3-connected cubic graph,

and let Γ be an arbitrary plane embedding of G.

(a) Suppose first that G is cyclically 4-edge-connected, that is, Γ has no regular

3-legged cycle. Then the planar graph G has a box-rectangular drawing.

(b) Suppose next that G is not cyclically 4-edge-connected, that is, Γ has a

regular 3-legged cycle C. Let F1, F2, and F3 be the three peripheral faces

for C, and let Γ1, Γ2, and Γ3 be the plane embeddings of G taking F1, F2,

and F3 respectively as the outer face. Then the planar graph G has a box-

rectangular drawing if and only if at least one of the three embeddings Γ1,

Γ2, and Γ3 has a box-rectangular drawing.

Proof of Theorem 3.1.1(a). Before giving a proof of Theorem 3.1.1(a),

we observe the following lemmas on subdivisions of planar 3-connected cubic

graphs, which are cyclically 4-edge-connected.

Lemma 3.1.2 Let G be a subdivision of planar 3-connected cubic graph, and Γ

be an arbitrary plane embedding of G. If G is cyclically 4-edge-connected, then

Γ does not have a set of independent 2- and 3-legged cycles. That is, 2c2+c3 ≤ 2

for any independent set ξ of cycles in Γ, where c2 and c3 are the numbers of 2-

and 3-legged cycles in ξ, respectively.

Proof. Let G be a subdivision of planar 3-connected cubic graph, and Γ

be an arbitrary plane embedding of G. Let G be cyclically 4-edge-connected.

Assume Γ has two independent 2-legged cycles, C1 and C2. Removal of the two

legs of either C1 or C2 leaves a graph with two connected components, each

of which has a cycle, contrary to the definition of cyclically 4-edge-connected

graph. That is, Γ can not have two independent 2-legged cycles. Similarly

we can prove that Γ can not have two independent 3-legged cycles. We can

also prove that Γ can not have two cycles, one is 2-legged, and another is 3-

legged, which are independent. If Γ has so, then removal of the legs either of

the 2-legged cycle, or of the 3-legged cycle leaves a graph with two connected

components, each of which has a cycle, contrary to the definition of cyclically

4-edge-connected graph. That is, 2c2 + c3 ≤ 2 for any independent set ξ of

cycles in Γ, where c2 and c3 are the numbers of 2- and 3-legged cycles in ξ,

respectively. Q.E .D.
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Lemma 3.1.3 Let G be a subdivision of planar 3-connected cubic graph. If G

is cyclically 4-edge-connected, then all the plane embeddings of the planar graph

G, satisfy (br1) and (br2) of Lemma 2.2.2.

Proof. Let G be a subdivision of planar 3-connected cubic graph. Let

G be cyclically 4-edge-connected, and let Γ be an arbitrary plane embedding

of G. Assume Γ has a 2-legged cycle C which has not an edge on CO(Γ), a

contradiction to Lemma 2.2.2(a). Removal of the two legs of C leaves a graph

with 2 connected components. One is the inner subgraph Γ1(C) for C, and

another is Γ−Γ1(C) for C. Each of the component has a cycle, contrary to the

definition of cyclically 4-edge-connected graph. That is, every 2-legged cycle

has an edge on CO(Γ). Similarly we can prove for Γ, that every 3-legged cycle

has an edge on CO(Γ).

It is seen from Lemma 3.1.2, that an arbitrary plane embedding Γ of a

subdivision of planar 3-connected cubic graph G, which is cyclically 4-edge-

connected, satisfies 2c2 + c3 ≤ 2 for any independent set ξ of cycles in Γ, where

c2 and c3 are the numbers of 2- and 3-legged cycles in ξ, respectively. This

implies the (br2) of Lemma 2.2.2.

Thus we find that, Γ satisfies both (br1) and (br2) of Lemma 2.2.2. Q.E .D.

As all the plane embeddings of a subdivision of planar 3-connected cu-

bic graph G which is cyclically 4-edge-connected satisfy both (br1) and (br2)

of Lemma 2.2.2, every plane embedding of the planar graph G has a box-

rectangular drawing. Q.E .D.

It is seen that all the plane embeddings of a subdivision of planar 3-connected

cubic graph G which is cyclically 4-edge-connected, have box-rectangular draw-

ings, where Rahman et al. [RNG04] showed that any arbitrary plane embedding

Γ of a subdivision of planar 3-connected cubic graph G that is cyclically 4-edge

connected must satisfy three necessary and sufficient conditions to have a rect-

angular drawing.

Proof of Theorem 3.1.1(b). Since the proof for the sufficiency is obvious,

we give a proof for the necessity. Suppose that Γ has a regular 3-legged cycle

C and that the planar graph G has a box-rectangular drawing. Then there is

a plane embedding Γ′ of G which has a box-rectangular drawing. Let F be the

face of Γ corresponding to FO(Γ′). It suffices to show that F is one of the three
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peripheral faces F1, F2, and F3 for C in Γ.

(a) (b)

C C C

C

’

’
F

F

F
F
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3
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1

Figure 3.1: Cycles C and C ′ in Γ.

We first consider the case where C contains an edge on FO(Γ). Let C ′ be

the cycle in Γ−Γ1(C) such that Γ1(C
′) has the maximum number of edges.(See

Fig. 3.1(a).) One can observe that C ′ is a 3-legged cycle in Γ, and any face of

Γ other than F1, F2, and F3 is in Γ1(C) or in Γ1(C
′). Therefore it is sufficient

to prove that F is neither in Γ1(C) nor in Γ1(C
′). If F is in Γ1(C), then C ′ is

a 3-legged cycle in Γ′ and contains no vertex on FO(Γ′) = F , a contradiction to

(br1) of Lemma 2.2.2. Similarly, if F is in Γ1(C
′), then C is a 3-legged cycle in

Γ′ and no vertex on FO(Γ′) = F , a contradiction to (br1) of Lemma 2.2.2.

We next consider the case where C does not contain any edge on FO(Γ).

Let C ′ be the cycle in Γ − Γ1(C) such that Γ1(C
′) includes Γ1(C) and has the

minimum number of edges. (See Fig. 3.1(b)) Any face other than F1, F2 and

F3 is in Γ1(C) or in ΓO(C ′). Therefore it is sufficient to prove that F is neither

in Γ1(C) nor in ΓO(C ′). If F is in Γ1(C), then C ′ is a 3-legged cycle in Γ′ and

contains no vertex on FO(Γ′) = F , a contradiction to (br1) of Lemma 2.2.2. If F

is in ΓO(C ′), then C is a 3-legged cycle in Γ′ contains no vertex on FO(Γ′) = F ,

a contradiction to (br1) of Lemma 2.2.2. Q.E .D.

Theorem 3.1.1 immediately yields the following algorithm to examine whether

a subdivision of a planar 3-connected cubic graph G has a box-rectangular draw-

ing and to find a box-rectangular drawing of G if it exists.

Algorithm Subdivision-Draw-∆-3-or-Less(G)
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begin

1 Let Γ be any arbitrary plane embedding of G;

2 Examine whether Γ has a regular 3-legged cycle C;

3 if Γ has no 3-legged cycle then {G is cyclically 4-edge-connected.}

Find the box-rectangular drawing of Γ using the method stated in

Subsection 2.5.2.

4 else { Γ has a regular 3-legged cycle, and G is not cyclically 4-edge-

connected.}

begin

5 Let C be any regular 3-legged cycle;

6 Let F1, F2, and F3 be the three peripheral faces of C;

7 Γ1, Γ2, and Γ3 be three plane embeddings of G taking F1, F2, and F3

as the outer face respectively;

8 Examine whether Γ1, Γ2, and Γ3 satisfy both (br1) and (br2) of

Lemma 2.2.2, that is, they have box-rectangular drawings.;

9 if Γ1, Γ2, or Γ3, say Γ2 has a box-rectangular drawing then

10 Find a box-rectangular drawing of Γ2 by the method stated in

Subsection 2.5.2;

11 else

G has no box-rectangular drawing;

end

end.

Theorem 3.1.4 Algorithm Subdivision-Draw-∆-3-or-Less examines in linear

time whether a subdivision of a planar 3-connected cubic graph G has a box-

rectangular drawing, and finds a box-rectangular drawing of G in linear time if

it exists.

Proof. Using a method similar to that in [RNN99, RNN00], one can exam-

ine in linear time whether Γ has a regular 3-legged cycle. The method stated

in Subsection 2.5.2 takes linear time. Therefore, the overall time complexity

of the Algorithm Subdivision-Draw-∆-3-or-Less is linear. Clearly, Algo-

rithm Subdivision-Draw-∆-3-or-Less correctly examines whether G has a

box-rectangular drawing or not, and finds a box-rectangular drawing of G if it

exists. Q.E .D.
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3.1.2 The Other Case for a Planar Graph G with ∆ ≤ 3

In this subsection we assume that G is a planar biconnected with ∆ ≤ 3 but

is not a subdivision of a 3-connected cubic graph. We give a linear-time al-

gorithm to examine whether G has a box-rectangular drawing and to find a

box-rectangular drawing of G if it exists.

If the planar graph G has all the vertices of degree 2 then we have the

following theorem.

Theorem 3.1.5 Let G be a planar graph. If G has all the vertices of degree two,

then all the plane embeddings of G are unique, that is, there is only one plane

embedding of G. G has a box-rectangular drawing for that plane embedding.
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Figure 3.2: Planar graphs with all vertices of degree 2, and their corresponding

box-rectangular drawings.

Proof. Let G be a planar graph. G has all the vertices of degree 2. In each

of the Fig. 3.2(a, b, or c) one can easily observe that Γ is the only one plane

embedding of G and also that Γ has a box-rectangular drawing. Q.E .D.

.

Similarly if the planar graph G has at most two vertices of degree 3 then we

have the following theorem.
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Theorem 3.1.6 Let G be a planar 2-connected graph with ∆ ≤ 3 but not a

subdivision of a planar 3-connected cubic graph. If G has at most two vertices

of degree three, then G has a box-rectangular drawing.

’
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Figure 3.3: A Planar graph with exactly two vertices of degree 3, its transfor-

mations, and its corresponding box-rectangular drawing.

Proof. Let G be a planar 2-connected graph with ∆ ≤ 3 but not a subdivision

of a planar 3-connected cubic graph. G has at most two vertices of degree 3. Let

Γ be an arbitrary plane embedding of G. Then one can easily observe that Γ has

a box-rectangular drawing and find the box-rectangular drawing as illustrated

in Fig. 3.3. Q.E .D.

We may thus assume that any arbitrary plane embedding Γ of a planar 2-

connected graph G has three vertices of degree 3. Then Γ has a regular 2-legged

cycle; otherwise, G would be a subdivision of a 3-connected cubic graph.

Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of vertices such that xi and yi,

1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or the hand-vertices

of a regular 2-handed cycle. If there is a plane embedding Γ′ of G having a

box-rectangular drawing, then the outer face FO(Γ′) must contain all vertices

(x1, y1), (x2, y2), . . . , (xl, yl); otherwise, Γ′ would have a 2-legged cycle containing

no vertex on FO(Γ′) and hence by (br1) of Lemma 2.2.2 Γ′ would not have a box-

rectangular drawing. Construct a graph G+ from G by adding a dummy vertex

z and dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l. Then G has a

plane embedding whose outer face contains all vertices x1, y1, x2, y2, . . . , xl, yl if

and only if G+ is planar. (Figure 3.4(b) illustrates G+ for G in Fig. 3.4(a).)

We may thus assume that G+ is planar. Let Γ+ be an arbitrary plane

embedding of G+ such that z is embedded on the outer face, as illustrated in Fig.

3.4(c). We delete from Γ+ the dummy vertex z and let Γ∗ be the resulting plane
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Figure 3.4: G, Γ, G+, Γ+, Γ∗, and Γ1
∗.

embedding of G, in which FO(Γ∗) contains all vertices x1, y1, x2, y2, . . . , xl, yl, as

illustrated in Fig. 3.4(d). One can observe that every 2-legged cycle in Γ∗ has

the leg-vertices on FO(Γ∗).

Let p be the largest integer such that a number p of 2-legged cycle in Γ∗

are independent with each other. Then p ≥ 2 since Γ and hence Γ∗ has a

regular 2-legged cycle. Γ∗ has a number p of minimal 2-legged cycles. If Γ∗

1

is a plane embedding obtained from Γ∗ by flipping Γ1
∗(C) for a minimal 2-

legged cycle C, then the leg vertices of all 2-legged cycles in Γ1
∗ are on FO(Γ1

∗)

(The embedding Γ1
∗ in Fig. 3.4(e) is obtained from Γ∗ in Fig. 3.4(d) by flip-

ping Γ1
∗(C1)). One can observe that only the plane embeddings of G that

can be obtained from Γ∗ by flipping Γ1
∗(C) for some minimal 2-legged cy-

cles C have x1, y1, x2, y2, . . . , xl, yl on the outer face. We now have p = 2;

otherwise, any plane embedding of G whose outer face contains all vertices

x1, y1, x2, y2, . . . , xl, yl has three or more independent 2-legged cycles, and hence
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Figure 3.5: Four different embeddings Γ1, Γ2, Γ3, and Γ4, and box-rectangular

drawings of Γ3 and Γ4.

by (br2) of Lemma 2.2.2 the embedding has no box-rectangular drawing.

Since p = 2, Γ∗ has exactly two independent 2-legged cycles C1 and C2. We

may assume without loss of generality that C1 and C2 are minimal 2-legged

cycles, as illustrated in Fig. 3.5. By flipping Γ1
∗(C1) or Γ1

∗(C2) around the

leg vertices of C1 or C2, we have at most four different embeddings Γ1(=

Γ∗), Γ2, Γ3, and Γ4 such that each FO(Γj), 1 ≤ j ≤ 4, contains all vertices

x1, y1, x2, y2, . . . , xl, yl as illustrated in Fig. 3.5. Since only the four embeddings

Γ1, Γ2, Γ3, and Γ4 of G have all vertices x1, y1, x2, y2 . . . , xl, yl on the outre face,

G has a box-rectangular drawing if and only if at least one of Γ1, Γ2, Γ3, and

Γ4 has a box-rectangular drawing. (None of the embeddings Γ1 and Γ2 in Figs.

3.5(a and b) has a box-rectangular drawing since there are no four vertices on

the outer face to choose as corner boxes according to (br1) of Lemma 2.2.2, two

at each 2-legged cycle, and at least one at each 1-legged cycle, while each of

the embeddings Γ3 and Γ4 in Figs. 3.5(c and d) has a box-rectangular drawing

as illustrated in Fig. 3.5(e) and in Fig. 3.5(f) respectively). We thus have the
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following theorem.

Theorem 3.1.7 Let G be a planar biconncted graph with ∆ ≤ 3 which is not

a subdivision of a planar 3-connected cubic graph. Let Γ be a plane embedding

of G such that every 2-legged cycle in Γ has leg-vertices on FO(Γ), let Γ have

exactly two independent 2-legged cycles, and let C1 and C2 be the two minimal

2-legged cycles in Γ. Let Γ1(= Γ), Γ2, Γ3, and Γ4 be the four embeddings of G

obtained from Γ by flipping Γ1(C1) or Γ1(C2) around the the leg vertices of C1

and C2. Then G has a box-rectangular drawing if and only if at least one of the

four embeddings Γ1, Γ2, Γ3, and Γ4 has a box-rectangular drawing.

3.2 Algorithm

In this section we formally describe our Algorithm Planar-Box-Rectangular-

Draw-∆-3-or-Less to examine whether a planar graph G with ∆ ≤ 3 has a

box-rectangular drawing and to find a box-rectangular drawing of G if it exists.

Algorithm Planar-Box-Rectangular-Draw-∆-3-or-Less (G)

{ Assume that G has three or more vertices of degree 3. Otherwise, one

can easily examine whether G has a box-rectangular drawing or not, as

illustrated in Fig. 3.2 and in Fig. 3.3. }

begin

1 Let Γ be any plane embedding of G;

2 Examine whether Γ has a regular 2-legged cycle;

3 if Γ has no regular 2-legged cycle then

{ G is a subdivision of a planar 3-connected cubic graph.}

4 Examine by Algorithm Subdivision-Draw-∆-3-or-Less whether G

has a box-rectangular drawing and find a box-rectangular drawing of

G if it exists;

5 else { G is not a subdivision of a planar 3-connected cubic graph.}

begin

6 Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pair of vertices such that xi

and yi, 1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or

the hand vertices of a regular 2-handed cycle in Γ;

7 Construct a graph G+ from G by adding a dummy vertex z and
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dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l;

8 Examine whether G+ is planar;

9 if G+ is not planar then

G has no box-rectangular drawing;

10 else

begin

11 Find a planar embedding Γ+ of G+ such that z is embedded on the

outer face;

12 Delete from Γ+ the dummy vertex z and let Γ∗ be the resulting

plane subgraph;

13 if Γ∗ has three or more independent 2-legged cycles then

G has no box-rectangular drawing;

14 else

begin

15 Let C1 and C2 be the two minimal regular 2-legged cycles in Γ∗;

16 Let Γ1, Γ2, Γ3 and Γ4 be the four plane embeddings of G obtained

from Γ∗ by flipping Γ1
∗(C1) or Γ1

∗(C2) around the leg-vertices

of C1 or C2;

17 Examine whether Γ1, Γ2, Γ3, and Γ4 have box-rectangular

drawings by Lemma 2.2.2;

18 if Γ1, Γ2, Γ3, or Γ4, say Γ2, has a box-rectangular drawing then

19 Find a box-rectangular drawing of Γ2 by the method stated

in Subsection 2.5.2;

20 else

G has no box-rectangular drawing;

end

end

end

We now have the following theorem on Algorithm Planar-Box-Rectangular-

Draw-∆-3-or-Less.

Theorem 3.2.1 Let G be a planar biconnected graph with ∆ ≤ 3. Then

Algorithm Planar-Box-Rectangular-Draw-∆-3-or-Less examines in linear time

whether G has a box-rectangular drawing and finds a box-rectangular drawing of

G if it exists.
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Proof. One can find all pairs (x1, y1), (x2, y2), . . . , (xl, yl) of vertices in

linear time using a method similar to the algorithm in [RNN00] to find 2-legged

cycles. By theorem 3.1.4 Algorithm Subdivision-Draw-∆-3-or-Less takes

linear time. One can examine the planarity of G+ in linear time and find Γ+

in linear time [NC88]. The method stated in Subsection 2.5.2 takes linear time.

Thus Algorithm Planar-Box-Rectangular-Draw-∆-3-or-Less takes linear

time in total.

The correctness of Algorithm Planar-Box-Rectangular-Draw-∆-3-or-

Less is immediate from Theorems 3.1.1, and 3.1.7. Q.E .D.
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Chapter 4

Box-Rectangular Drawings of

Planar Graphs with ∆ ≥ 4

In this chapter we give a necessary and sufficient condition for a 2-connected

planar graph G with ∆ ≥ 4 to have a box-rectangular drawing. We also give a

linear-time algorithm to find the drawing if it exists. Section 4.1 describes the

necessary and sufficient condition, and Section 4.2 illustrates the algorithm.

4.1 Necessary and Sufficient Condition

In Subsection 4.1.1 we consider the case where G is a subdivision of a planar

3-connected graph with ∆ ≥ 4, and in Subsection 4.1.2 we consider the cases

where G with ∆ ≥ 4 has at most two vertices, and where G is a planar 2-

connected graph with ∆ ≥ 4 but not a subdivision of a 3-connected graph.

Before entering into different cases, we observe the following lemmas on a

planar graph with ∆ ≥ 4.

Lemma 4.1.1 Let G be a planar graph with ∆ ≥ 4, and Γ be an arbitrary plane

embedding of G. Let H be the transformed graph of Γ by replacing each vertex v

of degree four or more in Γ by a cycle, and let Φ be an arbitrary plane embedding

of H. Denote the total number of 2-legged and 3-legged cycles in Γ by lΓ, and

the total number of 2-handed and 3-handed cycles in Γ by hΓ. Also denote the

total number of 2-legged and 3-legged cycles in Φ by lφ, and the total number of

2-handed and 3-handed cycles in Φ by hΦ. If pΓ = lΓ + hΓ and pΦ = lΦ + hΦ,

then pΓ = pΦ.
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Figure 4.1: pΓ = pΦ

Proof. Let G be a planar graph with ∆ ≥ 4 as in Fig. 4.1(a), and let Γ be

an arbitrary plane embedding of G as in Fig. 4.1(b). In Fig. 4.1(c), H is the

transformed graph of Γ as above, and let Φ be an arbitrary plane embedding

of H as in Fig. 4.1(d). 2-legged cycles and 2-handed cycles in Γ are shown by

thick dotted lines in Fig. 4.1(b), and 3-legged cycles and 3-handed cycles in Γ

are shown by dotted lines in Fig. 4.1(b). Similarly 2-legged cycles and 2-handed

cycles in Φ are shown by thick dotted lines in Fig. 4.1(d), and 3-legged cycles

and 3-handed cycles in Φ are shown by dotted lines as in Fig. 4.1(d). Since a

2-legged cycle in any plane embedding of G is a 2-legged or a 2-handed cycle in

another plane embedding of G, and a 2-handed cycle in any plane embedding of

G is a 2-handed or a 2-legged cycle in another plane embedding of G, different

plane embeddings of a same planar graph do not change in total number of

2-legged cycles and 2-handed cycles. Similarly different plane embeddings of

a same planar graph do not change in total number of 3-legged cycles and 3-

handed cycles. One can easily observe that, the total number of 2-legged and

2-handed cycles in Φ remains same with the total number of 2-legged and 2-

handed cycles in Γ after transformation. Similarly the total number of 3-legged

and 3-handed cycles in Φ remains same with the total number 3-legged and

3-handed cycles in Γ, after transformation. Because in Φ every replaced cycle is

either a 4- or more handed, or a 4- or more legged cycle. Let the total number
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of 2-legged and 3-legged cycles in Γ be lΓ, the total number of 2-handed and

3-handed cycles in Γ be hΓ, the total number of 2-legged and 3-legged cycles in

Φ be lΦ, the total number of 2-handed and 3-handed cycles in Φ be hΦ, and if

pΓ = lΓ + hΓ and pΦ = lΦ + hΦ then pΓ = pΦ. Q.E .D.

Lemma 4.1.2 Let G be a planar graph with ∆ ≥ 4 and Γ be an arbitrary plane

embedding of G. Let H be the transformed graph of Γ by replacing each vertex v

of degree four or more in Γ by a cycle. Let ΦR be any arbitrary plane embedding

of H, where CO(ΦR) is the face of any replaced cycle in H. Then G is cyclically

4-edge-connected if and only if ΦR has a box-rectangular drawing.

Necessity of Lemma 4.1.2. Let G be a planar graph with ∆ ≥ 4 and let

Γ be an arbitrary plane embedding of G. Let H be the transformed graph of

Γ as above. Let ΦR be any arbitrary plane embedding of H, where CO(ΦR) is

the face of any replaced cycle in H. Assume G is cyclically 4-edge-connected.

By Lemma 3.1.3, a plane embedding Γ of the planar graph G is also cyclically

4-edge-connected. As all the replaced cycles in H are 4- or more legged cycles,

H is also cyclically 4-edge-connected. By Lemma 3.1.3, a plane embedding ΦR

of the planar graph H is also cyclically 4-edge-connected. Then by Theorem

3.1.1(a), ΦR has a box-rectangular drawing. Q.E .D.

Sufficiency of Lemma 4.1.2. Let G be a planar graph with ∆ ≥ 4 and

let Γ be an arbitrary plane embedding of G. Let H be the transformed graph of

Γ as above. Let ΦR be any arbitrary plane embedding of H, where CO(ΦR) is

the face of any replaced cycle in H. Assume ΦR has a box-rectangular drawing.

That is, ΦR satisfies both (br1) and (br2) of Lemma 2.2.2. There is no 2- or

3-legged cycle in ΦR, which does not contain an edge on CO(ΦR). CO(ΦR) is

also a 4- or more handed cycle. That is, there is no independent set of 2- and

3-legged cycles in ΦR. Removal of any 2 or 3 edges leaves a graph in ΦR such

that exactly one component has a cycle. So ΦR is cyclically 4-edge-connected.

Another plane embedding Φ of H, which does not have a replaced cycle as outer

face is also cyclically 4-edge-connected, as Φ and ΦR are the two different plane

embeddings of the same planar graph H. By Lemma 4.1.1, Γ and Φ do not

change in total number of 2-legged, 2-handed, 3-legged, and 3-handed cycles.

So, Γ is cyclically 4-edge-connected. That is, G is a cyclically 4-edge-connected

graph. Q.E .D.
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4.1.1 Case for a Subdivision of a Planar 3-Connected

Graph with ∆ ≥ 4
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Figure 4.2: Illustration of G, Γ, H, Γ′, Φ, DΓ′ , DΦ, and the two transformations.

Let G be a subdivision of a planar 3-connected graph with ∆ ≥ 4, and Γ be

an arbitrary plane embedding of G. We construct a new planar graph H from

Γ by replacing each vertex v of degree four or more in G by a cycle. Figures

4.2(a), 4.2(b), and 4.2(c) illustrate G, Γ, and H respectively. A replaced cycle

corresponds to a real box in a box-rectangular drawing of G. We do not replace

a vertex of degree 2 or 3 by a cycle since such a vertex may be drawn as a point.

Thus ∆(H) ≤ 3. The following theorem is the main result of this subsection.

Theorem 4.1.3 Let G be a subdivision of a planar 3-connected graph with ∆ ≥

4 and let Γ be an arbitrary plane embedding of G. Let H be the graph transformed
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from Γ as above. Then G has a box-rectangular drawing if and only if the planar

graph H has a box-rectangular drawing.

It is rather easy to prove the necessity of Theorem 4.1.3.

Necessity of Theorem 4.1.3. Let Γ in Fig. 4.2(b) be an arbitrary plane

embedding of the planar graph G in Fig. 4.2(a). Assume that G has a box-

rectangular drawing for any plane embedding Γ′ in fig. 4.2(d) of G. Then by

Lemma 2.4.5, Γ′ has a box-rectangular drawing DΓ′ in which every vertex of

degree 4 or more is drawn as a real box, as illustrated in Fig. 4.2(f). Then, as

illustrated in Fig. 4.2(g), one can obtain a box-rectangular drawing DΦ for the

plane graph Φ in Fig. 4.2(e) of the planar graph H from DΓ′ by the following

transformation:

(i) regard each noncorner real box in DΓ′ as a face in DΦ;

(ii) if a corner box in DΓ′ corresponds to a vertex of degree 3 in Γ then regard

it as a corner box in DΦ; and

(iii) if a corner box in DΓ′ corresponds to a vertex of degree four or more in

Γ, then transform it to a drawing of a replaced cycle with one or more

real boxes as illustrated in Figs. 4.2(h) and 4.2(i) where the box in DΓ′

contains one corner in Fig. 4.2(h) and contains two corners in Fig. 4.2(i).

Q.E .D.

Figures 4.2(f) and 4.2(g) illustrate DΓ′ and DΦ, respectively. Box h in DΓ′

is a noncorner real box, and it is regarded as a face in DΦ. Corner boxes c

and f in DΓ′ correspond to a vertices of degree 3, and they remain as boxes

in DΦ. Corner box g in DΓ′ corresponds to a vertex of degree 2, it remains as

a degenerated box in DΦ. Corner box d in DΓ′ correspond to vertex of degree

four or more is transformed to a drawing of a replaced cycle with one real box

in DΦ as illustrated in Fig. 4.2(h).

It is rather difficult to prove the sufficiency of Theorem 4.1.3, since there

is no easy method which directly transforms a box-rectangular drawing DΦ of

any plane embedding Φ of H to a box-rectangular drawing DΓ′ of any plane

embedding Γ′ of the planar graph Γ as well as of the planar graph G. We

give some definitions before proving the sufficiency. Figures 4.3(a) and 4.3(b)

illustrate G and Γ respectively. We replace the vertices of degree 4 or more in
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Γ by cycles like Figure 2.5. We call a vertex of degree 3 on a replaced cycle a

replaced vertex. The edges on the replaced cycle are called born edges. In any

arbitrary plane embedding Φ of H, that does not contain a replaced cycle as

outer face, the replaced cycle on CO(Φ) corresponding to a vertex of degree 4

or more in G contains exactly one edge on CO(Φ). We call such an edge in Φ a

green edge. Each vertex of degree 2 or 3 in G has a corresponding vertex of the

same degree in H, and we call such a vertex in H an original vertex. Now each

vertex in H is either a replaced vertex or an original vertex. In any arbitrary

plane embedding Φ of H,that does not contain a replaced cycle as outer face,

for a green edge e and a cycle C in Φ, we call e a green edge for C if both ends

of e are on C.

Assume an arbitrary plane embedding Φ of the planar graph H has a box-

rectangular drawing DΦ, then Φ satisfies (br1) and (br2) of Lemma 2.2.2. We

can easily transform DΦ to a box-rectangular drawing DΓ′ of any plane embed-

ding Γ′ of the planar graph Γ as well as of the planar graph G if only original

vertices are drawn as corner boxes in DΦ, because then each replaced vertex is

a point in DΦ, and each replaced cycle in Φ is a rectangular face in DΦ, and

hence DΦ can be transformed to DΓ′ by regarding each replaced cycle as a box.

The problem is the case where a replaced vertex is drawn as a corner box in DΦ.

Because such a drawing DΦ cannot always be transformed to a box-rectangular

drawing DΓ′ of Γ′. However we show that a plane graph Φ∗ in Fig. 4.3(f) ob-

tained from Φ in Fig. 4.3(d) through an intermediate graph Φ′ in Fig. 4.3(e)

with slight modification has a particular box-rectangular drawing DΦ∗ which

can be easily transformed to a box-rectangular drawing of Γ′ as illutrated in

Fig. 4.3(h). Transformation is also not possible when the outer face of Φ is a

replaced cycle. It is found from Lemma 4.1.2(a) that, if a plane graph ΦR of the

planar graph H, containing a replaced cycle as outer face has a box-rectangular

drawing, then the planar graph H is cyclically 4-edge connected. Then by The-

orem 3.1.1(a), any arbitrary plane embedding Φ of the planar graph H, that

does not contain a replaced cycle as outer face has a box-rectangular drawing.

We are now ready to prove the sufficiency of Theorem 4.1.3.

Sufficiency of Theorem 4.1.3. Let an arbitrary plane embedding of H

as in Fig. 4.3(c) be Φ as in Fig. 4.3(d) that does not have a replaced cycle

as outer face. Assume that Φ has a box-rectangular drawing. Let Φ′ be the
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minimal graph homeomorphic to Φ as illustrated in Fig. 4.3(e); then Φ′ is a

cubic graph and satisfies Conditions (br1) and (br2) in Lemma 2.2.2. Using

the similar approach used in Subsection 2.5.3, we can designate four vertices as

corners vertices after slight modification in Φ′. Let Φ∗ be the resulting graph

as illustrated in Fig. 4.3(f). Note that each of the four designated vertices in

Φ∗ is either an original vertex or a dummy vertex of degree 2 on a green edge of

Φ′. Clearly, every 3-legged cycle in Φ∗ contains at least one designated vertex.

Hence, Φ∗ has a box-rectangular drawing with the four designated vertices as

corner boxes, as illustrated in Fig. 4.3(g). Inserting the removed vertices of

degree 2 on some vertical and horizontal line segments in DΦ
∗ and regarding

the drawing of each replaced cycle as a box, we immediately obtain a box-

rectangular drawing DΓ′ of the plane embedding Γ′ of the planar graph Γ as

well as of the planar graph G from DΦ
∗, as illustrated in Fig. 4.3(h). Q.E .D.

Theorem 4.1.3 immediately yields the following algorithm to examine whether

a subdivision of a planar 3-connected graph G with ∆ ≥ 4 has a box-rectangular

drawing and to find a box-rectangular drawing of G if it exists.

Algorithm Subdivision-Draw-3-Connected-∆-4-or-More(G)

begin

1 Let Γ be any arbitrary plane embedding of G;

2 Transform the graph from Γ to H by using the method as in Theorem

4.1.3;

3 Examine whether the planar graph H has a box-rectangular drawing or

not by using the Algorithm Planar-Box-Rectangular-Draw-∆-3-

or-Less;

4 if H has a box-rectangular drawing then

5 Find the box-rectangular drawing of G by using the method stated in

the constructive proof of sufficiency of Theorem 4.1.3;

6 else

G has no box-rectangular drawing;

end

Theorem 4.1.4 Algorithm Subdivision-Draw-3-Connected-∆-4-or-More exam-

ines in linear time whether a subdivision of a planar 3-connected graph G with
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∆ ≥ 4 has a box-rectangular drawing, and finds a box-rectangular drawing of G

in linear time if it exists.

Proof. One can construct H from Γ in time O(m), where m is the number of

edges in G. By theorem 3.2.1, Algorithm Planar-Box-Rectangular-Draw-

∆-3-or-Less examines in linear time whether the planar graph H has a box-

rectangular drawing and finds a box-rectangular drawing of H as well as of G if

it exists. Thus Algorithm Subdivision-Draw-3-Connected-∆-4-or-More

takes linear time in total.

The correctness of Algorithm Subdivision-Draw-3-Connected-∆-4-or-

More is immediate from the Theorem 4.1.3. Q.E .D.

4.1.2 Case for G with ∆ ≥ 4, where G has at most two

vertices, or where G is a planar 2-connected graph

with ∆ ≥ 4 but not a subdivision of a planar 3-

connected graph

In this Subsection we assume that G with ∆ ≥ 4 has at most two vertices, or

G is a planar 2-connected graph with ∆ ≥ 4 but not a subdivision of a planar

3-connected graph.

If the planar graph G with ∆ ≥ 4 has at most two vertices then we have the

following theorem.

Theorem 4.1.5 Let G be a planar graph. If G with ∆ ≥ 4 has at most two

vertices, then all the plane embeddings of G are unique, that is, there is only

one plane embedding of G. G has a box-rectangular drawing for that plane

embedding.

Proof. Let G be a planar graph with ∆ ≥ 4. G has at most two vertices.

In the Fig. 4.4 one can easily observe that Γ is the only one plane embedding

of G and also that Γ has a box-rectangular drawing. Q.E .D.

.

Then we assume that G is a planar 2-connected graph with ∆ ≥ 4 but not

a subdivision of a planar 3-connected graph.

Let G be a planar 2-connected graph with ∆ ≥ 4 but not and a subdivi-

sion of a planar 3-connected graph, and Γ be an arbitrary plane embedding of
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G. Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of vertices such that xi and yi,

1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or the hand-vertices

of a regular 2-handed cycle. If there is a plane embedding Γ′ of G having a

box-rectangular drawing, then the outer face FO(Γ′) must contain all vertices

(x1, y1), (x2, y2), . . . , (xl, yl); otherwise, Γ′ would have a 2-legged cycle contain-

ing no vertex on FO(Γ′). Because after replacing the vertices of degree 4 or

more by cycles like Fig. 2.5 in Γ′, according to Lemma 4.1.1, 2-legged cycles

will remain same and the total number of 2-legged cycles will also remain same.

The graph is named as Φ after transformation from Γ′. If Γ′ has a 2-legged cycle

containing no vertex on FO(Γ′), then Φ also has a 2-legged cycle containing no

vertex on FO(Φ), and hence by Lemma 2.5.5 and by (br1) of Lemma 2.2.2, Γ′

does not have a box-rectangular drawing. Similarly if there is a plane embed-

ding Γ′ of G having a box-rectangular drawing, then the outer face FO(Γ′) must

contain two leg vertices of every 3-legged cycle.

Let p be the largest integer such that a number p of minimal 2-legged and

maximal 2-handed cycles in Γ are independent with each other, and q be the

largest integer such that a number q of minimal 3-legged and maximal 3-handed

cycles in Γ are independent with each other. By (br2) of Lemma 2.2.2, p ≤ 2

and q ≤ 4; otherwise, Γ′ does not have a box-rectangular drawing. Assume

the worst case, that is, p = 2 and q = 4 in Γ. Independent minimal 3-legged

or maximal 3-handed cycles in Γ are denoted by C1, C2, C3, and C4. Let

{ak, bk, ck} be the set of leg vertices or hand vertices in Ck, for k = 1, 2, 3, and

4. We can choose two vertices from each C1, C2, C3, or C4 in 3 ways. The

combinations are {(ak, bk), (bk, ck), and (ck, ak)}, for k = 1, 2, 3 or 4. If we want

to choose eight vertices from 4 cycles, C1, C2, C3, and C4, two vertices from

each Ck, for k = 1, 2, 3 or 4, we can choose in 3 x 3 x 3 x 3 = 81 number

of ways. The combinations are S1 = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}, S2 =

{(a1, b1), (a2, b2), (a3, b3), (b4, c4)}, S3 = {(a1, b1), (a2, b2), (a3, b3), (c4, a4)}, . . . ,

and S81 = {(c1, a1), (c2, a2), (c3, a3), (c4, a4)}.

Let G be a planar 2-connected graph with ∆ ≥ 4 but not and a subdivision

of a planar 3-connected graph, and Γ be an arbitrary plane embedding of G

as in Fig. 4.5(a). Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of vertices such

that xi and yi, 1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or

the hand-vertices of a regular 2-handed cycle, and {ak, bk, ck} be the set of leg
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vertices or hand vertices in Ck, for k = 1, 2, 3 and 4. A dummy vertex z is

added in the outer face of Γ. Construct a graph Γj
+, for any j = 1, 2, 3, . . . ,

or 81, by adding dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l, and

by adding eight dummy edges from z to all vertices in the set Sj. In this way

we can get 81 number of graphs Γj
+, for every j = 1, 2, 3, . . ., and 81. Γ1

+ and

Γ2
+ are two such kinds of graphs as illustrated in Fig. 4.5(b) and in Fig. 4.5(c)

respectively. G may have a box-rectangular drawing, only if, any one of the

graphs Γj
+, for j = 1, 2, 3, . . ., and 81, has a planar embedding such that z is

embedded in the outer face. Γ2P
+ in Fig. 4.5(c) is such a planar embedding of

the graph Γ2
+, but Γ1

+ in Fig. 4.5(b) has no such a planar embedding. That

is why, the planar graph G in Fig. 4.5(a) may have a box-rectangular drawing.

Delete the dummy vertex z from Γ2P
+. The graph is then called Γ2P

∗ as in Fig.

4.5(d). Lastly by Lemma 2.5.5 and by the approach used in Subsecion 2.5.3, we

can test whether the plane graph Γ2P
∗ has a box-rectangular drawing and find

the drawing if it exists. DΓ2P
∗ is a box rectangular of the plane graph Γ2P

∗ as

well as of the planar graph G, as illustrated in Fig. 4.5(e).

We thus have the following theorem on a planar 2-connected graph G with

∆ ≥ 4 but not a subdivision of a planar 3-connected graph.

Theorem 4.1.6 Let G be a planar 2-connected graph with ∆ ≥ 4 which is not a

subdivision of a planar 3-connected graph, and Γ be an arbitrary plane embedding

of G. Assume G has at most two independent minimal 2-legged and maximal

2-handed cycles, and at most four independent minimal 3-legged and maximal 3-

handed cycles; otherwise, G has no box-rectangular drawing. Construct different

graphs Γj
+, for every j = 1, 2, 3, . . ., and 81, as above. Test whether any of the

graphs Γj
+, for j = 1, 2, 3, . . ., and 81, has a planar embedding, such that z is

embedded in the outer face; otherwise, G has no box-rectangular drawing. Say,

Γ1P
+ is such a planar embedding of the graph Γ1

+. Construct Γ1P
∗ from Γ1P

+

as above. The planar graph G has a box-rectangular drawing if and only if the

plane graph Γ1P
∗ has a box-rectangular drawing.

Theorem 4.1.6 immediately yields the following algorithm for a planar 2-

connected graph G with ∆ ≥ 4 but not a subdivision of a planar 3-connected

graph. The algorithm can examine whether the planar graph G has a box-

rectangular drawing or not, and can find the box-rectangular drawing of G if it

exists.
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Algorithm Planar-Box-Rect-Draw-2-Conn-but-Not-Subdiv-3-

Conn-∆-4-or-More (G)

{ Assume that G with ∆ ≥ 4 has three or more vertices. Otherwise, one

can easily examine whether G has a box-rectangular drawing or not, as

illustrated in Fig. 4.4. }

begin

1 Let Γ be any plane embedding of G and let (x1, y1), (x2, y2), . . . , (xl, yl)

be all pair of vertices such that xi and yi, 1 ≤ i ≤ l, are the leg vertices

of a regular 2-legged cycle or the hand vertices of a regular 2-handed

cycle in Γ. Let p be the largest integer such that a number p of minimal

2-legged and maximal 2-handed cycles in G are independent with each

other, and q be the largest integer such that a number q of minimal

3-legged and maximal 3-handed cycles in G are independent with each

other;

2 if p > 2 or q > 4 then

G has no box-rectangular drawing;

3 else { Assume the worst case, that is, p = 2 and q = 4 }

begin

4 Independent minimal 3-legged or maximal 3-handed cycles in Γ are

denoted by C1, C2, C3, and C4. Let {ak, bk, ck} be the set of leg

vertices or hand vertices in Ck, for k = 1, 2, 3, and 4. One can choose

two vertices from each C1, C2, C3, or C4 in 3 ways. The combinations

are {(ak, bk), (bk, ck), and (ck, ak)}, for k = 1, 2, 3 or 4. If one wants

to choose eight vertices from 4 cycles, C1, C2, C3, and C4, two vertices

from each Ck, for k = 1, 2, 3 or 4, he can choose in 3 x 3 x 3 x 3 = 81

number of ways. The combinations are

S1 = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)},

S2 = {(a1, b1), (a2, b2), (a3, b3), (b4, c4)},

S3 = {(a1, b1), (a2, b2), (a3, b3), (c4, a4)}, . . . , and

S81 = {(c1, a1), (c2, a2), (c3, a3), (c4, a4)};

5 Construct a graph Γj
+, for any j = 1, 2, 3, . . . , or 81, by setting a

dummy vertex z at the outer face of Γ, by adding dummy edges (xi, z)

and (yi, z) for all indices i, 1 ≤ i ≤ l, and by adding eight dummy

edges from z to all vertices in the set Sj. In this way one can get
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81 number of graphs Γj
+, for every j = 1, 2, 3, . . ., and 81;

6 if no one of the graphs Γj
+, for j = 1, 2, 3, . . ., and 81, has a

planar embedding such that z is embedded in the outer face then

G has no box-rectangular drawing;

7 else

begin

8 Say, Γ1P
+ is such a planar embedding of the graph Γ1

+;

9 Construct the graph Γ1P
∗ by deleting the vertex z from Γ1P

+;

10 By Lemma 2.5.5 and by the approach used in Subsecion 2.5.3, one

can test whether the plane graph Γ1P
∗ has a box-rectangular

drawing and find the drawing DΓ1P
∗ if it exists; {DΓ1P

∗ is the

box-rectangular drawing of the plane graph Γ1P
∗ as well as of the

planar graph G. }

end

end

end

We now have the following theorem on Algorithm Planar-Box-Rect-

Draw-2-Conn-but-Not-Subdiv-3-Conn-∆-4-or-More.

Theorem 4.1.7 Let G be a planar 2-connected graph G with ∆ ≥ 4 which is not

a subdivision of a planar 3-connected graph. Then Algorithm Planar-Box-Rect-

Draw-2-Conn-but-Not-Subdiv-3-Conn-∆-4-or-More examines in linear time whether

G has a box-rectangular drawing and finds a box-rectangular drawing of G if it

exists.

Proof. One can find all pairs (x1, y1), (x2, y2), . . . , (xl, yl), and all sets

{(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), and (a4, b4, c4)} of vertices at Γ in linear time

using a method similar to the algorithm in [RNN00] to find 2-legged cycles, and

minimal 3-legged or maximal 3-handed cycles. Combinations S1, S2, S3, . . . , S81

can be got in constant time. One can examine the planarity of Γj
+, for any

j = 1, 2, 3, . . . , or 81, and find the planar embedding ΓjP
+ of Γj

+ , for that

j, in linear time [NC88], if it exists,. The method stated in Subsection 2.5.3

takes linear time to test whether ΓjP
∗ has a box-rectangular drawing and to

find the drawing if it exists [RNN00]. Thus Algorithm Planar-Box-Rect-

Draw-2-Conn-but-Not-Subdiv-3-Conn-∆-4-or-More takes linear time in

total. Q.E .D.
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A planar graph G with maximum degree 4 may have a rectangular drawing.

But no algorithm has yet been developed to test whether the planar graph

G with maximum degree 4 has a rectangular drawing and for finding out the

drawing if it exists. On the other hand Rahman et al. [RNN00] gave a necessary

and sufficient condition for a plane graph with maximum degree 4 or more to

have box-rectangular drawing and they also developed a linear-time algorithm

for finding out the drawing if it exists. In this thesis we derived a necessary and

sufficient condition for a planar graph G with maximum degree 4 or more to

have a box-rectangular drawing, and we also developed a linear-time algorithm

for finding out the drawing if it exists.

4.2 Algorithm

In this section we formally describe Algorithm Planar-Box-Rectangular-

Draw-2-Connected-∆-4-or-More, that is, for the general case to examine

whether a 2-connected planar graph G with ∆ ≥ 4 has a box-rectangular draw-

ing or not and to find out the drawing if it exists. The algorithm is as follows.

Algorithm Planar-Box-Rectangular-Draw-2-Connected-∆-4-or-

More (G)

{ Assume that G with ∆ ≥ 4 has three or more vertices. Otherwise, one

can easily examine whether G has a box-rectangular drawing or not, as

illustrated in Fig. 4.4. }

begin

1 Let Γ be an arbitrary plane embedding of G;

2 Remove the vertices of degree 2 in Γ, and call the graph Ξ;

3 Examine whether Ξ is 3-connected;

4 if Ξ is 3-connected then

{ G is a subdivision of a planar 3-connected graph.}

5 Examine by Algorithm Subdivision-Draw-3-Connected-∆-4-or-More

whether G has a box-rectangular drawing and find a box-rectangular

drawing of G if it exists;

6 else { G is a planar 2-connected graph.}

7 Examine by Algorithm Planar-Box-Rect-Draw-2-Conn-but-Not

-Subdiv-3-Conn-∆-4-or-More whether G has a box-rectangular
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drawing and find a box-rectangular drawing of G if it exists;

end

We now have the following theorem on Algorithm Planar-Box-Rectangular-

Draw-2-Connected-∆-4-or-More.

Theorem 4.2.1 Let G be a planar biconnected graph with ∆ ≥ 4. Then Al-

gorithm Planar-Box-Rectangular-Draw-2-Connected-∆-4-or-More examines in

linear time whether G has a box-rectangular drawing and finds a box-rectangular

drawing of G if it exists.

Proof. One can remove the vertices of vertices of degree 2 from Γ in lin-

ear time and call the graph Ξ. Using the algorithm by Hopcroft and Tarjan,

one can decompose a graph Ξ into 3-connected components [HT73]. If Ξ has

exactly only one component, then G is a subdivision of a 3-connected graph,

and by Theorem 4.1.4, Algorithm Subdivision-Draw-3-Connected-∆-4-

or-More takes linear time. Otherwise G is a 2-connected graph, and by Theo-

rem 4.1.7, Algorithm Planar-Box-Rect-Draw-2-Conn-but-Not-Subdiv-

3-Conn-∆-4-or-More takes also linear time. Thus Algorithm Planar-Box-

Rectangular-Draw-2-Connected-∆-4-or-More takes linear time in total.

Theorems 4.1.3 and 4.1.6 immediate the correctness of Algorithm Planar-

Box-Rectangular-Draw-2-Connected-∆-4-or-More. Q.E .D.
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Figure 4.3: Illustration for a box-rectangular drawing of a subdivision of a

planar 3- connected graph G with ∆ ≥ 4.
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corresponding box-rectangular drawing.

71



(a) (b)

(c)

(d)

(e)

i

h b m p

k w

v
x

y

j

l

c n q

e

o

s

u
t

G

n

m

o
d

b

u

s

t

r

p

q

jl h

f c

a
x

y

v

z

z

b

a
d

m

n

p

q

ro
t

s

u

v

x

w

gk

g

d

f

a

andΓ Γ
1

+

i

w

hj el

y

w

k
i

v

x

d

g

f
f

a

b m p

s

t
r u

qn

o

c c

*

l

y
x

j h e

ad

vw

k g fi

c

m

o

n q

p

r

Box−rectangulat drawing Γof
Γ *D *

t

u

s

Γ
2
+

2
+Γand

2
Γ

2
2

P

P

P
P

k gi

h el j

y

r

e

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������

������
������
������
������
������
������

����
����
����
����

����
����
����
����

b

Figure 4.5: Illustration for a box-rectangular drawing of a biconnected graph G

with ∆ ≥ 4 but not a subdivision of a 3-connected graph .
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Chapter 5

Conclusion

In this thesis we addressed the problem of finding box-rectangular drawings

of planar graphs. We gave necessary and sufficient conditions for the different

cases of planar graphs to have box-rectangular drawings, and then we developed

linear-time algorithms for finding out the drawings if drawings exist. In this

regard we first considered the case for planar graphs of maximum degree 3.

Then we considered the general case where graphs have vertices of maximum

degree 4 or more. Our first linear-time algorithm (described in Chapter 3) was

for examining whether a planar graph G with ∆ ≤ 3 has a box-rectangular

drawing, and to find the drawing if it exists. Then we showed that, one can

determine whether a subdivision of a planar 3-connected graph G with ∆ ≥ 4

has a box-rectangular drawing or not by investigating whether the planar graph

H (described in Chapter 4) has a box-rectangular drawing or not, which leads

to a linear-time algorithm. We also derived a necessary and sufficient condition

that runs in linear time for a planar 2-connected graph with ∆ ≥ 4 but not

a subdivision of a 3-connected graph to have a box-rectangular drawing. We

developed a linear-time algorithm for finding out the box-rectangular drawing

of a planar 2-connected graph with ∆ ≥ 4 but not a subdivision of a planar

3-connected graph, if it exists. We gave a technique to determine whether a

planar graph G with ∆ ≥ 4 is cyclically 4-edge connected or not.

The problem of finding box-rectangular drawings of planar graphs is moti-

vated by both theoretical interest and practical applications. We showed that,

all the plane embeddings of a subdivision of planar 3-connected cubic graph

G, that are cyclically 4-edge-connected have box-rectangular drawings, leads to
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a linear-time algorithm, where Rahman et al. [RNG04] showed that, any ar-

bitrary plane embedding Γ of a subdivision of planar 3-connected cubic graph

G must satisfy three necessary and sufficient conditions to have a rectangu-

lar drawing. In all other cases for the planar graph G of maximum degree 3

it was shown that, one needs to examine only a fixed number of embeddings

of G to determine whether G has a box-rectangular drawing or not. A pla-

nar graph G with maximum degree 4 may have a rectangular drawing. But

no algorithm has yet been developed to test whether the planar graph G with

maximum degree 4 has a rectangular drawing, and for finding out the drawing

if it exists. On the other hand Rahman et al. [RNN00] gave a necessary and

sufficient condition for a plane graph with maximum degree 4 or more to have

a box-rectangular drawing, and they also developed a liner-time algorithm for

finding out the drawing if it exists. In this thesis we derived a necessary and

sufficient condition for a planar graph G with maximum degree 4 or more to

have a box-rectangular drawing, and we also developed a linear-time algorithm

for finding out the drawing if it exists.

The following is a brief list of future works related to our results presented

in this thesis.

• Applications of box-rectangular drawings in civil structural designs and

in new fields may be a good research area.

• Concept of a box-rectangular drawing may be implemented in convex

drawing.

• In this thesis we have shown that, at least 81 number of embeddings of a

planar 2-connected graph with ∆ ≥ 4 are required to be checked to take a

decision whether the planar graph has a box-rectangular drawing or not.

This is for the worst case. The planar graph has a box-rectangular drawing

if and only if any of the embeddings has a box-rectangular drawing. In

future one can try to minimize the number of embeddings required to

be checked to take the decision whether the planar graph has a box-

rectangular drawing or not.
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[FKK96] U. FöBmeier, G. Kant, and M. Kaufmann, 2-visibility drawings of

plane graphs. In Proceedings of Graph Drawing (96), volume 1190 of Lec-

ture Notes in Computer Science, pp. 155–168. Springer-Verlag, Berlin/New

York, 1997.

[FW74] R. L. Francis and J. A. White, Facility Layout and Location. Prentice

Hall, Englewood Cliffs, New Jersey, 1974.

75



[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide

to the Theory of NP-completeness. W. H. Freeman and Company, New

York, USA, 1979.

[H93] X. He, On finding the rectangular duals of planar graphs. In SIAM

Journal on Computing, volume 22(6), pp. 1218–1226, 1993.

[H01] X. He, A simple linear time algorithm for proper box rectangular draw-

ings of plane graphs. In Journal of Algorithms, volume 40(1), pp. 82–101,

2001.

[HT73] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected

components. In SIAM Journal on Computing, volume 2(3), pp. 135–158,

1973.

[K96] G. Kant, Drawing planar graphs using the canonical ordering. In Algo-

rithmica, volume 16, pp. 4–32, 1996.

[KH97] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs

and its applications in graph drawing problems. In Theoretical Computer

Science, volume 172, pp. 175–193, 1997.

[KK84] K. Kozminski and E. Kinnen, An algorithm for finding a rectangular

dual of a planar graph for use in area planning for VLSI integrated circuits.

In Proceedings of 21st DAC, pp. 655–656. Albuquerque, 1984.

[KK88] K. Kozminski and E. Kinnen, Rectangular dualization and rectangular

dissections. In IEEE Transaction on Circuits and Systems, volume 35, pp.

1401–1416, 1988.

[L90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.

Wiley, Chichester, 1990.

[MKI00] S. Munemoto, N. Katoh, and G. Imamura, Finding an optimal floor

layout based on an orthogonal graph drawing algorithm. In Journal of

Architecture, Planning and Environmental Engineering (Transactions of

AIJ), volume 524, pp. 279–286, 2000.

[NC88] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms,

North Holland, Amsterdam, 1988.

76



[NR04] T. Nishizeki and M. S. Rahman, Planar Graph Drawing. World Scien-

tific, Singapore, 2004.

[Pur97] H. C. Purchase, Which aesthetic has the greatest effect on human

understanding? In Proceedings of the 5th International Symposium on

Graph Drawing, volume 1353 of Lecture Notes in Computer Science, pp.

248–261. Springer-Verlag, 1997.

[PT98] A. Papakostas and I. G. Tollis, Orthogonal drawings of high degree

graphs with small area and few bends. In Proceedings of 5th workshop on

Algorithms and Data Structures, volume 127 of Lecture Notes in Computer

Science, pp. 354–367. Springer-Verlag, Berlin/New York, 1998.

[RNG04] M. S. Rahman, T. Nishizeki, and S. Ghosh, Rectangular drawings of

planar graphs. In Journal of Algorithms, volume 50, pp. 62–78, 2004.

[RNN98] M. S. Rahman, S. Nakano, and T. Nishizeki, Rectangular grid draw-

ings of plane graphs. In Computational Geometry, volume 10, pp. 203–220,

1998.

[RNN99] M. S. Rahman, S. Nakano, and T. Nishizeki, A linear algorithm for

bend-optimal orthogonal drawings of triconnected cubic plane graphs. In

Journal of Graph Algorithms and Applications, volume 3(4), pp. 31–62,

1999.

[RNN00] M. S. Rahman, S. Nakano, and T. Nishizeki, Box-rectangular draw-

ings of plane graphs. In Journal of Algorithms, volume 37, pp. 363–398,

2000.

[RNN02] M. S. Rahman, S. Nakano, and T. Nishizeki, Rectangular drawings

of plane graphs without designated corners. In Computational Geometry:

Theory and Applications, volume 21(3), pp. 121–138, 2002.

[S84] J. Storer, On minimal node-cost planar embeddings. In Networks, volume

14, pp. 181–212, 1984.

[S95] N. Sherwani, Algorithms for VLSI Physical Design Automation, 2nd edi-

tion. Kluwer Academic, Dordrecht/Norwell, MA, 1995.

77



[Ste51] K. S. Stein, Convex maps. In Proceedings of the American Mathematical

Society, volume 2, pp. 464–466, 1951.

[T84] C. Thomassen, Plane representations of graphs. In Progress in Graph

Theory, (J. A. Bondy and U. S. R. Murty, Eds.), pp. 43–69. Academic

Press, San Diego, 1984.

[T87] R. Tamassia, On embedding a graph in the grid with the minimum

number of bends. In SIAM Journal on Computing, volume 16(3), pp. 421–

444, 1987.

[T92] C. Thomassen, Plane cubic graphs with prescribed face areas. In Com-

binatorics, Probability and Computing, volume 1, pp. 371–381, 1992.

[TTSS91] K. Tani, S. Tsukiyama, S. Shinoda, and I. Shirakawa, On area-

efficient drawings of rectangular duals for VLSI floor-plan, In Mathematical

Programming, volume 52, pp. 29-43, 1991.

[TTV91] R. Tamassia, I. G. Tollis, and J. S. Vitter, Lower bounds for planar

orthogonal drawings of graphs. In Information processing Letters, volume

39, pp. 35–40, 1991.

[U53] P. Ungar, On diagrams representing maps. In Journal of the London

Mathematical Society, volume 28, pp. 336–342, 1953.

[Wag36] K. Wagner, Bemerkungen zum vierfarbenproblem. In Jahresber.

Deutsch. Math–Verien., volume 46, pp. 26–32, 1936.

[Wes01] D. B. West, Introduction to Graph Theory. Prentice-Hall, Upper Saddle

River, New Jersey, USA, 2001.

78



Index

2-handed cycle, 22

O(n) notation, 43

κ(G), 17

k-connected, 17

a plane graph G has a rectangular draw-

ing, 9

adjacent, 14

aesthetic properties, 2

asymptotic behavior, 43

block, 17

born edges, 62

box, 28

box-orthogonal drawing, 27

box-rectangular drawing, 2, 4, 28

call graph, 15

chain, 17

class NP, 44

class P, 43

complexity, 42

component, 17

connected graph, 17

connectivity, 17

convex drawing, 26

corner, 28

corner box, 28

cubic, 15

cut vertex, 17

cycle, 16

cyclically 4-edge-connected, 18

degenerated box, 28

degree, 15

deterministic algorithm, 43

disconnected graph, 17

drawing convention, 24

edges, 1, 14

exponential, 43

face, 21

facial cycle, 21

geometric properties, 2

graph, 1, 14

Graph Drawing, 1

green edge, 39, 62

green edge for C, 39, 62

hand, 22

hand-vertex, 22

homeomorphic, 19

incident, 14

independent, 22

inner subgraph, 21

k-legged cycle, 21

leg, 21

leg-vertex, 21
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linear-time, 43

loop, 15

MCM, 8

minimal graph homeomorphic to G, 20

minimal k-legged cycle, 22

modules, 7

multigraph, 15

non-deterministic algorithm, 44

non-polynomial, 43

NP-complete, 43, 44

NP-hard, 44

original vertex, 39, 62

orthogonal drawing, 26

outer face, 21

outer rectangle, 28

outer subgraph, 21

path, 16

peripheral face, 22

planar drawing, 20, 25

planar embedding, 20

plane graph, 2, 20

point, 28

polynomial, 43

polynomially bounded, 43

real box, 28

rectangular drawing, 3, 27

regular, 22

regular 2-handed cycle, 23

replaced cycle, 19

replaced vertex, 39, 62

replacement of a vertex by a cycle, 19

running time, 42

separation pair, 17

separator, 17

simple graph, 15

spanning subgraph of G, 15

straight line drawing, 25

Subdividing an edge, 17

subdivision, 17

Subgraph, 15

subgraph induced by V ′, 15

supports, 17

the removal of a vertex of degree, 19

vertex cut, 17

vertices, 1, 14

walk, 16
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