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Abstract

A continuous change of relative positions of a set of points is perceived by a hu-

man observer only discretely. The reflection of a significant change in visibility

in 3-dimensional Euclidean space in the perceived picture is called the change of

view. The objective of this research is to define the term view and to provide nec-

essary data structures and algorithms to maintain it dynamically. To determine

the mentioned significant change in visibility, it is important to detect the pres-

ence of empty circle. So, to get the efficient query time for detecting the empti-

ness of a circle, we reveal some important properties of Gabriel graph. The

main achievements of this thesis are a suitable data structure and efficient algo-

rithms for maintaining the view dynamically with responsiveness O(M logM)

and efficiency O(M log (M)λs(n
2)) where M is the degree of the moving vertex

in the Delaunay graph and λs(n) is the maximum length Davenport-Schinzel

sequence of n symbols with order s. In fact, the growth of M logM is very low

because M is an amortized constant.
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Chapter 1

Introduction

1.1 Introduction

Let P be a set of points in two dimensional Euclidean space, R2. According to

Devillers [1], a point p ∈ P is visible from v ∈ R2 if the line segment pv contains

no other point of P . The view of P from a view point v is the clockwise circular

ordering of all points in P that are visible from v [Figure 1.1]. To maintain the

circularly ordered set of points around v, one of the basic idea is to sort them

first (as a pre-process), then, for each of the n pairs of circularly consecutive

points, insert an event in an event-queue that tells when the swapping of two

consecutive points should happen (if ever). The update is as follows: (a) Pop an

event. (b) Update the circular ordering by swapping two consecutive elements.

(c) Insert up to three new events in the queue, while deleting two old events.

However, there is no complete definition of view for 3D point set based on the

order of points as well as in the perspective of human observation.

If P is the set of points in three dimensional Euclidean space, R3 and P ′ be

the set of projected points taken by the ray shooting from the view point v ∈ R3

to P then for the movement of the view point v, each p ∈ P ′ changes its position

on the projection plane. More specifically, if the view point moves from left to

right along a straight line trajectory, the projected points will move from right

to left on the projection plane. So, total two events can be inserted: one event

1
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(a) The order is: p′1, p
′
2, p

′
3, p

′
4 (b) p′1 and p′2 changes their relative order

Figure 1.1: Changing the order of points in the projection line gives new view

in 2D

in between two consecutive points determined by x-coordinate and another

event in between two consecutive points determined by y-coordinate in the

projection plane. Therefore, to maintain the order among projected points, the

configuration of each view can be kept before the crossing of two points either

in x-coordinate or in y-coordinate. To accomplish this task, a spatial subdivision

of the projection plane has been done based on each of the four neighbouring

points. Thus, a bounded rectangular region can be defined as the safe region

for each point. The term safe region suggests that in spite of the movement of a

point p ∈ P ′, if p remains in its own safe region then no topological event will

be occurred. The safe region for each point in the projection plane has been

maintained through a Data Structure called Neighbourhood Graph (NG). The

necessary algorithm for NG has also been given for updating the certificate for

each topological events.

If two points change their neighbourhood relationship occupying an empty

circular area considering these two points as the diameter, natural view get

affected and a significant change is felt. So, a naive algorithm has been pro-

vided for testing the emptiness of any circle. Furthermore, with the help of
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Davenport-Schinzel sequences it is shown that the proposed NG has the effi-

ciencyO(kλs(n
2)), localityO(1) and responsivenessO(k). Here, k is the number

of test for checking whether the circle is empty or not. Both the efficiency and

responsiveness of the algorithm for maintaining the view become costly when

k = n− 2. However, in such case, the value of k is much less than n− 2 for all

other pairs of points. This motivate us for further research on the configuration

of empty circles in a point set. Rather than testing for the emptiness of a circle

by a repeated checking, it is possible to maintain a graph named empty circle

graph such. There is an edge pipj in the empty circle graph if the circle with

diameter pipj is empty. Throughout the paper, the circle pipj refers to the cir-

cle with diameter pipj. Therefore, the emptiness of a circle can be determined

very quickly which in fact gives us an efficient response time to maintain the

view. However, the major challenges here is to update the empty circle graph

for moving point set.

Let us consider a Delaunay graph DG constructed from the point set P ′ and

pj is the Delaunay neighbor of pi in DG. The perpendicular line to pipj define

the boundary of two half planes. The half plane inscribed pi can be called as the

left half plane of pi and the opposite half plane that inscribe pj can be called as

the right half plane of pi. For all pj incident to pi, a set of left half planes can be

found and the intersection of all these left half planes of pi give a convex region

called effective region R(pi). It is shown in the thesis that if a new point pk is

inserted anywhere in R(pi) then pk will be the Gabriel adjacent to pi and hence,

the circle pipk will be empty. The intersection of R(pi) for all pi ∈ DG, another

set of cells named effective cells can be obtained. Each effective cell has such an

important property that if a point pk does not leave out from the effective cell

then the set of Gabriel adjacent of pk remains constant.

Gabriel graph is the subgraph of Delaunay graph and Delaunay edges are

responsible for constructing the effective regions for Gabriel graph. So, for a

dynamic scenario, it is necessary to update all the effective regions as well as the
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Delaunay graph efficiently. It is shown in this paper that the cost for updating

the Delaunay graph from the Gabriel graph is O(M log (M)) where M is the

degree of Delaunay graph. Along with the maintenance of view, this results

an empty circle test with O(M log (M)) responsiveness and O(M log (M)λs(n
2))

efficiency. It has also been shown that the growth of M log (M) is very low

because M is in fact amortized constant. Beside these, the expected degree of

M is only 6 and in practical case the value ofM rarely exceed 16. As a byproduct

of the proposed spatial subdivision of the Gabriel graph, a large number of

applications have been proposed in various research fields like gene sampling,

clustering, wireless sensor network etc.

1.2 Motivation

This problem is motivated by the graphics problem of maintaining the view

dynamically during an interactive walk through a 3D scene. The term frame-

to-frame coherence refers to the similarity between consecutive frames in an

animation. This similarity makes it wasteful to render each frame from scratch.

Since Z-buffer algorithm needs huge amount of memory for an computer gener-

ated animation the Binary Space Partitioning could be an appropriate approach

which run once for a static scene and produces a tree of size Ω(n) and O(n2),

where n is the size of the scene. For each rendered image, a painter type al-

gorithm traverses the tree. However, in the real-time algorithm, the cost of

traversal is prohibitive even if the size of the tree is linear in the size of the

input.

The idea of maintenance of object ordering in 2D by Devillers [1] also mo-

tivates us to provide the possible way of such object ordering for 3D point set.

Additionally, we consider our view point is more likely a human observer.
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1.3 Related Works

Several researchers [1, 2, 3] presented a faster solution of moving view point

query problem among points in 2D with provable worst-case and amortized

complexity. Devillers [1] reported that solving the problem in 3D remains a dif-

ficult open problem. Bern [4] also investigated 3D visibility problems in which

the viewing position moves along a straight flight path and have developed

algorithm for discovering topology changes. Akbari [5] works with the mainte-

nance of visibility of a moving segment observer inside the polygon with holes

and raises three issues related to visibility maintenance: basic problems, query

problems and kinetic problems. Providing appropriate data structure for the

incremental update of a dynamic scenario is a big challenge in computational

geometry. The data structure that is specially designed to update a dynamic

scenario is called Kinetic Data Structure (KDS) [6, 7]. Harry Plantinga [8] used

aspect graph for dynamically maintaining the object topology of the image of a

polyhedron changes with changing viewpoint.

KDS do not pose major implementation problems and perform well on sev-

eral natural point distribution [9]. The average case behavior of some discrete

attributes like closest pair, convex hull etc., can be defined on points moving on

random trajectories. For the random distribution on a unit square, the voronoi

diagram changes θ(n1+ 1
d ) times and the closest pair changes θ(n

2
d ) times [10].

The planar subdivision of the free space between two polygons called external

relative geodesic triangulation are proposed as KDS to maintain collision detec-

tion between two simple polygons [11].

Getting an efficient solution for determining whether a circle is empty or

not, empty circle graph (Gabriel graph) has been studied thoroughly. In 1969,

Gabriel and Sokal [12] in their paper on Geographic variation analysis used

empty circle graph for geographic connectivity. Since then, the graph is also

known as Gabriel graph. The graph is later studied extensively in several re-
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search areas. Choo [13] proposed a agglomerative clustering algorithm called

MOSAIC which greedily merges the neighbouring clusters based on the Gabriel

neighbourhood. Many researchers proposed the applications of Gabriel graph

for the exploratory analysis of potentially high dimensional labeled data [14,

15]. A comprehensive study on the relationship between Support Vector Ma-

chine (SVM) and Gabriel graph is provided by Zhang [16]. They showed that

based on the Gabriel graph’s training data set reduction algorithm, it is possible

to improve the performance of SVM. Moreover, support vectors are actually the

subset of Gabriel edited set. Gabriel graph is also widely used in geographical

genetic structure, genetic relation and gene flow analysis [17]. Since there are

spatial trends for genetic variation, the adjacency relationship of Gabriel graph

provides significant information about genetic distance and gene flow analysis.

Due to the wide range of applications of Gabriel graph, Matula and Sokal [18]

revealed some important properties of Gabriel graph for geographic variation

research and clustering of point in the plane. Howe [19] proved that Gabriel

graph is the subgraph of the Delaunay graph and the construction of the Gabriel

graph from the Delaunay graph can be done O(n) times. A lot of works have

also been done on the spanning ratio of Gabriel graph [20], higher order Gabriel

graph and Gabriel graph for higher dimension [21, 22] etc. In spite of having

huge number of applications of Gabriel graph, no effort has been given to pro-

vide for getting the spatial subdivision of the domain of Gabriel graph.

1.4 Outline of this thesis

The whole research work is organized mainly into the following Chapters:

Chapter 2: The Chapter is intended for getting the necessary preliminary

ideas before going to the original discussion. The idea of dynamic maintenance,

associated framework for measuring the performance of a dynamic update, re-

lationship between combinatorial structure and Davenport-Schinzel sequence

are introduced in the first few sections. In the last section in this Chapter, the
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basic idea for maintaining the Delaunay graph is given that is necessary for us

to compare with the algorithm provided for dynamic update of Gabriel graph

in Chapter 5.

Chapter 3: A naive solution for maintaining the view dynamically is provided

in this Chapter. After providing the definition of view in the first section, a naive

algorithm with necessary data structure has been designed in section 2. The

last section deal with integrating the empty circle test and a proof scheme for

measuring the performance.

Chapter 4: Motivated by the empty circle test, a thorough study has been

done on empty circle graph (Gabriel graph) in the whole Chapter. We reveal

various important properties of Gabriel graph and show its lower and upper

bound in the number of edges in it.

Chapter 5: To minimize the cost of empty circle test, we propose a technique

named spatial subdivision of the space of Gabriel graph. The first few sections

are dedicated for describing the construction techniques of sparse cell, effective

region, effective cell and its associated idea. In the final section, we provide the

algorithm for the dynamic update of the effective regions of each point efficiently.

Chapter 6: The results and a discussion on the outcome of this thesis is

described in this Chapter.

Chapter 7: This Chapter draws the conclusion providing the future direc-

tions for further study related to this thesis.



Chapter 2

Preliminaries

2.1 Dynamic Maintenance

Dealing with the real world simulation by computer raises the issues of discrete

and continuous aspects. Consider a geometric objects in motion for example,

the convex hull of a set of n points in a plane. As the point move continu-

ously, the convex hull is not changed continuously rather it changes after a

certain discrete moments. We may also interested to know the closest distance

between all pairs of objects in a set. Each distance is certainly a real number

and change continuously in each continuous movement of objects. However,

the pair with closest pair is changed after a discrete period of time. That is

why, we can say the closest pair is a discrete attribute. To get the discrete

moment of changing the combinatorial structure (attribute) like convex hull,

closest pair, Delaunay graph and so on, we can assign some geometric relations

which certify the attribute. All we need to find the moment when one of the

relations become invalid. Once it is invalid, we say, the combinatorial structure

is changed. So, there are two major tasks related to this issue. One is getting

the appropriate geometric relations for certifying the attribute and another is

updating each relation if at least one of them become invalid. The update tech-

nique for maintaining any discrete attribute of a dynamic configuration is also

known as Dynamic Maintenance.

8
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2.2 Framework

Here we adopt the framework from [23] which is essential for analysis the

performance of Kinetic Data Structure of mobile data. Given a set S of items, a

configuration π associates with each item the position of a point in the projection

plane. s(π) denotes the position of an item s under the configuration π. We can

also use only s instead of s(π) in the context where the configuration π is clearly

defined.

Definition 1. A Kinetic Data Structure(KDS) is a type of data structure that

maintains a certain geometric attribute using a collection of simple geometric re-

lations that certifies the combinatorial structure of the attribute in any configu-

ration. It also provides a set of rules for repairing those certifying relations for

maintaining the attribute when one of the relations fails. The process of maintain-

ing the KDS accordingly is called Kinetisation.

Definition 2. An Attribute is a function that associates with each configuration π

a combinatorial structure based on S. For an attribute A, we denote by A(π) its

value at configuration π. For example, the closest pair, Voronoi Diagram, convex

hull and our defined view all are taken as the function of configuration. So, all

are the attributes of the configuration π.

Definition 3. A Certificate C : Am → {−1, 0, 1} acting on m-tuple of points is

simple geometric relations associated a real number with each configuration of

these items. When this real number is positive for a given π, the certificate is

said to be valid. When it is negative, we say it is invalid and when zero we say

degenerate. We write [a < b] for the certificate that associates with a configuration

π the quantity b(π)− a(π).

Definition 4. A Topological Event is the failure of a certificate during motion of

sites in a configuration. The future time of failure of a certificate can be predicted

if the motion plan for the all the associated sites are beforehand known. There are
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two types of events: external and internal. If the combinatorial structure of the

attribute changes then we call it internal event. On the other hand if any certificate

needed to be updated although combinatorial structure of the sites remain same.

Example 1. For instance, our task is to maintain the right most point in a line.

An event occurs when two points change their order. However, attribute will be

changed only when the right most point change its order. The former case is inter-

nal event and the later is called external event.

2.3 Proof Scheme

A Proof Scheme for an Attribute A associates a set of certificates C with each

configuration in general position. In computational geometry, it is assumed

that a configuration is in general position so that none of the geometric test or

certificate used is degenerate in this configuration. The performance of a KDS

is measured by four criteria:

• The locality of the proof scheme is the worst case number of certificates

any given item is involved in. In KDS, we add a data structure to a proof

to help in the proof update when a certificate fails.

• The responsiveness is the response time of updating a certificate in a KDS

i.e. the worst case computational cost of processing a complete event.

• The Compactness of a KDS is the total number of certificates that are

needed to be stored. So, we say a KDS is compact if the size of certificate

set it needs is close to linear in the degrees of freedom of any configura-

tion.

• Efficiency deals with the number of events need to be processed. A KDS is

efficient if the total number of events it needs to process is comparable to

the number of required changes in the external events. So, efficiency can
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also be defined as the ratio of the total worst case number of internal and

external event to the worst case number of external events.

2.4 Davenport-Schinzel Sequence

Davenport-Schinzel (DS) sequences are very interesting and powerful combina-

torial structures that arise in the analysis of lower or upper envelope of collec-

tion of univariate function. DS-sequences play a very important role on finding

the complexity of geometric and algorithmic problem related to arrangement

of curves and surfaces.

Definition 5 ([24]). Let n and s be two positive integers. A sequence U =

u1, u2, u3, . . . , um of integers is an (n, s)Davenport−Schinzel sequence (DS(n, s)-

sequence for short) if ui 6= ui+1 for i < m where 1 ≤ ui ≤ n for each i ≤ m and

there does not exist s + 2 indices 1 ≤ i1 < i2 < · · · < is+2 < m such that

ui1 = ui3 = ui5 = · · · = a, and ui2 = ui4 = ui6 = · · · = b and a 6= b.

In the definition 5, the last condition forbids the presence of long alternation

of any pair of distinct symbols. We say s as the order of U to n as the number

of symbols composing U , |U | is the length m of DS(n, s).

λs(n) = max{|U | | U is a DS(n, s)− sequence}. (2.4.1)

Definition 6. Let F = {f1, f2, f3, . . . , fn} be a collection of n real-valued, con-

tinuous totally defined functions so that the graphs of every pair of distinct func-

tions intersect in at most s points. the lower envelope of F is defined as EF (x) =

min1≤i≤nfi(x).

In Definition 6, EF is the point-wise minimum of fi ∈ F . Let I1, I2, I3, . . . Im

be the intervals on the x-axis so that they cover the entire x-axis.

Corollary 1 ([24]). For any collection F = {f1, f2, f3, . . . , fn} of n continuous,

totally defined, univariate functions, each pair of whose graphs intersect in at most
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s points, the length of the lower-envelope sequence U(F ) is at most λs(n), and this

bound can be attained by such a collection F .

It is shown by Sharir et al. [24] that λ1(n) = n, λ2(n) = 2n− 1 and λ3(n) =

Θ(nα(n)) where α(n) =inverse Ackermann function [25]. Later Agarwal et.

al [26] and Sharir et al. [27] proved that λs(n) is nearly linear in n for any

fixed s > 3.

Inverse Ackermann Function

There are many modified versions of Ackermann function to suit various pur-

poses. One common version, the two-argument Ackermann-Peter function, is

defined as follows for non negative integers m and n: [28]

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

Although the value of A(1, 2) is as low as 4, the value of A(4, 3) is surprisingly

high.

A(1, 2) = A(0, A(1, 1))

= A(0, A(0, A(1, 0)))

= A(0, A(0, A(0, 1)))

= A(0, A(0, 2))

= A(0, 3)

= 4.
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A(4, 3) = A(3, A(4, 2))

= 22
65536

− 3.

If the value of A(4, 3) is written as a power of 10, this is roughly equivalent

to 106.031×1019727. Let the function f(n) be an Ackermann function of A(n, n) then

f(n) grows very rapidly. The inverse function of Ackermann function f 1 usually

denoted by α(n), grows very slowly. In fact, α(n) is less than 5 for any practical

input size n.

2.5 Dynamic Update of Delaunay Graph

Due to the wide range of application, Delaunay graph is one of the most stud-

ied graph in computational geometry. The Dynamic update for insertion and

deletion of a point in the graph require O(n) running time in worst case. One

of the best known approach to solve this problem is provided by Kao et. al [29]

and Guibas et al [30] which costs amortized O(log n) time. Guibas use history

graph graph to keep the track of all previous update. If a point is inserted into

the triangle M abc then it is replaced by the new three triangles. In history

graph, M abc remains as part of the data structure marking as “old” and pointer

are added from M abc to each of the newly created triangle as its children. The

number of children of M abc is either three or two. Starting with a unit square

as a single node, the diagonal produces two children nodes of the unit square.

Now, the incremental insertion of each points in any triangle extend the his-

tory graph with a hierarchical relationship. To find the location of a triangle

containing newly inserted point, we can start from the root node to the finding

nodes by tracing the chronological order of old triangles containing the inserted

point. Since each old triangles contain at most three new triangles at the next
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level, it takes constant time to determine appropriate triangle in the next levels

containing the query point. Guibas et al. [30] shows that the number of trian-

gles where a point moves, when averaged over all points and all insertions, is

only O(log n) in the expected case. A good advantage of history graph is its per-

sistence. Since it preserves the history of insertion and deletion, it is possible to

reverse the all of the previous actions taken into the graph. Therefore, deletion

can be done efficiently. However, the main disadvantage of the history graph is

the growth of its height is very rapid and hence the point location query takes

a large amount of times.

To solve this problem, Kao et al. [29] re-balance the history graph periodi-

cally by reconstructing the history graph from the scratch for the current set of

active points and destroy the old graph. The operation is called reorganization

which is described briefly: if t is the total number of performed insertion or

deletion operations and n(t) is the number of active points in the triangulation

after the t − th request. Thus n(0) = 4. Let t0 is the time (i.e. request num-

ber) of last reorganization. After t − th operation the reorganization is done if

t− t0 > n(t). If s is the request number between t and t0 and n0 be the number

of active points after the latest reorganization then the expected size of the his-

tory graph after the s − th request, E(s) = n0 + (s − t0). Again, since, at most

one point can be lost from active points per insertion/deletion request, so we

have:

n0 ≤ n(s) + (s− t0) (2.5.1)

n0 + (s− t0) ≤ n(s) + 2(s− t0) (2.5.2)

E(s) ≤ n(s) + 2n(s) (2.5.3)

≤ 3n(s). (2.5.4)

So, the maximum size of the history graph is not larger than the number of ac-

tive point at any instant of time. So the cost of searching the graph does not in-

crease asymptotically and it is O(log (n0 + s− t0)) = O(log n(s)). One problem
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is the reconstruction of the history graph takes itself O(n log n) times. However,

it will not dominate the overall cost if the number of insertions/deletions from

the last reorganization is at least as large as n = n(t). Since, to perform reor-

ganization it must be t − t0 > n(t), the reorganization is not very frequent to

increase the overall running time of the algorithm. Thus, the algorithm obtain

amortize O(log n) expected running time.



Chapter 3

Maintenance of View

3.1 Definition

Definition 7. Let P be a set of points in three dimensional Euclidean space,

R3. The ray shooting from the view point v ∈ R3 gives a set of points, P ′ =

{p1, p2, p3, . . . } in the projection plane R2. Then before and after the topological

event (i.e. the moment of crossing of two consecutive points (pi, pj) ∈ P ′ with the

condition that the circle with diameter pipj contains no other points in P ′) are

defined as two different views.

3.2 Spatial Subdivision

For each point pi ∈ P ′, we define a rectangular region as pi’s own safe region

because no topological events will occur if pi does not go out from its own safe

region.

Let pi.left, pi.right, pi.up, pi.down are the the nearest left, nearest right,

nearest up and nearest down points respectively of pi. Therefore, the four cor-

ners of the rectangular safe region (Ri) of pi is determined by these nearest four

points (left, right, up and down). To goes out from Ri, pi will have to cross one

of the four boundaries from pi.left.x, pi.right.x, pi.up.y, pi.down.y. So, we have

four certificates for each of the points pi ∈ P ′ which will maintain a particular

view:

16
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Figure 3.1: View in 3D

C ={[pi >x pi.left], [pi <x pi.right], [pi >y pi.down], [pi <y pi.up]}.

Here, in the notations >x and >y, subscript x and y are used to compare the

order between two points by x-coordinate and y-coordinate respectively.

If we construct the safe region for all points in P ′, there will be found a

global rectangular region which will inscribe all the points in P ′. The leftmost,

rightmost, uppermost and lowermost four points can be called as the extreme

points in P ′ because left extreme point do not have any left boundary (other

three extreme points have the similar properties). So it can move towards left

without violating any certificates. The bounded rectangular region made these

four extreme points is called the global region.

We consider a point is in general position by assuming that no two points

change their relative order both in x-axis and y-axis at the same time, i.e. no

collision of points will occur as well as no two pairs cross each other either in

x-axis or in y-axis at the same time. One more assumption is that the view

point will not enter into the convex polyhedra of the point set P . Since, we are

mapping our problem domain from P ∈ R3 into P ′ ∈ R2, we call P ′ as P ∈ R2

in rest of the parts of this paper.
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3.3 Dynamic Maintenance

3.3.1 Neighbourhood Graph

Neighbourhood Graph (NG) is a directed graph containing parallel/multiple

edge. In NG, each edge eij.ζk ∈ E(NG) has a type ζk where 1 ≤ k ≤ 4 and

ζ = {left, right, up, down}. Here, NG preserve the neighbourhood relationship

of item i and j through k.

For our problem, each vertex vi in NG represent the point pi ∈ P and vi.ζk

indicates another vertex which is connected by the edge eij.ζk ∈ E(NG). An

edge eij.ζk ∈ E(NG) exists between two vertex vi and vj ∈ V (NG) if the point

pj is one of the four neighbour of the point pi of type ζk. From the attribute

we can say that Indegree(vi) = Outdegree(vi) ≤ 4. for any 1 ≤ k ≤ 4, if edge

∀1≤j≤n,i6=j{eij.ζk} is missing then pi is one of the exterior point in the configura-

tion π. To construct NG, we can use Linked List with four pointer and one data

section per node where each of the pointer will point its neighbouring point to

connect. ∞ is used in pointer ζk if there is no edge type ζk for a point.

3.3.2 Maintenance Algorithm

Each certificate is stamped with its failure time and placed into the global event

queue. At the time of processing of the first event in the event queue, we need

to update the certificate list. Lets a scenario where two sites A and B participate

in violating each certificates:

Event: Failure of Certificate [A >x B]

The failure of the certificate [A >x B] indicates that A and B have changed

their relative order due to the crossing in their x coordinates. So, only left(ζ1)

and right (ζ2) neighbours are changed for both A and B. Before the event, A

was the right neighbour to B and B was the left neighbour of A. But after the



CHAPTER 3. MAINTENANCE OF VIEW 19

A

B

C

D

E

Sa
fe

 re
gi

on
 fo

r A

Safe region for E

Safe region for D

Safe region for C

Safe region for B

(a) Safe region of each item after the violation

of certificate A >x B

E B

D
A

C

L

D

D
L

L

U D

R

R

R

R

L U

U

D

E B

D
A

C

L

D

D
L

L

U D

R

R

R

R

L U

U

D

(b) Changes in graph according to the

changes in safe regions

Figure 3.2: Failure of certificate A >x B

event they just form a reverse relationship. Moreover, the right neighbour of

A becomes the right neighbour of B and the left neighbour of B becomes the

left neighbour of A. So, to maintain the view we will have to update the graph

accordingly. In addition to these, the left neighbour of B and right neighbour

of A are also affected on failure of the certificate. The new right neighbour of

the left neighbour of B becomes A and also the new left neighbour of the right

neighbour of A becomes B (Figure 3.2b).

Event: Failure of Certificate [A <x B]

If the site A moves to the right direction to cross the right boundary C, then

the left neighbour of A and right neighbour of C are also affected on the failure

of event. Besides these, new neighbouring relationship will be formed. Before

events, C was the right neighbour of A. But after the event C will be the left

neighbour of A. At the same time, A will be the right neighbour of C. Besides

these, the left neighbour of A will be the left neighbour of C as well as the right

neighbour of C will be the right neighbour of A. So, to maintain the view we

will have update the graph accordingly.
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Figure 3.3: Failure of certificate A >y B

Event: Failure of Certificate [A >y B]

After crossing the up neighbour D, A get new up neighbour (ζ3) and down

neighbour (ζ4). Since, A goes above D, the new up neighbour of D will be

the A and the same way, the new down neighbour of A will be the D. In

addition to these, the up neighbour of A will be the neighbour of D which was

on the up boundary of D before the event and the down neighbour of D will

be the neighbour of A which was on the down boundary of A before the event

(Figure 3.3b).

Event: Failure of Certificate [A <y B]

If the site A crosses its down boundary point, A will get the site C as its new

down neighbour which was B before the event. So, the new up neighbour of

C will be the site A as well as the new down neighbour of D will be the site B.

Therefore, B will get the site D as its up neighbour. On the other hand, since

A goes below to the site B, the down neighbour of B will be the site A and the

up neighbour of A will be the point B.
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Pseudocode

Let us have a site A in π. A have 4 choices of direction to move forward and

cross one of its 4 boundaries. It causes the violation of one of the certificates

and immediately it needs to update the certificates associated with all the sites.

If the boundary point of A, say B participates to make one of the certificate

failures then the Algorithm 1 needs to be called.

For the sake of generalization, the adaptation process will start from least

x-axis for one of the first two certificates failure and from least y-axis for one of

the last two certificates failure.

Lemma 1. For any instant of time t, if a certificate ci ∈ C fails then the Algo-

rithm 1 takes O(1) time to update the configuration πt to maintain the attribute

view.

Proof. From Algorithm 1, it is clearly shown that the failure of one certificate

in any topological event needs exactly 4 certificates to be updated where each

certificate update takes O(1) time. Therefore, Algorithm 1 takes O(1) time for

updating the NG. 2

3.4 Integrating Empty Circle Test

A variation of the definition of view in 3D is considered here. It is closely ob-

served that if two point crosses each other from relatively far distance then a

very small impact on natural view is made.

From this concept, we add another criterion in neighbourhood relationship.

At the time of occurrences of any topological event by two points p1 and p2, the

circle of diameter p1p2 contains no other site from P . Therefore, we have to

check whether the circle is empty or not which can be done by the following

steps:
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Algorithm 1 Algorithm for updating the NG on certificate failure for a point A
with B

BEGIN
if the certificate [A <x B] fails then
k ← 1, vi ← A, vj ← B

else if the certificate [A >x B] fails then
k ← 2, vi ← B, vj ← A

else if the certificate [A <y B] fails then
k ← 3, vi ← A, vj ← B

else if the certificate [A >y B] fails then
k ← 4, vi ← B, vj ← A

end if
tempV ertex← ∅ [Create a temporary vertex]
tempV ertex← vi.ζk
vi.ζk ← vj.ζk
vj.ζk ← vj.ζk+1

vj.ζk+1 ← vi.ζk+1

vi.ζk+1 ← tempV ertex
return
END

r
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Figure 3.4: The worst case scenario on testing the empty circle
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• Step 1: Consider the line (p1, p2) as the diameter of the circle. So radius

r = distance(p1, p2)/2.

• Step 2: Find the ζ1 and ζ2 boundary point p3 (or ζ3 and ζ4) of p1 until the

distance from p3 to the center of the circle is not greater than r.

Algorithm 2 get next candidate(A, B, C, direction)
BEGIN
if A.x = B.x then

if direction = 0 then
return C.ζ1

else
return C.ζ2

end if
else

if direction = 0 then
return C.ζ3

else
return C.ζ4

end if
end if
END

For details, we take a FIFO Queue, Q to hold all the candidate points to be

checked. Lets during the moment of crossing of two points A and B, a circle

with center C of diameter AB is calculated. We will insert the left neighbour

of A and right neighbour of A to the Queue. Then we will check A whether

it is in the circle or not. If not then we Enqueue the left neighbouring site

of A into Q and check the right neighbour of A which was inserted in the

previous cycle. If the right neighbour is not inside the circle then we will insert

the right neighbour of that point and do the same process until the checking

points is apart from center more than the radius of the circle in x-axis (y-axis in

case of y-crossing). In worst case, there are infinitely many points pi for which

|pi.x−C.x| < r for the first two types of certificate failure and |pi.y−C.y| < r for

the last two types of certificate failure as well as pi is not inside the circle [see

Figure 3.4]. The algorithm searches a point inside the circle from the middle of
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the circle dividing it into two parts. It then searches level wise to quickly decide

whether it is empty or not. Algorithm 3 uses Algorithm 2 to search for the

next candidate to insert into the Queue. The decision is taken on the left(up)

and right(down) neighbourhood relationship of the point A or B (both have

same x-axis or y-axis during certificate failure). Each time it toggles the choices

between left(or up) neighbouring site and right (or down) neighbouring site.

Lemma 2. At the time of the topological event by the two sites A and B, Algo-

rithm 3 takes O(k) time and O(1) memory in worst case for testing the circle made

from the diameter AB is empty.

Proof. Let us have k number of points just above the circle of diameter AB

similar to Figure 3.4. The Algorithm 3 must check all the k points to find any

one inside the circle. So, the runtime complexity is just O(k). However, in

worst case both A and B are the extreme points placed in the boundary and the

distribution of rest of the points are like Figure 3.4, i.e. k = n − 2. So, we can

define k as an output sensitive parameter.

The Algorithm 3 uses a Queue Q to store the node to be checked. If we care-

fully observe, it is easy to see that only two nodes are stored at any instant of

time. This is because, initially two nodes (left and right to A or B) are stored.

In the loop, before insertion of any one of the left neighbour or right neigh-

bour, a Dequeue operation takes place which remain the size of Q fixed. So,

The Algorithm 3 needs a constant amount of memory and hence the memory

complexity is O(1). 2

3.5 Proof Scheme

Let us consider what happens if the view points in 3D start moving with a

polynomial function of time. For each step of time we get n points on the

projection plane from the three dimensional space by applying the ray shooting
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Algorithm 3 is in circle(NG, A, B)
BEGIN
Queue Q← ∅
dir ← 0
radius ← 0 {Find the center C of the circle taking AB as diameter of the
circle}
if A.x = B.x then
C.x← (A.x+B.x)/2, C.y ← A.y
radius← |A.x−B.x|/2

else
C.y ← (A.y +B.y)/2, C.x← A.x
radius← |A.y −B.y|/2

end if
p← get next candidate(A,B,A, 0)
q ← get next candidate(A,B,A, 1)
EnQueue (Q,p)
EnQueue (Q,q)
while Q is not empty do
v ← DeQueue(Q)
if distance(C, v) < radius then

return 0
end if
if |v.x− C.x| > radius AND dir = 1 then

return 1
end if
EnQueue(get next candidate(A,B,A,dir))
if dir = 0 then
dir ← 1

else
dir ← 0

end if
end while
return 1
END
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Figure 3.5: Efficiency computation

from the view points. So, for a complete tour of the view point through a

pre-defined trajectory, each point pi in the projection plane will get a specific

path of movement which can be defined as a continuous function of time. Let

(fi)
n
i=0 be the set of polynomial function of maximum degree s where each fi

belongs to each point pi(t) = [xi(t), yi(t)]. If the discrete event is considered

when two points cross each other either in x-coordinates or in y-coordinates,

we can compute the angular distances between the line of two points (pi, pj)

and the line yi(t) = xi(t) at any instant of time t. For a pair of moving points in

the projection plane, we define Θij = ∆(pi(t), pj(t))mod 90 where ∆ represents

the Slop.

Now, if we plot Θij(t) for each i, j and time t, we get total nC2 number of

curves (Figure 3.5b). We are interested to find all time t for which the curve

touches the x-axis (i.e. y = 0). This can be found by solving all the equation of

Θij(t) = 0. In fact, this is minimization diagram where maximum size of lower

envelope is known by the Davenport-Schinzel Sequences.

Theorem 1. The Neighbourhood Graph for maintaining the view in three dimen-

sional Euclidean space has efficiency O(λs(n
2)) without circle test and O(kλs(n

2))

with circle test.
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Proof. In the worse case, for each Θij for 1 ≤ (i, j) ≤ n we find the lower

envelope[see Figure 3.5b] such that each Ii in the lower envelope contains

exactly one intersection in x−axis of the graph. So, total number of events will

be the same as the maximum length of Davenport-Schinzel sequences, λs(n).

In our problem, total number of univariate functions F is nC2 which is O(n2).

So, we have total λs(n2) number of internal events.

So, for our simple case the efficiency of theNG is 4λs(n
2) which isO(λs(n

2)).

However, if we integrate the circle test we found the efficiency O(kλs(n
2)) be-

cause external events needs O(k) time in worst case [See Lemma 2]. 2

Theorem 2. The proof scheme for the NG has locality O(1) and responsiveness is

O(1) without circle test and O(k) with circle test.

Proof. Case I (without circle test): From Algorithm 1 we have seen that there

are at most 4 certificates involved in any given item at any instant of time.

So the locality of the KDS is O(1). From Lemma 1 we know that the update

procedure for failure of an certificate takes O(1) runtime. So, the responsiveness

of the NG is O(1).

Case II (with circle test): If we consider empty circle as one certificate than

total 5 certificates are needed to certify the attributes. So still the locality of the

NG is O(1). From Lemma 2, it is proved that in worst case, the Algorithm 3

takes O(k) times to decide. So, the responsiveness of the NG is O(k). 2



Chapter 4

Empty Circle Revisited

In the previous Chapter, it is shown that the response time for the circle test

is O(k). There exist a configuration where all the points in the point set are

candidate to test whether any of them are inside the circle. Thus, when k =

n − 2, the response time become O(n). So, a comprehensive study has been

done on a graph constructed from the empty circles and shown that the total

number of empty circles in a set of point is linear. The empty circle graph is well

known as Gabriel graph which is introduced by Gabriel and Sokal [12]. In this

Chapter, it is proved that the Gabriel graph is connected as well as planar. So,

naturally, one of the upper bound of the number of empty circles in the Gabriel

graph is O(3n − 6). In the last section, we show another bound of the number

of edge in Gabriel graph which is O(3n− 8).

4.1 Some Important Properties

Definition 8. EMPTY CIRCLE: Let P = {p1, p2, p3, . . . , pn} be a set of points in

two dimensional plane R2. For any pair of points (pi, pj) ∈ P where i 6= j, if it is

possible to construct a circle considering pipj as diameter such that no other point

from P − {pi, pj} is either inside or on the circle then pipj can be called as empty

circle.

Definition 9. GABRIEL GRAPH: Let GG = (V,E) be a graph where V and E

28
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Figure 4.1: Gabriel graph is planar

represents the set of vertex and edge respectively. GG is said to be an Gabriel

graph if each point p ∈ P is considered as the vertices and each empty circle is

considered as its edge in GG. More specifically, for a Gabriel graph GG, there is

an edge between vi and vj if and only if the circle vivj is empty.

Matula et al. [18] in their paper on geographic variation research showed if

there two edges AB and CD in the Gabriel graph intersect at an interior point

then one of the internal angle in the quadrilateral ACBD must be greater than

or equal to 90◦. So, Gabriel graph is actually a planar graph. An alternative

proof of planarity of Gabriel graph is given below:

Lemma 3. Gabriel graph is planar

Proof. To prove the planarity of Gabriel graph by contradiction, we assume that

the Gabriel graph is not planar. So, it is possible to find two edge v1v2 and v3v4 in

E(GG) that intersect each other at any point C. Therefore, it is sufficient to give

counter example for all possible cases which contradicts with the assumption.

• Case I: Let us consider two edges v1v2 and v3v4 intersect at point C in

such a way that each of the two edges are the bisector to another. If the

length of the edge v1v2 and v3v4 are equal [see Figure 4.1a] then four ver-

tices v1, v2, v3 and v4 are co-circular on a circle with center C and radius

r = Cv1 = Cv2 = Cv3 = Cv4. Therefore, no such edge v1v2 and v3v4
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should be formed. In another case where the length of v1v2 and v3v4 are

not equal, because of the center of both circles v1v2 and v3v4 are same,

the circle with smaller radius must inside the circle with greater radius.

Both of the above conditions forbid the greater circle to be formed and no

such edge in the Gabriel graph can be found. Hence, our assumption is

contradictory.

• Case II: Now in the second case, let v1v2 and v3v4 intersect in C such a

way that C is the middle point for v1v2 edge only. In other words we can

say that the edge v3v4 becomes the bisector of the edge v3v4 but the vice

versa is not necessarily true [see Figure 4.1b]. Now, we obtain a tempo-

rary vertex v3′ such that the length of Cv′3 is equal to the length of Cv4.

Therefore, C becomes as the middle point for both the segment v1v2 and

v′3v4. So, according to the Case I, v4 must inside the circle v1v2 because

the length of v′3v4 is less than the length of v1v2. Hence, v1v2 edge is not

possible.

• Case III: Finally, consider the situation where two edges intersect in C

such a way that no edge is the bisector for another edge [see Figure 4.1c].

In this case, we find two nearest vertex of C, one from v1v2 and another

from v3v4. According to the Figure 4.1c v1 and v3 are two nearest points

of C. Now we consider two temporary points v′2 and v′4 such that v1v′2

and v3v
′
4 becomes the bisector for each other. Therefore, C is the center

of both the circle of v1v′2 and v3v
′
4. Thus this is exactly the Case I. If the

length of Cv1 is greater than the length of Cv3 then vertex v3 must inside

the circle v1v′2. So v3 is inside v1v2 as well and v1v2 must not form an edge

in Gabriel graph. Hence the assumption we made is contradictory. This
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Figure 4.2: Removal of empty circle AB causes the creation of AC and BC

also holds when the length of the segment Cv1 is less than or equal to the

length of Cv3.

So, according to the definition of Gabriel graph and its properties, we do not

have such two edges which can intersect each other. Therefore, Gabriel graph

is planar.

2

Lemma 4. Let us consider a Gabriel graph with only two vertices A and B and

one edge AB. Now, if a third point C is inserted inside or on the circle AB then

the edge AB will be removed and two new edges AC and BC must be formed into

the corresponding Gabriel graph.

Proof. If the new point C is inserted into the circle AB, then the edge AB will

be removed from the Gabriel graph. We have to prove that both the circle AC

and BC must be empty. More specifically, the circle AC does not contain the

point B and circle BC does not contain the point A. Consider that the newly

inserted point C is very closer to the point A on the circle AB and O′ is the

center of the circle BC [see Figure 4.2]. So, our goal is to find whether there

exits any position C on the circle AB for which the circle BC contains the point

A. If we can prove that for any C the inequality conditions of O′A > O′C never

violets, then A will never be on or inside the circle BC.
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p q

r

C1

C2

Figure 4.3: Nearest neighbour form empty circle

We know that the diameter is the biggest chord of a circle. So, the length of

chord AB is greater than the length of chord BC and O′B < OB. We can also

say that OA > O′C. Since, O′A > OA, The inequality O′A > O′C holds until

O’ does not overlap with O which happen only when C overlap with B. Hence,

circle BC never contain A. Similarly it can be proved that the circle AC is also

empty. 2

Lemma 5. Let p and q are two points from a set of n points P . If q is one of the

nearest neighbour of p then pq is an Empty Circle and there exists an edge pq in

the Gabriel graph.

Proof. To prove the lemma, we can construct a circle C1 considering the point

p as center and pq as radius [see Figure 4.3]. Since, q is one of the nearest

points of p, no points except p and q can be found inside the C1. if there exists

multiple nearest point to p then every point is on the periphery of C1. Now, lets

construct another circle C2 considering pq as diameter. We can see that C2 must

inside of C1 and so C2 is empty as well. Now we can claim that if the circle

C2 intersect C1 at a single point q then C2 is certainly an empty circle. This is

because if C2 intersect C1 at another point s from P other than q, then s may

also be another nearest neighbour of p. Therefore, s exists both on circle C1

and C2 which makes C2 not empty.
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We can prove the above claim by the method of contradiction. We assume

that C2 intersect C1 at another point s which is very closer to q. Since pq is the

diameter and ps is a chord in C2, ps < pq. However, both ps and pq are the

radius of C1 so ps = pq. This is contradiction. So, q is the only point at which

C2 and C1 intersect. 2

Although Gabriel et al. [12] already proved that Gabriel graph is a connected

graph, we provide alternative and simple arguments to establish Gabriel graph

as a connected graph.

Lemma 6. Gabriel graph is connected.

Proof. Let us have a disjoint set of n components A = {A1, A2, A3, . . . , An}

where each Ai ⊆ GG for 1 ≤ i ≤ n. Initially each component consists of

one vertex from the set of vertex V (GG). For each steps, we try to connect two

neighbouring component maintaining the constraint of Gabriel graph until all

the components are connected. We define an edge (u, v) as safe edge between

two components Ai and Aj such that u ∈ Ai, v ∈ Aj and uv circle (circle with

the diameter uv) is empty. Now, it can be said that if there is at least one safe

edge between two disjoint components then they must be connected in Empty

Circle Graph.

We define the nearest vertex pair between two components Ai and Aj as

Nv(Ai, Aj) and the nearest component of a particular component Ai as Nc(Ai).

Lets minV dis(Ai, Aj) is the distance between two nearest point between two

components Ai and Aj and minCdist(Ai) is the distance between Ai and its

nearest component. So, we can define Nv(Ai, Aj) and Nc(Ai) by the following

ways:

minV dist(Ai, Aj) = minimal{∀u∈Ai,v∈Aj
(||u− v||)}

Nv(Ai, Aj) = {(u, v) : ∃u∈Ai,v∈Aj
(||u− v|| = minV dist(Ai, Aj))}
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minCdist(Ai) = minimal{∀1≤j≤n,j 6=i(min(Ai, Aj))}

Nc(Ai) = {Aj ∈ A : ∃1≤j≤n,j 6=i(min(Ai, Aj) = minCdist(Ai))}

We claim that if the nearest vertex pair between a component Ai and its

nearest component Aj is (u, v) then u and v are also the nearest neighbour to

each other. Because, if there were another neighbouring vertex s from another

component Ak which is more closer from u then Aj would not be the nearest

component of Ai. So, according to the Lemma 5, the edge (u, v) must be safe.

Now, we start our process by selecting one of the n components A1 ∈ A

and then find its nearest component, A2. We can have n − 1 components by

connecting A1 and A2 through their safe edge. we continue this process by

connecting the nearest component of the newly formed connected component

A1A2 until no other component left other than the newly connected component.

2

4.2 Lower Bound and Upper Bound

We know, a connected planar graph with n vertices can have minimum n − 1

number of edges and maximum 3n − 6 number of edges. So, this is also a

bound of the number of edges in Gabriel graph. However, Matula et al. [18]

give another tighter upper bound which is 3n − 8. In rest of the part of this

chapter, we proved that lower and upper bound in slightly differently ways

than the way Matula et al. [18] did.

Lemma 7. Lower bound on the number of edges of an Gabriel graph on the plane

R2 is n− 1.

Proof. In Lemma 6, we established that Gabriel graph is a connected graph and

thus no point is disconnected (isolated). Let P be a set of n points in the plane

R2. To prove the theorem, we construct an Gabriel graph GG with minimal
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Figure 4.4: One of the lower bound configuration

number of edges by adding one point at a time from the set P . The first point

in GG does not produce any edge but all other subsequent points can be placed

in GG with minimal one edge for each point (since no point is disconnected).

Thus n points of P can be placed in GG with lowest n− 1 edges (empty circles)

as shown in the Figure 4.4. 2

Definition 10. The vertices and edges incident with the external or unbounded

face of a planar graph are respectively referred as external vertices and external

edges of the graph. The number of external vertices and edges of a planar graph G

are respectively denoted as Ωv(G) and Ωe(G).

Figure 4.5: The graph on the left contains cycles and the graph on the right

does not contain cycle.
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Theorem 3 ([31]). Every connected simple planar graph G with v ≥ 2 vertices

has at most 3(v − 1)− Ωv(G) edges.

Proof. Suppose that G is a connected simple planar graph, with v vertices, e

edges, and f faces. Then Euler’s formula states that,

v − e+ f = 2 (4.2.1)

In a connected simple planar graph any face except the unbounded face is

bounded by at least three edges and every edge is incident with two faces.

Thus we can write 2e ≥ 3f . If we consider the half edges incident with the

bounded faces of G, then the previous inequality can be given in the following

form,

2e− Ωe(G) ≥ 3(f − 1) (4.2.2)

Here the edges Ωe(G) incident with the unbounded face are also incident with

some other bounded faces and included in the total edges e of the graph G.

Therefore, using Euler’s formula we get,

e ≤ 3(v − 1)− Ωe(G) (4.2.3)

There are two cases to consider depending on whether the graph G contains

cycle or not. If the graph G contains at least one cycle, then the number of

external edges Ωe(G) ≥ Ωv(G) for the graph G. Since, each cycle in the graph

G provides an additional edge with the minimum number of edges v − 1 of

a connected graph as illustrated in Figure 4.5. The vertices and edges inside

the cycles can be discarded for this purpose since these vertices and edges are

not external vertices and external edges. Thus the graph G has at least three

vertices and we can write e ≤ 3(v − 1) − Ωv(G). On the other hand, if the

graph G does not contain any cycle, then the graph G is a tree. For any tree

G, we know that the total number of edges e = v − 1 and all the vertices of G

are incident with the unbounded face. Therefore, v − 1 ≤ 3(v − 1) − v for all
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v ≥ 2 and we can write e ≤ 3(v − 1)−Ωv(G) for the tree G. This completes the

proof. 2

Corollary 2 ([31]). Every connected simple planar graph G with v ≥ 2 vertices

has at most 2v − 1− Ωv(G) faces.

Proof. The upper bound on faces f ≤ 2v − 1 − Ωv(G) of the graph G follows

from Theorem 3 using Euler’s equation among vertices, edges and faces of the

planar graph G. 2

p1

p2

p3

p4

p5

Figure 4.6: One of the upper bound configuration

Since the Gabriel graph, GG is a connected simple planar graph, it also sat-

isfies the inequality 3(v − 1) − Ωv(GG) following from Theorem 3. It is clear

from the inequality that the minimizing the value of Ωv(GG) obtains the maxi-

mization of the term 3(v − 1) − Ωv(GG). Thus a nested arrangement of points

with minimum exterior vertices provides the upper bound value 4.6. Since a

Gabriel graph GG can have no vertex interior to any triangle or quadrilateral, a

Gabriel graph GG with v ≥ 5 vertices has at most E∗ edges.

E∗ ≤ 3(V − 1)− 5 (4.2.4)

≤ 3V − 8 (4.2.5)



Chapter 5

Spatial Subdivision of Gabriel
Graph

The objective of this Chapter is to propose a technique of subdivision of the do-

main of Gabriel graph spatially. The continuous movement of a point is modeled

into the computer by some repeated discrete deletions and insertions. Handling

the repeated deletions and insertions to maintain the attribute view, a special

type of data structure is required. As a solution, the whole region of Gabriel

graph can be divided into a set of cells named sparse cells. The advantages

of this cellular arrangement is: it is possible to avoid some computation for a

moving point while staying in a specific cell. Here, for each points pi, an ef-

fective region R(pi) has been defined in such a way that if a new point pk is

inserted into R(pi) then it will be connected to pi and will form an edge pipk in

the Gabriel graph. Another type of cell named effective cell is derived from the

sparse cells and effective regions which is actually the intersection of a set of ef-

fective regions. In this Chapter, construction of the effective regions are described

and the necessary algorithms for updating the effective regions are provided for

each insertion or deletion of a point in the graph. The following theorem is

established to get the O(M log (M) run time solution for testing the emptiness

of a circle for maintaining the view.

Theorem 4. The query for the existence of a Gabriel edge can be answered in

O(log (M)) time and including the update cost it takes total O(M log (M)) times.

38
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5.1 Sparse Cell

The following are the equivalent definitions for Gabriel graph [12]:

1. AB is an edge of the Gabriel graph GG iff the ∠ACB is acute for every

C ∈ V (GG), C 6= A,C 6= B.

2. The Vertices {A,B} ∈ V (GG), A 6= B are least squares adjacent forming

an edge AB iff

d2AB < d2AC + d2BC for all C ∈ V,C 6= A,C 6= B.

The vertices and pairs of least square adjacent vertices (edges) determine

the least square adjacency graphG(V ). if V is a set points in the plane and

dAB denotes the Euclidean distance, the G(V ) is a Gabriel graph GG(V ).

Therefore, it is clear that 90◦ is the angle limit which determines the other

vertices eligibility to construct edges with the adjacent vertices. Thus the or-

thogonal lines on edges through vertices divide the plane into regions with

similar edge construction properties of Gabriel graph. Let pi, pj be two points in

R2 and an orthogonal line L(p̂i, pj) to the line segment pipj passing through pi

divide the plane into two half planes. The right open half plane ROH(L(p̂i, pj))

contains the part of the plane enclosed pj and the left closed half plane LCH(L(p̂i, pj))

contains the rest of the plane. Similarly, the left open half plane LOH(L(pi, p̂j))

containing pi and the right closed half plane RCH(L(pi, p̂j)), can be found

by considering L(pi, p̂j). The regions constructed by partitioning the plane R2

based on a line segment pipj can be defined as

R(p̂i, pj) = LCH(L(p̂i, pj))

= LOH(L(pi, p̂j))−ROH(L(p̂i, pj))

R(pi, p̂j) = RCH(L(pi, p̂j))

= ROH(L(p̂i, pj))− LOH(L(pi, p̂j))

R(p̂i, p̂j) = ROH(L(p̂i, pj)) ∩ LOH(L(pi, p̂j))
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Thus union of the set R(pi, pj) of these three regions produce the R2 plane and

the set R(pi, pj) can be given as

R(pi, pj) = {R(p̂i, pj), R(p̂i, p̂j), R(pi, p̂j)}

Two other regions R(pi, p̂j) and R(p̂i, pj) can also be defined using the combi-

nation of the predefined regions as follows

R(pi, p̂j) = R2 −R(pi, p̂j) = R(p̂i, pj) ∪R(p̂i, p̂j)

R(p̂i, pj) = R2 −R(p̂i, pj) = R(pi, p̂j) ∪R(p̂i, p̂j)

A sparse cell is the non empty effective region h ⊂ R2 constructed from the

common intersection of the each unique region r such that r ∈ R(pi, pj) and

h ⊆ r for every pipj ∈ E(DG) . Formally, sparse cell sc can be defined as

sc =
⋂
{r : ∀pipj(pipj ∈ E(DG)

=⇒ ∃!r(r ∈ R(pi, pj) ∧ h ⊆ r))}

where sc cannot be empty. For an example, the sparse cell R1 in Figure 5.3 can

be given as

R1 =
⋂
{R(p̂1, p̂2), R(p̂1, p̂3),

R(p̂2, p3), R(p1, p̂4), R(p̂2, p̂4)}

These bounded and unbounded convex sparse cells joined together to form the

cell complex of an arrangement which can be constructed by the boundary lines

of the regions by Delaunay edges.

It is claimed that an edge pipj is not an Gabriel edge if and only if there exists

a point pk ∈ V (GG) for which pj ∈ R(pk, p̂i). This is actually the basis of our

proposed subdivision of Gabriel graph. We can express the previous statement

in slightly different way: if we insert a point pj in any location in the Gabriel

graph and if pi has any such Gabriel neighbour pk where pj ∈ R(pk, p̂i), then

pipj must not be an edge in GG. So, our goal is to find a specific region where

there is no such pk for pi. With the help of Lemma 8 and Lemma 9 we give the

Theorem 5 to provide such specific region or cells in the space.
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(a) Contradictory to Lemma 8 (b) Proof of Lemma 9

Figure 5.1: pj must in R(pk, p̂i)

Lemma 8. For any two vertices {pi, pj} ∈ V (GG), if the edge pipj /∈ E(GG) there

exist a vertex pk ∈ V (GG) inside the circle pipj such that pipk ∈ E(DG).

Proof. According to the definition of Gabriel graph it is obvious that if pipj /∈

E(GG) then there exist a set of points S ⊆ V (GG) − {pi, pj} inside the circle

pipj where S 6= ∅. So it is sufficient to proved that there exists a point pk ∈ S

for which pipk ∈ E(DG).

we start with a contradictory scenario similar to the Figure 5.1a where pi =

B, pj = C. We consider that there is exactly one point A inside the circle BC

and the edge AB is not in Delaunay graph. It is clear that B is inside the circle

ADiEj where each Di and Ej are outside the circle BC and every pair of Di

and Ej are opposite to each other relative to AB. So, no edge can be found to

flip AB unless otherwise specified. Therefore, our assumption is wrong and AB

must be an edge in Delaunay graph. Thus pk = A and the Lemma holds.

Now, considering AB as diagonal, we get a quadrilateral AD1BE1 where

two vertices D1 and E1 both are outside the circle BC as well as opposite to

diagonal AB in the Delaunay graph. if we relax our scenario by putting D1

inside the circle BC then AB can be flipped into D1E1 and therefore we get

another quadrilateral D1D2BE1. Again we can say that B is inside the circle

D1DiEj where for any Di and Ej outside the circle BC where every pair of Di



CHAPTER 5. SPATIAL SUBDIVISION OF GABRIEL GRAPH 42

and Ej are opposite to each other relative to D1B. So, the edge E1D2 /∈ E(DG)

therefore, BD1 must be an Delaunay edge. if we continuously relax the scenario

by putting every point Di inside the circle BC to flip BDi−1 recursively, we get

BDi ∈ E(DG). So, lemma holds if we consider pk = Di.

It should also be noted that if Ej is inside the circle BC then similarly it is

very easy to prove that for pk = Ej the lemma also holds. In this case, all Di

can be either outside or inside the circle BC without violating the lemma. So,

Di or Ej or both can be inside the circle BC to flip either BDi−1 or BEj−1 but

in every case BDi or BEj or both exists in the Delaunay graph. In other words,

since, both Ei and Di are not outside the circle BC at the same time, we can

ensure at least one point pk is inside the circle BC where pipk ∈ E(DG) 2

Lemma 9. For any two vertices pi, pj ∈ V (GG), the edge pipj /∈ E(GG) iff there

exist a vertex pk ∈ V (GG) and pipk ∈ E(DG) such that pj ∈ R(pk, p̂i).

Proof. By Lemma 8, if pipj /∈ E(GG) then there exists at least one pk for which

pipk ∈ E(DG). Since, pk is inside the circle pipj, ∠pipkpj is not acute. So,

the ∠pipkpj − ∠pipkpl > 0 for any point pl on the perpendicular line to pipk

passes through pk. So, this perpendicular line must intersect with the segment

pipj[Figure 5.1b]. So, pj ∈ R(pk, p̂i). 2

Figure 5.2: Gabriel edges are not enough
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Howe [19] showed in this Ph.D. thesis that the Gabriel graph GG is actually

the sub-graph of the Delaunay graph and it is possible to construct GG from

DG.

Lemma 10 ([19]). The Gabriel graph on a vertex set V is a sub-graph of the

Delaunay triangulation for V. Furthermore, the edge AB of the Delaunay triangu-

lation is an edge of the Gabriel graph iff the straight line joining A to B intersects

the boundary line segment common to the Theissen polygons for A and B at a

point other than the endpoints of that boundary line segment.

Proposition 1. There may exist vertices pi, pj, pk, pl ∈ V (GG) such that pk ∈

R(pi, p̂j) and pk /∈ R(pi, p̂l) and pipj /∈ E(GG).

Proof. Let us consider the vertices of Gabriel graph as shown in Figure 5.2.

If pl is inside the circle pipj and outside the circle pipk, then according to the

fundamental properties of Gabriel graph ∠piplpk is acute. Thus pk ∈ R(p̂i, p̂l) or

pk ∈ R(p̂i, pl) that is pk /∈ R(pi, p̂l). The edge pipj /∈ E(GG) since pl is inside the

circle pipj. 2

Thus, for any two vertices pi, pj ∈ V (GG), the edge pipj /∈ E(GG) iff there

exist a vertex pk ∈ V (GG) and pipk ∈ E(GG) such that pj ∈ R(pk, p̂i), is not

true for all cases which is a modified form of Lemma 9.

Theorem 5. if a point is inserted anywhere in a sparse cell then the set of Gabriel

adjacent vertices of that point remain unique.

Proof. Let a sparse cell sc of effective region h ⊂ R2 be the common non empty

intersections of elements of R which can be written as

R = {r : ∀pipj(pipj ∈ E(DG)

=⇒ ∃!r(r ∈ R(pi, pj) ∧ h ⊆ r))}

The order of pipj is consistent throughout the proof. Let Rr ⊆ R be defined as

follows

Rr = R ∩ {R(pi, p̂j) : pipj ∈ E(DG)}



CHAPTER 5. SPATIAL SUBDIVISION OF GABRIEL GRAPH 44

Thus a point pk inserted anywhere in the sparse cell sc has same Rr. Since pk

is adjacent to all pi ∈ V (DG) except when pipj ∈ E(DG) for any vertex pj and

pk ∈ R(pi, p̂j) according to the Lemma 8, the set of adjacent vertices Vk and non

adjacent vertices Vr of pk can be written as

Vr = {pi : ∃pj(R(pi, p̂j) ∈ Rr)}

Vk = V (DG)− Vr

Thus the set of adjacent vertices Vk remain same throughout the sparse cell since

Vr only depends on Rr which is a subset of R. 2

Figure 5.3: Share same set of adjacent

Proposition 2. A unique set of adjacent vertices can be found if a point is inserted

in different sparse cells.

Proof. Let us consider a Gabriel graph GG of vertex set P = {p1, p2, p3, p4} as

shown in Figure 5.3. A point inserted intoR1 sparse cell has adjacent set {p2, p4}.

Similarly, a point inserted into either R2, R3 or R4 cell has the same adjacent set

{p2, p4}. Thus different sparse cells can have a unique set of adjacent vertices.

2
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5.2 Effective Region

The effective region of a vertex pi ∈ V (DG) is the common intersection of all the

regions R(pi, p̂j) such that pipj ∈ E(DG) from pi. The effective region R(pi) of

vertex pi ∈ V (DG) can be formalized as

R(pi) =
⋂{

R(pi, p̂j) : ∀pj(pipj ∈ E(DG))
}

The complement of the effective region R(pi) of a vertex pi ∈ V (DG) can be

defined as

R(pi) = R2 −R(pi)

If the union of the set Rπ(pi) induces the plane R2, then the set Rπ(pi) can be

defined as

Rπ(pi) = {R(pi), R(pi)}

In the trivial case, if a point pk is inserted into either inR(p̂i, pj) or inR(p̂i, p̂j)

then pkpi can be an edge in Gabriel graph. However, if pk is inserted in R(pi, p̂j)

then pipk /∈ E(GG). So, each of the M(pi) number of Delaunay neighbours pr

of pi partition the plane into two half planes and the intersection of the half

planes inscribed the point pi comprise a convex polygon. The convex polygon

can be called as the effective region of pi because if any point pk is inserted into

the effective region of pi then pipk must be connected.

A region R(pi, p̂j) for some pi and pj is essentially a half plane bounded

by the line L(pi, p̂j). If two half planes are not parallel, then their common

intersection induces a vertex which is the intersection point of the associate

lines of the half planes. This intersection point is denoted as intersection vertex

of the half planes or regions. The edges from a vertex and so the orthogonal

lines on the edges are not parallel in DG according to the general assumption.

Lemma 11. The vertices of an effective region R(pi) are the intersection vertices

of all the regions R(pi, p̂j) and R(pi, p̂k) such that the ∠pjpipk is minimum for all

distinct {pipj, pipk} ∈ E(DG).
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Figure 5.4: Region vertices

Proof. Assume for the purpose of contradiction that one of the vertices of the

effective region R(pi) is the distinct intersection vertex wl of the regions R(pi, p̂j)

and R(pi, p̂l) such that the ∠pjpipl is not minimum and {pipj, pipl} ∈ E(DG)

as shown in Figure 5.4. Thus, there exists pipk ∈ E(DG) for which ∠pjpipk is

minimum and wk is the intersection vertex of the regions R(pi, p̂j) and R(pi, p̂k).

Since the ∠pipkwk is a right angle, piwk is the diameter of the circle pipjpk and

according to the alternative definition of Gabriel graph [12] the ∠piplwk formed

with a point pl outside the circle pipjpk is acute. There are three regions of

point pl point need to be considered. First, if pl is outside the circle pipjpk, then

the length wkwl can be determined using the sine rule K sin(π/2 − ∠piplwk)

for some constant K. Thus wl is not a vertex of region R(pi, p̂j) ∩ R(pi, p̂k) ∩

R(pi, p̂l) and clearly wl is not a vertex of R(pi) contradicting the assumption of

wl. Second, If pl is on the circle pipjpk, then the vertex of intersection R(pi, p̂j)

and R(pi, p̂l) is wk which is the vertex of intersection R(pi, p̂j) and R(pi, p̂k). This

contradicts the distinction of wl vertex. Third, if pl is inside the circle pipjpk as

p′l in Figure 5.4 then, according to the properties of Delaunay triangulation

pipk /∈ E(DG) which contradict the assumption that pipk ∈ E(DG). Similarly,

we can prove the lemma for any point pl located on the other side of line pipj.

2

Lemma 12. An edge pipj ∈ E(GG) forms iff a point pj is inserted into the effec-
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tive region R(pi) of pi ∈ V (GG).

Proof. If a point pk ∈ R(pi), then pk must be in the common intersection of all

the region R(pi, p̂j) for all pipj ∈ E(DG) from pi according to the definition

of effective region R(pi). Thus there is no pipj ∈ E(DG) from pi for which

pk ∈ R(pi, p̂j). From Lemma 9, we know pipk /∈ E(GG) iff there exist a vertex

pj ∈ V (DG) with pipj ∈ E(DG) for which pk ∈ R(pi, p̂j) but there is no such

pipj ∈ E(DG). Thus the point pk ∈ R(pi) must have a Gabriel edge with pi.

Similarly, if pk /∈ R(pi), then there must be at least one R(pi, p̂j) such that

pk ∈ R(pi, p̂j) and pipj ∈ E(DG). Thus the edge pipk /∈ E(GG) as shown in

Lemma 9 which completes the proof of this lemma. 2

Lemma 13. The union of the regions R(pi) for all pi ∈ V (DG) is the plane R2

i.e., ⋃
pi∈V (DG)

R(pi) = R2

Proof. Suppose for the purpose contradiction that the union of the regionsR(pi)

for all pi ∈ V (DG) cannot construct the plane R2. Thus there exists a region h

such that h ⊆ R2 and h *
⋃
pi∈V (DG)R(pi). Thus any point pk inserted into the

region h cannot form an edge pipk ∈ E(GG) for all pi ∈ V (GG) according to

Lemma 12. Thus pk remains as an isolated vertex in GG which contradicts the

Lemma 6. 2

5.3 Effective Cell

An effective cell is the non empty region h ⊂ R2 induced by the common inter-

section of the each unique region r such that r ∈ Rπ(pi) and h ⊆ r for every

pi ∈ V (DG) . Formally, effective cell ec can be defined as

ec =
⋂
{r : ∀pi(pi ∈ V (DG)

=⇒ ∃!r(r ∈ Rπ(pi) ∧ h ⊆ r))}
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where ec cannot be empty. These bounded and unbounded effective cell joined

together to form the cell complex which can be constructed using the intersec-

tion of the regions R(pi) for all pi ∈ E(DG).

Theorem 6. The set of adjacent vertices for an insertion point is unique in an

effective cell.

Proof. Let an effective cell ec of region h ⊂ R2 be the common non empty inter-

section of elements of R which can be written as

R = {r : ∀pi(pi ∈ V (DG)

=⇒ ∃!r(r ∈ Rπ(pi) ∧ h ⊆ r))}

Let Rm ⊆ R be defined as follows

Rm = R ∩ {R(pi) : pi ∈ V (DG)}

According to Lemma 12 a point pj is Gabriel adjacent to all pi iff pj ∈ R(pi).

Thus the set of adjacent vertices Va can be found as

Va = {pi : R(pi) ∈ Rm}

Thus the set of Gabriel adjacent vertices Va remain unique throughout the effec-

tive cell ec since Va depends on Rm which is a subset of R. 2

Theorem 7. The expected number of effective cell in a Delaunay graph is linear.

Proof. It is sufficient to prove that the upper bound on the expected number

of effective cell in a Delaunay graph DG with n vertices is linear. Suppose a

random variable X represent the degree of a vertex on the probability space

V (DG) and Xi is the degree of ith vertex in the graph, DG. Thus the expected

degree E[X] of a vertex in the DG is

E[X] = E

[
n∑
i=1

Xi

]
(5.3.1)

= E [2(3n− 3)] (5.3.2)

=
6n− 6

n
< 6 (5.3.3)
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(a) All possible adjacent (b) On the convex hull

Figure 5.5: Average number of effective cell is linear

where the graph DG can have at most 3n − 3 edges. Let pi be a new point

inserted into the triangle ABC of DG graph as shown in Figure 5.5a. There is

a set S of twenty four points in the graph DG which are the all possible points

for constructing six expected edges incident with pi at one end. The point pi

cannot be adjacent with other points except the points pj ∈ S through the ex-

pected edges. Since the Gabriel graph is a subgraph of the Delaunay graph, the

expected Gabriel edges must be the subset of the six expected Delaunay edges

incident with pi. Therefore, the effective regions R(pj) for all pj ∈ S are the

all possible effective regions which can be intersected inside the triangle ABC

to construct the expected Gabriel edges. Since any two effective regions can

intersect only at two points, the total number of intersection points inside the

triangle ABC is 24(24 − 1). The total number of vertices of all the effective

regions in the graph DG is 2(3n− 3) since the graph DG can contain maximum

3n − 3 edges. Thus the total number of vertices of the planar graph RG con-

structed by the effective regions of the graph DG inside the convex hull CH

of vertices V (DG) is 24(24 − 1)(2n − 2) + 2(3n − 3) since the graph DG can

have at most 2n − 2 triangles. Although many intersection points are coincide
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with other intersection points, for upper bound estimation we consider all in-

tersection points. Let B be the set of points on the boundary of the convex hull

CH. The regions R(p̂i, p̂j) for all pi, pj ∈ B are not intersect with each other

outside the convex hull CH since each angle between the edges of the convex

hull CH is convex. If any new point pk inserted into the region R(p̂i, p̂j), then

there is a set S of seventeen points in the graph DG which are the all possible

points for constructing six expected edges as shown in Figure 5.5b. Thus the

number of intersection points inside the region R(p̂i, p̂j) is 17(17− 1) and there

could be maximum n edges on convex hull. Thus the total intersection point

outside the convex hull is 17(17 − 1)n. Thus total intersection point of RG is

24(24− 1)(2n− 2) + 2(3n− 3) + 17(17− 1)n. Thus from Corollary 2, the maxi-

mum number of bounded faces (i.e., effective cells) is 2764(n− 1) + 543− 1. A

connected simple planar graph has only one unbounded face but we can have

maximum 2n unbounded face. Thus total number of bounded and unbounded

effective cell is 2766(n− 1) + 544 which is O(n). 2

Visitor Query: An application

Let us consider a region with n number of P2P service stations A where each

pi ∈ A can provide the service to a client pk if there is no other service stations

inside the circle pipk. Two service stations pi and pj can also provide service

to each other if no other service stations or client is inside the circle pipj. A

visitor wants to visit one specific place in the region to cover as many service

stations as possible. So, the query of the visitor is to get a specific subregion

where he can connect with maximum number of service station. Certainly, the

connectivity between the service stations follows the Gabriel edge. According

to our spatial subdivision, each effective cell has a direct mapping with a set of

points A in the Gabriel graph, i.e. if a new point pk is inserted into anywhere in

the effective cell then there must create edge pipk for every pi in A. Eventually, if

the visitor pk wants to move further out of effective cell, he can choose another
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effective cell adjacent to his current effective cell based on the maximization of

service coverage.

Lemma 14. The construction of effective region of a vertex takes O(M logM) +

O(M) running time.

Proof. Let S = {s1, s2, s3, . . . , sM} ⊆ V (GG) is the set of adjacent point of pj ∈

V (GG) and sipj ∈ E(DG) where 1 ≤ i ≤M . We assume that the set S is sorted

by the anticlockwise order around pj and pjsm has the angular adjacency with

pjs1. Now if we want to compute the cut of L(ŝi, pj) we have to consider the

L(ŝi+1, pj) and L(ŝi−1, pj) because si+1 and si−1 are the adjacent of pj and those

have minimum anticlockwise and clockwise angle respectively with respect to

sipj. Similarly L(ŝi+1, pj) is cut by L(ŝi+2, pj) and L(ŝi, pj). So, including the

cost of sorting of M points, the cut of the perpendicular line of every Delaunay

edge connected with pj can be computed in O(M logM) +O(M) time. 2

5.4 Dynamic Update

The goal of this section is to provide the technique of incremental update effec-

tive region for each insertion and deletion of point into the GG. Let us consider

an effective region diagram where all points pr adjacent to pi in the DG are or-

dered by clockwise angular distance around pi. If a new point pk is inserted

into the intersection of effective regions of m number of pi then each pipk must

be the edge in new GG. To update the graph, the following three things should

be taken into consideration: Firstly, pk may fell inside the circle of a set of

pairs of points where each pairs have edges in GG. So, all these edges must

be deleted. Fortunately, this can be solved automatically during the update of

Delaunay edges. Secondly, for the insertion of pk, a number of Delaunay edges

that are associated to pk will be inserted and few edges that are already exists

will be deleted. Moreover, if a point become the Delaunay neighbour of pk then

the angularly sorted list around pk needs to be updated. Finally, after getting
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the updated Delaunay graph, the reconstruction of all the associated effective

regions must be done.

On the other hand, if a point pk is deleted from the graph then a star shaped

polygon associated to pk are re-triangulated. During the re-triangulation pro-

cess, all the angularly sorted lists and effective regions must be updated exactly

the opposite way followed in insertion.

5.4.1 Insertion

Each of the effective region of pi can be partitioned into M(pi) number of tri-

angular wedges around each pi ∈ V (GG) by each pipr. Since each pr is sorted

in clockwise angular distance around pi, and so each wedges are also naturally

kept by the same order prpipr+1. If a point is inserted into the intersection of

the effective regions of some points, following operations are needed to be done:

1. Update the Delaunay graph

2. Update the angular order for each of the affected points

3. Recompute the effective regions for each of the affected points

Update the Delaunay and Gabriel edge

Let pk is inserted into the intersection of a clockwise angular sorted set of points

S = {s0, s1, s2, . . . } of length m(pk) where m(pk) is the degree of pk in GG. We

consider a virtual polygon by S around pk where the polygon S can either be

bounded or unbounded. In each of the triangular wedges ∆sipksi+1, the edge

pksi and pksi+1 must exists in the updated graph because pk is inside the ef-

fective region of both si and si+1 [Lemma 12]. The edge sisi+1 be clearly the

candidate for flipping with pkpr where pr is opposite to the pk in the quadrilat-

eral sipksi+1pr [see Figure 5.6a]. Now, if the circle sipksi+1 is empty then sisi+1

must be an edge in Delaunay graph and since both the triangle of the diagonal
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(a) Insertion of pk (b) Updated Delaunay graph for inserting pk

Figure 5.6: Updating effective region, R(pk)

sisi+1 remain unchanged, no further check is necessary along that triangles and

the next triangular wedge ∆si+1pksi+2 is picked to check. However, if sisi+1

is flipped into pkpr then we have to consider another two triangles sipkpr and

prpksi+1 to check exactly the same way until we get no flipping edge [see Fig-

ure 5.6b].

One exception may arise when ∠sipksi+1 is not convex [see Figure 5.7]. So,

we do not have any valid triangle named sipksi+1. Fortunately, there is an easy

solution of this exception case. if ∠sipksi+1 slightly less than 180◦ then the large

circle cover almost the half space of sisi+1. We can say, if a point pr is left to the

line sipk then there must be a Delaunay edge between pk and pr. If there are

multiple points pr at the left side of si, we take such a pr which has the minimum

angular distance with sipk and check again whether ∠sipkpr is still concave. In

this case, the same process is followed until it is convex. After obtaining the

convex angle, the previous techniques can be applied directly. However, if no

such pr is found at the left of si then we can skip the wedge (triangle) sipksi+1.

It is important fact that each time of flipping of edge, a vertex pr will be the

adjacent to pk therefore, we get a star shaped polygon centered with pk [see
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Figure 5.6b]. This gives us the computational cost is proportional to the degree

of pk, say M(pk)in Delaunay graph. We can distinguish between Delaunay and

Gabriel edge by a circle test in constant time.

Figure 5.7: Concave angle for pk

Update the angular order

Angular order is necessary for the computation of effective region very efficiently.

So, in each steps of the update of Delaunay graph we need to update the clock-

wise ordering of neighbour of each point.

Let us consider that each si ∈ S is sorted around pk by clockwise angular

distance and we start from the triangular wedges s1pks2. If pk obtain a new

neighbour pr then pr can be inserted into the sorted list around pk that can

be done in constant time. pk will also be the neighbour of pr but it needs a

binary search on O(log(M(pr))) to find the appropriate position of pk from the

sorted list around pr. Similarly, the ordering of neighbour around both s1 and

s2 need to be updated that can be done in O(log(M(s1))) and O(log(M(s2)))

respectively. After completing all the necessary updates, total costs for updating

the angular information can be O(M(pk) logM(pk)) because we need to update
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the angular order of all Delaunay adjacent around pk.

Update of effective region of each pk

From Lemma 14 we know that if the neighbours of pk are in ordered by clock-

wise angular distance around pk then it takes M(pk) times to compute all the

effective regions and therefore O(M(pk)) number of test is sufficient for update

also.

In Algorithm 5, IN(a, b, c, d) is the function for testing whether d is inside

the circle abc or not. CCW (abc) refers to the counter-clockwise angle by a, b

and c. One additional variable named coverboth is used to check whether both

pksi and pksi+1 is checked one by one until sipksi+1 become convex.

Algorithm 4 SwapTest(si, sj, pk, pr)

BEGIN
if IN(si, sj, pk, pr) then

flip sisj by pkpr
update the neighbouring order of and around pk, pr, si and sj
SwapTest(si, pk, pr, p′r)
SwapTest(sj, pk, pr, p′′r)

else
L(i, k)← perpendicular bisector line of sipk
L(j, k)← perpendicular bisector line of sjpk
C = intersection(L(i, k), L(j, k))
if C is opposite side of pk by sisj then

mark sisj as Gabriel edge
end if

end if
END

5.4.2 Delete

To update the graph after the deletion of a point pk all the sorted order can

be updated total O(M(pk)) time which is exactly similar to the insertion. Now,

we have to estimate the update cost of deletion. We know that if a set of

point S is incident to pk and pk is deleted, then no triangle get affected outside
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the convex polygon by S. Aggarwal, Guibas, Shaxe and Shor [32] provides

an linear time algorithm for finding the Delaunay triangulation of a convex

polygon. Since, size of S is the number of adjacent of pk, we can update the

DG and all associated angular order by M(pk) logM(pk) times.

Algorithm 5 Insertion of pk
BEGIN
S = {s0, s1, s2, . . . , sm−1} {m = degree of pk in GG}
for i = 0→ m− 1 do
j ← (i+ 1( mod m
if ∠sipkpj is convex then
pr ← vertex on the opposite sharing triangle of pipj
SwapTest(si, sj, pk, pr)

else
a = si, c = sj, coverboth← 2
while ∠apkc is concave do
b = {p ∈ V (DG) : ap ∈ V (DG) and CCW (pkap) is minimum }
if b does not exists then
coverboth← coverboth− 1
if coverboth = 0 then

break
end if
swap(a, c)
continue

end if
connect pkb
update the neighbouring order of and around pk and b
a = b

end while
end if

end for
END

Theorem 8. The update algorithm for insertion and deletion of a point in the

intersection of a set of effective regions takes O(M logM) times

Proof. If a point pk is inserted into the intersection of some effective regions

then we have three steps to follow to update each of the effective regions. The

time for update of angular adjacency takes the dominating costM(pk) logM(pk)

and both the update of Delaunay graph and computing the effective region takes
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only M(pk) times. So, it takes total M(pk) logM(pk) + M(pk) = O(M logM)

time. We use M rather than M(pk) for generalization. The discussion on dele-

tion directly tells that the cost of update for deletion for any point also takes

O(M logM) 2

Theorem 9. The query for the existence of a Gabriel edge can be answered in

O(log (M)) time and including the update cost it takes total O(M log (M)) times.

Proof. From Lemma 12, we proved that an edge pipj exists in E(GG) iff a point

pj is inserted into the effective region R(pi). So, all we need to know whether

pj is inside the effective region R(pi). The best known algorithm for querying

whether a point is inside the polygon takes O(log n) time [33] where n is the

number of vertices in the polygon. Since, the number of vertices in the effective

region R(pi) is M(pi), it takes O(log (M(pi))) times to check whether the circle

pipj is empty or not. In general, for any point pi the cost can be written as

O(log (M)).

On the other hand, for each movement of points the effective region of pi can

be changed. In Theorem 8, we established that it takes O(M log (M)) times for

updating all the effective region in Gabriel graph if a new point is inserted or

deleted. So, for the movement of point each time, it takes total O(M log (M)) +

O(log (M)) = O(M log (M)) times. 2



Chapter 6

Results and Discussion

In this thesis, we provide the definition of view and propose a solution for main-

taining the view dynamically. The framework provided by Guibas et al [6] for

maintaining a dynamic scenario has been used to measure the performance in

terms of efficiency, locality and responsiveness. In our algorithm, we achieve

the localityO(1), responsivenessO(M log (M)) and efficiencyO(M log (M)λs(n
2))

where n is the number of points in projection plane and M is the degree of any

vertex in the Delaunay graph.

To obtainO(M log (M)) as the response time for the dynamic update of view,

we propose a technique for spatial sub-division of Gabriel graph which also has

a wide range of applications in various research areas like geographical varia-

tion analysis, least square error analysis, mobile facility location, wireless sensor

network, gene sample clustering and so on. We also provide an algorithm for

maintaining the Gabriel graph dynamically with O(M log (M)) running time.

Since we find the computational cost for updating our proposed effective

region for insertion and deletion is related to M and m, we need to know its

growth. Although in worst case, m = M = n, gives us the O(n log n) time for

update. However, expected and amortize analysis gives that both m and M are

constant for sequence of insertion and deletion.

Lemma 15 ([18]). Let GG be the Gabriel graph formed on n ≥ 3 vertices that

are placed in a uniformly random manner on the unit square. Then the expected

degree of a particular point v ∈ GG is 4.

58
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On the other hand, according to Euler’s theorem, the expected degree of a

vertex in a planar graph is less than six. Kao et. al [29] shows that for many

natural point distribution, the maximum degree in a Delaunay graph is rarely

exceeds 16.

We show that the order of the growth of the number of edges in Gabriel

graph remain amortized constant in the s-sequence of insertions of points. In

potential (or physicist’s) method, it is derived a potential function character-

izing the amount of extra opportunity to get the maximum edge in the graph

in each step. This potential either increases or decreases with each successive

insertion, but cannot be negative.

During the computation of upper bound of the number of edges we get two

different scenarios. Firstly, if we always try to get the maximal edge Gabriel

graph for each insertion, either two or three edges can be added. Secondly, we

can place a vertex into the n-cycle. In this case, it is possible to get additional n

number of new edges for one insertion. However, to get such an n-cycle in the

earlier steps, the potentiality of the whole graph must be increased because this

is not the maximal edge graph. It is an important fact that after the insertion

of the vertex into the n-cycle the potential of the graph is dropped dramatically

into two. So, the number of edges in amortize case is n+ (2− n) = 2. So, if we

sum up the amortize time for all the sequence of insertion and computed then

the number of edges in GG is surely amortized constant.

Similarly, for Delaunay graph, we know from Euler theory that the sum of

degrees is the twice the number of edges in the graphs. Therefore,

∑
1≤i≤n

M(pi) = 2(3n− 6) < 6n (6.0.1)

So, the amortize size of the degree of any vertex is 6n
n

= 6 which is constant.

The proposed spatial subdivision is advantageous for rapid movement of

points. The unit movement of a point is nothing but the three ordered opera-

tions: deletion, changing the unit position and then insertion into the changed
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position. Let us have a finite m × m square grid space where there are m2

number of discrete position for a point. This is actually similar to the computer

graphics with a specific resolutions. Now, among n number of points from P in

the Gabriel graph, the task of pi ∈ P is to traverse all the position (or pixels)

of the space once at a time. It is provided that all other point except pi are

fixed. The update of the Delaunay graph require O(n) time in worst case but

O(log n) in amortize case. So after completing the tour, it costs O(m2 log n) time

for updating the Delaunay graph for each of the movement pi.

From Theorem 6, we know that any point in an effective cell has the same

set of Gabriel edge as its adjacent. So, until leaving the effective cell it is unnec-

essary to query for Gabriel adjacency. Although we did not compute the bound

of number of effective cell, we can ensure that the number will not greater than

the number of sparse cell. Since the sparse cell is the arrangement of perpendic-

ular lines of each edges in the Delaunay graph, the number of effective cell can

be bounded by O(n2) where n is the number of vertices in the Gabriel graph.

So, the average number of grid points(pixels) per cell is m2

n2 = (m
n

)2. In most

of the practical case m is much larger than n and hence, each cell contains a

significant amount of positions(pixels). Therefore, it is sufficient to make query

only (m
n

)2 number of times to know about the adjacent edges in GG. So, if we

take the advantages of spatial subdivision, its takes m2 logn
n2 times for the com-

plete traversal in the grid. This amount certainly n2 times less costly than the

previous one.

Our different spatial subdivision methods based on Gabriel adjacency rela-

tionship such as sparse cell, effective region and effective cell provide different

means to determine the Gabriel adjacent in the regions. Each subdivision of

the plane provides a consistent adjacency relationship based on some predefine

criteria. One of the main advantages of these subdivisions is that we consider

a set of points together instead of considering each geographical point sepa-

rately. We can quickly store and retrieve valuable information related to the
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adjacency relationship including gene flow and other genetic associations like

gene disorder for some specific geographical areas. This work also gives the an-

swer for the same types of queries in facility location, wireless sensor network,

Data similarity and error analysis etc when the connectivity is given by Gabriel

graph. For instance, one may want to place a node in the wireless sensor net-

work such that the connectivity of the graphs needs to be updated only in a

very small portion of the whole graph. Similarly, a client may find a location

for getting maximum as well as minimum facility node (shopping mall, mobile

station etc.). Biologist may want to find a common region with multiple ethnic

groups and also want to analysis the spread of a epidemic deceases based on

the connectivity between each ethnic groups. There are many other additional

advantages of our proposed effective cell. A short outline is given below:

• Empty Disk: One of the variations of Empty Disk problem is the adaptation

of a constraint that no vertex in any empty disk can collide with other

empty circle. A common question may arise: to make maximum number

of empty disk where we should insert a new point into the empty disk

graph.

• Least Square Adjacency: From the alternative definition of Gabriel graph

tells us that two points are least square adjacent if there is an edge in

the corresponding Gabriel graph. If a set of data is clustered based on

Gabriel graph and we want to know the region based on the maximum

similarity and also dissimilarity of a test data with the other sample data.

Our effective cell gives the answer quite efficiently. Similarly, we can also

find the minimum and maximum least square errors in a test data with

the sample data.

• Gene Sampling: Biologist are very interested in biological models for gene

flow that use Gabriel connectivity among sampling station points. In some

epidemic deceases, biologists want to analyze the possible transmission
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of that deceases from one region to another region based on the regional

contiguity among different localities. If the regional contiguity is defined

by the Gabriel graph then our proposed spatial subdivision give the an-

swer of many important queries like most threatening area and safest

area from the particular epidemic deceases.

• Geographic Variation Analysis: The uses of Gabriel graph in the cluster-

ing of Geographic regions are very popular among GIS scientists. Their

common query is to find the region with maximally as well as minimally

diverse ethnic group.



Chapter 7

Conclusion

7.1 Conclusion

In this research, if two projected points cross each other along any of the axes

and the circle that is constructed with the diameter connecting those two points

contains no other points then before and after such an event, the configura-

tions have been considered as two different views. At each of the topological

event, the term view is updated by maintaining the order of points in the pro-

jection plane. Along with the technique for efficient query of the emptiness of

a circle, the necessary data structures and algorithms have been provided for

maintaining the attribute view dynamically with responsiveness O(M log (M))

and efficiency O(M log (M)λs(n
2))). Additional contribution of this paper is the

technique of spatial subdivision of Gabriel graph that provide a new direction

for the dynamic maintenance of Gabriel graph. Moreover, the concept of effec-

tive regions and effective cells are very useful in many other proximity problems

that uses Gabriel graph.

7.2 Future Study

Despite that there is no a complete agreement on the definition of view in 3D,

we believe our new definition and its dynamic maintenance will be helpful

for future research. However, few more problems related to the attribute view
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remain open for future study. For example,

• If we consider the circular ordering for 3D point set, we do not find any

projection place if the view point is inside the convex polyhedra of the

point set. Rather the points are projected on a sphere and the circular

order on the sphere is undefined.

• Computing the visibility complex is the process of computing the time of

topological events based on the trajectory of movement of view point. It

will be a very challenging as well as attractive task to find the the visibility

complex for the attribute view.

• The spatial sub-division of Gabriel graph motivates us to obtain the same

type of sub-division of Delaunay graph as well.

• Since, Minimum Spanning Tree (MST) is the subgraph of Gabriel graph,

we can apply the similar techniques of spatial subdivision to get an effi-

cient maintenance of MST.
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