
DESIGN OF AN EASILY TESTABLE
ARCHITECTURE FOR SIGNED AND
UNSIGNED MULTIPLICATION

/
A thesis submitted to the

Department of Electrical and Electronic Engineering
BUET, Dhaka

in partial fulfillment orthe requirements for the degree of
Master of Science in Engineering (Electrical and Electronic)

\ ZAHIDUR ROUF

1 ROLL NO: 930659P
SESSION: 1992-93-94 }'\-

r

- -

1111111111111111111111111111111111 ,
#90678#

\
,

./A.

DECEMBER 1996

~. ,
" 'I, ,

--

The thesis titled "Design of an Easily TestableArchitecture for Signed and

Unsigned Multiplication" submitted by Zahidur Rouf, Roll No. 930659P to the

Department of Electrical and Electronic Engineeting, BlJET has been accepted as

satisfactory for partial fulfillment of the requirements for the degree of Master of Science
,

in Engineering (Electrical and Electronic).

BOARD OF EXAMINERS

•

~y~+~~'
1. (Dr.Syed Lfuzu' Aziz) 2- '-11/2-1Of h

A~sociate Professor
Department of Electrical and
Electronic Engineering
BlJET, Dhaka-lOOO.

2.:Z.Q~
Professor and Head
Department of Electrical and
Electronic Engineering
BlJET, Dhaka-lOOO.

Chairman
(Supervisor)

.1

Member
(Ex-officio)

3.

4.

(Dr. Joarder uzzaman) '1tr6
Assistant professor
Department of Electrical and
Electronic Engineering
BlJET, Dhaka-lOOO.

~\)~o;1
(Dr. Mohammad Kaykobad)
Associate Professor and Head
Department of Computer Science
and Engineering
BlJET, Dhaka-lOOO.

Member
(Internal)

Member
(Exiernal)

I '

r

c
,'-'v-n.
~

}t)
--~\:/

'-":"

DECLARATION

I hereby declare that this work has been done by me and it has not been submitted

elsewhere for the award of any other degree or diploma.

.,

,~,

.";~,,,."
t' ,"

Countersigned

~;yqb
Supervisor (.

~6I-:::
(Zahidur Rout) J<0Y"? (;

ACKNOWLEDGMENT

It is a matter of great pleasure on the part of the author to acknowledgehis heartiest

gratitude and profound obligation to his Supetvisor Dr. Syed Mahfuzul Aziz, Associate

professor of the Department of Electrical and Electronic Engineering, Bangladesh

University of Engineering and Technology for his excellent supetvision, continuous

guidance and valuable suggestionthroughout the progress of the work.

The author also wishes to express his special thanks and gratitude to Dr. Md.

Quamru1 Ahsan, Professor and Head of the Department of Electrical and Electronic

Engineering, BVET for his all-out support. The author is also grateful to Dr. A. B. M.

Siddique Hossain, Professor and former Head of the Department of Electrical and

ElectronicEngineering,BVE! for his help and cooperation..

Finally the author would like to express thanks to all his friends and colleagues and

staff of the Department of Electrical and Electronic Engineering, BVET for their constant

support and assistance.

iv

{\

(.\\ i ;..
'.J

o

ABSTRACT

High speed array processors are now an integral part of most VLSI systems, for

example, signal processors, satellite imaging systems etc. With the increasing complexity of

VLSI circuits, it is in the manufacturers' interest to give due consideration to testability at

the very early stages of chip design.

Array multipliers are part of many signal processing and other systems. This thesis

examines the available array multipliers which can perform multiplication of either signed

or unsigned binary numbers. A generalized multiplier capable of performing both types of

multiplication is designed. The hardware overhead of the proposed generalized multiplier is

very low. A C-testable version of this generalized multiplier is designed for multiplicands

(X) having even number of bits and multipliers (Y) having odd number of bits. This design

is shown to be testable for any single stuck at fault with only 19 test vectors irrespective of

the operand wordlengths. Compared to an exhaustive functional testing approach, this

would reduce the chip testing time and there by reduce the cost by a great margin, The

testable design requires eight extra inputs which would not impose heavy penalty on the

number of pins for large multipliers.

v ,.

CONTENTS

Acknowledgment
IV

Abstract
V

List 0f Figures
IX

List of Tables
xi

List of Abbreviations
xu

CHAPTER 1 Introduction

CHAPTER 2 Multiplication Algorithms

1.1

1.2

1.3

2.1

2.2

2.3
2.4
2.5

2.6

Aims

Literature Review

Organization of the Thesis

Introduction

Straightforward Carry-Save Array Multiplier

Booth Algorithm

Modified Booth Algorithm

Removal of Sign-Bit Extension Circuitry

Architecture Based on Modified Booth Algorithm

vi

1

1

2

4

5

5

5

7

9

12

14
I

CHAPTER 3 Generalized Architecture for Signed and Unsigned Multiplication 17

3.1 Introduction 17

3.2 Multiplication of Unsigned Numbers Using Modified Booth

Algorithm 17

3.3 Hardware Implementation of Unsigned Multiplication 21

3.3.1 Sign-Extension Circuitry for the Multiplicand (X) 21

3.3.2 Sign-Extension of the Multiplier (Y) with

Odd Number of Bits 22

3.3.4 Sign-Extension of the Multiplier (Y) with

Even Number of Bits 23

3.4 Signed and Unsigned Multiplication Using a Single Array 24

3.4.1 Selection of Multiplicand Sign Extension Bit 24

3.4.2 Selection of Multiplier Sign-Extension Bit 25

3.5 The Generalized Architecture 28

3.6 Calculation of Overhead

3.6.1 Hardware Overhead 28

3.6.2 Delay Overhead 34

CHAPTER 4 Testability of the Generalized Multiplier 35

4.1 Introduction 35

4.2 Testing Approach 35

4.3 Modification of the Architecture for Testability 36

4.4 Testing of Individual Cells 38

vii

4.4.1 Testing of the MBEs for Single Stuck-at Fault 38

4.4.2 Testing of the SCs for Single Stuck-at Fault 40

4.4.3 Testing of the Mode-Selector for Single Stuck-at Fault 42

4.5 Testing the Multiplier 43

4.5.1 Test Vectors 43

4.5.2 Exhaustive Testing of the FAs 45

4.5.3 Exhaustive Testing of the MCAs 47

4.5.4 Testing of The MBEs 47

4.5.4.1 Exhaustive Testing 48

4.5.4.2 Testing for Single Stuck-at Fault 48

4.5.5 Test Vectors for SCs 49

4.5.6 Test Vectors for MSs 50

4.6 Calculation of Overhead 51

4.6.1 Hardware Overhead 51

4.6.2 Delay Overhead 51

4.7 Difficulties with Even Number of Multiplier Bits 52

4.8 Difficulties with Odd Number of Multiplicand Bits 53

4.9 Summary 56

CHAPTER 5 Conclusions and Recommendations

5.1 Conclusions

5.2 Future Works

References

viii

57

57

58

59

Fig. 3.11 Gate level design of Full-adder and Manchester cany adder circuits 31

Fig. 3.12 Gate level design of Modified Booth encoder (MBE) 31

Fig. 3.13 Gate level design of Selector-Complementer circuit 32

Fig. 3.14 Logic diagram of Mode-Selector circuit 32

Fig. 4.1 An 8x7 bit generalized testable modified Booth multiplier 37

Fig. 4.2 Gate level design of modified Booth encoder (MBE) 38

Fig. 4.3 Gate level design of Selector-Complementer circuit 40

Fig. 4.4 Logic diagram of Mode-Selector block 42

Fig. 4.5 Arrangement ofMS and extra row MBE when Y got even

number of bits (8 bits) 51

Fig. 4.6 Effect of vector pair t. and tlO applied to a 9x9 bit multiplier 52

Fig. 4.7 Effect of vector pair t20 and h, applied to a 9)(9 bit multiplier 53

Fig. 4.8 Effect of vector pair 1" and t" applied to a 9 x9 bit multiplier 54

x

List of Figures

Fig. 2.1 A parallel multiplier array using carry save adders
6

Fig. 2.2 Multiplication example using bit-pair recoding
11

Fig. 2.3 Sign extended partial product array
12

Fig. 2,4 Recoded sign extended partial product array
14

Fig. 2.5 An 8 by 8 modified Booth multiplier array
16

Fig. 3.1 Signed and unsigned multiplication using modified Booth algoritlun

. for odd number of bits in the operands
19

Fig. 3.2 Signed and unsigned multiplication using modified Booth algorithm

for even number of bits in the operands
20

Fig. 3.3 Modification to sign extension circuitry for unsigned multiplication 21
Fig. 3.4 Sign extension of the multiplier(Y) having odd number of bits 22
Fig. 3.5 Sign extension of the multiplier(Y) having even number of bits 23
Fig. 3.6 Selection of proper version of MSB of X

25
Fig. 3.7 Arrangement of the Mode Selector and MBE when Y has odd

number of bits
26

Fig. 3.8 Arrangement of the Mode Selector and extra row MBE when Y

has even number of bits
27

Fig. 3.9 A 7 by 7 bit generalized modified Booth multiplier 29
Fig.310 A 6 by 6 bit generalized modified Booth multiplier 30

IX

List of Tables

Table 2.1. Multiplier bit-pair recoding scheme 11
Table 2.2 Modified Booth recoding table 15
Table 3.1 Operation of the Mode-Selector for X 24
Table 3.2 Operation of the Mode-Selector for Y 26
Table 3.3 Hardware requirements 33
Table 4.1 Fault matrix for the MBE logic circuit 39
Table 4.2 Fault matrix for the selector block 41
Table 4.3 Fault matrix for the MS 43
Table 4.4 A set of test vectors for an 8x7 bit generalized multiplier 44
Table 4.5 Exhaustive testing of the FAs 46
Table 4.6 Exhaustive testing of the MCAs 47
Table 4.7 Exhaustive testing of the MBEs 48
Table 4.8 Extra test vectors for a 9x9 bit multiplier 54

xi

List of Abbreviations

DCVS Differential Cascode Voltage Switch

FA Full-Adder

LSB Least Significant Bit

MBE Modified Booth Encoder

MCA Manchester Cany Adder

MS Mode-Selector

MSB Most Significant Bit

MUX Multiplexers

SC Selector-Complementer

)ill

Chapter 1

Introduction

1.1 Aims

Multiplication of binary numbers is an essential function in many applications, for

example, digital signal processing, digital filtering, convolution and frequency analysis, etc.

[1]-[4]. Some systems require both signed and uosigned multiplication. The hardware

implementation of two separate architectures for signed and unsigned multiplication in a

particular application is costly. The conventional array multipliers, that are available,

perform multiplication of either signed or unsigned binary numbers. Hence a single

architecture' capable of performing both signed and unsigned multiplication will make

effective use of the silicon area and at the same time increase the speed of multiplication.

The objective of this research is to develop a regular parallel multiplier architecture for

performing both two's complement (signed) and sign-magnitude (unsigned) multiplication

of two binary numbers. This research also aims at augmenting the above architecture into

an easily testable one using minimum extra hardware. The proposed architecture will have

useful applications in arithmetic processors, digital filters, digital signal processors, etc. It

will be suitable for use in logic synthesis tools for automatic generation of parallel multiplier

layouts.

•

2

1.2 Literature Review

Various multiplication algorithms are available these days. Some of these

algorithms perform multiplication of unsigned binary numbers while other accomplish

multiplication of signed numbers. The sequential add-shift multiplier [5] perfOlIDs

multiplication of two unsigned numbers. It generates the partial products sequentially bit by

bit and uses register latches to shift and store intermediate partial product~. It uses

minimum hardware, but the speed of multiplication is quite low. The most common form

of parallel multiplier is based on the straightfOlward carry-save array multiplication

algorithm [5]-[7]. This multiplier is suited only to positive operands. For multiplication of

two n-bit numbers this architecture requires n(n-2) full adders, n half adders, n2 AND

gates. The worst case delay associated with such multiplier is (2n+ 1)1:g, where 1:g is worst-

case adder delay. The multiplier has a regular, compact structure suitable for VLSI

implementation. A fast multiplication scheme was proposed by C. S. Wallace [8]. This

multiplier is based on the use of trees of pseudo-adders, effectively composed of a set of

counters, which converts three numbers to two in such a way that the value of the output

word is equal to the number of 'l's in the input word. Thus, rather adding together many

summands, one pass through such pseudo-adder reduces the number of summands left to

be summed by one. One important property of Wallace tree is that the number of adder

cells needed grows as the logarithm log2(n) of the number of input bits n. These adders are

much faster than the conventional carry-save adders. The multiplier array requires irregular

interconnections among various cells. It also requu'es a great deal of hardware although

greater speed of multiplication may be achieved. The time optimal Dadda multiplication

scheme [9], [10] operates faster than carry-save array multiplier by minimizing the number

of adder cells as well as the critical path between the partial product generation and the

final addition. However, this architecture uses in'egular interconnections among various

3

cells which makes the layout design complicated. A high speed two's complement parallel

multiplication algorithm in which the signs of all the partial product bits are positive

allowing the product to be formed using array addition techniques was proposed by Baugh

and Wooley [11]. One disadvantage of the scheme i~the need for the complement~ of each

multiplier and multiplicand bit in forming the partial product bits. The modified Booth

algorithm [5], [12] for two's complement multiplication essentially reduces the number of

partial products by a tactor of two compared to the straightforward cal1)'-save array

multiplier. Multiplication speed is almost doubled. Besides, there is no need for

precomplementing the multiplier or postcomplementing the product. Also, the multiplier

structure is regular, therefore suitable for VLSI implementation. Overlapped multi-bit

scanning algorithm [13] which scans more than three bits at a time has a potential to

improve the multiplication speed over the modified Booth multiplier. However, to produce

the various multiples of the multiplicand, extra hardware is needed thereby increasing the

multiplier size and spoiling the regularity of design.

With the advance of integrated circuit technology, the implementation of large

array multipliers on a single chip has become possible. However, due to the increasing

complexity of VLSI circuits it is becoming more and more difficult and costly to test them

[14], [15]. As a result, it is a common practice among circuit designers these days to give

due consideration to testability at the early stages of design. Extra hardware and/or inputs

are added to the original circuits to make them easily testable thereby reducing testing time

and cost. The testability of parallel array multipliers have been investigated by several

researchers. ,Anumber of testable multiplier architectures have been proposed by them. In

[16] C-testable designs of carry-save array multiplier and Baugh-Wooley's two's

complement array multiplier are presented. The term "C-testable" mean~ that the

multipliers require a constant nuniber of test vectors ilTespective of the size of the operands

[17]. Two designs of easily testable gate-level and DCVS logic multipliers have been

proposed in [18]. These designs are based on the straightforward cal1)'-save array

4

multiplication scheme and have been shown to be C-testable. Gate-level C-testable

multipliers based on the modified Booth algorithm have been presented in [19] and [20].

A C-testable DCVS design using this algorithm has also been presented in [21]. This

research aims at developing a C-testable .architecture capable of performing the

multiplication of both signed as well as unsigned operands.

The proposed multiplier i~ based on the modified Booth algorithm. There is some

specific reasons for this particular choice. First of all it reduces the number of partial

products to almost half compared to straightforward carry-save array multiplier. Thi~

algorithm scans three multiplier bits at a time to produce multiples of the multiplicand

which can be achieved just by shifting and/or complementing the multiplicand. Attempts to

reduce the number of partial products further appear to require multiples not to be

obtainable only by shifting [13]. These partial products can be added with an array of

conventional carry-save adders. Besides, the multiplier has a regular structure which is an

extremely important criterion in the selection of schemes for VLSI design. Also, due to its

regular iterative structure the multiplier can be modified to an easily testable one at the

expelme of a very little extra logic and some extra inputs.

1.3 Organization ofthe Thesis

Chapter 2 presents the parallel multiplication scheme using a straightforward array

of cany-save adders. It also introduces the Booth algorithm for multiplication of signed

binary numbers. Bit-pair recoding technique and modified Booth multiplier i~ also

presented in this chapter. Chapter 3 presents the design of a generalized architecture based

on the modified Booth algorithm which is capable of performing multiplication of both

signed and unsigned binary numbers. Chapter 4 analyzes the testability of the proposed

generalized architecture and presents the design of a C-testable multiplier. Finally the

conclusions and some recommendations for future research are made in chapter 5.

r

Chapter 2

Multiplication Algorithms

2.1 Introduction

Multiplication of two fixed point binary operands will be discussed in this chapter.

Some most common parallel multiplication schemes such as the straightfOlward carry-save

array multiplication, Booth algorithm and method of bit-pair recoding or modified Booth

algorithm will be considered. Also, an architecture based on the modified Booth algorithm

for multiplication of two signed numbers will be presented in this chapter.

2.2 Straightforward Carry-Save Array Multiplier

Multiplication can be defined as repeated addition. The number to be added is the

multiplicand, the number of times it is added is the multiplier, and the result is the product.

Each step of addition generates a partial product and when the operands are integer the

product is twice the length of the operands in order to preserve the information content. It

should be noted that binary multiplication is equivalent to a logical AND operation. Thus

the evaluation of partial products consists of the logical ANDing of the multiplicand and

the relevant multiplier bit. Each column of partial products must then be added and, if

r

••

Yo

y,

6

necessary, any carry values passed to the next column. A parallel multiplier (6) is based on

the observation that all partial products in the multiplication process may be independently

computed in parallel. The paliial product terms are called summands. If the multiplicand

and the multiplier has m and n bits respectively then there will be m x n suummand~,

which are produced by a set of mn AND gates. In a straightforward canoy-save array

multiplier the summands are collected through a cascaded array of carry-save adders. At

the bottom of the array, an adder is used to convert the "carry save form" to the required

form of output. Multiplication time is fixed by the depth of the array and the can"\'

propagation characteristics of the adder.

Fig. 2.1 shows a 4 x 4 bit straightforward carry save array multiplier with the partial

products enumerated [6]. The basic cell that may be used to construct this parallel

multiplier is also shown in this figure. The multiplicand term X; is propagated vertically,

while the multiplier term Yj is propagated horizontally. Incoming paliial product bits enter at

the top and the incoming CARRY IN bits enter at the top right of the cell. The bit-wise

AND operation is performed in the cell, and the SUM is passed to the next cell at the

lower right. The CARRY OUT is passed to the bottom of the cell.

..
Fig. 2.1 A parallel multiplier array using carry save adders

•,
••

(
1

7

2.3 Booth Algorithm

Booth algorithm is a powerful direct tool for signed-number multiplication [5]. In

the standard add--shift method, each non zero bit of the multiplier causes one addition of

the multiple of multiplicand to the partial product. The well known fact is that the

execution time of multiplication instruction is determined rnainIy by the number of

additions to be performed. So the execution time can be reduced if we can reduce the

number of additions. This is achieved by a method of bit-scanning which reduces the

number of multiplicand multiples. This technique uses recoding of the multiplier based on

the string property. The process is often referred to as "skipping over Os" and can be

generalized to shift of variable lengths if string of Os can be detected. The greater the

number of Os in the multiplier the faster the operation. Consider a string of k consecutive

1s in the multiplier as shown below .

...... , i + k, i + k-l, i + k- 2, , ~ i-I, .

......, 0, ~ I 'l
k consecutive 1s

o , .

by using the following property of binary strings

2i +k. Zi = Zi +k-l + Zi+k-z + + Zi+1 + Zi

The consecutive Is can be replaced by the following string

...... , i + k+ 1, i + k, i + k- 1, , i +1, i, i-I, .

(2.1)

......, o , 1 , 0 , , 0, -1,. 0 , .

r \ Ii
k-1 consecutive Os I

Addition Subtraction

8

Now consider a multiplication example in which a positive multiplier has a single

block of Is with at least one 0 at each end, for example 0 0 1 1 1 0 (14). The number of

addition can be reduced by observing that a multiplier in this fmm can be regarded as the

difference of two numbers as follows:

010000 (16)

.) 0 0 0 0 1 0 (2)

00 1 1 1 0 (14)

This was shown in Eq. 2.1 and indicates that the product can be generated by one

addition (addition of 24) and one subtraction (subtraction of 21). In the standard notation,

the multiplier can be written as

o 0 +1 +1 +1 0

and the recoded multiplier can be written as

o +1 0 0 0 .1 0

Note that the -1 times the left-shifted multiplicand occurs at 0 to 1 boundaries and +1 times

the left-shifted multiplicand occurs at 1 to 0 boundaries as the multiplier is scanned from

right to left. The transformation that takes

01111 1110 into +10000 0 -10

9

is often referred as the technique of skipping over Is. The reasoning is that in cases in

which the multiplier has its Is grouped into a few blocks, only a few version~ of the

multiplicand need to be added to generate the product hence, the multiplication process

becomes much faster. It can al~o be shown that the Booth recoded multiplier algorithm

works equally well for negative multiplier.

2.4 Modified Booth Algorithm

Modified Booth algorithm is a multiplication speedup technique that guarantees that

an n-bit multiplier will generate at most nl2 partial products [5],[12]. It can multiply two

two's complement numbers directly and gives the product also in the same torm. This

represents a multiplication speed increase of almost a factor of 2 over the standard add-

shift method.

. This new technique is derived from the Booth technique. Recall from the previous

discussion of a positive multiplier of 0 0 1 1 1 0 (+ 14). The number of addition can be

reduced by observing that the multiplier in this form can be regarded as the difference of

two numbers as shown below.

o 1 0 0 0 0 (16)

.) 0 0 0 0 1 0 (2)

Multiplier ~ 0 0 1 1 1 0 (14)

This indicate that the number 0 0 1 1 1 0 (14) has the same value as

10

This is true for any number of contiguous I s, including the case in which there is a single I

with Os on either side. The entire concept of bit-pair recoding revolves around this method

of regarding a string of Is as the difference of two numbers.

Now returning to the multiplier being discussed and scanning it from right to left ,

bit by bit. ht going from 0 (20) to 1 (21), we saw previously that this resulted in subtracting

the value of the I in that position, in this case - 21. Scanning from I (21) to I (22) resulted

in no change , that is , neither addition nor subtraction . The same is true in scanning from

I (22)"to 1 (23) . However, in going from 1 (23) to 0 (24), we saw that this resulted in an

addition bf 24. There is no change in scanning from 0 (24) to 0 (25). The results of

scanning this multiplier are as follows: 21 was subtracted and 24 was added. The same

results can be obtained by looking at pairs of bits in the multiplier in conjunction with the

bit that is to the right of the bit pair being considered, as shown below.

25 24 23 22 21 20

[JJO 01 I 10[Q]r r
Sign Implied 0
Extension

That is, bit pair 21, 20 is examined with an implied 0 to the right of the low-order bit; bit

pair 23, 22 is examined with bit 21, bit pair 25, 24 is examined with bit 23. Scanning the

bit pairs from right to left and using the rightmost bit of each pair as the column reference

for the partial product placement (it is the center bit of the three bits being examined), we

obtain the following multiplier bit-pair recoding scheme shown in table 2.1. It should be

noted that there are a total of eight possible versions of the multiplicand.

11

Table 2.1. Multiplier bit-pair recoding scheme

Multiplier Multiplier bit Multiplicand Explanation

bit-pair on the right multiples to be

i+1 1 i-I added

0 0 0 o x multi licand No strin

0 0 1 + 1 x multi licand End of strin

0 1 0 + 1 x multi licand

0 1 1 +2 x multi Iicand End ofs

1 0 0 - 2 x multi licand Be ofs

1 0 1 - 1 x mul' Iicand Endlbe ofs

1 1 0 -1 x m . licand Be ofs ..
1 1 1 o x multi licand Strin of Is

Fig. 2.2 gives an example of the bit-pair recoding multiplication technique using two 5 bit

operands rq>resented in two's complement form.

[1] 100 10[0] (- 14)
'--' '--' '---'.lx +Ix -2x

Multiplicand X =

Multiplier Y =

Product P =

00110

1 III 110 100

00000110

111010

1~1110101100

(+ 6)

(- 84)

Fig. 2.2 Multiplication example using bit-pair recoding

•...
••••

'i

12

2.5 Removal of Sign-bit Extension Circuitry

The modified Booth algorithm for multiplying two binary numbers basically

consi~t~ of two steps: first obtain the partial product from the proper version of the

multiplicand and second add these partial products in an appropriate array of full adders

considering that summation in an array has to be done with sign bit extension, because it is

a signed' multiplication. However, if explicit sign extension scheme is observed large

amount of circuitry is required merely to accommodate the sign-extension of the pal1ial

products. The redundancy of the sign-bit extension can be eliminated by a simple method,

Le., reducing the number of variable inputs to the array, thus reducing the number of full

adders involved. Several approaches of removal of sign-extension circuitry fmm Booth

multiplier have been proposed by previous researchers [22], [23].

Let us consider the multiplication of two 8-bit binary numbers using modified

Booth algorithm. Since this algorithm scans three bits of the multiplier at a time and retires

two of them to generate a partial product, the total number of partial products generated

for the 8-bit multiplier is four. If a, b, c, d represent these paltial products, then the

addition of these pal1ial product is illustrated in Fig. 2.3. Each pal1ial product is shifted two

bit positions to the left with respect to the preceding one in accordance with the modified

booth algorithm.

as as as as as as as as a7 a" aj a4 a~ a2 a, an
bs bs bs bs bS bs b7 b6 bj b4 b~ b2 b] bn
Cs Cs Cs Cs C7 c" C5 C4 C~ C2 c, cn

ds ds d7 d6 dj d4 d~ d2 d] dn

Pi5 P14 P13 Pi] Pll PiO P9 P8 P7 P6 P5 P4 P3 P] Pi PO

Fig 2.3 Sign extendedpartialproduct array

13

Here as, bS' cs, ds are the sign bits. It is seen that the direct implementation of explicit sign

extended array will be an uneconomical choice.

Let us assume for simplicity that the arithmetic weight of the ps column is 20, i.e.,

1. Thus the p15 column represents a weight of 27. Then the sum of the sign and sign

extended bits can be written as

Sum = as (27 + 26 + 25 + 24 + 23 + 22 + 21 + 20) + bs (27 + 26 + 25 + 24 + 23

+ 22) + cs(27 + 26 + 25 + 24) + d8(27 + 26)

= as (28 - 20) + bs (28 - 22)+ Cs (28 - 24) + ds (28 - 26)

Since p15 is the most significant bit of the product output, module 28 addition can be used

to sum the sign bits. Thus, the sum of the sign bits can be written as

which expressed as a binary number is

Sum = - (0 d8 0 c8 0 b8 ° as)
The two's complement of the word (0 ds 0 Cs0 bS 0 as) is

- (0 dS 0 Cs° b80 as) = (1 dS 1 Cs I bs 1 as) + 1

(2.2)

(2.3)

When the recoding scheme of Eq. 2.3 is used, the sign extended Booth partial product

array appears like the one shown in Fig. 2.4.

14

1

1 as a7 an a, a4 a, a2 a, an

1 b8 b7 b6 b, b4 b, b2 b, bn
1 c8 c7 c6 c, c4 c, c2 c, cn

1 ds d7 d6 d, d4 d, d-i d, dn

Pi5 P]4 P13 Pi2 Pll PiO P9 Ps P7 P6 P5 P4 P3 P2 Pi PO

Fig 2.4 Recoded sign extended partial product arrG)<'

Hence it is seen that elimination of the sign-extension circuitry in a modified Booth

algorithm multipliers can be achieved by inverting the MSB of each partial product and

adding a logic 1 at every higher significance (including the MSBs). This procedure is

equivalent to recoding the MSBs of the partial products as a two's complement number and

adding a logic 1 to the most significant full adder in each row of the main an'ay.

2.6 An Architecture Based on Modified Booth Algorithm

Fig. 2.5 represents an 8 by 8 bit multiplier architecture based on the modified

Booth algorithm for multiplication of two binary numbers that are in the two's complement

form [21]. Elimination of the sign extension circuitry is achieved by the procedure

described above. The modified Booth encoder (MBE) block in each row operates on three

multiplier bits to generate the control signal eM, K I, and K2 according to the modified

Booth recoding scheme as shown in Table 2.2. In this recoding scheme five possible partial

products can be fOimed: 0, +X, -X, +2X, -2X where X denotes the multiplicand. The

selector complementers (SC) in Fig 2. 5 consi~t of multiplexers which operate on the

multiplicand bits to generate 0, X or 2X as partial products depending on the control

15

signals K1, K2 and complementers (2-input EX-OR gates) which generate one's

complement~ of these partial products only when CM signal is high. Moreover, these one's

complemented partial products are converted to their two's complement tOlm by addition

of a. logic '1' to their LSBs The addition of the partial products are accomplished by an

array of carry save full adders (FA). The Manchester carry adders (MCA) on the right-

hand side and the bottom of the Fig. 2.5 operates on the results coming out of the main

array (the array containing SCs and FAs) to generate the final product output.

Table 2.2: Modified Booth recoding table

MBE inputs MBE outputs Partial Product SC output

Y;-l-l Y; Y;_l K1 K, CM Generated Z

0 0 0 0 0 0 0 0

0 0 1 1 0 0 +X X;

0 1 0 1 0 0 +X Xi

0 1 1 0 1 0 +2X X;_l

1 0 0 0 1 1 -2X Xi_1

1 0 1 1 0 1 -X X;

1 1 0 1 0 1 -X X;
--

I 1 1 0 0 0 0 0

X' x6 x5 x4 x3 x2 xl xO GND

CM

P7

FA

P8

FA

P9

FA

PIO
l

FA

MCA I. 'MeA

Pll

FA

PIZ

FA

PI3

FA

PI4P15

M
B
E

M
B

E

y6

y7

yO

y3

yZ

yl

y4

y5

<""

Fig 2.5 :An 8 by 8 bit modified Booth multiplier arrray
(Horizontal Controls and vertical multiplicand routings are omitted for clarity)

16

Chapter 3

Generalized Architecture for Signed and
Unsigned Multiplication

3.1 Introduction

1bis chapter investigates how the modified Booth algorithm can be applied to

multiply binaIy numbers represented in the sign-magnitude (unsigned) form. The

modifications needed to the modified Booth multiplier for' performing multiplication of

unsigned numbers will be derived. Finally a single generalized architecture capable of

performing both signed and unsignedmultiplicationwillbe developed.

3.2 Multiplication of Unsigned Numbers Using Modified Booth Algorithm

Traditionally the modified Booth algorithm is. regarded as a powerful tool for

multiplication of two's complement numbers and gives the product output in two's

complement form. 1bis algorithm considers that any number with a I in its leftmost bit

position (i.e., MSB) is a negativenumber and is given in the two's complement form. This

leftmost bit is regarded as the signbit. Positivenumbers are represented in simple positional

"

18

binary notation with the sign bit set to O. However, in order to use the modified Booth

algorithm for lUlSignedmultiplication the operands with a leading I (i.e., MSB=I) must not

be considered as a negative number, rather all the bits in the operand (including the MSB)

should indicate its true magnitude. This can be achieved by placing an extra 0 as the MSB

of the operands. The operands will then be treated as positive numbers by the modified

Booth multiplier. Therefore, the results of the multiplication will be the same as it would be

if the original unaugmented operands were considered to be unsigned binary numbers.

Fig. 3.1 illustrates two examples of how two binary numbers can be multiplied

according to the modified Booth algorithm in signed and unsigned mode of multiplication.

Let us consider two 5 bit binary numbers X and Y as shown in Fig. 3.1(a). In this figure it

is assumed that the numbers' are represented in the two's complement notation and

multiplication is performed using the original modified Booth algorithm. In Fig. 3.I(b), an

extra zero is forced at the MSB of both the operands to make them positive and to perform

unsigned multiplication using the same algorithm.

Some important points are worth noting in the multiplication examples of Fig. 3. I.

First, during the normal signed multiplication (Fig. 3.I(a» the MSBs of the operands are

extended as sign bits. But when unsigned multiplication is desired (Fig. 3.1 (b», the

extended sign bit must be a zero instead of the MSB of the operands. Second, in the

signed multiplication example of Fig. 3.I(a), since the multiplier (Y) has odd number of

bits, the MSB is extended to make it even thereby allowing the completion of bit-pair

recoding at the extended sign-bit. Three partial products are generated in this case. In the

example of Fig. 3.1(b) forcing an extra '0' at the most significant bit position for unsigned

multiplication also renders the number of bits in the multiplier (Y) even. In this case the

number of partial products generated is three as well. Therefore, regardless of the number

of bits in the multiplicand (odd or even), if the multiplier has odd number of bits then the

number of partial products generated during either signed or unsigned multiplication

pmcess are equal.

[1)1 0 1 0 1[OJ (- 11)
___ """" L-JL-J L.......J

Sign -Ix +1x +lx
extension ------_ .

1 1 1 1 1 1 1 0 1 0] 3 rows of
1 1 1 1 1 0 1 0 PartialProduct
000110

Multiplicand X =

Multiplier Y =

ProductP =

11010

0001000010

(a) Signed Multiplication

(- 6)

(+ 66)

19

Multiplicand X =

Multiplier Y =

ProductP =

Forced
zeros

[OJ1 10 1 0 (26)-<~1~}~ [OJ(21)
+1x +1x +1x

0000011010J
00011010 3ro~sof
o 1 1 0 1 0 PartialProduct

1 000 1 000 1 0 (546)

(b) Unsigned Multiplication

Fig. 3.1 (a) Signed and (b) Unsigned multiplication using modified Booth algorithm for

odd number of bits in the operands

Now consider that there are even number of bits in the multiplier. The application

of normal modified Booth algorithm for signed multiplication requires no sign extension of

the multiplier (Y) as bit-pair recoding completes at its MSB. However, during unsigned

multiplication forcing an extra zero al the MSB of the multiplier transforms il inlo a

positive number and makes the number of bits in the multiplier odd. Hence it requires a

20

second extra zero at the multiplier MSB for the completion of bit-pair recoding resulting in

an extra row of partial product compared to signed multiplication. This is illustrated in the

Fig. 3.2 where two 4-bit binary nwnbers are multiplied in both signed as well as WlSigned

mode of multiplication.

1 0 0 1 [0] (- 7)
'--' '--'-zx +lx

Multiplicand X =

Multiplier Y =

ProductP=

1 1 10

11111110 oJ
000100

00001110

(a) Signed Multiplication

(- 2)

2rOWB of
Partial Product

(+ 14)

(+14)

(+126)

Multiplicand X =

Multiplier Y =

Product P =

Forced Jl [0] 1 1 1 0
Zero ~

[0] [0]1001 [0] (+9)
~. I.........J L.-...J L-J

A 2nd +1x -Ix -zx
Zero

00001110
100100 Extrarowof
1 1 1 0 ~.--- Partial Product

01111110

(b) Unsigned Multiplication

° Fig. 3.2 (a) Signed and (b) Unsigned multiplication using modified Booth algorithm for

even number of bits in the operands

21

3.3 Hardware Implementation of Unsigned Multiplication

The changes required in the arcqitecture of the modified Booth multiplier of Fig.

2.5 in order to achieve unsigned multiplication will be discussed here. Detailed designs of

the new hardware blocks needed will be presented.

3.3.1 Sign Extension Circuitry for the Multiplicand (X)

Recalling the modified Booth multiplier architecture of Fig. 2.5, the sign extension

of the multiplicand (X) is accomplished by the left most selector-complementer (SC)

blocks of each row. Both the inputs to these SCs are same which is the MSB of the

multiplicand. It was shown that the output of these SCs arc inverted so that complemented

version of the sign bit of X is available as required for removal of explicit sign-bit

extension circuitry. But if unsigned multiplication is desired then instead of passing the

MSB of X to the left most SCs of each row logic zero has to be forced to these blocks.

Hence for unsigned multiplication both the inputs to the left most SCs in each row should

be grounded as shown by the Fig. 3.3.

X7 (MSB of X)

(a)

a7

X7 (MSB of X)

(b)

Fig 3.3 (a) Sign extension for signed multiplication as in the original Booth multiplier
(b) Modification to sign extension circuitry for unSigned multiplication

t

22

3.3.2 Sign Extension of the Multiplier (Y) with Odd Number of Bits

As mentioned earlier, if the number of bits in the multiplier (Y) is odd then the .

application of modified Booth algorithm for either signed or unsigned multiplication will

result in equal number of partial products. So a modified Booth multiplier architecture,

whose multiplier Y has n bits and which is designed for signed multiplication will have the

same number of rows of partial products as that of a multiplier architecture for unsigned

multiplication provided n is odd. However, for signed multiplication the MSB of Y i~

extended to turn its number of bits into an even one in order to complete bit-pair recoding.

Thus, two of the inputs to the modified Booth encoder (MBE) in the final row of the

multiplier array are wired together as shown in Fig. 3.4 (a). In contrast, for unsigned

multiplication, a logic zero ha~ to be forced at the most significant bit position of Y.

Accordingly the change in hardware required in the MBE of the final row is depicted in

Fig. 3.4 (b) for a multiplier (Y) having 7 bits (Yo - y.). Here y. i~the MSB of the original

multiplier.

y,

MBE K}
of
last K2
rowY. eM

(a) Signed Multiplication

y,

MBE K,
of

y. last K,
row

eM

GND

(b) Unsigned Multiplication

Fig. 3.4 Sign extension a/the ivfultiplier(Y) having odd number a/bits

23

3.3.3 Sign Extension ofthe Multiplier (Y) with Even Number orBits

As discussed in Section 3.2, if the multiplier has even number of bits then extension

of the MSB is not required since bit-pair recoding completes at the MSB. Fig. 3.5(a)

illustrates how the inputs to the MBE of the final row of the multiplier array are connected

when Y has 8 bits with Y7 as the MSB. However. for unsigned multiplication if the

multiplier (Y) has even number of bits then the application of modified Booth algorithm

will generate an extra partial product compared to that generated for signed multiplication.

1bis is due to the introduction of two extra logic Os at the most significant bit position of

the multiplier as was explained in Section 3.2. An extra modified Booth encoder is required

to accomplish this as shown in Fig 3. 5(b). Note that the two of the higher input bits of this

extra MBE are grounded as required. In order to add the additional partial product

generated, an extra row of full-adders is required compared to signed multiplication.

Ys 4th Kj

rowYs Y. MBE K2

Kj
Y7 CM

4th
Y. row K2 5th K1

MBE row
Y7 CM MBE K2

CM
GND

(a) Signed Multiplication (b) Unsigned Multiplication

Fig. 3.5 Sign extension of the multiplier(Y) having even number of bits

24

3.4 Signed and Unsigned Multiplication Using a Single Array

It was shown in the previous section that the modified Booth multiplier can be used

for un~igned multiplication with little change in the hardware. In this section, a generalized

architecture ",ill be developed which will be capable of both signed and unsigned

multiplication. It is clear from the discussion in the previous sections that the type of

multiplication performed by the multiplier depends upon the selection of the sign-extension

bit for the operands. Hence, a generalized architecture would allow the selection of

appropriate sign-extension bit for either of the two modes of multiplication. This can be

achieved by the use of a "Mode Select" input to the multiplier.

3.4.1 Selection of Multiplicand Sign Extension Bit

The number of columns in the general multiplier array will not be affected by

whether the multiplicand (X) have odd or even numbers of bits. A 2/1 multiplexer is used

to select the proper sign-extension bit for signed or unsigned multiplication. This

multiplexer is called "Mode Selsector" (MS) and is shown in Fig. 3.6. One of the inputs of

this MUX is connected to the MSB of X while the other input is grounded. The mode of

multiplication will be decided according to the Table 3.1

Table 3.1 Operation of the Mode Selector for X

S Mode

o
1

Si ed

Unsi ed

MSB of X

o

25

As shown in Fig. 3.6 the output Z, of the Mode Selector is connected to both the

inputs of the left most selector-complementer (SC). When signed multiplication is desired

S should be made zero and MSB of X will be selected by the MUX as the sign-extension

bit. On the other hand when S is made logic 1, a zero will be selected instead of the

multiplicand MSB and unsigned multiplication willbJ:performed.

S

GND

MS

(2/1 MUX)

Z,

MSB of X

Fig. 3.6 Selection of proper version of MSB of X

3.4.2 Selection of Multiplier Sign Extension Bit

Two different architecture will be developed depending on the number of bits (odd

or even) in the multiplier (Y). When multiplier has odd number of bits then the number of

partial products generated will be the same for either mode of multiplication. So, the array

structure will be the same in either case except that there will now be another Mode

Selector for selecting the proper sign-extension bit for the multiplier. The select signal of

this MUX is the input S used for the Mode-Selector of the multiplicand MSB. The

connectivity of this MUX to the most significant modified Booth encoder (MBE) is shown

in Fig. 3.7. One of the inputs to this MUX is the MSB of the multiplier while the other

input is grounded. Its output Z2 together with the MSB of the multiplier is input to the

(,

- <-

26

MBE of the last row. The mode of multiplication is decided according to the Table 3.2.

Fig. 3.7 illustrates the arrangement of the Mode Selector and the most-significant MBE for

the generalized architecture when the multiplier (Y) has odd nWIlber of bits (7 in this case).

Table 3.2 ; Operation ofthe Mode Selector for Y

S Mode

o
1

S' ed

U . ed

MSBofY

o

Fig. 3.7Arrangement of the Mode Selector and MBEwhen Y
has odd number of bits (7 bits in this illustration)

27

When the multiplier (Y) has even number of bits and unsigned multiplication have

to be petformed the generalized array must have provision for the generation of one extra

row of partial product compared to the original signed multiplier in order to account for

sign-extension. This is achieved by connecting a Mode Selector to the most-significant

MBE according to the scheme illustrated in Fig. 3.8. Here the multiplier (Y) is assumed to

have 8 bits with Y7 as the MSB. When urisigned multiplication is desired, S is made 1 and

according to Table 3.2 the output of the MS (Z2) isO. So, the MBE of the last row of the

array gets the input (Y7 0 0). However, when signed multiplication is desired, S is made 0

and the output Zz of MS is Y7 as per Table 3.2. Thus, the inputs of the most-significant

MBE has (Y7 Y7 Y7), i.e., either 000 or 111 resulting in a partial product whose bits are all

Os.Therefore, this partial product does not affect the final product output of the multiplier.

This is because the final MBE along with the corresponding row of full-adders are

redundant for signed multiplication as was explained in Section 3.3.3.

y, 4th

Y6 Row SC

Y7
MBE

S
Y7 Final

Y7 SCRow

MBE
GND

Fig. 3.8 Arrangement of Mode Selector and extra row MBE when Y
has even number of bits (8 bits in this illustration)

28

3.5 The Generalized Architecture

Two generalized multiplier architectures are given in Figures 3.9 and 3.10. The first

one is for a 7 by 7 bit multiplier array while the second one is a 6 by 6 bit multiplier.

3.6 Calculation of Overhead

In this article a comparative analysis on the hardware and delay overheads of the

generalized multiplier with those of the original modified Booth multiplier will be

presented.

3.6.1 Hardware Overhead

Table 3.3 shows the hardware requirement for both the generalized multiplier and

the original modified Booth multiplier. Two set of calculations have been carried out based

on whet4er Y has odd or even number of bits. These calculations are based on particular

implementations of the full-adder (FA), manchester carry adder (MCA), modified Booth

Encoder (MBE), Selector-Complementer (SC) and Mode-Selector (MS) in terms of basic

logic gates as shown in Figures 3.11-3.14. It is clear from these figures that each of the FA

and MCA has 9 gates, MaE has 8 gates, SC has 6 gates and MS has 3 gates. Inverters are

excluded from these calculations. Thus, from Table 3.3, when n is odd there are a total of

[I Sn2 + 47n + 14]/2 gates in the original design. On the other hand the proposed

generalized architecture requires only 2 mode-selectors (MS) resulting in an overhead of

only 6 gates.

P6

PS

P3

P4

CM

FAFA

MCA

FA

MCA

FA

MCA

FAFAFA
~1

y~
y5

GND

GND

~
x6 1<5 x~ x3 xl xl >iI
I I I I I

S

,0

~ ~ U$.J ~ .UiJ SC
yl PO

y1 scl If --L L'& I.. _I.' •• h .,-.-."y3 - •... --
A IB I C

FA I FA I FA I FA I
IS I (I L:- n;JMCAj_-H2

Pl3 Pl2 Pll PIO P9 Fa P7

Fig 3.9 : A 7 by 7 bit generalized modified Booth multiplier S= 0: Signed Multiplication
S= 1: Unsigned Multiplication

29

~

~

M

S B
E

ZI
GND

P5

P2

P3

P4

PI

:L
~MCA

. ;IM~At

Ie-
~~P6

%-1

[
CM

J A?TJ
n~

CM

••

FA I

FA~

L.:"
~

II sc

xl:12x4

.'

s~

IS

'ti r

" " ~....LGND

I
CM •

PO

if iff IT IT ~IMCABe SC SC SC sc""~l" -._.T "-"" "l .--A""B1- C".-.l-:.l"a.r "'B Ic

stl
ri

FA FA FA FA
MCA MCA MCA MCA

l TPll PIO P9 P8 P7

'ff 111 11
~" " " " I

~I~J_J J 111
c

•
I

r-"-~r_1
i :J11
i~,1
I.
~

I

i I
l;

yl

y2
yJ

CINJ)-L
S

yO

y4
y5

~

Fig. 3.10 A 6 by 6 bit generalized modified Booth multiplier

30

s= 0 Singed Multiplication
s= 1 Unsigned Multiplication

C

A

B

31

3.11 Gate level design of Full-adder and Manchester
carry adder circuits

Fig. 3.12 Gate level design of the Modified Booth Encoder (MBE)

CM

Xi.1

-.--_ ••. -----* .--------.-----_.----- •••• ---

32

Selector
E

eM

Complementer

F

Fig. 3.13 Gate level design 0/ the Selector-Complementer circuit

s

x

E

D

F

z

Fig. 3.14 Logic Diagram o/Mode-Selector

33

Table 3.3: Hardware Requirements

Multiolier (nxn) NO.ofl\1BE NO.ofSC No. of FA NO.ofMCA NO.ofMS

Original

Architecture (n+ 1)/2 {(n+l)/2}(n+l) [{(n+l)/2}-I]n 2n 0

nodd

Generalized

Architecture (n+l)/2 {(n+l)/2}(n+l) [{(n+ 1)/2}-1]n 2n 2

nodd

Original

Architecture nl2 (n/2)(n+ 1) {(nl2)-I}n 2n-l 0

n even

Generalized

Architecture (nl2+1) {(n/2+ 1)(n+ 1)}-1 (nl2)n 2n 2

n even

Therefore:

12

Hardware Overhead = ------------------------------- x 100%

[15n2 + 47n + 14]

(3.1)

Equation 3.1 gives hardware overhead of 1.11317% and 0.29311% for n=7 and n=15

respectively. This figure continues to decrease as n increases. Thus with large operand size,

the hardware overhead is negligible.

•

34

Now when n Is eVen, the original design has [15n2 + 32n - 18]/2 basic gates .
•••

However, th~.generalized architecture requires. one extra modified Booth encoder, n extra

selector-complementers, h extra full-adders, 1 extra Manchester carry adder and 2 extra. .'
mode-selectors. In total (15n+ 23) extra gates are required in the generalized architecture

compared to the original signed multiplier.

Therefore,

30n + 46

Hardware Overhead = -------------------------------- x 100%

[15n2 + 32n - 18]

(3.2)

This formula is valid as long as n is even. Equation 3.2 gives hardware overhead of

12.1365% and 6.146% for n=16 and n=32 respectively. Thus a 32 by 32 bit generalized

multiplier does not have very large hardware overhead. The overhead reduces further as

the operand size increases.

3.6.2 Delay Overhead

In order to calculate the delay overhead it is assumed that a basic logic gate has unit

delay except that an inverter is assumed to have zero delay. When n is odd the only delay

overhead that occurs in the generalized multiplier over the original one is due to the mode-

selector circuit which introduces a delay of 2 time unit~ (see Fig.3.14). However, when n is

even the generalized multiplier has one extra row of selector-complementers and full-

adders. Besides, there will be some extra delay in the mode-selector circuit. The selecter-

complementer circuit has a delay of 4 units while the full-adder introduces a delay of 6

time unit~. Therefore, the total delay overhead is 2 + 4 + 6 = 12 time unit~ when n is even.

Chapter 4

Testability of the Generalized Multiplier

4.1 Introduction

In general VLSI circuits are vet}' difficult to test for several reasons. The high

device-to-pin ratio severely limits the controllability and observability of internal signal lines

in VLSI chip [14]. Also, there exists a large number of faults of various types, many of

which cannot be modelled by the traditional stuck-at fault model. Test pattern generation

and verification procedures are becoming very costly or even computationally infeasible to

implement [15]. However, VLSI circuits like array multipliers having regular iterative

structure have been shown to be easily testable by slight modification of the conventional

design [16]. In this chapter the generalized multiplier architecture presented in Chapter 3

will be modified in order to convert it to an easily testable one.

4.2 Testing Approach

The objective of the testing approach adopted in this research is to exhaustively test

the full-adders (FAs), Manchester carry adders (MCAs) and modified Booth encoders

..
\.

36

(l'vIBEs). Such a test set will be applicable to any arbitrary logic implementation of these

cells. The fault model used in this research assumes:

a) in an array multiplier, at most one basic cell is faulty at a time;

b) the fault is a permanent fault (i.e. the fault permanently changes the circuit's

logic characteristics);

c) the fault may alter the cell's output functions in any arbitrary way, as long a~ the

faulty cell remains combinational circuit.

In order to generate exhaustive test set tor the selector-complementers (SCs) it is

necessary to modifY the design of the modified Booth encoders with a significant increase

in complexity and gate count. However, Takach and Jha [18] have shown that hardware

overhead reduction is possible for array multipliers jf a fault model based on single (stuck

. at) faults is used instead of the single cell fault model. They have also shown that a set of

test vectors which detect all single stuck-at faults in a gate level carry-save multiplier can be

readily adopted to detect all detectable smile stuck-at, transistor stuck-on and stuck-open

faults in a DCVS implementation of the multiplier. Therefore, the selector-complementers

will be tested for single stuck-at faults only. Moreover, although l'vIBEs are eventually

exhaustively tested, this testing does not guarantee the fault propagation to the primary

outputs of the array. Due to this, equivalent gate level circuit for l'vIBE and also mode-

selector (MS) will be tested for single stuck-at fault~.

4.3 Modification of the Architecture for Testability

The main challenge in testing array multipliers is the difficulty of controlling the

inputs of internal adder cells from the primary inputs, namely the multiplier (Y) and

multiplicand (X) inputs. In fact, some patterns cannot be applied to some adders cells. To

e5 e4 ,,3 e2

"-~V6 ~131ScIS. E.6

P3

P4

pI

PI

PO

P2

JMC

CM

xO x-I "1

FA I

xl

cttJsc

BIC

x2

GJ
A

sc

x3

.l~J.-

x4

sc.. + .. I - - -

x5

w

x6.7

~

.
I

I _ ~ FA

~~ ~

I

Ir-.Js,~l- -

M I
B •

E I

~Ii

4f~
rc;~

s
y-l

yO
yl

y2
yl

,4,5

FA FA FA FA
MCAMP6

MCA MCA MCA

L
PH P13 Pl2 PH PIO P9 pa P7

Fig 4.1: An 8 by 7 bit generalized testable modified Booth multiplier

37

38

circumvent thi~ problem, extra input~ and sometimes extra hardware is added to enhance

controllability and observability of the internal signal lines in a VLSI circuits.

A testable architecture for an 8x7 bit generalized (signed and unsigned) multiplier is

shown in Fig. 4.1. Comparing to its non testable version, this architecture has 8 extra

controllable inputs ej, e2, e3, e4, eS, e6, X_I and Y-l to enhance the controllability of various

cells. For normal multiplication operation these extra inputs will have the following logic

4.4 Testing the Individual Cells

The patterns required for testing the various individual cells of the multiplier for

single stuck-at faults are derived in this section.

4.4.1 Testing ofMBEs for Single Stuck-at Fault

The logic diagram of the modified Booth encoder used in the generalized multiplier

was shown in Fig. 3.12. This is repeated here in Fig. 4.2 for convenience.

Y;.l

A

B

C K2

D

Figure: 4.2 Gate level design of the Modified Booth Encoder (MBE)

eM ~,
\
\

39

The circuit has twelve nodes and so twenty four possible stuck-at fault~. For the

three primary inputs there will be eight possible test vectors which will be identified as to to

t7>where the suffix is the decimal equivalent of the binary numbers (Yi-1YiYi+l)' The fault

coverage is conveniently displayed in the fault-matrix shown in Table 4.1. The tick against

each test indicates the fault covered by that test.

Table 4.1 Fault matrix for the MBE logic circuit

Test Yi_l Yi-l Yi Yi Yi+l Yi+l A A B B C C D D E E F F K, K, K? K? CM CM

10 II 10 II II II 10 /1 10 II 10 II 10 II 10 II 10 II 10 II 10 II 10 II

fJ. -.j -.j -.j -.j -.j -.j -.j -.j

1, -.j -.j -.j -.j -.j -.j -.j -.j -.j -.j

to -.j -.j -.j -.j -.j -.j -.j -.j

b -.j -.j -.j -.j -.j -.j -.j -.j -.j -.j

t, -.j -.j l-.j -.j -.j -.j -.j -.j

t< -.j -.j -.j -.j -.j -.j -.j -.j -.j -.j

1< -.j -.j -.j -.j -.j -.j -.j

h -.j -.j -.j -.j -.j -.j -.j -.j -.j

From the above fault matrix it is seen that the test vectors tI, t3, t6 and t7 are the

essential tests. These four essential tests cover all the faults except Yi+ 1/1 and B/1. A single

test that covers both of these faults is t4' Hence a set of test patterns for the inputs

(Yi-lYiYi+ 1) of the lvIBE of Fig. 4.2 that detect any single stuck-at fault in the lvIBE is {OOI,

011, 100, 110, 111}.

I

40

4.4.2 Testing ofthe SCs for Single Stuck-at Fault

The logic diagram of the selector-complementer block is repeated in Fig. 4.3. It has

a total of five inputs. However, for testing of single stuck-at fault we will derive fault matrix

for only the selector part. This is because the complementer part i~nothing but an EX .OR

gate whose one input is the complement signal CM and the other is output of selector

circuit Zj. Since output of an EX-OR gate invert~ due to inversion of anyone of it~ input

so if we can test only the selector part for single stuck-at fault we may declare that this fault

will propagate to the SC output due to that fault propagation property of EX -OR gate. This

criterion will also reduce the number of input test vector of SC blocks from twenty five to

sixteen. These will be identified as to to tI5, where the suffix i~the decimal equivalent of

the binary number (KI XiK2 Xi-I)' Table 4.2 shows the fault matrix.

K2

K,

Selector

CM ~

Complementer

F

z
Fig. 4.3 Gate Level Design o/the Selector-Complementer Block

41

Table 4.2 Fault Matrix for the Selector Block

Tesl K,/O K,/l K,JO K.,Il xJO xii x ,/0 x.' II E/O Ell FlO Fil VO Z:/I

It\
.J .J .J

I, .J .J .J .J

to .J .J .J .J

to .J .J .J .J .J

I. .J .J .J .J

t, .J .J .J .,J .,J

li< .,J .J .,J .,J .,J .J

I? .,J .,J .,J .,J .,J

10 .,J .J .J .J

to .,J .,J .,J .,J .,J

t,n .J .J .,J .,J .,J

I" .,J .,J .,J .,J .,J .,J

I" .,J .J .J .,J .J

I., .J .J .J .J .J .J

I" .J .J .,J .J .J .J

I,, .J .J .J .J .J .J .J

Identifying the indistinguishable faults and dominant faults in the fault matrix of

Table 4.2, it is found thai the test vectors needed to test any single stuck-at fault are t2, t7,

t8, and t13. So the set of test pattern for the inputs (Kl'qK2Xi-l) of the selector circuit to

detect any single stuck-at fault is {OOI0, 0111, 1000, 1101}.

42

4.4.3 Testing of the Mode-Selector for Single Stuck-at Fault

The logic circuit for the mode-selector block is shown in Fig. 4.4. It has three

inputs X, S and \1. so there are eight possible input test vectors (to-t7)in the fault matrix.

The circuit has seven nodes giving rise to a total of fourteen stuck-at faults. The fault

matrix is shown in Table 4.3.

S

X

E

D

F

z

Fig. 4.4 Logic diagram a/Mode-Selector block

From the fault matrix it is fOlmd that l(i is the essential test. Using the concept of

indistinguishable faults and fault dominance it is found that test vectors required to test any

single stuck-at fault in the MS circuit are to, t4, l(i and t7. So the set of test patterns for the

inputs (X S \1.)of the MS is {ODD, 100, II 0, Ill}.

43

Table 4.3 Fault matrix for the MS

test XlO XII S/O SI1 e:/O e;/1 D/O Dl1 E/O Ell FlO Fl1 Z/O ZI1

to -.j -.j -.j -.j

t1 -.j -.j -.j -.j -.j

h . -.j -.j -.j -.j

h -.j -.j -.j -.j

tll -.j -.j -.j -.j -.j

t" -.j -.j -.j -.j

tI: -.j -.j -.j -.j -.j -.j

t-7 -.j -.j -.j

4.5 Testing the Multiplier

A set of test vectors for testing the multiplier will be derived in this section. The

vectors will cover the exhaustive testing of the FAs, MCAs, MBEs as well as the stuck-at

faults in the selector-complementers and mode-selectors.

4.5.1 Test Vectors

Table 4.4 shows a set of test vectors for detecting all single stuck-at faults in the

multiplier of Fig. 4.1. An 8-bit multiplicand X and a 7-bit multiplier Yare shown with their

LSBs to the right most position. The underlined bits have to be replicated for generating

the test vectors for multipliers with larger operand wordlenths.

Table 4.4 A set oftest vectors for a 8 x7 bit generalized multiplier

Vectors X Kl Y Y-l S e4e3eZei e6eS

tl OOOOOOOQ 0 QOO0000 0 0 0000 xx

t2 1000000Q 0 1010101 0 1 0000 01

t] 1111 1111 1 101 0101 0 1 1111 01

t4 1000000Q 0 0101010 1 1 1111 11

t5 OOOOOOOQ 0 111 1111 0 0 1100 xx

to OOOOOOOQ 0 011 0011 1 0 0011 xx

t7 1111 1111 1 1010011 0 1 0011 01

til 11111111 1 1000100 1 1 1100 01
.

t9 01010101 0 1001100 1 0 0110 xx

tlO 01010101 0 011 0011 a a 1001 xx

tll 11111111 1 all 0011 a a 0011 xx

t12 1111 1111 1 100 1100 1 0 1100 xx

t13 OOOOOOOQ 0 010 1010 1 1 1100 10

t14 1111 1111 1 0101010 1 1 0000 11

tlS 11111111 0 001 1001 1 1 1111 10

t16 11111111 0 1100110 0 1 0000 01

t17 OOOOOOOQ 0 1100110 0 1 1111 00

tl11 11111111 1 0011001 1 1 1001 11

t19 1111 1111 1 111 1111 1 0 0000 xx

44

45

4.5.2 Exhaustive Testing of the Full-Adders

The first twelve test vectors t1-t12 of Table 4.4 set up the patterns required for

exhaustive testing of all the full-adders as explained in the following steps:

1) The test vector t1 applies 000 to most of the full-adders. However, the full

adders affected by the inverted sign bits of the partial products receive 100. Test vector t2

applies 000 to these full-adders.

2) Application of pattern 111 to all the full-adders is accomplished with the vectors

t3 and t4.

3) The vector t5 applies 100 to all the full-adders except the one labeled 'FA1' in

the second row of Fig. 4.1 which receives the pattern 010. f(; applies 100 to FAt.

4) The vector t7 applies 011 to all the full-adders except the one labeled 'FAI'

which receives the pattern 101. t8 applies 011 to FAI.

5) ~ applies 001 and 110 to alternate full-adders, t10 applies 110 and 001 to

alternate full-adders in each row.

6) f(; applies 010 to the full-adders in the even rows except FAI. It was seen in step

3 that FAl gets 010 by t5. Application of 010 to the full-adders in the odd rows is

accomplished with the test vector tIl'

7) t8 applies 101 to the full-adders in the even rows except FAt. It was seen in step

4 that FAl gets 101 by t7' Application of 101 to the full-adders in the odd rows is

accomplished with the test vector tn.

Table 4.5 shows the results of exhaustive testing of the full-adders.

46

Table 4.5 Exhaustive testing ofthe FAs

Pattern a lied to FAs

000
111
100
011
001
no
010
101

t , t

Now let us consider how the effect(s) of a fault in a full-adder is transmitted to the

primary OUtputs (observable outputs) of the multiplier. The sum output of a full-adder is

the parity (EX -OR) of the three input bits. Therefore, if one of these three inputs is

inverted due to appearance of a faulty signal then the sum output of the full-adder is also

inverted. The cany output may or may not be inverted depending on the logic values of the

other two inputs. This is also true for manchester cany adder (MeA), because it realizes

the same logic function as a full-adder. Since all the full-adders are exhaustively tested, the

effect of a fault in a full-adder is transmitted to it's output(s). The two outputs of each full.

adder of Fig. 4.1 are connected to the primary outputs of the multiplier through two

47

different chains of three input EX-OR gates (of FAs and final MCAs). Hence the effect of

a fault in a full-adder is transmitted to the observable output(s).

4.5.3 Exhaustive Testing of the Manchester Carry Adders

All the manchester cany adders are exhaustively tested using a subset of test

vectors from Table 4.4. The combinations of test vectors that apply various patterns to all

the manchester CallY adders are listed in Table 4.6. The effect of a fault in any MCA is

transmitted to it's sum output which is a primary output of the multiplier.

Table 4.6 Exhaustive testing of the MCAs

Pattern a lied toMCAs Test vector r uired

000 t , t

111 t , t
••

101
011 t t

010
100 , t

001
110

48

4.5.4 Testing ofthe Modified Booth Encoders

The modified Booth encoders are tested in two ways. First they are exhaustively

tested However unlike the FAs and MCAs, exhaustive testing of the MBEs does not

necessari1y guarantee the transmission of the effect of a faults in an MBE to the primary

outputs of the multiplier. That is why the MBE block is also tested for single stuck-at

faults.

4.5.4.1 Exhaustive Testing

The modified Booth Encoders are exhaustively tested by the vectors shown in

Table 4.7.

Table 4.7 Exhaustive testing ofthe MBEs

Pattern a lied to MBEs Test vector r uired

000 t

010 t

101 t

111 t ,

011 t

100 t

001 t

110 t

49

4.5.4.2 Testing for Single Stuck-at Fault

Unlike the full-adders and manchester carry adders, exhaustive testing of the MBEs

does not necessarily guarantee the transmission of the effect of a fault in an MBE to the

primary output of the multiplier. Fault propagation depends on the type of fault and it's

effect on the output of the MBE. Also, note from Figures 4.1 and 4.2 that the output of an

MBE in any row, namely CM, Kb and K2 are inputs to the selector-complementers (SC)

in that row (fan-out nodes). In the rest of this sub-section, the test vectors which

propagates any single stuck-at fault in an MBE to the primary outputs of the multiplier will

be derived.

It was shown in Section 4.4.1 that a set of test patterns for the inputs (Yi-lYiYi+l)

of the MBE of Fig. 4.2 that detect any single stuck-at fault in the MBE is {DOl, 011, 100,

110, Ill}. Note from Fig. 4.2 that every input to the MBE has a fan-out of three. This

means that the effect of a fault at one of the input nodes might propagates to more than

one output of the faulty MBE. Because of the fan-outs at the outputs of the MBE these

faulty signals from MBE might propagate through two different paths, i.e. the SC and the

chains of carry-save adders, and then reconverge at the final adders (MCAs). Also, note

from Fig. 4.1 that the adjacent MBEs share one multiplier bit. Therefore, a fault on one of

the shared multiplier bits might affect both the MBE sharing that bit resulting in

transmission of the fault through both the MBEs and subsequent reconvergence in the

array of FAs and MCAs. It can be verified that because of these reasons some path

sensitive patterns (mentioned above) applied to the MBEs for detecting some single stuck-

at faults result in negative reconvergence [15] of the fault effects unless these patterns are

accompanied by application of appropriate patterns to the multiplicand. It was extensively

verified in this research that the test vectors tll, tn, tiS, t16 and t19 apply all the

necessary patterns to all the MBEs along with appropriate multiplicand patterns so that any

single stuck-at fault in the MBE is propagated to the primary outputs of the multiplier.

50

4.5.5 Test Vectors for SCs

As mentioned in Section 4.4.2, a set of test patterns for the inputs (KIXjK2Xj_l) of

the selector block of Fig. 4.3 that detect any single stuck-at fault in the selector is {001O,

0111, 1000, 1l01}.The selector in any row have two common input nodes, namely KI,

and K2 (fan-out nodes). It is verified that the vectors t2, t3, ts, t17 and tl8 sensitize the

single stuck-at faults at these nodes and propagate them to the output of the selectors. Each

of this selector output is passed though a complementer (an EX-OR gate) whose other

input is the MBE output CM (complement signal). The effect of a single stuck-at fault at

! one of the multiplicand bits is propagated through the outputs of the SCs in that column to

one of the inputs of the full-adders in that column. Now the sum output or both the sum

and cany outputs of a full-adder are inverted due to a faulty input signal. Each output of

every full-adder is connected to the primary outputs of the multiplier through a chain of 3-

. input EX-OR circuits (of FAs and final MCAs). Thus, these faults are essentially

propagated to the primary outputs of the multiplier.

4.5.6 Test Vectors for MSs

As shown in article 4.4.3, a set of test patterns for the inputs eX S ej) of the mode

selector (MSs) block of Fig. 4.4 that detect any single stuck-at fault in the mode selector is

{OOO,100, 110, Ill}. It is verified that the vectors to, t2, ts, l(; tiS and tl6 sensitize the

single stuck-at tllUlts at these nodes and propagate them to the output of the mode

selectors.

51

4.6 Calculation of Overhead

4.6.1 Hardware Overhead

The testable design of the multiplier presented earlier does not require any extra

logic compared to the original design presented in Chapter 3. However, the testable version

requires eight extra inputs which increases the number of input pins of the multiplier chip.

For a large multiplier, e.g., 32x32 bit multiplier the penalty in terms of extra pins will not

be as severe as for a multiplier of small operand wordlengths, e.g., 8x8 bit. The lines
,

canying the above extra signals will increas6 the silicon area of the testable multiplier chip

compared to the non-testable design.

4.6.2 Delay Overhead

Compared to the non-testable design, the testable multiplier will not have an extra

logic gate delay. However, there will be some additional delay due to the extra wiring

capacitances associated with various connected to the extra input.

52

4.7 Difficulties with Even Number of Multiplier Bits

It was discussed in Chapter 3 that when the multiplier (Y) has even nwnber of bits

then the generalized architecture needs hardware provision for one extra row of partial

product. This extra row is only needed when unsigned mode of multiplication is desired.

However, a problem arises during designing a testable generalized architecture whose

multiplier has even nwnber of bits. The partial view of the last row of the multiplier

architecture for even nwnber of multiplier (Y) bits is shown in Fig. 4.5. From the figure it

is seen that application of all possible combination of inputs to the last row modified Booth

encoder (MBE) is difficult. This particular problem arises due to the fact that two of the

three inputs to the last row :MBE are same and comes from mode selector (MS) block.

Hence, only four possible combination of inputs namely 000, 100, 011 and 111 can be

applied to this particular:MBE. Therefore, with this configuration exhaustive testing of the

last row full-adders and MBE is not possible.

Y7

S
Last

MS Row

:MBE

sc

Fig. 4.5 Arrangement aiMS and extra row MBE
when Y got even number of bits (8 bits)

53

4.8 Difficulties With Odd Number of Multiplicand Bits

It was shown in Section 4.5 that the generalized multiplier architecture is fu1Iy

testable as long as the multiplicand (X) has even number of bits and the multiplier (Y) has

odd number of bits. In this case it was shown that a total of 19 test vectors were needed to

detect all single stuck-at faults. However, this is not true when the number of bits in the

multiplicand is odd. Unlike the previous case, it is found that no pair of test vector exists

which can apply the patterns 001 and no to all alternate full-adders in any row of the

array. For example, when the vector pair 19 and of tlO Table 4.4 is applied, most full-

adders in the second row receives 001 and no alternately except the two most-significant

full-adders. As a result, not all the full-adders in the subsequent rows receive alternate 00 I

and no. The number of full-adders that do not receives the above patterns by the

application of vector pair t9 and tto increases by the number 2 in the subsequent rows.

This is illustrated in Fig. 4.6.

Fig. 4.6 Effect a/vector pair t9 and t)Oapplied to a 9x9 multiplier. The shaded FAs de
not receive the patterns 001 and 110 alternately (only the FAs are shown/or clarity)

3rdrow

4th row

5th row

D....O.0 D D D D D 0...--,," "".

:::::: ::': ::::::: ::::::

0 O.0 D 0 0 0 0 D... " .., " , ' . , . - . , " ' .. " ..
::-:::::' :.::::: :':::: :::::: ::::::' ... ,,---' ,......" . """ .
, . - - . . . , . " - - , .. , . , - ' . " " .

D00D0 0 [J0 0. - . " - . . . - , - - . - , - . . " - - .::::~: >: ::::::: ::::::: ::::::: ::::::: :::::: ~::::::

54

In order to apply the patterns 001 and 110 to all the full-adders four extra test

vectors t20.t23 have been derived. These four extra vectors, shown in the Table 4.8,

replaces the original vectors 19 and tlO of Table 4.4 for the even multiplicand case.

Table 4.8 Extra test vectors for a 9 x 9 bit multiplier

Test X (9-bit) X_I Y (9-bit) Y-l S e4e~e2el e6e5
Vectors
t20 101010101 0 10011 0011 0 1 0001 10

t21 10101 0101 0 011001100 1 1 1110 00

t22 010101010 1 011001100 1 0 0110 xx

t23 010101010 1 10011 0011 0 0 1001 xx

-

The vector pair t20 and t21 applies 001 and 110 to some of the alternate full-adders

in each row in a manner shown in Fig. 4.7. The shaded Fas do not receive the above

patterns.

3rdrow

4th row

5th row

DDDDDDDDD
0.....O.0 0.....0 0 D D D........, . -, '"" , .
::::::: :::: ,.':::: ::::.' .

0:..::.:E]:D::..::D::..::D::::D...::..DOD...... ..,- , .. - ,- " -- ,.-, . "". -.

o
Fig. 4.7 Effect of vector pair t20and t21applied to a 9 by 9 multiplier. The shaded
FAs do not receive the patterns 001 and 110 alternately.

55

It is clear from Fig. 4.7 that this vector pair (t20, t21) is not able to apply the

appropriate patterns (001 and 110) to all the alternate full-adders in each row. However,

this time the number of full-adders that do not receive the appropriate patterns by the

application of vector pair t20 and t21 grows by the number 1 in the subsequent rows until

the 5th row where the number increases by 2.

Th~ vector pair t22 and t23 applies 001 and 110 only to those alternate full-adders

in each row which do not receive these patterns by the application of vectors t20 and t21'

Fig 4.8 illustrates the results of application of t22 and t23• It is seen that the hatched marked

full-adder (4th from the LSB side of the 5th row) still does not receive the pattem~ 110 or

001 by application of any of the vectors t20-t23. Hence, it is clear that these four new

vectors can not guarantee that all the full-adders in a multiplier anay of any larger size will

receive these two patterns, since the problem recurs in the 5th row when the number of bits

in the multiplier (Y) is higher than eight. One possible solution to this particular problem is

to anange additional input~ so that the desired patterns (001 and 110) can be applied to all

the full-adders using only two test vectors.

3rdrow 0 0 ODD 0 0 0 0
4throw DODD D D'O DO
5throw D00 DD ~ D ETI.O

Fig. 4.8 Effect of vector pair t22 and t23 applied to a 9 x 9 multiplier. The hatched
FA of 5th row still does not receive the desired patterns.

. "+ "

56

4.9 Summary

The testable design of the 8 x 7-bit multiplier presented in this chapter requires only test

vectors to test all single stuck-at faults. Also, the full-adders, Manchester carry adders and

the modified Booth encoders al'e exhaustively tested. The numbers of test vectors for any

larger multiplier will still remain the same, i.e., 19 as long as the multiplicand has even

number of bits and the multiplication (Y) has odd number of bits. Therefore, this testable

multiplier can be said to be C-testable [17] within the constraints specified earlier. Further

extensive investigation would be required to design a testable generalized multiplier which

would overcome the above constraints .

Chapter 5

Conclusions and iRecommendations

5.1 Conclusions

A generalized multiplier architecture based on the modified Booth algorithm

capable of performing the multiplication of binary mnnbers represented in two's

complement as wen as in sign-magnitude notation has been developed. The hardware and

delay overhead of the proposed design are quite low. The architecture is regular and

therefore suitable for VLSr implementation.

The testability of the generalized multiplier has been investigated in this research. A

C-testable design has been developed when the multiplicand (X) and the multiplier (Y) has

even and odd mnnber of bits respectively. In this case the multiplier can be fully tested for

all stuck-at faults using only 19 test vectors irrespective of the size of the operands. This C-

testable version of the multiplier does not require any extra logic blocks. The delay

overhead is also quite low compared to the non-C-testable version of the generalized

architecture. If the multiplier (Y) has even number of bits then complex lOgic blocks would

be required for generating the required test pattems at the inputs of the most-significant

modified Booth encoder. When the number of bits in the multiplicand (X) is odd, the

\

58

existing architecture does not remain C-testable, i.e., it can no longer be tested using a

constant number of test vectors, however, modifications can be made to the multiplier to

make it C-testable.

5.2 Future Works

Further investigation can be carned out on the C-testability of the generalized

multiplier for any number bits (odd or even) in both the operands. This may include

insertion of full-adders in the first row of the multiplier array to enhance the controllability

of the architecture. The design of a logic block to apply all required patterns to the most

significant Booth encoder when the multiplier (Y) has even number of bits would be a

crucial and interesting part of any future work.

With continuous advances in VLSI technology, the number of devices

accommodated on a single chip continues to grow. This number has already reached tens

of millions [24]. Designing such large and complex chips is time consuming. Commercial

manufacturers tend to mat'ket their finished chip within a short time frame in order to

capture a major share of the IC market and also to remain competitive. Automatic layout

generation and logic synthesis tools reduce the design time. This approach to IC design is

therefore becoming increasingly popular in the industry [25]-[21]. Future research into the

automatic generation of multiplier layouts of various sizes would be a very challenging one.

VHDL [28]-[29] can be used for behavioral design entry and simulation. Since VHDL is a

high-level language, this approach would result in a process independent design which is

very easily portable from an existing process to a future one. This would enormously

reduce the time required to port a custom or semi-custom design to another process.

References

[1] F. P. J. M. Welton, A. Delaruelle, "A 2-/-lffiCMOS lO-MHz Microprogrammable Signal

Processing Core With an On-Chip Multiport Memory Bank" IEEE J. of Solid-State

Circuits, Vol. SC-20, NO.3, pp. 754-760, June 1985.

[2] K. Takeda, F: lshino, "A single-chip 80-bit floating point processor" IEEE J. of Solid-State

Circuits, Vol. SC-20, NO.5, pp. 986-991, Oct. 1985.

[3] P. A. Lynn, W. Fuerst, "Introductory Digital Signal Processing with Computer Applications"

Jhon Willey & Sons. 1992

[4] A. V. Oppenheim and R. W. Schafer, "Discreet-time Signal Processing" Prentice-Hall of

India PIT. Ltd., Delhi, 1994

[5] J. 1. F. Cavanagh, "Digital Computer Arithmetic Design and Implementation" McGraw-Hill

Book Company, New York. 1985.

[6] N.Weste and K. Eshraghian, "Principle of CMOS VLSI Design" Addision-Wesley

Publishing Company, Sydney, 1993.

[7] A. Pucknell and K. Eshraghian, "Basic VLSI design" Prentice-Hall of Australia PIT. Ltd.,

Sydney, 1994

[8] C. S. Wallace, "A suggestion for a fast multiplier" IEEE Trans. on Electronic Comput., Vol~

EC-13, pp. 14-17, Feb. 1964.

[9] L. Dadda, "Some schemes for parallel multipliers" Alta Frequenza, Vol. 34, No.5, pp. 349-.

356, May 1965.

\

-~
•

60

[10J D. G Crawley and G. A. J. Arnaratunga, " 8 x 8 bit pipelined Dadda multiplier in CMOS"

lEE Proceedings, Vol. 135, Pt. G, NO.6, Dec. 1988, pp. 231-240.

[l1J C. R. Baugh and B. A. Wooley, "A two's complement parallel array multiplication

algoritlun" IEEE Trans. Comput., Vol. C-22, No. 12, pp. 1045-1047, Dec. 1973.

[12J L. P. Rubinfield, "A proof of the modified Booth's algoritlun for multiplication" IEEE

Trans. CompuL, pp. 1014-1015, Oct. 1975.

[13J J. A. Starzyk and Z. S. R. Dandu, "Overlapped Multi-bit scanning multiplier" Proceedings

of IEEE Int.Conf. on Compo Design: VLSI in Computers, ICCD; 85, NY. Oct. 1985, pp.

363-366

[14J T.Williams and K. Parker, "Design for Testability - a Survey" IEEE Trans. Comput., Vol. C-

31, pp. 2-15, Jan. 1982.

[15J B. R. Wilkins, "Testing Digital Circuits: An Introduction" Van Nostnand Reinhold (UK) Co.

Ltd, 1986.

[16J J. P. Shen and F. J. Ferguson, "The design of easily testable VLSI array multiplication"

IEEE Trans. Comput., Vol. C-33, No.6, pp. 554-560, June 1984.

[17J A. D. Friedman, "Easily testable iterative systems" IEEE Trans. Comput.,Vol. C-22, pp.

1061-1064, Dec. 1973.

[18J A. R. Takach and N. K. Jlla, "Easily testable gate-level and DCVS multipliers" IEEE Trans.

Computer-Aided Design, \'01.10, No.7, pp. 932-942, July 1991.

[19J R. Stans, "The testability of a modified Booth multiplier" Proceedings of 1st Europian Test

Conference, 1989, pp.286-2938.

-[20J S. M. Aziz, "A C-testable modified Booth's array multiplier" 8th International Conference

on VLSI design, New Delhi, India, Jan. 1995, pp. 278.282.

[21J W. A. J. Waller and S. M. Aziz, "A C-testable parallel multiplier using differential cascode

voltage switch (DCVS) logic" International Conference on Very Large Scale Integration:

VLSI '93, Sept. 6-10, 1993, pp. 3.4.1-10.

(

61

[22] M. Roorda, "Method to reduce the sign bit extension in a multiplier that uses the modified

Booth algorithm" Electronic Letters, Vol. 22, No. 20, pp. 1061-1062, 25th Sept. 1986.

[23] N. Burgess, "Removal of sign-extension circuitry from Booth's algorithm multiplier-

accumulators" Electronic Letters, Vol. 26, No. 17, pp. 1413-1415, 16th Aug. 1990.

[24) D. Alpert and D. Avnon, "Architecture of Pentium microprocessor" IEEE micro, pp 11-21,

June 1993

[25) D. D. Gajski, N. D. Dutt, C. H. Wu, Y. L. Lin, "High-level Synthesis, introduction to chip

and system design" Kluwer Academic Publishers, 1991.

(26) R. K. Gupta and G. Demicheli, " System-level Synthesis using Re-programmable

Components" Proceeding 0/ the European Conference on Design Automation (EDAC),

1992, pp 2-7

[27) R. Gupta and G. Demicheli, "Hardware-software cosysnthesis for digital systems" IEEE

Desig & Test a/Components, pp29-41, Oct. 1993.

[28] Z. Navab~ "VHDL Analysis and Modeling of Digital Systems" McGraw-Hill Inc., NY,

1993.

[29] J. R. Armstrong, "Chip Level Modeling with VHDL" Prentice-Hall International Inc.,

USA, 1989.

(
\

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073

