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Abstract

Several speech enhancement methods have been developed in the past few decades,

each method having its advantages and drawbacks. Despite their effectiveness in

noise reduction, most conventional algorithms introduce noticeable distortion and

annoying musical noise artifact in the enhanced speech. The purpose of this work

is to develop a hybrid method of speech enhancement to attain an improved noise

reduction performance accompanied by a reduction of the musical noise in the

enhanced speech in two different stages.

Conventional spectral subtraction based algorithms assume that noise trans-

form coefficients are always additive with the signal, whereas it may also be sub-

tractive. Therefore, to deal with the first problem of noise reduction, a minimum

mean square error (MMSE) estimator is derived considering both the additive

and subtractive effect of noise in the discrete cosine transform (DCT) domain.

The performance of the new estimator is compared to a previously reported work,

that also considers these two cases in the DCT domain, and superior results in

terms of signal to noise ratio (SNR) and mean squared error (MSE) are obtained.

Since the approach provides two different gains for the two cases, they are termed

as dual gain filters.

Dealing with the problem of residual noise suppression, a new post-filtering

technique is proposed utilizing the empirical mode decomposition (EMD). An

optimum gain function in MMSE sense, is derived for short intrinsic mode func-

tion (IMF) segments. Finally, the proposed dual gain filters are used to enhance

various noisy speech utterances and the new post filtering algorithm is applied

for residual noise suppression. The performance of the proposed two stage hy-

brid technique is compared to well known speech enhancement algorithms and

superior results in both objective and subjective quality indices are obtained.

xv



Chapter 1

Introd uction

1.1 Speech enhancement

In audio recording, one can never avoid the menacing and ubiquitous sound known

as 'noise'. Simply put, it is the sound that inadvertently gets entangled with

our desired 'signal', which can be speech, music or any other audio of interest.

Only in a sound-proof (low noise) recording studio, one may capture an audio

that can be considered 'clean' for all practical purposes. Regrettably, when we

require to capture a sound in real-life circumstances, a recording studio is far

from being readily available. While waiting for a bus in a busy afternoon, or

inside a cacophonic cafeteria, expecting to find a low noise environment before

making a phone call is rather visionary. Thus, we must accept the reality that

if we want to make recordings of speech, for the purpose of storage, recognition

or transmission through a mobile phone network, it would inescapably become

'noisy'. Speech enhancement, is thus essential.

The term speech enhancement, might be rather confounding, if taken liter-

ally. Since 'enhancement' deals with improvement of quality, one might wonder

what exactly is understood by the quality of a speech1 In the speech enhance-

ment problem, two principal criteria are used to measure the goodness of speech

signals, namely, quality and intelligibility. While the quality of a speech signal

deals with its clarity, nature of distortion and amount of background noise, intel-

ligibility deals with the percentage of words that can be clearly understood. It

may sound unlikely, but a better quality of speech does not always guarantee a

lObviously, we are not refereing to the improvement of the speaker's accent, tone or language
usage

1
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higher intelligibility; these criteria are independent of each other. Most speech

enhancement systems improve the quality of the speech signal at the expense

of a reduction of intelligibility. Listeners can usually extract more information

from the noisy signal than from the enhanced signal if they listen to it care-

fully. However, listening to the noisy signal for a long time causes discomfort2,

which can be reduced by the enhancement algorithrps improving only the qual-

ity of speech. The intelligibility of an enhanced speech are often assessed using

automatic speech recognition tests, since listening sessions with live subjects are

expensive and time consuming. Unfortunately, both quality and intelligibility are

difficult to quantify and express in a closed form that is amenable to mathemati-

cal optimization. Thus, the design of speech enhancement systems is often based

on mathematical measures that are somehow believed to be correlated with the

quality and/or intelligibility of the speech signal.

"If you enhance a noisy speech, it sounds even worse" - remarked one of my col-

leagues; quoting the line from a rather frustrated speech enhancement researcher.

Evidently, this appallingly discouraging statement repelled him away from this

area, sending him in pursuit of fruitful research works elsewhere. Actually, the

statement is an example of a common misinterpretation of the term 'enhance-

ment' as applied to' speech. Putting it more scientifically, what the researcher

meant was, "Noise reduction and speech distortion are inversely proportional"

[1]. Evidently, the researcher was refereing to noise reduction (signal to nose

ratio improvement), while mentioning speech enhancement. But because of this

inverse relation, the more the noise is reduced the worse it sounds, increasing

distortion and musical noise, regardless of all the sincere efforts.

Thus, in this research work, an attempt was undertaken to find a way to deal

with both of these aspects of speech enhancement. It is well known that, despite

their effectiveness in noise reduction, the commonly used spectral subtraction and

Wiener filter based algorithms introduce distortion and annoying musical noise

artifact in the enhanced speech. In this work our focus is to attain an improved

noise reduction performance accompanied by a reduction of the musical in the

enhanced speech using a two different stages. In the first stage, the focus is

on noise reduction adapting a new MMSE estimator in DCT domain and in

2This is known as listener fatigue.
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the second stage the focus is on reduction of the musical noise in the enhanced

speech using a new non-stationary signal analysis tool known as the empirical

mode decomposition [2].

1.2 Objective of this research
,

The purpose of this work is to develop a speech enhancement scheme with an

improved noise reduction performance accompanied by a reduction of the musical

noise in the enhanced speech. Since, we propose to attain these goals in two

stages, the primary objective of this research is, therefore twofold.

1. Derivation of an optimum estimator for speech enhancement considering

the constructive and destructive effects of noise.

2. Develop an effective residual noise removal method to be applied in the

second stage.

The first objective is inspired by the fact that most traditional speech en-

hancement methods consider only the additive effect of noise, either inherently

or effectively, giving an attenuating gain. However, in reality the noise coeffi-

cient may be both additive or subtractive with the clean signal. In this work, we

consider both the constructive and destructive cases specifically and derive the

optimum estimators in these given events. Thus, the new estimator will provide

attenuation when the noise is constructive, but provide amplification when the

noise is destructive. It will also handle the special case of polarity reversal which

occurs when the noise coefficient is stronger than the signal coefficient. These sit-

uations were first taken into account in [3]' assuming a Gaussian speech and noise

statistical model. However, in their work, a linear MMSE estimator is assumed

in the DCT domain resulting in a set of Wiener gains in the two cases. This

inherently assumes that the joint distributions of noisy speech and clean speech

in the two cases are jointly Gaussian. In this work, we assume the more accurate

non-Gaussian joint probability distribution for noisy speech and clean speech in

the two events and obtain a new non-linear MMSE estimator termed as the dual

MMSE estimator (DMMSE). Our derivation results in a set of parametric gain Q,'.
curves that not only depend on the a priori information, but also utilize the

instantaneous observation of the noisy coefficients.

3
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Towards accomplishing the second objective of the work, we utilize the newly

developed empirical mode decomposition (EMD). Very few applications of EMD

applied to speech processing is found in the literature, which makes this an ex-

citing field to work on. Here we propose a new post filtering technique for sup-

pression of residual noise that remains in the enhanced speech utilizing the great

versatility of EMD. We observed that EMD can effectively separate the residual

noise of musical nature from the enhanced speech. This observation led us to

utilize this decomposition for suppression of residual noise.

1.3 Organization of this thesis

This thesis consists of six chapters. Chapter 1 discusses the basics of speech

enhancement, its importance in different applications and the main objective of

this work. In Chapter 2, a brief review of the existing stochastic model based

speech enhancement techniques is provided.

In Chapter 3, the dual MMSE estimator is derived. For the Gaussian statis-

tical model, it is shown that the joint probability distribution in the conditional

events, when the noise and speech coefficients are in constructive or destructive

interference, are not jointly Gaussian. Using the accurate non-Gaussian joint

probability density function, a new MMSE estimator is formed. Its properties

and comparative performance is also discussed in this chapter.

In Chapter 4, the EMD based post processing technique is presented. The

basics of the EMD algorithm and the properties of the IMFs are also discussed.

Assuming a Chi-square probability density function for the short time IMF en-

ergy an optimum gain function is derived for residual noise suppression. The

performance of the proposed post filtering method is tested by its application

over traditional methods.

In Chapter 5, the performance of the hybrid speech enhancement method

is compared to that of several. speech enhancement techniques. Finally, some

conclusions and suggestions for future works are provided in chapter 6.

4

I



Chapter 2

Stochastic model based speech
enhancement: A review

2.1 Introduction

In high levels of ambient noise, the recorded speech picked up by any speech

communication device becomes significantly impaired, reducing the quality and

intelligibility of the transmitted speech signal. The degradations are usually very

annoying, especially in mobile communications where hands free devices are often

used in noisy environments. Also, this degradation causes a significant reduction

of performance in speech recognition based systems that may be incorporated in

the speech communications devices. Thus, speech enhancement is a crucial opera-

tion that must be performed as a pre-processing for these applications. However,

there cannot be simply one "optimal" speech enhancement algorithm, mainly

because of the large diversity of acoustic environments and noise reduction ap-

plications and their occasional demand of conflicting performance requirements.

As a consequence, a variety of algorithms have been developed till today that

have proved to be useful in either a certain noise environment or in a certain

application.

Single channel speech enhancement techniques can be broadly classified into

two categories: the ones based on stochastic models of speech and noise, and

the others incorporating the perceptual aspects of speech signal and the auditory

system. Each has its own limitations and advantages. The first category of

algorithms are based on the variations of optimum filters and comprises such

methods as spectral subtraction [4, 5]' Weiner filtering [4, 6, 7]' and various

minimum mean square error (MMSE) spectral amplitude estimation methods

5



[8, 9, 10]. These algorithms are a common and effective way for enhancing speech

degraded by acoustic additive noise given that only the noisy speech is available.

The general requirements in this class of methods include: 1) a well defined

suppression rule based on an optimality criteria [9, 6]' which is usually a function

of speech and noise statistics, 2) a method of estimating the speech and noise

power spectral densities, 3) incorporation of the probability of speech presence to

further attenuate non-speech bands [11]' 4) a method for reducing residual noise

by appropriately smoothing the estimated quantities [9, 12]. While, the first class

of enhancement schemes perform optimization based on purely mathematical

criteria, the second class of methods consider the auditory and perceptual criteria

for performing enhancement. This class of enhancement system includes the

perceptually-motivated processing such as critical-band filtering, lateral neural

inhibition, and/or temporal/frequency masking [13, 14, 15, 16].

Since in this work, we are dealing with a new MMSE estimator in the DCT

domain assuming a statistical model, only the relevant techniques will be reviewed

in this chapter, with an emphasis on the attenuating and amplifying behavior of

the resulting suppression rules. An elaborated review of statistical model based

speech enhancement can be found in [17]' while a comprehensive overview of

speech enhancement techniques is available in [18, Chapter 8].

2.2 Short-time spectral subtraction

The spectral subtraction method, first proposed by Boll et. al. [4J, is suitable

for enhancing speech signals degraded by uncorrelated additive noise. It is an

approach for estimating the power spectral density of the clean signal by sub-

tracting an estimate of the power spectral density of the noise process from an

estimate of the power spectral density of the degraded signal. The estimation is

performed on a frame - by- frame basis, where each frame consists of 20 - 40ms

of speech samples.

Let x[n]' d[n] and y[n] denote vectors containing the L most recent samples

of the clean signal, noise and noisy signal, respectively, in the ithe analysis frame

of size L. If it is assumed that the noise is additive, then,

y[n] = x[nJ + d[n].

6
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In the spectral subtraction method, the short-time spectral magnitude of the

clean speech is estimated from (2.1) as,

IX(i, kW = IY(i, kW - E{ID(i, k)n (2.2)

where Y(i, k) and D(i, k) represents the discrete Fourier transforms (DFT) of

y[n] and d[n] and k and i indicates the frequency and frame index, respectively.

It is understood that a half wave rectification operation has to be performed

on the right hand side of (2.2) since power spectral density cannot be negative.

Since ID(i, kW is not directly available, it is approximated as E{ID(i, k)12}, where

E{.} denotes the expectation operation. E{ID(i, kW} is obtained either from the

assumed known properties of d[n] or by actual measurement during an interval

when speech is absent. The spectral subtraction approach can be generalized by,

IX(i, k)1 = IIY(i,k)I" - ,6E{ID(i, k)I"}I~ (2.3)

where constants a and ,6 represent extra degrees of freedom used to enhance the

algorithm's performance. Typical values are a = 2 and ,6 = 1 [5]. The estimate

of clean speech segment x[n] is obtained by combining IX(i, k) I with the phase

of degraded signal LY (i, k) and then performing the inverse Fourier transform 1.

In other words,

(2.4)

where F-1 denote the inverse Fourier transformation. The concept of the spec-

tral subtraction method is based on the general idea that the additive noise has

increased the signal transform coefficient, thus a subtraction is needed to be per-

formed. Thus the method is inherently assuming that the noise coefficient was in

a constructive interference with the signal. Accordingly, the method is generally

effective at reducing the apparent noise power followed by an improvement in

SNR. However, this noise reduction is achieved at the price of reduced speech

intelligibility. A moderate amount of noise reduction can be achieved without

significant intelligibility loss; however, a large amount of noise reduction can se-

riously degrade the intelligibility of the speech. Another disadvantage of the

spectral subtraction approach is that they produce very annoying musical tones

1It should be noted that the spectral subtraction method can also be easily implemented
in the discrete cosine transform (DCT) domain. Only the polarity of the noisy DCT is to be
combined with the clean estimate rather than the complex phase in case of DFT coefficients.
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in the enhanced speech [19]. It is known that the musical noise occurs due to the

random appearance and disappearance of spurious harmonics in the enhanced

spectrum, since the method relies on subtracting an overall average noise spec-

trum. In reality the noise spectral variance is not a constant over the different

frames and its effect on the signal special component is not always additive.

2.3 Wiener filtering and its variants

The Wiener filter is an algorithm that minimizes the expected error between the

estimated speech and the actual speech signal assuming a multiplicative gain

in the frequency domain, or a convoluting filter in the sample domain. In the

frequency domain, it can be viewed as a an MMSE estimator that assumes a

linear relation between the noisy coefficient and the estimated coefficient. If X k

and Yk denote the clean speech and noisy speech transform coefficient in the

kth bin, the goal of the Wiener filter is to find an estimate of the clean speech

coefficient Xk, such that

1. Xk and Yk are related by a multiplicative constant.

Usually, a multiplicative gain is assumed for the estimation, i.e. a linear

equation such as, Xk = WYk is assumed. If signal and noise samples are assumed

to be uncorrelated stationary random processes with power spectral densities

Px(k) and Pd(k), respectively, the Wiener estimator for x(n) is found to be,

(2.5)

This is known as the non-causal Wiener filter. However, speech cannot be as-

sumed to be stationary. Which implies that the noncausal Wiener filter cannot

be applied directly on all the speech samples. An approximation to noncausal

Wiener filtering can be found if the gain is applied frame by frame. It is given by

[19]'
X(i, k) =, Fx(i, ~) Y(i, k) (2.6)

Px(i, k) + Pd(i, k)

where Fx(i, k) and Fd(i, k) are estimates for the short-term power spectrum for

speech and noise, respectively, in the i-th frame and frequency bin k. Estimates

8
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for the .short-term speech power spectrum Fx(i, k) are obtained recursively. Es-

timates for the short-term speech power spectrum Fx(i, k) can also be obtained

assuming an all-pole model for speech and forming a maximum a posterior (MAP)

estimate of the all-pole model parameters [20]. Since the iterative Wiener filter-

ing approach was found to produce unnatural sounding speech and processing

artifacts, certain constraints can be applied across iterations and across temporal

frames to ensure the enhanced speech power spectrum has speech-like character-

istics and remains mathematically stable [21].

Unlike the spectral subtraction approach, the Wiener filter does not explic-

itly assume that the noise power is additive in each spectral component of the

noisy speech frame. However, since power spectral densities are positive quan-

tities, (2.6) produce a multiplicative gain that is always attenuating, inherently

assuming that the noise was additive in the spectral domain. This is due to the

fact that, for additive uncorrelated noise, the noisy signal power is always greater

than the clean speech power, demanding an attenuation for noise reduction.

2.3.1 Wiener filter in DCT domain

The wiener filter can be derived directly in the frequency domain. We shall

discuss the DCT domain which is more relevant to this thesis work. If Xk, Dk

and Yk denote the clean speech, noise and noisy speech DCT coefficient in the

kth bin and ith frame, for additive noise we have,

(2.7)

The goal of the Wiener filter is to minimize the cost function

(2.8)

in MMSE sense. However, before minimizing (2.8), the Wiener filter assumes a

multiplicative gain2 for the estimated DCT coefficient Xk. If Ow is the filter

gain, an estimate of the clean speech spectral component is obtained as

(2.9)

2This simplification, reduces mathematical complexity and the difficulties of calculating the
joint probability densities that are involved in the expectation operation in (2.8). In the next
section we shall discuss the MMSE estimation without this assumption.

9



\ Substituting Eq. (2.9) into Eq. (2.8)

(2.10)

Substituting Eq. (2.7) into Eq. (2.10)

Jw - E{[GW(Xk + Dk) - Xk]2}

(G~ - 2Gw + l)E{Xf} + 2Gw(Gw -l)E{XkDd

+G~E{Dn (2.11)

Using the fact that Xk and Dk are real, zero-mean and uncorrelated random

variables (i.e., E{XkDk} = 0, E{Xd = 0 and E{Dd = 0), the above cost

function takes the form

Jw = (G~ - 2Gw + l)E{Xf} + G~E{Dn

Differentiating Jw with respect to Gw gives

(2.12)

8Jw
8Gw

(2Gw - 2)E{Xf} + 2GwE{Dn

2(Gw - l)E{Xf} + 2GwE{Dn (2.13)

Equating 8Jw /8Gw to zero yields

2(Gw - l)E{Xf} + 2GwE{Dn = 0 (2.14)

(2.15)

This leads to the optimum Wiener gain,

E{Xn
Gw = E{Xn + E{DU'

Note the similarity of the gain function with (2.6). The Wiener gain can be

expressed in a much compact form as,

~k

Gw = 1+~k'

where

(2.16)

E{Xf}
~k = { 2}' (2.17)E Dk

is interpreted as the a priori SNR after McAullay and Malpass [7]. The value of ~k

is calculated by using the decision directed method given in [9]. Equation (2.16)

obviously gives a gain value that is always less than unity. Thus, as mentioned

above, the conventional Wiener filter inherently assumes that the noise was in a

constructive interference with the signal in the DCT domain.

10
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2.3.2 The dual gain Wiener filter

The constructive and destructive interference of signal and noise DCT coefficients

was first analyzed and incorporated in speech enhancement in [3]. The authors

derived a set of multiplicative in the DCT domain assuming a two state model for

the constructive and destructive interference of noise with the clean signal. A sign

estimation algorithm was proposed to identify the constructive and destructive

interference and the appropriate gain function was chosen to deal with the two

events. Since this approach deals with the two cases separately and provides two

different gains, it is termed as a dual gain filter. It will be apparent shortly that

the multiplicative gains proposed in [3] are only Wiener gains for the conditional

events. Thus, we denote these gains as the dual gain Wiener filter (DGW) in this

thesis.

The development of the gains is directly related to the conventional Wiener

derivation in the previous section. As for the Wiener filter derivation, the Gaus-

sian distribution is assumed for the speech and noise DCT coefficients. However,

in this case the Wiener filters are derived in two conditional events, that are

mutually exclusive. The events are defined as,

H+: signal and noise are constructive: XkDk ~ 0,

H_: signal and noise are destructive: XkDk < O.

If it is known that given one of these events have occurred, a pair of conditional

MSE are obtained leading to two different multiplicative gains [3] in the two

events. Denoting them as the dual gain Wiener, we have3

Ow- =

~k + ~.j[k
~k + 1+ ~.j[k'
~k - ~.j[k

4 ;e-'
~k + 1- ;;V~k

(2.18)

(2.19)

The gains Ow+ and Ow_are to be used for constructive and destructive in-

terference, respectively. Thus, the dual gain Wiener (DGW) estimator is given

by

(2.20)

3The derivation of these gains are given in the Appendix on section A.I
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Fig. 2.1: Plots of the the dual gain Wiener (DGW) filters Gw+ and Gw- proposed
by [3] as given in (2.18) and (2.19). The gains are plotted against the variation
of the a priori SNR values. The conventional Wiener gain Gw is also shown in
the same plot.

where,
If event H+ is detected
If event H_ is detected

(2.21)

Both the gains Gw + and Gw _ show interesting properties that are intuitively

meaningful. Being the attenuating gain, Gw+ is always less than unity, which is

easily understood from (2.18). This is very desirable since in the event H+, Dk

always serves to increase Xk. The gain Gw+, is more attenuating compared to

the Wiener filter (Gw) when ~k > 0 dB and vise versa. At ~k = 0 dB both gains

equal to ~.

It is claimed in [3]that the gain Gw _ is always greater than unity, serving to

amplify the noisy coefficient Yk, when noise is destructive. However, if we plot

the gain curves with respect to the a priori SNR, we can clearly see that the gain

Gw- is not always greater than unity as it should be. As a matter of fact, it even

gives negative values at certain ranges. This befuddling and seemingly counter-

intuitive phenomenon not discussed in [3]' can only be explained if the polarity

reversal case occurring in the destructive interference is taken into account.

The gain curve of Gw _ can actually be divided into three separate regions as

shown in Fig 2.1 (b). In region I, where the a priori SNR is very low, the gain is

negative, that serves to encounter the polarity reversal caused by the noise when

IDkl > IXkl. As ~k increases, the gain enters region II, giving an attenuation. This

12



is due to the uncertainty between a polarity reversal and magnitude reduction

that might have occurred for the given Yk. In this region, even if a polarity reversal

occurs, the attenuation will reduce the error between the clean estimate at least to

some extent. As (k increases, the gain increases and finally gives amplification in

region III, when the estimator assumes that IXkl > IDkl resulting in a magnitude

reduction in Yk.
Thus, the authors of [3], only mentioned the region III of the gain curve which

gives amplification, not mentioning the other regions. Moreover, the same gains

were also applied in discrete Fourier transform (DFT) domain, which will provide

meaningless results if the gain becomes negative. However, the main limitation

of the dual gain Wiener filter is that it does not give the optimal solution in

the assumed statistical model. It assumes a linear MMSE estimator in the DCT

domain, which is the optimal MMSE only when the processes involved are jointly

Gaussian. Chapter 3 of this thesis deals with the accurate modeling of these two

events which are actually non-Gaussian.

2.4 Minimum mean square error (MMSE) esti-
mators

The MMSE estimator is very similar to the Wiener filter, except that it does not

assume a linear relation between the clean and noisy signal transform coefficients

in the frequency domain. For this reason, the Wiener filter is known as a lin-

ear MMSE estimator. If Xk and Yk denote the clean speech and noisy speech

transform coefficient in thekth bin, the goal of the MMSE estimator is to find

an estimate of the clean speech coefficient Xk, such that the mean square error

(MSE) given by,

(2.22)

is minimized. It is clear that, Yk is the observed parameter and thus Xk must

be a function of Yk. Now, unlike the Wiener estimator, no assumption will be

made about the relation between Xk and Yk. Thus, (2.22) must be evaluated and

minimized by solving the expected value. Since the expectation operator is on a

function of Xk and Yk, from (2.22),

(2.23) •
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where, p(Xk, Yk) is the joint probability density function of Xk and Yk. The limit

of integration will depend on the type of transform coefficient used4. From (2.24)

the distinction between the Wiener estimator and an MMSE estimator is very

clear. Now, from (2.24) using the theory of conditional probability, we may write

Now, we have

(2.24)

Thus, substituting (2.24) in (2.24), we have,

(2.25)

The density p(Yk) is nonnegative. Thus, to minimize the mean-squared error, it

is sufficient to minimize the conditional expectation, E{(i\ - Xk)2IYk} for each

value of Yk• It is well known from probability theory that, for a random variable

x, E{(x - C)2} is minimum when c is the mean of the random variable x, i.e.
c = E{x}. Thus, to minimize the conditional expectation E{(Xk - Xk)2IYk}, Xk
must be equal to the conditional mean. Which means, the MMSE estimator will

be given by,

(2.26)

(2.27)

Thus, to find the MMSE estimator for the speech enhancement problem, this

equation has to be solved. It is clear that the solution will involve the conditional

probability density functions, and consequently the joint density functions of Xk

and Yk•

If the joint density function of Xk and Yk is jointly Gaussian, that is, Xk

and Yk is assumed to be normally distributed, the MMSE solution and Wiener

solution give the same results5 [23]. Thus, depending on the assumed distribution

of Xk and Yk, the complexity of the MMSE estimation problem will vary.

4For absolute value of DFT coefficients, a limit of 0 to 00 and for DCT coefficients 0 to 00

would be used.
sThis is shown in the MMSE estimator for DCT in the Appendix A.2.
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2.4.1 MMSE estimator in the DFT domain

Assuming the Gaussian Model, Empraim and Malah [9]derived a minimum mean-

square error (MMSE) short-time spectral amplitude estimator under the assump-

tion that the Fourier expansion coefficients of the original signal and the noise

may be modeled as statistically independent, zero-mean, Gaussian random vari-

ables. Thus the observed spectral component in the bin k, Yk to. Rkexp(jrh),
is equal to the sum of the spectral components of the signal, Xk ~ Ak exp(jak),

and the noise, Dk. That is,

(2.28)

Assuming this model, the MMSE estimator for the short time amplitude of the

clean speech is shown to be [9]6,

(2.29)

where r(.) is the Gamma function, and <I>(a, b; z) is the confluent hypergeometric

series defined in [22] and

~ ~k (2.30)Vk
1 +~k

~k
~ Ax( k) (2.31)

Ad(k)
~ R2

'Yk
k (2.32)

Ad(k)

Thus the gain function is given by,

(2.33)

This gain function will be termed as the Emphraim-Malah suppression rule

(EMSR) in this thesis. It is a parametric gain function, since it depends not

only on the a priori SNR, ~k, but also the a posteriori SNR, 'Yk. A plot of this

gain function is shown in Fig. 2.2.

2.4.2 MMSE estimator in the DCT domain

Assuming the DCT coefficients of the clean signal and noisy signal Xk and Dk,

respectively, are Gaussian distributed random variables, the MMSE estimator Xk

6The proof of this suppression rule is given in Appendix A.4.
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Fig. 2.2: The parametric gain curves of the Empraim-Malah suppression rule
(EMSR).

simply gives the Wiener solution. That is,

X MMSE _ ~y,
k - 1+ ~k k

As stated before, this is expected since DCT coefficients are real and correspond-

ingly, the noise and speech coefficients are jointly Gaussian [23]. This issue is also

discussed in [24Jand the proof is given in Appendix A.2.

2.4.3 Conclusion

A brief summary of statistical model based speech enhancement methods are

discussed in this chapter. Emphasis was given on the dual gain Wiener filter,

which is the only known method that considers the constructive and destructive

effects of signal and noise transform coefficients separately. However, it also has

some limitations. The classical MMSE estimators are also discussed. In the next

chapter we shall proceed towards the proposed dual MMSE estimator.
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Chapter 3

The proposed dual MMSE
estimator

Nearly all orthodox speech enhancement algorithms use an attenuating filter in

the transform domain for noise suppression, which inherently assumes that the

noise transform coefficient is additive. But in reality, when both signal and noise

exist in the same transform coefficient, the observed noisy coefficient magnitude

may not always be greater than the clean signal even though the noise was orig-

inally additive.

In case of discrete Fourier transformation (DFT), the addition of complex sig-

nal and noise coefficients mayor may not provide a resultant magnitude greater

than the clean signal coefficient magnitude, depending on the relative phase angle

between the signal and noise coefficients. Similarly, in the DCT domain, depend-

ing on the sign of the signal and noise coefficient, they can be either constructive

or destructive. Since only the spectral amplitudes are estimated in conventional

DFT based methods [9]' [19]' (keeping the phase angle of the noisy coefficient

intact), the suppression rule should give attenuation and amplification when the

noise is constructive and destructive, respectively. However, in the DCT domain,

the clean signal coefficient may increase or decrease in magnitude and even can

reverse in polarity by the noise. Since in this domain, the clean signal coeffi-

cients are directly estimated from the noisy observations [3]' [24] (rather than

only an amplitude estimation), it is clear that only an attenuation filter cannot

be optimum for handling these cases. A reduction and increase in magnitude of

the noisy coefficients should be followed by an amplifying and attenuating gain,

respectively. When a noisy coefficient is reversed in polarity, the gain should be

17



(3.1)

negative to correct both its sign and magnitude. This obviously contradicts the

traditional view of a non-negative suppression rule [10] that primarily deals with

spectral amplitude estimation alone.

The constructive and destructive interference of signal and noise transform

coefficients was first analyzed and incorporated in speech enhancement in [3]. The

authors derived a set of multiplicative and subtractive filters in the DCT domain

assuming a two state model for the constructive and destructive interference of

noise with the clean signal. A sign estimation algorithm was proposed to identify

the constructive and destructive interference and the appropriate gain function

was chosen to deal with the two events. This method is discussed in detain in

Section 2.3.2, which is termed as the dual gain Wiener filter.

In this work, a set of MMSE estimators for the DCT domain speech enhance-

ment, in the conditional events of a constructive and destructive interference of

noise is proposed. The major difference of the proposed technique with that of

[3] is no linear MMSE estimator is assumed for the formulation. I We show that

the joint density function of the clean signal and noisy signal DCT coefficient in

the two-state model is non-Gaussian and the MMSE estimator results in a para-

metric gain function similar to the ones reported in [9]. Performance comparison

of the dual gain Wiener filter and the proposed MMSE estimator in terms of

SNR and MSE improvement is presented to demonstrate the superiority of our

approach. The contribution of this work is therefore an accurate modeling of the

constructive and destructive events in the speech enhancement problem assuming

the appropriate non-Gaussian distributions.

3.1 The dual MMSE estimator

Assuming the Gaussian statistical model for the clean and noisy signal DCT

coefficients, we denote Xk and Yk as instances of the random processes Xk and Yk.

Thus, using (A.32), their joint probability density function will be [26]'

1 [X~ (Yk - Xk?]PXy(Xk, Yk) = 2 exp --2 2 - 2 2 '
1fad(Jx ax ad

lIt is well known that a linear MMSE estimator gives the Wiener solution [25J.
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where 0-; and d are the signal and noise variances in the kth DCT coefficient,

respectively. Now, if Xk is the MMSE estimator of Xk, we have

(3.2)

Using (3.1), Xk reduces to the conventional Wiener estimator Xi:", given in (A.44)
[24]. This result is expected since PXy(Xk, Yk) is jointly Gaussian and in this case

the optimum MMSE estimator is linear [23]. However, if we assume that a polarity

estimator is available to detect the events H+ and H_, we may derive two MMSE

estimators E{XklYk,H+} and E{XklYk,H_} in the conditional events. Recall

that, the events H+ and H_ are defined as,

H+: signal and noise are constructive: XkDk ~ 0,

H_: signal and noise are destructive: XkDk < O.

Thus, a generalized dual MMSE (DMMSE) estimator can be formulated as

where Pk is' defined in (2.21). The dual gain Wiener actually assumes that

E{XklYk,H+} and E{XkIYk,H_} can be found by multiplying the noisy coef-

ficient by a gain function. This is equivalent to assuming a linear MMSE estima-

tor. Thus, assuming E{XklYk,H+} = GW+Yk and E{XklYk,H_} = GW-Yk in

(3.3) would lead to the DGW as given in (2.20). Obviously, this is suboptimal

in the assumed model because the joint density of the processes involved are not

Gaussian, as will be apparent shortly. Thus, we attempt to derive the expressions

of E{XklYk, H+} and E{XklYk, H_}, assuming the appropriate joint probability

distribution.

First, we note that, Yk is constructed from the two mutually exclusive events

H+ and H_. Thus, we may write

(3.4)

(3.5)
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Fig. 3.1: (a) Valid regions of Xk and Yk for the events H+ and H_, (b) The joint
density function PXy(Xk, Yk), (c) The joint density function P(Xk, Yk, H+) and (d)
The joint density function p(Xk, Yk, H_).

Thus the quantities in (A.46) and (A.47) can be determined if we know the joint

density functions P(Xk, Yk, H+), p(Xk, Yk, H_), p(Yk, H+) and p(Yk, H_).
We note that, for the event H+, XkDk > 0, which results in XkYk > X~ using

(A.32). This condition simplifies to 7nkYk > IXkl where tnk = sgn(Xk). Here

sgn(.) is the signum function, given by,

{

+1
sgn(T) = ~1

for T > 0
for T < 0
for T = 0

Similarly, the event H_ results in the condition 7nkYk <: IXkl. These constraints

of Xk and Yk are shown graphically in Fig. 3.1 (a).

Thus the joint density functions p(Xk, Yk, H+) and p(Xk, Yk, H_) can be given
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by,

mkYk> IXkl
otherwise

mkYk < IXkl
otherwise

These joint densities are plotted in Fig. 3.1(c) and Fig. 3.1(d) respectively, along

with the joint density function PXy(Xk, Yk) in Fig. 3.1(b). As we can clearly see,

these density functions in the conditional events H+ and H_ are not jointly Gaus-

sian due to their piecewise structure. Therefore, the optimum MMSE estimator

in these conditional events will not be linear, as was assumed in [3].

To evaluate (A.46) and (A.47), we now need to find the probability densities

p(Yk, H+) and p(Yk, H_). We have,

p(Yk, H+) = I:Pxy(Xk, Yk, H+)dxk'

The above integration integration is solved separately for positive and negative

values of Yk•

lYk PXy(Xk, Yk)dxk
00r PXy(Xk, Yk)dxkJYk
= sgn(Yk) fa

Yk

Pxy(Xk, Yk)dxk. (3.6)

Substituting the value of PXy(Xk, Yk) from (3.1) into (A.52) and solving yields,

(3.7)

where,

Similarly, p(Yk, H_) is obtained as,

(3.8)
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Fig. 3.2: (a) The probability density function p(Yk, H+) and (b) the probability
density function p(Yk, H_) when (Jd = (Jx = 1.

The probability distributions p(Yk, H+) and p(Yk, H_) are shown in Fig. 3.2

for the case of (Jx = (Jd = 1. The shape of these density functions are quite

interesting and intuitively meaningful as well. When the signal and noise are

constructive, they are less likely to be near zero, which is the reason why the

density in Fig. 3.2(a) has a notch shape at Yk = O. Again, when signal and noise

are destructive, Yk has a higher probability to be near zero as seen in Fig. 3.2(b).

The sum of these two density functions obviously gives a Gaussian PDF.

Returning to (3.3), we now require the expressions E{XkIYk, H+} and E{XkIYk, H_}
to determine the dual MMSE estimator. Approaching in a way similar to the pre-

vious derivation we obtain,

E{XkIYk,H+} - 1:XkP(xkIYk,H+)dxk'1:XkP(Xk, Yk, H+)dxk

p(Yk,H+)

lYk XkPXy(Xk, Yk)dxk
sgn(Yk) 0 p(Y

k
, H+)

Solving the integration yields,

where,

(3.9)
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<l'(Y
k
) = ~ [exp( - ill- exp( - m]V ;: erf(fJ) + erf(12)

(3.10)

Noting that <l'(Yk), containing fJ and 12, is an odd function, it can be expressed

as

enabling us to express (A.59) as a gain expression multiplied by the noisy DCT

component, Yk, i.e.,

(3.11)

where G MMSE+ denotes the MMSE gain function for the event H+. Expressing

Gw and <l'(Yk) using a priori and a posteriori SNR, the formulation of G MMSE+

is given by,

where, 1k = lr~r},is termed as the a posterior SNR after McAullay and Malpass

[7J. Following a very similar method, the gain for the dest~uctive case, G MMSE-

can be expressed as,

~k ~ 0[
G MMSE- = ~k + 1 - V ~ V ~ erfc(

Ok ~ ]e 2~k(1+€k) - e- 2(1+~k)

]k ~
2~dI+~k)) + erfe( 2(I+~k))

(3.13)

Thus, the proposed dual MMSE estimator is given by

(3.14)

In the following sections, the properties of the proposed MMSE gains GMMSE+

and GMMSE- are discussed.
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Fig. 3.3: Parametric gain curves describing (a) MMSE gain function in the con-
structive case, G MMSE+ (solid lines), (b) the gain function due to Emphraim-
Malah (EMSR) (dash starred line), (c) the gain Gw+ from the dual gain Wiener
(dashed lines) as in (2.18) and (d) the Wiener gain function.

3.2 Properties of the gain G MMSE+

The gain curves in Fig. 3.3 show the variation of gain GMMSE+ with the a priori

SNR, ~k, and a posteriori SNR, 'Yk. For comparison, we plot the well known

gain function due to Ephraim and Malah [9]termed as EMSR (Emphraim-Malah

Suppression Rule), the gain Gw+ in (2.18) proposed in [3]' and the conventional

Wiener gain function Gw given in (A.45). The latter two gain functions only

depend on ~k, whereas the former ones on both ~k and 'Yk. Both these gains

converge to the Wiener gain as the a posteriori SNR is increased provided that

the a priori SNR is at a constant value. This is apparent from (3.12), since if
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Fig. 3.4: Parametric gain curves plotted against C,k describing (a) MMSE gain
function in the constructive case, G MMSE+ (solid lines), (b) the gain Gw+ from
the dual gain Wiener (dashed lines) as in (2.18), and (c) the Wiener gain function
(dotted lines).

one applies the limit 'Yk -+ 00, the second term vanishes as

I. G C,k
1m MMSE+ = --C--. 1

'Yk-OO r..,k +
However, for lower values of 'Yk, the two gains show spectacular divergence. When

the a posteriori SNR tends to -00 dB, EMSR gain tends to 00 dB, whereas

G MMSE+ tends to -6.02 dB, that is ~. This can also be seen by taking the limits

in (3.12).
. 1
hm GMMSE+ =-

'Yk-O 2
Since the gain G MMSE+ only deals with the constructive interference, it is

always attenuating, i.e. below 0 dB as expected. However, the EMSR eventually

goes beyond the 0 dB line for all the gain curves, when 'Yk is very low, which means

that EMSR inherently assumes the destructive interference and gives an ampli-

fying gain for the weak noisy spectral components2 Since EMSR is a spectral

amplitude estimator, it can never give negative gain values, i.e.,

2It may be noted that EMSR is a spectral amplitude estimator for a complex Fourier ex-
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Fig. 3.5: Parametric gain curves describing (a) MMSE gain function in the de-
structive case, G MMSE- (solid lines), (b) the gain Gw- from the dual gain Wiener
as in (2.19), and (c) the Wiener gain function (dotted lines).

As the Wiener gain and the dual gain Wiener filters only depend on the a

priori SNR, we plot the gains G MMSE+, Gw+ and Gw with the variation of ~k

in Fig. 3.4 that exhibits the respective influence of 'Yk and ~k [12]. These curves

also demonstrate the convergence of the gain G MMSE+ to the Wiener gain and a

constant ~ when 'Yk -> 00 and 'Yk -> 0, respectively.

3.3 Properties of the gain G MMSE-

The gain curves in Fig. 3.5 shows the variation of the gain G MMSE- with a priori

SNR ~k, and a posteriori SNR, 'Yk. Again, we compare the parametric gain curves

with the Wiener (A.45) and the gain Gw- (2.19) proposed by [3]. We leave out

pansion coefficient. Thus the definition of the destructive interference is not the same as in
case of DCT. In the context of complex Fourier coefficients, the destructive interference merely
indicates that the absolute value of the noisy signal coefficient has been decreased by the noise.
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the EMSR in this case because our gains take on negative values which cannot

be shown in log scale with the EMSR.

The gain GMMSE-, in contrast to the EMSR and GMMSE+, converges to the

Wiener as the a posteriori SNR tends to -00 dB, i.e" 0, This can be shown

mathematically from (3,13) as

I. G ~k
1m MMSE- = -c--
~k~O ~k + 1

As 'Yk increases, the convergence of the GMMSE- depends on ~k. If ~k > 0 dB,

G MMSE- converges to 0 dB or unity gain, But if ~k < 0 dB, the gain converges

to zero, For the case ~k = 0 dB, the gain is a constant at ~ or -6.02 dB.

These situations are better observed when the gains are plotted against the

variation of ~k as shown in Fig, 3,6, For the different values of 'Yk the gain G MMSE-

provides a gain curve similar to the DGW gain Gw+ as shown in Fig, 2.1(b). All

of these gain curves show three regions similar to Gw _. Interestingly, when 'Yk

tends to 00, the gain actually approaches a unit step function with unity lag, i.e.,

lim G MMSE+ = U(~k - 1),
'Yk-HX)
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Fig. 3.7: Theoretical performance comparison of the conventional Wiener, dual
gain Wiener and the proposed dual gains in the known polarity case.

where U(.) denotes the unit step function. This is evident from the 'Y= 30 dB

gain curve shown in Fig. 3.6. This means, for very high spectral components, this

MMSE estimator simply needs to decide if this high value was due to the signal or

noise only, since it is given that the destructive interference has occurred. Thus,

if ~k is greater than unity, the estimator decides that Xk was stronger and gives

a unity gain and conversely if ~k is less than unity, it gives a zero gain assuming

that Dk was stronger.

3.4 Performance comparison and discussion

3.4.1 Experiment using generated Gaussian sequences

In this section, we compare the performance of the conventional Wiener estimator

(A.44), the dual gain Wiener estimator [3] as given in (2.20) and the proposed

dual MMSE estimator (3.14) with respect to MSE value and SNR improvement.

For this experiment, an ideal case is considered. Gaussian sequences of length

L = 40000 are generated for signal x[n] and noise d[n] and are mixed in different
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SNRs to construct the noisy signal y[nj. The true polarities of the corresponding

DCT coefficients Xk and Dk are assumed to be known, and the values of Pk set
accordingly. The values of ~k are calculated from the known input SNR level.

Using (A.44), (2.20) and (3.14) the clean estimates Xl:, Xpcw and XkDMMSE
are calculated.

The improvement in MSE of the various estimators for different input SNR val-

ues is shown in Fig. 3.7. It is clear from the figure that the proposed dual MMSE

estimator gives a better performance than those of the conventional Wiener and

the dual gain Wiener estimators for all input SNR values. With respect to the

DGW, the improvement is prominent for high and low values of the input SNRs.

Note that the MSE values are equal for all the estimators when the input SNR

is OdB. This is expected since at OdB SNR, all of the gains are equal to 0.5.

This is seen in Figs. 3.4, 3.3, 3.6, 3.5. This theoretical performance compar-

ison proves the effectiveness of the derived MMSE estimators for the assumed

statistical model.

3.4.2 Experiments on speech files

The proposed dual MMSE estimator presented in this section, is tested using 5

male and 5 female utterances taken from the TIMIT database. The utterances

are corrupted with white noise, taken from the 'NOISEX' database. The noise

level is adjusted so as to give SNR from -lOdB to 35dB. The sampling frequency

is 8 KHz. A frame size of 32 ms (512 samples) is used for framing and the overlap-

add method with 75% overlap is used for signal decomposition. 1024 point DCT

is performed in each frame. The a priori SNR is calculated using the decision

directed approach [9J utilizing different averaging parameter values.

As discussed in [3]' a polarity estimation method is required to apply the dual

gains in practical cases. However, in this work, the focus is on the optimal es-

timation of clean speech assuming an accurate modeling of the constructive and

destructive interference. Thus, instead of actually using a separate polarity esti-

mation algorithm, its operation is simulated assuming that the actual polarities

of the noise DCT coefficients are known. The value of Pk are therefore computed

as

o

Where, k = 1,2 ...512,
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Fig. 3.8: Performance comparison of conventional Wiener (dashed lines), dual
gain Wiener (DGW) (dotted lines) and the Proposed dual MMSE (DMMSE) es-
timator (solid lines) with respect to improvement in overall SNR, average segmen-
tal SNR, composite speech quality measure (CaMP) and PESQ scores. Polarity
estimator accuracy was assumed to be 100% and the averaging parameter a was
set to 0.8.

This equation actually leads to (2.21). If an estimator could give the exact values

of Pk, it would have had an accuracy of 100%. For simulating a polarity estimator

having an accuracy of 80% (79.98% to be exact), 205 values of Pk are toggled

(performing the NOT operation) randomly to find Pk. This generated value, Pk
instead of Pk, is used in (2.20) and (3.14) the DGW and DMMSE estimators.

The accuracy of the polarity estimator is denoted in the figures as Apo
T~e results obtained from the conventional Wiener filter, the DGW and

DMMSE estimator are presented for comparison. The averaged results of the

10 utterances are plotted in Figs. 3.8, 3.9 and 3.10. From these figures, it is clear

that the DMMSE method shows uniform improvement with respect to output

SNR, Average Segmental SNR, Composite speech quality measure (CaMP) and
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perceptual evaluation of speech quality (PESQ) scores for the complete range of

input SNRs as compared to the Wiener and DGW estimators, when the averag-

ing parameter n = 0.90. For other values of n, an improvement in all ranges of

input SNR is not always achieved. This indicates that even though the DMMSE

method is consistently superior in the ideal case where real Gaussian sequences

are used, in real case such as speech, the performance depends on the a prwr!

SNR estimation.

It is to be noted that the gains are applied over a specific frequency bin

across each time frames. Thus, the correlation between the successive frame DCT

coefficients come into play. However, ideally this sample by sample correlation

should not exist. This is why in the ideal case the DMMSE is consistently better

than DGW. Since in reality, the successive frame DCT coefficients of the noisy

speech is not Gaussian, the errors in estimation can be expected. It may be

argued that why DGW would perform better than DMMSE in some cases given

that DMMSE assumes the more accurate model. In this regard, our opinion is

that, since DMMSE more rigorously considers the Gaussian model, it is more

likely to give errors due to non-Gaussian speech DCT samples than the DGW

estimator. DMMSE is more dependent on the Gaussian statistical model than the

DGW. However, the ideal performance curve clearly demonstrates that DMMSE

is superior to DGW if the data sequence really follows a Gaussian distribution.

Both the DMMSE and DGW estimators show remarkable improvement over

the Wiener estimator, which is actually demonstrates the effectiveness of the dual

gain approach. With the polarity estimator accuracy of 100%, we have the highest

improvement achievable theoretically. However, even for an accuracy of 80% the

estimator performance is consistently superior to that of the DGW estimator as

can be seen from Fig. 3.9.

3.5 Conclusion

A new MMSE estimator for DCT domain speech enhancement has been pre-

sented in this chapter. Unlike the traditional MMSE estimator approaches, we

have deliberately considered the constructive and destructive interference between

the signal and noise DCT coefficients. Similar to the previously proposed dual

gain Wiener estimator, a dual MMSE estimator is formulated with the major
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difference in the non-linear MMSE assumption. The proposed parametric gain

characteristics are analyzed in detail and compared with the well known tradi-

tional gain functions. The theoretical performance of the proposed method has

been evaluated using computer generated Gaussian sequences, showing a notable

MSE reductions. The effectiveness of the proposed estimator has also been tested

using speech files taken from the TIM IT database and significant performance im-

provement was achieved compared to the traditional estimators. In the following

chapter, the proposed post-filtering method is described.
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Chapter 4

Post processing using the
empirical mode decomposition

Most of the conventional speech enhancement methods can improve the signal

to noise ratio (SNR) levels at the expense of introducing musical noise in the

enhanced speech. A key element in this trade-off is the smoothing parameter

ct, used in the decision directed approach [9] for estimating the a priori SNR.
As an example, the approximate MAP estimator [10] is well known to have very

low residual noise, if ct ~ 0.98. But the SNR improvement of the method is not

optimal for such a high value of ct. A relatively lower value of it, or an adaptive

ct [27]' gives much better SNR improvement, but also generates very annoying

musical tones.

In this chapter, we show that the musical noise in the speech enhanced by

popular methods, can be significantly suppressed using the newly developed em-

pirical mode decomposition (EMD) [2]' pioneered by Huang et. al. This noise

suppression is accompanied by significant improvement of both subjective and

objective quality measures.

While Flandrin et. al. gave a general discussion on de-noising using EMD

[28]' its application on speech enhancement is rather new. Among the few works,

in [29] the authors have noted that the EMD method can be used to separate sud-

den impulsive unwanted sounds from speech. However, no formulation of noise

power estimation, rigorous experiments and relevant quality index results were

presented. In [30]' a more analytical approach has been considered. The au-

thors discussed the noise power densities in each intrinsic mode functions (IMFs)

produced by EMD, and the basic principles of de-noising in the EMD domain.
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In this chapter, we discuss the basics of EMD and its suitability in removing

musical noise. Next, an optimum gain function is derived which minimizes the

mean squared error (MSE) between the clean and estimated speech IMF variance

in short frames. The individual IMFs are assumed to be normally distributed

and thus the short-time variance is assumed to follow a Chi-square distribution.

The gain is further modified to incorporate the speech presence uncertainty. An

adaptive noise variance estimation method is also proposed utilizing the energy-

period relationship of an IMF as found in [31].

4.1 Basics of EMD

The EMD is an adaptive decomposition method that separates a given signal

x(t), into a series of oscillating components, termed as intrinsic mode functions

(IMFs )[2]. The IMFs are special functions that has symmetric envelopes with

respect to the local mean. As the term implies, EMD is a heuristic transformation

having no a priori basis function.

4.1.1 Intrinsic mode functions

An intrinsic mode function is a special kind of function proposed by Huang et. al.
[2]. A function must satisfy two properties to be qualified as an IMF. It must (1)

have the same numbers of zero crossings and extrema, and (2) has to be symmetric

with respect to the local mean. These conditions restrict an IMF to have complex

riding wave shapes and forces it to have a symmetric envelope. These properties

are very useful when working on the Hilbert Transform of IMFs[2].

4.1.2 The sifting algorithm

The EMD process involves an iterative sifting algorithm that extracts the IMFs

from the given signal. At first, the extremas of the given signal is found and curves

are fitted through the maximas and the minimas. These curves are termed as the

upper and lower envelopes, respectively. The mean value of these two envelopes

is termed as the mean envelope. Since the objective of EMD is to make the mean "

envelope a constant zero (for satisfying the second IMF property), the mean

envelope found in the first iteration is subtracted from the original signal. This

is the basic idea of the EMD sifting method. After the subtraction, the original
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signal will have lower fluctuations and more symmetry. However, rarely the IMF

is found after the first subtraction. Thus, the process is continued iteratively.

The new signal obtained after subtracting the first mean envelope is considered

as the original signal and is processed again. After a number of iterations an IMF

is obtained. The remaining IMFs can be obtained by repeating the process on the

residual signal. The process is difficult to describe but can be easily understood

from the algorithm steps given below.

Symbols

x(t)
E

Original signal to be decomposed
A very small number used to set the stopping criteria
The jth IMF
The jth residual signal
The jth approximation in the ith iteration
The upper envelope of hj,i
The lower envelope of hj,i
The mean envelope of hj,i
The total time duration.

Algorithm steps

Step-I Fix E, j <- 1 (jth IMF)

Step-II rj_1 (t) <- x(t) (residual)

Step-III Extract the jth IMF:

(a) hj,i-1(t) <- rj_1(t), i <- 1 (i number of sifts)

(b) Extract local maxima/minima of hj,i-1(t)

(c) Compute the upper envelope and lower envelope functions Uj,i-1 (t)
and £j,i-1 (t) by interpolating respectively local maxima and min-

ima of hj,i-1(t)

(d) Compute the mean of the envelope:

(e) Update: hj,i(t) <- hj,i-1(t) - iLj,i-1(t),i <- i + 1
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(f) Calculate stopping criterion:

(g) Decision: Repeat Step (b)-(f) until SD(i) < E and then put

IMFj(t) <- hj,i(t) (jth IMF)

Step-IV Update residual: rj(t) <- rj_!(t)-IMFj(t)

Step- V Repeat Step 3 with j <- j + 1 until the number of extrema in

rj(t) :::;2.

The sifting is repeated several times (i) in order to get h to be a true IMF that

fulfills the requirements (1) and (2). The result of the sifting procedure is that

x(t) will be decomposed into IMFj(t),j = 1, ...N and residual rN(t):

N

x(t) =L IMFj(t) + rN(t)
j=!

To guarantee that the IMF components retain enough physical sense of both

amplitude and frequency modulations, a stopping criteria has to be maintained.

This is accomplished by limiting the size of the standard deviation SD computed

from the two consecutive sifting results. Usually, SD is set between 0.2 to 0.3 [2].

4.2 Separation of Musical Noise using EMD

It is known that the musical noise in the enhanced speech is composed of sinu-

soidal components with random frequencies that appear and disappear in each

short-time frame. The generation of musical noise is mainly due to strong fluc-

tuations of the noisy speech spectrum, especially in the noise dominated regions.

These regions generate randomly spaced spectral peaks after the application of

spectral attenuation [12]. We have observed that, if EMD is performed on such

an enhanced speech and the IMFs are played back as sound files, the musical

noise is distinctively heard in the first few IMFs. Thus, we presume that this

noise can be efficiently separated using EMD.

To justify this intuition, an arbitrary speech file taken from the TIMIT database

is corrupted by white noise at lOdB SNR, and 512 point DCT is taken on each
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Fig. 4.1: (a) A sequence of musical noise. (b) The energy distribution of musi-
cal noise in different IMFs (ratio of the ith IMF variance to the overall signal
variance).

32ms frame. In each frame, the higher 256 DCT coefficients (257 to 512) are en-

hanced employing the traditional Wiener filter in DCT domain with the optimum

a priori SNR [27] and the lower 256 coefficients are replaced by the clean speech

DCT coefficients. This enhanced speech is subtracted from the clean speech, to

have only the high frequency residual noise. This is shown in Fig. 4.1(a). From

this figure, it can be observed that the musical noise is very much similar to

typical IMFs, having non-stationary oscillations [2]. We performed EMD on this

musical noise and the variance of each IMF was calculated. Fig. 4.1 (b) shows the

ratio of the ith IMF variance Ad,i and the overall musical noise variance Ad plotted

against the IMF number. This depicts the fact that most of the musical noise

energy (88.94%) is concentrated in the first IMF. This justifies our assumption

that the musical noise can be well separated by EMD into IMFs. Hence, the

musical artifacts may be effectively filtered in the EMD domain by attenuating

the noise dominated regions.
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4.3 Proposed method

If y( n), X(n) and d(n) denote the noisy speech (output of the first stage), clean

speech and the residual noise, respectively, we may write,

y(n) = x(n) + d(n). (4.1)

Since EMD is a heuristic transformation, no direct relation between the signal

and noise IMFs is available. Also, because the process is nonlinear,

Yi(n) oJ xi(n) + di(n)

inequality holds, where Yi(n), xi(n), and di(n) denote the ith IMF of the noisy

signal, clean signal and residual noise, respectively. This nonlinearity makes EMD

domain analysis very difficult. Unless an analytic expression of EMD is found,

deriving a suppression rule for processing time samples of the noisy IMFs one

by one is not feasible. We, therefore, propose to process IMFs in non overlap-

ping segments instead. Before developing the segment-wise filtering scheme, we

attempt to relate the variances of signal and noise IMFs in short time segments.

4.3.1 Conservation of energy in EMD

As mentioned earlier, an analytic expression relating xi(n), di(n) and Yi(n) is not

available till date. However, an approximate relation between their short time

variance can be found experimentally, which is given by,

(4.2)

where, Ay(i, k), AAi, k) and Ad(i, k) are the variances of the ith IMF of noisy

speech, clean speech, and residual noise in the kth short-time segment. This

approximate relation is used in our method which greatly simplifies the derivation

of the proposed suppression rule. Yet, we have numerically investigated this

conjecture. A speech utterance from the TIMIT database is corrupted by white

noise so as to give 0, 10 and 20dB SNR, and then enhanced by the Wiener filter

in the DCT domain using the variable averaging parameter proposed in [27]. For

each enhanced speech, clean speech and the residual noise, EMD is computed [,

upto 4 IMFs to find Xi (n), Yi(n) and di (n). All the IMFs are segmented in [

sizes from 64 to 1024 samples with an increment of 64 samples. In all of thesel[
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Fig. 4.2: Scatter plot of Ay(i, k) vs. Ax(i, k) + Ad(i, k) in Log scale.

frames, Ax(i, k), Ad(i, k) and Ay(i, k) are determined to generate the scatter plot

of Fig. 4.2. The clearly visible linear trend inspired us to use the approximation

of (4.2).

4.3.2 Statistical model of IMF local variance

The energy, z = 2:~=1u2(n), of a normally distributed random variable urn) ~
N(O,l) in a short segment of length N samples follows a Chi-square distribution

having N degrees of freedom [26]. The probability density function (PDF) of z

is given by,

p(z; N) = 2N/2~C~/~-le-Z/2

Thus, if an arbitrary IMF of a Gaussian sequence has an overall variance ,X and a

local variance A, in a short-time region of length N, the normalized IMF energy

NA/'x will follow a Chi-square density function given by (4.3),

[31]. Thus, the PDF of A is found to be,

N(NA/,X)~-l (NA)
ptA) = 2N/2f( if)A exp - 2'x .

as discussed in

(4.4)

Assuming that y(n), x(n) and d(n) are Gaussian [32]' their IMFs can also be

assumed to be Gaussian [31] and thus the PDF of (4.4) may be used for the IMF
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local variances Ay(i, k), Ax(i, k) and Ad(i, k) defined in Section 4.3.1.

4.3.3 Optimum gain

To formulate a suppression rule in the energy domain, we aim to minimize the

cost function

(4.5)

where, ~x(i, k) G),(i, k)Ay(i, k) is the estimate of clean IMF local variance.

The indices i and k denote the IMF and frame number, respectively. Using the

approximation in (4.2), the gain G),(i,k) minimizing JG is given by

E{,\;} + E{,\xAd}
G), = E{AD + E{,\~} + 2E{,\xAd}'

(4.6)

The indices i and k are omitted for simplicity. Assuming that Ax and Ad are

independent and they follow a Chi-square density function as given in (4.4), we

may substitute,

(4.7)

(4.8)

and E{,\xAd} = >-x>-d.
Thus, using these definitions, (4.6) gives the gain expression as

(2 + (i,k
G (' k) = i,k 2/Ni•k+!

>. 1" _ 2'"'
C2 + 1+ ",k
""i,k 2/Ni,k+1

(4.9)

where,
- >-x(i, k)
~i,k = SNRa prim-i = >-d(i, k)' (4.10)

We propose to segment the IMFs at the zero-crossing points containing integer

number of oscillation periods. Thus the frame size Ni,k is different for each frame.

The gain in (4.9) gives a variance estimate. Therefore, a square root operation

must be performed in order to apply it on short time segments. The final gain

expression is thus,

G(i, k) =
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The a priori SNR in (4.11) can be calculated using the classical decision directed

approach [9] applied in time-domain:

(;,k = (3(i,k-l + (1 - (3) max [0, /';,k - 1] ,

where (3 is a smoothing parameter and,

. = SNP = Ay(i, k)
/'"k "'post Ad( i, k) .

For the first frame, (;,1 = max[O, /';,1 - 1] is used.

4.3.4 Considering speech presence uncertainty

(4.12)

If the events HI and Ho denote speech presence and absence, respectively, from

(4.4) we have,

(4.13)

(4.14)

where,

Using Bayes rule, the a posteriori probability for speech presence is given by,

A !e. p(HO)p(AyIHo) (4.15)
- p(H1)p(AyIH1)'

Assuming that the speech and noise states are equally likely, i.e., p(H1) = p(Ho) =
~, from (4.13), (4.14) and (4.15) we have,

A = (1 + ()N/2 exp ( N /'~ )
2 (~+ 1) .

(4.16)

Thus, the modified gain expression is given by

Copt(i,k) = CprC(i,k). (4.17)

Incorporating Cpr, the gain is now highly attenuating for low (;,k values. This

property is highly effective for musical noise reduction.
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4.3.5 Noise variance estimation

To determine the noise variance in different IMFs, EMD is applied in the speech

absence periods of the noisy speech. From these frames, the average noise variance

),d,i and mean period Td,i of the noise IMFs [31] are obtained. It is shown in [31]

that, for a Gaussian sequence, IMF energy per period is a constant, i.e.,

(4.18)

, K
Ad(i,k)= (' )' (4.19)Ty t,k

In reality, the right hand side of (4.18) may give slightly different value for dif-

ferent IMFs. Thus, we calculate K as

where K is a constant. Since EMD does not allow same time scale data to be

present at the same location in different IMFs [2], intuitively, noise embedded

in a region of a noisy IMF cannot have a drastically different local time scale.

Thus, we assume Td(i, k) "" Ty(i, k), where Td(i, k) and Ty(i, k) denote the average
period of di (n) and Yi (n) in the kth frame, respectively. Thus the noise variance

may be estimated as

M

1 "'- -K = M _ 1L.. Ad,iTd,i,
i=2

(4.20)

where M is the total number ofIMFs. Since, (4.18) is not valid for the first IMF

[31), the summation begins at i = 2. Thus, ),d(l, k) is calculated from the speech

absence periods directly.

4.4 Simulation results

4.4.1 Experimental details

The effectiveness of the proposed post processing scheme is evaluated using 5

male and 5 female utterances taken from the TIMIT database. Two different

types of noise, e.g. 'white' and 'babble' were taken from the NOISEX database to

corrupt the speech signals. The sampling frequency was 16 kHz. The noisy signals

were enhanced using the i) Wiener filter in DCT -domain using the adaptive ex

[27), ii) approximate MAP [10] with ex = 0.98, and iii) approximate MAP [10]

with the adaptive ex [27), iv) the MMSE STSA estimator [9), v) the MMSE
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Log STSA estimator [8]' and vi) the perceptual filtering proposed by Virag [16].

These methods are denoted by: i) Wn (a), ii) MAP (0.98), iii) MAP (a), iv)

EM STSA, iv) EM Log STSA and v) Virag, respectively. The proposed post

processor is applied after theWn (a) and MAP (a). After processing, they are

denoted by P-Wn (a) and P-MAP (a), respectively.

The proposed post processor was applied in the following procedure. EMD

was applied on the enhanced speech to extract the IMFs and the lowest 4 IMFs

were taken. The zero-crossing points of these IMFs were identified, and segmen-

tation was done using two full oscillation cycles. No overlapping was used. For

each segment, the value of ~i,k was calculated from (4.12) using f3 = 0.95. The av-

erage noise variance ~d,i and the noise variance in each frame >-d(i, k) were found

as described in Section 4.3.5. The non-speech regions were detected using the

method in [33]. Next, the gain Gop,(i, k) was calculated from (4.17) and applied

to the short frames. Simple summation of all the modified (and unmodified)

IMFs gives the further enhanced signal.

Comparison of the objective quality measures for a wide range of input SNRs

is shown in Figs. 4.3, 4.4, 4.4.1. In Fig. 4.3, we have compared the performance

of MAP(0.98), MAP(a), P-MAP(a) and EM STSA. The average segmental SNR

(AvgSegSNR) and composite speech quality measure (COMP) [34] were used

for objective performance comparison. In Figs. 4.4, 4.4.1 we have compared

the performance of MAP(0.98), MAP(a), P-MAP(a), Wn(a), P-Wn(a), EM

Log STSA and EM STSA with respect to the quality indices: Overall SNR,

AvgSegSNR, PESQ and COMPo

The COMP quality index is a linear combination of different objective quality

measures. The correlation coefficients for the linear combination are determined

from listening tests [34]. The index is given by,

COMP = 1.594 + 0.805PESQ - 0.512LLR - O.007WSS.

This is known to be highly correlated with human listening.

For subjective quality evaluation, two listening tests were performed. The

first one was conducted using the comparison category rating (CCR) method

[35]. A total number of 10 listeners were presented with the enhanced speech

files in pairs and asked to compare their quality in the CCR scale [35]. The order

of presentation was random. To eliminate any biasing due to the order of the
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algorithms within a pair, each pair of enhanced utterances was presented twice,

with the order switched. Listeners were asked to rate the quality of the second

utterance relative to that of the first according to the scale in Table 4.4.1.

For the second listening test, the MOS (Mean Opinion Score) scale was used.

This scale is given in Table 4.4.1. 2 male and 2 female utterances from the

TIMIT database corrupted by 'white' and 'babble' noise at 5 and lOdB SNR

was enhanced by the Wiener DCT [27] and the EM-Log STSA [8] method and

the proposed EMD based post-filter was applied. A total of 8 subjects attended

the informal listening test and ranked the speech quality in the MOS scale. The

averaged results are given in Table 4.4.

Table 4.1: The comparison cat-
egory rating (CCR) scale

3 Much better
2 Better
1 Slightly better
o About the same
-1 Slightly worse
-2 Worse
-3 Much worse

Table 4.2: The mean opinion
score (MOS) scale

5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

4.4.2 Performance Evaluation and Discussion

From Figs. 4.3 (a) and (c), it is clear that MAP (a) is superior compared to

MAP (0.98) [10] with respect to the AvgSegSNR. This is true throughout the

whole input SNR range and for both noise types. However, this improvement is

accompanied by musical noise generation. After the EMD based post process-

ing, further improvement in AvgSegSNR and COMP is achieved for a wide input

SNR range. This can be observed from Figs. 4.3 (a) and (c), and, (b) and (d),

respectively. Interestingly, this improvement is accompanied by a simultaneous

improvement in listening quality, which can be seen in the fourth row of Table 4.3.

The positive scores indicate the preference of P-MAP (a) over MAP (a). Fur-

thermore, the P-MAP (a) and MAP (0.98) are very close in terms of the listening

quality, as can be seen from the fifth row of Table 4.3. As evident from these re-

sults, the proposed technique can be used for improving objective quality without
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Fig. 4.3: Average objective quality measures with different input SNRs; (a), (b):
white noise; (c), (d): babble noise.

deteriorating the subjective quality of the enhanced speech. The improvement

in listening quality after the post filtering is also demonstrated from the MOS

scores given in Table 4.4.

A more detailed comparison of the proposed post filtering method is pre-

sented in Figs. 4.4 and 4.4.1. From these figures, the superiority of the proposed

post filtering technique with respect to AvgSegSNR is also apparent. However,

the post filtering operation reduces the overall SNR for input SNR greater than

4dB. Nevertheless, the remarkable improvement in the PESQ and COMP scores

demonstrate the superior listening quality of the proposed enhancement scheme.

It may be emphasized that the proposed method improves the quality indices,

that is the CCR scores and the MOS scores, without sacrificing the AvgSegSNR

values. This is a very important finding since it is contrary to general observations

of speech enhancement techniques. Moreover, the proposed method is providing

a similar listening quality in the enhanced speech that has a superior objective

quality. Thus, it may be concluded that the proposed method maybe leading the

speech enhancement research to a new level of speech quality.
fI'
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Table 4.3: Results from the Listening test in the CCR scale. A positive value
indicates preference for the proposed method

Noise Type white babble

Input SNR 5dB lOdB 5dB 10dB

P-MAP (a) vs MAP (a) 1.5000 1.7500 1.2000 1.3250

P-MAP (a) vs MAP (0.98) 0.9500 0.8750 0.8250 0.8000

P-Wn (a) vs Wn (a) 1.4250 1.7000 0.4750 1.3250

P-Wn (a) vs Virag 1.4500 1.7250 1.2750 1.0750

Table 4.4: The Mean Opinion Score Experimental Results for white and babble
noise of 5 and 10dB SNR

Noise Type white babble

Input SNR 5dB 10dB 5dB lOdB

Noisy Signal 1.16 1.31 1.16 1.34

EM Log-STSA [8]
Single Stage 2.38 2.88 2.06 2.63

Proposed 3.09 3.56 2.44 3.28

Wiener DCT [27]
Single Stage 2.34 2.81 2.31 2.66

Proposed 3.00 3.84 2.44 3.31

4.5 Conclusion

This chapter has dealt with a novel post processing method using EMD for sup-

pression of residual noise from speech signals. Well known techniques in the

DCT and DFT domain were used as the first stage filter and the annoying musi-

cal noise present in the enhanced speech were filtered in the second stage using

the proposed EMD domain method. Experimental results have demonstrated the

superiority of our method in terms of both objective and subjective evaluation

criteria.
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Fig. 4.8: Enhancement results for the male utterance "Heels place emphasis on
the long legged silhouette". Time domain plots of (a) clean speech, (b) noisy
speech (lOdB), (c) enhanced using MAP(a) and (d) enhanced using P-MAP(a).
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Chapter 5

Performance analysis of the
hybrid method

5.1 Introduction

In this chapter, the performance of the proposed hybrid speech enhancement al-

gorithm is studied and compared to that of the dual gain Wiener (DGW) [3]

filter, the conventional Wiener filter and the MMSE Log spectral amplitude esti-

mator [8]. The quality of the enhanced speech is measured using the overall SNR,

average segmental SNR and PESQ (perceptual evaluation of speech quality) [36].

5.2 Experimental details

The effectiveness of the proposed hybrid enhancement scheme is evaluated using

10 male and 10 female utterances taken from the TIMIT database. The speech

files are corrupted by white noise taken from the NOISEX database. The noise

level is adjusted so as to give SNR from 0 dB to 25 dB. The sampling frequency

is 16kHz. A frame size of 32ms (512 samples) is used for framing and the overlap-

add method with 75% overlap is used for signal decomposition. The a priori SNR

is calculated using decision directed approach [9] utilizing the variable averaging

parameter proposed in [27].

In the first stage, the noisy speech is enhanced using the conventional Wiener

(in DCT), dual gain Wiener (DGW), MMSE Log spectral amplitude estimator

(EM Log STSA) [8]' and the proposed dual MMSE (DMMSE) estimator. Each

frame is subjected to 1024 point DCT for the Wiener, DGW, and the DMMSE es-

timator. The experimental methods of the DMMSE implementation is discussed
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'I,
in Section 3.4.2 of this thesis. In the second stage, the proposed EMD based post

residual noise reduction technique was applied to the speech files enhanced using

the conventional Wiener, DMMSE and EM Log STSA. The experimental details

regarding the post processing was done as discussed in Section 4.4. The average

of the results of the 20 utterances are plotted in Figs. 5.1, 5.2 and 5.3.

5.3 Performance comparison and discussion

As mentioned in section 4.4, the average segmental SNR (AvgSegSNR) improve-

ment has been the most remarkable for the proposed post filtering algorithm. This

is clearly demonstrated in Figs. 5.1 (a) and (b), especially in the SNR regions

below 15 dB for all the methods. The post processing method fails to manifest

further improvement above 15dB, for DMMSE and above 20dB for Wiener and

EM Log STSA as one can see from Fig. 5.1. For a polarity estimator of accu-

racy 80%, the situation is almost similar, except that the DMMSE and DGW

performances are reduced, which is expected. However, the relative superiority

of DMMSE compared to DGW is still visible.

Figs. 5.2 (a) and (b) show the overall performance of the various methods

interms of the output SNR improvement. Here, while the DMMSE, and DGW

demonstrate superior performance than the Wiener and EM Log STSA estima-

tors in most of the regions, the application of the proposed post filtering method

reduces the improvement for input SNRs greater than 10dB. Similar behavior

is observed in case of Figs. 5.2 (a) and (b). However, the PESQ improvement

demonstrated in Figs. 5.2 (a) and (b) show noticeable perceptual quality im-

provement of the enhanced speech files. Even though the proposed post filtering

technique reduces the overall SNR in some regions, the listening quality improve-

ment obtained using the method is considerable. This is expected, since it is a

well known fact that overall SNR is not correlated to human listening [34]. This

was also confirmed earlier in the MOS experiments discussed in section 4.4. The

PESQ scores in this case gives us an appraisal of that improvement. In this case

also, the performance of the post filtering method deteriorates at very high SNRs

(> 20dB). But the improvement in the PESQ score using the hybrid method

(DMMSE+EMD) is remarkable in the lower SNR regions. This is true in both

the ideal and simulated (polarity estimation accuracy of 80%) cases.
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5.4 Conclusion

In this chapter, the performance of the hybrid algorithm has been analyzed and

compared to well established speech enhancement techniques. The proposed

dual MMSE estimator shows superior objective quality indices compared to other

methods in most of the input SNR regions. Significant improvement in the aver-

age segmental SNR values has been achieved after the application of the proposed

post- processing technique.
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Fig. 5.1: Performance comparison of the DMMSE, DGW, Wiener and EM Log
STSA with respect to improvement in average Segmental SNR for an input SNR
range of 0 dB to 25 dB. The proposed post filtering method is applied to the
DMMSE, Wiener and EM Log STSA methods indicated by the +EMD notation.
DMMSE+EMD indicates the proposed hybrid method. A polarity estimator of accu-
racy 100% and 80% was used in (a) and (b), respectively.
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Wiener and EM Log STSA methods indicated by the +EMD notation. DMMSE+EMD
indicates the proposed hybrid method. A polarity estimator of accuracy 100%
and 80% was used in (a) and (b), respectively.
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Fig. 5.3: Performance comparison of the DMMSE, DGW, Wiener and EM Log
STSA with respect to improvement in PESQ scores for an input SNR range of
o dB to 25 dB. The proposed post filtering method is applied to the DMMSE,
Wiener and EM Log STSA methods indicated by the +EMD notation. DMMSE+EMD
indicates the proposed hybrid method. A polarity estimator of accuracy 100%
and 80% was used in (a) and (b), respectively.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have presented and evaluated a two stage hybrid speech enhance-

ment algorithm aiming at an improved noise reduction performance in the first

stage followed by a suppression oUhe musical noise in the second stage. The first

stage of this method considers both the constructive and destructive interference

of noise DCT coefficient, obtaining a set of optimum estimators in these condi-

tional events assuming the exact joint probability distribution in the Gaussian

speech and Gaussian noise statistical model. The proposed estimator, termed as

the dual MMSE estimator, is shown to demonstrate superior performance with

respect to MSE and SNR value improvement compared to the previously reported

dual gain Wiener estimator, where a linear MMSE estimator was assumed. The

main attribute of the dual MMSE estimator is that it handles three distinct cases

of speech and noise DCT coefficient, when (1) the noise decreases the signal co-

efficient in magnitude, (2) the noise increases the signal coefficient in magnitude

and (3) the noise reverses the polarity of the clean signal coefficient. The gain

tends to be (1) attenuating, (2) amplifying and (3) negative, , respectively, in

these three cases. This concept of negative value of a suppression rule, which

concerns with the polarity correction of the noisy DCT coefficient, is quite novel

and in contrast with the conventional definition of such rule. Even though this

property was also present in the dual gain Wiener filter [3]' the implications of

this property was not properly addressed by the authors.

Towards accomplishing the second objective of the work, the newly developed

empirical mode decomposition is utilized. A new post filtering technique is pro-
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posed for suppression of residual noise remaining in the enhanced speech. The

Chi-squared probability density function is assumed for a short duration of an

intrinsic mode function energy and an optimum gain function is derived in the

assumed model for residual noise suppression. The method is applied on the noisy

IMF frames, each containing an integer number of cycles, in the time-domain. It

is also observed that incorporating the speech presence uncertainty in the sup-

pression rule provides more effective suppression of the unwanted noise. A novel

method of noise variance estimation in the EMD domain is also presented using

the energy-period relation of an IMF [31]. The proposed second stage algorithm

is applied on speech files enhanced using traditional Wiener filter incorporating

the variable averaging parameter [27] and the MMSE log spectral amplitude es-

timator [8]. The quality of the further enhanced speech has been evaluated using

both subjective and objective quality measures. The improvement obtained in

the average segmental SNR and PESQ values is remarkable. Even though these

indices are known to be highly correlated to human listening, an actual listen-

ing test is also performed. The improvement of the mean opinion scores (MOS)

and positive values in the comparative category rating (CCR) scores also indi-

cate superior performance of the proposed second stage algorithm compared to

well establish speech enhancement methods. Though the post filtering technique

can perform on any enhanced speech file independent of the method, we have

combined it with our proposed DMMSE estimator to form the hybrid method.

The performance of the hybrid method is also tested and compared to traditional

speech enhancement techniques and significant improvement in different quality

measures is observed. The improvement was most prominent in the average seg- .

mental SNR and PESQ values whereas the overall SNR values were practically

unchanged.

6.2 Future works

An efficient polarity estimator algorithm is very important to successfully imple-

menting the dual MMSE estimator. Since the estimators are derived assuming

that the constructive and destructive events are known a priori, proper identifica-

tion of the events is necessary for the method to perform well. This identification

must be done observing the noisy speech only, which is quite a challenging task.
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Since we dealt with only the optimum estimator in the given events, this algo-

rithm was beyond the scope of this thesis. Developing an efficient method for

this purpose can be a prosperous future work.

Speech enhancement using the empirical mode decomposition is also a promis-

ing area of research. The new decomposition has not been very successfully

exploited for speech enhancement in the first stage till date. This is due to

the unavailability of a proper mathematical framework for analyzing signals in

the EMD domain. The IMFs of the clean and noisy speech are assumed to be

Gaussian in the derivation of the proposed suppression rule, which implies that

the speech samples are normally distributed in time domain. This assumption,

though greatly reduced the mathematical complexity of the problem (enabling

the incorporation of the Chi-square distribution for short-time IMF energy), is

not very accurate. Future works may thus include proper modeling of the IMFs

generated from EMD of speech signals. Obviously, a mathematical model of the

decomposition itself would greatly alleviate the problem, which is still unavailable

in literature.
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Appendix A

Important derivations

A.I Derivation of the dual gain Wiener

Let x[n]' d[n] and y[n] denote vectors containing the N most recent samples

of the clean signal, noise and noisy signal, respectively, where N is the analysis

frame size. If it is assumed that the noise is additive, y[n] can be expressed as

y[n] = x[n] + d[n].

The DCT domain representation of (A.31) in the k-th frequency bin is

If Xk is an estimate of Xk, the MSE is given by,

(A.I)

(A.2)

Assuming a Linear MMSE estimator such that Xk = WYk, we obtain the well

known Wiener MSE given by,

Substituting (A.32) into (A.3)

E{[W(Xk + Dk) - Xk]2}

(W2 - 2W + I)E{Xn + 2W(W - I)E{XkDk}

+W2E{DD

(A.3)

(A.4)

Minimizing (A.3) with respect to W leads to the conventional Wiener estimator,

as shown in Section 2.3.1. In that derivation, E{XkDk} = 0 was assumed. To
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consider the constructive and destructive events separately, let us define two

mutually exclusive events as,

H+: signal and noise are constructive: XkDk 2: 0,

H_: signal and noise are destructive: XkDk < O.

Now, if we want to derive a set of Wiener filters given these events have occurred,

we shall obtain a pair of conditional MSEs, given by,

Jw+ E{(W+Yk - Xk)2IH+}

Jw- - E{(W_Yk - Xk)2IH_}

(A.5)

(A.6)

Now, the terms Jw+ and Jw+ can be expanded as in (A.4) which will include

the terms E{X~IH+}, E{X~IH_}, E{D~IH+}, E{D~IH+}, E{XkDkIH+} and

E{XkDkIH_}. Clearly, E{X~IH+} = E{X~IH_} = E{Xn and E{D~IH+} =

E{D~IH_} = E{D~}, since Xk and Dk are uncorrelated. But the cross terms

need to be determined. Now, for the event H+, i.e., XkDk > 0

E{IXkIIDkl}

E{IXkl}E{IDkl}

and, for the event H_, i.e., XkDk < 0

-E{IXkIIDkl}

-E{IXkl}E{IDkl}

Thus the cross terms E{XkDkIH+} and E{XkDkIH_} cannot be assumed to be

zero in any of these events. To determine their values, first let us calculate the

values of E{IXkl} and E{IDkl} assuming the Gaussian statistical model.

The probability density function of a random variable x which follows Gaus-

sian distribution is

where (5 and f.L are the mean and standard deviation of x, respectively. The

expected value of x with the distribution given above is defined as

E(X) =1:xf(x)dx (A.S)
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As Xk is also a random variable and zero-mean (J.L = 0), the probability density

function of Xk

1
f(X) = V2ir exp (_X2 /20";) , -00 < X < 00 (A.9)

O"X 27r

But the probability density function of IXk I is required. A fundamental theorem

on probability density function of a random variable y, when y = g(x), is

(A.IO)

(A.H)

(A.I2)

where g'(x) is the derivative of g(x), fx(x) is the distribution of x and Xl, X2 .••••

Xn are the real roots of y = g(x).
In this case, g(X) = lXI, y = g(x), i.e., IXI = g(X) has two roots +X and

-X, Xl = +X, X2 = -X. Using (A.lO)

f(IXI) = fx(XI) + fx(X2)
Ig'(XIlI Ig'(X2) I

As g(XI) = +X therefore g'(XI) = +l and 19'(XI)1= 1. Similarly g(X2) = -X
therefore g'(X2) = -1 and 19'(X2)I = 1. Also

1V2ir exp ( - (+X)2 /20";)
O"X 27r
1V2ir exp ( - X2 /20";)

O"X 27r

(A.I3)

Substituting Eqs. (A.I2) and (A.I3) into (A. H)

f(IXi)

The probability density function f(IXi) is obtained as

2
f(IXI) = V2ir exp (_X2 /20";)

0" x 27r
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With the distribution function given in (A.15) and the definition of expected

value given in (A.S), we get

e

(A.16)

Now, using the formula

we obtain,

100 r(Hl)
X exp (_X2 /20";) dX = 2 !B

o 2(1/20";) 2

Thus E{[XI} is obtained as

(A.17)

, (A. IS)

=

l.e.,

Similarly,

E(IXI)
2 r(lf)

O"xY2ii 2(1/20";)"¥
2 r(1)

O"xY2ii 2(1/20"i)1
2 1

O"xY2ii 2(1/20"i)

= AO"x (A.19)

(A.20)

and

E(IDkl) = AO"d (A.2l)

Finally, substituting Eqs. (A.20) and (A.2l) into Eqs. (A.7) and (A.7), respec-

tively,

(A.22)

(A.23)
o
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where CTxand CTdare the standard deviations of the clean speech spectral Xk and

the noise spectral component Dk, respectively (i.e., CTx/CTd= VE;). Expanding

(A.5) as (A.4) and substituting (A.22) into the equation, we obtain

Jw+ = (G~v+ - 2Gw+ + l)E{X~IH+} + 2Gw+(Gw+ - l)E{XkDkIH+}

+G~+E{D~IH+}

(G~+ - 2Gw+ + l)E{XD + 2Gw+(Gw+ - l)~CTxCTd
7r

+G~+E{DD (A.24)

Note that the gain is now defined as Gw+ instead of W+. Differentiating Jw+

with respect to Gw+ gives

(A.25)

Equating 8Jw+/8Gw+ to zero yields

(2Gw+ - 2)E{Xf} + 2(2Gw+ - l)~CTxCTd+ 2Gw+E{DD = 0
7r

Dividing (A.26) by 2E{DD and substituting E{XD/E{DD = f;k

(2.17))

(A.26)

(defined in

(A.27)

(A.28)

(Gw+ - l)f;k

2
+ (2Gw+ - 1)-J[,: + Gw+

7r
4

- GW+(f;k + 1+ -J[,:)
7r

-f;k - ~J[,:
7r

Substituting E{DD = CT~in (A.27), we obtain

(Gw+ - l)f;k + (2Gw+ - 1)~CTx+ Gw+ =
7rCTd

(A.29)

Rearranging (A.28), the optimum filter gain in the event H+,

G _ f;d~VE;
w+ -

f;d1+~VE;

Gw+ is always less than 1 and, the authors [3] have proposed to use this gain for

the spectral component whose magnitude has been increased by noise, i.e., for

o
the condition XkDk > O.
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Similarly, substituting (A.23) into (A.6) and equating EJJw_/EJGw_ to zero

gives the optimum filter gain in the event H_ as,

~k - ~.,jE;,
G - 1rw- - 4 rc-

~k + 1- ;;V~k
(A.30)

The authors [3] have proposed to use Gw+ for the spectral component whose

magnitude has been reduced by noise, i.e., for the condition XkDk < O.

A.2 MMSE estimator in the DCT domain

Let x[nJ, d[n] and y[nJ denote vectors containing the N most recent samples

of the clean signal, noise and noisy signal, respectively, where N is the analysis

frame size. If it is assumed that the noise is additive, y[n] can be expressed as

y[n] = x[n] + d[n].

The DCT domain representation of (A.31) in the k-th frequency bin is

(A.31)

(A.32)

With the assumption that the DCT transform coefficients are statistically inde-

pendent, the Minimum Mean Square Error (MMSE) estimated amplitude Xk can

be obtained from Yk as follows:

(A.33)

(A.34)

Where E{.} denotes the expectation operator. (A.33) may be expressed as,

Xk = 1:XkP(XkIYk)dxk
1:XkP(Xk, Yk)dxk

-
p(Yk)

Now the Gaussian statistical model assumption leads to the following marginal

and joint distributions:

= 2
1

2 exp [-2X~2]
no-x (}x

1 exp [__x_~ __ (Y_k_-_X_k_J2_]
27r0" dO"x 20"; 20"~
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Where 0"; and O"~denote the variances of the kth spectral components of the clean

signal and noise processes. To evaluate (A.34), let,

h(a, b) = lb XkP(Xk, Yk)dxk (A.37)

lb Xk [x~ (Xk - yk)2] d---exp ------- Xk
a 27r0"dO"x 20";; 20"~

exp (-~) lb [1 (XkO"y O"XYk)2] d
---- XkeXP -- -- - -- Xk

27r0"dO"x a 2 O"xO"d O"yO"d .

Where 0" = . /0"2 + 0"2 Letting z = ...L (xkay _ aXYk)
1 y V x d .j2 axad axad

Where,

(A.38)

(A.39)

(A.40)

Thus,

Where,

(A.41)

and,
2 lx 2erf(x) = ..jii 0 e-t dt (A.42)

Now, in (A.34), we have the limits a = -00 and b = 00 for h(a,b) as defined

in (A.49), which also gives a, = -00 and b, = 00. Thus, using (A.40) we have
from (A.34),
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(A.43)

This is the conventional Wiener estimator which can also be derived assuming

a linear MMSE estimator1. Since Xk and Yk are jointly Gaussian, the optimal

MMSE in this case linear. The Wiener estimator can be viewed as a gain multi-

plied by the noisy coefficient as,

where, the Wiener gain function,

(A.44)

Gw

and ~k

is interpreted as the a priori SNR [7].

~k

1+~k'
E{Xn
E{DD

(A.45)

A.3 Derivation of the dual MMSE estimators

We define two mutually exclusive events as:

H+: signal and noise are constructive: XkDk 2':0

H_: signal and noise are destructive: XkDk < 0

'That is, assuming Xk = WYk and minimizing E{(Xk - Xk)2} for W.
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Since Yk is constructed from the two mutually exclusive events H+ and H_, we

may write

(A.46)

(A.47)

Thus the quantities in (A.46) and (A.47) can be determined if we know the joint

density functions P(Xk, Yk, H+), p(Xk, Yk, H_), p(Yk, H+) and p(Yk, H_).
We note that, for the event H+, XkDk > 0, which reslts in XkYk > X~ using

(A.32). This condition simplifies to mkYk > IXkl where mk = sgn(Xk). Similarly,

the event H_ results in the condition mkYk < IXkl. These constraints of Xk and

Yk are shown graphically in Fig. 3.1 (a).

Thus the joint density functions p(Xk, Yk, H+) and P(Xk, Yk, H_) will be defined

as,

mkYk> IXkl
otherwise

mkYk < IXkl
otherwise

To evaluate (A.46) and (A.47), we now need to find the probability densities

p(Yk, H+) and p(Yk, H_). We have,

p(Yk, H+) = 1:PXy(Xk, Yk, H+)dxk

We note that this integration must be solved separately for positive and negative

values of Yk.

_ {l~kPXy(Xk, Yk)dxk

( pxy(Xk, Yk)dxkJYk
= sgn(Yk) lYk

PXy(Xk, Yk)dxk
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To evaluate this integral we let,

Where,

(A. 50)

(A.51)

Thus,

Now, to evaluate p(Yk, H+) we simply need to put the limits a = 0 and b = Yk

. YkO'x YkO'd . ( )whIch leads to aj = - M and bj = M . Putting these values m A.52 ,
v 20'yO'd V 20'xO'y

Similarly, it can be shown that,

p(h,IL) ~ {
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Since PXy(Xk, Yk) is a symmetric function with respect to Xk and Yk, we may

write,

Here, erfc(-) is the complementary error function defined as,

erfc(x) = 1 - erf(x)

A.3.2 The dual MMSE estimators

From (A.46) we may write,

We have,

(A.53)

(A.54)

(A. 55)

Putting a = 0 and b = Yk in (A.40),
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Here, al =

(A.57)

We know,

and
(A. 58)

Let,

b _ YkO'd11 1 - M . / 2 2
V 2O'xy O'd+ O'x

YkO'x12 = -al = --=0----====
V2O' dVO'~+ 0';

Since erfC) is an odd function, from (A.57),

_ GWYk+ f!.[exp(-m-exP(-m]V ;;: erf(h) + erf(h)
GWYk + iP(Yk)

adux
VO'2 + 0'2d x

(A. 59)

where,

(A. 50)iP(Yk) = f!. [exP( - m - exp( - m]
V;;:. erf(h) + erf(h)

UdUx

y'0'2 + 0'2d x

Noting that iP(Yk), containing hand 12, is an odd function, it can be expressed

as

enabling us to express (A.59) as a gain expression multiplied by the noisy DCT

component, Yk, i.e.,

(A.51)
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(A. 52)

where GMMSE+ denotes the MMSE gain function for the event H+. Now, the a

priori and a posteriori SNRs are defined as,

(12
~k

x and2 '(1d

'Yk = IYkl2
7 ,

d

respectively. Expressing cI>(IYkl) using ~k and 'Yk,

Thus,

GMMSE+

Following a very similar method, the gain for the destructive case, G MMSE- can

be found to be,

A.4 The Ephraim and Malah suppression rule

Assuming the Gaussian Model, Empraim and Malah [9]derived a minimum mean-

square error (MMSE) short-time spectral amplitude estimator under the assump-

tion that the Fourier expansion coefficients of the original signal and the noise

may be modelled as statistically independent, zero-mean, Gaussian random vari-

ables. Thus the observed spectral component in the bin k, Yk ~ Rkexp(jrh),
is equal to the sum of the spectral components of the signal, Xk " Ak exp(jak),

and the noise, Dk. That is,
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1m

Re

Fig. A.1: Vector Representation of Yk = Xk +Dk

(A.63)

In this derivation, only the phase of Y k and Xk are assumed, while the phase

angle of Dk is considered to be zero. This generalization simplifies the derivation

without any loss of generality since the sum of all three phase angles must be

equal to 21r.

It is obvious that the amplitude of a complex Gaussian random variable will

follow a Rayleigh distribution [26]. Thus we may assume the following distribu-

tions for ak and OOk:

{
,,~(%)exp( - ,,:tk)) if ak E [0,00),
o otherwise

{
2~ if OOk E [-1r,1r),
o otherwise

The joint PDF of ak and OOk will be then given by:

(A.64)

(A.65)

(A.66)

(A.67)

Now, the noise DFT coefficients is assumed to follow a complex Gaussian

distribution. Thus:

(A.68)
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From (A. 53) it is obvious that Dk = Y k -akejO<k. Thus the conditional probability

distribution of the noisy signal DFT coefficient will be given by:

(A. 59)

-\

Now the MMSE estimation problem is reduced to that of estimating Ak from the

observations of Yk. This estimate Ak is obtained as follows:

Now, using the vector addition rule we may express the integral of OOk as,

Where (3 = OOk - {}k is assumed. From the Integral form of the Modified Bessel

Function, we know,

(2"
In(z) = Jo cos((3n)exp(zcos(3)d(3 (A.72)

We note that the integral of (A.7l) can be expressed as in (A.72) using z = 2ak:k
and n = O. Thus we have from (A.71)
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Substituting this expression in (A.70) we have,

Let us define,

1
A(k)

,,1 1
Ax(k) + Ad(k)
~k

1+ ~k

~k t;>. Ax(k)
Ad(k)
R~

Ad(k)

Thus, (A.74) may be simplified as,

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

To solve these integrals we resolve to the table of integrals provided in [37].

From (6.631.1) of [37]' we have

Where IFl(a;,; z) is the confluent hypergeometric function. Now using the ex-

pression from (8.406.3) of [37] we have:
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For v =c a the expression reduces to

rOO x"e-ax' 10 (f3x)dx =io .
r(~) F (j.L+1'1.j32).
-2a-~(-,,+-1-)1 1 -2-' ,4a '

[Re a > O,Re (a + j.L) > -1]

Now we solve the integrals of (A.79) substituting x = ak, a = )Jk)' j3 = 2'./ ;(%)
and the appropriate value for j.L in (A.83).

~A(k)L5r(1.5hFl(1.5; 1; Vk)
~A(k)lFl(l; 1; Vk)

r(1.5)A(k)1/21Fl(1.5; 1; Vk)

"1
Where we have used the substitutions:

(A.83)

IFl(l; 1; z)

IFl(a; 1'; z)

eZ

e\F1b - a; 1'; -z) [From (9.212.1) of [37J]

The MMSE estimator as expressed in the original paper of Empraim and

Malah is given by:

(A.84)
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