
DT-Chord: Implementing Chord over Delay Tolerant Network

by

Rakib Uddin Ahmed

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA-1000

May, 2011

M. Engg. Project Report

DT-Chord: Implementing Chord over Delay Tolerant
Network

by

Rakib Uddin Ahmed

Submitted to

Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka-1000

May, 2011

 The thesis titled ‘DT-Chord: Implementing Chord over Delay Tolerant
Network’, submitted by Rakib Uddin Ahmed, Roll No. 100705001P, Session: October,
2007, to the Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, has been accepted as satisfactory in partial fulfillment of the
requirements for the degree of Master of Engineering in Computer Science and
Engineering and approved as to its style and contents. Examination was held on May 02,
2011.

Board of Examiners

1. ____________________________
Dr. Reaz Ahmed
Associate Professor
Department of Computer Science and Engineering
BUET, Dhaka-1000.

Chairman

(Supervisor)

2. ____________________________
Dr. Md. Monirul Islam
Professor & Head
Department of Computer Science and Engineering
BUET, Dhaka-1000.

Member

(Ex-officio)

3. ____________________________
Dr. Md. Humayun Kabir
Associate Professor
Department of Computer Science and Engineering
BUET, Dhaka-1000.

Member

4. ____________________________
Dr. Mahmuda Naznin
Associate Professor
Department of Computer Science and Engineering
BUET, Dhaka-1000.

Member

i

Candidate’s Declaration

 This is to certify that the work entitled ‘DT-Chord: Implementing Chord over

Delay Tolerant Network’ is the outcome of the research carried out by me under the

supervision of Dr. Reaz Ahmed in the Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka-1000. It is also declared

that this thesis or any part of it has not been submitted elsewhere for the award of any

degree or diploma.

Rakib Uddin Ahmed

Candidate

ii

To

My Beloved Mother
-without whom I can’t think of me

iii

Contents

Board of Examiners i

Candidate Declaration ii

Acknowledgements viii

Abstract ix

1 Introduction 1
 1.1 Problem Definition....……………………………………………………...4

 1.2 Motivation…………………………………………………………………5

 1.3 Contributions..6

 1.4 Organization...7

2. Background 8
 2.1 Distributed Hash Table...8

 2.2 Chord Protocol...8

 2.2.1 Chord Lookup Algorithm...9

 2.3 Delay Tolerant Network...12

 2.4 Summary..14

3 Proposed System: Delay Tolerant Chord 15
 3.1 Overview..15

 3.2 Design Challenges..15

 3.3 DT-Chord...18

 3.3.1 DT-Chord Neighbor Selection...20

 3.3.2 Chord and DT-Chord Neighbor Selection Example......................22

 3.3.3 DT-Chord Route Selection...24

iv

 3.3.4 Routing State Freshness...26

 3.4 Summary..26

4 Evaluation 27
 4.1 P2P Simulators...27

 4.2 P2PSim...28

 4.3 Experimental Dataset...28

 4.4 Simulation Design..28

 4.4.1 Main Components..28

 4.5 Evaluation Criteria...30

 4.6 Comparison Framework...30

 4.6.1 Performance Metrics..31

 4.6.2 Cost Metric...31

 4.7 Experimental Environment...32

 4.7.1 Simulation Parameters..33

 4.7.2 Results..34

4.8 Effect of Lookup-intensive Workload..39

4.9 Summary..40

5 Performance Tuning of DT-Chord 41

5.1 DT-Chord Parameter Analysis...41

5.2 Effect of Parameters in Churn Intensive DT-Chord...................................42

 5.2.1 Effect of Successor Stabilization Interval......................................42

 5.2.2 Effect of Routing Table Size..46

 5.2.3 Effect of Routing Table Refresh Rate..49

5.3 Effect of Parameters in Lookup Intensive DT-Chord................................52

 5.3.1 Effect of Successor Stabilization Interval......................................54

5.3.2 Effect of Base in Lookup Intensive Workload...............................56

5.3.3 Effect of Fingertimer in Lookup Intensive Workload....................58

5.4 Summary..60

6 Conclusion 61

 6.1 Future Work...62

v

List of Figures

Figure 1.1: Laptops communicating with each other and the Internet via DTN..................2

Figure 1.2: A scenario for understanding the lookup problem...4

Figure 1.3: Flooded queries to find data...5

Figure 1.4: Centralized lookup...6

Figure 2.1: A Chord node's finger table...10

Figure 2.2: The path of a lookup for a key...11

Figure 2.3: The pseudo-code to find the successor node using iterative lookup................12

Figure 2.4: DTN Protocol Stack...14

Figure 3.1: Overlay Network..16

Figure 3.2: An example of DT-Chord overlay over DTN..19

Figure 3.3: DT-Chord Application over DTN Protocol Stack...20

Figure 3.4: Base Chord’s finger table..21

Figure 3.5: DT-Chord’s finger table.. 21

Figure 3.6: Base Chord’s finger table entries...22

Figure 3.7: DT-Chord’s finger table entries.. 23

Figure 3.8: Pseudo-code of DT-Chord’s recursive lookup routing algorithm...................25

Figure 4.1: Major components of simulation...29

Figure 4.2: Tradeoff compared between Chord and DT-Chord with network size 128....35

Figure 4.3: Lookup failure rate of Chord and DTChord with network size 128...............35

Figure 4.4: Tradeoff compared between Chord and DT-Chord with network size 256....36

Figure 4.5: Lookup failure rate of Chord and DTChord with network size 256...............36

Figure 4.6: Tradeoff compared between Chord and DT-Chord with network size 512....37

Figure 4.7: Lookup failure rate of Chord and DTChord with network size 512...............37

Figure 4.8: Tradeoff compared between Chord and DT-Chord (network size 1024).......38

vi

Figure 4.9: Lookup failure rate of Chord and DTChord with network size 1024..............38

Figure 4.10: Chord and DT-Chord under lookup intensive workload....................................39

Figure 5.1: Effect of successor stabilization interval in DTChord.....................................44

Figure 5.2: Effect of successor stabilization interval in DTChord.....................................45

Figure 5.3: Effect of Routing Table Size in DTChord...47

Figure 5.4: Effect of Routing Table Size in DTChord...48

Figure 5.5: Effect of Routing Table Refresh Rate in DTChord...50

Figure 5.6: Effect of Routing Table Refresh Rate in DTChord...51

Figure 5.7 Effects of Parameters in Lookup Intensive DT-Chord.....................................52

Figure 5.8 Effects of Parameters in Lookup Intensive DT-Chord.....................................53

Figure 5.9 Effect of Successor Stabilization Interval in Lookup Intensive Workload.......54

Figure 5.10 Effect of Successor Stabilization Interval in Lookup Intensive Workload.....55

Figure 5.11 Effect of Base in Lookup Intensive Workload...56

Figure 5.12 Effect of Base in Lookup Intensive Workload...57

Figure 5.13 Effect of Fingertimer in Lookup Intensive Workload....................................58

Figure 5.14 Effect of Fingertimer in Lookup Intensive Workload....................................59

vii

List of Tables

Table 3.1: Successor list of Chord nodes...23

Table 3.2: Pair wise latency of node N1..23

Table 4.1: Chord and DT-Chord Simulation Parameters...30

Table 4.2: The effect of successortimer, fingertimer,

 and base in lookup intensive DTChord... 44

viii

Acknowledgement

All praises to Allah, the most benevolent and merciful

I am extremely grateful for the chance to have worked with my advisor, Dr. Reaz Ahmed.

He has provided me enormous help and encouragement throughout this work. His intellect,

rigor, enthusiasm will always inspire me.

I want to thank the other members of my thesis committee: Dr. Md. Monirul Islam,

Dr. Md. Humayun Kabir, and Dr. Mahmuda Naznin for their valuable suggestions.

I cannot forget my friend, Md. Moshiur Rahman for his support.

Finally, I would like to express my gratitude to my mother for her continuous support.

May almighty Allah rewards them all.

ix

Abstract

Delay Tolerant Networks (DTNs) are a class of networks designed to address several

challenging connectivity issues such as sparse connectivity, long or variable delay,

intermittent connectivity, asymmetric data rate, high latency, high error rates and even no

end-to-end connectivity. The DTN architecture adopts a store-and-forward paradigm and a

common bundle layer located on the top of region-specific network protocols in order to

provide interoperability of heterogeneous networks (regions). In this type of network, a

source node originates a message (bundle) that is forwarded to an intermediate node (fixed

or mobile) thought to be more close to the destination node. The intermediate node stores

the message and carries it while a contact is not available. Then the process is repeated, so

the message will be relayed hop by hop until reaching its destination. A fundamental

problem that confronts future applications of DTN is how to efficiently locate the DTN

node that stores a particular data item. In this case, flooding search seems to be the only

method. However, this usually results in so-called broadcast storm problem, which leads

to significant performance degradation in DTN.

Distributed hash table (DHT) based protocols provide near-optimum data lookup time for

resolving queries made on large P2P network. Lookup latency is important to applications

that use DHTs to locate data. In order to achieve low latency lookups, each node needs to

consume bandwidth to keep its routing tables up to date under churn. This thesis presents

DT-Chord- a DHT based application protocol for Delay Tolerant Network that minimizes

delay while locating data in DTN. This thesis also shows performance comparisons

between base Chord and DT-Chord protocols over Delay Tolerant Network. Finally, we

provide a methodology to determine the relative importance of tuning application protocol

parameters under different workloads and network conditions.

x

Chapter 1

1. Introduction

Delay-tolerant networks (DTN) [1] are a promising new development in network research,

that offer the hope of connecting people and devices that hitherto were either unable to

communicate, or could do so only at great cost. For example, today it is possible to

connect from a cell phone to millions of powerful servers around the world. As successful

as these networks have been, they still cannot reach everywhere, and for some

applications their cost is prohibitive. The reason for these limitations is that current

networking technology relies on a set of fundamental assumptions that are not true in all

environments. The first and most important assumption is that an end-to-end connection

exists from the source to the destination, possibly via multiple intermediaries. This

assumption can be easily violated due to mobility, power saving, or unreliable networks.

For example, if a wireless device is out of range of the network (e.g. the nearest cell tower,

802.11 base station, etc.), it cannot use any application that requires network

communication. Delay-tolerant networking is an attempt to extend the reach of networks.

It promises to enable communication between “challenged” networks, which includes

deep space networks [2], data MULEs [3], underwater networks [4], wildlife tracking sensor

networks like ZebraNet [5], and opportunistic mobile ad-hoc networks [6]. The core idea is

that these networks can be connected if protocols are designed to accommodate

disconnection.

As an example of where these networks are useful, consider a classroom where each

student has a laptop, but there is no network infrastructure. One would like the students to

collaborate on projects using the wireless network cards in the laptops, and also to

communicate with the Internet. Delay-tolerant networking can make this happen, as

illustrated in Figure 1.1. The laptops communicate with each other to exchange data. If

the destination laptop is not present, which may occur if the student has gone home, the

CHAPTER 1: INTRODUCTION 2

network stores the messages until they return. To communicate with the Internet, the

school could be serviced via a router attached to a bus traveling between the school and

an Internet gateway. This device picks up requests from the school and delivers them to

the gateway, and then provides the responses on its next trip. First Mile Solutions sells a

system called DakNet that is based on this idea [7], while the Wizzy Digital Courier

Project uses a simple one-hop delay tolerant network to provide Internet access to rural

South African schools [8].

Internet GatewayMobile DeviceAd-hoc DTN

Figure 1.1: Laptops communicating with each other and the Internet via delay-tolerant

networking

There are many other applications for delay-tolerant networks. In developing regions,

applications range from education to health care to government services [9]. In developed

nations, researchers have proposed augmenting low bandwidth Internet connections with

a high-bandwidth delay tolerant network built by sending physical media, such as DVDs,

through the postal system [10]. This allows very large files to be quickly and cheaply

exchanged while small files and control messages are exchanged over a low bandwidth

link. Others have investigated using DTNs to provide Internet access to cars, by

connecting temporarily to roadside wireless base stations [11]. DTNs could also be used

to gather data from everything ranging from sensors in oceans [12], to satellites in space

[3].

Peer-to-Peer (P2P) technology offers alternative communication architecture from

traditional client-server architecture. Nowadays, the most popular usage of P2P

technology is file sharing among users. In a P2P file-sharing network, users can publish

CHAPTER 1: INTRODUCTION 3

and share their own possessions with others which are currently online. P2P users can

also download interesting files from others. Unstructured or less-structure P2P protocols,

as their names suggested, have no or little restriction on the structure of the overlay.

Hence, it is difficult for users to locate the resources they need in an unstructured P2P

network. In such cases, flooding search seems to be the only method to locate an object.

However, this usually results in so-called broadcast storm problem, which leads to

significant performance degradation in DTN. On the other hand, structured P2P protocols,

such as Chord [14], Pastry [15], Tapestry [16] and CAN [17], are designed for locating

objects effectively in wired networks. These structured protocols form a fully organized

overlay with the proposed protocols. Logarithmic complexity is achievable for key

operations such as joining, maintaining, or querying in the P2P overlay. Due to the

attractive low overhead, researchers paid lots of attention on Chord [13, 18, 19, 20, 21,

22]. Researchers strived to enhance the overlay performance and to apply it to large scale

deployment. Nevertheless, these P2P protocols usually assume reliable communication

among nodes. This is true in wired network but difficult to achieve in Delay Tolerant

Network.

Chord [14] is one of the popular structured P2P protocols. Chord is usually deployed on

application layer as a P2P overlay. Chord behaves elegantly because of the simplicity of

the design and scalability to construct large-scale overlay network with low complexity.

In a N-node Chord overlay, each node only have to keep contact just O(logN) nodes, and

a query can be done within O(logN) steps. Furthermore, nodes only need to maintain few

local information (successor and predecessor) in order to guarantee the consistency of

Chord. However, previous work has addressed some problems and challenges to Chord

operating in wireless and mobile networking environments. One problem is Chord

overlay can efficiently operate in stable networks where churn rate is low. In highly

dynamic networks like DTN, the routing table maintenance cost is very high. The

communication overhead for maintaining a virtual overlay network in a challenged

environment and the performance penalty arising from routing in this virtual overlay are

deemed to be main issues.

CHAPTER 1: INTRODUCTION 4

1.1 Problem Definition

A fundamental problem that confronts future applications of DTN is how to efficiently

locate the DTN node that stores a particular data item. In this case, flooding search seems

to be the only method. It is robust, but asking every node is very expensive. In worst case,

O(N) messages are required per lookup . Asking only some nodes might not find key. The

obvious downside of flooding is that it generates loads of unnecessary traffic that

consumes resources that may be scarce in a DTN (e.g., bandwidth, power, storage

capacity). It is known that distributed hash table (DHT) based Internet peer-to-peer (P2P)

protocols provide near-optimum data lookup times for queries made on networks of

distributed nodes. In DHT based lookup protocol, the efficiency measure the number of

application-level hops taken on the path. However, the true efficiency measure is the end-

to-end latency of the path. Because the nodes could be geographically dispersed, some of

these application-level hops could involve transcontinental links, and others merely trips

across a LAN; routing algorithms that ignore the latencies of individual hops are likely to

result in high latency paths. A generic mapping of these protocols to delay tolerant

network is, however perceived as difficult.

Network

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

Figure 1.2: A scenario for understanding the lookup problem

CHAPTER 1: INTRODUCTION 5

N4
Publisher@

Client

N6

N9

N7
N8

N3

N2N1

Key=“title”
Value=MP3 data…

Lookup(“title”)

Figure 1.3: Flooded queries to find data

1.2 Motivation

Retrieving information from the Web has become part of our daily lives. In many

applications such as distributed wikis or photo sharing, users need to be able to find

content. In order do bring these applications to the domain of DTNs, a lookup scheme is

required that works despite the challenging network conditions. A search engine helps by

mapping lookup queries to resource locators that are likely to point to content including

the sought information. However, there are scenarios in which communicating with a

search engine is not an appealing or even suitable option. Such situations occur, for

example, when the desired information may be available from the vicinity via a local

wireless (ad-hoc) network and a connection to the search engine is unavailable or not

reliable. In this case, a search mechanism is desirable that allows directly querying other

nodes in an unreliable networking environment.

The traditional approach to map lookup queries to resources is implemented by

maintaining an index about the resources. The index contains keywords and maps them to

sets of related resources. This can be used to map a query consisting of several keywords

to a list of suggested lookup results. Examples of centralized search engines using such

indices are Google, MSN, and Yahoo. The problem with such centralized services is that

CHAPTER 1: INTRODUCTION 6

it is expensive to keep the index up-to-date and the assumption is made that the clients

can reach both the index and the locations where the contents reside. There are

approaches for managing decentralized indexes in peer-to-peer environments. We

investigate how to perform lookup of contents in delay-tolerant networks using

distributed and decentralized index.

Publisher@

Client
Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1

SetLoc(“title”, N4)

Key=“title”
Value=MP3 data…

N4

Figure 1.4: Centralized lookup

1.3 Contributions

The contributions of this thesis are:

1. A DHT based lookup protocol, DT-Chord that minimizes delay while locating data in

DTN.

2. A study for understanding the relationship between communication costs and the

resulting performance benefits.

3. A comparative performance study to determine the relative importance of tuning

protocol parameters under different workloads and network conditions.

Apart from the above contributions, this thesis presents a different style of designing

distributed protocols. We argue that a distributed protocol over DTN should be conscious

of its communication overhead in order to stay robust across a wide range of operating

environments. We demonstrate how to design such a cost aware protocol that uses the

bandwidth resource sparingly and efficiently.

CHAPTER 1: INTRODUCTION 7

1.4 Organization

The focus of this thesis is to implement Chord over Delay Tolerant Network. The rest of

this project is organized as follows: the first chapter describes the motivation and goal of

the thesis.

Chapter 2: Background

Chapter 2 is divided into two parts. First part describes distributed hash table (DHT) based

peer-to-peer (P2P) lookup protocol, Chord. Second part of this chapter provides a brief

introduction of Delay Tolerant Network Architecture.

Chapter 3: Proposed System: Delay Tolerant Chord

Chapter 3 describes the design and implementation of DT-Chord, a DHT based lookup

protocol for delay tolerant network. We explain the design principles of DT-Chord's

neighbor selection and routing algorithm followed by the protocol details.

Chapter 4: Performance Evaluation

Chapter 4 presents a comparative performance evaluation of DT-Chord against Chord.

We present the simulation results of DT-Chord implementation over DTN along with

brief discussion on the simulator P2PSim [23] and experimental dataset.

Chapter 5: Performance Tuning of DT-Chord

Chapter 5 explores the parameter space to find DT-Chord's latency vs. bandwidth tradeoff

and compare the efficiencies of different design choices. We evaluate how efficiently

different design choices use additional bandwidth for better lookup performance.

Chapter 6: Conclusion and Future Research

Concluding remarks are presented in Chapter 6. This chapter also presents our future

research goals and possible research.

Chapter 2

Background

2.1 Distributed Hash Table (DHT)

A hash-table interface is an attractive foundation for a distributed lookup algorithm

because it places few constraints on the structure of keys or the data they name. The main

requirements are that data be identified using unique numeric keys, and that nodes be

willing to store keys for each other. This organization is in contrast to Napster and

Gnutella, which search for keywords, and assume that data is primarily stored on the

publisher’s node. However, such systems could still benefit from a distributed hash

table—for example, Napster’s centralized database recording the mapping between nodes

and songs could be replaced by a distributed hash table. A DHT implements just one

operation: lookup(key) yields the identity (e.g., IP address) of the node currently

responsible for the given key. A simple distributed storage application might use this

interface as follows. Someone who wants to publish a file under a particular unique name

would convert the name to a numeric key using an ordinary hash function such as SHA-1,

then call lookup(key). The publisher would send the file to be stored at the resulting node.

Someone wishing to read that file would obtain its name, convert it to a key, call

lookup(key), and ask the resulting node for a copy of the file. A complete storage system

would have to take care of replication, caching, authentication, and other issues; these are

outside the immediate scope of the lookup problem.

2.2 Chord Protocol

Chord [14] assigns ID’s to both keys and nodes from the same one-dimensional ID space.

Chord Each Chord node has a unique m bit node identifier (ID), obtained by hashing the

CHAPTER 2: BACKGROUND 9

node’s IP address. Chord views the IDs as occupying a circular identifier space. Keys are

also mapped into this ID space, by hashing them to m-bit key IDs. The node responsible

for a key is the node with the identifier which most closely follows the key in the circular

key space; we refer to this node as the successor of k and to the several nodes after k as

the successor list of k. In Figure 2.2, the successor of key K10 is node N17. Note that N9

(the predecessor of the key) maintains pointer to the node N17 and can definitively return

K10's successor. Chord maintains a routing table of logN pointers to other nodes in the

system and can resolve a mapping by sending logN messages, where N is the number of

nodes in the system. Because Chord keeps a small amount of state, it is able to maintain

the state efficiently in large or unstable systems.

2.2.1 Chord Lookup Algorithm

A Chord node uses two data structures to perform lookups: a successor list and a finger

table. Only the successor list is required for correctness, so Chord is careful to maintain

its accuracy. The finger table accelerates lookups, but does not need to be accurate, so

Chord is less aggressive about maintaining it. The following discussion first describes

how to perform correct (but slow) lookups with the successor list, and then describes how

to accelerate them up with the finger table. Every Chord node maintains a list of the

identities and IP addresses of its r immediate successors on the Chord ring. The fact that

every node knows its own successor means that a node can always process a lookup

correctly: if the desired key is between the node and its successor, the latter node is the

key’s successor; otherwise the lookup can be forwarded to the successor, which moves

the lookup strictly closer to its destination.

A new node n learns of its successors when it first joins the Chord ring, by asking an

existing node to perform a lookup for n’s successor; n then asks that successor for its

successor list. The r entries in the list provide fault tolerance: if a node’s immediate

successor does not respond, the node can substitute the second entry in its successor list.

All r successors would have to simultaneously fail in order to disrupt the Chord ring, an

event that can be made very improbable with modest values of r. An implementation

CHAPTER 2: BACKGROUND 10

should use a fixed r, chosen to be 2log2N for the foreseeable maximum number of nodes

N.

Lookups performed only with successor lists would require an average of N/2 message

exchanges, where N is the number of servers. To reduce the number of messages required

to O(logN), each node maintains a finger table with m entries. The ith entry in the table at

node n contains the identity of the first node that succeeds n by at least 2i (0 ≤ i < m) on

the ID circle. Thus every node knows the identities of nodes at power-of-two intervals on

the ID circle from its own position. A new node initializes its finger table by querying an

existing node. Existing nodes whose finger table or successor list entries should refer to

the new node find out about it by periodic lookups.

88
160

56

40

17
24

28
30

32

Figure 2.1: A Chord node's finger table. Each node maintains logN pointers to other nodes.
The pointers are spaced exponentially around the ring (i.e. ½, ¼, ⅛ … of the way around the
ring). In the example above, node N24's routing table is shown. The most distant finger of
node 24 points to the first node that is more than half-way around the ring (after 24 + 256/2 =
152); this is node N160 in the example. This spacing allows a lookup to halve the distance to
the target at each step. Lookups complete in logN time.

CHAPTER 2: BACKGROUND 11

88
160

56

40

17
24

28
30

32

93

175

192

224

240 k10

Figure 2.2: The path of a lookup for key K10 originated at node N24.

As shown in Figure 2.2, to find a key's successor using the finger table, a node routes the

request greedily in ID space. At each step, the requesting node consults the node that is

closest to the key's ID but still precedes the key on the ring. That node replies with the

identity of the best next hop node. Eventually the requesting node will contact the key's

predecessor, which will return its successor list: the answer to the lookup query. Because

of the power-of-two distribution of a node's finger table, the node will always have a

pointer that is at least half of the distance to the key at each step in the lookup. Because

the distance remaining to the key is halved at each step of the lookup, we expect a lookup

to require O(logN) hops. Figure 2.2 shows the path taken by an example lookup. The base

Chord algorithm is iterative. In iterative lookup (Figure 2.3) intermediate nodes send

information about possible next hop nodes to the originating before the lookup can

proceed.

CHAPTER 2: BACKGROUND 12

// Ask node n to find id's successor; first

// finds id's predecessor, then asks that

// predecessor for its own successor.

n.find_successor(id)

n΄ = find_predecessor(id);

return n΄.successor list();

// Ask node n to find id's predecessor.

n.find predecessor(id)

n΄ =n;

while (id = ∉ (n΄, n΄.successor()])

l = n΄.closest_predecessor_list(id);

n΄= max n″∈l s.t. n″ is alive

return n΄;

// Ask node n for the node in its finger table or

// successor list that most closely precedes id.

n.closest_predecessor_list(id)

return { n΄ ∈{fingers U successors} s.t. n΄ ∈ (n, id]}

Figure 2.3: The pseudo-code to find the successor node of an identifier id using iterative

lookup. Remote procedure calls are preceded by the remote node.

2.3 Delay Tolerant Network

The ability to transport, or route, data from a source to a destination is a fundamental

ability all communication networks must have. Delay tolerant networks (DTNs), are

characterized by their lack of connectivity, resulting in a lack of instantaneous end-to-end

paths. A delay-tolerant network is an overlay on top of a number of diverse regional

networks, including the Internet. Within a DTN, the regional networks may be extremely

CHAPTER 2: BACKGROUND 13

remote in terms of delay, and may employ, for example, different wireless technologies.

The DTN overlay accommodates these varying network characteristics and provides a

service that works regardless of “difficult” conditions in the underlying networks.

The motivation for DTN is that in certain situations the protocols used in the internet

simply do not work. Examples of such situations are partitioned networks, highly

asymmetric data rates, high error rates and long delays. A typical use-case for a DTN is

an interplanetary network, e.g. a satellite orbiting Earth communicating with another

satellite orbiting Mars.

DTN works by introducing a new protocol layer, the bundle layer, on top of the transport

layer (Figure: 2.4). The transport protocols used in the underlying regional networks need

not be the same – the bundle layer is the glue that binds all the various lower layers

together. The applications in the DTN only need to communicate with the homogenous

bundle layer. We emphasize that our goal is to implement Chord over DTN at the

application level. So, we left the detailed discussion of other protocol layers of DTN.

Bundles are messages that consist of the bundle header, control information (provided by

the source application for the destination application) and user data. In essence, a bundle

just extends the data encapsulation hierarchy with one further level. The bundle layer has

a set of mechanisms to overcome the difficulties of intermittent, long delay networks. The

basic idea is to use store-and-forward message switching, i.e. hold bundles in a persistent

storage along the communication path until the next hop comes available. An end-to-end

path need not exist when the bundle is initially sent. Also, the bundle layer protocol is

non-conversational in the sense that the nodes communicate between each other using

simple sessions with minimal or no round-trips.

CHAPTER 2: BACKGROUND 14

Network

Link

Physical

Network

TransportTransport

Physical

Link

Application Application

Bundle
(potential delay)

Bundle
(potential delay)

Figure 2.4: DTN Protocol Stack

Acknowledgments from the receiving node are optional. To cope with long delays while

still allowing TCP (or some other conversational protocol) to be used as the underlying

protocol in some parts of the network, the bundle layer utilizes transport-layer termination.

This means that a DTN node acts as a surrogate for a TCP end-node, isolating the TCP

connection from the bundle layer.

2.4 Summary

Distributed hash table (DHT) based peer-to-peer (P2P) protocols provide near-optimum data

lookup time for resolving queries made on large P2P network. In a DTN, an end-to-end path

may not be available at all times and path latency may be comparatively large. So, application

protocols need to tolerate the delay resulting from the environmental challenges.

Chapter 3

Proposed System: DT-Chord

3.1 Overview

We address the problem of efficient resource retrieval in challenged scenarios.

Distributed Hash Tables (DHTs) organize the peer-to-peer network in a structured

manner to provide a hash-table-like lookup interface. Use of traditional P2P approaches

proposed for reliable and connected wireless networks does not always show

effectiveness in challenged networks. Chord [14] is one of the popular structured P2P

protocols. Chord is usually deployed on application layer as a P2P overlay. A generic

mapping of Chord protocol to Delay-tolerant Network is, however perceived as difficult.

We investigate approach that improves the efficiency of the peer/resource lookup

algorithm in DTN. The strategies that we use to reduce lookup latency are lowest delay

neighbor selection, large routing tables and also recursive lookup routing. With lowest

delay neighbor selection, a node chooses each of its neighbors to be the one with the

lowest network delay among a set of qualified nodes. The actual network delay of each

hop is reduced even though the number of hops remains the same. An alternative is to

increase the per-node routing table size, when bandwidth is available. Intuitively, the

more neighbors each node knows about, the fewer hops are required during lookups.

3.2 Design Challenges

To find a particular piece of data within the network current DTN applications typically

provide lookup functions using controlled-flooding mechanisms. With this approach, the

querying node wraps the query in a single message and sends it to all known neighbors.

CHAPTER 3: DELAY TOLERANT CHORD 16

The neighbors then check to see whether they can reply to the query by matching it to

keys in their internal database. If they find a match, they reply; otherwise, they forward

the query to their own neighbors. However, flooding-based systems don’t scale well

because of the bandwidth and processing requirements they place on the network, and

they provide no guarantees as to lookup times or content accessibility. Overlay networks

can address these issues. Overlay networks have a network semantics layer above the

basic transport protocol level that organizes the network topology according to the nodes’

content, implementing a distributed hash table abstraction that provides load balancing,

query forwarding, and bounded lookup times. Current overlay networks are useful for

applications that require reliable, highly scalable, and self organizing storage and lookup

for unique key–value pairs. This includes distributed databases, processing clusters, and

deterministic search applications. Peer-to-peer overlays can efficiently operate in stable

networks where churn rate is low. In highly dynamic networks like DTN, the routing

table maintenance cost is very high. DHT’s have a routing table comprised of neighbors.

In the original Chord DHT proposal, algorithm made this choice of neighbors purely

deterministic (i.e., given the set of identifier in the system, the neighbors tables were

completely determined). Given a set of neighbors, and a destination, the routing algorithm

determines the choice of the next hop. The problem of deterministic neighbor selection is:

all links in the “Routing Network” may have high latency.

Figure 3.1: Overlay Network

CHAPTER 3: DELAY TOLERANT CHORD 17

The latency of a lookup is the time taken to route a message to the responsible node for

the key and receive a reply back. Low lookup latency is crucial for building fast

DHT-based applications over DTN. Most existing work on optimizing DHT performance

focuses on achieving low latency in static networks. This latency depends largely on two

factors: the average number of hops per lookup (i.e. the underlying network delay

incurred at each hop) and the average number of timeouts incurred during a lookup. A

node can aggressively maintain the freshness of a smaller routing table (thus minimizing

timeouts), or to look for new nodes to enlarge the table (thus minimizing lookup hops but

perhaps risking timeouts). Highly dynamic network like DTN experiences churn: nodes

continuously join and leave the system. Churn poses two problems for routing. First, it

causes routing tables to become out of date and to contain stale entries that point to

neighbors that are dead or have already left the system. Stale entries result in expensive

lookup timeouts as it takes multiple round-trip time for a node to detect a lost lookup

message and re-route it through a different neighbor. In static networks, the number of

lookup hops and the network delay at each hop determine the end-to-end lookup latency.

Under churn, timeouts dominate latency. Second, as new nodes join the system and stale

routing entries are deleted, nodes need a way to replenish their routing tables with new

entries.

The ideal protocol should be able to adapt its routing table size to provide the best

performance using bounded communication overhead. In addition to deciding on the best

table size, a DHT should choose the most efficient way of spending bandwidth to keep

routing tables up to date under churn. For example, a node could periodically ping each

routing entry to check its liveness and search for a replacement entry if an existing

neighbor is found to be dead. Intuitively, the faster a node pings, the less likely it is that

lookups will encounter timeouts. However, periodic pinging generates overhead messages.

The more a node pings, the less bandwidth it has for other uses. In fact, all techniques to

cope with churn require extra communication bandwidth in order to evaluate the liveness

of existing neighbors and learn about new neighbors. Intuitively, bandwidth consumption

increases with the size of the routing table and the churn rate in the network. In other

words, churn is a challenge because nodes can only use a finite amount of bandwidth

resource. Therefore, the goal of DT-Chord is not to simply achieve low lookup latency

CHAPTER 3: DELAY TOLERANT CHORD 18

under churn, but to achieve low latency efficiently with bounded bandwidth overhead. In

other words, we are interested in the latency reduction per byte of communication

overhead, also referred to as latency versus bandwidth tradeoff.

A DHT’s routing structure determines from which regions of identifier space a node

chooses its neighbors. The ideal routing structure should be both flexible and scalable.

With a flexible routing structure, a node is able to expand and contract the size of the

routing table along a continuum in response to churn and available bandwidth. With a

scalable routing structure, even a very small routing table can lead to efficient lookups in

a few hops. However, most DHT routing structures are scalable but not flexible and

constrain about routing table sizes are possible. In Chord, the expected number of

neighbors per node in a network of n DHT nodes is (b-1)logbn. The parameter base (b)

controls the table size, but it can only take values that are powers of 2, making it difficult

to adjust the table size smoothly.

3.3 DT-Chord (Delay Tolerant Chord)

We propose DT-Chord enhancement to improve the performance of base Chord over

Delay Tolerant Network. Figure 3.2 shows an illustrative example of a DT-Chord overlay

network over DTN and Figure 3.3 shows the DT-Chord application over DTN. The

original Chord proposal defines a specific set of neighbors for a given node identifier.

Specifically, routing can be achieved in O(logN) hops even if node a were to pick its ith

neighbor as any node in the ID space range a+2i to a+2i+1-1 rather than the exact node

closest to a+2i as originally defined by Chord [14, 32], where 0 ≤ i < m (m= no. of bits in

the ID space) and base, b=2. The main idea of our scheme is to maintain the lowest delay

node for each finger in its ID-space range. To obtain each ith finger, a node retrieves the

successor list from a node with ID 2i away from itself and chooses the node in the ID

space range [a+2i, a+2i+1) closest in network latency to itself as the ith finger. While

DTN applications are expected to be tolerant of delay, this does not mean that they would

not benefit from decreased delay. Minimizing delay lowers the time messages spend in

the network, which improves the probability of successful lookup and also reduces the

communication cost.

CHAPTER 3: DELAY TOLERANT CHORD 19

000

101

100

011

010

001

110

111

Figure 3.2: An example of DT-Chord overlay over DTN

An optimization to Chord is increasing the amount of information that Chord keeps about

other nodes in the system. One way to do this would be to change the base of the finger

table. By keeping a larger finger table, each hop could move ¾ of the way to the target,

for example, instead of half way. In general, by increasing the size of the routing table to

(b-1)logbN, Chord can achieve logbN hop lookups [14]. These optimizations would reduce

latency under low churn, because each node would know about many other nodes. On the

other hand, in high churn networks, these optimizations require more bandwidth to keep

routing tables up to date and experience more timeouts because routing tables contain

recently-failed nodes.

CHAPTER 3: DELAY TOLERANT CHORD 20

Network

Link

Physical

Network

TransportTransport

Physical

Link

DT-Chord DT-Chord

Bundle
(potential delay)

Bundle
(potential delay)

Figure 3.3: DT-Chord Application over DTN Protocol Stack

3.3.1 DT-Chord Neighbor Selection

In DT-Chord, a node in base-b keeps (b−1) logb(n) fingers whose IDs lie at exponentially

increasing fractions of the ID space away from itself. Any node whose ID lies within the

range m
1

2 *1
⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

b
bx

i

 and m2 *1
⎟
⎠
⎞

⎜
⎝
⎛ −

+
b

bx
i

, modulo 2m, can be used as the ith finger of x,

where m is the number of bits in the ID space and 0 ≤ i < m. To obtain each ith finger, a

node retrieves the successor list of nsucc nodes from a node with ID ⎟
⎠
⎞

⎜
⎝
⎛ −

+
b

bx
i1 away from

itself and chooses the node closest in network latency to itself as the ith finger. Each node

also keeps a successor list of size nsucc, containing the node’s first nsucc successors. A node

x periodically pings all its fingers to check their liveness. For each finger found dead, the

node issues a lookup for replacement of finger. A node separately stabilizes its successor

list by periodically retrieving and merging its successor’s successor list; successor

stabilization is separate because it is critical for correctness but is much cheaper than

finger stabilization. Figure 3.4 and 3.5 show a simple scenario of Chord and DT-Chord

CHAPTER 3: DELAY TOLERANT CHORD 21

neighbor selection and Figure 3.6 and 3.7 show the Chord and DT-Chord neighbor

selection example in detail.

000

ValueKey

Chord Finger Table of 000

001

001000 + 001

010000 + 010

100000 + 100

Figure 3.4: Base Chord has a deterministic and rigid finger table

000

101

100

011

010

001

110

111

3 sec

7 sec

5 sec
9 sec

4 sec

6 sec

Successor List
Node Successor List

000 001, 010

001 010,011

010 011, 100

011 100, 101

100 101, 110

--- --- ---

000 + 001 [001, 010) 001

DT-Chord Finger Table of 000

000 + 010 [010, 100) Choose

000 + 100 Choose[100, 000)

Range Choose

011

101

Figure 3.5: DT-Chord’s finger table. In the figure, to obtain 1st, 2nd and 3rd finger, DT-
Chord node 000 retrieves the successor list of node 001, 010, 100 and chooses the node
in the ID space range [001, 010), [010, 100), [100, 000) respectively closest in network
latency to itself (Here, 001, 011 and 101). In this way, it will choose every node’s finger’s
entry.

101

100

011

111

110 010

CHAPTER 3: DELAY TOLERANT CHORD 22

3.3.2 Chord and DT-Chord Neighbor Selection Example in Detail

(a) Chord Neighbor Selection

Let the number of bits in the key/node identifiers are 4 and base=2. Each node n

maintains a routing table with up to 4 entries, called the finger table. The ith entry in the

table at node n contains the identity of the first node s that succeeds n by at least 2i on the

identifier circle, i.e., s = successor(n+2i), where 0 ≤ i < m (and all arithmetic is modulo

2m). Note that the first finger of n is the immediate successor of n on the circle; for

convenience we often refer to the first finger as the successor. To increase robustness,

each Chord node maintains a successor list of size r, containing the node’s first r

successors.

N1

N5

N8

N10

N2

N7

N11

N13

N15

N3

N4

Chord Finger Table of
Node 1 (N1)

N1+20 N2

N1+21 N3

N1+22 N5

N1+23 N10

Figure 3.6: Chord finger table entries for node N1

The example in figure 3.6 shows the base Chord finger table of node 1 (N1). The first

finger of node 1 points to node 2, as node 2 is the first node that succeeds (1+20) mod 24 =

2. Similarly, the last finger of node 1 points to node 10, as node 10 is the first node that

succeeds (1+23) mod 24 = 10.

CHAPTER 3: DELAY TOLERANT CHORD 23

(b) DT-Chord Neighbor Selection

Let, each DT-Chord node have 2 successors. The successor list of every nodes and the

pair wise latency between node N1 and other nodes in the systems are given below:

Node Successor List

1 2, 3

2 3, 4

3 4, 5

4 5, 9

5 7, 8

7 8, 10

8 10, 11

10 11, 13

--- --- ---

Node Delay

2 4 sec

3 5 sec

4 3 sec

5 7 sec

7 9 sec

8 4 sec

10 6 sec

11 5 sec

13 8 sec

--- --- ---

Table 3.1: Successor list of Chord nodes

Table 3.2: Pair wise latency of node N1

N1

N5

N8

N10

N2

N7

N11

N13

N15

N3

N4

 Range Choose

N1+20 [2, 3) N2

N1+21 [3, 5) N4

N1+22 [5, 9) N8

N1+23 [9, 16) N11

Figure 3.7: DT-Chord finger table entries for node N1

CHAPTER 3: DELAY TOLERANT CHORD 24

The example in Figure 3.7 shows the DT-Chord finger table of node N1. The 1st finger of

node N1 points to node 2, as node 2 is the only node in the range [2, 3). So, there is no

option to choose lowest delay neighbor. To obtain 2nd finger, node N1 retrieves the

successor list from the node N3 (N1+21= N3) and chooses the node from the list [3, 4]

that lies in the ID space range [3, 5) closest in network latency to itself. From the table

3.2, we can see that the 2nd finger of N1 will be N4. Similarly to obtain 3rd finger, node

N1 retrieves the successor list from the node N5 (N1+22= N5) and chooses the node from

the list [5, 7, 8] that lies in the ID space range [5, 9) closest in network latency to N1. So,

the 3rd finger of N1 will be N8. The last (4th) finger of N1 will be N11, as N11 is the node

that has lowest latency to N1, among the node N10 (N1+23= N10, as there is no node,

N9) and its successor list that lies in the ID space range [9, 16).

3.3.3 DT-Chord Route Selection

The base Chord lookup routing algorithm is iterative. We use recursive lookup routing

algorithm in DT-Chord. Here, the requesting node forwards the lookup to the first hop

which forwards in turns forwards the request to the next best hop (instead of returning

information about the next best hop to the requester). When the lookup reaches the key’s

predecessor, the predecessor sends a message to the node that originated the lookup with

the results of the lookup. Figure 3.8 shows the pseudo code for recursive lookup using

finger tables. Note that no messages are sent to the originating node prior to the lookup's

completion.

While recursive lookup has lower latency than iterative, iterative is easier for a client to

manage. If a recursive lookup elicits no response, the originator has no information about

what went wrong and how to re-try in a way that is more likely to succeed. Sometimes a

simple re-try may work, as in the case of lost packets. If the problem is that each

successive node can talk to the next node, but that Internet routing anomalies prevent the

last node from replying to the originator, then re-tries won't work because only the

originator realizes a problem exists. In contrast, the originator knows which hop of an

iterative lookup failed to respond, and can re-try that hop through a different node in the

CHAPTER 3: DELAY TOLERANT CHORD 25

same region of the identifier space. On the other hand, recursive communication may

make congestion control easier. DT-Chord uses recursive lookups by default since they

are faster, but could fall back on iterative lookups after persistent failures.

// ask node n to find the successor of id

// This lookup is being done on behalf of node orig

n.find_successor(id, orig)

if (id ∈ (n, successor])

orig.lookup_done(successor_list);

else

n΄ = closest preceding_node(id);

n΄.find_successor(id);

// search the local table for the highest predecessor of id

n.closest_preceding_node(id)

for i = m downto 1

if (finger[i] ∈ (n, id))

return finger[i];

return n;

// called when a lookup completes. Return the results

// of the lookup to the user

n.lookup_done(successors)

Figure 3.8: DT-Chord’s recursive lookup using the finger table. find_successor returns

the successors of key id by forwarding the lookup to the finger table entry that is closest

to the target. Note that finger[0] is the node's successor.

CHAPTER 3: DELAY TOLERANT CHORD 26

3.3.4 Routing State Freshness

A node must strike a balance between the freshness and the size of its routing table.

Nodes need to judge the freshness of entries to decide when to evict nodes, in order to

limit the number of expected lookup timeouts. Timeouts are expensive as nodes need to

wait multiple round trip times to declare the lookup message failed before re-issuing it to

a different neighbor. In order to avoid timeouts, DT-Chord nodes contact each neighbor

periodically to determine the routing entry’s liveness. In other words, a node can control

its routing state freshness by evicting neighbors from its routing table that it has not

successfully contacted for some interval. If the available bandwidth were infinite, the

node could ping each neighbor often to maintain fresh tables of arbitrarily large size.

However, with a finite bandwidth, a node must somehow make a tradeoff between the

freshness and the size of its routing table.

Since nodes need to keep their maintenance traffic according to available bandwidth, they

can only refresh or learn about new neighbors at some finite rate. For example, if a node’s

available bandwidth is 20 bytes per second, and learning liveness information for a single

neighbor costs 4 bytes (e.g., the neighbor’s IP address), then at most a node could refresh

or learn routing table entries for 5 nodes per second.

3.4 Summary

In this chapter, we have proposed a DHT based lookup protocol for DTN, DT-Chord - an

efficient lookup protocol that minimizes delay while locating data in DTN and have discussed

the theoretical background of DT-Chord.

Chapter 4

Evaluation

4.1 P2P Simulators

In this section we enlisted some P2P simulators. The P2P research community has not

come to a consensus on standardizing a simulation platform for simulating the research

projects from numerous working groups. From the survey presented in [24], it can be

observed that more than 90% of P2P research was tested in non-standard or custom-made

simulation environments. Yet there are a number of freely available P2P-simulators on

the Internet. Most of these simulators are still at the early stages of implementation; it will

take a while for these simulators to achieve maturity. A comprehensive survey on P2P

simulators can be found in [24].

For our experiments we have used P2PSim, which is described in the next section. Few

P2P simulators that we considered as possible alternatives for P2PSim are listed below:

• PlanetSim [25]

• PeerSim[26]

• GPS [27]

• 3LS [28]

• Query-Cycle Simulator [29]

• NeuroGrid [33]

• PlanetSim [34]

CHAPTER 4: EVALUATION 28

4.2 P2PSim

We have implemented DT-Chord in P2PSim [23] for our experiments. P2PSim is an open

source, discrete event simulator intended to compare, evaluate, and explore peer-to-peer

protocols. Like other P2P simulators it does not consider the underlying network

communication stack for monitoring network layer performance, rather the focus is on the

overlay layer. In our simulation, the simulated network models only packet delay. One

input to the simulator is a full matrix of the round-trip delays between each pair of

simulated hosts. This approach avoids having to simulate the Internet’s topology, a

currently open area of research; it requires only the measurement of actual pair-wise

delays among a set of hosts. The simulator can produce useful speed-of-light delay results,

but cannot be used to predict throughput or queuing delay. This suffices for our

experiments where network latency is the bottleneck.

4.3 Experimental Dataset

The simulated network, consists of 128, 256, 512, 1024 nodes with a pair wise latency

matrix derived from measuring the inter-node latencies of 128, 256, 512, 1024 DNS

servers respectively using the King method [30].

4.4 Simulation Design

In this section, we describe the main components of our simulation, explains how they

communicate, and discusses simulator’s control flow design.

4.4.1 Main components

A simulation includes Nodes, a Network, a Topology, a Lookup Generator, and a Churn

Generator. Figure 4.1 gives an overview of these components, and how they interact.

CHAPTER 4: EVALUATION 29

N1 N2 N3 N4 N5 N6 N7

Network/Topology

request

reply

Churn Generator Lookup Generator

lookup

Figure 4.1: Major components of simulation

A Node simulates a computer running a peer-to-peer algorithm. Nodes (labeled N1 to N7

in Figure 4.1) communicate to each other by sending packets through the Network. The

Network uses the Topology to determine the latency between two nodes. The Churn

Generator models the dynamic nature of delay tolerant networks. Periodically, it either

adds a node to the network by invoking the node’s join method, or removes a node from

the network by destroying it. Figure 4.1 shows the Churn Generator removing node N1.

The Lookup Generator simulates a workload by periodically issuing lookup requests.

Figure 4.1 shows the Lookup Generator generating a lookup request for node N3. To

satisfy this request, node N3 sends a packet over the Network to Node N5, N5 sends back

a reply, and N3 logs the time it took for the lookup to complete. A node doing a lookup

runs the protocol’s lookup algorithm to find node N closest to a given key K in identifier

space. Periodically, a Node may run a stabilization routine to refresh the entries in its

routing table.

Nodes communicate to each other by issuing RPCs that are sent in packets through the

Network. Upon receiving a packet, the Network asks the Topology for the latency

CHAPTER 4: EVALUATION 30

between the sender and receiver, which determines the correct simulated time at which

the packet is delivered to the destination Node. When an RPC is issued to a dead node,

the Network mimics a timeout by scheduling a special error-RPC-reply n roundtrip times

after the RPC was sent, where n is some user-configurable value.

4.5 Evaluation Criteria

Lookup performance has often been measured with hopcount, latency, success rate, and

probability of timeouts. Lookup latency alone is not sufficient to evaluate protocol under

churn, where nodes continuously join and leave the network, because the latency metric

does not account for the cost of maintaining the state required to achieve low latency.

Evaluating lookup performance in static networks tends to favor protocols that keep large

routing tables, since they pay no penalty to keep the tables’ up to date, and more routing

entries generally results in lower lookup hop-counts and latencies. Large routing tables

incur costs, however they require maintenance traffic to keep them up to date, and if they

become out of date then stale entries may cause timeout delays. Thus an evaluation

criterion for protocol under churn should reflect the relationship between latency and cost.

4.6 Comparison Framework

Two challenges exist in evaluating DT-Chord lookup protocol over DTN. First, protocol

can be tuned to have low lookup latency by including features such as aggressive

membership maintenance, faster routing table liveness checking, or a more thorough

exploration of the network to find low delay neighbors. Any evaluation that examines

how DT-Chord performs along one dimension of either cost (in terms of bandwidth

consumed) or performance (in terms of lookup latency) is flawed, since an analysis can

“cheat” by performing extremely well on the axis being measured but terribly on the other.

Thus a comparison of lookup protocol must consider the performance and cost

simultaneously, i.e. the efficiency with which it exploits bandwidth to reduce latency.

The efficiency can be characterized by a performance vs. cost tradeoff curve: at any given

bandwidth, there is one best achievable latency. However, efficiency cannot be measured

CHAPTER 4: EVALUATION 31

by a single number summarizing the ratio between a protocol’s bandwidth consumption

and its lookup latency, as the tradeoffs between performance and cost does not necessary

follow a linear relationship.

The second challenge is to cope with protocol’s set of tunable parameters (e.g., liveness

checking interval, routing table size etc.). The best parameter values for a given workload

are often hard to predict, so there is a danger that a performance evaluation might reflect

the evaluator’s parameter choices more than it reflects the underlying algorithm. In

addition, parameters often correspond to a given protocol feature. A good analysis should

allow designers to judge the extent to which each parameter (and thus each feature)

contributes to overall bandwidth efficiency.

In response to these two challenges, we propose a comparison framework and evaluation

methodology for assessing DT-Chord protocol, comparing different design choices and

evaluating new features.

4.6.1 Performance Metrics

We measure performance as the lookup failure rate and the average lookup latency of

correct lookups (i.e., lookups for which a correct answer is returned), including timeout

penalties (three times the round-trip time to the dead node). Protocols retry failed lookups

(i.e., lookups that time out without completing) for up to a maximum of four seconds. We

only incorporate lookup hopcount indirectly, to the extent that it contributes to latency. In

the presence of churn, routing tables tend to become incorrect or out of date, causing

lookups to suffer timeouts or completely fail.

4.6.2 Cost Metric

We measure cost as the average bandwidth consumed per node per alive second (i.e., we

divide the total bytes consumed by the sum of times that each node was alive). The size of

each message is counted as 20 bytes for headers plus 4 bytes for each node mentioned in

the message. This cost accounts for all messages sent by a node, including periodic

CHAPTER 4: EVALUATION 32

routing table refresh traffic, lookup traffic, and join traffic. We ignore state storage costs

(e.g., the size of each node’s routing table) because communication is typically far more

expensive than storage (memory) or CPU time. The main cost of state is often the

communication cost necessary for maintaining the correctness of that state.

4.7 Experimental Environment

In our simulation, nodes try to forward lookups to the node responsible for the lookup key.

The identity of the responsible node is returned to the sender as the result of the lookup. A

lookup is considered failed if it returns the wrong node among the current set of

participating nodes (i.e. those that have completed the join procedure correctly) at the

time the sender receives the lookup reply, or if the sender receives no reply within some

timeout window. The evaluation framework accounts for the cost of trying to contact a

dead node during a lookup as a latency penalty equal to a small constant multiple of the

round trip time to the dead node, an optimistic simulation of the cost of a timeout before

the node pursues the lookup through an alternate route. In our experiments, protocol time

out individual messages after an interval of three times the round-trip time to the target

node. A node encountering a timeout to a particular neighbor during a lookup does not

immediately declare that neighbor dead; the lookup proceeds to an alternate node if one

exists, and recovery does not begin for the failed neighbor until 5 RPC timeouts to that

neighbor occur. Protocol retries alternate routes for lookups for up to a maximum of four

seconds, after which the lookup has declared fail. This definition of failure is arbitrary: a

shorter maximum time would decrease average latency while increasing failure rate,

while a longer maximum would increase average latency while decreasing the failure rate.

Further, each failed lookup contributes a disproportionate four seconds to the average

lookup latency statistic. For these reasons, we measures lookup failure rate and average

lookup latency as separate performance metrics.

The average roundtrip delay between node pairs in our dataset is 156 ms. Since each

lookup for a random key must terminate at a specific, random node in the network, the

average latency of the topology serves as a lower bound for the average DHT lookup

latency. Each node alternately crashes and re-joins the network; the interval between

CHAPTER 4: EVALUATION 33

successive events for each node is exponentially distributed with a mean of one hour [31].

The amount a protocol must communicate to keep node routing tables up to date depends

on how frequently nodes join and crash (the churn rate). For the most part, the total

bandwidth consumed by a protocol is a balance between table maintenance traffic and

lookup traffic, so the main characteristic of a workload is the relationship between lookup

rate and churn rate. We investigate two workloads, one that is churn intensive and one

that is lookup intensive. In the churn intensive workload, each node issues lookups for

random keys at intervals exponentially distributed with a mean of 600 seconds. In the

lookup intensive workload, the lookup interval mean is 9 seconds. Unless otherwise noted,

all figures are for simulations done in the churn intensive workload. Each simulation runs

for six hours of simulated time; statistics are collected only during the second half of the

simulation and averaged over 5 simulation runs.

4.7.1 Simulation Parameters

Table 4.1 lists the Chord and DT-Chord parameters that we vary in our simulations.

 Parameter Range

Number of Successors nsucc 8 ,16

Successor Stabilization Interval tsucc 9 sec – 19 min

Amount of state

(Finger Base)
b 2, 4, 8, 16, 32

Freshness of State

(Finger Stabilization Interval)
tfinger 9 sec – 19 min

Table 4.1: Chord and DT-Chord Simulation Parameters

CHAPTER 4: EVALUATION 34

4.7.2 Results

We systematically simulate DT-Chord with different combinations of parameter values.

For each parameter combination, we plot the performance and cost measured from the

experiment on a graph with total bandwidth usage on the x-axis and average lookup

latency in milliseconds or failure rate on the y-axis. For example, in Figure 4.2, each of

the many hundred points corresponds to a different parameter combination under a

particular workload. A point that lies to the lower left of another point is more efficient as

its corresponding parameter combination results in both lower lookup latency and lower

bandwidth consumption.

To characterize the efficiency of DT-Chord, we need to find the best set of performance

vs. cost tradeoff points that correspond to the optimal parameter settings. As can be seen

in Figure 4.2, there is no single best performance vs. cost tradeoff point. Instead, there is a

set of best points: for each cost, there is a smallest achievable lookup latency, and for

each lookup latency, there is a smallest achievable communication cost. The curve

connecting these best points is the overall convex hull segment (shown by the solid line in

Figure) that lies beneath and to the left of all points. A convex hull outlines the best

achievable performance vs. cost tradeoffs with the optimal parameter settings. A convex

hull segment always goes up to the left of the graph as bandwidth decreases. This means

that there is no parameter combination that simultaneously produces both low lookup

latency (or low failure rate) and low bandwidth consumption. The convex hulls go down

at higher bandwidth because there are parameter values that improve lookup latency (or

failure rate) at the cost of increased bandwidth consumption.

The convex hull in Figure 4.2 is only for a specific workload and churn scenario being

simulated. The best parameter values (thus the overall convex hulls) might change as

workloads or the churn rates change. Therefore, the convex hull only outlines maximal

efficiency in theory. An operator would have to adjust the protocol parameters manually

under known workload and churn scenario in the absence of a self tuning protocol.

In Figures 4.2, 4.4, 4.6, 4.8, each point represents the average lookup latency of successful

lookups vs. the communication cost achieved for a unique set of parameter values. In Figures

4.3, 4.5, 4.7, 4.9 each point represents the lookup failure rate vs. the communication cost

CHAPTER 4: EVALUATION 35

achieved for a unique set of parameter values. The convex hull (solid line) represents the

best achievable performance/cost combinations.

Figure 4.2: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of
Chord and DTChord with network size 128, under the churn intensive workload.

Figure 4.3: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and
DTChord with network size 128, under the churn intensive workload.

CHAPTER 4: EVALUATION 36

Figure 4.4: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of
Chord and DTChord with network size 256, under the churn intensive workload.

Figure 4.5: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and
DTChord with network size 256, under the churn intensive workload.

CHAPTER 4: EVALUATION 37

Figure 4.6: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of
Chord and DTChord with network size 512, under the churn intensive workload.

× ×
×

Figure 4.7: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and
DTChord with network size 512, under the churn intensive workload.

CHAPTER 4: EVALUATION 38

Figure 4.8: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of
Chord and DTChord with network size 1024, under the churn intensive workload.

Figure 4.9: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and
DTChord with network size 1024, under the churn intensive workload.

CHAPTER 4: EVALUATION 39

4.8 Effect of Lookup-intensive Workload

The lookup intensive workload involves each node issuing a lookup request every 9

seconds, almost 67 times the rate of the churn intensive workload used in the preceding

sections. As a result, the lookup traffic dominates the total bandwidth consumption.

Figure 4.10 shows the overall convex hulls of Chord and DT-Chord protocol under the

lookup intensive workload with network size 1024.

In the lookup intensive workload, each node issues and forwards much more lookup

messages during its lifetime and hence the amount of churn is relatively low. Thus, it is

more efficient to keep a larger routing table for fewer lookup hops when the amount of

stabilization traffic is low compared to the amount of lookup traffic. Furthermore, fewer

lookup hops translate into a large decrease in forwarded lookup traffic, given the large

number of lookups.

(a)

CHAPTER 4: EVALUATION 40

(b)

Figure 4.10: Chord and DT-Chord under lookup intensive workload. (a) Each point represents
the successful lookup latency vs. the communication cost. (b) Each point represents lookup
failure rate vs. the communication cost achieved for a unique set of parameter values.

4.9 Summary

We ran simulations of each Chord and DT-Chord protocol with same combinations of the

parameters. The results of the simulations show that proposed DT-Chord outperforms

Chord in terms of reducing latency, correct query lookup in different network size and

different work load. Both failure rate and lookup latency decrease as the protocols

consume more bandwidth.

Chapter 5

Performance Tuning of DT-Chord

In order to design DT-Chord with best lookup performance, we need to understand how

to use available bandwidth most efficiently. The efficiency of a protocol measures its

ability to turn each extra byte of maintenance communication into reduced lookup latency.

In the figures of previous chapter, we have seen the combined effect of many parameters.

In these figures, some parameter settings are much more efficient than others. So, it is

needed to evaluate whether a particular parameter is more important to tune than others in

order to achieve the best performance/cost tradeoff. This chapter identifies the importance

of different parameters and relating them to the different design choices. We provide an

extensive simulation study to evaluate how efficiently different design choices use

additional bandwidth for better lookup performance. This is done by calculating a set of

parameter convex hulls, one for each value of the parameter under study. Each parameter

convex hull is generated by fixing the parameter of interest and varying all others. Each

parameter hull represents the best possible performance vs. cost tradeoffs for a fixed

parameter value. In this chapter, the simulated network, unless otherwise noted, consists

of 1024 nodes.

5.1 DT-Chord Parameter Analysis

The various bandwidth consumptions and lookup performance are the indirect

consequence of setting different parameters to different values. That is, the convex hulls

are the result of an exhaustive search for the best parameter values. What parameter

values produced the best tradeoffs that make up the convex hull? More importantly, if the

available bandwidth changes, what are the parameters that need to be re-adjusted to

optimize lookup performance?

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 42

Each parameter corresponds to a design choice. Different design choices compete with

each other in using extra bandwidth to improve lookup performance. For example, setting

a bigger base (b) or a smaller stabilization interval (tfinger) can both lower lookup latency

at the cost of increased bandwidth consumption. Therefore, measuring the performance

benefits by adjusting a single parameter in isolation can be misleading as it ignores other

competitive choices of using bandwidth. We solve this problem with parameter convex

hull analysis. Instead of measuring the performance benefits of adjusting the parameter of

interest, we examine the efficiency loss from not adjusting the parameter under study and

exploring all other parameters. A parameter convex hull outlines the bandwidth efficiency

achieved under a fixed value for the parameter under study while exploring all other

parameters. There exist a set of parameter hulls, one for each value of the parameter

under study. Since overall convex hull always lies beneath all parameter hulls, the area

between a parameter hull and the overall convex hull denotes the amount of lost

efficiency due to setting the parameter to that fixed value. Therefore, if one had to set the

parameter to one specific value, one should choose the value that corresponds to the

parameter hull with the minimum area difference. A small minimum area suggests that

there exists one best default value for the parameter under study. A large minimum area

indicates it is important to re-adjust the parameter to optimize performance.

5.2 Effect of Parameters in Churn Intensive DT-Chord

5.2.1 Effect of Successor Stabilization Interval

Base Chord and enhanced DT-Chord separately stabilizes finger and successors. The

most important parameter, in terms of failure rates, is the successor stabilization interval

(tsucc). This parameter governs how often a node checks that its successor is still alive, and

thus the amount of time it takes a node to realize that its successor is dead and should be

replaced with the next live node in ID space. The reason that tsucc has the largest effect on

failure rate is that the correctness of the lookup protocol depends only on successor

pointers, and not on the rest of the Chord routing table [14]. Thus it is enough to stabilize

only the successors frequently if a low lookup failure rate is required. Faster successor

stabilization interval result in wasted bandwidth while slower rates result in a greater

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 43

number of timeouts during lookups. In the Figure 5.1 and 5.2, overall convex hull and the

parameter convex hulls for stabilization interval (tsucc) showing failure rate vs. bandwidth

tradeoffs and successful lookup latency vs. bandwidth tradeoffs of all tsucc, under the churn

intensive workload. A parameter convex hull that lies towards the bottom left of another

hull indicates that its corresponding parameter can be tuned to have lower failure rate

while consuming the same amount of bandwidth.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 44

(a)

(b)

Figure 5.1: (a) Parameter convex hulls and (b) overall convex hull showing failed lookup
vs. bandwidth tradeoffs of all tsucc, under the churn intensive workload.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 45

(a)

(b)

Figure 5.2: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all tsucc, under the churn intensive workload.
Each line traces the convex hull of all experiments with a fixed successortimer, tsucc value
while varying all other parameters.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 46

5.2.2 Effect of Routing Table Size

DT-Chord have base (b) as the parameter that is most in need of tuning for best lookup

latency. Base controls the number of routing entries each node keeps and bigger bases

lead to bigger routing tables with (b-1) (logbn) entries. Figure 5.3 shows DT-Chord’s

overall convex hull as well as its parameter hulls for different base values. At the left side

of the graph, where the bandwidth consumption is small, the parameter hull for b = 2 lies

on the overall convex hull which means smaller bases should be used to reduce

stabilization traffic at the expense of higher lookup latency. When more bandwidth can be

consumed, larger bases lower the latency by decreasing the lookup hop-count. Expanding

a node’s routing table is more efficient than other alternatives at using additional

bandwidth. For example, one competitive use of extra bandwidth is to check for the

liveness of routing entries more frequently as doing so would decrease the likelihood of

lookup timeouts. However, when routing entries are “fresh enough”, spending extra

bandwidth to further reduce the already very low lookup timeout probability has little

impact on the overall latency. Instead, when the routing table is fairly fresh, a node should

seek to reduce lookup latency by using additional bandwidth to expand its routing table

for fewer lookup hops.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 47

(a)

(b)

Figure 5.3: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all base b, under the churn intensive workload.
Each line traces the convex hull of all experiments with a fixed base b value while
varying all other parameters.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 48

(a)

(b)

Figure 5.4: (a) Parameter base convex hull and (b) overall convex hull for lookup failure

rate vs. bandwidth tradeoffs.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 49

5.2.3 Effect of Routing Table Refresh Rate

The finger stabilization interval affects performance without affecting success rate, so its

value must be varied to achieve the best tradeoff. Faster finger stabilization results in

lower lookup latency due to fewer timeouts, but at a higher communication cost. A node

should expand its routing table when the existing routing entries are already fresh. What

is a good freshness threshold for routing tables? We know, routing entries’ staleness is

bounded by the finger stabilization interval. Figure 5.5 shows the parameter hulls for

different stabilization values as well as overall convex hull. The best value for tfinger (144s)

corresponds to a parameter hull that approximates the entire overall convex hull. Since

parameter hulls are computed by exploring all other parameters including base (b), a less

attractive parameter hull indicates the efficiency loss by setting tfinger to a wrong value.

Making routing entries fresher than necessary (tfinger = 9 sec) results in a less efficient

parameter hull as the extra bandwidth is wasted on checking the already sufficiently up-

to-date routing entries as opposed to expanding a node’s routing table. Allowing routing

entries to become too stale (tfinger = 576s) also dramatically decreases the efficiency of the

convex hull as stale routing entries lead to too many timeouts which can not be

compensated by routing via fewer hops with a larger routing table.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 50

(a)

(b)

Figure 5.5: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all fingertimer, tfinger, under the churn intensive
workload. Each line traces the convex hull of all experiments with a fixed fingertimer
value while varying all other parameters.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 51

(a)

(b)

Figure 5.6: (a) Parameter convex hull and (b) overall convex hull showing failed lookup

rate vs. bandwidth tradeoffs for all fingertimer, tfinger.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 52

5.3 Effect of Parameters in Lookup Intensive DT-Chord

In the lookup intensive workload, each node issues and forwards much more lookup

messages during its lifetime and hence the amount of churn is relatively low. Thus, it is

more efficient to keep a larger routing table for fewer lookup hops when the amount of

stabilization traffic is low compared to the amount of lookup traffic. Furthermore, fewer

lookup hops translate into a large decrease in forwarded lookup traffic, given the large

number of lookups. In Figure 5.7 Compared with churn intensive workload, convex hull

for lookup intensive workload is relatively flat. Unless otherwise noted, from this section,

all figures are for simulations done in the lookup intensive workload of DT-Chord

consists of 1024 nodes.

Figure 5.7: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of
DTChord under the lookup intensive and churn intensive workload with network size
1024.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 53

Figure 5.8: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of
DTChord under the lookup intensive and churn intensive workload with network size
1024.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 54

5.3.1 Effect of Successor Stabilization Interval in Lookup
Intensive Workload

(a)

(b)

Figure 5.9: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all tsucc, under the lookup intensive workload.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 55

(a)

(b)

Figure 5.10: (a) Parameter convex hulls and (b) overall convex hull showing lookup
failure rate vs. bandwidth tradeoffs of all successortimer tsuccessor, under the lookup
intensive workload. Each line traces the convex hull of all experiments with a fixed base
b value while varying all other parameters

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 56

5.3.2 Effect of Base in Lookup Intensive Workload

(a)

(b)
Figure 5.11: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all base b, under the lookup intensive workload.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 57

(a)

(b)

Figure 5.12: (a) Parameter base convex hull and (b) overall convex hull for lookup failure

rate vs. bandwidth tradeoffs.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 58

5.3.3 Effect of Fingertimer in Lookup Intensive Workload

(a)

(b)

Figure 5.13: (a) Parameter convex hulls and (b) overall convex hull showing successful
lookup latency vs. bandwidth tradeoffs of all fingertimer, tfinger, under the lookup
intensive workload. Each line traces the convex hull of all experiments with a fixed
fingertimer value while varying all other parameters.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 59

(a)

(b)

Figure 5.14: (a) Parameter convex hull and (b) overall convex hull showing failed lookup

rate vs. bandwidth tradeoffs for all fingertimer, tfinger.

CHAPTER 5: PERFORMANCE TUNING of DT-CHORD 60

5.4 Summary

We evaluate how efficiently different design choices use additional bandwidth for better

lookup performance. In a real deployment, the protocol designer or deployer would have

to tune the parameters manually to find the best values, or settle for default values. DT-

Chord in particular can use its bandwidth quite efficiently and achieves low lookup

latencies at little cost. This behavior appears to be due to its neighbor selection approach

and giving priority to stabilizing successors over fingers when bandwidth is limited, since

correct successors are all that is needed to ensure correct lookups. By focusing its limited

stabilization traffic on this small, constant amount of state (as opposed to its full O(log n)

state), DT-Chord is able to maintain correctness.

Table 5.1 summarizes the insights from the preceding sections. The best use for extra

available bandwidth is for a node to expand its routing table. It is important to bound the

staleness of routing entries and there seems to be a best freshness threshold under a given

churn rate.

Table 5.1: The effect of successortimer, fingertimer, and base in DT-Chord.

 Average lookup latency Fraction of failed lookup

successortimer Faster successor stabilization
interval results in wasted
bandwidth and decreases average
look up latency while slower
rates result in a greater number of
timeouts during lookups.

Largest effect on failure rate. The
correctness of the lookup protocol
depends only on successor pointers,
and not on the rest of the Chord
routing table.

base Larger bases lower the latency by
decreasing the lookup hop-count.
Although this improvement
comes at the cost of bandwidth.

Does not affect success rate.

fingertimer Faster finger stabilization results
in lower lookup latency due to
fewer timeouts, but at a higher
communication cost.

Does not affect success rate.

Chapter 6

Conclusion

We have presented DT-Chord, a DHT protocol for delay tolerant network, with a design

that can be adjusted to reflect current operating environments and a user-specified

bandwidth budget. By selecting lowest delay neighbor, DT-Chord achieves low lookup

latency. The baseline Chord protocol performance and the enhanced DT-Chord

performance are compared with extensive simulation. DT-Chord outperforms Chord in

terms of bandwidth consumption, delay reducing, and number of successful lookup.

Evaluating DHT protocol over DTN in the presence of churn is a challenge.

Methodologies developed for static networks can be misleading, since they don’t account

for the resources consumed to obtain low latency. We introduce a performance vs. cost

analysis that explicitly accounts for the network bandwidth a DHT consumes to achieve

better lookup performance. We incorporate features to improve lookup performance at

extra communication cost in the face of churn in DTN. It is misleading to evaluate the

performance benefits of an individual design choice alone because other competing

choices can be more efficient at using bandwidth. We present protocol designers with a

methodology to determine the relative importance of tuning different protocol parameters

under different workloads (churn intensive or lookup intensive) and network conditions

(i.e. delay, available bandwidth, network under churn). As parameters often control the

extent to which a given protocol feature is enabled, our analysis allows designers to judge

whether a protocol feature is more efficient at using additional bandwidth than others via

the analysis of the corresponding protocol parameters. Furthermore, by remaining flexible

in its choice of routing table size, DT-Chord can operate efficiently in a wide range of

operating environments, making it suitable for use by developers who do not want to limit

their applications to a particular network size, churn rate, or lookup workload.

CHAPTER 6: CONCLUSION 62

6.1 Future Work

Our contributions improve the peer/resource lookup efficiency of Chord protocol over

Delay Tolerant Scenarios. Lookup Routing issue in DTN is attracting more attention. DT-

Chord can be applied to develop more realistic networks’ application like mobility-

assisted information diffusion and vehicle-based networks (VDTNs) application.

Bibliography

[1] Kevin Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” in
Proceedings of ACM SIGCOMM, 2003, pp. 27-36.

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K.Scott, and H.
Weiss, “Delay-Tolerant Networking: An Approach to Interplanetary Internet,” in
IEEE Communications Magazine, vol. 41, 2003, pp. 128-136.

[3] S. Jain, R. Shah, W. Brunette, G. Borriello, and S. Roy, “Exploiting Mobility for
Energy Efficient Data Collection in Wireless Sensor Networks,” ACM/Kluwer
Mobile Networks and Applications (MONET), vol. 11, 2006, pp. 327-339.

[4] J. Partan, J. Kurose, and B. N. Levine, “A Survey of Practical Issues in Underwater
Networks,” in 1st ACM International Workshop on Underwater Networks, in
conjunction with ACM MobiCom, Los Angeles, California, USA, 2006, pp. 17-24.

[5] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein, “Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet,” ACM SIGOPS Operating Systems Review, vol. 36, 2002, pp. 96-
107.

[6] W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying Approach for Data
Delivery in Sparse Mobile Ad Hoc Networks,” in The Fifth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2004),
Roppongi Hills, Tokyo, Japan, 2004, pp. 187–198.

[7] A. A. Hasson, D. R. Fletcher, and D. A. Pentland, “A road to universal broadband
connectivity,” in Proceedings of Development by Design (dyd02), 2002.

[8] A. Rabagliati, “Wizzy digital courier–how it works,” April, 2004.
http://www.wizzy.org.za/article/articleprint/19/1/2/.

[9] E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal, R. Patra, S.
Surana, and K. Fall, “The case for technology in developing regions,” IEEE
Computer, vol. 38, 2005, pp. 25–38.

[10] R. Y. Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and A. Krishnamurthy, “Turning
the postal system into a generic digital communication mechanism,” in Proceedings
of ACM SIGCOMM, 2004, pp. 159–166.

BIBLIOGRAPHY 64

[11] J. Ott and D. Kutscher, “Drive-thru internet: IEEE 802.11b for automobile users,” in
Proceedings of IEEE INFOCOM, 2004, pp. 362–373.

[12] T. Small and Z. J. Haas, “The shared wireless infostation model: a new ad hoc
networking paradigm (or where there is a whale, there is a way),” in Proceedings of
ACM MobiHoc, 2003, pp. 233–244.

[13] L. B. Oliveira, I. G. Siqueira, D. F. Macedo, A. A. F. Loureiro, W. Hao Chi, and J.
M. Nogueira, “Evaluation of peer-to-peer network content discovery techniques over
mobile ad hoc networks,” in Sixth IEEE International Symposium on World of
Wireless Mobile and Multimedia Networks, 2005, pp. 51–56.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in SIGCOMM’01:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, NY, USA: ACM, 2001, pp. 149–160.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in Middleware, 2001, pp. 329–350.

[16] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,
“Tapestry: A resilient global-scale overlay for service deployment,” IEEE Journal
on Selected Areas in Communications, vol. 22, no. 1, 2004, pp. 41–53.

[17] R. Sylvia, F. Paul, H. Mark, K. Richard, and S. Scott, “A scalable content-
addressable network,” SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, 2001, pp.
161–172.

[18] S. Burresi, C. Canali, M. E. Renda, and P. Santi, “MeshChord: A location-aware,
cross-layer specialization of chord for wireless mesh networks (concise
contribution),” in Sixth Annual IEEE International Conference on Pervasive
Computing and Communications, 2008, pp. 206–212.

[19] C. Cramer and T. Fuhrmann, “Proximity neighbor selection for a DHT in wireless
multi-hop networks,” in Fifth IEEE International Conference on Peer-to-Peer
Computing, 2005, pp. 3–10.

[20] C. Cramer and T. Fuhrmann, “Bootstrapping chord in ad hoc networks not going
anywhere for a while,” in Fourth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops, 2006, pp. 168–172.

[21] C. Curt and F. Thomas, “Performance evaluation of Chord in mobile ad hoc
networks,” in MobiShare: Proceedings of the 1st ACM International Workshop on
Decentralized Resource Sharing in Mobile Computing and Networking, 2006, pp.
48–53.

BIBLIOGRAPHY 65

[22] A. Montresor, M. Jelasity, and O. Babaoglu, “Chord on demand,” in Fifth IEEE
International Conference on Peer-to-Peer Computing, 2005, pp. 87–94

[23] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling, P2Psim (MIT IRIS
project). http://pdos.csail.mit.edu/p2psim/

[24] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. “A survey of Peer-to-Peer
network simulators,” in Proc. of The Seventh Annual Postgraduate Symposium
(PGNET), Liverpool, UK, 2006.

[25] P. Garcia, C. Pairot, R. Mondejar, J. Pujol, H. Tejedor, and R. Rallo. “PlanetSim: A
new overlay network simulation framework,” Lecture Notes in Computer Science
(LNCS) Software Engineering and Middleware, 2005.

[26] PeerSim: http://peersim.sourceforge.net/

[27] W. Yang and N. Abu-Ghazaleh. “GPS: a general Peer-to-Peer simulator and its use
for modeling BitTorrent,” in Proc. of International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2005, pp. 425-432.

[28] N. S. Ting and R. Deters. “3LS - a Peer-to-Peer network simulator,” in Proc. of
International Conference on Peer-to-Peer Computing (P2P), September 2003.

[29] M. T. Schlosser, T. E. Condie, and S. D. Kamvar, “Simulating a file-sharing P2P
network,” in Workshop on Semantics in P2P and Grid Computing, 2002.

[30] K. P. Gummadi, S. Saroiu, S. D. Gribble, “King: Estimating latency between
arbitrary Internet end hosts,” in Proceedings of the 2002 SIGCOMM Internet
Measurement Workshop, 2002.

[31] P. K. Gummadi, S. Saroiu, and S. Gribble, “A measurement study of Napster and
Gnutella as examples of peer-to-peer file sharing systems,” Multimedia Systems
Journal, vol. 9, no. 2, Aug. 2003, pp. 170–184.

[32] K. P. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, I. Stoica, “The
impact of DHT routing geometry on resilience and proximity,” in Proc. of the ACM
SIGCOMM, 2003, pp. 381-394.

[33] Neurogrid: http://www.neurogrid.net/

[34] PlanetSim: http://planet.urv.es/planetsim/

