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Abstract 
 
 

Delay Tolerant Networks (DTNs) are a class of networks designed to address several 

challenging connectivity issues such as sparse connectivity, long or variable delay, 

intermittent connectivity, asymmetric data rate, high latency, high error rates and even no 

end-to-end connectivity. The DTN architecture adopts a store-and-forward paradigm and a 

common bundle layer located on the top of region-specific network protocols in order to 

provide interoperability of heterogeneous networks (regions). In this type of network, a 

source node originates a message (bundle) that is forwarded to an intermediate node (fixed 

or mobile) thought to be more close to the destination node. The intermediate node stores 

the message and carries it while a contact is not available. Then the process is repeated, so 

the message will be relayed hop by hop until reaching its destination. A fundamental 

problem that confronts future applications of DTN is how to efficiently locate the DTN 

node that stores a particular data item. In this case, flooding search seems to be the only 

method. However, this usually results in so-called broadcast storm problem, which leads 

to significant performance degradation in DTN. 

 

Distributed hash table (DHT) based protocols provide near-optimum data lookup time for 

resolving queries made on large P2P network. Lookup latency is important to applications 

that use DHTs to locate data. In order to achieve low latency lookups, each node needs to 

consume bandwidth to keep its routing tables up to date under churn. This thesis presents 

DT-Chord- a DHT based application protocol for Delay Tolerant Network that minimizes 

delay while locating data in DTN. This thesis also shows performance comparisons 

between base Chord and DT-Chord protocols over Delay Tolerant Network. Finally, we 

provide a methodology to determine the relative importance of tuning application protocol 

parameters under different workloads and network conditions. 
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Chapter 1 
 

1. Introduction 
 

Delay-tolerant networks (DTN) [1] are a promising new development in network research, 

that offer the hope of connecting people and devices that hitherto were either unable to 

communicate, or could do so only at great cost. For example, today it is possible to 

connect from a cell phone to millions of powerful servers around the world. As successful 

as these networks have been, they still cannot reach everywhere, and for some 

applications their cost is prohibitive. The reason for these limitations is that current 

networking technology relies on a set of fundamental assumptions that are not true in all 

environments. The first and most important assumption is that an end-to-end connection 

exists from the source to the destination, possibly via multiple intermediaries. This 

assumption can be easily violated due to mobility, power saving, or unreliable networks. 

For example, if a wireless device is out of range of the network (e.g. the nearest cell tower, 

802.11 base station, etc.), it cannot use any application that requires network 

communication. Delay-tolerant networking is an attempt to extend the reach of networks. 

It promises to enable communication between “challenged” networks, which includes 

deep space networks [2], data MULEs [3], underwater networks [4], wildlife tracking sensor 

networks like ZebraNet [5], and opportunistic mobile ad-hoc networks [6]. The core idea is 

that these networks can be connected if protocols are designed to accommodate 

disconnection. 

 

As an example of where these networks are useful, consider a classroom where each 

student has a laptop, but there is no network infrastructure. One would like the students to 

collaborate on projects using the wireless network cards in the laptops, and also to 

communicate with the Internet. Delay-tolerant networking can make this happen, as 

illustrated in Figure 1.1. The laptops communicate with each other to exchange data. If 

the destination laptop is not present, which may occur if the student has gone home, the 
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network stores the messages until they return. To communicate with the Internet, the 

school could be serviced via a router attached to a bus traveling between the school and 

an Internet gateway. This device picks up requests from the school and delivers them to 

the gateway, and then provides the responses on its next trip. First Mile Solutions sells a 

system called DakNet that is based on this idea [7], while the Wizzy Digital Courier 

Project uses a simple one-hop delay tolerant network to provide Internet access to rural 

South African schools [8]. 

Internet GatewayMobile DeviceAd-hoc DTN
 

Figure 1.1: Laptops communicating with each other and the Internet via delay-tolerant 

networking 

 

There are many other applications for delay-tolerant networks. In developing regions, 

applications range from education to health care to government services [9]. In developed 

nations, researchers have proposed augmenting low bandwidth Internet connections with 

a high-bandwidth delay tolerant network built by sending physical media, such as DVDs, 

through the postal system [10]. This allows very large files to be quickly and cheaply 

exchanged while small files and control messages are exchanged over a low bandwidth 

link. Others have investigated using DTNs to provide Internet access to cars, by 

connecting temporarily to roadside wireless base stations [11]. DTNs could also be used 

to gather data from everything ranging from sensors in oceans [12], to satellites in space 

[3]. 

 

Peer-to-Peer (P2P) technology offers alternative communication architecture from 

traditional client-server architecture. Nowadays, the most popular usage of P2P 

technology is file sharing among users. In a P2P file-sharing network, users can publish 
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and share their own possessions with others which are currently online. P2P users can 

also download interesting files from others. Unstructured or less-structure P2P protocols, 

as their names suggested, have no or little restriction on the structure of the overlay. 

Hence, it is difficult for users to locate the resources they need in an unstructured P2P 

network. In such cases, flooding search seems to be the only method to locate an object. 

However, this usually results in so-called broadcast storm problem, which leads to 

significant performance degradation in DTN. On the other hand, structured P2P protocols, 

such as Chord [14], Pastry [15], Tapestry [16] and CAN [17], are designed for locating 

objects effectively in wired networks. These structured protocols form a fully organized 

overlay with the proposed protocols. Logarithmic complexity is achievable for key 

operations such as joining, maintaining, or querying in the P2P overlay. Due to the 

attractive low overhead, researchers paid lots of attention on Chord [13, 18, 19, 20, 21, 

22]. Researchers strived to enhance the overlay performance and to apply it to large scale 

deployment. Nevertheless, these P2P protocols usually assume reliable communication 

among nodes. This is true in wired network but difficult to achieve in Delay Tolerant 

Network. 

 

Chord [14] is one of the popular structured P2P protocols. Chord is usually deployed on 

application layer as a P2P overlay. Chord behaves elegantly because of the simplicity of 

the design and scalability to construct large-scale overlay network with low complexity. 

In a N-node Chord overlay, each node only have to keep contact just O(logN) nodes, and 

a query can be done within O(logN) steps. Furthermore, nodes only need to maintain few 

local information (successor and predecessor) in order to guarantee the consistency of 

Chord. However, previous work has addressed some problems and challenges to Chord 

operating in wireless and mobile networking environments. One problem is Chord 

overlay can efficiently operate in stable networks where churn rate is low. In highly 

dynamic networks like DTN, the routing table maintenance cost is very high. The 

communication overhead for maintaining a virtual overlay network in a challenged 

environment and the performance penalty arising from routing in this virtual overlay are 

deemed to be main issues.  
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1.1 Problem Definition 
 

A fundamental problem that confronts future applications of DTN is how to efficiently 

locate the DTN node that stores a particular data item. In this case, flooding search seems 

to be the only method. It is robust, but asking every node is very expensive. In worst case, 

O(N) messages are required per lookup . Asking only some nodes might not find key. The 

obvious downside of flooding is that it generates loads of unnecessary traffic that 

consumes resources that may be scarce in a DTN (e.g., bandwidth, power, storage 

capacity). It is known that distributed hash table (DHT) based Internet peer-to-peer (P2P) 

protocols provide near-optimum data lookup times for queries made on networks of 

distributed nodes. In DHT based lookup protocol, the efficiency measure the number of 

application-level hops taken on the path. However, the true efficiency measure is the end-

to-end latency of the path. Because the nodes could be geographically dispersed, some of 

these application-level hops could involve transcontinental links, and others merely trips 

across a LAN; routing algorithms that ignore the latencies of individual hops are likely to 

result in high latency paths. A generic mapping of these protocols to delay tolerant 

network is, however perceived as difficult. 

 

 

Network

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

 
 

Figure 1.2: A scenario for understanding the lookup problem 
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Client

N6
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N7
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N3

N2N1

Key=“title”
Value=MP3 data…

Lookup(“title”)

 
 

Figure 1.3: Flooded queries to find data 

 

1.2 Motivation 
 

Retrieving information from the Web has become part of our daily lives. In many 

applications such as distributed wikis or photo sharing, users need to be able to find 

content. In order do bring these applications to the domain of DTNs, a lookup scheme is 

required that works despite the challenging network conditions. A search engine helps by 

mapping lookup queries to resource locators that are likely to point to content including 

the sought information. However, there are scenarios in which communicating with a 

search engine is not an appealing or even suitable option. Such situations occur, for 

example, when the desired information may be available from the vicinity via a local 

wireless (ad-hoc) network and a connection to the search engine is unavailable or not 

reliable. In this case, a search mechanism is desirable that allows directly querying other 

nodes in an unreliable networking environment. 

 

The traditional approach to map lookup queries to resources is implemented by 

maintaining an index about the resources. The index contains keywords and maps them to 

sets of related resources. This can be used to map a query consisting of several keywords 

to a list of suggested lookup results. Examples of centralized search engines using such 

indices are Google, MSN, and Yahoo. The problem with such centralized services is that 
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it is expensive to keep the index up-to-date and the assumption is made that the clients 

can reach both the index and the locations where the contents reside. There are 

approaches for managing decentralized indexes in peer-to-peer environments. We 

investigate how to perform lookup of contents in delay-tolerant networks using 

distributed and decentralized index.  
 

Publisher@

Client
Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1

SetLoc(“title”, N4)

Key=“title”
Value=MP3 data…

N4

 
 

Figure 1.4: Centralized lookup 

 

1.3 Contributions 
 

The contributions of this thesis are: 
 

1. A DHT based lookup protocol, DT-Chord that minimizes delay while locating data in 

DTN. 
 

2. A study for understanding the relationship between communication costs and the 

resulting performance benefits. 
 

3. A comparative performance study to determine the relative importance of tuning 

protocol parameters under different workloads and network conditions. 
 

Apart from the above contributions, this thesis presents a different style of designing 

distributed protocols. We argue that a distributed protocol over DTN should be conscious 

of its communication overhead in order to stay robust across a wide range of operating 

environments. We demonstrate how to design such a cost aware protocol that uses the 

bandwidth resource sparingly and efficiently. 
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1.4 Organization 
 

The focus of this thesis is to implement Chord over Delay Tolerant Network. The rest of 

this project is organized as follows: the first chapter describes the motivation and goal of 

the thesis. 

 

Chapter 2: Background 
 

Chapter 2 is divided into two parts. First part describes distributed hash table (DHT) based 

peer-to-peer (P2P) lookup protocol, Chord. Second part of this chapter provides a brief 

introduction of Delay Tolerant Network Architecture. 

 

Chapter 3: Proposed System: Delay Tolerant Chord 
 

Chapter 3 describes the design and implementation of DT-Chord, a DHT based lookup 

protocol for delay tolerant network.  We explain the design principles of DT-Chord's 

neighbor selection and routing algorithm followed by the protocol details. 

 

Chapter 4: Performance Evaluation 
 

Chapter 4 presents a comparative performance evaluation of DT-Chord against Chord. 

We present the simulation results of DT-Chord implementation over DTN along with 

brief discussion on the simulator P2PSim [23] and experimental dataset. 

 

Chapter 5: Performance Tuning of DT-Chord 
 

Chapter 5 explores the parameter space to find DT-Chord's latency vs. bandwidth tradeoff 

and compare the efficiencies of different design choices. We evaluate how efficiently 

different design choices use additional bandwidth for better lookup performance. 

 

Chapter 6: Conclusion and Future Research 
 

Concluding remarks are presented in Chapter 6. This chapter also presents our future 

research goals and possible research. 

 



 

 

Chapter 2 
 

Background 
 

2.1 Distributed Hash Table (DHT) 
 

A hash-table interface is an attractive foundation for a distributed lookup algorithm 

because it places few constraints on the structure of keys or the data they name. The main 

requirements are that data be identified using unique numeric keys, and that nodes be 

willing to store keys for each other. This organization is in contrast to Napster and 

Gnutella, which search for keywords, and assume that data is primarily stored on the 

publisher’s node. However, such systems could still benefit from a distributed hash 

table—for example, Napster’s centralized database recording the mapping between nodes 

and songs could be replaced by a distributed hash table. A DHT implements just one 

operation: lookup(key) yields the identity (e.g., IP address) of the node currently 

responsible for the given key. A simple distributed storage application might use this 

interface as follows. Someone who wants to publish a file under a particular unique name 

would convert the name to a numeric key using an ordinary hash function such as SHA-1, 

then call lookup(key). The publisher would send the file to be stored at the resulting node. 

Someone wishing to read that file would obtain its name, convert it to a key, call 

lookup(key), and ask the resulting node for a copy of the file. A complete storage system 

would have to take care of replication, caching, authentication, and other issues; these are 

outside the immediate scope of the lookup problem. 
 

2.2 Chord Protocol 
 

Chord [14] assigns ID’s to both keys and nodes from the same one-dimensional ID space. 

Chord Each Chord node has a unique m bit node identifier (ID), obtained by hashing the 
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node’s IP address. Chord views the IDs as occupying a circular identifier space. Keys are 

also mapped into this ID space, by hashing them to m-bit key IDs. The node responsible 

for a key is the node with the identifier which most closely follows the key in the circular 

key space; we refer to this node as the successor of k and to the several nodes after k as 

the successor list of k. In Figure 2.2, the successor of key K10 is node N17. Note that N9 

(the predecessor of the key) maintains pointer to the node N17 and can definitively return 

K10's successor. Chord maintains a routing table of logN pointers to other nodes in the 

system and can resolve a mapping by sending logN messages, where N is the number of 

nodes in the system. Because Chord keeps a small amount of state, it is able to maintain 

the state efficiently in large or unstable systems. 
 

2.2.1 Chord Lookup Algorithm 
 

A Chord node uses two data structures to perform lookups: a successor list and a finger 

table. Only the successor list is required for correctness, so Chord is careful to maintain 

its accuracy. The finger table accelerates lookups, but does not need to be accurate, so 

Chord is less aggressive about maintaining it. The following discussion first describes 

how to perform correct (but slow) lookups with the successor list, and then describes how 

to accelerate them up with the finger table. Every Chord node maintains a list of the 

identities and IP addresses of its r immediate successors on the Chord ring. The fact that 

every node knows its own successor means that a node can always process a lookup 

correctly: if the desired key is between the node and its successor, the latter node is the 

key’s successor; otherwise the lookup can be forwarded to the successor, which moves 

the lookup strictly closer to its destination.  

 

A new node n learns of its successors when it first joins the Chord ring, by asking an 

existing node to perform a lookup for n’s successor; n then asks that successor for its 

successor list. The r entries in the list provide fault tolerance: if a node’s immediate 

successor does not respond, the node can substitute the second entry in its successor list. 

All r successors would have to simultaneously fail in order to disrupt the Chord ring, an 

event that can be made very improbable with modest values of r. An implementation 
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should use a fixed r, chosen to be 2log2N for the foreseeable maximum number of nodes 

N. 

Lookups performed only with successor lists would require an average of N/2 message 

exchanges, where N is the number of servers. To reduce the number of messages required 

to O(logN), each node maintains a finger table with m entries. The ith entry in the table at 

node n contains the identity of the first node that succeeds n by at least 2i  (0 ≤ i < m) on 

the ID circle. Thus every node knows the identities of nodes at power-of-two intervals on 

the ID circle from its own position. A new node initializes its finger table by querying an 

existing node. Existing nodes whose finger table or successor list entries should refer to 

the new node find out about it by periodic lookups. 
 

88
160

56

40

17
24

28
30

32

 
 

Figure 2.1: A Chord node's finger table. Each node maintains logN pointers to other nodes. 
The pointers are spaced exponentially around the ring (i.e. ½, ¼, ⅛ … of the way around the 
ring). In the example above, node N24's routing table is shown. The most distant finger of 
node 24 points to the first node that is more than half-way around the ring (after 24 + 256/2 = 
152); this is node N160 in the example. This spacing allows a lookup to halve the distance to 
the target at each step. Lookups complete in logN time.  
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Figure 2.2: The path of a lookup for key K10 originated at node N24. 

 

As shown in Figure 2.2, to find a key's successor using the finger table, a node routes the 

request greedily in ID space. At each step, the requesting node consults the node that is 

closest to the key's ID but still precedes the key on the ring. That node replies with the 

identity of the best next hop node. Eventually the requesting node will contact the key's 

predecessor, which will return its successor list: the answer to the lookup query. Because 

of the power-of-two distribution of a node's finger table, the node will always have a 

pointer that is at least half of the distance to the key at each step in the lookup. Because 

the distance remaining to the key is halved at each step of the lookup, we expect a lookup 

to require O(logN) hops. Figure 2.2 shows the path taken by an example lookup. The base 

Chord algorithm is iterative. In iterative lookup (Figure 2.3) intermediate nodes send 

information about possible next hop nodes to the originating before the lookup can 

proceed.  
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// Ask node n to find id's successor; first 

// finds id's predecessor, then asks that 

// predecessor for its own successor. 

n.find_successor(id) 

n΄ = find_predecessor(id); 

return n΄.successor list(); 

 

// Ask node n to find id's predecessor. 

n.find predecessor(id) 

n΄ =n; 

while (id = ∉ (n΄, n΄.successor()]) 

l = n΄.closest_predecessor_list(id); 

n΄= max n″∈l   s.t. n″ is alive 

return n΄; 

 

// Ask node n for the node in its finger table or 

// successor list that most closely precedes id. 

n.closest_predecessor_list(id) 

return  { n΄ ∈{fingers U successors} s.t. n΄ ∈ (n, id]} 

  

Figure 2.3: The pseudo-code to find the successor node of an identifier id using iterative 

lookup. Remote procedure calls are preceded by the remote node. 

 

2.3 Delay Tolerant Network 
 

The ability to transport, or route, data from a source to a destination is a fundamental 

ability all communication networks must have. Delay tolerant networks (DTNs), are 

characterized by their lack of connectivity, resulting in a lack of instantaneous end-to-end 

paths. A delay-tolerant network is an overlay on top of a number of diverse regional 

networks, including the Internet. Within a DTN, the regional networks may be extremely 
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remote in terms of delay, and may employ, for example, different wireless technologies. 

The DTN overlay accommodates these varying network characteristics and provides a 

service that works regardless of “difficult” conditions in the underlying networks. 

 

The motivation for DTN is that in certain situations the protocols used in the internet 

simply do not work. Examples of such situations are partitioned networks, highly 

asymmetric data rates, high error rates and long delays. A typical use-case for a DTN is 

an interplanetary network, e.g. a satellite orbiting Earth communicating with another 

satellite orbiting Mars. 

 

DTN works by introducing a new protocol layer, the bundle layer, on top of the transport 

layer (Figure: 2.4). The transport protocols used in the underlying regional networks need 

not be the same – the bundle layer is the glue that binds all the various lower layers 

together. The applications in the DTN only need to communicate with the homogenous 

bundle layer. We emphasize that our goal is to implement Chord over DTN at the 

application level. So, we left the detailed discussion of other protocol layers of DTN.  

 

Bundles are messages that consist of the bundle header, control information (provided by 

the source application for the destination application) and user data. In essence, a bundle 

just extends the data encapsulation hierarchy with one further level. The bundle layer has 

a set of mechanisms to overcome the difficulties of intermittent, long delay networks. The 

basic idea is to use store-and-forward message switching, i.e. hold bundles in a persistent 

storage along the communication path until the next hop comes available. An end-to-end 

path need not exist when the bundle is initially sent. Also, the bundle layer protocol is 

non-conversational in the sense that the nodes communicate between each other using 

simple sessions with minimal or no round-trips.  
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Figure 2.4: DTN Protocol Stack 

 

 

Acknowledgments from the receiving node are optional. To cope with long delays while 

still allowing TCP (or some other conversational protocol) to be used as the underlying 

protocol in some parts of the network, the bundle layer utilizes transport-layer termination. 

This means that a DTN node acts as a surrogate for a TCP end-node, isolating the TCP 

connection from the bundle layer. 

 

2.4 Summary 

 

Distributed hash table (DHT) based peer-to-peer (P2P) protocols provide near-optimum data 

lookup time for resolving queries made on large P2P network. In a DTN, an end-to-end path 

may not be available at all times and path latency may be comparatively large. So, application 

protocols need to tolerate the delay resulting from the environmental challenges. 

 



 

 

Chapter 3 
  

Proposed System: DT-Chord 
 

3.1 Overview 
 

We address the problem of efficient resource retrieval in challenged scenarios. 

Distributed Hash Tables (DHTs) organize the peer-to-peer network in a structured 

manner to provide a hash-table-like lookup interface. Use of traditional P2P approaches 

proposed for reliable and connected wireless networks does not always show 

effectiveness in challenged networks. Chord [14] is one of the popular structured P2P 

protocols. Chord is usually deployed on application layer as a P2P overlay. A generic 

mapping of Chord protocol to Delay-tolerant Network is, however perceived as difficult. 

We investigate approach that improves the efficiency of the peer/resource lookup 

algorithm in DTN. The strategies that we use to reduce lookup latency are lowest delay 

neighbor selection, large routing tables and also recursive lookup routing. With lowest 

delay neighbor selection, a node chooses each of its neighbors to be the one with the 

lowest network delay among a set of qualified nodes. The actual network delay of each 

hop is reduced even though the number of hops remains the same. An alternative is to 

increase the per-node routing table size, when bandwidth is available. Intuitively, the 

more neighbors each node knows about, the fewer hops are required during lookups. 

 

3.2 Design Challenges 
 

To find a particular piece of data within the network current DTN applications typically 

provide lookup functions using controlled-flooding mechanisms. With this approach, the 

querying node wraps the query in a single message and sends it to all known neighbors. 

 



CHAPTER 3: DELAY TOLERANT CHORD  16 

The neighbors then check to see whether they can reply to the query by matching it to 

keys in their internal database. If they find a match, they reply; otherwise, they forward 

the query to their own neighbors. However, flooding-based systems don’t scale well 

because of the bandwidth and processing requirements they place on the network, and 

they provide no guarantees as to lookup times or content accessibility. Overlay networks 

can address these issues. Overlay networks have a network semantics layer above the 

basic transport protocol level that organizes the network topology according to the nodes’ 

content, implementing a distributed hash table abstraction that provides load balancing, 

query forwarding, and bounded lookup times. Current overlay networks are useful for 

applications that require reliable, highly scalable, and self organizing storage and lookup 

for unique key–value pairs. This includes distributed databases, processing clusters, and 

deterministic search applications. Peer-to-peer overlays can efficiently operate in stable 

networks where churn rate is low. In highly dynamic networks like DTN, the routing 

table maintenance cost is very high. DHT’s have a routing table comprised of neighbors. 

In the original Chord DHT proposal, algorithm made this choice of neighbors purely 

deterministic (i.e., given the set of identifier in the system, the neighbors tables were 

completely determined). Given a set of neighbors, and a destination, the routing algorithm 

determines the choice of the next hop. The problem of deterministic neighbor selection is: 

all links in the “Routing Network” may have high latency.  

 

 
 

Figure 3.1: Overlay Network 
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The latency of a lookup is the time taken to route a message to the responsible node for 

the key and receive a reply back. Low lookup latency is crucial for building fast 

DHT-based applications over DTN. Most existing work on optimizing DHT performance 

focuses on achieving low latency in static networks. This latency depends largely on two 

factors: the average number of hops per lookup (i.e. the underlying network delay 

incurred at each hop) and the average number of timeouts incurred during a lookup. A 

node can aggressively maintain the freshness of a smaller routing table (thus minimizing 

timeouts), or to look for new nodes to enlarge the table (thus minimizing lookup hops but 

perhaps risking timeouts). Highly dynamic network like DTN experiences churn: nodes 

continuously join and leave the system. Churn poses two problems for routing. First, it 

causes routing tables to become out of date and to contain stale entries that point to 

neighbors that are dead or have already left the system. Stale entries result in expensive 

lookup timeouts as it takes multiple round-trip time for a node to detect a lost lookup 

message and re-route it through a different neighbor. In static networks, the number of 

lookup hops and the network delay at each hop determine the end-to-end lookup latency. 

Under churn, timeouts dominate latency. Second, as new nodes join the system and stale 

routing entries are deleted, nodes need a way to replenish their routing tables with new 

entries. 

 

The ideal protocol should be able to adapt its routing table size to provide the best 

performance using bounded communication overhead. In addition to deciding on the best 

table size, a DHT should choose the most efficient way of spending bandwidth to keep 

routing tables up to date under churn. For example, a node could periodically ping each 

routing entry to check its liveness and search for a replacement entry if an existing 

neighbor is found to be dead. Intuitively, the faster a node pings, the less likely it is that 

lookups will encounter timeouts. However, periodic pinging generates overhead messages. 

The more a node pings, the less bandwidth it has for other uses. In fact, all techniques to 

cope with churn require extra communication bandwidth in order to evaluate the liveness 

of existing neighbors and learn about new neighbors. Intuitively, bandwidth consumption 

increases with the size of the routing table and the churn rate in the network. In other 

words, churn is a challenge because nodes can only use a finite amount of bandwidth 

resource. Therefore, the goal of DT-Chord is not to simply achieve low lookup latency 
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under churn, but to achieve low latency efficiently with bounded bandwidth overhead. In 

other words, we are interested in the latency reduction per byte of communication 

overhead, also referred to as latency versus bandwidth tradeoff. 

 

A DHT’s routing structure determines from which regions of identifier space a node 

chooses its neighbors. The ideal routing structure should be both flexible and scalable. 

With a flexible routing structure, a node is able to expand and contract the size of the 

routing table along a continuum in response to churn and available bandwidth. With a 

scalable routing structure, even a very small routing table can lead to efficient lookups in 

a few hops. However, most DHT routing structures are scalable but not flexible and 

constrain about routing table sizes are possible. In Chord, the expected number of 

neighbors per node in a network of n DHT nodes is (b-1)logbn. The parameter base (b) 

controls the table size, but it can only take values that are powers of 2, making it difficult 

to adjust the table size smoothly. 

 

3.3 DT-Chord (Delay Tolerant Chord) 

 

We propose DT-Chord enhancement to improve the performance of base Chord over 

Delay Tolerant Network. Figure 3.2 shows an illustrative example of a DT-Chord overlay 

network over DTN and Figure 3.3 shows the DT-Chord application over DTN. The 

original Chord proposal defines a specific set of neighbors for a given node identifier. 

Specifically, routing can be achieved in O(logN) hops even if  node a were to pick its ith 

neighbor as any node in the ID space range a+2i to a+2i+1-1 rather than the exact node 

closest to a+2i as originally defined by Chord [14, 32], where 0 ≤ i < m (m= no. of bits in 

the ID space) and base, b=2. The main idea of our scheme is to maintain the lowest delay 

node for each finger in its ID-space range. To obtain each ith finger, a node retrieves the 

successor list from a node with ID 2i away from itself and chooses the node in the ID 

space range [a+2i, a+2i+1) closest in  network latency to itself as the ith finger. While 

DTN applications are expected to be tolerant of delay, this does not mean that they would 

not benefit from decreased delay. Minimizing delay lowers the time messages spend in 

the network, which improves the probability of successful lookup and also reduces the 

communication cost. 
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Figure 3.2: An example of DT-Chord overlay over DTN 

 

An optimization to Chord is increasing the amount of information that Chord keeps about 

other nodes in the system. One way to do this would be to change the base of the finger 

table. By keeping a larger finger table, each hop could move ¾ of the way to the target, 

for example, instead of half way. In general, by increasing the size of the routing table to 

(b-1)logbN, Chord can achieve logbN hop lookups [14]. These optimizations would reduce 

latency under low churn, because each node would know about many other nodes. On the 

other hand, in high churn networks, these optimizations require more bandwidth to keep 

routing tables up to date and experience more timeouts because routing tables contain 

recently-failed nodes. 
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Figure 3.3: DT-Chord Application over DTN Protocol Stack 
 

 

3.3.1 DT-Chord Neighbor Selection 
 

In DT-Chord, a node in base-b keeps (b−1) logb(n) fingers whose IDs lie at exponentially 

increasing fractions of the ID space away from itself. Any node whose ID lies within the 

range m
1

2 *1
⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

b
bx

i

 and m2 *1
⎟
⎠
⎞

⎜
⎝
⎛ −

+
b

bx
i

, modulo 2m, can be used as the ith finger of x, 

where m is the number of bits in the ID space and 0 ≤ i < m. To obtain each ith finger, a 

node retrieves the successor list of nsucc nodes from a node with ID ⎟
⎠
⎞

⎜
⎝
⎛ −

+
b

bx
i1 away from 

itself and chooses the node closest in network latency to itself as the ith finger. Each node 

also keeps a successor list of size nsucc, containing the node’s first nsucc successors. A node 

x periodically pings all its fingers to check their liveness. For each finger found dead, the 

node issues a lookup for replacement of finger. A node separately stabilizes its successor 

list by periodically retrieving and merging its successor’s successor list; successor 

stabilization is separate because it is critical for correctness but is much cheaper than 

finger stabilization. Figure 3.4 and 3.5 show a simple scenario of Chord and DT-Chord 
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neighbor selection and Figure 3.6 and 3.7 show the Chord and DT-Chord neighbor 

selection example in detail. 

000 

 

 

ValueKey

Chord Finger Table of 000

001

001000 + 001

010000 + 010

100000 + 100
 

Figure 3.4: Base Chord has a deterministic and rigid finger table 
 

000

101

100

011

010

001

110

111

3 sec

7 sec

5 sec
9 sec

4 sec

6 sec

Successor List 
Node Successor List

000 001, 010 
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Figure 3.5: DT-Chord’s finger table. In the figure, to obtain 1st, 2nd and 3rd finger, DT-
Chord node 000  retrieves the successor list of node 001, 010, 100 and chooses the node 
in the ID space range [001, 010), [010, 100), [100, 000) respectively closest in network 
latency to itself (Here, 001, 011 and 101). In this way, it will choose every node’s finger’s 
entry. 
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3.3.2 Chord and DT-Chord Neighbor Selection Example in Detail 
 

(a) Chord Neighbor Selection 
 
 

Let the number of bits in the key/node identifiers are 4 and base=2. Each node n 

maintains a routing table with up to 4 entries, called the finger table. The ith entry in the 

table at node n contains the identity of the first node s that succeeds n by at least 2i on the 

identifier circle, i.e., s = successor(n+2i), where 0 ≤ i < m (and all arithmetic is modulo 

2m). Note that the first finger of n is the immediate successor of n on the circle; for 

convenience we often refer to the first finger as the successor. To increase robustness, 

each Chord node maintains a successor list of size r, containing the node’s first r 

successors. 
 

N1

N5

N8

N10

N2

N7

N11

N13

N15

N3

N4

 
 
 
 

Chord Finger Table of 
Node 1 (N1) 

 

N1+20 N2 

N1+21 N3 

N1+22 N5 

N1+23 N10  

 
Figure 3.6: Chord finger table entries for node N1 

 

The example in figure 3.6 shows the base Chord finger table of node 1 (N1). The first 

finger of node 1 points to node 2, as node 2 is the first node that succeeds (1+20) mod 24 = 

2. Similarly, the last finger of node 1 points to node 10, as node 10 is the first node that 

succeeds (1+23) mod 24 = 10. 

 



CHAPTER 3: DELAY TOLERANT CHORD  23 

(b) DT-Chord Neighbor Selection 
 

Let, each DT-Chord node have 2 successors. The successor list of every nodes and the 

pair wise latency between node N1 and other nodes in the systems are given below: 
 
 

Node Successor List 

1 2, 3 

2 3, 4 

3 4, 5 

4 5, 9 

5 7, 8 

7 8, 10 

8 10, 11 

10 11, 13 

--- --- --- 
 

 

Node Delay 

2 4 sec 

3 5 sec 

4 3 sec 

5 7 sec 

7 9 sec 

8 4 sec 

10 6 sec 

11 5 sec 

13 8 sec 

--- --- --- 
 

 

Table 3.1: Successor list of Chord nodes 
 

Table 3.2: Pair wise latency of node N1 
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 Range Choose

N1+20 [2, 3) N2 

N1+21 [3, 5) N4 

N1+22 [5, 9) N8 

N1+23 [9, 16) N11  

 

 
Figure 3.7: DT-Chord finger table entries for node N1 
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The example in Figure 3.7 shows the DT-Chord finger table of node N1. The 1st finger of 

node N1 points to node 2, as node 2 is the only node in the range [2, 3). So, there is no 

option to choose lowest delay neighbor. To obtain 2nd finger, node N1 retrieves the 

successor list from the node N3 (N1+21= N3) and chooses the node from the list [3, 4] 

that lies in the ID space range [3, 5) closest in network latency to itself. From the table 

3.2, we can see that the 2nd finger of N1 will be N4. Similarly to obtain 3rd finger, node 

N1 retrieves the successor list from the node N5 (N1+22= N5) and chooses the node from 

the list [5, 7, 8] that lies in the ID space range [5, 9) closest in network latency to N1. So, 

the 3rd finger of N1 will be N8. The last (4th) finger of N1 will be N11, as N11 is the node 

that has lowest latency to N1, among the node N10 (N1+23= N10, as there is no node, 

N9) and its successor list that lies in the ID space range [9, 16). 

 
3.3.3 DT-Chord Route Selection 
 

The base Chord lookup routing algorithm is iterative. We use recursive lookup routing 

algorithm in DT-Chord. Here, the requesting node forwards the lookup to the first hop 

which forwards in turns forwards the request to the next best hop (instead of returning 

information about the next best hop to the requester). When the lookup reaches the key’s 

predecessor, the predecessor sends a message to the node that originated the lookup with 

the results of the lookup. Figure 3.8 shows the pseudo code for recursive lookup using 

finger tables. Note that no messages are sent to the originating node prior to the lookup's 

completion. 

 

While recursive lookup has lower latency than iterative, iterative is easier for a client to 

manage. If a recursive lookup elicits no response, the originator has no information about 

what went wrong and how to re-try in a way that is more likely to succeed. Sometimes a 

simple re-try may work, as in the case of lost packets. If the problem is that each 

successive node can talk to the next node, but that Internet routing anomalies prevent the 

last node from replying to the originator, then re-tries won't work because only the 

originator realizes a problem exists. In contrast, the originator knows which hop of an 

iterative lookup failed to respond, and can re-try that hop through a different node in the 
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same region of the identifier space. On the other hand, recursive communication may 

make congestion control easier. DT-Chord uses recursive lookups by default since they 

are faster, but could fall back on iterative lookups after persistent failures. 

 

 

// ask node n to find the successor of id 

// This lookup is being done on behalf of node orig 

n.find_successor(id, orig) 

if (id ∈ (n, successor]) 

orig.lookup_done(successor_list); 

else 

n΄ = closest preceding_node(id); 

n΄.find_successor(id); 

 

// search the local table for the highest predecessor of id 

n.closest_preceding_node(id) 

for i = m downto 1 

if (finger[i] ∈ (n, id)) 

return finger[i]; 

return n; 

// called when a lookup completes. Return the results 

// of the lookup to the user 

n.lookup_done(successors) 

 

Figure 3.8: DT-Chord’s recursive lookup using the finger table. find_successor returns 

the successors of key id by forwarding the lookup to the finger table entry that is closest 

to the target. Note that finger[0] is the node's successor. 
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3.3.4 Routing State Freshness 
 

A node must strike a balance between the freshness and the size of its routing table.  

Nodes need to judge the freshness of entries to decide when to evict nodes, in order to 

limit the number of expected lookup timeouts. Timeouts are expensive as nodes need to 

wait multiple round trip times to declare the lookup message failed before re-issuing it to 

a different neighbor. In order to avoid timeouts, DT-Chord nodes contact each neighbor 

periodically to determine the routing entry’s liveness. In other words, a node can control 

its routing state freshness by evicting neighbors from its routing table that it has not 

successfully contacted for some interval. If the available bandwidth were infinite, the 

node could ping each neighbor often to maintain fresh tables of arbitrarily large size. 

However, with a finite bandwidth, a node must somehow make a tradeoff between the 

freshness and the size of its routing table.  

 

Since nodes need to keep their maintenance traffic according to available bandwidth, they 

can only refresh or learn about new neighbors at some finite rate. For example, if a node’s 

available bandwidth is 20 bytes per second, and learning liveness information for a single 

neighbor costs 4 bytes (e.g., the neighbor’s IP address), then at most a node could refresh 

or learn routing table entries for 5 nodes per second. 

 

3.4 Summary 
 

In this chapter, we have proposed a DHT based lookup protocol for DTN, DT-Chord - an 

efficient lookup protocol that minimizes delay while locating data in DTN and have discussed 

the theoretical background of DT-Chord.  

 

 

 

 

 

 

 



 

 
Chapter 4 
 

Evaluation 
 

4.1 P2P Simulators 
 
In this section we enlisted some P2P simulators. The P2P research community has not 

come to a consensus on standardizing a simulation platform for simulating the research 

projects from numerous working groups. From the survey presented in [24], it can be 

observed that more than 90% of P2P research was tested in non-standard or custom-made 

simulation environments. Yet there are a number of freely available P2P-simulators on 

the Internet. Most of these simulators are still at the early stages of implementation; it will 

take a while for these simulators to achieve maturity. A comprehensive survey on P2P 

simulators can be found in [24]. 

 

For our experiments we have used P2PSim, which is described in the next section. Few 

P2P simulators that we considered as possible alternatives for P2PSim are listed below: 

 

• PlanetSim [25] 

• PeerSim[26] 

• GPS [27] 

• 3LS [28]  

• Query-Cycle Simulator [29] 

• NeuroGrid [33] 

• PlanetSim [34] 
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4.2 P2PSim 
 
We have implemented DT-Chord in P2PSim [23] for our experiments. P2PSim is an open 

source, discrete event simulator intended to compare, evaluate, and explore peer-to-peer 

protocols. Like other P2P simulators it does not consider the underlying network 

communication stack for monitoring network layer performance, rather the focus is on the 

overlay layer. In our simulation, the simulated network models only packet delay. One 

input to the simulator is a full matrix of the round-trip delays between each pair of 

simulated hosts. This approach avoids having to simulate the Internet’s topology, a 

currently open area of research; it requires only the measurement of actual pair-wise 

delays among a set of hosts. The simulator can produce useful speed-of-light delay results, 

but cannot be used to predict throughput or queuing delay. This suffices for our 

experiments where network latency is the bottleneck. 

 

4.3 Experimental Dataset 
 

The simulated network, consists of 128, 256, 512, 1024 nodes with a pair wise latency 

matrix derived from measuring the inter-node latencies of 128, 256, 512, 1024 DNS 

servers respectively using the King method [30]. 

 

4.4 Simulation Design 
 

In this section, we describe the main components of our simulation, explains how they 

communicate, and discusses simulator’s control flow design. 

 

4.4.1 Main components 
 

A simulation includes Nodes, a Network, a Topology, a Lookup Generator, and a Churn 

Generator. Figure 4.1 gives an overview of these components, and how they interact. 
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Figure 4.1: Major components of simulation 

 

A Node simulates a computer running a peer-to-peer algorithm. Nodes (labeled N1 to N7 

in Figure 4.1) communicate to each other by sending packets through the Network. The 

Network uses the Topology to determine the latency between two nodes. The Churn 

Generator models the dynamic nature of delay tolerant networks. Periodically, it either 

adds a node to the network by invoking the node’s join method, or removes a node from 

the network by destroying it. Figure 4.1 shows the Churn Generator removing node N1. 

The Lookup Generator simulates a workload by periodically issuing lookup requests. 

Figure 4.1 shows the Lookup Generator generating a lookup request for node N3. To 

satisfy this request, node N3 sends a packet over the Network to Node N5, N5 sends back 

a reply, and N3 logs the time it took for the lookup to complete. A node doing a lookup 

runs the protocol’s lookup algorithm to find node N closest to a given key K in identifier 

space. Periodically, a Node may run a stabilization routine to refresh the entries in its 

routing table. 

 

Nodes communicate to each other by issuing RPCs that are sent in packets through the 

Network. Upon receiving a packet, the Network asks the Topology for the latency 
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between the sender and receiver, which determines the correct simulated time at which 

the packet is delivered to the destination Node. When an RPC is issued to a dead node, 

the Network mimics a timeout by scheduling a special error-RPC-reply n roundtrip times 

after the RPC was sent, where n is some user-configurable value. 

 

4.5 Evaluation Criteria 
 

Lookup performance has often been measured with hopcount, latency, success rate, and 

probability of timeouts. Lookup latency alone is not sufficient to evaluate protocol under 

churn, where nodes continuously join and leave the network, because the latency metric 

does not account for the cost of maintaining the state required to achieve low latency. 

Evaluating lookup performance in static networks tends to favor protocols that keep large 

routing tables, since they pay no penalty to keep the tables’ up to date, and more routing 

entries generally results in lower lookup hop-counts and latencies. Large routing tables 

incur costs, however they require maintenance traffic to keep them up to date, and if they 

become out of date then stale entries may cause timeout delays. Thus an evaluation 

criterion for protocol under churn should reflect the relationship between latency and cost. 

 

4.6 Comparison Framework 
 

Two challenges exist in evaluating DT-Chord lookup protocol over DTN. First, protocol 

can be tuned to have low lookup latency by including features such as aggressive 

membership maintenance, faster routing table liveness checking, or a more thorough 

exploration of the network to find low delay neighbors. Any evaluation that examines 

how DT-Chord performs along one dimension of either cost (in terms of bandwidth 

consumed) or performance (in terms of lookup latency) is flawed, since an analysis can 

“cheat” by performing extremely well on the axis being measured but terribly on the other. 

Thus a comparison of lookup protocol must consider the performance and cost 

simultaneously, i.e. the efficiency with which it exploits bandwidth to reduce latency.  

The efficiency can be characterized by a performance vs. cost tradeoff curve: at any given 

bandwidth, there is one best achievable latency. However, efficiency cannot be measured 
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by a single number summarizing the ratio between a protocol’s bandwidth consumption 

and its lookup latency, as the tradeoffs between performance and cost does not necessary 

follow a linear relationship.  

 

The second challenge is to cope with protocol’s set of tunable parameters (e.g., liveness 

checking interval, routing table size etc.). The best parameter values for a given workload 

are often hard to predict, so there is a danger that a performance evaluation might reflect 

the evaluator’s parameter choices more than it reflects the underlying algorithm. In 

addition, parameters often correspond to a given protocol feature. A good analysis should 

allow designers to judge the extent to which each parameter (and thus each feature) 

contributes to overall bandwidth efficiency. 

 

In response to these two challenges, we propose a comparison framework and evaluation 

methodology for assessing DT-Chord protocol, comparing different design choices and 

evaluating new features. 

 

4.6.1 Performance Metrics 
 

We measure performance as the lookup failure rate and the average lookup latency of 

correct lookups (i.e., lookups for which a correct answer is returned), including timeout 

penalties (three times the round-trip time to the dead node). Protocols retry failed lookups 

(i.e., lookups that time out without completing) for up to a maximum of four seconds. We 

only incorporate lookup hopcount indirectly, to the extent that it contributes to latency. In 

the presence of churn, routing tables tend to become incorrect or out of date, causing 

lookups to suffer timeouts or completely fail. 

 

4.6.2 Cost Metric 

 

We measure cost as the average bandwidth consumed per node per alive second (i.e., we 

divide the total bytes consumed by the sum of times that each node was alive). The size of 

each message is counted as 20 bytes for headers plus 4 bytes for each node mentioned in 

the message. This cost accounts for all messages sent by a node, including periodic 
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routing table refresh traffic, lookup traffic, and join traffic. We ignore state storage costs 

(e.g., the size of each node’s routing table) because communication is typically far more 

expensive than storage (memory) or CPU time. The main cost of state is often the 

communication cost necessary for maintaining the correctness of that state. 

 

4.7 Experimental Environment 

 

In our simulation, nodes try to forward lookups to the node responsible for the lookup key. 

The identity of the responsible node is returned to the sender as the result of the lookup. A 

lookup is considered failed if it returns the wrong node among the current set of 

participating nodes (i.e. those that have completed the join procedure correctly) at the 

time the sender receives the lookup reply, or if the sender receives no reply within some 

timeout window. The evaluation framework accounts for the cost of trying to contact a 

dead node during a lookup as a latency penalty equal to a small constant multiple of the 

round trip time to the dead node, an optimistic simulation of the cost of a timeout before 

the node pursues the lookup through an alternate route. In our experiments, protocol time 

out individual messages after an interval of three times the round-trip time to the target 

node. A node encountering a timeout to a particular neighbor during a lookup does not 

immediately declare that neighbor dead; the lookup proceeds to an alternate node if one 

exists, and recovery does not begin for the failed neighbor until 5 RPC timeouts to that 

neighbor occur. Protocol retries alternate routes for lookups for up to a maximum of four 

seconds, after which the lookup has declared fail. This definition of failure is arbitrary: a 

shorter maximum time would decrease average latency while increasing failure rate, 

while a longer maximum would increase average latency while decreasing the failure rate. 

Further, each failed lookup contributes a disproportionate four seconds to the average 

lookup latency statistic. For these reasons, we measures lookup failure rate and average 

lookup latency as separate performance metrics. 

 

The average roundtrip delay between node pairs in our dataset is 156 ms. Since each 

lookup for a random key must terminate at a specific, random node in the network, the 

average latency of the topology serves as a lower bound for the average DHT lookup 

latency. Each node alternately crashes and re-joins the network; the interval between 
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successive events for each node is exponentially distributed with a mean of one hour [31]. 

The amount a protocol must communicate to keep node routing tables up to date depends 

on how frequently nodes join and crash (the churn rate). For the most part, the total 

bandwidth consumed by a protocol is a balance between table maintenance traffic and 

lookup traffic, so the main characteristic of a workload is the relationship between lookup 

rate and churn rate. We investigate two workloads, one that is churn intensive and one 

that is lookup intensive. In the churn intensive workload, each node issues lookups for 

random keys at intervals exponentially distributed with a mean of 600 seconds. In the 

lookup intensive workload, the lookup interval mean is 9 seconds. Unless otherwise noted, 

all figures are for simulations done in the churn intensive workload. Each simulation runs 

for six hours of simulated time; statistics are collected only during the second half of the 

simulation and averaged over 5 simulation runs. 

 

4.7.1 Simulation Parameters 
 

Table 4.1 lists the Chord and DT-Chord parameters that we vary in our simulations. 

 

 Parameter Range 

Number of Successors nsucc 8 ,16 

Successor Stabilization Interval tsucc 9 sec – 19 min 

Amount of state 

(Finger Base) 
b 2, 4, 8, 16, 32 

Freshness of State 

(Finger Stabilization Interval) 
tfinger 9 sec – 19 min 

 

Table 4.1: Chord and DT-Chord Simulation Parameters 
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4.7.2 Results 
 
We systematically simulate DT-Chord with different combinations of parameter values. 

For each parameter combination, we plot the performance and cost measured from the 

experiment on a graph with total bandwidth usage on the x-axis and average lookup 

latency in milliseconds or failure rate on the y-axis. For example, in Figure 4.2, each of 

the many hundred points corresponds to a different parameter combination under a 

particular workload. A point that lies to the lower left of another point is more efficient as 

its corresponding parameter combination results in both lower lookup latency and lower 

bandwidth consumption. 
 

To characterize the efficiency of DT-Chord, we need to find the best set of performance 

vs. cost tradeoff points that correspond to the optimal parameter settings. As can be seen 

in Figure 4.2, there is no single best performance vs. cost tradeoff point. Instead, there is a 

set of best points: for each cost, there is a smallest achievable lookup latency, and for 

each lookup latency, there is a smallest achievable communication cost. The curve 

connecting these best points is the overall convex hull segment (shown by the solid line in 

Figure) that lies beneath and to the left of all points. A convex hull outlines the best 

achievable performance vs. cost tradeoffs with the optimal parameter settings. A convex 

hull segment always goes up to the left of the graph as bandwidth decreases. This means 

that there is no parameter combination that simultaneously produces both low lookup 

latency (or low failure rate) and low bandwidth consumption. The convex hulls go down 

at higher bandwidth because there are parameter values that improve lookup latency (or 

failure rate) at the cost of increased bandwidth consumption. 
 

The convex hull in Figure 4.2 is only for a specific workload and churn scenario being 

simulated. The best parameter values (thus the overall convex hulls) might change as 

workloads or the churn rates change. Therefore, the convex hull only outlines maximal 

efficiency in theory. An operator would have to adjust the protocol parameters manually 

under known workload and churn scenario in the absence of a self tuning protocol. 
 

In Figures 4.2, 4.4, 4.6, 4.8, each point represents the average lookup latency of successful 

lookups vs. the communication cost achieved for a unique set of parameter values. In Figures 

4.3, 4.5, 4.7, 4.9 each point represents the lookup failure rate vs. the communication cost 
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achieved for a unique set of parameter values. The convex hull (solid line) represents the 

best achievable performance/cost combinations. 
 

 
Figure 4.2: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of 
Chord and DTChord with network size 128, under the churn intensive workload. 
 

 
 

Figure 4.3: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and 
DTChord with network size 128, under the churn intensive workload. 
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Figure 4.4: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of 
Chord and DTChord with network size 256, under the churn intensive workload. 
 

 
Figure 4.5: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and 
DTChord with network size 256, under the churn intensive workload. 
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Figure 4.6: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of 
Chord and DTChord with network size 512, under the churn intensive workload. 
 

× ×
×

 
Figure 4.7: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and 
DTChord with network size 512, under the churn intensive workload. 
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Figure 4.8: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of 
Chord and DTChord with network size 1024, under the churn intensive workload. 
 
 

 
Figure 4.9: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of Chord and 
DTChord with network size 1024, under the churn intensive workload. 
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4.8 Effect of Lookup-intensive Workload 
 

The lookup intensive workload involves each node issuing a lookup request every 9 

seconds, almost 67 times the rate of the churn intensive workload used in the preceding 

sections. As a result, the lookup traffic dominates the total bandwidth consumption. 

Figure 4.10 shows the overall convex hulls of Chord and DT-Chord protocol under the 

lookup intensive workload with network size 1024. 

 

In the lookup intensive workload, each node issues and forwards much more lookup 

messages during its lifetime and hence the amount of churn is relatively low. Thus, it is 

more efficient to keep a larger routing table for fewer lookup hops when the amount of 

stabilization traffic is low compared to the amount of lookup traffic. Furthermore, fewer 

lookup hops translate into a large decrease in forwarded lookup traffic, given the large 

number of lookups. 

  

 
 

(a) 
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(b) 

Figure 4.10: Chord and DT-Chord under lookup intensive workload. (a) Each point represents 
the successful lookup latency vs. the communication cost. (b) Each point represents lookup 
failure rate vs. the communication cost achieved for a unique set of parameter values. 

 

4.9 Summary 
 

We ran simulations of each Chord and DT-Chord protocol with same combinations of the 

parameters. The results of the simulations show that proposed DT-Chord outperforms 

Chord in terms of reducing latency, correct query lookup in different network size and 

different work load. Both failure rate and lookup latency decrease as the protocols 

consume more bandwidth. 

 

 
 
 
 
 
  
 

 



 

 

Chapter 5 
 

Performance Tuning of DT-Chord 
 

In order to design DT-Chord with best lookup performance, we need to understand how 

to use available bandwidth most efficiently. The efficiency of a protocol measures its 

ability to turn each extra byte of maintenance communication into reduced lookup latency. 

In the figures of previous chapter, we have seen the combined effect of many parameters. 

In these figures, some parameter settings are much more efficient than others. So, it is 

needed to evaluate whether a particular parameter is more important to tune than others in 

order to achieve the best performance/cost tradeoff. This chapter identifies the importance 

of different parameters and relating them to the different design choices. We provide an 

extensive simulation study to evaluate how efficiently different design choices use 

additional bandwidth for better lookup performance. This is done by calculating a set of 

parameter convex hulls, one for each value of the parameter under study. Each parameter 

convex hull is generated by fixing the parameter of interest and varying all others. Each 

parameter hull represents the best possible performance vs. cost tradeoffs for a fixed 

parameter value. In this chapter, the simulated network, unless otherwise noted, consists 

of 1024 nodes.  

 

5.1 DT-Chord Parameter Analysis 

 

The various bandwidth consumptions and lookup performance are the indirect 

consequence of setting different parameters to different values. That is, the convex hulls 

are the result of an exhaustive search for the best parameter values. What parameter 

values produced the best tradeoffs that make up the convex hull? More importantly, if the 

available bandwidth changes, what are the parameters that need to be re-adjusted to 

optimize lookup performance? 
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Each parameter corresponds to a design choice. Different design choices compete with 

each other in using extra bandwidth to improve lookup performance. For example, setting 

a bigger base (b) or a smaller stabilization interval (tfinger) can both lower lookup latency 

at the cost of increased bandwidth consumption. Therefore, measuring the performance 

benefits by adjusting a single parameter in isolation can be misleading as it ignores other 

competitive choices of using bandwidth. We solve this problem with parameter convex 

hull analysis. Instead of measuring the performance benefits of adjusting the parameter of 

interest, we examine the efficiency loss from not adjusting the parameter under study and 

exploring all other parameters. A parameter convex hull outlines the bandwidth efficiency 

achieved under a fixed value for the parameter under study while exploring all other 

parameters. There exist a set of parameter hulls, one for each value of the parameter 

under study. Since overall convex hull always lies beneath all parameter hulls, the area 

between a parameter hull and the overall convex hull denotes the amount of lost 

efficiency due to setting the parameter to that fixed value. Therefore, if one had to set the 

parameter to one specific value, one should choose the value that corresponds to the 

parameter hull with the minimum area difference. A small minimum area suggests that 

there exists one best default value for the parameter under study. A large minimum area 

indicates it is important to re-adjust the parameter to optimize performance. 
 

5.2 Effect of Parameters in Churn Intensive DT-Chord 
 

5.2.1 Effect of Successor Stabilization Interval 
 

Base Chord and enhanced DT-Chord separately stabilizes finger and successors. The 

most important parameter, in terms of failure rates, is the successor stabilization interval 

(tsucc). This parameter governs how often a node checks that its successor is still alive, and 

thus the amount of time it takes a node to realize that its successor is dead and should be 

replaced with the next live node in ID space. The reason that tsucc has the largest effect on 

failure rate is that the correctness of the lookup protocol depends only on successor 

pointers, and not on the rest of the Chord routing table [14]. Thus it is enough to stabilize 

only the successors frequently if a low lookup failure rate is required. Faster successor 

stabilization interval result in wasted bandwidth while slower rates result in a greater 
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number of timeouts during lookups. In the Figure 5.1 and 5.2, overall convex hull and the 

parameter convex hulls for stabilization interval (tsucc) showing failure rate vs. bandwidth 

tradeoffs and successful lookup latency vs. bandwidth tradeoffs of all tsucc, under the churn 

intensive workload. A parameter convex hull that lies towards the bottom left of another 

hull indicates that its corresponding parameter can be tuned to have lower failure rate 

while consuming the same amount of bandwidth.  
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(a) 

 

 
 

(b) 

Figure 5.1: (a) Parameter convex hulls and (b) overall convex hull showing failed lookup 
vs. bandwidth tradeoffs of all tsucc, under the churn intensive workload. 
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(a) 

 
(b) 

Figure 5.2: (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all tsucc, under the churn intensive workload. 
Each line traces the convex hull of all experiments with a fixed successortimer, tsucc value 
while varying all other parameters. 
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5.2.2 Effect of Routing Table Size 
 

DT-Chord have base (b) as the parameter that is most in need of tuning for best lookup 

latency. Base controls the number of routing entries each node keeps and bigger bases 

lead to bigger routing tables with (b-1) (logbn) entries. Figure 5.3 shows DT-Chord’s 

overall convex hull as well as its parameter hulls for different base values. At the left side 

of the graph, where the bandwidth consumption is small, the parameter hull for b = 2 lies 

on the overall convex hull which means smaller bases should be used to reduce 

stabilization traffic at the expense of higher lookup latency. When more bandwidth can be 

consumed, larger bases lower the latency by decreasing the lookup hop-count. Expanding 

a node’s routing table is more efficient than other alternatives at using additional 

bandwidth. For example, one competitive use of extra bandwidth is to check for the 

liveness of routing entries more frequently as doing so would decrease the likelihood of 

lookup timeouts. However, when routing entries are “fresh enough”, spending extra 

bandwidth to further reduce the already very low lookup timeout probability has little 

impact on the overall latency. Instead, when the routing table is fairly fresh, a node should 

seek to reduce lookup latency by using additional bandwidth to expand its routing table 

for fewer lookup hops.  
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(a) 

 
(b) 

Figure 5.3: (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all base b, under the churn intensive workload. 
Each line traces the convex hull of all experiments with a fixed base b value while 
varying all other parameters. 
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(a) 

 
(b) 

Figure 5.4: (a) Parameter base convex hull and (b) overall convex hull for lookup failure 

rate vs. bandwidth tradeoffs. 
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5.2.3 Effect of Routing Table Refresh Rate 

 

The finger stabilization interval affects performance without affecting success rate, so its 

value must be varied to achieve the best tradeoff. Faster finger stabilization results in 

lower lookup latency due to fewer timeouts, but at a higher communication cost. A node 

should expand its routing table when the existing routing entries are already fresh. What 

is a good freshness threshold for routing tables? We know, routing entries’ staleness is 

bounded by the finger stabilization interval. Figure 5.5 shows the parameter hulls for 

different stabilization values as well as overall convex hull. The best value for tfinger (144s) 

corresponds to a parameter hull that approximates the entire overall convex hull. Since 

parameter hulls are computed by exploring all other parameters including base (b), a less 

attractive parameter hull indicates the efficiency loss by setting tfinger to a wrong value. 

Making routing entries fresher than necessary (tfinger = 9 sec) results in a less efficient 

parameter hull as the extra bandwidth is wasted on checking the already sufficiently up-

to-date routing entries as opposed to expanding a node’s routing table. Allowing routing 

entries to become too stale (tfinger = 576s) also dramatically decreases the efficiency of the 

convex hull as stale routing entries lead to too many timeouts which can not be 

compensated by routing via fewer hops with a larger routing table. 
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(a) 
 

 
 

(b) 
 

Figure 5.5: (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all fingertimer, tfinger, under the churn intensive 
workload. Each line traces the convex hull of all experiments with a fixed fingertimer 
value while varying all other parameters. 
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(a) 

 
(b) 

Figure 5.6: (a) Parameter convex hull and (b) overall convex hull showing failed lookup 

rate vs. bandwidth tradeoffs for all fingertimer, tfinger. 
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5.3 Effect of Parameters in Lookup Intensive DT-Chord 
 

In the lookup intensive workload, each node issues and forwards much more lookup 

messages during its lifetime and hence the amount of churn is relatively low. Thus, it is 

more efficient to keep a larger routing table for fewer lookup hops when the amount of 

stabilization traffic is low compared to the amount of lookup traffic. Furthermore, fewer 

lookup hops translate into a large decrease in forwarded lookup traffic, given the large 

number of lookups. In Figure 5.7 Compared with churn intensive workload, convex hull 

for lookup intensive workload is relatively flat. Unless otherwise noted, from this section, 

all figures are for simulations done in the lookup intensive workload of DT-Chord 

consists of 1024 nodes. 

 

 
 

Figure 5.7: Overall convex hulls for successful lookup latency vs. bandwidth tradeoff of 
DTChord under the lookup intensive and churn intensive workload with network size 
1024. 
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Figure 5.8: Overall convex hulls for lookup failure rate vs. bandwidth tradeoff of 
DTChord under the lookup intensive and churn intensive workload with network size 
1024. 
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5.3.1 Effect of Successor Stabilization Interval in Lookup 
Intensive Workload 

 
 

(a) 
 

 
(b) 

Figure 5.9:  (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all tsucc, under the lookup intensive workload. 
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(a) 

 
(b) 

Figure 5.10: (a) Parameter convex hulls and (b) overall convex hull showing lookup 
failure rate vs. bandwidth tradeoffs of all successortimer tsuccessor, under the lookup 
intensive workload. Each line traces the convex hull of all experiments with a fixed base 
b value while varying all other parameters 
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5.3.2 Effect of Base in Lookup Intensive Workload 
 

 
 

(a) 
 

 
 

(b) 
Figure 5.11: (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all base b, under the lookup intensive workload.  
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(a) 

 
(b) 

Figure 5.12: (a) Parameter base convex hull and (b) overall convex hull for lookup failure 

rate vs. bandwidth tradeoffs. 
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5.3.3 Effect of Fingertimer in Lookup Intensive Workload 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 5.13: (a) Parameter convex hulls and (b) overall convex hull showing successful 
lookup latency vs. bandwidth tradeoffs of all fingertimer, tfinger, under the lookup 
intensive workload. Each line traces the convex hull of all experiments with a fixed 
fingertimer value while varying all other parameters. 
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(a) 

 
(b) 

Figure 5.14: (a) Parameter convex hull and (b) overall convex hull showing failed lookup 

rate vs. bandwidth tradeoffs for all fingertimer, tfinger. 
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5.4 Summary 
 

We evaluate how efficiently different design choices use additional bandwidth for better 

lookup performance. In a real deployment, the protocol designer or deployer would have 

to tune the parameters manually to find the best values, or settle for default values. DT-

Chord in particular can use its bandwidth quite efficiently and achieves low lookup 

latencies at little cost. This behavior appears to be due to its neighbor selection approach 

and giving priority to stabilizing successors over fingers when bandwidth is limited, since 

correct successors are all that is needed to ensure correct lookups. By focusing its limited 

stabilization traffic on this small, constant amount of state (as opposed to its full O(log n) 

state), DT-Chord is able to maintain correctness. 
 

Table 5.1 summarizes the insights from the preceding sections. The best use for extra 

available bandwidth is for a node to expand its routing table. It is important to bound the 

staleness of routing entries and there seems to be a best freshness threshold under a given 

churn rate.  
 

Table 5.1: The effect of successortimer, fingertimer, and base in DT-Chord. 

 Average lookup latency Fraction of failed lookup 

successortimer Faster successor stabilization 
interval results in wasted 
bandwidth and decreases average 
look up latency while slower 
rates result in a greater number of 
timeouts during lookups.  

Largest effect on failure rate. The 
correctness of the lookup protocol 
depends only on successor pointers, 
and not on the rest of the Chord 
routing table. 

base Larger bases lower the latency by 
decreasing the lookup hop-count. 
Although this improvement 
comes at the cost of bandwidth. 

Does not affect success rate. 

fingertimer Faster finger stabilization results 
in lower lookup latency due to 
fewer timeouts, but at a higher 
communication cost. 

Does not affect success rate. 

 



 

 

 

Chapter 6 
 

Conclusion 

 

We have presented DT-Chord, a DHT protocol for delay tolerant network, with a design 

that can be adjusted to reflect current operating environments and a user-specified 

bandwidth budget. By selecting lowest delay neighbor, DT-Chord achieves low lookup 

latency. The baseline Chord protocol performance and the enhanced DT-Chord 

performance are compared with extensive simulation. DT-Chord outperforms Chord in 

terms of bandwidth consumption, delay reducing, and number of successful lookup. 

 

Evaluating DHT protocol over DTN in the presence of churn is a challenge. 

Methodologies developed for static networks can be misleading, since they don’t account 

for the resources consumed to obtain low latency. We introduce a performance vs. cost 

analysis that explicitly accounts for the network bandwidth a DHT consumes to achieve 

better lookup performance. We incorporate features to improve lookup performance at 

extra communication cost in the face of churn in DTN. It is misleading to evaluate the 

performance benefits of an individual design choice alone because other competing 

choices can be more efficient at using bandwidth. We present protocol designers with a 

methodology to determine the relative importance of tuning different protocol parameters 

under different workloads (churn intensive or lookup intensive) and network conditions 

(i.e. delay, available bandwidth, network under churn). As parameters often control the 

extent to which a given protocol feature is enabled, our analysis allows designers to judge 

whether a protocol feature is more efficient at using additional bandwidth than others via 

the analysis of the corresponding protocol parameters. Furthermore, by remaining flexible 

in its choice of routing table size, DT-Chord can operate efficiently in a wide range of 

operating environments, making it suitable for use by developers who do not want to limit 

their applications to a particular network size, churn rate, or lookup workload. 
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6.1 Future Work 

 

Our contributions improve the peer/resource lookup efficiency of Chord protocol over 

Delay Tolerant Scenarios. Lookup Routing issue in DTN is attracting more attention. DT-

Chord can be applied to develop more realistic networks’ application like mobility-

assisted information diffusion and vehicle-based networks (VDTNs) application. 
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