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Abstract

A bar visibility representation of a planar graph G is a drawing of G where

each vertex is drawn as a horizontal line segment called bars, each edge is drawn

as a vertical line segment where the vertical line segment representing an edge

must connect the horizontal line segments representing the end vertices. A bar

1-visibility representation is a drawing of G where each vertex is drawn as a

horizontal line segment, each edge is drawn as a vertical line segment where

the vertical line segment representing an edge must connect the horizontal line

segments representing the end vertices and a vertical line segment correspond-

ing to an edge intersects at most one bar which is not an end point of the

edge. A graph is a bar 1-visibility graph if it admits a bar 1-visibility represen-

tation. A bar 1-visibility representation is a natural generalization of a visibility

representation for a non-planar graph. However, complete characterizations of

bar 1-visibility graphs are not known. In this thesis, we introduce “diagonal

grid graphs” and “diagonal labeled graphs”, which are non-planar graphs, as

bar 1-visibility graphs. We first give a linear-time algorithm for finding a bar

1-visibility representation of a diagonal grid graph. We then modify the algo-

rithm for finding a visibility representation on a compact area. We also give

an algorithm for finding a bar 1-visibility representation of a diagonal labeled

graph in linear time.

xi



Chapter 1

Introduction

The study of graphs has gained itself the identity as a fundamental working

tool and a data structure that can be used to gain insight into a real world

problem. Graph theory is the study of graphs, the mathematical structures used

to model pairwise relations between objects from a certain collection. There are

thousands of real world problems each of which underlying structure consisting

of entities and their relationships, and the representation of these problems as

a suitable graph classification can aid in powerful visualization of the concept.

Structures that can be represented as graphs are ubiquitous, and many problems

of practical interest can be represented by graphs. The study of graph theory has

its widespread applications in a vast majority of fields ranging from computer

network analysis, transportation network, social networking concepts to VLSI

circuit design, cartography, genetics, bioinformatics, molecular chemistry and

condensed matter physics.

In mathematics, a graph is an abstract representation of a set of objects

where some pairs of the objects are connected by links. The interconnected

objects are represented by mathematical abstractions called vertices, and the

links that connect some pairs of vertices are called edges. Typically, a graph is

depicted in diagrammatic form as a set of dots for the vertices, joined by lines or

curves for the edges. Graph drawing, a drawing of a graph is basically a pictorial

representation of an embedding of the graph in the plane, usually aimed at a

convenient visualization of certain properties of the graph in question or of the

object modeled by the graph. A graph structure can be extended by assigning a

weight to each edge of the graph. Graphs with weights, or weighted graphs, are

1



used to represent structures in which pairwise connections have some numerical

values. Besides the weighted graphs, colored graphs can also be used to focus

on certain special attributes of a problem.

Although visibility in the plane is a very natural concept, many fundamen-

tal problems remain unsolved. Visibility graphs are a much studied approach

to these problems. Generally speaking, a visibility graph consists of a set of

shapes in the plane, the vertices, and a concept of visibility that defines the

edges of the graph. Bar visibility graphs are among the best understood classes

of visibility graphs. Here the vertices correspond to horizontal line segments

called bars, and visibility runs vertically along lines of sight which connect two

bars while being disjoint from all others. These graphs have been completely

characterized by Tamassia and Tollis [25]. The concept of bar visibility graphs

came up in the early 1980s when many new problems in visibility theory arose,

originally inspired by applications dealing with determining visibilities between

different electrical components (VLSI-design). Other applications arise when

large graphs are to be displayed in a transparent way, and in the rapidly devel-

oping field of computer graphics.

Several variations and generalizations of bar visibility graphs have been con-

sidered, using different definitions for the type of bars or the kind of visibility or

often both. For example, Bose, Dean, Hutchinson and Shermer [19] introduced

rectangle visibility graphs, considering rectangles with horizontal and vertical

visibility. Hutchinson [14] investigates arc- and circle-visibility graphs, where

the vertices correspond to arcs of concentric circles and visibility can go through

the origin. Recently, new classes of bar visibility have been introduced by re-

stricting the vertex representations to unit bars or generalizing them to sets of

several bars [3].

A bar k-visibility graph is another recent generalization of a bar visibility

graph. They have been introduced by Dean, Evans, Gethner, Laison, Safari and

Trotter [3] on the graph drawing symposium 2005 in Limerick. The new idea is

that lines of sight are allowed to intersect at most k other bars. This variation

results in a much more complex class of graphs: while it is easy to see that all

bar visibility graphs are planar, this is not true for bar k-visibility graphs, and

no other immediate property provides an approach to their structure.For the

case k = 1, a graph is called bar 1-visibility graph.

2



We have focused in this thesis the visibility representation of non-planar

graphs. A visibility representation (VR for short) of a plane graph G is a draw-

ing of G, where the vertices of G are represented by non-overlapping horizontal

segments (called vertex segments), and each edge of G is represented by a ver-

tical line segment touching the vertex segments of its end vertices. Tamassia

& Tollis [25] have given a linear time algorithm for constructing a visibility

representation of a planar graph. In a bar k-visibility representation of a graph

a horizontal line corresponding to a vertex and the vertical line segment cor-

responding to an edge intersects at most k bars which are not end points of

the edge. Thus a visibility representation is a bar k-visibility representation

for k = 0. For k = 1, a line segment corresponding to an edge intersects at

most one bar which is not an end point of the edge, and the representation

is called a bar 1-visibility representation. A graph is a bar 1-visibility graph

if it admits a bar 1-visibility representation. Recently, Fleshner and Massow

have investigated some graph theoretic properties of bar 1-visibility graphs [9].

However, there is no algorithm for finding a bar 1-visibility representations of

a bar 1-visibility graph.

In this thesis, we study bar 1-visibility graphs. It is easy to see that all

bar visibility graphs are planar. But bar k-visibility graphs which are non-

planar are recent generalization of bar visibility graphs. We introduce diagonal

grid graphs and diagonal labeled graphs which are non-planar graphs as bar 1-

visibility graphs. The 0-visibility representation of a graph is also a 1-visibility

representation of the graph. Since every planar graph has a 0-visibility repre-

sentation, algorithms for finding 1-visibility representation of planar graphs are

known. Thus the main idea is as follows: first obtain a planar graph by deleting

some edges from the input non-planar graph, then obtain a visibility drawing of

the planar graph and finally place the deleted edges which gives bar 1-visibility

representation. In this thesis, we first give a linear time algorithm for finding a

bar 1-visibility representation of non-planar graphs. Then we compact the area

for the visibility representation.

We will give the details of the above mentioned algorithm and some of the

previous results in this field that have a significant impact on our work. In this

chapter, we give some introductory concepts of visibility representation and bar

1-visibility representation that will help realizing the concepts presented here.

3



Also, we have presented some applications of this topic in various fields. The

rest of this chapter is organized as follows. In Section 1.1, we define visibility

representation and bar 1-visibility representation of graphs, which is the central

idea of this thesis. Section 1.2 depicts some interesting applications of visibility

representations. In Section 1.3, we present a brief history of visibility represen-

tation and bar 1-visibility representation and on the basis of that, in Section 1.4,

we depict the scope and objective of this thesis. In Section 1.5, we present the

organization of this thesis.

1.1 Visibility Representations of Planar Graphs

As already stated above, S be a set of disjoint horizontal line segments, or

bars, in the plane. We say that a graph G is a bar visibility graph, and S a

bar visibility representation of G, if there exists a one-to-one correspondence

between vertices of G and bars in S, such that there is an edge between two

vertices in G if and only if there exists an unobstructed vertical line of sight

between their corresponding bars. As an example, Figure 1.1(a) shows a plane

graph G and Figure 1.1(b) visibility representation S of the graph G.

a b

e
d

G

a

b

d

c

e

c

S
(a) (b)

1

1

2 2
3

3

4

4

5

5

6

6

7

7

Figure 1.1: (a) A plane graph G and (b) visibility representation S of G.

We define a bar k-visibility graph to be a graph with a bar visibility rep-

resentation in which a sight line between bars X and Y intersects at most k

additional bars. A graph is a bar k-visibility graph if it admits a bar k-visibility

representation as follows. Each vertex is represented by a horizontal segment

(bar) in the Euclidean plane. Two vertices are joined by an edge if and only

if the two corresponding bars can be joined by a vertical line segment (line of
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sight), which intersects at most k other bars. Lines of sight that do not intersect

any bar are called direct, all others are indirect lines of sight. Inspired by this,

the corresponding edges are divided into direct and indirect edges. For k = 1,

the representation is called bar 1-visibility representation.

Let G be a graph. A bar 1-visibility representation of G is a drawing of G

where

• each vertex is drawn as a horizontal line segment,

• each edge is drawn as a vertical line segment where the vertical line seg-

ment representing an edge intersects at most one bar which is not an end

point of the edge.

As an example, Figure 1.2(b) is a bar 1-visibility representation of the graph in

Figure 1.2(a).

1

1

2 2

3 34
4

5

5

6

6

7

7
8

8

9

9

10

10

a

b
c

d e

a

c

b

d

e

(a)
(b)

Figure 1.2: (a) A bar 1-visibility graph G and (b) bar 1-visibility representation

of G.

1.2 Application of Visibility Representations

The problem of computing a compact Visibility Representation is important not

only in algorithmic graph theory, but also in practical applications such as VLSI

layout [4]. Modules and their interconnections of a VLSI circuit are given as a

graph where a vertex of the graph represents a module of the VLSI circuit and

an edge represents an interconnection between two modules. From a visibility

representation, a planar polyline drawing can be generated with O(1) bends per

edge in linear time [17]. We can construct a planar upward polyline drawing of

5



a planar st-graph G using its visibility representation. We draw each vertex in

an arbitrary point inside its vertex segment. We draw each edge (u, v) of G as

a three segment polygonal chain. Visibility representations can also be used to

generate planar orthogonal drawings.

Every planar graph has bar visibility representation. A bar 1-visibility rep-

resentation is a natural generalization of the notion of visibility representations

for non-planar graphs. However complete characterizations and drawing algo-

rithms of bar 1-visibility graphs are not known. We have been motivated to

characterize and to find out the drawing algorithm of these special types of

graphs.

1.3 Previous Results

The problem of visibility representation has gained its own inherent interest in

related topics and has significant researches based in its specific application and

parameters. In this section, we give an outline of the results found in this area.

Visibility representation has practical applications in VLSI layout [4] and sev-

eral researchers concentrated their attention on visibility representations [4, 2].

Otten and Van Wijk [18] have shown that every planar graph admits a visibility

representation and Tamassia and Tollis [25] have given a linear-time algorithm

for constructing a visibility representation of a planar graph. Battista, Tamassia

and Tollis have given constrained visibility representation of graphs [5].

Dean et al. have introduced a generalization of visibility representation for

a non-planar graph which is called bar k-visibility representation [3] . While it

is easy to see that all bar visibility graphs are planar, this is not true for bar k-

visibility graphs, and no other immediate property provides an approach to their

structure. Since all bar visibility graphs are planar, they seek measurements of

closeness to planarity for bar k-visibility graphs. They have obtained an upper

bound on the number of edges in a bar k-visibility graph. As a consequence, they

have obtained an upper bound of 12 on the chromatic number of bar 1-visibility

graphs, and a tight upper bound of 8 on the size of the largest complete bar

1-visibility graph. They also considered the thickness of bar k-visibility graphs,

obtaining an upper bound of 4 when k = 1, and a bound that is quadratic in k

for k > 1

6



For the case k = 1, Dean et al. used the four color theorem to show that

their thickness is bounded by 4. They conjectured that no bar 1-visibility graph

has thickness larger than 2. Recently, Fleshner and Massow have investigated

some graph theoretic properties of bar 1-visibility graphs [9]. They proved the

tight upper bound on the thickness of bar 1-visibility graphs is 3.

In recent years, several works are devoted to this field. Fabrici and Madaras [7]

study the existence of subgraphs of bounded degrees in 1-planar graphs which is

also called bar 1-visibility graph. It is shown that each 1-planar graph contains

a vertex of degree at most 7; they also prove that each 3-connected 1-planar

graph contains an edge with both end vertices of degrees at most 20. Eades and

Liotta study the relationship between ”RAC graphs” and 1-planar graphs [6].

1.4 Scope of this Thesis

In this section, we give an overview of the basic intuition of the approach we

have taken for dealing with the problem of visibility representation of non-planar

graph G. At the end, we list the results obtained by us in this thesis.

If the input graph is a diagonal grid graph then a planar graph is obtained

by deleting one edge from each grid cell. Then a source and a sink vertices will

be added and a visibility representation of the resulting graph will be obtained

using a technique based on st-numbering. The final bar 1-visibility representa-

tion will be obtained by suitably drawing a vertical line segment in the drawing

for each deleted edge. If the input graph has a diagonal labeling and contains

each edge crossing inside each quadrangle then bar 1-visibility representation

of that graph is also found. At first, one diagonal which contains lowest and

highest number in each quadrangle will be chosen. Then the planar graph is

obtained by passing that diagonal within one vertex of the quadrangle and a

visibility representation of the resulting graph will be obtained by using the

technique of constrained visibility representation of a planar graph [5]. The

edges which pass within the vertex will be drawn by keeping the properties of

bar 1-visibility representation.

Finally, our findings in this thesis are listed here.

• We have developed an algorithm for finding a bar 1-visibility representa-

tion of a diagonal grid graph.
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• We also compact the area for the visibility representation.

• we have also developed an algorithm for finding a bar 1-visibility repre-

sentation of diagonal labeled graph.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some

basic terminology of graph theory and graph drawing. In Chapter 3, we present

previous algorithms on visibility representations and the new algorithm on bar

1-visibility representations of diagonal grid graphs. In Chapter 4, we mention

previous algorithms on constrained visibility representations and our algorithms

on bar 1-visibility representations of diagonal labeled graphs. Finally, Chapter 5

discusses the open problem in this field and gives this thesis an ending.
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Chapter 2

Preliminaries

In this chapter, we define some basic terminology of graph theory, graph draw-

ing and algorithm theory, that we will use throughout the rest of this thesis.

Definitions which are not included in this chapter will be introduced as they

are needed. We review, in Section 2.1, some definitions of standard graph-

theoretical terms. In Section 2.2, we discuss about some special classes of

graphs that are important for the ideas and concepts used in the later parts

of this thesis. We devote Section 2.3 to define different orientation and num-

bering of planar graph. Section 2.4 and Section 2.5 define some drawing con-

ventions of planar and non-planar graphs. Finally, we introduce the notion of

time complexity in Section 2.6.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis. For readers interested in graph theory we refer to [26]

and [17].

2.1.1 Graphs

A graph G is a tuple (V,E) which consists of a finite set V of vertices and a

finite set E of edges; each edge being an unordered pair of vertices.

Figure 2.1 depicts a graphG = (V,E) where each vertex in V = {v1, v2, · · · , v6}

is drawn as a small circle and each edge in E = {e1, e2, · · · , e8} is drawn by a

line segment.
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Figure 2.1: A graph with six vertices and eight edges.

We denote an edge joining two vertices u and v of the graph G = (V,E) by

(u, v) or simply by uv. If uv ∈ E then the two vertices u and v of the graph G

are said to be adjacent; the edge uv is then said to be incident to the vertices

u and v; also the vertex u is said to be a neighbor of the vertex v (and vice

versa). The degree of a vertex v in G, denoted by d(v) is the number of edges

incident to v. In the graph shown in Figure 2.1 vertices v1 and v2 are adjacent,

and d(v6) = 4, since four of the edges, namely e5, e6, e7 and e8 are incident to

v6.

2.1.2 Simple Graphs and Multigraphs

If a graph G has no “multiple edges” or “loops”, then G is said to be a simple

graph. Multiple edges join the same pair of vertices, while a loop joins a vertex

with itself. The graph in Figure 2.1 is a simple graph.

A graph in which loops and multiple edges are allowed is called a multigraph.

Multi graphs can arise from various application. One example is the “call graph”

that represents the telephone call history of a network.

The graph in Figure 2.2(a) is a call graph that represents the call history

among six subscribers. Note that there is no loop in this graph. Figure 2.2(b)

illustrates another multigraph with multiple edges and loops.

Often it is clear from the context that the graph is simple. In such cases, a

simple graph is called a graph. In the remainder of thesis we will only concern

about simple graphs.
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(b)(a)

Figure 2.2: Multigraphs.

2.1.3 Directed and Undirected Graphs

In a directed graph, the edges do have a direction but in an undirected graph,

the edges are undirected. Mathematically, the edges in a directed graphsare

2-tuple while for undirected graphs they are 2-member subset of the vertex

set. In Figure 2.3(a) and (b), we show an undirected and a directed graphs

respectively. In this thesis, we will mean an undirected graph when we say “a

graph” unless otherwise mentioned.

(a)
(b)

Figure 2.3: Directed and undirected graphs.

2.1.4 Subgraphs

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V

and E ′ ⊆ E. If G′ contains all the edges of G that join two vertices in V ′, then

11



G′ is said to be the subgraph induced by V ′. Figure 2.4 depicts a subgraph of G

in Figure 2.1.

e
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Figure 2.4: A subgraph of the graph in Figure 2.1.

We often construct new graphs from old ones by deleting some vertices or

edges. If v is a vertex of a given graph G = (V,E), then G− v is the subgraph

of G obtained by deleting the vertex v and all the edges incident to v. More

generally, if V ′ is a subset of V , then G− V ′ is the subgraph of G obtained by

deleting the vertices in V ′ and all the edges incident to them. Then G−V ′ is a

subgraph of G induced by V −V ′. Similarly, if e is an edge of a G, then G−e is

the subgraph of G obtained by deleting the edge e. More generally, if E ′ ⊆ E,

then G− E ′ is the subgraph of G obtained by deleting the edges in E ′.

2.1.5 Paths and Cycles

A walk, w = v0, e1, v1, · · · , vl−1, el, vl, in a graph G is an alternating sequence

of vertices and edges of G, beginning and ending with a vertex, in which each

edge is incident to the two vertices immediately preceding and following it. The

vertices v0 and vl are said to be the end-vertices of the walk w.

If the vertices v0, v1, · · · , vl are distinct (except possibly v0 and vl), then

the walk is called a path and usually denoted either by the sequence of vertices

v0, v1, · · · , vl or by the sequence of edges e1, e2, · · · , el. The length of the path

is l, one less than the number of vertices on the path. For any two vertices u

and v of G, a u, v-path in G is a path whose end-vertices are u and v.

A walk or path w is closed if the end-vertices of w are the same. A closed

path containing at least one edge is called a cycle.
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2.1.6 Connectivity

A graph G is a connected graph if for any two distinct vertices u and v of G,

there is a path between u and v. A graph which is not connected is called a

disconnected graph. A connected component of a graph is a maximal connected

subgraph. The graph in Figure 2.5(a) is a connected graph since there is a path

for every pair of distinct vertices of the graph. On the other hand, the graph

in Figure 2.5(b) is a disconnected graph since there is no path between, for

example v1 and v10. The graph in Figure 2.5(b) has two connected components

as indicated by the dotted lines. Note that every connected graph has only one

component; the graph itself.

(b)(a)

v1 v2

v4v5

v6

v5
v4

v2

v1

v6

Figure 2.5: (a) A connected graph (b) a disconnected graph with two connected

components.

The connectivity κ(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex graph K1. We say

that G is k-connected if κ(G) ≥ k. 2-connected and 3- connected graphs are also

called biconnected and triconnected graphs respectively. A block is a maximal

biconnected subgraph of G. We call a set of vertices in a connected graph G

a separator or a vertex cut if the removal of the vertices in the set results in a

disconnected or single-vertex graph. If a vertex-cut contains exactly one vertex

then we call the vertex a cut vertex.
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2.2 Special Classes of Graphs

In this section we give some definitions of special classes of graphs related to

planar graphs and non planar graphs used in the remainder of the thesis. For

readers interested in planar graphs we refer to [16].

2.2.1 Planar Graphs and Plane Graphs

A planar drawing of a graph G is a two-dimensional drawing of G in which

no pair of edges intersect with each other except at their common end-vertex.

A planar graph is a graph that has at least one planar drawing. A planar

embedding of a graph G is a data structure that defines a clockwise (or counter

clockwise) ordering of the neighbors of each vertex of G that corresponds to a

planar drawing of the graph. Note that a planar graph may have an exponential

number of embedding. Figure 2.6 shows two planar embeddings of the same

planar graph.

(a) (b)
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v
5

v
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v
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4
v
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v8

v1 v
2
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3 v6

v
7

v
5

v
4

Figure 2.6: Two planar embeddings of the same planar graph.

A plane graph is a planar graph with a fixed planar embedding. A plane

graph divides the plane into connected regions called faces. A finite plane graph

G has one unbounded face and it is called the outer face of G.

2.2.2 Dual Graphs

For a plane graph G, we often construct another graph G∗ called the (geometric)

dual of G as follows. A vertex v∗i is placed in each face Fi of G; these are the

vertices of G∗. Corresponding to each edge e of G we draw an edge e∗ which

crosses e (but no other edge of G) and joins the vertices v∗i which lie in the
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faces Fi adjoining e; these are the edges of G∗. The construction is illustrated

in Figure 2.7

Figure 2.7: A plane graph G and its dual graph G∗.

The vertices v∗i are represented by small white circles, and the edges e∗ of

G∗ by dotted lines. G∗ is not necessarily a simple graph even if G is simple.

Clearly the dual G∗ of a plane graph G is also plane. One can easily observe

the following lemma:

Lemma 2.2.1 Let G be a connected plane graph with n vertices, m edges and f

faces, and let the dual G∗ have n∗ vertices, m∗ edges and f ∗ faces; then n∗ = f ,

m∗ = m, and f ∗ = n.

Clearly the dual of the dual of the plane graph G is the original graph G.

However a planar graph may give rise to two or more geometric duals since the

plane embedding is not necessarily unique.

2.2.3 1-Planar Graphs

A graph is called a 1-planar graph if it can be drawn in the plane so that each

its edge is crossed by at most one other edge. We can also say a 1-planar graph

is a graph that has a 1-planar drawing. In Figure 2.8(a) shows the 1-planar

graph G0 . There are infinite family of 1-planar graphs. The graph Gi can be

constructed from Gi−1 which is shown in Figure 2.8(b).

In recent years, several works are devoted to this field. Fabrici and Madaras

[7] have studied the existence of subgraphs of bounded degrees in 1-planar

graphs. It is shown that each 1-planar graph contains a vertex of degree at

most 7; they also proved that each 3-connected 1-planar graph contains an edge
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G

G0 i
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Figure 2.8: (a) A 1-planar graph G0 and (b) constructing graph Gi from Gi−1.

with both endvertices of degrees at most 20. Eades and Liotta have also shown

the relationship between RAC graphs and 1-planar graphs [6]. Suzuki [24] have

discussed the existence of optimal 1-planar graphs which can be embedded on

other closed surfaces as triangulations.

2.2.4 Bar k-Visibility Graphs

In a bar k-visibility graphs, bars are allowed to see through at most k other

bars. They have been introduced by Dean, Evans, Gethner, Laison, Safari and

Trotter [3]. Since all bar visibility graphs are planar, they seek measurements of

closeness to planarity for bar k-visibility graphs. They obtain an upper bound

on the number of edges in a bar k-visibility graph.

2.3 Orientation and Numbering

In this section we give some techniques of standard graph numbering used

throughout this thesis.

2.3.1 st-Orientation and st-Numbering

Let G = (V,E) be a biconnected undirected graph, where V and E are the set

of vertices and edges, respectively. The number of vertices in G is denoted by n,

that is, n = |V |, and the number of edges in G is denoted bym, that is, m = |E|.

Let s and t be any two vertices of G. An st-numbering of G is a numbering of its

vertices by integers 1, 2, · · · , n such that a vertex s receives number 1, a vertex t
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receives number n and every other vertex of G is adjacent to at least one lower-

numbered vertex and at least one higher-numbered vertex. The st-numbering

of a graph is not unique. Figure 2.9(a) shows an undirected biconnected graph

G and Figure 2.9(b) and (c) represents two different st-numberings of the same

graph G. Lempel et. al. [15] states that every biconnected graph has an st-

numbering.
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s t
s t

s t

s ts t

Figure 2.9: (a) A biconnected graph G with s and t, (b) an st-numbering of

G, (c) another st-numbering of G, (d) an st-orientation of G, and (e) another

st-orientation of G.

In a directed graph, we call a vertex a source if all the edges incident to that

vertex is outgoing, and we call a vertex a sink if all the edges incident to that

vertex is incoming. An st-graph is a directed, acyclic graph with a single source

s and a single sink t. An st-orientation G′ of G with two vertices denoted by s

and t is an assignment of directions to its edges such thatG becomes an st-graph.

Like st-numbering, the st-orientation of a graph is not unique. Figure 2.9(d)

and (e) show two different st-orientations of the biconnected undirected graph

G drawn in Figure 2.9(a). An st-orientation of an undirected graph G can

be easily generated using an st-numbering of G. Using an st-numbering of G,

we can orient the edges of G from lower-numbered vertex to higher-numbered

vertex and the resultant orientation becomes an st-orientation. We can show

that st-numbering can also be generated from st-orientation. There can be

17



more than one path from s to t in the orientation. The path from s to t which

is not shorter than any other path is called longest-path. We define the term

orientation length of an orientation denoting the length of the longest-path of

that orientation. The orientation length of the orientation in Figure 2.9(d) is 5

and the orientation length of the orientation in Figure 2.9(e) is 4.

2.3.2 Topological Numbering

We define an st-graph, as a planar acyclic digraph with one source vertex s and

one single sink vertex t. If we apply a topological numbering on an st-graph G,

we can see that the way the vertices are numbered, give a sense of direction,

from a vertex with a low number to a vertex with a higher number, to the edges.

The following properties hold:

• Given a topological numbering of an st-graph G, each directed path of G

visits vertices with increasing numbers.

• For every vertex v of an st-graph G, there exists at least one directed path

P from s to t that contains v.

s t

(a)
(b)

ts

1

2

3 4

5

2

Figure 2.10: (a) A biconnected graph G with s and t, (b) optimal topological

numbering of G.

2.4 Drawing Conventions of Planar Graphs

In this section we introduce some conventional drawing styles, which are found

suitable in different application domain. The different drawing styles vary owing

to different representations of vertices and edges. Depending on the purpose and
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objective, the vertices are typically represented with points or boxes and edges

are represented with simple jordan curves [17]. A few of the most important

drawing styles are introduced below.

2.4.1 Planar Drawings

A drawing Γ of a graph G is planar if no two edges intersect with each other

except at their common end-vertices. In Figure 2.11(a) and (b), we show a

planar and a non-planar drawing of the same graph.
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Figure 2.11: (a) A planar drawing, (b) a non-planar drawing of the graph drawn

in (a), and (c) a graph which does not have a planar drawing.

Planar drawing of graphs are more convenient than non-planar drawings be-

cause, as shown empirically in [20], the presence of edge-crossings in a drawing of

a graph make it more difficult for a person to understand the information being

modeled. Unfortunately, not all graphs have a planar drawing. Figure 2.11(c)

is an example of one such graph.

2.4.2 Straight-line Drawings

A straight-line drawing of a graph G is a drawing of G in which each edge is

drawn as a straight line segment, as illustrated in Figure 2.12.

Fary [8] and Stein [23] independently proved that every planar graph has a

straight line drawing.
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Figure 2.12: A straight-line drawing.

2.4.3 Layered Drawings

A layered drawing of a graph G is a drawing of G where the vertices of G are

placed on a set horizontal lines called layers, and edges are drawn as straight-

line segments between the end-vertices. Depending on the purpose of drawing,

it may also satisfy additional constraints. Common constraints include bounds

on the number of layers in the drawing, restriction on edge crossing, minimum

number of edges whose removal eliminates all crossing, the maximum span of

an edge, i.e., the number of layers it crosses, the total span of the edges, the

maximum number of vertices in one layer etc. In the following, we define some

common variants of layered drawing.

A layered drawing Γ of a graph G is called proper if for each edge e of G,

the end-vertices of e lie on adjacent layers in Γ.

A layered drawing Γ of a graph G is called short if for each edge e of G, the

end-vertices of e lie on the same or adjacent layers in Γ.

A layered drawing Γ of a graph G is called upright if the edges of G are

drawn in such a way that no edge has end-vertices on the same layer in Γ.

A k-layer planar drawing of a graph G is a planar drawing of G on k layers.

A graph G is called k-layer planar if it admits a k-layer planar drawing.

2.4.4 Grid Drawings

A drawing of a graph is called a grid drawing if the vertices are all located at

grid points of an integer grid as illustrated in Figure 2.13.

Note that this a special class of layered drawings where not only the vertical

but also the vertical position of the vertices are at integer distance from each

other. This drawing approach also overcomes the following problems in graph

drawing with real number arithmetic [17].
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Figure 2.13: A grid drawing.

(i) When the embedding has to be drawn on a raster device, real vertex

coordinates have to be mapped to integer grid points, and there is no

guarantee that a correct embedding will be obtained after rounding.

(ii) Many vertices may be concentrated in a small region of the drawing. Thus

the embedding may be messy, and line intersections may not be detected.

(iii) One cannot compare area requirement for two or more different drawings

using real number arithmetic, since any drawing can be fitted in any small

area using magnification.

The size of an integer grid required for a grid drawing is measured by the size

of the smallest rectangle on the grid which encloses the drawing. The width W

of the grid is the width of the rectangle and the height H of the grid is the

height of the rectangle. The grid size is usually described as W ×H.

It is a very challenging problem to draw a plane graph on a grid of the

minimum size. In recent years, several works are devoted to this field [1, 12, 21];

for example, every plane graph of n vertices has a straight line grid drawing on

a grid size W ×H ≤ (n− 1)× (n− 1).

2.4.5 Visibility Drawings

Let S be a set of horizontal nonoverlapping segments in the plane. Two segments

s, s′ of S are said to be visible if they can be joined by a vertical segment not
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intersecting any other segment of S. Furthermore, s and s′ are called ǫ-visible if

they can be joined by a vertical band of nonzero width that does not intersect

any other segment of S. This is equivalent to saying that s and s′ can be joined

by two distinct vertical segments not intersecting any other segment of S [25].

A w-visibility representation for a graph G = (V,E) is a mapping of vertices

of G into nonoverlapping horizontal segments (called vertex-segments) and of

edges of G into vertical segments (called edge-segments) such that, for each

edge (u, v) ∈ E, the associated edge-segment has its endpoints on the vertex-

segments corresponding to u and v, and it does not cross any other vertex-

segment. In order to study the visibility representations in a unified way, we give

a definition of ǫ-visibility representations using segments instead of intervals.

An ǫ-visibility representation for a graph G is a w-visibility representation

with the additional property that two vertex-segments are ǫ-visible if and only

if the corresponding vertices of G are adjacent.
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Figure 2.14: The three visibility representations: (a) a cycle of length 4; (b)

w-visibility representation; (c) ǫ-visibility representation; (d) s-visibility repre-

sentation.

An s-visibility representation for a graph G is a w-visibility representation

with additional property that two vertex-segments are visible if and only if the

corresponding vertices of G are adjacent.
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If a graph admits any of the three aforementioned visibility representations,

then it is planar, since a planar embedding of it can be immediately obtained

from the visibility representation by shrinking each vertex-segment into a point.

2.4.6 2-Visibility Drawing

In a 2-visibility drawing the vertices of a given graph are represented by rectan-

gular boxes and the adjacency relations are expressed by horizontal and vertical

lines drawn between the boxes. A 2-visibility drawing of a graph G is illustrated

in Figure 2.15.
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Figure 2.15: (a) A triangulated planar graph G, (b) 2-visibility representation

of G .

Fobmeier, Kant and Kaufmann [11] have given a polynomial time algorithm

to compute a bend-minimum orthogonal drawing under the restriction that the

number of bends at each stage is at most 1.

2.4.7 Upward (Downward) Drawing

In upward (downward) drawing (for directed acyclic graphs) each edge is drawn

monoton- ically increasing (decreasing) in the vertical direction. An upward

drawing of a graph G is illustrated in Figure 2.16.

2.5 Drawing Conventions of Non-Planar Graphs

In this section we introduce some non-conventional drawing styles, which are

found suitable in different application domain. Depending on the purpose and
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Figure 2.16: Planar upward drawing of an acyclic digraph.

objective, the vertices are typically represented with points or boxes and edges

are represented with simple jordan curves. A few of the most important drawing

styles are introduced below.

2.5.1 1-Planar Drawing

A 1-planar drawing is a drawing of a graph where an edge can be crossed by at

most another edge. A 1-planar graph is a graph that has a 1-planar drawing. A

straight-line drawing is a drawing of a graph such that every edge is a straight-

line segment.

Figure 2.17: 1-planar drawing of a graph.
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2.5.2 RAC Drawing

A right angle crossing drawing (or RAC drawing, for short) is a straight-line

drawing where any two crossing edges form right angles at their intersection

point. A Right Angle Crossing graph (or RAC graph, for short) is a graph that

has a RAC drawing. Figure 2.18 shows a straight-line RAC drawing with n = 7

vertices and m = 4n− 10 edges.

Figure 2.18: A straight-line RAC drawing.

Eades and Liotta [6] has studied the relationship between RAC graphs and

1-planar graphs in the extremal case that the RAC graphs have as many edges

as possible. It is known that a maximally dense RAC graph with n > 3 vertices

has 4n− 10 edges. They have shown that every maximally dense RAC graph is

1-planar. Also, it is also known that for every integer i such that i ≥ 0, there

exists a 1-planar graph with n = 8 + 4i vertices and 4n − 10 edges that is not

a RAC graph.

2.6 Complexity of Algorithms

In this section we briefly introduce some terminologies related to complexity

of algorithms. For interested readers, we refer the book of Garey and Johnson

[13].

The most widely accepted complexity measure for an algorithm is the run-

ning time, which is expressed by the number of operations it performs before

producing the final answer. The number of operations required by an algorithm

is not the same for all problem instances. Thus, we consider all inputs of a given

size together, and we define the complexity of the algorithm for that input size

to be the worst case behavior of the algorithm on any of these inputs. Then

the running time is a function of size n of the input.
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2.6.1 The Notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

“asymptotic behavior”, that is, the behavior of the algorithm when applied to

very large inputs. To deal with such a property of functions we shall use the

following notations for asymptotic running time. Let f(n) and g(n) are the

functions from the positive integers to the positive reals, then we write f(n) =

O(g(n)) if there exists positive constants c1 and c2 such that f(n) ≤ c1g(n)+ c2

for all n. Thus the running time of an algorithm may be bounded from above

by phrasing like “takes time O(n2)”.

2.6.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its

complexity is bounded by a polynomial of the size of a problem instance. Ex-

amples of such complexities are O(n), O(nlogn), O(n100), etc. The remaining

algorithms are usually referred as exponential or nonpolynomial. Examples of

such complexity are O(2n), O(n!), etc. When the running time of an algo-

rithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.6.3 NP-complete Problems

There are a number of interesting computational problems for which it has not

been proved whether there is a polynomial time algorithm or not. Most of them

are “NP-complete”, which we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables

and the location of the current instruction to be executed. A deterministic

algorithm is one for which each state, upon execution of the instruction, uniquely

determines at most one of the following state (next state). All computers,

which exist now, run deterministically. A problem Q is in the class P if there

exists a deterministic polynomial-time algorithm which solves Q. In contrast, a

nondeterministic algorithm is one for which a state may determine many next

states simultaneously. We may regard a nondeterministic algorithm as having

the capability of branching off into many copies of itself, one for the each next

state. Thus, while a deterministic algorithm must explore a set of alternatives
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one at a time, a nondeterministic algorithm examines all alternatives at the

same time. A problem Q is in the class NP if there exists a nondeterministic

polynomial-time algorithm which solves Q. Clearly, P ⊆ NP .

Among the problems in NP are those that are hardest in the sense that if

one can be solved in polynomial-time then so can every problem in NP. These

are called NP-complete problems. The class of NP -complete problems has the

following interesting properties.

(a) No NP -complete problem can be solved by any known polynomial algo-

rithm.

(b) If there is a polynomial algorithm for any NP -complete problem, then

there are polynomial algorithms for all NP -complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial

time, all problems in NP are so, but we are unable to argue that Q ∈ NP . So

Q does not qualify to be called NP -complete. Yet, undoubtedly Q is as hard as

any problem in NP. Such a problem Q is called NP-hard.
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Chapter 3

Diagonal Grid Graphs

3.1 Introduction

A bar visibility representation of a planar graph G is a drawing of G where

each vertex is drawn as a horizontal line segment and each edge is drawn as

a vertical line segment where the vertical line segment representing an edge

must connect the horizontal line segments representing the end vertices. Bar

1-visibility representation is a drawing of G where each vertex is drawn as a

horizontal line segment and a vertical line segment corresponding to an edge

intersects at most one bar which is not an end point of the edge [3]. Figure 3.1(b)

shows bar 1-visibility representations of the graph G of Figure 3.1(a).

1

1

2 2

3 34
4

5

5

6

6

7

7
8

8

9

9

10

10

a

b
c

d e

a

c

b

d

e

(a)
(b)

Figure 3.1: (a) Input planar graph G, (b) bar 1-visibility representations of the

graph G.

Otten and Van Wijk [18] have shown that every planar graph admits a

visibility representation, and Tamassia and Tollis [25] have given a linear-time
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algorithm for constructing a visibility representation of a planar graph. Alice

M. Dean et al. have introduced a generalization of visibility representation

for a non-planar graph which is called bar k-visibility representation [3]. In

a bar k-visibility representation of a graph a horizontal line corresponding to

a vertex is called a bar, and the vertical line segment corresponding to an

edge intersects at most k bars which are not end points of the edge. Thus

a visibility representation is a bar k-visibility representation for k = 0. For

k = 1, a line segment corresponding to an edge intersects at most one bar

which is not an end point of the edge, and the representation is called a bar

1-visibility representation. A graph is a bar 1-visibility graph if it admits a bar

1-visibility representation. Recently, Fleshner and Massow have investigated

some graph theoretic properties of bar 1-visibility graphs [9, 10]. However, there

is no algorithm for finding a bar 1-visibility representations of a bar 1-visibility

graph. In this chapter, we develop an algorithm for finding a bar 1-visibility

representation of a diagonal grid graph.

The rest of the chapter is organized as follows. In Section 3.2 contains some

basic definitions and an outline of our approach. In Section 3.3 depicts an

algorithm for bar 1-visibility representations of diagonal grid Graph. Finally,

we summarizes the result in Section 3.4.

3.2 Preliminaries

In this section we present some basic definitions and terminologies related to

graph drawing.

Let, G=(V , E) be a simple planar graph where V is the set of vertices and

E is the set of edges of graph G. If u and v are two vertices of graph G then

(u, v) denotes an edge between them.

3.2.1 Diagonal Grid Graphs

Recently, several researchers have concentrated their attention on diagonal grid

graphs for cordial labeling [22]. We use this graph for its 1-planarity properties.

A p× q-grid graph is the graph whose vertices correspond to the grid points

of a p× q-grid in the plane and edges correspond to the grid lines between two

consecutive grid points.
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A diagonal grid graph Gp,q is a p × q-grid graph with diagonal edges are

introduced in each cell.

For example, Figure 3.2(a) shows a p×q-grid graph and (b) shows a diagonal

grid graph Gp,q.

(a) (b)

Figure 3.2: (a) Grid graph, (b) diagonal grid graph.

3.2.2 Properties of Planar Acyclic Digraphs

Let G is an st-graph, as a planar acyclic digraph with one source vertex s and

one single sink vertex t. If we apply a topological numbering on an st-graph G,

we can see that the way the vertices are numbered, give a sense of direction,

from a vertex with a low number to a vertex with a higher number, to the

edges [25]. The following properties hold:

• Given a topological numbering of an st-graph G, each directed path of G

visits vertices with increasing numbers.

• For every vertex v of an st-graph G, there exists at least one directed path

P from s to t that contains v.

The first property holds because of the way the numbers correspond with

the directions of the edges. It is easy to see why the second property is true: if

it was not, there would be either no path from s to v, or from v to t, thus s or

t would not be the source or sink vertices respectively.

A planar st-graph is an st-graph that is planar and embedded with vertices

s and t on the boundary of the external face. It is customary to visualize a

planar st-graph as drawn upward in the plane (with s at the bottom and t at
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the top), as shown in Figure 3.3. All planar st-graphs, being acyclic, admit a

topological ordering (numbering).

s

t

Figure 3.3: A planar st-graph.

Let now G be a planar st-graph and F be its set of faces. F contains

two representatives of the external face: the left external face s∗, which is

incident with the edges on the left boundary of G and the right external face

t∗, which is incident with the edges on the right boundary of G. Additionally,

for each e = (u, v) we define orig(e) = u and dest(e) = v. Also, we define

left(e) (respectively right(e)) to be the face to the left (respectively right) of

e. Following, we give the definition of the dual graph G∗ of a planar st-graph

G. The dual graph G∗ is a graph for which the following hold:

• The vertex set of G∗ is the set F of faces of G including the faces s∗ and

t∗ .

• For every edge e 6= (s, t) of G, G∗ has one edge e∗ = (f, g) where f =

left(e) and g = right(e).

The dual graph of the graph depicted in Figure 3.3 can be seen in Figure 3.4.

If we rotate G∗ 90 degrees, we can see that G∗ is also a planar st-graph.

Given a vertex v of a planar st-graph, the face separating the incoming from

the outgoing edges in the clockwise direction is called left(v), and the other

separating face is called right(v)(see Figure 3.5).
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s

t

s*

t*

Figure 3.4: Constructing the dual graph G∗ from planar st-graph.

vx(left(v)) x(right(v))

Figure 3.5: The left (left(v)) and right (right(v)) faces of a vertex v.
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3.2.3 Bar Visibility Representations

In this section, we present the algorithm of Tamassia and Tollis [25] for bar

visibility representations of planar graphs since some ideas of the algorithm will

be used in our method.

We now formally present the algorithm for finding the visibility representa-

tion of planar graphs.

Algorithm VISIBILITY

Input : A planar st graph G = (V,E).

Output : A visibility representation for G such that each vertex-segment

and edge-segment has endpoints with integer coordinates.

1 Construct planar st-graph G∗.

2 Assign unit weights to the edges of G and compute st-numbering Y

of G.

3 Assign unit weights to the edges of G∗ and compute optimal topo-

logical numbering X of G∗.

4 For each vertex v, draw the vertex-segment τ(v) at y-coordinate Y (v)

and between x-coordinates X(left(v)) and X(right(v)− 1).

5 For each edge e, draw the edge-segment τ(e) at x-coordinateX(left(e))

between y-coordinates Y (orig(e)) and Y (dest(e)).

Now we give an example of this algorithm. In Figure 3.6 is a planar st-

graph G and its dual. At the top of Figure 3.7, we have the dual G∗ of G

and its optimal weighted topological numbering. This numbering provides the

x-coordinates for the visibility representation. At the right of Figure 3.7, we

have G and it’s optimal topological numbering which provides the y-coordinates

for the visibility representation. Vertices of G and G∗ are represented by circle

and squre respectively.

Tamassia and Tollis have given the following theorem [25]:

Theorem 3.2.1 The algorithm VISIBILITY correctly computes a visibility rep-

resentation of G.
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Figure 3.6: Graph G, its dual G∗ and the numberings of G and G∗.
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Figure 3.7: (a) Graph G, (b) dual graph G∗ and (c) visibility representation of

graph G.

34



The 0-visibility representation of a graph is also a 1-visibility representation

of the graph. Since every planar graph has a 0-visibility representation, algo-

rithms for finding 1-visibility representation of planar graphs are known. Thus

the main idea is as follows: first obtain a planar graph by deleting some edges

from the input non-planar graph, then obtain a visibilty drawing of the planar

graph and finally placing the deleted edges give the bar 1-visibility representa-

tion.

If the input graph is a diagonal grid graph then a planar graph is obtained

by deleting one edge from each grid cell. Then a source and a sink vertices will

be added and a visibility representation of the resulting graph will be obtained

using a technique based on st-numbering [17, 12]. The final 1-visibility repre-

sentation will be obtained by suitably drawing a vertical line segment in the

drawing for each deleted edge.

3.3 Bar 1-Visibility Representations

In this section we give an algorithm for obtaining bar 1-visibility representations

of diagonal grid graph. This problem has an interesting correlation with the

visibility representations of planar st-graph. If the input graph is a diagonal

grid graph then a planar graph is obtained by deleting one edge from each

grid cell. Using the numbering of diagonal grid graph and algorithm given by

Tamassia and Tollis [25], we can get bar 1-visibility representations of diagonal

grid graph.

3.3.1 Numbering of Diagonal Grid Graphs

We compute a special type of numbering of the undirected grid graph. We

construct an st-graph from a diagonal grid graph adding one source vertex s

and one single sink vertex t. If we apply a special type of st-numbering on an

st-graph, we can see that the vertices are numbered from a vertex with a low

number to a vertex with a higher number, to the edges. Grid are numbered

sequentially from the origin at the bottom left. The following properties hold:

Let Gp,q be a diagonal grid graph. Let i and j be the row and column number

of the corresponding p × q-grid graph. We assign number to each vertex vi,j

where 1 ≤ i ≤ p, 1 ≤ j ≤ q by (i− 1) ∗ q + j.
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For example, using p × q-grid where p = 3 and q = 4, we can generate the

number of vertices as in Figure 3.8(b).

i=1,j=1 i=1,j=q

i=p,j=qi=p,j=1

v (i−1)*q+j v (i−1)*q+j

v (i−1)*q+j
v (i−1)*q+j

1 2 3 4

5
6 7 8

9 10 11 12

1 3 4

5
6 7 8

12

2

s

t

9

13

0

10 11

(a)
(b)

(c)

Figure 3.8: (a) Diagonal grid graph Gp,q, (b) numbering of vertices and (c) the

augmented graph.

After generating the number of vertices in p× q-grid graph, we also use this

number in each vertices of diagonal grid graph Gp,q. Then delete one diagonal

edge from each cell, we can convert to planar graph and orient the edges from

lower numbered vertices to higher numbered vertices as in Figure 3.8(b). After

that, we add source vertex s and sink vertex t and connect the edges to bottom

vertices and top vertices of diagonal grid graph Gp,q respectively. By orienting

the edges from s to t, we get a planar st-digraph. This resulting st-digraph is

called the augmented graph as in Figure 3.8(c).

We have the following lemma,

Lemma 3.3.1 The augmented graph is a planar st-graph.
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Proof. Let Gp,q be a diagonal grid graph. By deleting diagonal edges from

this graph, we get p × q-grid graph. This is a planar graph. After adding two

vertices as source s and sink t and connect with top and bottom vertices of the

p× q-grid graph respectively, we can use special type of st-numbering for each

vertex vi,j of the graph. Then if we direct the edges from s to t and assign

number 0 to s and n+1 to t where n is the number of (p, q) vertex, we can get

a directed graph which is called an augmented graph in Figure 3.8(c). In this

graph, there is no edge crossing and we construct a digraph by orienting every

edge from the lowest numbered vertex to the highest one. This graph is acyclic

and has exactly one source s and one sink t. So we can say, the augmented

graph is planar st-graph. Q.E .D.

3.3.2 Bar 1-Visibility of Diagonal Grid Graphs

We present some definitions related to drawing algorithms.

Let Gp,q is a diagonal grid graph. It consists some cells having diagonal

edges. If we consider each cell then we can define its vertices and diagonal

edges. In the Figure 3.9, abcd is a cell of a diagonal grid graph where a is the

Bottom-left vertex; b is the Bottom-right vertex; c is the up-right vertex; d is

the up-left vertex.

The edge between Bottom-left and up-right vertex in a cell is called the

Right diagonal edge. The edge between Bottom-right and up-left vertex in a

cell is called the left diagonal edge. In the Figure 3.9, ac is the Right diagonal

edge and bd is the left diagonal edge.

We have the following theorem:

Theorem 3.3.2 A diagonal grid graph Gp,q admits a bar 1-visibility represen-

tation.

Proof. We prove constructively that diagonal grid graph has bar 1-visibility

representation. At first construct planar graph G′ from diagonal grid graph

Gp,q by deleting left diagonal edge from each cell. After converting G′ to an

augmented graph, by Lemma 3.3.1, G′ is a planar st-graph. By using algorithm

given by Tamassia and Tollis, we can get visibility representation of the graph

G′. Then delete the vertex segment of source s and sink t vertices and edges
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a b

d c

Figure 3.9: One cell of a diagonal grid graph.

which are adjacent to these vertices. In this visibility representation, we insert

one column between every two grid in x-coordinate.

After that we extend each horizontal bar three right position at x-coordinate

except horizontal segment corresponding to bottom and right vertices of diag-

onal grid graph. By extending these bars, the right diagonal edge in each cell

crosses horizontal bar corresponding to up-left vertex in the representation.

Then we extend horizontal bar corresponding to bottom-right vertex in each

cell one left position. We can place the deleted left diagonal edges in the ver-

tical segment which will be placed between starting point of the horizontal bar

corresponding to bottom-right vertex and end point of the extended horizontal

segment corresponding to up-left vertex in each cell. Since all edges including

left diagonal edges can be placed at end point and startng point of the hori-

zontal bars then only right diagonal edges always pass through one horizontal

bar corresponding to the vertex. This maintains the property of bar 1-visibility

representation. Q.E .D.

The constructive proof of the theorem gives an algorithm. From the con-

struction of the algorithm we can observe that any two vertex-segments are

separated by a horizontal or vertical strip of at least unit width. In the repre-

sentation constructed by the algorithm, we can observe that some edges have

crossed one bar which maintains the properties of bar 1-visibility representa-

tions.
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3.3.3 The Algorithm

We now formally present the algorithm for finding the bar 1-visibility represen-

tation of diagonal grid graphs. To construct bar 1-visibility representation we

describe the shifting procedure of horizontal bar as follows:

We extend each horizontal bar three right position at x-coordinate except

horizontal segment corresponding to bottom and right vertices of diagonal grid

graph. By extendind these bars, the right diagonal edge in each cell crosses

horizontal bar corresponding to up-left vertex in the representation. Then we

extend horizontal bar corresponding to bottom-right vertex in each cell one left

position. We can place the deleted left diagonal edges in the vertical segment

which will be placed between starting point of the horizontal bar corresponding

to bottom-right vertex and end point of the extended horizontal segment corre-

sponding to up-left vertex in each cell. We call the procedure described above

Procedure Shift.

Algorithm BAR 1-VISIBILITY

Input : A diagonal grid graph G = (V,E).

Output : A bar 1-visibility representation for G such that each vertex-

segment and edge-segment has endpoints with integer coordinates.

1 Construct planar graph G′ from diagonal grid graph by deleting left

diagonal edge from each cell.

2 Convert G′ to an augmented graph.

6 Construct dual graph G∗ of augmented graph G′.

7 Use steps 3 to 5 of Algorithm VISIBILITY [25]

8 Delete vertex-segment of source s and sink t vertices and edges which

are adjacent to these vertices.

9 Insert one column between every two grid in x-coordinate.

10 Use Procedure Shift

We now give an illustrative example of this algorithm. In Figure 3.10 (a)

shows a diagonal grid graph Gp,q, (b) shows planar graph G′ by deleting left

diagonal edge from each grid cell and (c) shows G′ is an augmented graph. This
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numbering provides the y-coordinates for the visibility representation. In the

Figure 3.11, we have the dual G∗ of G′ and its optimal topological numbering.

This numbering provides the x-coordinates for the visibility representation. The

Figure 3.12 shows visibility representation of the graph G′ constructed by the

algorithm given by Tamassia and Tollis [25]. In the visibility representation,

after inserting one column between every two grid in x-coordinate, if we extend

the bar representing vertices then we can place the deleted diagonal edges.

Then one diagonal intersects one bar which maintains the properties of bar 1-

visibility representation. The Figure 3.13 shows bar 1-visibility representation

of the diagonal grid graph Gp,q constructed by the algorithm.

(17)t

(14)n (15)o (16)p

(9)i (10)j (11)k (12)l

(5)e
(6)f (7)g (8)h

(1)a
(2)b (3)c (4)d

(0)s

G’

(13)m

G

(a) (b)

(c)

Figure 3.10: (a) A diagonal grid graph Gp,q, (b) planar graph G′ and (c) G′ is

an augmented graph.

3.3.4 Area Compaction

To reduce the fabrication cost in VLSI design and also to visualize information

in small area, area compaction of a drawing of a graph is a useful technique. To

campact the representation area of bar 1-visibility representation, we use special

type of topological numbering considering the vertices of each cell contains

different number instead of numbering of the graph G′. In this numbering, we

use the number of bottom-right in second cell at right position of G′ for the

up-left vertex in first cell. The number of the rest of the vertices in this row

will be increased by one. The upper vertices will be numbered by same process.
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Figure 3.11: Dual graph G∗and the numberings of G∗.
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Figure 3.12: Visibility representation of graph G′ constructed by the algorithm.
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Figure 3.13: Bar 1-Visibility representation of diagonal grid graph Gp,q con-

structed by the algorithm.

This labeling provides the y-coordinates. for the visibility representation. If

we use this labeling then the height of the visibility representation is reduced

from p × q to q + 2p − 2. In the Figure 3.14, (a) shows planar graph G′ and

(b) shows numbering of graph G′. After numbering the vertices of G′, we

can construct compact bar 1-visibility representation. The Figure 3.15 shows

compact bar 1-visibility representation of diagonal grid graph Gp,q constructed

by the algorithm. We have the following theorem:

Theorem 3.3.3 A diagonal grid graph Gp,q has bar 1-visibility representation

with height q + 2p− 2.

Proof. A diagonal grid graph Gp,q has bar 1-visibility representation. The

fact that the special type of topological numbering considering the vertices of

each cell contains different number of G′ is obtainable in linear time. Let p and q

represents the y-coordinates and x-coordinates in the grid respectively. If we use

numbering of grid graph then the height of the output visibility representation

by our algorithm is the number of vertex (p, q) which is equal to p×q. When we

compute special type of topological numbering then we can give the sequence
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Figure 3.14: (a)A planar graph G′ and (b) the numbering of G′.
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Figure 3.15: Compact bar 1-visibility representation of diagonal grid graph Gp,q.
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1, 3, 5 · · · , n in the y-coordinate when x-coordinates is 1. Consequently when

x-coordinates is q ,the sequence will be q, q+ 2, q+ 4, q+ 6 · · · , q+ p+ 2 in the

y-coordinate . The sequence of x-coordinate will be 1,2,3,4 at p = 1; 3,4,5,6

at p = 3; 5,6,7,8 at p = 5; · · · ; p, p + 1, p + 2 · · · , p + q − 1 at p = q. From

these sequences we can get the highest value q + 2p − 2 of the vertex (p, q)

which gives the height of the output visibility representation by our algorithm

. After inserting one column between every two grid in x-coordinate and using

Procedure Shift, we can place deleted left diagonal edges of each cell of the

diagonal grid graph Gp,q. In this way we can reduce the height of the visibility

representation from p × q to q + 2p − 2. We can construct compact visibility

representation.

Q.E .D.

3.3.5 Complexity of the Algorithm

The drawing we have proposed in this Algorithm to represent bar 1-visibility of

a diagonal grid graph can be constructed in linear time. We have the following

theorem:

Theorem 3.3.4 Let Gp,q be a diagonal grid graph. Then a bar 1-visibility rep-

resentation of Gp,q can be computed in linear time.

Proof. Let Gp,q be a diagonal grid graph. In step 1 and 2, we construct pla-

nar graph from diagonal grid graph by deleting left diagonal edge from each cell

and adding two vertices souce and sink. After that we can make the augmented

graph in linear time. Then we construct dual graph of the planar graph and

compute optimal topological numbering of the dual graph. The visibility repre-

sentation of the planar graph can be constructed in linear time. Then inserting

column between each two grid in x-coordinate and shifting the vertex-segment

corresponding vertices at x-coordinate, the deleted diagonal edges are placed in

the representation in linear time. One vertical segment corresponding diagonal

edge intersects one horizontal segment which maintains the properties of bar

1-visibility representation. Thus we can obtain a bar 1-visibility representation

of diagonal grid graph in linear time. Q.E .D.

44



3.4 Conclusion

In this chapter, we have explained important algorithm on visibility represen-

tation of planar graphs. The approach of this algorithm are very often followed

by the researchers in this field. In addition, we have introduced a new class of

graphs diagonal grid graphs as bar 1-visibility graphs. Finally, we have designed

an algorithm to find bar 1-visibility representations of diagonal grid graphs. We

have also modified the algorithm for finding visibility representations on a com-

pact area.
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Chapter 4

Diagonal Labeled Graphs

4.1 Introduction

In this chapter, we present, in brief, previously known algorithms on constrained

visibility representation of planar graphs. Attentive readers should recall that

in a visibility representation of a planar graph G, each vertex is drawn as a

horizontal line segment and each edge is drawn as a vertical line segment where

the vertical line segment representing an edge must connect the horizontal line

segments representing the end vertices. In a bar 1-visibility representation, line

segment corresponding to an edge intersects at most one bar which is not an end

point of the edge [3]. In this chapter, we develop an algorithm for finding a bar

1-visibility representation of a newly introduced class of graphs called diagonal

labeled graphs.

The rest of the chapter is organized as follows. We start with a brief review

of some preliminary concepts of constrained visibility representation of planar

graphs in Section 4.2. In Section 4.3, we cast a bird’s eye view on the origin and

development of constrained visibility representation of planar graphs. The rest

of the sections are devoted to important algorithm in this field. In Section 4.4,

we presents the constrained visibility representation of planar graphs and Sec-

tion 4.5 depicts an algorithm for bar 1-visibility representations of diagonal

labeled graph. Finally, we summarizes the result in Section 4.6.
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4.2 Preliminaries

Most of the preliminary graph theoretic concepts have been covered in Chap-

ter 2. However, for the sake continuity and clear conception, we will now recall

some terminologies of constrained visibility representation of planar graphs and

diagonal labeled graphs.

In some cases there is a need to give more emphasis to certain paths of a

planar graph. These paths often called critical, should discriminate from all the

other paths, on the visibility representation of the planar graph. Such a visi-

bility representation could be used, for example, for having a quick inspection

of critical paths on a workflow graph. Critical paths in that case they have the

potential of delaying a project, thus they should be emphasized in a visibility

representation. A way to emphasize certain paths in a visibility representation

is to align their edges to the same horizontal coordinate. Such a visibility rep-

resentation is called constrained visibility representation. This representation

can be used as a starting point for obtaining orthogonal and polyline drawings

with interesting properties

A diagonal labeling of a graph G is defined as an orientation if the graph

G contains each edge crossing bounded by a quadrangle and vertices of lowest

number and highest number are on a diagonal.

A graph which contains diagonal labeling is called diagonal labeled graph.

For example, Figure 4.1(a) shows an input planar graph G and Figure 4.1(b)

shows a diagonal labeling of G where the vertices 0 and 3, 2 and 6 , 0 and 4, 3

and 6 are placed along the diagonal of each quadrangle.

(a)
(b)
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1
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Figure 4.1: (a) A graph G and (b) a diagonal labeling of G.

If the input graph has a diagonal labeling and contains each edge crossing
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inside each quadrangle then bar 1-visibility representation of that graph is also

found. At first, one diagonal which contains lowest and highest number in each

quadrangle will be chosen. Then the planar graph is obtained by passing that

diagonal within one vertex of the quadrangle and a visibility representation

of the resulting graph will be obtained by using the technique of constrained

visibility representation of a planar graph [5]. The edges which pass within the

vertex will be drawn by keeping the properties of 1-visibility representation.

4.3 Historical Background

In this section, we will briefly review the origin of constrained visibility repre-

sentation of planar graphs.

The idea of constrained visibility representation of planar graphs can be

traced back earlier to work by Battista, Tamassia and Tollis [5]. They proposed

such an algorithm, based on the algorithm of the visibility representation. Algo-

rithm Constrained Visibility computes in O(n) time a visibility representation

of G with integer coordinates and O(n2) area, such that the edges of every path

π in Π are vertically aligned.

4.4 Constrained Visibility Representation

In this section, we will review the algorithm of constrained visibility represen-

tation of planar graphs from [5].

It is easy to construct such an algorithm, based on the algorithm of the

visibility representation. Let G be a planar st-graph with n vertices. The key

idea is to construct a new planar st-graph G′ that has an extra facet for each

critical path. This can be done by duplicating each critical path. The visibility

representation of that graph will have the edge segments of the left side of the

boundary of each extra facet, vertically aligned. By removing the right copy

of every edge of the duplicated path, and joining the copies of the duplicated

vertices, we have each critical path aligned to one x-coordinate. The new facet

for every critical path can be inserted directly to the dual of G, as a new vertex,

at it will be shown, after the following definitions [5]:
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Definition 4.4.1 Two paths p1 and p2 of a planar st-graph G, are said to be

non intersecting, if they do not share any edge, and do not cross at common

vertices.

This means that if the two paths p1 and p2 have a common vertice, which

is the case in Figure 4.2, then two consecutive vertices, in the clockwise or

anticlockwise order, must belong to the same path. For example in Figure 4.2,

two paths are intersecting if e1 and e3 belong to the same path, while e2 and e4

belong to another.

(a)
(b)
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4

e
1

e
2

e
3

Figure 4.2: Two paths meet on an edge and its visibility representations.

Let G be a planar st-graph with n vertices. Two paths π1 and π2 of G are

said to be non-intersecting if they are edge disjoint and do not cross at common

vertices, i.e., there is no vertex v of G with edges e1, e2, e3 and e4 incident in

this clockwise order around v, such that e1 and e3 are in π1 and e2 and e4 are

in π2. Observe that any two vertex disjoint paths are also non-intersecting.

Given a collection Π of non-intersecting paths of G, we consider the problem

of constructing a visibility representation of G such that for every path π of

Π, the edges of π are vertically aligned. More formally, for any two edges e′

and e′′ of π the edge-segments Γ(e′) and Γ(e′′) have the same x-coordinate.

Algorithm (constrained-visibility) takes as input G and Π, and constructs a

constrained visibility representation Γ of G. In order to simplify the description

of the algorithm, without loss of generality, we assume that the set Π of non-

intersecting paths covers the edges of G. Otherwise, each edge originally not in

Π, is inserted in Π as an independent path.

Algorithm Constrained-Visibility [5].
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Input : Planar st-graph G with n vertices; set Π of non-intersecting paths

covering the edges of G.

Output : A visibility representation Γ for G such that each vertex-segment

and edge-segment has endpoints with integer coordinates and area O(n2).

1 Assign unit weights to the the edges of G and compute an optimal

topological numbering Y of G such that Y (s) = 0.

2 Construct the graph Gπ with vertex set F ∪ Π (recall that F is the

set of faces of G and edge set (f, π) | f = left(e) for some edge e of

path π ∪ (π, g) | g = right(e) for some edge e of path π). Note that

graph Gπ is a planar st-graph.

3 Assign half-unit weights to the edges of Gπ and compute an optimal

topological numbering X of Gπ such that X(s∗) = −1

2
.

4 for each Path π in Π

for each edge e in π

draw Γ(e) as the vertical segment with

x(Γ(e)) = X(π);

yB(Γ(e)) = Y (orig(e));

yT (Γ(e)) = Y (dest(e));

5 for each Vertex v

draw Γ(v) as the horizontal segment with

y(Γ(v)) = Y (v);

xL(Γ(v)) = minv∈πX(π);

xR(Γ(v)) = maxv∈πX(π);

To help the intuition of the reader, we observe that the computations per-

formed by the algorithm are equivalent to the following construction. First, it

modifies G by duplicating each path π in Π thus forming a new face for each

path. This is equivalent to having a vertex of Gπ (defined in Step 1) corre-

spond to each path in Π. Second, it constructs a visibility representation for

the modified graph such that the edge-segments of the left side of the bound-

ary of each face are vertically aligned and two copies of an original vertex are

horizontally aligned. Finally, it removes the right copy of every duplicated edge
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and joins the copies of the duplicated vertices. In Figure 4.3(a) shows planar

st-graph G, topological numbering of G, and set Π of paths that cover the edges

of G, where the paths with at least two edges are drawn with thick lines; 4.3(b)

shows graph Gπ and its topological numbering, where the square vertices repre-

sent faces of G and the pentagon vertices represent paths of Π. and Figure 4.4

shows constrained visibility representation of G.
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Figure 4.3: (a) Planar st-graph G and a topological numbering of G and (b)

graph Gπ and its topological numbering.
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Figure 4.4: (a) A topological numbering of G, (b) graph Gπ and its topological

numbering and (c) constrained visibility representation of G.
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Theorem 4.4.2 [5] Let G be a planar st-graph with n vertices, and Π be a

set of non-intersecting paths covering the edges of G. Algorithm constrained

visibility computes in O(n) time a visibility representation of G with integer co-

ordinates and O(n2) area, such that the edges of every path π in Π are vertically

aligned..

4.5 Bar 1-Visibility Representations

In this section we give an algorithm for obtaining bar 1-Visibility Representa-

tions of diagonal labeled graph. This problem has an interesting correlation with

the constrained visibility representations of planar st-graph. If the input graph

has a diagonal labeling and contains each edge crossing inside each quadrangle

then bar 1-visibility representation of that graph is also found. At first, one

diagonal which contains lowest and highest number in each quadrangle will be

chosen. Then the planar graph is obtained by passing that diagonal within one

vertex of the quadrangle and a visibility representation of the resulting graph

will be obtained by using the technique of constrained visibility representation

of a planar graph [5]. The edges which pass within the vertex will be drawn

by keeping the properties of 1-visibility representation. We have the following

theorem:

Theorem 4.5.1 The diagonal labeled graphs admit a bar 1-visibility represen-

tation.

Proof. We prove constructively that the diagonal labeled graph has bar

1-visibility representation. A diagonal labeling of a graph G is an orientation if

the graph G contains each edge crossing bounded by a quadrangle and vertices

of lowest number and highest number are on a diagonal. At first we identify the

diagonal edge which contains highest number and lowest number in each quad-

rangle. Then we convert the non-planar graph to planar graph G′ by passing the

diagonal edges through the vertex. After that we can Identify non intersecting

paths π in Π in the graph G′. The diagonal edges which are passed through

the vertex are identified as non intersecting paths. Because these satisfies the

conditions which was described in constrained visibility representation [5]. The

paths have no common edges and no crossing because if we pass all the diagonal
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edges through the vertex which is right side of the edge. But they can touch at

vertices. These conditions are easily understood by the Figure 4.5.
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Figure 4.5: Non intersecting paths are a,b,c.

Then we assign half-unit weights to the edges of Gπ and compute an optimal

topological numbering X of Gπ such that X(s∗) = −1

2
. After that we can

place each vertex and each edges by the algorithm of constrained visibility

representation [5]. After placing each edges, we can see the diagonal edges

which is identified as non intersecting path cross one vertex-segment which

maintains the properties of bar 1-visibility representation. Thus we can prove

the diagonal labeled graph admits a bar 1-visibility representation. Q.E .D.

The constructive proof of the theorem gives an algorithm. From the con-

struction of the algorithm, we can observe that any two vertex-segments are

separated by a horizontal or vertical strip of at least unit width. In the repre-

sentation constructed by the algorithm, we can observe that some edges have

crossed one bar which maintains the properties of bar 1-visibility representa-

tions.

4.5.1 The Algorithm

We now formally present the algorithm for finding the bar 1-visibility represen-

tation of diagonal labeled graphs.
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Algorithm BAR 1-VISIBILITY

Input : A diagonal labeled graph G = (V,E).

Output : A bar 1-visibility representation Γ for G such that each vertex-

segment and edge- segment has endpoints with integer coordinates.

1 In graph G, choose the diagonal edges which contain highest number

and lowest number in each quadrangle.

2 Construct planar graph G′ by passing the diagonal edges through

the vertex.

3 Identify non intersecting paths π in Π in the graph in such a way–

- there is no common edges

- no crossings

- can touch at vertices.

5 Use Algorithm Constrained-Visibility [5]

We will make an example of this algorithm. In Figure 4.6 (a) Diagonal

labeled graph G, (b) shows planar graph G′ by passing the diagonal edges

through the vertex and (c) shows optimal topological numbering of Gπ In the

Figure 4.7, shows bar 1-visibility representation Γ for G constructed by the

algorithm .
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Figure 4.6: (a) Diagonal labeled graph G, (b) planar graph G′ and (c) the

numberings of Gπ.
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Figure 4.7: Bar 1-visibility representation Γ for G constructed by the algorithm.

4.5.2 Complexity of the Algorithm

The drawing we have proposed in this algorithm to represent bar 1-visibility

of a diagonal labeled graph can be constructed in linear time. We have the

following theorem:

Theorem 4.5.2 Let G be a diagonal labeled Graph. Then a bar 1-visibility

representation of G can be computed in linear time.

Proof. Let G be a diagonal labeled graph. In step 1 and 2, we construct

planar graph from diagonal labeled graph by passing the diagonal edges through

the vertex and identify non intersecting paths π in Π in the graph in linear

time. After that we Assign half-unit weights to the edges of Gπ and compute

an optimal topological numbering X of Gπ such that X(s∗) = −1

2
. It can be

also done in linear time. The visibility representation of this planar graph can

be constructed in linear time. After placing each edges, we can see the diagonal

edges which is identified as non intersecting path cross one vertex-segment which

maintains the properties of bar 1-visibility representation. Thus we can obtain a

bar 1-visibility representation of diagonal labeled graph in linear time. Q.E .D.
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4.6 Conclusion

In this chapter, we have reviewed important algorithm on constrained visibility

representations of planar graphs. The approach of this algorithm are very often

followed by the researchers in this field. In addition, we have introduced a

new class of graphs called diagonal labeled graphs as bar 1-visibility graphs.

Finally, we have designed an algorithm to find a bar 1-visibility representation

of a diagonal labeled graph in linear time.
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Chapter 5

Conclusion

In this concluding chapter, we would like to review the concepts discussed in

the earlier sections. Also, we give a summary of the remaining open problems

in this field.

In this thesis, we have regarded the problem of computing algorithms on

bar 1-visibility representations of non-planar graph such as diagonal grid graph

and diagonal labeled graph. Given an undirected diagonal grid graph G, this

thesis gives a drawing algorithm that gives bar 1-visibility representations with

minimum area in linear time. In this thesis, we have addressed the problem

of drawing visibility representation of non-planar graph. We have proved that

some classes of non-planar graphs admit bar 1-visibility representation. Con-

sequently, we focused on those non-planar graph which contains at most one

edge crossing. If given the directed graphs having diagonal labeling where each

edge crossing bounded by a quadrangle and vertices of lowest number and high-

est number are on a diagonal then this thesis also gives a linear time drawing

algorithm for computing bar 1-visibility representation.

In Chapter 1, we presented a brief overview of the basic graph theoretic

and drawing concepts. We discussed some of preliminaries of visibility repre-

sentation of planar graph and further defined briefly bar visibility graph. Then

we came into the point of bar k-visibility graph and consequently we discussed

about bar 1-visibility graph and bar 1-visibility representation. Finally we re-

gard the non-planar graphs as our problem domain and specify the problem of

computing the bar 1-visibility representation.

In Chapter 2, we give some preliminary ideas on graph theory and algorith-
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mic theory on st-numbering and optimal topological numbering. The chapter

includes some concepts that may be outside of the visibility representation zone

but helped in our research in this area.

Chapter 3 presents description of visibility representations of planar graph

and our algorithm on bar 1-visibility representations of diagonal grid graph

which is non-planar graph. This chapter gives the details of the previous results,

including the related proofs and descriptions. Consequently, we focus on finding

the area compaction of bar 1-visibility representation. The algorithm is linear-

time algorithm that has been proved.

Finally, in Chapter 4, we present description of constrained visibility rep-

resentations of planar graph . We have detailed our results on bar 1-visibility

representations of diagonal labeled graph. Consequently, we focus on finding

non planar graph admits bar 1-visibility representation. We illustrate in this

chapter our linear-time drawing algorithm for bar 1-visibility representations of

diagonal labeled graph.

There are some limitations of this work. Diagonal labeled graph has diagonal

labeling. But in our work we can not generate diagonal labeling of the graph.

We can not check whether all 1-planar graphs are bar 1-visibility graphs or not.

Now we discuss some of the related open problems in this field.

• We introduce diagonal grid graphs and diagonal labeled graphs as bar

1-visibility graphs. Recently 1-planar graph has been studied in various

ways [7, 6, 24]. So it would be interesting to characterize the graphs which

admit bar 1-visibility representation.

• In [3], bar k-visibility representations have been introduced. Are there any

drawing algorithm of bar k-visibility representation where k = 1, 2, · · · , k

?

• We have mentioned that the diagonal labeled graph admits bar 1-visibility

representation. Here diagonal labeling of a graph G is given as an orienta-

tion if the graph G contains each edge crossing bounded by a quadrangle

and vertices of lowest number and highest number are on a diagonal. So

it would be interesting to investigate how diagonal labeling can be done.
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