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ABSTRACT

Gate current and trapped charge inside oxide layer of an enhancement type
MOSFET are calculated in this work using quantum mechanical analysis.
'Quantum analysis i1s important for MOSFETs as their future size shrinks to
nanometer i'ange. The effects of thé traps due to impurity atoms inside oxide layer
on gate current and trapped charge are studied by simulating them with rectangular
' potential wells and traps are considered to be uniformly distributed. These impurity
traps are considered to be vigorous inelastic scatterers and any incident electron is
assumed to be inelastically scattered and completely trappéd inside a trap-well and
then tunnel out to the adjacent traps through the oxide potential barriers. In this
thesis the calculation of gate current and trapped chmée inside oxide layer are
carried out for various MOSFET parameters. The calculations show that both gate
current and trapped charge increase with increasing trap density and oxide field.
W-ith decreasing energy levels of the trap-wells the trapped charge increases with
decreasing gate current. Trapped charge distribution inside various trap-wells are
calculated from probability density function. It is found that most of the trapped
charge are residing inside trap-wells near the channel. A comparison between
calculated and experimentally measured results are presented and they are found to |

be in good agreement.
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'INTRODUCTION

1.1 Background of the thesis

Metal-oxide-semiconductor field-effect transistors (MOSFET) are widely used in
very large scale integrated (VLSI) circuit design, where high density and high speed
performance are required. This led to a continual device miniéturimﬁon [1]. As a result
the oxide layer (SiO) of the MOSFET became very thin (less than 100 A®). Through this
thin oxide layer, tunneling of carriers take place bctwcén the semiconductor channel and

the metal contact at the gate of the MOSFET [2]. The presence of the impurity atoms in |

the SiO, layer act as a trapping centre for the carricrs and therefore affect the tunneling.

Due to tunneling, MOSFETs have gate current and charge is trapped inside the thin SiO;

layer, when switching takes place-between ON and OFF states. Therefore the switching
speed is reduced and the performance of MOSFETs is degraded. From another poht of
view, the presence of trapped charge in the gate region gives a new idea of non-volatile
memory and multi-stage logic design using MOSFET. As a result the cﬂculaﬁon’ of gate
current and trapped charge in the SiO; layer have become important to evaluate the
performance of MOSFETSs.

6(7 5—-’_?&)
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1.2 General review

In the late i970s and early 1980s, trap creation inside the thin amorphous film of
silicon dioxide has received much attention because of their important effects on carrier
Umﬁeﬁng through the oxide layer. In 1976, Woods and Williams [3] measured the
properties of trapped holes in the SiO; layer by the application of large electric field. They
also measured the trapped hole density and their distribution in a 8i0; layer of thickness
1000-1250 A° neglectiﬁg traps due to the impurity atoms. They suggested that traps are
created due to the electron missing from the covalent bonds of SiO;. Later, a theoretical
treatments on the process of hot-¢lectron emission from silicon into silicon dioxide was
carried out by Ning [4]. He considered avalanche and nonavalanche injection mechanism
to calculate emission probability of the carriers at Si-510; interface. Yambae and Miura [51
observed cxperimentally the flat-band voltage shift, because of the generation of interface
states due to the electron trapping in the SiO; film. They suggested that the Mtctfacé states,.
where electrons can be trapped, are generated due to the collisions of electrons at the Si-
SiQ, interface.

Trap creation was obsérvcd in several experiments during tunneling of carriers
_ through the SiO; layer [6,7,8]. Di Maria [6] observed the trap creation in thin films of SiO,
follows the electron heaﬁng characteristics of the material, He observed the generation of
electron traps in SiQO; at fields above 1.5 MV/cm due to the electron héaﬁng. In another
investigation [8], Di Maria suggested that electrons can travel without scattering through
thin (<100A°) oxide layer and trai)s are not produced unless injected electrons acquire
more than 2eV of kinetic energy from the applicd electric field. Miki and others [7)
observed higher trap density in ultra-dry oxide films than that in wet-oxide films. They

suggested the presence of impurity atoms such as Sodium and heavy metals in the oﬁde
films act as trap-states for the tunneling carriers. I an experiment Farmers, and others 9]
sugpested ‘that the trap creation in SiO, due to electron heating is suppressed below 150° K.



Recently Khosru and others [10, 11] found the non uniform distribution of hole
traps inside Si0O; layer. They suggested [10] that most of the ﬁ'apped holes exist between 2-
6 nm from the SiO;/Si interface. In another investigation [11] they observed that holes are
created by ionizing radiation which produce new electronic states at the Si0,-Si interface
resulting in the formation of interface traps. They also found a threshold voltage shift due
to the trapping of carriers inside the-SiO, layer.

In a classical approach Depas and others [2] showed that the direct tunne]iﬁg
current in.poly Si/SiOz /81 structures with ultra thin gate oxide can be explained by usixﬁlg
the effective mass of the tunneling electron. They also measured the gate current density
for different oxide layer thickness at different oxide electric field. They found a higher gate
current density for thinner oxide layer at low (< 8 MV/cm) electric field. In a theoretical
approach Mingzhen and others [12] proposed a model based on current continuity

concept, for studymg the rate of change of inversion layer charge related with tunneling

current. They neglected any oxide trap generation at low mnjected carrier density.

~In a recent approach, Kuei-Shan Wen and others [13] proposed a iwo-dimcnsional
numerical simulation technique to study the effects of hot-clectrons on short n-channel
MOSFETs. They showed that the generated electron traps at the Si-Si0, interface enhance
the degradation of MOSFET characteristics but retard the injection probability of hot-
electrons into gate oxide. They jexperimentally measured the gate current at various gate
\}oltagc. For a particular gate voltage, they observed different gate current at different drain
volfage. Leong and others [14] observed that the high frequency measurement of gate
currcnt is different from the low frequency measurement. They also explained the necessity

of the high ﬁ'equency measurement.

iy



1.3 Scope of the work

The effects of impurity atoms mslde the SiO; layer which act as a trapping centre
[7,17] for the tunneling camriers have overlooked in most of the works. But traps due to
impurity atoms plays an important role dusing tunneling. Their property and quantity
depend lon conditions of the oxidation process, especially “on the moisture content in the
oxidizing atmosphere. Carrier tunneling through the thin SiO, layer with impurity traps are
discussed in the present work. Each ﬁnpuﬂty trap is simulated by a rcctangulaf trap-well
inside the Si0, layer. Vigorous inelastic scattering is considered and sequential tunneling is
assumeci from one trap to another. Quantum mechanical analysis is used instead of existing
classical and semiclassical analysis for better accuracy. The calculations are based on

quantum mechanical wave impedance concept developed by Khondker et al. [18]. Wave
functions are calculated inside trap-wells and in the semiconductor channel using S-matrix.

. Gate current and trapped charge m the SiO, layer are then calculated from wave functions.

| 1.4 Summary of the thesis

In this thesis, the inversion well at the Si-SiO; interface is assumed to be triangular
at strong inversion. The confinement of the carriers ‘inside this potential well is considered
to form a two-dimensional electron-gas (2DEG). The resulting eigen states due to the spiit
of conduction band are calculated using quantum mechanical impedance concept. This is
described in chapter-2. An analytical model to calculate transmission cocfficient is also
devclop;’,d here.

The analytical cxpress'ion for gate current and trapped charge are presented in
chapter-3. Chapter-3 also contains the calculated gate cumrent and trappcd charge for



various MOSFET parameters. A comparison between calculated and experimentally

measured gate current is also presented here.

The concluding remarks and recommendations for future work are included in

chapter-4 of the thesis.



CHAPTER 2

BASIC MOS STRUCTURE AND QUANTUM
EFFECT

2.1 Basic structure of a MOSFET

The basic structure of an n-channel enhancement type metal-oxide-semiconductor
‘ﬁeld-eﬂ"cct transistor (MOSFET) is illustrated in Fig.2.1. In this device two highly doped
n' source and drain regions are diffused or impianted into a relatively lightly doped p-type
substrate. A thin SiO; layer separates the metal gate from the Si surface. Drain curfent ()
-voltage (Vp) characteristics of the device as a function of gate voltage (Vg) [15] of the
device is shown in Fig.2.2. No current flows from drain to source without a conducting n-
channel between them as the drain-substrate-source combination induces oppositely
directed p-n junctions in series. When a positive \;oltagc is applied to the gate with respect
to substrate, positive charges are deposited on the gate metal. In response, negative charges
are induced in the underlying Si by the formation' of depletion region and then the thin
surface region contain mobile electrons. This induced negative charges form the channel of
the device allow the current to flow from dram to source. With higher gate voltage, the
induced electrons in the channel are increased which increases channel conductivity and

allows more current for a particular drain voltage.



<|.> Substrate

Fig.2.1. An enhancement-type n-channel MOS transistor.

drain current: lb
+4

+3

+2

Ve =+1V

drain voltage © V),

Fig.2.2. Drain current-voltage characteristic as a function of gate voltage of a
MOSFET [15].



- The energy band diagram of an ideal MOS structure with p-type substrate at
eqmlibnu.m for zero gate voltage is shown in Fig.2.3. The energy required to move an
clcctron from metal Fermi level to SiO, conduction band is the work function for metal-
Si0, interface ¢y, and is measured from the metal Fermi level to the SiO, c(?nducﬁon band.

Similarly, ¢g is the work function of Si0;-Si interface and is measured from the
semiconductor Fermi level to the SiQ, conduction band. In this idealized case, there is no
difference between these two work functions that is $m = 5 as there is no flow of carriers

between metal and semlconductor through the SiO, region [15). The potential ¢y

‘measures the position of the semiconductor Fermi level Er below intrinsic Fermi level E;

and indicates how strongly the semiconductor is doped with p-type impurities. The

. energy band diagram for n-type substrate under zero gate voltage is shown in Fig. 2.4,

j x e 1
bm Ec
E, l 5
Eyp % --------- Er
Metal SiOz Semiconductor

Fig. 2.3. Band diagram with zero gate voltage for p-type substrate.
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Metal |

Si0;

X J' ' _
-
----------------------------------- EF
¢n ,
E;
E, T
T
Semiconductor

Fig. 2.4. Band diagram with zero gate voltage for n-type substrate.

From above figures, it can be written[16]-

‘ E
Pis = O — s =0~ (% +-2§+¢B) =0, for p-type substrate

. E
Oms =Om — s = ¢m—(x+?g——-¢B) =0, for n-type substrate

2.1

(2.2)

where ¥ is the semiconductor electron affinity and is measured from semiconductor

conduction band to SiO; conduction band. E, E. and E, are Fermi level, conduction band

and valence band respectively.

Let us consider an enhancement type MOSFET with p-type semiconductor as

substrate as shown in Fig 2.1. When a small positive voltage V is applicd to the gate, then

the potential of the metal is increased which lowers the metal Fermi level by an amount V



relative to its equilibrium position of Fig.2.3. As a result, oxide conduction band is tilted
[15] as shown in Fig.2.5.

Ec -

\

Ep.
el = "y

Metal Si0, Si

Fig.2.5. Inversion in a MOS structure.

The electron and hole concentration in the semiconductor is given [15] by using
Fermi-Dirac distribution function under the assumption-

exp[(Ec — Ep)/kT]>>1 and exp[(Ev—Efp)/kT]<<1.
n, =g exp{(Ep-E)/kT} ey
Pp =n; exp{(E; ~Eg)/kT} 2.4)

where ; is the intrinsic electron concentration , k is the Boltzman's constant and T is the -

absolute temperature.
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The positive gate voltage deposits positive charges on the metal which calls for a
corresponding negative charge on the semiconductor surface. Such a negative charge arises
from the depletion of the holes from the regions near the smfacc_.. As a result, the hole

- concentration decreases in the depletion region, moving E; closer to Ep' as required by
equation (2.4). Therefore E; band bends downward near the semiconductor surface as

~ shown in Fig, 2.5.

K we continue to increase the positive voltage at the gate, the bands at the

semiconductor surface bend more strongty.' At a certain gate voltage E; crosses Ep and this

implies that there present a large electron concentration in the sé:rﬁconductor conduction
band, as described in equation (2.3). In this case, the region near the semiconductor
surface has conduction properties of n type material. Thus the inversion layer of original 1')-
type semiconductor (substrate) is achieved by the application of positive gate voltage.

The band diagram for Si under strong inversion is shown in Fig.2.6. If we define a .

potential y 1o give the extent of band bending which is the bending of E; from is
equilibrium of position as shown in Fig,2.6.

Si0,

Fig.2.6. Silicon band diagram in a MOS structure under strong inversion.

11



From equations (2.3) and (2.4) electron and hole concentration in terms of  can

be written as-

qy
Ny, = n,,ek’ (2.5)
W
Pp =P X7 (2.6)

where np, and Ppo are the equilibrivm electron and hole concentration rcg.pecﬁvcty and
is considered positive when bands bend downward. At the Si-SiO, interface Y=y,
where ys is the surface potential and strong inversion is defined [15] as Yg = 2.¢g. Then

from equations (2.5) and (2.6) electron and hole concentrations ‘at the surface can be

written as-

4% .

ng =n,e kT 2.7
_ 3%

Ps=Ppe T - : B . @8

-

2.2 Importance of quantum analysis

Application of positive gate voltage to'a n-channel MOSFET, causes band bénding
and at strong inversion a large number of carriers (electrons for this case) exist inside the
channel at Si-SiO, inierface. Classical and semiclassical analyses are meaningful only at
device dimension > 1um [23]. But the miniaturization of the electronic devices has resulted

12



b4

the MOS dimensions of the order of nanometer. As a result oxide layer becomes very thin.
So classical or semiclassical analysis does not provide the correct mechanism of gate
conduction and the results are not very accurate. In this work, for better accuracy quantum
mechanical analysis is used to study the tunneling of the carriers from semiconductor
channel to the metal gate thrbugh the oxide layer.

2.3 Quantum effects on inversion layer carriers

When a voltage V, is applied to the gate of an enhancement type MOSFET, -partial
voltage drop occurs across the insulator, V; and partially appears as the surface potential g

at the SiOz.-Si inferface which causes band bending. Again at zero gate voltage, the metal
work function is not exactly equal to that of the semiconductor, therefore a voltage drop is

' present due to this, which is known as flat-band voltage Vg, Also we have to include the

various oxide and interface (Si0,-Si) charges in an effective positive charges Ql The effect

of this charge is to induce an equivalent negative charge in the semiconductor. Thus
another additional term must be considered in the flat-band voltage [15]. Therefore we can

write-

Q. o
vg=vi+q;S+VFB—af _ 2.9

where C; is the insulator capacitance. With increasing gate voltage both V; and g are
increased. Higher V; causes the Si0; conduction band to be more tilted and higher g

results further semiconductor band bending and more induced carriers inside the channel.

13



Strorig inversion occurs at Yy >2.¢p [15] and the resultant band diagram at this

condition is shown in Fig.2.6. The combination of higher doping levels and thinner oxide
layer increases the electric field at the Sidz-Si interface to a level such that the energy band
bending at the SiO,-Si interface under strong inversion is very steep. The confinement of
the carriers in this potential well leads to a two dimensional electron gas (2DEG) system.
As a result, the bulk conduction energy band splits into discrete sub-bands (eigen states)
inside the inversion well, with the lowest sub-band shifted substantially above the
conduction band minimum. This is illustrated in Fig. 2.7. With increasing gate voltage,
surface potential increases and conduction band tip shifts further downward as a result
eigen states are also shifted. o

Si0; Si

Fig. 2.7. Quantum hechmﬁcﬂ effects on inversion layer charge.

2.4 Impurity traps and their simulation using

rectangular trap-wells

The presence of impurity atoms in the SiO, layer affects the transmission of carriers
from the semiconductor channel to the metal. It is seen that many impurities have encrgy

14



level close to the SiO; conduction band. 'I;hcsc impurities form the traps as they serve as an
_ efficient trapping centre for the tunneling carriers [17]. Traps inside thin amorphous films
of SiO, is currently receiving much attention as it causes performance degradation of
MOSFETs in memory and logic circuits. Trap states in SiO; films thermally grown on Si
substrates have foﬁnd to be classified by the following three types with resbcct to their
origin: 1) extrinsic trap states related to impurities such as Sodium and heavy metals 2}
semi-intrinsic trap states generated by water or Hydrogen related species and 3) intrinsic
trap states induced in Si-Si stretched bonds or Oxygen vacancy in SiO, [7].

The potential well can affect the transmission and reflection of a carrier in the same
way. as done by the impurity atoms in the SiO, layer. For analysis tile effects of a trap on
the freedom of motion of the carrier, each impurity atom is simulated with a rectangular
potential well as shown in Fig.2.8. ' '

Vacuum level

Si0, conduction band

Trap height, H \ /

Trap level

Fig. 2.8. Silicon dioxide layer with 'recta.ngular trap-wells.

15



For Si0,, band-gap is found to be 8¢V and the electron affinity is 0.9¢V. Trap
level ranges from 1.5¢V to 2.5¢V below the SiO, conduction band [16]. The height of the
potential well, H can be calculated by- '

252

H=-" f S+ (trap level below SiO, conduction band) (2.10)

2m

where m’ is the carriers effective mass and % is the modified Plnak’s constant and L is the
width of the potential well which is approximately equal to the diameter of the impurity
atoms. The diameter of the impurity atoms are of the order of 1-2 A°. In this work, L is

considered 2 A°.

The traps are assumed to be vigorous inelastic scatterers and any incident electron
is completely trapped inside the well. They then tunnel out to the édjaccht traps through the

potential barriers.

2.5 Exact solution of Schrodinger’s equation: the

generalized impedance concept

There exists an analogy between the plane wave and evanescent wave solutions of
Schrodinger’s cquatioh in a region of constant potential and the waves along a uniform
transmission line. Based on this analogy, Khondker et al. [18] have developed a simple and
straight forward method of solving the time independent Schrodingér’s equation. A
quantum mechanical impedance analogous to the impedance in a transmission line has
been defmed to make use of the well developed theories of transmission line to calculate

quantum mechanical transmission probability across an arbitrary potential structure.

16



The time-independent one-dimensional Schrodinger’s equation is given by-

n? gz
Zm,,a;i—]+(E-V)q1=0

(2.11) |

‘where  is the wave function at any position x, m* is the effective mass, V is the potential
energy at that position and E is the kinetic energy. To put the concept of wave impedance
in analytical term let us consider a potential step as shown in Fig.2.9.

Region-1 Region-2

vz
Incident —_

Reflected —-— e Transmitted

Vi

——
v

Fig.2.9. Transmission and reflection of electrons from a potential barrier. ﬂ

Let us assume an electron having an energy E is incident normally from x<0 on the

step. Then the wave function s of the ¢lectron in either region can be written ingeneral as-

(%) = A*[exp(y X) - pexp(~y x)] ' (2.12) !

where A" is the amplitude of the incident wave, p is the wave-amplitude reflection ‘“

coefficient and v is the propagation constant of the region under consideration. y for a |
particular region can be written as- |

17 |



R
. |2 E-V :
Y=o+ jp= 3\/ il f(iz ) (2.13)

where o is the attenuation constant, f is the phase constant, m* is the effective mass of
electrons, V is the potential energy of the region and /i is the modified Plank’s constant.
Region-2 (x > 0) is of infinite extent, so there is no reflected wave in this region as shown
. in the figure and to write the wave function in this region from equation (2.12) second term
of the right hand side should be neglected. ‘

Let us now introduce a new function ¢(x), which is obtained from equation (2.12)

when differentiated with respect to x and multiplied on both sides by

. "’

jm
2h d '
90 =5 o= AT Z fexp(r) + pexp(-y)] @1
jm 9% ~ .
where-
Zo = 2h’Y¥ .' o (2.15)
Jm '

The equation for current (I) and voltage (V) in a uniform transmission line with

distributed impedance [19] have the form-

1) = Pfexp(y ) - pexp(-y )] | e

and

V(%) = I Zy [exp(y X) + prexp(-y X)] - .17

where ¥, is the propagation constant and py is the wave amplitude reflection coefficient for

transmission line. py is expressed as-

18



VAT ‘
— L Lo 2.18
Pt 2+ 724 (2.18)

here Z;; and Z are the load and characteristic impedances of the line [20]. Comparison,of

equations (2.12) and (2.14) with equations (2.16) and (2.17) shows that y and ¢ are
analogous to current I and voltage V of a transmission line fcspect_ively. Thus Z, cxpressbd

by equation (2.15) can be regarded as a characteristic wave impedance of either region.

To complete the analogy, we must consider the continuity conditions between two

regions. At the interface, particle conservation requires the continuity of y while the
. dy

continuity of particle current: demands the continuity o perleg These conditions are in

direct correspondence to those of transmission lines which require that the total current and
voltage must be continuous at any junction between two transmission lines. Again if we
apply this boundary conditions to the wave functions in region-1 and region-2 of Fig.2.9.

and solve for p we get- '
!

T2 T
m, m, ’ ’
= 2.19)
2+ 3
m, m ' !

where v, and v, are the propagaﬁon constants, m;* and m,* are the effective carrier masses

in region-1 and region-2 respectively. This equation is analogous to the wave amplitude |

reflection coefficient of a transmission line éxpressed in equation (2.18).
To exploit this analogy further, the ratio of ¢ and y is considered analogous to the

ratio of voitage and current which is the impedance. Therefore at any position x, the
quantum mechanical wave impedance is defined as-
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Z(x) o0 . | (2.20)

Once the quantum mechanical wave impedance is defined, the transmission line impedance
transformation equation can be used in quantum mechanical problems. Thus the input
value of quantum mechanical wave impedance Z; at a distance X = —| inside region-1 of
Fig.2.9 is expressed in terms of quantum mechanical load impedance Z, of region-1 as-

_ e =D _ ., 2y cosh(y) - Z, sinh(yl)
i = UD = 5™ % Z, cosh() —Z, simh(1l) (2.21)

‘The load impedance Z; seen from the first region of Fig.2.9 at x=0 is the input
impedance of region-2 at X = (. Therefore Z; can be expressed using the equation for an
infinitely long transmission line-

2vh
= __]—IF (2.22)

2.6 Calculatlon of e:gen energies of the

semlconductor well at strong inversion

The band diagram at strong inversion for an enhancement type MOSFET with p-
type substrate is shown in Fig.2.6. The condition for eigen state inside the well can be
- expressed [21] in terms of quantum mechanical wave impedance by-

Z,=7 (2.23)

20 .

._.‘_ )



where Z_ is the impedance seen from the Si0,-Si interface toward SiO; and Z, is the

- impedance at the same position but looking toward substrate.

To‘calculatc eigen states of the well, Z, and Z_ are calculated for various elecu'on‘
energies and then compared. At ¢igen energies these impedances are equal as required by
equation (2.23). In this work, the well 1s assumed to be a triangular one as shown in
Fig.2.10 for simple analysis.

Depletion layer -
o width
) »
E; /
Eign v
el ’ A Well height
SiO, ; Si

Fig.2.10. Triangular well approximation of the semiconductor

well at strong inversion.

© Z4 is then calculated by stepwise approximation of the triangular well as shown in
Fig.2.11. Calculation is started from the maximum depletion width and then advanced
toward the Si-Si0; interface. | |
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Fig.2.11. Stepwise appfoximation of the triangular well

Let Z;, be the impedance at the top of the well looking toward substrate for an
electron energy E. Using quantum mechanical wave impedance concept which is illustrated

"in article 2.5, ZL can be written as-

2vh
=T : (2.24)
jm

where m* is the effective carrier mass, % is the modified Plank’s constant and y is the

propégation const;mt, which is expressed as-

. 2m’(E-V) ' - ‘
¥ =] —m-——h2 ‘ (2.25)

where V is the potential energy corresponding to the bulk conduction band. Z; is assumed
as the load impedance of the first step. The input impedance Z; at the other end of this step
is calculated by using the impedance transformation equation which is given by-
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7 = Z, cosh(yL) - Z, sinh(yL)
17 70 7, cosh(yL) — Zy sinh(yL)

(2.26) |

‘ ‘where L is the step length, Z, is the cha.facterisﬁc impedance and y is the propagation
* constant of,'th.é step. Both Z, and  are calculated from equations (2..24) and (2.25) using ’
potentiaféhcrgy comresponding to the step. Z; is the load impedance for the second step. -
Proceeding in this way toward the Si-SiO; interface, Z, which is the input impedance of
the last step is calculated. For the same electron energy, Z_ is calculated from equations
(2.24) and (2.25) for a potential energy corresponding to the SiO; conduction band at the
interface. If Z. and Z_ are equal, then E is an ¢igen energy.

For a depletion layer width of 200 A° with a height of 1eV first, second and third
eigen states are found at 0.237¢V, 0.41eV and 0.551¢V above the channel tip. '

2.7 Calculation of current transmission coefficient

- of the SiO, layer with traps

The carrier transport mechanism from the semiconductor channel to the metal gate
is illustrated in Fig.2.12. The trap potentials arc assumed to be perfectly rectangular. The
traps are considered to be vigorous scatterers and inelastically scatter all the incoming
electrons. The electrons scattered by the traps are assumed to suffer a transition to the ‘
minimum energy level of the trap-well irrespective of the energy of the incoming electrons,
buf in the actual tunneling not all the electrons do s0. The second energy state of the trap-
well corresponding to an energy four times greater than the lowest therefore according to
the Fermi-Dirac statistics second and other higher states have a negligible probability of
being occupied by the tunneling electrons. The trapped electrons from the first trap-well

are transmitted to the lower most energy state of the adjacent trap-well and then
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sequentially move from one trap-well to another. In this way electrons tunnel toward the
metal. At the metal, as its Fermi level is far below the SiO, conduction band, the tunneling
of electrons from metal toward Si0O; is neglected.

Si0, thickness

| Eigen state ’
forward tunneling /

Field

inside /
SiO,
s
2 74_ —7
/7 ‘

. ___,,,/
Metal ™
Fermi Trap
level | level
Trap-well
Metal | ' | SiO; Semiconductor

Fig.2.12. Carrier tunneling mechanism through the SiQ;, layer.

For the sake of simplicity let us consider a total number of N traps are uniformiy
distributed in the SiO, region. Therefore electrons have to tunnel through (N+1) SiO,
barriers between channel and gate. Let us consider a single SiO, barrier between trap-well
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A and B as shown in Fig.2.13. Let T be the current transmission coefficient and p is the

_reflection coefficient of the barrier.

B ‘ wave function
| AN

e ,
R s [ >
v " a
/ /
/
/\ /
1 S — /
D Nl 4T A S
A ™~ - !/
trap-level /' ‘\
-------------------------- A
Z
7y,

Fig.2.13. A single SiO, barrier.

. Quantum mechanical wave impedance concept described in article 2.5 can be used
to calculate reflection and transmission coefficient. The wave function of an electron inside
a trap-well tunnels to the adjacent traps through the SiO, barrier on both sides. So there
exist both forward and reverse tunneling of electrons between trap-well A and trap-well B
through the same SiO, barrier: During tunneling from a particular trap-well clcctrbns see
the adjacent SiO, barrier only. For insiance, the forward tunneling of electrons from trap-
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well A to trap-well B is not affected by the traps and SiO; barriers following trap-well B.
Let us consider, during this forward tunnc]iné when an electron cross right side wall of
trap-well B from the SiO, barrier of Fig.2.13, it passes through an wave impedance Z;,
which is calculated at that position looking toward trap-well B for a potential energy
corresponding to the bottom of the trap-well as shown in the figure. Then Z, can be

writlen as-

27 B h
7y =— 2,27
L Jm* ( )
where yg is the propagation constant inside trap-well B which can be w_ﬁtten as-
2m*(E, - V :
Ts —JJ _ (h‘{‘ B) (2.28)

here E., is the energy corresponding to the trap level below SiO; conduction band of trap-
well A and Vp is the potential energy at the bottom of that trap.

The input impedance Z; at the other end of the SiO; barrier looking toward the

barrier from trap-well A can be calculated by considering step approximation of the barrier
and then calculating input impedance of each step. Let Z, is the load unpedance of the first
step. Then input nnpedancc for any nth step can be written as- —

7 = Zyiacosh(y, L)~ Z_ sinh(y L)
M Zoonc0sh(y,L) -7, sinh(y, L)

l(2.29)

‘wh.erc Zon 18 the characteristic impedance, Zy, is the load impedance and v, is the

propagation constant of nth step. Characteristic impedance and propagation constant for a
particular step can be calculated by using equations (2.27) and (2.28) with Vj replaced by
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V; which is the potential energy of the corresponding step. The input impedance of a
particular step is the load impedance for the next step. Proceeding in this way toward the
other end of the barrier at trap-well A, Z; which is the input impedance of the last step can
be calculated. Let Z, is the impedance at the boundary between SiO; barrier and trap-well
A looking toward the trap for a potential energy corresponding to the bo&om of trap-well
A as shown in Fig.2.13. Z, can also be calculated from equations (2.27) and (2.28) using
Va for Vg, where V, is the potential at the bottom of trap-well A. Then the reflection
coefficient of the barrier can be given by-

7
p=2+z° (2.30)
Q

Therefore the current transmission coeflicient can be written as-
=1-|pf? | (2.31)

Finally total current transmission coefficient of the SiO, region can be calculated ‘by
multiplying transmission coefficients for each SiO, barrier between channel and gatc.

Considering a 100 A° SiO, layer with 1.5 eV of 'lrap levels below SiO, conduction

band, current transmission coetficient was found to be of the order of 10, where the

channel eigen energy was taken to 0.237 eV.
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CHAPTER 3

CALCULATION OF GATE CURRENT AND
TRAPPED CHARGE INSIDE SILICON DIOXIDE
LAYER

3.1 Introduction

Wave function at any point inside SiO; layer gives the probability of finding carriers
at that point. In this work, wave functions are calculated inside each trap-well using S-
matrix, assuming vigorous inelastic carrier scattering and a sequential carrier tunneling from

one trap-well to another. Gate current and trapped charge inside the SiO, layer is then |

calculated from the wave function. To calculate the carrier concentration inside the
channel, two-dimensional density of states (DOS) associated with each eigen state in the

semiconductor well at strong inversion is calculated.
In this chapter analytical expression for gate current and trapped charge inside SiO,

layer is presented. This chapter also contains the calculated gate current and trapped charge
for different oxide layer thickness, applied electric field and trap level potentials. A
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comparison between calculated and experimentally measured gate current is also presented

here.

3.2 Density of states (DOS) for a two dimensional
electron gas (2 DEG) system

The confinement of the cam:ers mside the channel at strong inversion, leads
to a two-dimensional electron gas system (2 DEG). As a result, the bulk conduction
energy band splits into discrete sub-bands in the semiconductor well. To calculate the
carrier concentration of each eigen state using Fermi-Dirac stafistics, it is necessary to

calculate the density of states associated with each energy state.

Assuming the energy of the bottom of the conduction band to be zero, if n(e)de is
the number of carriers and g(e)de is the number of states whose energy lie between & and
&+ds then- '

n(e)de = g(e)de f(e) (3.1
where f{(5) is the Fermi-Dirac distribution fanction which is given.by-

1
" T+exp[(e—2¢) /KT]

(3.2)

f(e)

here e 15 the Fermi energy, k is the Boltzman’s constant and T is the absolute
temperature. Then for a two dimensional electron gas system total number of states per
unit volume with resultant momentum between p; and p+dp, is given by-

21, d
g(p,)dp, = % 3.3)
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For a carrier with effective mass m* the relation between momentum p, and energy
€ is given by-
p=+v2m'e - (3.4)

Using equation (3.4), equation (3.3) can be modified as-

2nfn* de

2 (3.5)

g(e)de =

- . | h
Substituting Plank’s constant h by modified Plank’s constant %, where /i =75 i

equation (3.5), the expression for density of states can be written as-

%
m
2nh?

g(e)de = (3.6)

3.3 Probability current density

To iltustrate the concept of probability current density associated with tunneling
carriers let us consider an one dimensional potential step as shown in Fig.3.1. The carriers
incident from region-1 toward region-2 are partially reflected from the interface of the twb
regions. Region-2 is'df infinite extent, so there is no reflected carriers in this region.

Region-1 Region-2
i -
Incident : — ,
Reflected ¢ ” Transmitted
v, :
0 X

Fig. 3.1. One dimensional potential step.
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The wave functions in region-1 and region-2 can be written as- |

Y (x) = Al(e-i.l‘:l}‘I - pe“-iklx), x<0 (3.7)

and

wax)=AelkX g 068

where A; and A; are the amplitudes of the incident and transmitted wave in the positive x

_direction in region-1 and region-2 respectively, p is the wave amplitude reflection
éocfﬁcient at the interface and k, , k; are the phase constants in region-1 and region-2
respectively. k; and k; can be expressed as- |

- |
2m (E-V)
ki:Jm (h2 ) | (3.9)

. ,
where m; and V; (i=1,2) are effective carrier mass and potentials for ith region. Then

flow of probability current density [22] is given by-

ox ox

. . * .
S= h{mp'i‘ﬂ—q;s—“f—] | (3.10)

2jm

[ ] .
where y 1s the complex conjugate of y. Using plane wave solutions{22] we get-

: kh .
S= q;(x)q;*(x)—-—; (3.11)
m

In the above equation w(x)w‘(x) represents the electron density and Ak represents the

momentum of the particle. By curmrent continuity relation, the current densities inside

region-1 region-2 are equal. These are expressed as-
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s, =[A1|2—f;l%1—[1—-|p[2], %<0

APz x>0 ' (3.12)
m

3.4 Gate current

The carrier transport mechanism from the semiconductor channel to the metal gate
and is illustrated in the chapter-2. Various currents due to the tunneling of electrons from
channel to the gate with vigorous inelastic scattering inside trap-wells are illustrated in
Fig.3.2. '

I Si0; thickness
Eigen-state
Field
inside
Si10;
Trap level
o 2 ! 4
Sg 1\ / .
Metal Trap-well
Fermi-level
- Metal . Si0; Si

Fig.3.2. Current conduction through SiO, region.
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" Electrons tunneling from channel to the nearest trap-well through the adjacent \ |
SiOz. barrier, suffer a transition to the lower most energy state of that trap-well. The current 1
density due to this forward tunneling is represented by S;. The wave function of an electron |
inside a trap-well tinnels in both forward and reverse direction through the adjacent SiO;
barriers. Therefore there are both forward and reverse current through each SiO; barrier. '
Due to forward tunneling, electrons move sequentially from one trap-well to another and
finally reaches the metal gate. As the metal Fermi level is far below the SiO, conduction
band, the reverse tunneling through last SiO, barrier at SiO,-metal interface is neglected.
Therefore in the barrier adjacent to gate metallization, there is no reverse current. The |

forward current density at the gate is represented by S,. For the purpose of analysis, let us o
||
, |
Y, toward semiconductor. !

consider any nth trap-well as shown in Fig.3.3 having wave function y;; toward metal and

Yo
—_—
/
Y
S I SeHy+
L |
Sn-l- b Ak T \ ---------------- - Sn- ‘
S(n—l)— --------------------- ) “ {' Ii’
Trap level : i
Pnt Pnr

Fig.3.3. Forward and reverse currents associated with a trap-well.
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In this analysis, the gate current is calculated from wave function inside trap-wells,
which is calculated by using S-matrix. To calculate wave functions, let us start from the
trap-well nearest to the metal-gate and then proceed toward the channel. By current
continuity relation, in each SiO, barrier the algebraic sum of the forward and reverse

current is equal to the gate current density, S;. Therefore from Fig.3.3. we can write-
- Sg = S]‘H_ - S(n_])_, . - (3.13)
Using equation (3.12) we can write-

(ﬂ 1)

k.h
Sg=l‘|’n|2—_( Ipnll )
m .

2k, A 2
(n-1)

e [1—)p(n_1)rl) (3.14)
m

solving for |y, [* we can write-

*
|2 m

Se k. ;i( _[ ) +|4han

2
2 Kipy (l—lp(ﬂ‘l)’ ) (3.15)
(l_lpnllz)

v

‘Now inside nth trap-well current toward semiconductor is equal to the sum of the
current due to W, and the reverse current coming from the previous trap-well. Therefore

we can wril;c»

I 1’2 knh

2 kfi
Y ¥=’n ,
m

Y e

(n—- 1), - lp(n—l)r

b

solving for [yy'* we can write- -
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2) (3.17)

i = ol ol + i 2 Yoy 2 (1- gy

~ To calculate actual gate current density, let us first calculate the forward current
density S at Si-SiO; interface from channel to the nearest trap-well for S;=1.0 using wave
functions. Then actual gaté current can be calcﬂated by taking ratio with actual S; which is
calculated from the inversion layer electron concentration tunneling toward the SiO,
region. Inside first trap-well (n=1) which is the nearest of the metal gate, we can calculate
both |y, and‘ hy' | for S;=1.0 from equations (3.15) and (3.17) respectively by using n=1
and neglecting second term of the right hand side of both equations as there is no reverse
current in the SiO; barrier between the trap-well and the metal gate, Using these values,
wave functions inside the following trap-wells are calculated for unit gate current density.
Let Nis jhe total number of traps inside SiO; layer. Then inside the last trap-well which is
nearest to the channel, wave function toward gate is \y and fbwa:rd chanm_al is yy'. Then S;

for Sg=1.0 can be written as-

S, =10+

hk“( ]erf) o Gas)

where ky is the propagation constant inside last ‘t['ap—vs}eﬂ and py, 1s the reflection
coefficient of the SiO; barrier at the channel seen from that trap-well. To calculate actual
gate current density, let us now calculate actual value of S; by using concentration of
tunneling carriers from channel to the SiO, region. |

For a particular eigen energy E, in the channel, electrons move with a velocity
corresponds to an energy from E, to mﬁmty The electron concentration Ny, for the eigen
energy E,, is given by Fermi-Dirac statistics using density of states associated with the

eigen state as follows-
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o0 * |
_f.m dE
E, 2ni? l+exp{(E Eg)q/KT}

(3.19)

where Ep is the Fermi energy, k is the Boltzman’s constant, q is the electronic charge and T
is the absolute tcmpcraturé. Applying easily verifiable formula-

_[ T ox p(x) ~In{l + exp(~x)} - (3.20)
we get from equation (3.19)-
*
Niww =7 nh2 KT In[1+ exp{(E— E,)q/ KT} (3.21)

Assuming 50% of the inversion layer electrons tend to move toward the gate, then
the actual value of S; is given by-

Nijpw —%7% ‘ (3.22)
m
where 7 is the current transmission cocfficient of the SiO, layer and —¢ is the velocity of
' m
the electrons. Then the actual gate current density is given by-

S X .
Sp =g | (3.23)
i (for S,=10) -

which when multiplied by effective gate area gives the actual gate current.
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3.5 Trapped charge in SiO, layer

T;.mneling of clectrons from semiconductor channel to the metal gate is described
chapter 2. During tunneling, clectrons move sequentially from one trap-well to another
inside SiO, layer. When the device switches to the OFF state, electrons are trapped inside
the Si0O; region. In this calculation of trapped charge, electrons are assumed to be
compleicly trapped inside trap-wells not any other region of the SiO; layer. Wave function
of an electron inside each trap-well for unit gate current density which is calculated in

article 3.4. is used to calculate trapped charge.
Let y, be the wave function of an electron inside any nth trap-well for unit gate
current density, L be the trap-well width and x is measured along the width then the
L
2
integration, [ Ilpnl dx gives the probability of finding the electron inside that trap-well. As
; o ‘ .

the electrons are completely trapped inside trap-wells, so the probability of the electron to
be trapped inside SiO; region when the device switches to the OFF state is given by-

N ? ' N 5
g [yl Pdx= T |y,|".L (3.24)

0 n=l

where N is the total number of traps and the varsiation of wave function with x inside a

particular trap-well is neglected.
Now let us consider \p is the wave function of an electron inside channel for unit
gate current density, which is calculated from equation (3.12) using current density from

channel toward first trap-well as calculated in article 3.4, propagation constant inside
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channel for eigen energy E,, effective mass of electron inside semiconductor and reflection
coefficient of the Si0O, layer looking from channel. Then the probability of finding the
electron inside channel is gtven by-

ot ax

‘where w is the channel width at eigen energy E, and x is measured along the width. The

variation of |L|J|2 at different position of the channel is shown in Fig.3.4.

- Thus we have calculated the probability of an electron to be found inside channel
and to be trapped inside SiO; layer. The_rcfore the trapped charge density in the SiO; layer
is given by- ‘

[i |Wn|2L} 'q'Ni.nv -
n=|]
Q, = (3.25)

| T |l|J|2.dX

0

where q is the electronic charge and Nj,, is the inversion layer carrier concentration

associated with eigen energy E, which is calculated in article 3.4.
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3.6 Calculation of gate current and trapped
charge inside SiO, layer
3.6.1 Effect of trap density variation

Calculation of gate current and trapped charge inside Si0; layer for various
impurity trap densities are illustrated in figures 3.5, 3.7 an_d 3.8. In this calculaﬁon Si0,
layer thickness is 10.4nm, effective gate area is 50x107* squﬁre metre, field inside SiO, is
4.8):1‘08 V/m and trap level is 1.5¢V below the SiO; conduction band.

The calculated values of gate current are presented in Fig.3.5 which are found of
the same order, when compared with the experimentally mcasurcd results [12] shown in
Fig.3.6 for the éame effective gate area. The variation in trapped charge density is shown in
Fig.3.7. From these graphs it is seen that with increasing trap density both gate current and
trapped charge density increase. With increased trap density, overall inelastic scattering
increases and makes the transmission coefficient of the SiO; layer higher. Hence both gate

current and trapped charge inside SiO, layer are increased.

The variation of the probability density function |q,r|2 inside channel and various
trap-wells is shown in Fig.3.8. For a given trap density, llplz inside a particular trap-well is
of higher magnitude than that inside adjacent trap-well toward gate. This result is expected
as the c¢lectrons from channel have to tunnel through a number of potential barriers to
reach the metal gate. With increasing trap density, the transmission coefficient of the SiO,
layer increases and more electrons tunnel through the region and get trapped inside trap-

wells. Inside the channel, |q;|2 is then found to be lower than the corresponding values
inside adjacent trap-wells. With lower trap density, |1|J|2 inside channel is highef than that

inside trap-wells as the transmission coefficient of the SiO, layer then reduced and permits

a few electrons to enter from channel.
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Fig. 3.6. Experimentally measured gate current [12].
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3.6.2 Effect of SiO, layer thickness variation

The transmission coefficient of the SiO,’ layer increases when its thickness is
reduced. Therefore both the gate current and the trapped charge inside SiO, layer increases
with reduced SiO; thickness. These are observed from their calculated results illustrated in
figures 3.9 and 3.10. Here effective gate area is 50x10™ square metre, total number of
trap—wcf]s inside oxide layer is 8, field inside SiO; layer is 4.8x10° V/m and trap level is
1.5¢V below SiO, conduction band.

The variation of probability deﬁsity function ]w12 mside various trap-wells and
channel is shown in Fig.3.11 for various $iO, thickness. With reduced thickness, the
transmission coefficient of the SiO; layer increases and more number of inversion layer
clectrons enter into the oxide layer and increases the value of |x|;|2 inside the nearest trap-
wells. With increasing oxide layer thickness less electrons can enter into the oxide layer and

fewer electrons are trapped inside a particular trap-well, indicated by lower values of lwiz.

3.6.3 Effect of oxide field variation

Figures 3.12, 3.13 and 3.14 illustrate the results of the calculation of gate c.urrcnt'
and trapped charge inside SiO, layer for various oxide fields. In this calculation, oxide layer
thickness is 10.4nm, total number of trap-wells inside oxide layer is 8 and trap level is
1.5e¢V below SiO, conduction band.

Fig.3.12 shows the variation of gate current, for an effective gate area of 50x1072.
square metre. The variation of trapped charge density is presented in Fig.3.13. With
increased field inside oxide layer the slope of the conduction band bending become higher,
which increases the transmission coefficient of the SiO, layer. As a result, both gate current
and trapped charge are increased.
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Fig.3.14 shows the variation of probabilit)lr density function |1|,r|2 inside chamnel and
various trap-wells, for different oxide fields. For lower oxide ficlds, transmission cocfficient
of the 8i0; layer decreases and most of the electrons are residing inside the channel instead
of tunneling throﬁgh the oxide layer to the gate. Therefore lez inside channel is higher .
than that inside trap-wells. But with higher fields, fy{® inside adjacent &ap-weﬂs increase
due to the increased transmission coefficient of the oxide layer. Hence, more electrons are

trapped inside the trap-wells.
3.6.4 Effect of trap level variation

The effects of the variation of trap level below SiO, conduction band on the results
of the calculation of gate current and trapped charge are illustrated in figures 3.15, 3.16
and 3.17. The clalcu]alion is carried out for a MOSFET with effective gate area of 50x107
square metre, oxide layer tluckncss of 10.4nm, total number of trap-wells inside oxide layer
of 8 and for a field inside SiO; layer of 4. 8x10° V/m,

With decreasing trap levels transmission coefficient of the SiO, barriers in between
ﬁ-ap-wells is decreased. Therefore the inversion layer electrons, enfcring the oxide layer on
its way to the gate, have to tunnel through a number of SiO, barriers in between trap-wells
- with lower transmission coefficient. As a result, the trapped charge density is then
_ increasing with decreased gate current, as seen from graphs shown in figures 3.15 and
3.16.

The varation of probability density function |1p!2‘ inside various trap-wells and
channel is shown in Fig.3.17. With decreased trap level, electrons inside a particular trap-
well have to tunnel through the adjacent SiO, barriers with lower transmission coefficient

and reside for a longer time inside the trap-well. Therefore more carriers are trapped inside

trap-wells 'rewlting higher trapped charge density and increased ]W|2 inside trap-wells.
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CHAPTER 4

CONCLUSION

4.1 Discussion

The calculation of gate current and trapped charge inside SiO, layer of a low
dimensional enhancement type MOSFET based on quantum-mechamical analysis is
presented in this work. The quantum mechanical analysis is used for better accuracy over

classical and semiclassical analysis for decreased device dimensions. The presence of the

impurity atoms inside SiO, layer, which is neglected in most of the previous work, is
considered in this work. Tl}e effects of the impurity atoms on the tunneling electrons are
studied by simulating them with rectangular potential wells. The traps due to impurity
atoms are assumed to be uniformly distributed inside SiO, region. In this work traps are
considered as vigorous inelastic scatterers and any incident electron inside a trap-well is
assumed to suffer a transition in energy corresponding to the lower most energy state of the
trap-well. Furthermore any incident electron is assumed to be completely trapped inside a
trap-well and then tunnel out to the adjacent traps through the SiO; barriers. Eigen energics
inside semiconductor channel at strong iversion are calculated by considcﬁng it a

triangular well.

With this assumptions gate curmrent and trapped chatge inside SiO, layer are
calculated for various MOSFET parameters. The effects of the variation of oxide field,

56



impurity trap density, SiO, thickness and trap level are presented graphically. With
increasing trap density or oxide ﬁeld, transmission coefficient of the SiO; layer increaseé
and both gate current and trapped charge are increased. Similar results are obtained with
decreasing SiO; thickness. The probabi]ity density function inside trap-wells and channel
are calculated, from which the distribution of trapped charge inside various traps arec foun;l.
Most of the trappedrcha'rge are observed inside trap-wells near the channel. The results of
the calculations are found of the same order as the experimentally measured values for

similar device dimensions.

4.2 Limitations

In the present analysis rectangulﬁr trap-wells are assumed. Hence, this is not the
exact potential distribution of a trap. Instead, the potential distribution is much more
complicated which makes mathematical callcu]aﬁons more difficult. Again traps due to
impurity atoms are randomly distributed inside oxide layer instead of being uniformiy
distributed which is assumed in this work. Another limitation is the asSumption of vigorous - '
scattering of the clectrons inside trap-wells. The scattering is assumed to be extremely
vigorous so that no electron can get through a trap without changing its energy state. These
assumptions were made to make the analysis simple, which can give a quick insight to the

actual mechanism of electron transport inside SiO,.

4.3 Suggestions for future work

Traps are to be simulated by actual trap-wells, which can represent the actual .
potential distribution of the impurity atoms. Then the mathematical calculations will
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become more complicated, but we can expect more accurate results. Gate current and
trapped charge can be calculated for actual distrib}lﬁon of the trap-wells by using statiéﬁcal
analysis. In this analysis, calculations will be done for a number of times. In each time the
positions of the trap-wells will be randomly generétcd. Then actual resulls are to be
obtained by taking statistical average of the calculated values. The limitations due to the
assumption of vigorous scattering of the tunneling electrons can be solved by usmg
imaginary potentials inside the oxide layer. The limitation of using imaginary potentials is
that then the wave function will be dissipating in nature. But, more accurate results are then

expected with less mathematical complications.
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