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ABSTRACT 

Partially encased composite (PEC) column is a comparatively new type of composite 

column which consists of a thin-walled welded I shaped steel section with transverse links 

welded between the opposing flanges. The space between the flanges and the web is filled 

with concrete. Previously no substantial study has been done on effective flexural stiffness 

(EI) of PEC columns in major or minor axis of steel section. The influences of several key 

parameters on the slenderness behaviour of this column are yet to be investigated.  

Moreover, the ACI equations for EI, currently in use were developed for RC columns 

subjected to high axial loads and were simply modified, without any further investigation, 

for use in general composite column design. This study made an attempt to judge the 

applicability of this equation for the flexural stiffness of PEC columns in which steel 

shapes are partially encased by concrete. To this end the effective flexural stiffness of 

partially encased composite columns are evaluated theoretically using the slender column 

strength curve and the cross-sectional strength curve. Newmark’s iterative procedure was 

implemented to evaluate the second-order deflection of slender columns which was 

eventually used to calculate the second-order moment for slender columns. Strain-

compatibility and force equilibrium equations were used to construct the cross-sectional 

strength curve.   

An extensive parametric study has been conducted in this research in order to observe the 

effects of four geometric and two material variables on the flexural stiffness EI of slender 

PEC columns subjected to short-term loads and equal end moments causing symmetrical 

single-curvature bending about the major axis of the encased steel section.  A number of 

1,200 parametric data regarding EI were generated in this study. This data have been 

compared to the existing flexural stiffness equation in ACI code. It has been found that the 

existing ACI equation gives satisfactorily close results at low eccentricities. But at high 

eccentricities, ACI equation does not give satisfactory results. A regression analysis has been 

conducted and a design equation was proposed to calculate the flexural stiffness of PEC 

columns subjected to major axis bending. This proposed equation includes the parameters 

L/d and e/d, that were proven to be most significant factors affecting the behaviour of PEC 

columns under major axis bending. The reliability of the proposed EI equation was tested 

against all the parametric data and was found to be satisfactory.   
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Chapter 1 

INTRODUCTION 

 

1.1 BACKGROUND 

 

A steel-concrete composite column is a compression member, comprising either a 

concrete filled tubular section of hot-rolled steel or a concrete encased hot-rolled steel 

section. In recent years, researchers have found that the effective use of a combination 

of steel with concrete can substantially improve the behaviour and cost efficiency of 

columns used in the construction of medium to high-rise buildings, as compared to 

using steel-only columns. Composite columns, either encased or filled, can be an 

economical solution for cases where additional load capacity is desired over that 

available with steel columns alone. Effective composite systems combine the speed of 

erection of steel buildings with the relatively low material cost of concrete. Two types 

of composite columns commonly used in North America are: Concrete Filled Tubes 

(CFT) and Fully Encased Composite (FEC) Columns (Figure 1.1). 

 

 

 

 

 

 
Figure 1.1: Common types of Composite columns, (a) Concrete Filled Tubes  
                     and (b) Fully Encased Composite Column. 

 

But both of these composite systems have limitations such as limited cross-sectional 

dimensions of standard shapes (CFT), requirement of extensive formwork and 

additional reinforcing steel (FEC columns) and complex beam-to-column 

connections. These limitations have indirectly imposed restrictions on the use of 

composite columns. So the necessity of development of a new kind of composite 

column has become inevitable. 

(a)  (b)  
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One of the recent developments in composite system is partially encased composite 

(PEC) columns. In Europe, in the early 1980s, partially encased composite (PEC) 

columns and beams were introduced using standard-sized rolled steel sections. In 

1996, the Canam Group in Canada proposed a new type of PEC column consisting of 

a thin-walled, welded H-shaped steel section, built-up from hot-rolled steel plate, with 

concrete infill cast between the flanges consisting of a thin-walled welded I-shaped 

steel section. The steel section features very slender plates exceeding the width-to-

thickness ratio limits for non-compact sections. Transverse links are provided 

between the flanges at regular intervals to enhance the resistance to local buckling. 

This new innovative system has been developed by the Canam Manac Group through 

a collaborative research project involving Canadian and American universities with a 

view to overcoming the limitations related to erection, connection design, and 

economy of more commonly used composite columns. This innovative composite 

system not only reduces the above mentioned cost of construction using relatively 

low-cost concrete by minimizing the use of higher cost steel, but also helps to 

overcome the complexities related to erection and design of connections of more 

commonly used composite columns.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2:  Partially Encased Composite Column with Thin-Walled Built-Up Steel Section,  
(a) Column Cross-Section and (b) 3D view of the Steel Configuration.
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In PEC columns, since a built–up steel section is used instead of a standard shape, the 

designer has more flexibility when sizing the column cross-section. Moreover, thin 

steel plates are intentionally specified to obtain a more cost effective column by 

increasing the contribution of concrete in the load carrying capacity of the column. 

These factors have made PEC columns constructed with built-up shapes more 

attractive than those constructed with standard sections. Moreover, the high stiffness 

of the PEC column is expected to have beneficial effects for controlling the lateral 

deflection of buildings when used as a component of lateral load resisting systems and 

incorporating the use of high performance materials in the system.  

Several research works including both experimental and numerical works 

(Tremblay et al. 1998; Chicoine et al. 2000, 2002, 2003; Bouchereau and 

Toupin 2003, Prickett and Driver 2006; Maranda 1998, Chicoine et al. 2002 and 

Begum et al. 2007) have been carried out for establishing the behaviour and design 

provisions for this new type of composite column under various loading conditions. 

Most of these research works were confined in exploring the short (length-to-depth 

ratio of 5) column behaviour of PEC columns. However, a few long column tests 

(length-to-depth ratio of 20) were carried out by Chicoine et al. (2003) under static 

loading. This test database is not sufficient to establish a design guideline for slender 

PEC columns. The flexural strength of a slender column subjected to end moments 

causing symmetrical single curvature bending is lower than the strength of its cross-

section due to the second-order bending moment. The moment magnifier approach is 

followed in most of the codes (ACI 318-02; CSA A23.3) for computing the second-

order moments in slender columns. This approach is introduced into design practice to 

eliminate the need for extensive calculations, based on the solution to a differential 

equation, to compute second-order bending moments in columns. The moment 

magnifier approach is greatly influenced by the critical buckling load, which again is 

dependent on the effective flexural stiffness of the slender column. The EI 

expressions given in ACI 318-02 (2002), for composite columns were mainly 

developed for reinforced concrete columns. Mirza and Tikka (2006) performed a 

statistical evaluation to judge the applicability of this equation for the flexural 

stiffness of composite columns in which steel shapes are fully encased in concrete. In 
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partially encased composite columns the effective flexural stiffness (EI) can be greatly 

affected by the local buckling of the thin flange plate, nonlinear stress-strain diagram of 

concrete, creep and cracking along the height of the column. An attempt has been made in 

this study to investigate the sensitivity of this equation to various geometric and material 

parameters of thin-walled PEC columns.  

 

1.2 OBJECTIVES AND SCOPE OF THE STUDY 

The objectives of current study are: 

i) To evaluate the effective flexural stiffness (EI) of slender PEC columns subjected to 

bending about the major axis of the steel section. 

ii) To determine the influence of a full range of geometric and material parameters on 

the effective flexural stiffness (EI) of slender PEC columns subjected to major axis 

bending. 

iii) To perform a statistical analysis for examining the existing expressions for effective 

flexural stiffness in the ACI code. 

iv) To develop a nonlinear EI equation for calculating the flexural stiffness of partially 

encased composite columns subjected to major axis bending. 

The effective flexural stiffness (EI) for slender PEC columns will be evaluated using the 

slender column strength curve and the cross-sectional strength curve. Newmark’s iterative 

procedure will be implemented to evaluate the second-order deflection of slender 

columns which will eventually be used to calculate the second-order moment for slender 

columns. Strain-compatibility and force equilibrium equations will be used to construct 

the cross-sectional strength curve, i.e. load moment interaction diagram for short 

columns. Finally, theory of elasticity will be implemented to calculate the effective 

flexural stiffness of the slender PEC column. 

  

In order to examine the influence of several geometric and material parameters on the 

effective flexural stiffness (EI) of slender PEC columns, about 1200 isolated PEC 

columns will be selected. Each column will have different combinations of geometric and 

material properties. The geometric properties that can greatly affect the behaviour of PEC 

columns include the column cross-sectional dimensions, length of the column, 

longitudinal spacing of the transverse links, thickness of the steel flange and web plates, 
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and initial load eccentricity. The compressive strength of concrete and yield strength of 

steel plates are considered as the material variables. The geometric properties listed here 

will be non-dimensionalised for comparison in order to reflect anticipated combined 

influences. The columns will be bent about the major axis of the encased steel section in 

symmetrical single curvature bending in braced frames subjected to short term loads.  

1.3 ORGANIZATION OF THE THESIS 

The thesis consists of five chapters. Chapter 1 introduces the type of composite column 

studied herein and presents the objectives and scope of the research work.  

Chapter 2 presents a short review on the literature related to PEC columns with standard 

steel sections and explores in relative detail of the experimental and numerical research 

works carried out on PEC columns with thin-walled built-up steel sections. The previous 

research works in connection with effective flexural stiffness EI for fully encased 

composite columns are also presented in this chapter.  

Chapter 3 includes the description of methodology for determining P-M (load-moment) 

interaction curves for PEC columns allowed to bend in a single curvature along major 

axis under eccentric loading. This chapter also describes the numerical procedures to 

develop a technique to determine the interaction curves including the secondary effects 

resulting from slenderness of the columns.  

Chapter 4 describes the different parameters and their specified values for which PEC 

columns of a selected cross section are studied. Discussion on the effects of these 

different parameters on the PEC column is also presented in detail in this chapter.  

In Chapter 5 a statistical analysis is performed on the calculated flexural stiffness of PEC 

columns covering a wide range of geometric and material parameters. The effective 

flexural stiffness for slender PEC columns obtained from this study is compared to the 

value obtained from the ACI (2005) code. A nonlinear equation for predicting the flexural 

stiffness is also presented in this chapter. 

Finally, a brief summary of the study followed by conclusions and recommendations for 

future research are included in Chapter 6.  
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Chapter 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

A PEC column section is an H–shaped steel section with concrete infill between the 

flanges of the section. In the early 1980s, PEC columns and beams were first 

introduced using standard-sized rolled steel sections in Europe. In 1996, the Canam 

Group in North America proposed a PEC column section constructed from a thin 

walled built–up steel H shape with transverse links provided at regular intervals to 

restrain local buckling. Using a built–up steel section instead of a standard shape 

provides the designer with more flexibility when sizing the column cross-section. To 

understand the behavior of PEC columns, on which the current study is being 

conducted, a review of the experimental and analytical investigations related to this 

composite system is presented in this chapter. This chapter also includes the capacity 

prediction models for calculating the axial and bending capacity of these columns. A 

brief discussion on the research conducted of effective flexural stiffness EI for slender 

columns are also incorporated.  

2.2    PEC COLUMNS FABRICATED WITH STANDARD SECTIONS 

Several experimental investigations (as described below) have been carried out on 

PEC beam-columns with fabricated shapes, typically used in Europe, subjected to 

static, cyclic and earthquake loading. The conventional form of this composite 

column consists of a compact steel section with longitudinal and tie reinforcements in 

the encased concrete. 

2.2.1  Hunaiti and Fattah (1994) 

Hunaiti and Fattah (1994) tested nineteen PEC columns under monotonic eccentric 

axial loading. The columns, which were made with slandered steel shape, were 
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divided into two groups. The purpose of the first group was to determine if PEC 

columns would act compositely without additional shear connectors. The purpose of 

the second group was to determine the behaviour of PEC columns fabricated with 

either shear connectors or batten plates at various load eccentricities. All columns 

were fabricated from IPE 200×100×22 steel sections (German standard size) and had 

an effective length of 2.4 m. The flange width-to-thickness ratio (b/t) for all 

specimens was 5.9. Of  the ten PEC columns of the first group, five were made with 

low strength concrete (9.7 MPa) and five were made with normal strength concrete 

(32.5 MPa). The load eccentricity at one end of the column was 70 mm and the 

eccentricity at the other end varied among tests. For all ten tests, the researchers 

observed that there were no signs of local buckling of the steel flanges or any 

distortion of the cross-section. Therefore, Hunaiti and Fattah (1994) concluded that 

the columns were able to develop the full flexural strength of the standard section and 

that full composite behaviour was achieved. 

The second group consisted of nine PEC columns. Of these, three had shear studs 

welded along the centerline of the web, three had 190mm×20mm×3mm steel batten 

plates welded between the tips of opposing flanges on both sides, and the remaining 

three had no additional steel added. All were cast with 51 MPa concrete. Each column 

type was tested at eccentricities of 30 mm, 50 mm, and 70 mm. For each eccentricity, 

the columns had similar column strength, regardless of whether additional steel was 

used. From these results, Hunaiti and Fattah (1994) concluded no additional steel was 

required to achieve full composite behaviour between the infill concrete and the steel 

section. However, the researchers recommended the use of mechanical shear 

connectors in design because the concrete in real structures is affected by factors that 

are not present in a laboratory setting, such as deceased bond between the steel and 

the concrete as the concrete ages. 

2.2.2 Elnashai and Broderick (1994) 

Elnashai and Broderick (1994) tested four PEC columns under cyclic and pseudo-

dynamic loading. All were fabricated with 845 mm long, 152× 152×23 UC steel 

sections (British standard size) and infilled with 28 MPa concrete. The b/t ratio for the 

steel flanges was 11.2. Before casting the columns, 6 mm diameter steel rods were 
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welded between opposing flanges on both sides of the column to act as transverse 

links and provide increased confinement for the concrete. The rods used by Elnashai 

and Broderick (1994) were similar to the battens used by Hunaiti and Fattah (1994) 

except that the rods were welded 10 mm in from the flange tip while the battens were 

welded at the flange tip. The column behaviour under these loading conditions was 

compared to previous tests by Elnashai et al. (1991) wherein the columns had four 

10mm diameter longitudinal reinforcing bars tied with 6 mm diameter stirrups in 

addition to the transverse links. The researchers concluded that the capacity of the 

PEC columns with only the transverse links was marginally less than the PEC 

columns with the additional reinforcing bars. However, they stated that the fabrication 

cost savings of the link-only PEC columns significantly offset the minor capacity loss 

and made the link-only PEC columns a more attractive alternative. 

2.2.3 Plumier et al. (1995) 

Plumier et al. (1995) tested 12 full-sized test specimens that consisted of a PEC 

column connected to a PEC beam. The specimens were tested under cyclic loading to 

examine primarily the behaviour of the joint region. The PEC beams were constructed 

from 1500 mm long (from the working point in the joint) HE 260 A steel sections 

(European standard size) that were infilled with 53 MPa concrete. The beam sections 

were modified by welding 6 mm diameter transverse links 30 mm from the flange 

tips. The links were spaced at a 150 mm. Two additional 6 mm diameter longitudinal 

bars were also added at mid-depth. The PEC columns were constructed from 3000mm 

long (between inflection points above and below the joint) HE 300 B steel sections 

that were also infilled with 53 MPa concrete. Similar to the PEC beams, the PEC 

columns were modified with transverse links and additional longitudinal bars. The b/t 

ratios for the PEC beams and columns were 10.4 and 14.3, respectively. Two fixed-

connection types were used to attach the beams to the columns: bolted and welded. 

For each connection type, they used three different web thicknesses and two different 

cyclic testing procedures (total of six specimens per connection type). From these 

tests, Plumier et al. (1995) observed that neither the connection type nor the web 

thickness affected the performance of the specimen. Furthermore, they noted that all 
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yielding took place in the beams and that the beam flanges always buckled outward 

due to the presence of the concrete. 

2.3 EXPERIMENTAL INVESTIGATIONS AND CAPACITY PREDICTION 

MODELS FOR SHORT THIN WALLED PEC COLUMNS   

Extensive experimental research has been conducted on thin-walled PEC columns 

with built–up sections by several research groups (Fillion 1998; Tremblay et al. 1998; 

Chicoine et al. 2000, 2002a, 2002b, 2003; Muise 2000; Bouchereau and Toupin 2003; 

Prickett and Driver 2006) to investigate the behaviour of this type of PEC column 

under various loading conditions. Capacity prediction models for these columns under 

concentric and eccentric loads have also been developed by Tremblay et al. 1998; 

Chicoine et al. 2000 and  Prickett and Driver 2006.  

2.3.1  Tremblay et al. (1998) 

In 1996, collaboration between the Canam Group Inc. and Ecole Polytechnique de 

Montreal resulted in a new design concept for a partially encased composite (PEC). 

The Canam type of PEC column is significantly different from previous research 

because the steel section was fabricated from relatively thin plates to make the section 

lighter than standard sections. However, the thin plates are more susceptible to local 

buckling. Therefore, transverse links, similar to those used by Elnashai and Broderick 

(1994), were required to prevent local buckling of the bare steel shape. 

 

For the initial phase of the research program, six PEC stub columns (Figure 2.1) were 

tested and analyzed by Tremblay et al. (1998). Each column had a square cross-section 

(either 300mm×300mm or 450mm×450 mm) and a length that was five times the cross-

sectional dimension. As well, each column was fabricated with CSA-G40.21-350W 

grade steel and was cast with normal strength concrete (ranging from 32 to 34 MPa). 

The main parameters examined were the spacing of the links (ranging from half of the 

cross-section depth to the full cross-section depth), the flange b/t ratio (ranging from 

23 to 35), and the overall size of the columns (as noted above). The b/t ratio for this 

type of PEC column was much higher than that for PEC columns fabricated from 

standard shapes (ranging from 6 to 14) making it more susceptible to local buckling. 



10 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.1: Typical PEC Test Column, (a) Cross-section, (b) Elevation 
 

In addition to the composite columns, ten bare steel specimens of similar dimensions 

were tested to determine the capacity with a variety of steel shapes (including smooth 

rod, deformed bar, and steel plate) used as transverse links (Filion 1998). The capacity 

of the bare steel section was calculated using Canadian standard CSA S 136-94 (CSA 

1994), which uses a reduced effective cross-sectional area in calculating the capacity of 

members susceptible to local buckling. The mean test-to-predicted ratio of the bare 

steel columns was 1.22 (Filion 1998), with a low value of 0.95. The high test-to- 

predicted ratio indicates that the design capacity of the bare steel shape is generally 

conservative regardless of what steel shape was used as the transverse link. 

The failure mechanism was similar for all of the composite columns in this study. 

Failure occurred by crushing of the concrete combined with local buckling of the steel 

flange near the crushed concrete as shown in Figure 2.2. Tremblay et al. (1998) 

observed that columns having larger link spacing exhibited a faster degradation of post-

peak strength than columns with smaller link spacing. The researchers concluded that a 

smaller link spacing result in a more ductile response. The column with the largest 

width-to-thickness (b/t) ratio had a lower strength than similar columns with stockier 

flanges and exhibited a sharper drop in post-peak strength. 
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Tremblay et al. (1998) developed a mathematical model to predict the strength of the 

PEC stub columns. The model calculates the contribution from the steel and the 

concrete separately and then adds them to predict the overall column strength, 

                         Cr = 0.85Ac  fc’ + AseFy                                                             … (2.1) 

In Equation (2.1), 0.85 is a factor that relates concrete cylinder strength to in-situ 

concrete strength, Ac is the cross-sectional area of concrete, f’c is the concrete 

cylinder strength, and Fy is the yield strength of the steel. The thin-walled steel 

section is susceptible to local buckling, so its full cross-sectional area is reduced to an 

effective steel area, Ase using the effective width method based on von Karman's 

formula, 

    Ase= t(d-2t-2be)                                                …(2.2) 

 

Where,                                                                                                                       … (2.3)                                  

                              

                                 … (2.4) 

                                                                                                                                         … (2.5) 

In Equation (2.2), t is the thickness of the steel plate, d is the depth of the cross-

section, and be is the effective half-flange width as calculated using Equation (2.3). In 

Equation (2.3), α is an empirical factor to account for initial imperfections and 

residual stresses taken by Tremblay et al. (1998) as 0.6, λp is a slenderness parameter 

for the flanges as calculated in Equation (2.4), and b is the actual half-flange 

width. In Equation (2.4), v and E are Poisson's ratio and Young's modulus for steel. 

Also in Equation (2.4), k is the plate buckling coefficient calculated using Equation 

(2.5), wherein s is the centre-to-centre link spacing. Equation (2.5) was developed 
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from energy methods that assumed that the flanges buckled outward between 

adjacent links.  

The use of this model (Equations 2.1 to 2.5) produced results that predicted the test 

results within 3%. Tremblay et al. (1998) recommended that larger specimens be 

tested to determine if size variations affected the validity of their model. 

2.3.2  Chicoine et al. (2002a) 

As an extension of the research presented by Tremblay et al. (1998), Chicoine et al. 

(2002a) tested five PEC stub columns measuring 600mm×600mm×3000mm to 

determine if size effects were present in the model presented in the earlier work. The 

columns had 16mm diameter links, spaced at either 300 mm or 600 mm, and were 

cast with 34 MPa concrete. Chicoine et al. (2002a) also studied the effects of 

additional reinforcement by including reinforcing bars and stirrups in one of the five 

specimens. As well, the transverse stresses in the steel section and the links due to the 

lateral expansion of the concrete were recorded to determine if they reduced the 

capacity of the steel section. 

The bare steel section was studied to determine the shape and extent of local 

imperfections between the links. Due to the fabrication process, shrinkage of the 

welds between the web and flanges tends to cause the flanges to bend inward before 

the links (with a length consistent with the nominal column dimension) are inserted 

between them and welded in place. Thus, the flanges tend to have a slight residual 

inward bow between adjacent links. Chicoine et al. (2002a) determined that the local 

imperfections were more pronounced when the link spacing was larger. Furthermore, 

comparing with previously tested specimens, they concluded that the local 

imperfections, when normalized by link spacing, were less on larger specimens. 

Chicoine et al. (2002a) speculated that the slight inward imperfections benefit the 

local buckling resistance of the steel flange after the concrete has been placed. 

The failure mechanism observed by Chicoine et al. (2002a) was consistent with 

previous tests; the concrete crushed as the steel flanges buckled (Figure 2.2). 
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Nevertheless, it was noted that local buckling began at 75% of the peak load in 

specimens where the link spacing was equal to the column depth d. 

                                      

 

 
Figure 2.2:  Failure Mode of Typical PEC Test Column (Chicoine et al. 2002). 
 

For the columns with link spacings equal to 0.5d, the flanges did not buckle until the 

peak load and the PEC column underwent a more ductile failure. From these 

observations, Chicoine et al. (2002a) recommended that PEC columns be designed 

with a link spacing of 0.5d. 

The longitudinal and transverse stresses in the steel plate were calculated from strain 

measurements by assuming a bi-axial stress state. The von Miser stress was also 

calculated. For all five columns, the transverse stress was found to be negligible and 

the longitudinal stress to be similar to the von Mires stress until the peak load was 

reached. Therefore, the researchers concluded that the lateral expansion of the 

concrete did not induce significant transverse stress in the steel section. Thus, the axial 

capacity of the column is unaffected by the lateral expansion of the concrete. 

The columns with links spaced at 0.5d experienced higher stresses (296 to 

303 MPa) than the columns with links spaced at d (90 to 151 MPa). Chicoine et al. 

(2002a) concluded that the higher stresses were due to the increased confinement of the 
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concrete provided by the closer spaced bars. Also, they noted that the increase in link 

stresses was nearly proportional to the decrease in link spacing. From their results, 

two conclusions were reached. First, the cross-sectional area of the link should be the 

greater of  (i) 0.025 times the column depth d times the plate thickness t; or                 

(ii) 100mm2. Second, the weld connecting the link to the flanges should be designed 

such that the link can develop its full yield strength. 

The capacity prediction model by Tremblay et al. (1998) was found to be less accurate 

for the 600mm×600mm columns than for the smaller specimens tested in the previous 

research. Therefore, Chicoine et al. (2002a) proposed two significant modifications to 

the design equations of Tremblay et al. (1998). First, in another paper by the same 

authors (Tremblay et al. 2000b), it was proposed that Equation (2.3) be replaced by 

Equation (2.6) with n being taken as 1.0 because it resulted in a better fit for the expanded 

test data set: 

                      be =b(1+λp
2n)(-1/n)                                                               …(2.6) 

Second, the 0.85 term in Equation (2.1) was replaced by the variable Ψ, which 

accounts for the concrete size effects on the cross-section strength: 

  
                                                                                                                  …(2.7) 
 

Equation (2.1) was therefore rewritten, also including an additional term to account 

for the possible presence of longitudinal reinforcement as, 

 
                                   Cr = ψAcf’c + AseFy + ArFyr                                                     …(2.8) 

Where Ar and Fyr are the cross-sectional area and yield strength of the reinforcing 

bars, respectively. 
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2.3.3 Bouchereau and Toupin (2003) 

Bouchereau and Toupin (2003) tested 22 PEC columns and two PEC beams to 

determine their behaviour in bending and under cyclic loading. All 22 columns were 

of dimension 450mm×450mm×2250mm, with 16mm diameter links spaced at    

300mm (0.67d). The two beams were of dimension 450mm×450 mm×5000mm, with 

16mm diameter links spaced at 300 mm. All 24 specimens were fabricated with CSA-

G40.21-35OW grade steel plate and 34 MPa concrete. The plate thickness for all 24 

specimens was 9.53 mm, resulting in a flange width-to-thickness ratio of 23.6. Eleven 

columns and one beam had four additional 20M reinforcing bars tied with 10M 

stirrups. Thirteen static tests were performed, including six specimens with additional 

steel reinforcement, and 11 cyclic tests were performed, including six specimens with 

additional steel reinforcement. The cyclic loading pattern contained a combination of 

both large and small amplitude cycles. 

Bouchereau and Toupin (2003) compared the results from cyclic tests with the results 

from companion static tests. They concluded that a PEC column had similar capacity 

whether the column was tested cyclically or statically. Furthermore, there was no 

significant difference in post-peak strength between columns tested cyclically or 

statically. 

The use of additional steel bar reinforcement confirmed the previous findings that it 

increased the ductility of the column with a marginal increase in ultimate column 

strength. Bouchereau and Toupin (2003) noted that their specimens failed in a ductile 

manner when subjected to cyclic loading, regardless of the presence of additional steel 

reinforcement. 

The column test results were compared to column interaction diagrams constructed by 

assuming a linear strain distribution across the cross-section. The strain at one 

extreme fiber was set to the concrete crushing strain and the strain at the other 

extreme fiber was varied to establish points on the diagram in a manner similar to that 

generally used for deriving interaction diagrams for reinforced concrete columns. A 

crushing strain of 3500με was assumed for the concrete. The model neglected local 



16 

 

imperfections and local buckling of the steel section. Despite these omissions, the test 

results fit reasonably well on the PEC column interaction diagram 

Bouchereau and Toupin (2003) recommended that the PEC column interaction curves 

could be improved by considering local buckling of the flanges, residual stresses in the 

steel section, and confinement of the concrete, although it would increase the 

complexity in producing the interaction diagrams. 

2.3.4 Prickett and Driver (2006) 

Prickett and Driver (2006) conducted a comprehensive experimental research project 

to study the behaviour of thin-walled PEC columns made with high performance 

concrete. The study included 11 short PEC columns measuring 

400mm×400mm×2000mm, with the primary variables being the concrete type, link 

spacing and load eccentricity. The plate slenderness ratio was kept constant (b/t = 25) 

for all of the test columns.  

The specimens were divided into two groups. The first group consisted of seven 

specimens subjected to axial compression only. Three different link spacings and 

three types of concrete (normal strength, high strength and high strength steel fiber 

reinforced concrete) were used in these specimens. Two normal strength concrete 

columns with different link spacings were used as reference specimens. Steel fibers 

were used to observe potential improvement in the failure mode of PEC columns 

with high strength concrete. In the second group of specimens, four identical PEC 

columns constructed with high strength concrete and subjected to axial compression 

and bending were tested by Prickett and Driver (2006). Bending axis and the amount 

of load eccentricity were varied to determine the effects of these parameters on the 

column behaviour. Initial local imperfections in the flange plate were measured at 

several locations in the steel section for all 11 test specimens. The local 

imperfections in the flanges were observed to be inwards in most locations, with 

average maximum amplitude of approximately 1.5mm (s/375). Additional 

measurements of the local flange imperfections were performed after the columns 

had been cast and no significant differences were observed. 
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The column behaviour was examined by considering the failure mode, load versus 

strain response and the transverse stresses in the steel plates. The high strength 

concrete PEC columns failed in a similar manner to the PEC columns with normal 

strength concrete, concrete crushing combined with local flange buckling. However, 

the failure of a high strength concrete column was observed to be sudden as 

compared to an equivalent PEC column with normal strength concrete. Addition of 

steel fibers in the high strength concrete was found to improve the failure mode of 

the columns somewhat. Prickett and Driver (2006) reported no local buckling prior to 

the peak load in any of the concentrically loaded test specimens, even for the 

specimen with a link spacing equal to the depth of the column However, one of the 

eccentrically loaded specimens experienced local buckling at 90% of the peak load. 

The effect of confinement, as revealed by transverse stresses in the steel section, on 

the capacity of the high strength concrete PEC columns was similar to that observed 

for the normal strength concrete PEC columns. However, the steel section of 

columns with high strength concrete yielded sooner relative to the peak load as 

compared to the steel section of the column with normal strength concrete. The axial 

capacity of the high strength concrete PEC columns was not significantly affected by 

the confinement of the concrete and therefore Prickett and Driver (2006) recommend 

that confinement not be accounted for in the design of these columns. The maximum 

stresses in the links were well below the yield stress and therefore it was 

recommended by the researchers that the current design requirements for link cross-

sectional area and welding in CSA standard S16-01 (CSA 2001) are satisfactory for 

high strength concrete PEC columns under concentric and eccentric loading 

conditions. 

Prickett and Driver (2006) also studied the moment versus curvature response and 

developed load versus moment interaction diagrams for the eccentrically loaded 

specimens. The moment versus curvature curves for specimens with strong axis 

bending showed a gradual decline of the peak moment as compared to the sudden 

decline observed in the specimens with weak axis bending. To predict the capacity of 

the eccentrically loaded columns, the load versus moment interaction diagrams were 

developed using the methods used for reinforced concrete columns. However, 

Prickett and Driver (2006) used the reduced steel area in calculating the design 
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capacity to account for the local buckling of the flanges, since local buckling was 

observed in a few eccentrically loaded columns shortly before the peak load. A linear 

strain distribution along the cross-section, based on observations from the strain 

measurements taken during the test, was implemented for the construction of this 

diagram. The extreme compressive strain was set at 3500 με (considered to be the 

crushing strain of concrete), whereas the extreme tensile strain was varied from 0 to 

10 times the yield strain of the steel. For each strain gradient the ultimate load and 

moment capacities were calculated from the material and geometric properties of the 

composite cross-section. The compressive force in the concrete, Cc was calculated 

using the following expression, assuming a rectangular stress block: 

                                   Cc = αl fcubcβ1c … …(2.9) 

where bc is the net width of the concrete block (i.e., excluding the web thickness for 

strong axis bending and excluding the flanges for weak axis bending), c is the 

distance between the extreme compression fiber and the neutral axis and the factors 

αl and β1 are expressed as (CSA 2004), 

αl = 0.85-0.0015 fcu ≥ 0.67                                      …(2.10) 

β1= 0.97 – 0.0025fcu ≥ 0.67                                       ...(2.11) 

To calculate the contribution of the steel to the capacity of the composite column, the 

section was discretised in such a way as to have effectively uniform strain in each 

individual piece. For strong axis bending, the flanges were considered to be one 

piece, whereas the web was divided into ten pieces. On the other hand, for weak axis 

bending the web was considered as one piece and each flange was discretised into ten 

pieces (Prickett and Driver 2006). The resultant force for each individual piece was 

calculated by multiplying the area of the piece by its average strain and by the elastic 

modulus of steel. (However, if the strain in the individual piece exceeded the yield 

strain the force resultant is determined by multiplying the area of that piece by the 

yield stress.) In calculating the area of a flange piece in compression, the effective 

width (using Equation 2.6 with n = 1.5) was used by Prickett and Driver (2006). 

Finally, the total load capacity of the composite column was determined by adding 
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the force resultants for concrete and steel and the moment capacity were obtained 

from the summation of each force multiplied by its distance from the centerline of 

the column cross-section. 

In general, the interaction curves provided a good and conservative estimate of the 

ultimate cross-sectional capacities of the eccentrically loaded PEC columns obtained 

from the tests. For columns with strong axis bending, the capacities obtained from 

the test exceeded the predicted capacities by 17 to 27%, whereas for columns with 

weak axis bending the predicted capacities were exceeded by only 4 to 9%. Prickett 

and Driver (2006) attributed this discrepancy to the fact that the concrete 

confinement, which was neglected in predicting the column capacities, had a more 

pronounced effect on the columns under strong axis bending than on those under 

weak axis bending. The presence of a steel flange on the face that experiences 

maximum compression provides more favorable confinement conditions than either 

columns under weak axis bending or those loaded concentrically. 

2.4 NUMERICAL INVESTIGATIONS ON SHORT PEC COLUMNS 

Numerical investigations performed to study the behaviour of PEC columns are 

limited. Maranda (1998), Chicoine et al. (2002b) and Begum et al. (2007) conducted 

numerical simulations of the behaviours of PEC columns under concentric and 

eccentric axial loads. A brief description and findings of these simulations are 

presented below. 

2.4.1  Maranda (1998) 

A finite element model of PEC columns with thin–walled built–up sections was first 

developed by Maranda, (1998), using the computer program MEF, to simulate the 

series of tests on PEC stub columns performed by Tremblay et al. (1998). Only a 

quarter cross–section was modeled using shell elements for the steel plate, solid 

elements for the concrete and beam elements for the transverse links. Contact 

elements were used at the steel–concrete interface to represent interaction between 

these two materials. The model included local imperfections of the steel flange by 

scaling the displacements obtained from the buckled elastic shape. The yield plateau 
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of the steel stress–strain curve was modified to include the effect of residual stresses 

in the steel plates. Good agreement was observed between the numerical and the 

experimental results, with an average ratio of experimental-to-numerical peak loads 

of 0.95 and a standard deviation of 0.03. However, the model developed by 

Maranda (1998) was not capable of predicting the post-peak responses of the test 

specimens. In some cases the model exhibited positive stiffness at the last converged 

solution point, indicating that the ultimate point had not been reached. Moreover, 

local imperfections were modeled outwards as opposed to the inward imperfections 

measured in the test specimens. 

2.4.2  Chicoine et al. (2002b) 

Following their own recommendations, Chicoine et al. (2002b) developed a finite 

element model that agreed with existing test data and that could be used to predict the 

long term behaviour of PEC columns. Three changes to the existing design equations 

were recommended in this work. First, to better fit the experimental data, the factor T 

was reduced by a factor of 0.92. Second, the value of n = 1.0 in equation (2.6) may be 

overly conservative. By adding the long-term tests to the database collected by 

Tremblay et al. (2000), Chicoine et al. (2002b) calculated a mean test-to-predicted 

ratio of 1.00 when n = 2.0 and a ratio of 1.03 when n =1.5. Considering that larger 

imperfections than those measured on the test specimens would be acceptable under 

the fabrication tolerances of the Canadian steel design standard (CSA 2001), the 

researchers recommended that n = 1.5 be used. Third, the plate stiffness coefficient, k 

(Equation 2.5), was modified based on the results of elastic finite element buckling 

analyses of steel column flanges. Its new form, presented in Equation (2.12), assumes 

a Poisson's ratio of 0.3 in the constants. 

 …(2.12) 

It was also noted that their model predicted that the long-term effects on the column 

due to the shrinkage and creep of the concrete would not adversely affect the axial 

capacity of the column. 

( ) ( ) ( )21,75.005.06.3 2

2 ≤≤++= b
s

b
s

b
s

k



21 

 

Chicoine et al. (2002b) found that, while their model accurately predicted column 

capacity and strain at peak load, the failure mode could only be predicted properly by 

implementing initial outward flange imperfections rather than inward, as observed in 

the test specimens. This was attributed to the inability of the model to reproduce the 

rapid volumetric expansion of the concrete near peak loading. For the same reason, 

the model could not trace the post-peak behaviour of the columns. 

 2.4.3 Begum et al. (2007) 

To improve the numerical model of PEC columns produced by Chicoine et al. 

(2002b), Begum et al. used a damage plasticity model to simulate the concrete 

behaviour and a dynamic explicit solution strategy. The researchers postulated that the 

material model would improve the results around the peak load because it is capable 

of predicting volumetric expansion under low confining pressures. Moreover, the 

dynamic explicit method has the potential to predict results in the range beyond the 

peak load. The stub column test results from Tremblay et al. (1998) and Chicoine et 

al. (2002a) were compared to numerical model. The mean experimental-to-numerical 

ratio for the column peak load and longitudinal strain at peak load were 1.00 and 0.98, 

respectively. The model also gave good agreement with the post-peak response and 

the failure mode observed during testing. 

A complete finite element model including the full cross-section and entire length of 

the column was developed using the explicit module of ABAQUS finite element 

code (Begum et al. 2007). The model is applicable for concentric as well as eccentric 

loads. The finite element model along with the mesh configuration for a typical part 

between two consecutive links is shown in Figure 2.2. The steel plates were modeled 

using S4R shell elements. Eight-node brick elements were used for concrete and beam 

elements for transverse links. A dynamic explicit solution strategy was implemented 

in to trace a stable post peak response in the load–deformation curve. The steel–

concrete interface in the composite column was simulated using a contact pair 

algorithm. To represent the concrete material behaviour under partial confinement, the 

damage plasticity model in ABAQUS was implemented.  
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Begum et al. (2007) used the complete model for PEC columns to reproduce the test 

results of 12 normal strength, seven high strength and two steel fiber-reinforced high 

strength concrete PEC columns. The average experimental-to-numerical ratios of the 

 

 

 

peak load obtained were: 1.01, 0.99 and 1.08, respectively, for normal strength, high 

strength and steel fiber reinforced high strength concrete PEC columns with standard 

deviations all less than 0.05. Moreover, the numerical load versus axial strain 

responses for the test columns were in very good agreement with the experimental 

responses. Furthermore, the load versus moment curves obtained from the numerical 

analyses of the eccentrically loaded test columns represented the experimental curves 

with excellent accuracy, for strong axis bending as well as weak axis bending. The 

full model also represented the axial capacity of the three long PEC test specimens 

(L/d = 20) with good accuracy with an average experimental-to-numerical ratio of 

0.98. 

Figure 2.3: Finite Element Mesh developed by Begum et al.(2007),                                             
                   (a) Typical short column displaying the parts between consecutive links, and  
                   (b) Mesh configuration of a typical part in the test region of the column 
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Studies were performed to quantify the effects of local imperfections and residual 

stresses on the capacity of these columns using the developed model. The results 

revealed that the ultimate capacity of the column was not affected significantly by the 

presence of local imperfections and residual stresses in the steel section (Begum et 

al. 2007). Finally, a comprehensive parametric study was carried out by varying the 

overall column slenderness ratio, load eccentricity, link spacing, slenderness ratio of 

the steel plate and concrete strength to explore the behaviour of these columns under 

the combined effect of axial compression and bending about the strong axis.  

 

 

2.5  INVESTIGATIONS ON THE BEHAVIOUR OF SLENDER PEC 

COLUMNS 

Experimental and numerical investigations on slender PEC columns are very limited. 

The only experimental investigation has been performed at Leheigh University by 

Chicoine et al. (2000) and numerical simulations of these test specimens are 

Figure 2.4: Failure modes obtained from the full column FE model for short PEC columns 
developed by Begum et al.(2007),                                                                                 

(a) Concentric load, (i) Numerical & (ii) Experimental (Prickete & Driver2006) 
(b) Eccentric load (strong axis bending) 
(c) Eccentric load (weak axis bending) 
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conducted by Begum et al. (2007). Begum et al. (2007) also conducted a parametric 

study to observe the effect of several geometric variables on slender PEC columns.  

 2.5.1 Experimental study by Chicoine et al. (2000) 

Chicoine et al.( 2000) tested four long PEC columns with a length-to-depth ratio of 

20 in order to study the overall buckling behaviour of these columns under 

monotonic loading. In this test program, one bare steel column and three composite 

columns were tested with two different link spacings. All columns had a square 

cross-section of 450mm×450mm and a flange slenderness ratio of 23. Additional 

longitudinal and tie reinforcements were provided in one of the composite 

specimens. Both local and global geometric imperfections were measured in all 

specimens before the tests took place. The flanges of these specimens were observed 

to have outward local imperfections between links, with maximum amplitudes less 

than 1 mm (s/600). The global out-of-straightness was measured about the weak axis 

and was also found to be small, representing typically about 1/3000 of the total 

height of the columns. The long columns were tested under concentric loading, 

except for one, which was tested with an eccentricity of 0.06d about the weak axis. 

However, Chicoine et al. (2000) reported the presence of significant bending moment 

in all specimens about both the strong and weak axes caused by accidental 

eccentricity or uneven end bearing. Equivalent strong and weak axis eccentricities 

were, therefore, calculated for each specimen at the bottom, mid-height and top 

elevations using elastic theory. Chicoine et al. (2000) recommended that these 

computed values of eccentricity be included in the finite element analysis of these 

test specimens. 

The test results demonstrated the brittle and explosive failure modes of the long 

composite specimens that consisted of global flexural buckling along with local 

buckling and concrete crushing between two links. The steel-only specimen was 

observed to fail by global buckling followed by local buckling at several link 

intervals. As reported by Chicoine et al. (2000), no welds of the transverse links 

failed during the tests. The ultimate capacities of the slender columns were observed 

to be about 80% of those of short columns with similar cross—sections and link 

spacings. The initial weak axis eccentricity of 0.06d applied in one of the tests 
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decreased the column capacity by 20% when compared with the specimen having 

similar geometric and material properties. The transverse stresses on the flange plates 

were observed to be higher on the compression side and lower on the tension side, 

with intermediate values in the web. The additional reinforcement was observed to 

provide no improvement in the ductility of the long composite column, as opposed to 

the beneficial effect observed in the short composite columns. However, a direct 

comparison between the two long specimens with and without additional 

reinforcements was not possible due to the presence of accidental eccentricity in the 

test specimens. 

Chicoine et al. (2000) predicted load capacity for this column. The double 

exponential format is similar to other slender column capacity calculations found in 

CSA S16-01 (CSA 2001). 
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For the further development of PEC columns, Chicoine et al. (2002a) recommend the 

testing of columns, in bending due to eccentric loading and the development of a 

validated finite element model. 

2.5.2 Numerical Study by Begum et al. (2007) 

Begum et al. selected three 9.0m long PEC columns with a cross–section of 

450mm×450mm tested by Chicoine et al. (2000) and named CL-1, Cl-2 and CL-3 for 

finite element simulation with ABAQUS/Explicit in order to study the ability of the 

models to predict the global buckling behaviour. An elevation of a typical long PEC 
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test column is shown in Figure 2.4 a. Normal strength concrete was used in the test 

region of these columns. 

In the test region of these columns, two types of links spacings were used: 1.0d in 

specimens CL-1 and CL-2, and 0.5d in specimen CL-3. Additional reinforcements 

were provided only in specimen CL-3 (Figure 2.4 c). 

Among these three specimens, one (specimen CL-2) was intended to have eccentric 

loading, where the load was applied at an eccentricity of 28 mm, resulting in bending 

about the weak axis. These columns were also fabricated from CSA-G40.21-350W 

grade steel plate. Normal strength concrete (nominally 30 MPa) was used in the test 

region of these columns. To strengthen the end regions of these test specimens, high 

strength concrete of 60 MPa nominal strength was used along with the closer link 

spacings provided in these zones. 
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Figure 2.5:   Long PEC test columns numerically simulated by Begum et al. (2007) 
(a) Elevation, (b) Cross section of CL-1 & CL-2, (c) Cross section of CL-3 

(a)

(b) (c)
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Two sets of numerical analyses were performed for each of the long test columns, one 

using the applied eccentricity and the other using the eccentricities deduced from 

strains measured during the test. For specimens CL-1 and CL-2, the test load versus 

strain response was observed to be close to the numerical response using the deduced 

eccentricities. But for CL-3, neither of the two numerical analyses was observed to 

predict the experimental behaviour well, yet the response with the deduced 

eccentricities is much closer to the experimental response. However, for all three long 

columns, the numerical model gave an accurate prediction of the initial axial stiffness 

observed in the experimental load versus strain curve and the axial strains at and after 

Figure 2.6:   Numerical and Experimental failure modes for Long PEC columns 
                             (a) Numerical failure (Begum et al. 2007)  &  

             (b) Experimental failure (Chicoine et al. 2000)   
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the peak load point were observed to be higher in the numerical models as compared 

to those obtained experimentally. The behaviour of the slender columns tends to be 

sensitive to loading and geometric imperfections present in the test.  

In the numerical analysis of slender columns, failure occurred due to global bending 

of the column about the weak axis accompanied by local flange buckling and 

concrete crushing as shown in Figure 2.5(a). Similar behaviour was observed in the 

experiments performed by Chicoine et al. (2000). 

 

2.6 INVESTIGATIONS ON FLEXURAL STIFFNESS OF SLENDER 
COMPOSITE COLUMNS 

The flexural strength of a slender column subjected to end moments causing 

symmetrical single curvature bending is lower than the strength of its cross-section 

due to the second-order bending moment. The behavior of slender columns is greatly 

influenced by the critical buckling load, which again is dependent on the effective 

flexural stiffness of the slender column. The EI expressions given in ACI 318-02 

(ACI 2005), for composite columns were mainly developed for reinforced concrete 

columns. Mirza and Tikka (1999) performed a statistical evaluation to judge the 

applicability of this equation for the flexural stiffness of composite columns in which 

steel shapes are fully encased in concrete.  

Mirza and Tikka (1999, 2000) undertook extensive studies to examine the influence 

of a full range of variables on the short-term effective flexural stiffness (EI) of 

slender, tied, composite columns. In these studies the bending moment was applied 

about the major and minor axes of the steel sections fully encased in concrete. They 

also examined the existing expression for EI as proposed by American Concrete 

Institute (ACI) and Canadian Standards Association (CSA). They developed and 

proposed a refined expression for EI and compared the new expression for EI with 

the current ACI and CSA expression. Approximately 12,000 simulated isolated 

composite columns were used to generate the stiffness data to study the effects of a 

number of variables that affect the effective flexural stiffness. Each column had a 
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different combination of cross-section, geometric, and material properties.  The 

specified concrete strength (f’c), the structural steel yield strengths (Fy), the 

longitudinal steel reinforcing ratios (ρrs) and the structural steel ratios (ρss) used in 

this study were intended to represent the most common values of these variables. All 

columns had reinforcing steel specified yield strength of 60,000psi (414MPa) with 

lateral ties conforming to ACI 318-95 clause 10.16.8. The slenderness ratios (l/h) 

selected  were intended to approximate the range of l/h ratio for columns in braced 

frames designed according to ACI 318-95 clause 10.11 and 10.12. Eleven end 

eccentricity ratios (e/h) ranging from 0.05 to 1.0 were used. These end eccentricities 

produced bending moments about the major axis of the steel section. The usual e/h 

ratio for columns in concrete buildings varies from 0.1 to 0.65. The overall cross 

sectional dimensions were not varied because an earlier parametric study concluded 

that the gross cross section size had insignificant effect on non-dimensional strength 

and stiffness of composite columns.   

The short term theoretical EI for each of the columns studied was computed from the 

following equation. 
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                                                                 … (2.17) 

In Eq. (2.17) EI is the theoretical effective flexural stiffness of a pin ended slender 

column subjected to single curvature bending with equal moments acting at both 

ends where Mcs and Mcol are the flexural strength of cross section and flexural 

strength of the column taking the slenderness effect into account respectively for an 

ultimate axial load Pu. Finally the simulated column stiffness data were statically 

analyzed for examining the current ACI column stiffness equations and for 

developing the design equations for EI which is as follows: 

      EI = [(0.27 + 0.003l/h – 0.2e/h)Ec (Ig-Iss) + 0.8Es(Iss+Irs)] ≥ EsIss          …(2.18)      

         

      EI = [(0.3 – 0.2e/h)Ec (Ig-Iss) + 0.8Es(Iss+Irs)] ≥ EsIss                              …(2.19) 
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2.7  CONCLUSIONS 

The literature review shows that the behaviour of short Partially Encased Composite 

(PEC) columns with normal and high performance materials have become relatively 

well understood from the full scale experimental investigations for monotonic 

concentric and eccentric axial loading conditions. Extensive research has refined the 

design equation for concentrically-loaded PEC columns. The finite element models 

developed for this new composite system can adequately represent the local buckling 

behaviour, the ultimate load and the post-peak residual capacity for axial 

compression and bending. In addition, the influences of several key parameters, 

which could not be covered by the experimental programs, on the behaviour of these 

columns under axial compression and bending, were investigated using the finite 

element models. These studies are mainly confined to the exploration of the behavior 

of short PEC columns. Both experimental and numerical studies on the behaviour of 

long PEC columns are still very limited and no substantial study has yet been done 

on effective flexural stiffness (EI) of Partially Encased Composite columns in major 

or minor axis of steel section. Moreover, the influences of several key parameters on 

the slenderness behaviour of this kind of columns are yet to be investigated. 

Therefore, the existing guidelines in ACI and other codes to determine EI for thin 

walled PEC columns should be examined and extended, if needed, to cover the full 

range of variables affecting the behaviour of this type of composite columns. 
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Chapter 3 

METHODOLOGY FOR EVALUATING THE 

THEORETICAL FLEXURAL STIFFNESS  

 

3.1  INTRODUCTION 

The American Concrete Institute building code ACI 318-08 (2008) permits the use of 

a moment magnifier approach for computing the second-order moments in slender 

composite columns. This approach was introduced into design practice to eliminate 

the need for extensive calculations which is based on the solution to a differential 

equation to compute second-order bending moments in columns. The calculation is 

also influenced by the critical buckling load (Pc). The computation of Euler’s critical 

load Pc is strongly influenced by the effective flexural stiffness (EI), which varies 

due to the local instability of  steel plates, nonlinearity of the concrete stress-strain 

curve, and cracking along the height of the column. This chapter presents a 

methodology for calculating the flexural stiffness of partially encased composite 

columns by taking these factors into consideration through the incorporation of axial 

load-moment-curvature relationships. As a first step to the method, the cross-

sectional load-moment curve is constructed using the strain compatibility 

relationship. In the next step, taking the slenderness of column into account, load-

moment curve is produced by implementing the Newmark’s iterative procedure for 

computing the second order deflection at mid height of the column. Finally, theory of 

elasticity is applied to derive the expression for flexural stiffness of the composite 

column.  

3.2  BEHAVIOUR AND ANALYSIS OF SLENDER COLUMNS 

A slender column can be defined as a column that has a significantly reduced axial 

load capacity because of the second order moment resulting from lateral deflections 

of the column. Figure 3.1 and 3.2 illustrate how the axial load capacity is affected by 

the lateral deflection.  
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Figure 3.1 shows a pin-ended column and subjected to eccentric loads. The moments 

at the ends of the columns are, 

   M=P.e      …(3.1) 

When the loads P are applied, the column deflects laterally by an amount Δ, as 

shown in Figure 3.1. For equilibrium, the internal moment at the mid-height must be  

                                                                                                                                    …                                                      …(3 .2) 

The deflection increases the moments for which the column must be designed. In the 

symmetrical column shown here, the maximum moment occurs at mid-height, where 

the maximum deflection occurs. 

Figure 3.2 shows an interaction diagram for a reinforced concrete column. This 

diagram gives the combinations of axial load and moment required to cause failure of 

a column cross section or a very short length of column. The dashed radial line OA is 

a plot of the end moment on the column in Figure 3.1. Because this load is applied at 

a constant eccentricity, e, the end moment, Me, is a linear function of P, given by 

Equation (3.1). The curved solid line OB is the moment M at mid-height of the 

column, given by Equation (3.2). At any given load P, the moment at mid-height is 

the sum of the end moment, Pe, and the moment due to second order deflections, PΔ. 

The line OA is referred to as a load-moment curve for the end moment, while the line 

OB is the load-moment curve for the maximum column moment. 

Failure occurs when the load-moment curve OB for the point of maximum moment 

intersects the interaction diagram for the cross section. Thus the load and moment at 

failure are denoted by point B in Figure 3.2. Because of the increase in maximum 

moment due to second order deflections, the axial-load capacity is reduced from A to 

B. This reduction in axial load capacity results from what is referred to as slenderness 

effects. 

Lateral deflections of a slender column cause an increase in the column moments, as 

illustrated in Figures 3.1 and 3.2. These increased moments cause an increase in the 

deflections, which in turn lead to an increase in the moments. As a result, the load-

Δ)P(eM +=
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moment line OB is Figure 3.2 is nonlinear. If the axial load is below the critical load, 

the process will converge to a stable position. If the axial load is greater than the 

critical load, it will not. This is referred to as a second order process, because it is 

described by a second order differential as, 

                                        Py
dx

yd
EI 2

2
=                                                       … (3.3) 

The elevation and cross-section of the PEC column and the additional second order 

deflection and imposed moment is shown in Figure 3.3.  

 

 

 

 

 

 

 

 
Figure 3.3: Type of Partially Encased Composite Column with  
                   (a) free-body diagram of pin-ended column in symmetrical single -curvature 

bending; 
                   (b) Forces on column; and  
                   (c) Bending moment diagram (Mu=ePu) 

 

3.3 FORMULATION OF CROSS-SECTIONAL LOAD-MOMENT 
INTERACTION DIAGRAM 

The strength of a composite cross section was represented by an axial load-bending 

moment interaction diagram, similar to the one shown in Figure 3.2. This curve for 

Section on C-C 

bf
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the partially encased composite column section was generated using the similar 

procedure adopted for reinforced concrete columns. A strain-compatibility and force-

equilibrium solution was used. Similar procedure has been adopted by Bouchereau 

and Toupin (2003) and Prickett and Driver (2006) to predict the capacity of 

eccentrically loaded PEC columns (as described in sections 2.3.3 & 2.3.4 in 

Chapter 2). In calculating the design capacity the reduced steel area was used to 

account for the local buckling of the flanges, since local buckling was observed to be 

critical for eccentrically loaded columns (Prickett and Driver 2006). A linear strain 

distribution along the cross-section was implemented for the construction of the 

cross-section strength curve. The extreme compressive strain was set at 3500 με 

(considered to be the crushing strain of concrete), whereas the extreme tensile strain 

was varied from 0 to 10 times the yield strain of the steel. For each strain gradient the 

ultimate load and moment capacities were calculated from the material and geometric 

properties of the composite cross-section. To calculate the contribution of the steel to 

the capacity of the composite column, the section was discretised in such a way as to 

have effectively uniform strain in each individual piece. For strong axis bending, the 

flanges were considered to be one piece, whereas the web was divided into ten 

pieces. The resultant force for each individual piece was calculated by multiplying 

the area of the piece by its average strain and by the elastic modulus of steel. 

(However, if the strain in the individual piece exceeded the yield strain the force 

resultant is determined by multiplying the area of that piece by the yield stress.)  

Finally, the total load capacity of the composite column was determined by adding 

the force resultants for concrete and steel and the moment capacity were obtained 

from the summation of each force multiplied by its distance from the centerline of 

the column cross-section.  

The maximum bending moment for the cross sectional moment curvature curve (Mcs) 

for a given axial load level (Pu) defined one point on the cross section strength 

interaction diagram. Eleven points (axial load levels) were used to accurately define the 

entire cross sectional strength interaction diagram. Mcs could then be interpolated from 

the generated cross-section strength curve for a desired end eccentricity ratio (e/d), 

where e = end eccentricity and d = overall depth of the composite cross section. 
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Figure 3.4: Schematic diagrams for cross-sectional strength and column strength 

curve for a composite column 
 

3.4 FORMULATION OF SLENDER COLUMN LOAD-MOMENT 

INTERACTION DIAGRAM 

The strength of a slender pin-ended composite column subjected to end moments 

producing symmetrical single curvature bending was also represented by an axial load-

bending moment interaction diagram, as shown in Figure 3.4. The column bending 

moment capacity Mcol, or the end moment M2, for a given axial load was calculated 

using a numerical iterative procedure that computed second-order bending moments 

and deflections along the length of the column by incrementing the end moments until 

the maximum moment along the length of the column reached the maximum moment 

on the cross section moment-curvature curve for the given axial load. The column axial 

load strength Pu and the corresponding computed value of Mcol  represented one point 

on the column P–M interaction curve (Figure 3.4). 

Newmark’s method (1943) was used to determine the equilibrium configuration for a 

given combination of axial load and end moments that were applied to the slender 
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column. The column was subdivided into segments or stations of equal length for which 

initial deflections were assumed based on the applied end moments. The first-order 

moments, and the second-order moments caused by slenderness effects, were computed 

and summed at each station. 

The curvature corresponding to the total moment at each station was retrieved from the 

cross section moment-curvature curve for the given axial load level in order to define 

the distribution of curvature along the column length. The conjugate beam method was 

then used to compute the deflection at each of the stations in an iterative manner. If the 

computed deflections and the initial deflections were within the prescribed limits of 

0.05%, an equilibrium solution had been obtained. If not, the computed deflections 

were substituted for the assumed deflections and the process was repeated until the 

deflections converged. The end moments were then incremented equally and the 

process was repeated until the maximum bending moment (Mmax) calculated along the 

length of the member reached the maximum moment on the cross section moment-

curvature curve for the axial load under consideration. This procedure was also used by 

Ali and Begum (2012) for developing column strength curve for slender PEC columns. 

Ali (2012) validated this process for evaluating the slender PEC column strength with 

the experimental results by Chicoine  et al. (2000).   

The maximum end moment Mcol (M2) corresponding to Mcs (Mmax) for each axial load 

level was stored to define the entire interaction diagram for the slender column. A total 

number of nine points (axial load levels) has been used to define the slender column 

interaction diagram. The computed values of Mcs and Mcol for each column (with l and 

Pu for given e/d ratios) were then used directly in Equation (3.11) to compute the 

theoretical EI. 

The major assumptions used in determining the axial load-moment-curvature (P–M–Ø) 

relationship, Mcs and Mcol are as follows: 

1. Strains between concrete and structural steel are compatible and no slip is allowed;  

2. Strain is linearly proportional to the distance from the neutral axis; 

3. Concrete and steel stresses are functions of strains; 

4. Confinement of concrete provided by lateral ties and the structural steel section is 
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not considered; 

5. Effects of residual stresses and local imperfections in the steel section is not 

considered since Begum et al. (2007) reported that the effect of these two 

parameters have negligible effect on the capacity and failure of these columns.  

6. Strain hardening of steel is neglected.  

3.5 EVALUATION OF THEORETICAL FLEXURAL STIFFNESS 

ACI 318-02 permits the use of a moment magnifier approach to compute the maximum 

bending moment (Mmax), which includes second-order effects, occurring along the 

height of a column,  

    Mmax= Mc = δns M2  = Cm δns M2  ≥  M2                                            … (3.4) 

where δns = moment magnifier for columns that are part of braced (non-sway) frames; 

M2=larger of the two factored end moments (M1 and M2) computed from a conventional 

elastic frame analysis and is always taken as positive; Cm = equivalent uniform moment 

diagram factor; and δ1 =moment magnifier for the same columns when subjected to 

axial load and equal and opposite (equivalent) end moments causing symmetrical single 

curvature bending. For this study M1 and M2 are equal and opposite causing symmetric 

single curvature bending; therefore, Cm =1.0. 

Chen and Lui (1987) explained that the moment magnifier δ1 for pin-ended columns 

subjected to end moments can be derived from the basic differential equation governing 

the elastic in-plane behavior of a column and is reproduced in the following equation,

                                  
kl

kl
21 sin

)cos1(2 −
=δ                                         ... (3.5) 

Where, l = column length; and k = lowest Eigen-value solution to the basic differential 

equation of equilibrium 
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Where, Pu = factored axial load acting on the column; and Pcr = Euler’s buckling 
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strength for a pin-ended column which is given by, 

                                       2

2

l
EIPcr

π
=                                                             … (3.7) 

For design purposes, the ACI 318-02 has adopted the simplified and widely accepted 

approximation of Equation (3.2), 
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1δ                                                            … (3.8) 

where Pc = critical load and is computed as, 

2

2
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EIPc

π
=                                                             … (3.9) 

For this study, however, the effective length factor k=1.0 and Pc is reduced to Euler’s 

buckling strength equation (Equation 3.4) for a pin-ended column. 

The moment magnifier method defined by Equations (3.4), (3.8), and (3.9) is described 

graphically in Figure 3.3, which shows the relationship between the cross section axial 

load-bending moment strength interaction diagram and the column strength interaction 

diagram for pin-ended columns in symmetrical single curvature bending. Figure 3.3 

shows that, for a given axial load Pu, the column end moment M2 at point A is 

multiplied by δ1(= Δm) to obtain Mmax at point B. The current EI expressions used by 

ACI 318-02 were developed for use with Equations (3.4), (3.8), and (3.9). 

Timoshenko and Gere (1961) gave the bending moment relationship for a pin ended 

slender column subjected to equal and opposite end moments. This formula is known as 

the “Secant Formula” which is, 

… (3.10) 
 
 

Where, Mc = design bending moment that includes second-order effects; M2 = applied 
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column end moment calculated from a conventional elastic analysis; Pu = factored axial 

load acting on the column; and Pcr = Euler’s buckling strength (Equation 3.7).  

For the purpose of analysis, Mc and M2 are replaced by the cross sectional bending 

moment strength Mcs and the overall column bending moment strength Mcol 

respectively. Substituting Euler’s buckling strength from Equation (3.7) into 

Equation (3.10), then rearranging, simplifying, and solving for EI gives the following 

expression for the theoretical flexural stiffness of a pin-ended column subjected to 

symmetrical single curvature bending, 

… (3.11) 

 

The computations of the terms Pu, Mcs, and Mcol used in this expression were based on 

the cross section and column axial load-bending moment (P–M) interaction diagrams 

explained in the following section. Similar procedure for computing EIth for fully 

encased composite columns were implemented by Tikka and Mirza (1999).  

3.6  COMPARISON WITH ACI STIFFNESS EQUATION 

The ACI Building code permits the use of following equations for calculating the 

effective flexural stiffness (EI) of slender composite columns [ACI 318-02 

Equations (10-21) and (10-12)], 
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Where Ec and Es are moduli of elasticity of concrete and steel respectively, Ig and Iss are 

moments of inertia of the gross concrete cross-section and the structural steel section 

taken about the centroidal axis of the composite column cross-section; and dβ =the 

sustained load factor taken as the ratio of the maximum factored axial dead load to the 
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total factored axial load (for the type of column studied) and is always positive. For 

short-term loads, dβ =0, and Equations (3.12) and (3.13) are simplified to 

Equations(3.114) and (3.15) respectively which are as follows, 

                            EI = 0.2EcIg + EsIss                                                 … (3.14) 

                            EI = 0.4EcIg                                                                   … (3.15) 

Note that in Eqs. (3.12)–(3.15), Es was taken as 200,000 MPa (29,000,000 psi) and Ec 

was computed from cf '700,4 MPa ( cf '000,57 psi)as specified in ACI 318-08 

(2008). 

Equations (3.14) and (3.15) were compared with the theoretical EI values computed 

from Equations (3.11) for all simulated composite columns in current study. 

3.7 EXAMPLE ON EVALUATING EI FOR PEC COLUMNS 

Evaluation of flexural stiffness of typical PEC columns about its major axis is described 

in this section. The geometric and material properties of the example PEC column are 

listed below :  

Cross sectional dimension = 450 mm × 450 mm 

Length, L = 9.0m, 

Web and flange thickness, t = 7.50mm, 

Link spacing, s =  225mm, 

Concrete strength, f’c = 60 MPa 

Fy = 350 MPa. 

 

 

 

 

 

 

 Figure 3.5: Cross section of the example column.    
 



43 

 

 
 
 

 

 

 

Figure 3.6 shows the two column interaction diagrams derived from the methodology 

described in the previous sections. One of them is the cross sectional strength curve 

which is derived from strain-compatibility and force-equilibrium. The other one is 

slender column strength curve which is derived with the use of Newmark’s method.  

For this example, an eccentricity to depth ratio e/d = 0.15 is randomly chosen. The 

corresponding maximum axial strength and flexural strength for the two curves are as 

follows: 

Axial strength from cross sectional strength curve, Pcs = 3950 kN 

Flexural strength from cross sectional strength curve, Mcs = 1040 kN-m 

Flexural strength from slender column strength curve, Mcol = 585 kN-m 

  

Cross sectional  
strength curve 

Slender column  
strength curve 

Figure 3.6: Cross sectional strength curve and slender column strength 
for a randomly chosen example column.    
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Replacing these values in Equation (3.8), we get the theoretical effective flexural 

stiffness, 
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The effective flexural stiffness suggested by ACI can be computed from inputting the 

values in equation 3.11. 

           EIACI  = 0.2×16740 × 3417187500 + 200000× 381900234.375 

                     = 87821 kN-m2 

Therefore, the deviation of the studied theoretical effective flexural stiffness from ACI 

stiffness is, 

                                  
th

ACI

EI
EI =

82038
82038-87821

×100 = 7.05 %     

In the described way a total number of 1200 EIth is generated for parametric study (as 

presented in chapter 4) and compared with the ACI equation. Also, a regression 

analysis is performed and a regression equation is formulated for EIth which has been 

described in chapter 5 of this thesis.  
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Chapter 4 

PARAMETRIC STUDY 

 

4.1 INTRODUCTION 

An extensive study has been conducted in order to observe the effects of different 

parameters on slender partially encased composite columns. A total number of 120 

isolated steel-concrete PEC columns are simulated for this study. All the columns are 

hinged at both ends and are subjected to bending about the major axis of the steel 

section. Each column has a different combination of specified properties. The 

parameters which are likely to have the greatest effect on the behaviour of slender PEC 

columns are selected. The selection of the variable parameters and design of the 

parametric study, along with a discussion of the results, are presented in subsequent 

sections. 

 

Figure 4.1 Cross-section of PEC column for parametric study 

4.2 SELECTED PARAMETERS  

The geometric and material properties of slender PEC columns that can significantly 

affect their stability and stiffness under axial compression and major axis bending are 
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identified as potential variables in the parametric study. Among these, the column 

cross-sectional dimensions (bf or b and d), length of the column (L), longitudinal 

spacing of the transverse links (s), thickness of the steel flange and web plates (t) and 

initial load eccentricity (e) are identified as the most important geometric variables. 

The compressive strength of concrete and grade of the structural steel are included as 

the two material variables. The geometric properties listed here are non-

dimensionalised for comparison in order to reflect anticipated combined influences. 

The definition of each parameter, along with its selected range for this study, is 

presented in turn below.  

Overall column slenderness ratio (L/d) —The overall column slenderness ratio is 

defined as the ratio of the total length of the column (L) to the depth of column cross 

section (d) i.e. L/d ratio. Global bucking behaviour of slender columns is mainly 

influenced by this parameter. Five different slenderness ratios—10, 15, 20, 25 and 

30—are employed in the parametric study.  

Initial load eccentricity ratio (e/d) —Ten load eccentricity ratios varying from 0.05 

to 10 are selected in this study. The load eccentricity ratio of 0.05 is intended to 

represent an “accidental” eccentricity that might occur in a column that is nominally 

designed as a gravity column. It is to be noted that for concrete buildings, e/d usually 

ranges from 0.1 to 0.65. 

Flange plate slenderness ratio (b/t) — The flange plate slenderness ratio is defined 

as the ratio of the half-width of the flange (b) to its thickness (t). This parameter is 

varied between 25 and 35, with an intermediate value of 30. The stiffness and strength 

of a PEC column is significantly affected by this parameter, since it controls the 

occurrence of local instability in the flange plate of the column.  

Link spacing-to-depth ratio (s/d) —The effect of the link spacing is studied by 

varying the ratio of link spacing (s) to the depth of the column cross-section (d). Two 

values of the s/d ratio—0.5 and 0.7—are used in the parametric study. Link spacing is 

also an important parameter affecting the stability of these columns, since local 

buckling in the flange plates occurs between two successive links. 
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Compressive strength of concrete (f’c) — In the parametric study, the concrete 

strength is varied from 30 MPa to 60 MPa to investigate the influence of high strength 

concrete in combination with other parameters.  

Grade of Structural Steel (Fy) — The yield strength of the structural steel shape is 

varied between 250 MPa and 350 MPa which are the most common grades used in the 

construction of composite columns. 

Table 4.1 summarises the range of variables under each parameter used in this study. In 

designing the parametric study, the cross sectional size of the columns is selected to be 

constant and all the parameters are varied accordingly. The parameters are combined in 

an optimum and systematic way to obtain their individual effects as well as 

interrelationships. For current study, the overall dimensions of the composite cross 

section were held constant at 450×450 mm (18 ×18 in.) since previous parametric 

studies concluded that the overall cross section size was not a major variable for 

investigating the reliability of strength and stiffness of composite columns 

(Mirza 1999).  The clear concrete cover on lateral ties was held constant at 38 mm 

(1.5 in.) for this study. The cross-section and elevation of typical parametric columns 

are shown in Figure 4.2. 

The theoretical EI for each of the columns studied was computed from Equation 3.8 as 

shown in Chapter 3 using Mcs from the cross section strength interaction diagram and 

Mcol from the slender column interaction diagram. 

Table 4.1: Specified properties of PEC columns studied 

Properties Specified values Number of 

specified values 

L/d 10, 15, 20, 25, 30 05 

e/d 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 10 

b/t 25, 30, 35 03 

s/d 0.5, 0.7 02 

f’c , MPa 30.0, 60.0 02 

Fy , MPa 250.0, 350.0 02 
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4.3 EFFECTS OF DIFFERENT PARAMETERS ON EI OF PEC COLUMNS 

4.3.1 Effect of Slenderness Ratio L/d 

Length to depth ratio (L/d) plays an important role in the evaluation of flexural stiffness 

EI of a slender partially encased composite column. The overall stability is controlled 

by the slenderness ratio which is defined as the ratio of the total length of the column 

(L) to the depth of column cross section (d) i.e. L/d ratio which can also be denoted by 

overall column slenderness ratio. For parametric study, five values of L/d ratio (10, 15, 

20, 25 and 30) are used. The effect of L/d incorporation with other parameters such as 

s/d, b/t, f’c and  fy on flexural stiffness (EI) of a slender PEC column is described in the 

following sections. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Typical parametric column (a) cross-section; and (b) elevation 
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Effect of L/d with varying b/t ratio 

Figure 4.3 shows variation of EI with L/d ratios for the three different values of plate 

slenderness ratio (b/t) for a low e/d ratio of 0.1. Other variables are arbitrarily kept 

constant at s/d = 0.5, f’c= 60 MPa and Fy =350 MPa. Figure 4.4 shows the same 

variation for e/d= 0.55 and Figure 4.5 shows it for a high e/d ratio of 1.0. Tables 4.2, 

4.3 and 4.4 show the tabular form of corresponding data. 

From the tables and figures, it can be deduced that, 

• For all the values of b/t (25, 30 & 35), stiffness EI increases with an increase in 

L/d ratio. The reason behind the increase in EI with increasing L/d ratio may be 

due to the fact that the cracks in a longer column are likely to be more widely 

spaced with more concrete in between the cracks. This concrete contributes to the 

effective flexural stiffness EI of the PEC column which results in increased EI 

values. This phenomenon resembles the research work performed by Tikka and 

Mirza (1999) with fully encased slender composite columns. Moreover, at very 

high L/d (such as L/d=30), the degree of stability of PEC columns reduces which 

causes a reduction in the rate of increase in EI. 

• At a low eccentricity ratio of 0.1, EI increases by 28% for varying the L/d ratio 

from 10 to 30 for b/t=25, whereas for b/t = 30 and 35, EI values increase 25% and 

26% respectively (Table 4.2). These figures are very close which indicates that the 

effect of L/d ratio on EI is independent of b/t ratio at low eccentricities. This is 

due to the fact that at low eccentricities the local buckling does not affect the 

slender column behaviour of PEC columns.  

• Similar behaviour is also observed at a medium e/d ratio of 0.55 as shown in 

Table 4.3. The increase in EI for changing the L/d ratio from 10 to 30 ranges from 

102 to109% for the three selected values of b/t ratios. Figure 4.3 and 4.4 also 

resembles these phenomena. However, Figure 4.4 also shows that the rate of 

change in EI diminishes at higher L/d ratios (i.e. L/d ratio over 20). 

• On the other hand at very high e/d ratio of 1.0, this increment (resulting from 

changing the b/t ratio from 25 to 35) ranges from 159 to 196%. This range of EI is 
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broader than that observed for low and medium eccentricities. Therefore, it can be 

inferred that at higher eccentricities (which will induce higher bending moments) 

the effect of overall column slenderness ratio on EI is affected by the flange plate 

slenderness ratio. The higher bending moments resulting from the high end 

eccentricities made the column more susceptible to local buckling. Moreover, at 

higher eccentricities the rate of change in EI is higher than that at lower 

eccentricities (Figure 4.5).  
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Table 4.2:  Effect of L/d ratio with varying b/t values for e/d = 0.1 

L/d 10 15 20 25 30 
% difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

b/t=25 94 100 107 112 120 28% 

b/t=30 76 82 86 90 95 25% 

b/t=35 57 60 63 66 72 26% 

% difference 

b/t=25 to 35 
39% 40% 41% 41% 40% 

 

 

 

 

Figure 4.3 EI versus L/d diagram for different values of b/t with e/d =0.1 
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Table 4.3:  Effect of L/d ratio with varying b/t values for e/d = 0.55 

L/d 10 15 20 25 30 
% difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

b/t=25 53 70 84 96 108 102% 

b/t=30 46 58 74 85 93 102% 

b/t=35 34 46 58 67 71 109% 

% difference 

b/t=25 to 35 
36% 34% 31% 31% 34%   

 

 

 

Figure 4.4 EI versus L/d diagram for different values of b/t with e/d =0.55 
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Table 4.4:  Effect of L/d ratio with varying b/t values for e/d = 1.0 

L/d 10 15 20 25 30 
% difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

b/t=25 34 55 70 81 88 159% 

b/t=30 28 48 65 75 81 189% 

b/t=35 23 40 55 65 68 196% 

% difference 

b/t=25 to 35 
32% 27% 22% 20% 23%   

 

 

 

 

Figure 4.5 EI versus L/d diagram for different values of b/t with e/d =1.0 
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Effect of L/d ratio with varying s/d 

Figure 4.6 shows variation of EI with L/d ratios for the two different link spacing to 

depth (s/d) ratios for a lower eccentricity ratio e/d =0.1. Figure 4.7 shows the same 

variation for e/d= 0.55 and in Figure 4.8 the variation is shown for a high eccentricity 

ratio e/d= 1.0. Other variables are kept fixed at b/t = 30, f’c= 60 MPa and 

Fy =350MPa. The corresponding data are presented in Tables 4.5, 4.6 and 4.7 

respectively. 

From the tables and figures, it can be observed that, 

• For each value of s/d (0.5 and 0.7), flexural stiffness EI increases with an increase 

in L/d ratio. Table 4.5 shows that at a low eccentricity ratio of 0.1, EI increases by 

26% in an average for any value of s/d with varying the L/d ratio from 10 to 30. 

At a medium e/d ratio of 0.55, this average increase in EI is about 110% 

(Table 4.6) and at a very high e/d ratio of 1.0, it is almost 186% (Table 4.7). 

Therefore, like the previous section, here also it is noticed that at higher 

eccentricities the rate of change in EI with the increase in the L/d ratio is higher 

than that at lower eccentricities. It is also noted that for each value of e/d ratio the 

effects of L/d ratio on EI is not significantly affected by the s/d ratios selected in 

the current study. 

• Comparing these three graphs and their corresponding data, it is also observed that 

flexural stiffness EI decreases with increasing eccentricity which is similar to the 

behaviour as observed in the preceding section. 
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Table 4.5:  Effect of L/d ratio with varying s/d values for e/d = 0.1 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 

 EI (10x12) Nmm2  

s/d= 0.5 76 82 86 90 95 25% 

s/d= 0.7 73 80 84 87 93 27% 

% difference 4% 3% 2% 3% 2%   

 

 

Figure 4.6   EI versus L/d diagram for different values of s/d with e/d =0.1 
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Table 4.6:  Effect of L/d ratio with varying s/d values for e/d = 0.55 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

s/d= 0.5 43 55 68 76 88 107% 

s/d= 0.7 40 52 65 72 85 113% 

% difference 6% 6% 5% 5% 4%   

 

 

 

Figure 4.7   EI versus L/d diagram for different values of s/d with e/d =0.55 
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Table 4.7:  Effect of L/d ratio with varying s/d values for e/d = 1.0 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

s/d= 0.5 28 44 60 70 80 185% 

s/d= 0.7 26 42 57 66 75 188% 

% difference 8% 5% 5% 7% 7%   

 

 

 

Figure 4.8   EI versus L/d diagram for different values of s/d with e/d =1.0 
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Effect of L/d with varying f’c 

Figure 4.9 shows variation of EI with L/d ratios for the two different values of 

concrete strength f’c (30MPa and 60MPa) for a lower eccentricity ratio e/d =0.1. 

Figure 4.10 shows the same variation for e/d= 0.4 and in Figure 4.11 the variation is 

shown for a high eccentricity ratio e/d= 1.0. Tabular forms of data are also given in 

Tables 4.8, 4.9 and 4.10. Other variables are kept fixed at b/t = 30, s/d = 0.5 MPa and 

Fy =350MPa. 

From the tables and figures, it can be observed that-  

• For each value of  f’c (30 MPa and 60 MPa), stiffness EI rises with an increase in 

L/d ratio. Table 4.8 shows that at low e/d ratio of 0.1, average EI increase for both 

the values of f’c is 21% for increasing L/d from 10 to 30.  At a medium e/d ratio of 

0.4, this average increase in EI is about 41% (Table 4.9) and at a very high e/d 

ratio of 1.0, it is almost 170% (Table 4.10). Therefore, as discussed in the 

previous sections, in this case also, it is noticed that at higher eccentricities the 

rate of change in EI is higher than that at lower eccentricities. 

• Table 4.8 shows that at low eccentricity (e/d = 0.1), the average difference 

between EI for f’c =30 MPa and EI for f’c =60 MPa is 6%. But from Table 4.10 

which represents a high eccentricity (e/d = 1.0), this difference is only 2%. From 

the graphical representation it is also found that for high eccentricity, the two 

curves for f’c =30 MPa and 60 MPa are much closer. Therefore, it can be deduced 

that the effect of f’c on EI at large eccentricity is very negligible. It is because of 

the fact that in high eccentricities i.e. high flexure, role of concrete in a PEC 

section becomes less significant.  
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Table 4.8:  Effect of L/d ratio with varying f’c values for e/d = 0.1 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

f’c = 30MPa 72 76 81 85 87 21% 

f’c = 60MPa 76 82 86 90 93 22% 

% difference 5% 7% 6% 6% 6%   

 

 

 

Figure 4.9   EI versus L/d diagram for different values of f’c with e/d =0.1 
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Table 4.9:  Effect of L/d ratio with varying f’c values for e/d = 0.4 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

f’c = 30MPa 57 64 71 77 81 41% 

f’c = 60MPa 59 65 72 78 82 40% 

% difference 3% 2% 1% 1% 2%   
 

 

 

 

Figure 4.10   EI versus L/d diagram for different values of f’c with e/d =0.4 
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Table 4.10:  Effect of L/d ratio with varying f’c values for e/d = 1.0 

L/d 10 15 20 25 30 % difference for 

L/d=10 to 30 
 EI (10x12) Nmm2  

f’c = 30MPa 28 43 58 69 73 165% 

f’c = 60MPa 28 44 60 70 75 167% 

% difference 2% 2% 3% 2% 3%   

 

 

 

 

Figure 4.11  EI versus L/d diagram for different values of f’c with e/d =1.0 

 

 

 

20

30

40

50

60

70

80

90

100

5.0 10.0 15.0 20.0 25.0 30.0 35.0

EI
 (x
10

12
), 
N
m
m

2

L/d

f'c=30 MPa

f'c=60 MPa



62 

 

 

Effect of L/d with varying Fy 

Figure 4.12 shows variation of EI with L/d ratios for the two different values of steel 

yield strength Fy (250MPa and 350MPa) for a lower eccentricity ratio e/d =0.1. 

Figure 4.13 shows the same variation for e/d= 0.4 and in Figure 4.14 the variation is 

shown for a high eccentricity ratio e/d= 1.0. Tabular forms of are also given in tables 

4.8, 4.9 and 4.10. Other variables are kept fixed at b/t = 30, s/d = 0.5 MPa and 

f’c =60 MPa. 

From the tables and figures, it can be observed that-  

• For each value of  Fy (250 MPa and 350 MPa), stiffness EI increases with an 

increase in L/d ratio. Table 4.11 shows that at low e/d ratio of 0.1, average EI 

increase for both the values of f’c is 40% for increasing L/d from 10 to 30.  At a 

medium e/d ratio of 0.55, this average increase in EI is about 108% (Table 4.12) 

and at a very high e/d ratio of 1.0, it is almost 170% (Table 4.13). Therefore, it is 

noticed that at higher eccentricities the rate of change in EI is higher than that at 

lower eccentricities which is the same phenomenon as observed in the preceding 

sections. 

• All the figures (Figure 4.12, 4.13 and 4.14) show that the two curves for 

Fy=250 MPa and 350 MPa are very close. That means, the EI values are almost 

same for both the values of Fy. This phenomenon can also be seen from 

Table 4.11, 4.12 and 4.13 from where it is observed that for all L/d ratios, the 

average increase in EI due to varying Fy from 250 MPa is only 2 to 3%. 

Therefore, it can be inferred that irrespective of any L/d, the effect of Fy on EI is 

very negligible.  
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Table 4.11:  Effect of L/d ratio with varying Fy values for e/d = 0.1 

L/d 10 15 20 25 30 % difference for 

L/d = 10 to 30 
 EI (10x12) Nmm2  

Fy = 250MPa 74 80 84 88 91 22% 

Fy = 350MPa 76 82 86 90 93 22% 
% difference 3% 2% 2% 2% 2%   

 

 

 

 

Figure 4.12 EI versus L/d diagram for different values of Fy at e/d =0.1 
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Table 4.12:  Effect of L/d ratio with varying Fy values for e/d = 0.55 

L/d 10 15 20 25 30 % difference for 

L/d = 10 to 30 
 EI (10x12) Nmm2  

Fy = 250MPa 41 54 66 74 78 90% 

Fy = 350MPa 43 55 68 76 80 88% 

% difference 4% 3% 3% 2% 3%   
 

 

 

Figure 4.13   EI versus L/d diagram for different values of Fy at e/d =0.55 
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Table 4.13:  Effect of L/d ratio with varying Fy values for e/d = 1.0 

L/d 10 15 20 25 30 % difference for 

L/d = 10 to 30 
 EI (10x12) Nmm2  

Fy = 250MPa 28 43 59 69 74 164% 

Fy = 350MPa 27 44 60 70 75 167% 

% difference 2% 2% 2% 2% 1%   
 

 

 

 

Figure 4.14   EI versus L/d diagram for different values of Fy at e/d =1.0 
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4.3.2 Effect of Eccentricity to Depth Ratio e/d 

Load eccentricity at the ends of the column is one of the most important parameters 

that can affect the theoretical stiffness (EI) of PEC columns. In order to get the 

reflection of the eccentricity effect, the dimensionless geometric operational 

parameter e/d (eccentricity to depth ratio) has been introduced. Effect of load 

eccentricity ratio on EI is studied with respect to the selected range of other variables 

(i.e. L/d, b/t, s/d,  f’c and Fy).   

Figure 4.15 shows variation of EI with e/d ratios for different values of L/d. 

Figures 4.16, to 4.19 show the same variation for different values of b/t, s/d, f’c and Fy 

respectively. From these figures, it can easily be perceived that the theoretical 

stiffness does not remain constant with the variation of eccentricity. For all the cases, 

EI decreases significantly with increasing e/d values. In other words, with all other 

parameters being constant, EI is high at low eccentricity values and becomes lower at 

higher eccentricities. This is because, higher eccentricity results in higher end 

moments which in turn produces higher second order deflection resulting in a 

reduction in the flexural stiffness of the column.  

 

             Figure 4.15   EI versus e/d diagram for different values of L/d. 

           (s/d =0.5, b/t =30, f’c=60 MPa, Fy= 350 MPa) 
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 Figure 4.16   EI versus e/d diagram for different values of b/t. 

                               (L/d =20, s/d =0.5, f’c=60 MPa, Fy= 350 MPa) 

 

 
                   Figure 4.17   EI versus e/d diagram for different values of s/d 

                                        (L/d =20, b/t =25, f’c=60 MPa, Fy= 350 MPa) 
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               Figure 4.18   EI versus e/d diagram for different values of f’c 

                                    (L/d =20, b/t =35, s/d =0.5, Fy= 350 MPa) 

 

 
 

                  Figure 4.19   EI versus e/d diagram for different values of Fy. 

                                      ( L/d =20, b/t =35, s/d =0.5, f’c=60 MPa) 
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Figures 4.15 to 4.19 also show that for lower values of e/d, the rate of decrement of EI 

is higher and at higher values of e/d the curve appears to become asymptotic. 

However, for column with L/d ratio of 10 and 15 ( as shown in Figure 4.15) the rate of 

decrease in EI is lower when e/d ratio is less than 0.4 and this rate increases at e/d 

ratio greater than 0.4. It is also observed that flexural stiffness EI decreases by 62% 

for L/d = 10, by 25% for L/d= 20 and by 17% for L/d=30 due to changing e/d from 0.1 

to 1.0. 

Figure 4.16 shows the EI versus e/d curves for three selected b/t ratios. From this 

figure it is obvious that at higher b/t ratio (=35) the decreasing rate in EI is higher as 

compared to the rate for b/t of 25 and 30.  The effects of s/d ratio, concrete strength 

and grade of steel plates are shown in Figures 4.17, 4.18 and 4.19. These factors 

seemed to have negligible effect on the EI versus e/d curve for slender PEC columns. 

 

4.3.2 Effect of Flange Plate Slenderness Ratio b/t 

Compactness ratio i.e. half-flange width to thickness (b/t) ratio, in other words, plate 

slenderness ratio is a significant parameter that affects the flexural stiffness EI of a 

partially encased composite column. The phenomenon of local plate bending is 

governed by b/t ratio.  In order to achieve economy in design, non-compact steel 

sections are commonly used in PEC columns. Degree of compactness of a steel section 

is controlled by plate slenderness (b/t) ratio and therefore plate slenderness ratio plays 

an important role in stability and overall stiffness of a partially encased composite 

column member. For parametric study, three values of b/t ratio are used in this study, 

which are 25, 30 and 35.  

Figure 4.20 shows a variation of EI with b/t for the five different values of L/d at a low 

eccentricity (e/d =0.1). Figure 4.21, 4.22 and 4.23 show the same variation for different 

values of s/d, f’c and Fy respectively.  
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Figure 4.20   EI versus b/t diagram for different values of L/d at e/d=0.1 

                     ( s/d =0.5, f’c=60 MPa, Fy=350 MPa.) 

 

 
Figure 4.21   EI versus b/t diagram for different values of s/d at e/d=0.4 

                    ( L/d =20, f’c=60 MPa, Fy=350 MPa.) 
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Figure 4.22   EI versus b/t diagram for different values of f’c at e/d=0.55 

                   ( L/d =20, s/d=0.5, Fy=350 MPa.) 

 

 

Figure 4.23   EI versus b/t diagram for different values of Fy at e/d=1.0 

                    ( L/d =20, s/d=0.5, f’c=60 MPa.) 
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Studying the Figures 4.20, 4.21, 4.22 and 4.23, it can be generally concluded that for 

all combinations with any other parameters, effective flexural stiffness EI of the PEC 

column declines with an increase in b/t ratio. This is because of the fact that as b/t 

ratio increases, thickness of flange decreases and thus the probability of local plate 

bending and warping gets higher. Therefore the overall stiffness of PEC column 

section decreases with an increase in b/t ratio. 

The data of Tables 4.2, 4.3 and 4.4 also show that, for a column with slenderness ratio 

of L/d=10, changing the plate slenderness ratio b/t from 25 to 35 reduces the EI by 

about 36% for all values e/d. Similarly for column with slenderness ratio of 20 and 

30, average decrease in EI is found to be 31% and 32% respectively. The local 

buckling in the flange plates of the steel section is the primary reason for the 

reduction in EI with the increase in the b/t ratio.  

 

4.3.3 Effect of Link spacing to Depth Ratio s/d 

In partially encased composite (PEC) columns plain or deformed MS bars are used as 

horizontal links between flanges of the steel section. These links play an important role 

in increasing the confinement of the concrete poured between the flange plates. They 

also prevent local buckling and bending of the flange plates. In order to observe the 

effect of link spacing (s) in a generalised manner, the dimensionless parameter s/d (link 

spacing to depth ratio) has been introduced.  

Figure 4.24 shows a variation of EI with s/d ratio for the different values of L/d at 

e/d = 0.1. Figure 4.25, 4.26 and 4.27 show the same variation for different values of b/t, 

f’c and Fy respectively at other different e/d ratios.  
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Figure 4.24   EI versus s/d diagram for different values of L/d at e/d=0.1 

    (b/t =25, f’c=60 MPa and Fy=350 MPa.) 

 

 

Figure 4.25   EI versus s/d diagram for different values of b/t at e/d=0.55 

     (L/d =25, f’c=60 MPa and Fy=350 MPa.) 
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Figure 4.26   EI versus s/d diagram for different values of f’c at e/d=0.3 

    ( L/d =20,  b/t=30 and Fy=350 MPa) 

 

 

 
Figure 4.27   EI versus s/d diagram for different values of Fy at e/d=0.55 

    ( L/d =25,  b/t=25 and f’c=60 MPa) 
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Studying the observations on s/d ratio, it can generally be concluded that for all 

combinations with any other parameters, effective flexural stiffness EI of the PEC 

column declines by a little amount with increasing s/d ratio from 0.5 to 0.7. The reason 

is as s/d increases, vertical spacing between transverse re-bar links goes higher and thus 

confinement of concrete between flanges decreases. Moreover an increase in link 

spacing also increases the probability of local flange plate bending and warping. 

Therefore the overall stiffness of PEC column section decreases with an increase in s/d 

ratio. However, this decrease in stiffness is very little and can be neglected. 

Moreover, from the data provided in Tables 4.5, 4.6 and 4.7, it is found that for a 

column with slenderness ratio of L/d=10, changing the s/d ratio from 0.5 to 0.7 

reduces the EI by about 6% for all values e/d. Similarly for column with slenderness 

ratio of 20 and 30, average decrease in EI is found to be 3% and 4% respectively.  

 

 

4.3.4 Effect of Compressive Strength of Concrete f’c 

Compressive strength of concrete f’c plays an important role in the load carrying 

capacity of concrete. Therefore it affects the required column size and subsequently 

the amount of steel required for a particular combination of axial and flexural load. In 

the parametric study the concrete strength was varied from 30 MPa to 60 MPa in 

order to investigate the influence of concrete strength in combination with other 

parameters. 

Figure 4.28 shows variation of EI with f’c values for the different values of L/d at 

e/d = 0.25. Figure 4.29, 4.30 and 4.31 show the same variation for different values of 

b/t, s/d and Fy respectively at random e/d ratios.  
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Figure 4.28   EI versus f’c diagram for different values of L/d at e/d=0.25 

           (b/t =25,  f’c=60 MPa and Fy=350 MPa.) 

 

 
 

Figure 4.29   EI versus f’c diagram for different values of b/t at e/d=0.4 

           (L/d =20,  s/d=0.5 MPa and Fy=350 MPa.) 

60

70

80

90

100

110

20.0 30.0 40.0 50.0 60.0 70.0

EI
 (X

10
12
), 
N
m
m

2

f'c (MPa)

L/d=10
L/d=15
L/d = 20
L/d = 25
L/d = 30

0

20

40

60

80

100

20.0 30.0 40.0 50.0 60.0 70.0

EI
 (X

10
12
), 
N
m
m

2

f'c (MPa)

b/t=25

b/t=30

b/t= 35



77 

 

 
 

Figure 4.30   EI versus f’c diagram for different values of b/t at e/d=0.55 

           ( L/d =20,  b/t=30 MPa and Fy=350 MPa). 

 

 
Figure 4.31   EI versus f’c diagram for different values of Fy at e/d=0.75 

           ( L/d =20,  b/t=30 MPa and s/d=0.5 MPa.) 
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Studying the graphs and observations on f’c, it can generally be concluded that for all 

combinations with other parameters, effective flexural stiffness EI of the PEC column 

increases very little (maximum 6%) with increasing f’c from 30 MPa to 60 MPa. However 

this increase in EI at high eccentricities (e/d = 0.55 and 0.75) as shown in Figures 4.30 

and 4.31, is less than 3%. It is because of the fact that in high eccentricities i.e. high 

flexure, role of concrete in a PEC section becomes less significant as concrete is weaker 

in resisting flexural moment. In other words, the behaviour of slender columns are 

governed by stability not strength.  

4.3.5 Effect of Yield Strength of Structural Mild Steel Fy 

Yield strength of structural mild steel Fy contributes to both axial load carrying capacity 

and moment resisting capacity of a PEC column. Therefore Fy  has an effect on  the 

required cross sectional size of column for a particular combination of axial and flexural 

load. Therefore, Fy has been chosen as a parameter that may affect the flexural stiffness of 

PEC columns. In the parametric study Fy was varied from 250 MPa to 350 MPa to 

investigate its influence on EI of PEC columns in combination with other parameters.  

Figure 4.32 shows variation of EI with Fy values for the different values of L/d at e/d = 0.4. 

Figure 4.33, 4.34 and 4.35 show the same variation for different values of b/t, s/d and f’c 

respectively at random e/d ratios.  

 Figure 4.32   EI versus Fy diagram for different values of L/d at e/d=0.4 

           ( b/t =25,s/d =0.5and  f’c=60 MPa) 
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Figure 4.33   EI versus Fy diagram for different values of b/t at e/d=0.15 

           ( L/d =20, s/d =0.5and  f’c=60 MPa) 

 

Figure 4.34   EI versus Fy diagram for different values of s/d at e/d=0.55 

           ( L/d =25,b/t =25 and  f’c=60 MPa) 
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Figure 4.35   EI versus Fy diagram for different values of f’c at e/d=0.2 

           ( L/d =25,b/t =25 and  f’c=60 MPa) 

From the figures it is evident that theoretical EI value is hardly affected with the 

change of Fy . All these graphical figures invariably show almost horizontally sloped 

curves which characterizes the triviality of the effect of yield strength (Fy ) of 

structural steel shape on flexural stiffness (EI) of PEC columns. The reason behind 

this behaviour is that irrespective of the values of Fy, the modulus of elasticity of steel 

Es remains the same. As a result flexural stiffness EI does not change noticeably with 

an increase in Fy.  
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Chapter 5 
  

FORMULATION OF DESIGN EQUATION FOR FLEXURAL 

STIFFNES OF SLENDER PEC COLUMNS  

 

5.1 COMPARISON OF THEORETICAL STIFFNESS DATA WITH ACI 

EQUATION 

In the preceding chapter, a total number of 120 columns were simulated and studied for 

different individual combinations of the selected geometric and material parameters. 

Each of these columns was analyzed for the 10 specific e/d ratios. Therefore a total 

number of 1200 stiffness data were generated. As stated in section 3.2.2, the following 

expression of theory of elasticity derived from the secant formula for the theoretical 

flexural stiffness of a pin-ended column subjected to symmetrical single curvature 

bending is used for computation of the theoretical stiffness data. 

 

⎥
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⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
=

−

col

cs

u
th

M
M

lPEI
1

2

sec4
                                                               …  (3.11) 

These theoretical stiffness values generated for all columns have been compared with 

their respective stiffness values calculated form ACI equation. As discussed in 

section 3.3, the following equation permitted by ACI Building code is used for 

calculating the effective flexural stiffness (EIACI) of slender composite columns  

                            EIACI = 0.2EcIg + EsIss                                                 … (3.14) 

Equation (3.14) was compared with the theoretical stiffness values (EIth) computed 

from Equation (3.11) for all simulated composite columns. 
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The theoretical stiffness values (EIth) and the stiffness values calculated from the ACI 

equation (EIACI) has been statistically analyzed. In order to determine the deviation 

between theoretical stiffness values (EIth) from that of ACI equation (EIACI) a 

dimensionless stiffness ratio
ACI

th

EI
EI is introduced. Figure 5.1 shows a histogram for 

ACI

th

EI
EI . 

 

Figure 5.1: Histogram of the ratio of theoretical stiffness to ACI stiffness  

Figure 5.1 shows that the mean value of stiffness ratio is 0.77 which is much lower 

than unity. On the average, the ACI values of EI are much higher than the 

theoretically predicted values of EI for slender PEC columns. For a significant 

number of columns studied, the theoretical EI substantially deviated from the ACI EI . 

This is because the ACI design equation was mainly developed for reinforced 

concrete columns and does not include all the parameters that may affect the stiffness 

of slender PEC columns. The histogram of EIth/ EIACI in Figure 5.1 indicates that a 

modification in the ACI EI equation is required for PEC columns.  
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5.2 DEVELOPMENT OF THE PROPOSED DESIGN EQUATION 

The variables that are most likely to affect the effective flexural stiffness of a slender 

PEC column have been discussed in the preceding chapter. An extensive parametric 

study is also performed in order to quantify the effect of the selected parameters and 

their inter relationships on the flexural stiffness (EI) of PEC columns. The parametric 

variables which have the greatest effect on EI have also been sorted out from the 

parametric study.  

A linear regression analysis is performed using the parametric data for the 

development of a reasonably accurate and simple equation for EI. For this purpose the 

ACI equation for EI (Equation. 3.14) is intended to be modified by introducing 

multiplying factors to it. From the parametric study it was observed that the most 

important variables affecting EI are overall column slenderness ratio (L/d) and load 

eccentricity ratio (e/d). Plate slenderness ratio (b/t) has also a significant effect. But 

for the sake of simplicity, only the first two prominent variables i.e. L/d and e/d are 

used for regression analysis for a single value of the third significant parameter 

b/t=25. For practical purpose the proposed equation may be used for a range of b/t 

varying from 22 to 26. Other less significant variables are kept constant at 

f’c=60 MPa, Fy =350 MPa and s/d=0.70 for regression analysis. Therefore the 

proposed multiplying factor to the ACI equation becomes practically a function of  

L/d and e/d :      

                               
)/,/( dedLf

EI
EI

ACI

proposed =
 

Therefore,  EIProposed = f(L/d, e/d).EIACI   …  (5.1) 

From regression analysis the expression for  f(l/d, e/d) is as follows: 

           (0.024 L/d - 0.90) e/d+ 0.005 L/d + 0.91 for b/t = 25, 

         f(L/d, e/d)=       (0.023 L/d - 0.85) e/d + 0.004 L/d + 0.88 for b/t = 30,    

           (0.022 L/d - 0.84) e/d + 0.004 L/d + 0.86 for b/t = 35.  
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It is evident that the function f(L/d, e/d) varies a little (the variation is within 10%) for 

different values of b/t. So, for simplicity in practical design purpose, a generalized 

function will be chosen as the average of the above three functions for f(L/d, e/d).  

Therefore, replacing the expressions for  f(L/d, e/d) and EIACI  in Equation 5.1, the 

proposed design equation for flexural stiffness of PEC columns will take the form,  

EIProposed ={(0.023 L/d - 0.85) e/d- 0.004 L/d +0.88}(0.2EcIg + EsIss)        …(5.2) 

[20 ≤ b/t ≤ 35] 

5.3 VERIFICATION OF THE PROPOSED DESIGN EQUATION 

In order to verify the accuracy of the proposed equation a limited comparative 

statistical analysis is performed. Figure 5.2 shows a histogram of the ratio between 

theoretical stiffness and stiffness from proposed equation. 

 

Figure 5.2: Histogram of theoretical stiffness with proposed stiffness equation 
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From Figure 5.2 it can be observed that the ratio EIth/EIproposed has the maximum 

frequency around unity. The mean value of the EIth/EIproposed is 1.10 which is much 

closer to unity than the mean value EIth/EIACI . Therefore it can be said that the 

proposed EI equation is practically more accurate than the ACI equation within the 

specified range of parameters. This is due to the fact that for development of the 

proposed equation, the variables that are likely to affect the flexural stiffness EI of 

PEC columns have been taken into account which were not in the case of ACI 

equation.     
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 INTRODUCTION 

Partially encased composite (PEC) column is a comparatively new type of composite 

column which consists of a thin-walled welded I shaped steel section with transverse 

links welded between the opposing flanges that is infilled with concrete cast between 

the flanges. Experimental and numerical researches have been previously done to study 

the behaviour of short PEC columns under static and dynamic load. But no effective 

study has yet been done on the effective flexural stiffness EI of the PEC columns. Also, 

the influences of different geometric and material parameters on the slenderness 

behaviour of this kind of columns are yet to be investigated. Moreover, the ACI EI 

expressions for composite columns are quite approximate as they do not include all the 

parameters which are likely to affect the flexural stiffness of columns (Mirza and 

Tikka 1999).  

An extensive parametric study has been conducted in this research in order to observe 

the effects of different parameters on the flexural stiffness EI of slender partially 

encased composite columns subjected to bending about the major axis of the steel 

section. The parameters which are likely to have the greatest effect on the behaviour of 

slender PEC columns were selected.  A number of 1,200 parametric data regarding EI 

were generated in this study. In the parametric analysis, elastic strain compatibility and 

Newmark’s method were used for computation of EI. The columns analysed were 

subjected to short-term loads and equal end moments causing symmetrical single-

curvature bending about the major axis of the encased steel section.  

Six parameters were chosen for the parametric study to investigate their effect on EI of 

PEC columns. The parameters are overall column slenderness ratio (L/d), initial load 

eccentricity ratio (e/d), flange plate slenderness ratio (b/t), link spacing-to-depth ratio 

(s/d), compressive strength of concrete (f’c) and yield strength of structural steel plate 
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(Fy). From the parametric analysis, the influence of each different parameter on the 

flexural stiffness EI of the PEC column has been revealed. A statistical evaluation of the 

parameters that affect the flexural stiffness EI of slender partially encased composite 

columns has also been conducted. The existing ACI 318-02 equations were examined 

and a new nonlinear equation for EI was developed from the simulated data. 

6.2 CONCLUSIONS 

The major findings of the current study are summarised below: 

 The theoretical stiffness for 120 PEC columns have been evaluated for different 

levels of load eccentricity ratio and in total 1200 stiffness data has been generated 

for PEC columns subjected to bending about major axis of the steel section. This 

extensive data base covers the wide range of four geometric (L/d, e/d, b/t and s/d) 

variables and two material variables (fc' and Fy) affecting the behaviour of PEC 

columns. 

 Among the six variables selected for this study the overall column slenderness ratio 

(L/d) and load eccentricity ratio (e/d) have been found to have the most significant 

effects on the flexural stiffness of PEC columns.   

 Flexural stiffness (EI) of the PEC column increases with an increase in L/d ratio 

irrespective of the selected values of other variables. In general, EI increases 

around 1.5 times for changing L/d from 10 to 30. However, the rate of increase in 

EI is diminishes at higher L/d ratios (i.e., L/d ratio over 20).     

 Effect of load eccentricity ratio on EI is studied with respect to the selected range 

of other variables (i.e. L/d, b/t, s/d, f’c and Fy).  For all cases, EI decreases 

significantly with increasing e/d values. At higher eccentricities the rate of 

change in EI is higher than that at lower eccentricities. 

 EI declines with an increase in flange plate slenderness (b/t) ratio. On an average 

EI decreases to around two third for changing b/t from 25 to 35.  

 The selected range of link spacing to depth (s/d) ratio seemed to have negligible 

effect on flexural stiffness of PEC columns. The EI value seemed to decrease by 
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less than 8% due to the change in s/d ratio from 0.5 to 0.7.  

 The two material parameters selected in this study found to have negligible effect 

on the flexural stiffness of PEC columns. Changing the concrete strength from 

30 MPa to 60 MPa results in an average increase in the stiffness of PEC columns 

by 4%. Increasing the grade of the structural steel shape of PEC columns from 

250 MPa to 350 MPa results in only 2% increase in the flexural stiffness of this 

column. Therefore, the effective flexural stiffness of slender PEC columns 

seemed to be independent of the material strength of its constituent members.  

 The flexural stiffness (EIth) values obtained in this study for 1200 parametric data 

have been compared to the existing flexural stiffness (EIACI ) equation in ACI code 

for RC and composite columns. It has been found that the existing ACI equation 

gives satisfactorily close results at low eccentricities. But at high eccentricities, 

EIACI differ largely from EIth. A regression analysis has been conducted and a 

design equation was proposed to calculate the flexural stiffness of PEC columns 

subjected to major axis bending. This proposed equation includes the most 

important parameters (L/d and e/d) that were proven to be most significant factors 

affecting the behaviour of PEC columns under major axis bending. The reliability 

of the proposed EI equation was then tested against all the parametric data and was 

found to be satisfactory.   

6.3 RECOMMENDATION FOR FUTURE RESEARCH 

The current study was only confined to developing the effective flexural stiffness of 

slender PEC columns subjected to symmetrical single curvature bending about its major 

axis. Future research works can be conducted for evaluating the effective flexural 

stiffness for columns subjected to bending about the minor axis of the steel section.  

The moment magnification factor for this new composite system should be developed 

for different end moment conditions to calculate the design moment for slender PEC 

columns.  

The numerical study has been accomplished for slender PEC column subjected to static 
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monotonic loading only. Additional study should be carried out on the behaviour of 

PEC column subjected to cyclic loading.  

Only linear material property has been considered for this study. Future research can be 

executed considering material nonlinearity and the numerical method can be modified 

to include nonlinear material behaviour of concrete in future research. 

The experimental database for studying the behaviour of slender PEC columns is 

limited. Future research should focus on extensive experimental investigations on 

slender PEC columns. The results of these investigations can be for further validation 

and applicability of the proposed design equation of EI for these columns.  
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