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ABSTRACT 

Brahmaputra River Basin(BRB) is one of the largest basins among Ganges-

Brahmaputra-Meghna (GBM) river system carrying enormous volume of water 

through Bangladesh.  The response of this basin due to climate changes is one of the 

key issues to be investigated due to its socio-economic and environmental 

vulnerability. A semi-distributed hydrological model of the BRB has been developed 

using the Soil Water Assessment Tool (SWAT). It has been calibrated and validated 

for the streamflow measured at the Bahadurabad station for the climate normal period 

(1981 to 2010). 

 

Synthetic approach of climate change modeling has been applied to assess the 

changes in water availability due to future potential changes in temperature and 

precipitation in BRB. Twenty hypothetical climate change scenarios (perturbed 

temperatures and precipitation: precipitationfrom -20% of climate normal period to 

+40% at 10% interval and temperature change of 0◦C to 6◦C at 2◦C interval) were 

applied to the calibrated and validated model in order to investigate the sensitivity of 

BRB mean annual and mean seasonal streamflow under the impact of climate change 

in the 21st century. The results revealed that the changes in annual streamflow due to 

changes in precipitation and temperature are linear. It appears that with respect to the 

climate normal (1981-2010), the changes in average annual streamflow (keeping 

temperature unchanged) are ± 12.83% per ±10% change in precipitation.  In contrast, 

streamflow response to the increase in temperature (keeping precipitation unchanged) 

is -2.49% per ◦C.  

 

The calibrated hydrological model of BRB then has been used to assess the impact of 

climate change on water availability of BRB by applying different climate change 

scenarios of selected General Circulation Models (GCM). The selection of GCM was 

based on the Representative Concentration Pathways (RCPs) scenarios of eight 

Intergovernmental Panel on Climate Change (IPCC) GCMs for the 21st century.  Six 

climate change scenarios, viz. as warmest, coolest, driest, wettest, moderate warm and 

moderate wet were selected based on the projected precipitation and temperature of 

the 21st century obtained from four RCPs (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) 

of eight GCMs (BCC-CSM1.1, BCC-CSM1.1(m), GISS-E2-H, GISS-E2-R, Had-



iii 
 

GEM2-ES, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3). From the analysis 

of temperature and precipitation data BCC-CSM1.1 RCP 8.5, HadGEM2-ES RCP 

8.5, MIROC-ESM-CHEM RCP 8.5, GISS-E2-R RCP 2.6, MRI-CGCM3 RCP 6.0 and 

GISS-E2-H RCP 4.5 were selected as the wettest, driest, warmest, coolest, moderate 

wet and moderate warm scenario, respectively. The high resolution spatial distribution 

of temperature and precipitation of these GCMs were obtained using the pattern 

scaling technique and were further applied to the SWAT hydrological model.  

 

SWAT simulated mean annual, mean dry period (December to May), and mean wet 

period (June to November) seasonal streamflow of BRB for the 2010-2039 (2020s),  

2040-2069 (2050s), and 2070-2099 (2080s) of  the  21st  centurywere compared with 

the corresponding climate normal (1981-2010) streamflow.  In general, BRB 

projected an increase in the mean annual streamflow for 21st century under the 

climate projections for almost all the six scenarios considered in this study.  However, 

GISS-E2-R RCP2.6 (coolest) and HadGem2-ES RCP8.5 (driest) projected decrease in 

annual average flow at Bahadurabad station during 2080s and 2020s respectively. The 

maximum projected increase in mean annual streamflow found are 15.019%, 

32.457% and 47.436% for MIROC-ESM-CHEM RCP8.5 (warmest), GISS-E2-H 

RCP4.5 (moderate warm) and BCC-CSM1.1 RCP8.5 (wettest) in 2020s, 2050s and 

2080s respectively. The minimum projected change in streamflow found are -3.290%, 

1.800% and -0.908% for HadGEM2-ES RCP8.5 (driest), GISS-E2-R RCP2.6 

(coolest) and GISS-E2-R RCP2.6 (coolest) in 2020s, 2050s and 2080s respectively.  

On average, at the end of 21st  century (2080s), the mean dry and wet period 

streamflow of BRB is  projected  to  increase  by  about  177.93%  and  11%  of  their  

mean  dry and wet period discharge in climate normal period, respectively. In 2080s, 

maximum increases in dry and wet period flow were found for GISS-E2-H RCP 4.5 

(moderate warming) and BCC-CSM1.1 RCP8.5 (wettest), respectively. Lowest dry 

and wet period flows were found for MRI-CGCM3 RCP6.0 (moderate wet) and 

GISS-E2-R RCP2.6 (coolest) scenarios, respectively. 
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Chapter 1 Introduction 
Introduction 

 

1.1 Climate Change Impact Assessment 

Bangladesh is widely recognized as one of the most vulnerable countries to climate 

change. Due to the geographic location, too much flow during monsoon and scarcity 

during dry period has become highly sensitive to the contribution of flow from the 

major basins. The flow also greatly affects the socio-economic conditions, such as the 

population growth, inequity, poverty, regional development, food production etc. 

Climate change will alter the flow pattern and seasonal variation which will have 

significant impact on total development of the country (Climate change cell, 2006). 

 

High flow during monsoon period causes flood all over the country which depends on 

the flow contribution of the major river basins, namely Ganges-Brahmaputra-Meghna 

(GBM)river system. According to IPCC fourth assessment report (IPCC-WGII, 2007) 

- (a) Annual mean rainfall exhibits increasing trends in Bangladesh (b) Decadal rain 

anomalies are above long term averages since 1960s (c) Recurring floods have taken 

place during 2002, 2003, and 2004 (d) Cyclones originating from the Bay of Bengal 

have been noted to decrease since 1970 but the intensity has increased and (e) 

Frequency of monsoon depression and cyclone is also increasing with the change of 

climate. 

 

Different parts of the country are frequently facing water scarcity during post 

monsoon and pre-monsoon period when the rainfall diminishes and temperature 

increases (Climate change cell, 2006). Average temperature has registered an 

increasing trend of about 1°C in May and 0.5°C in November during the 14 year 

period from 1985 to 1998 (IPCC AR4 WG2, 2007).  Water shortages greatly affecting 

rapid urbanization and industrialization, population growth and inefficient water use, 

which are worsened by the adverse impacts on demand, supply, water quality and 

climate change (Climate change cell, 2006). Increased temperature and reduced 

rainfall causes increased evapotranspiration and reduced crop yield. So, it stands that 

the assessment of the impact of climate change to the future availability of water in 

the major river basins is a national priority.  
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1.2 Background of The Study 

The Ganges-Brahmaputra-Meghna (GBM) river basin is one of the most vulnerable 

areas in the world under the potential impact of climate change (Gain, 2011). 

Gain(2011) mentioned three major reasons for such susceptibility to climate change 

which are snow melt, flood and sea level rise. First, strong influence of snow and ice 

melt in the upstream as 60 percent of the area has elevation greater than 2000m where 

cryospheric process is important. Increased temperature would lead to an increase in 

summer flow followed by a reduction of flow when glacier disappears and snowfall 

reduces (Immerzeel, 2008).  Secondly, extreme flooding and monsoon rainfall greatly 

influence the basin hydrology of Ganges and Brahmaputra river basin (Warrick et. al, 

1996). If climate change influence the intensity of monsoon rain which may cause 

variability of available water in other seasons. Such as too much water may flow 

during monsoon which will cause reduction of dry season flow unless water is stored 

in any reservoir (Oki and Kanae, 2006). Thirdly, climate change will cause sea level 

rise which will lead to backwater effect in Ganges Brahmaputra basin (Agrawala et. 

al., 2005). So in order to face the future disaster or scarcity, better understanding of 

the basin response to future climate change is crucial.  

 

In this research an attempt has been made to get a comprehensive understanding of 

the comprehensive basin characteristics of Brahmaputra River Basin (BRB). The 

basin response to different climate change scenarios has been analyzed in detail.  

1.3 Description of the Study Area 

Brahmaputra River Basin (BRB) is one of the major basins in the world draining an 

area of about 530,000 km2 through China (50.5%), India (33.6%), Bangladesh (8.1%) 

and Bhutan (7.8%) (Immerzeel, 2008). After originating from Kailash range in Tibet 

(China), it flows 2,900 km and meets Ganges in Bangladesh. Flow of this basin 

experiences various environments. After Himalayan slopes it enters India at elevation 

of 660m and then flows southward for about 220 km to reach Pasighat (Ghosh, 2012). 

It is known as Brahmaputra river after the confluence of two major tributaries, Dibang 

and Lohit at Pasighat. After flowing 710 km through Assam valley it enters 

Bangladesh. Almost hundred tributaries contribute runoff to the Brahmaputra river 

among which 15 in the north bank and 10 in the south are pretty large (Sarma, 2004). 

The river has gentle bed slope in the lower reaches falling at a rate of 0.079 m per km, 
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whereas in the Himalayan region the channel is narrow and gradient is about 16.8 m 

per km (Sarma, 2005).  Figure 1.1 shows the extent of Brahmaputra river basin over 

different countries. 

 

 

 

 

Figure 1.1: Brahmaputra River Basin 

Brahmaputra river is known as Jamuna river in Bangladesh which is highly braided in 

nature having a width of 6 to 18 km.The average annual discharge is about 20,000 

m3/s (Immerzeel, 2008). Immerzeel (2008) classified the basin into three different 

physiographic zones: Tibetal Plateau (TP), Himalayan belt (HB) and the floodplain 

(FP). Each zone responds differently to climate change. The area coverage of TP, HB 

and FP are 44.4%, 28.6% and 27% with an elevation of greater than 3500, 100-3500 

and less than 100 m (Immerzeel, 2008). Average temperature in lower BRB varies 

from17◦C in winter and 27◦C high in summer and the total annual precipitation in 

monsoon months (JJAS) is 2354 mm (Gain, 2011). Bahadurabad station is the major 

discharge measurement station having high quality long period data. For any 

hydrological assessment of this basin it is the most important source of reliable data. 

So in this study long term discharge data of Bahadurabad station will be used for 

calibration and validation of the model.  
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Table 1.1: Mean annualprecipitation in Ganges, Brahmaputra and Meghna basin 
(Mirza, 2003). 

Basin Country Mean annual  
precipitation (mm) 

Ganges Nepal 1860 
 India 450-2000 
 Bangladesh 1570 
Brahmaputra Tibet (China) 400-500 
 Bhutan 500-5000 
 India 2500 
 Bangladesh 2400 
Meghna/ Barak India 2640 
 Bangladesh 3575 

 

Mean annual precipitation for the GBM is shown in Table 1.1. The general circulation 

over the basin area undergoes abrupt seasonal changes during late spring and early 

summer due to tropospheric warming over the Asian landmass, and causes early 

summer rains over the basin (Heet et.al., 1987). The mean annual value of such pre-

monsoonal heavy rains shows a rainfall above 100 mm/day for 7.7 days and above 

300 mm/day for 1.6 days for the observation period of 1993–2001 (Soja and Starkel, 

2007). The river basin receives high-intensity storm events frequently during the four 

monsoon months from June to September (Ghosh, 2012). Rainfall is very much high 

in Cherapunji region where rainfall remains above 100 mm/day for around 28.3 days 

and 5 days are found with rainfall greater than 300 mm/day based on the observed 

rainfall during 1993-2001 (Soja and Starkel, 2007). About 66-85% of annual rainfall 

occurs during monsoon and 20-30% occurs during pre-monsoon season, whereas 

small percentage of rainfall occurs in winter (Sarma, 2005). 

1.4 Research Objective 

The specific objectives of this study are: 

a. To develop and calibrate a hydrological model of Brahmaputra river basin 

using Soil Water Assessment Tool (SWAT). 

b. To identify the future extreme and moderate climate scenarios and 

corresponding GCMs for Brahmaputra river basin. 

c. To generate high resolution climatic data for selected GCMs using Pattern 

Scaling. 
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d. To study the impacts of climate change on future flow of Brahmaputra river 

basin for selected stations. 

 

1.5 Organization of the thesis 

Chapter 1 is an introduction to the thesis. Here, the background of the study has been 

discussed, study area has been introduced and objective of the thesis is described. 

 

Chapter 2 is literature review. This chapter contains review of literature of several 

topics which include- review of climate change modeling, hydrological model types 

and its properties, climate change study on water availability in Brahmaputra river 

basin, SWAT model concept and capacities to simulate several hydrologic processes.  

 

Chapter 3 discusses the steps followed in the present thesis to setup, calibrate/validate 

the model, analyze sensitivity of climate parameters to simulate dischargeand assess 

the impact of climate change on flow in Brahmaputra river basin. 

 

Chapter 4 describes the detail procedure followed to setup hydrological model of 

Brahmaputra river basin. This chapter describes the bias correction done on climate 

data, parameters used to calibrate the model and evaluate the performance of 

calibration/validation. 

 

Chapter 5 is results and discussions which contains discussion on water balance, 

sensitivity analysis, selection of climate change scenarios to be used for simulation 

and impact of climate change on water availability.  

 

Chapter 6 is conclusions and recommendations. This chapter gives a summary of the 

results obtained in this study and also includes recommendations for further study 

relevant to this topic.  
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Chapter 2 Theory and Literature Review 
Theory and Literature Review 

 

2.1 Review of Climate Change Modeling for Hydrological Impact Assessment 

Warming of the climate system in recent decades is unequivocal because of the 

observational evidences which confirm the increases in global average air and ocean 

temperatures (Bates et.al., 2008). These changes in global climate can affect a number 

of components of the hydrological cycle and hydrological systems (e.g. precipitation, 

snowmelt, evaporation, soil moisture, runoff etc). Such changes in hydrologic system 

will affect nearly every aspect of human well-being, from agricultural productivity 

and energy use to flood control, municipal and industrial water supply, fishery and 

wildlife management.  So it is obvious to understand how a change in global climate 

could affect regional water supplies. Literature review of current studies indicates that 

climate change modeling for hydrological impact studies generally done in three steps 

(Islam, 2011a):  

 

Step 1: Runoff simulation under present climatic conditions for climate normal period 

(a 30 years period, usually 1961-1990 or 1971-2000 or 1981-2010) using a hydrologic 

model calibrated and validated with historical data; 

 

Step 2:Generation of climate change scenarios for different future periods (usually 

three 30 years period of 21st century, namely, 2010-2039, 2040-2069, and 2070-

2099);   

 

Step 3: Runoff simulation under changed climatic conditions for future periods based 

on the generated climate change scenarios.  

 

The effect of climate change on surface water resources in future is usually 

demonstrated by comparing the runoff generated from step 3 and step 1.  Runoff 

simulation under present and changed climate (Step 1 and 3) is usually conducted by 

hydrologic models. Scientific literatures on hydrological impacts of climate change 

contain a large number of reports detailing the application of various hydrologic 

models in global, regional, or basin scale. 
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Figure 2.1: Different approaches of climate change modeling for water resources 
impact assessment (Islam, 2011a). 

2.1.1 Approaches of Climate Change Scenario Generation: 

There are different approaches to generate climate change scenarios for hydrological 

impact studies. They can be broadly classified as synthetic approach, analogue 

approach and climate model based approach (Figure2.1) and will be discussed in the 

following paragraphs: 
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2.1.1.1 Synthetic Approach 

In the synthetic approach the future climatic variables (mostly precipitation and 

temperature) are changed incrementally by arbitrary amounts. These changes can be 

made in annual, seasonal or monthly scales.  Climate change scenario generation in 

this method consists of three steps:  

 

Step 1: Estimation of average annual or monthly changes in climate data. Typically 

temperature and precipitation changes are estimated by,  

 

ΔT=+1°, +2°, and +4° 

ΔP=0, ±10%, ±20% 

 

Step 2: Perturbation of historical time series of climatic data. Typically temperature 

and precipitation for climate change scenario are perturbed as,  

 

T2=T1+ΔT    (2.1) 

P2=P1+ΔP    (2.2) 

 

where T1, T2 and P1, P2 are the historic and future temperature and precipitation 

respectively.   

 

Step 3: Drive a calibrated hydrological model based on perturbed precipitation and 

temperature to simulate hydrological characteristics (runoff, soil moisture, 

evapotranspiration etc.).  

 

Many climate change studies on water resources impact assessment are based on this 

approach (e.g. Nemec and Schaake, 1982; Gleick, 1986, 1987; McCabe and Ayers, 

1989; Schaake and Liu, 1989; Nash and Gleick, 1990; Vehviläinen and Lohvansuu, 

1991; Panagoulia, 1991; Arnell, 1992; Ng and Marsalek, 1992; Whetton et.al., 1993; 

Avila et.al., 1996; ; Singh and Kumar, 1997; Xu and Halldin, 1997; Xu, 2000; Guo 

et.al., 2002; Davies, 2004; Jiang et.al., 2007). A summary of those studies is shown is 

Table 2.1.   
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Table 2.1: Examples of Hydrological Impact Studies Based on Synthetic Climate 
Change Scenarios. 

Authors Location  Predictand  Perturbation  
Nemec and 
Schaake(1982) 

Leaf River Basin, USA  
Pease River Basin, USA  
Nzoia River Basin, western 
Kenya.   

T 
P 

±1, +3 °C 
± 10%, ± 25% 

Schaake and Liu (1989) Southeast, USA ET 
P 

+10% 
+10% 

Nash and Gleick (1990) Colorado River Basin T 
P 

+2, +4 °C 
0, ± 10%, ± 20% 

Whetton et.al.(1993)* Perth, Australia ET 
P 

+20% to 40% 
-20% to 40% 

Chiew et. al. (1995) Australia  T 
P 

0, +2, +4 °C 
0, ± 10%, ± 20%, 
± 30%, ± 40%  

Xu and Halldin (1997) NOPEX Area ,Europe T 
P 

+2, +4 °C 
± 10%, ± 20% 

Fowler (1999)* Auckland, New Zealand ET 
P 

-20% to 40% 
-20% to 40% 

Xu (2000) Central Sweden  T 
P 

+1, +2, +4 °C 
0,± 10%, ± 20% 

Davies (2004)* North-Central Sweden  T 
P 

-5 to +15 °C 
-10% to 40% 

Jiang et.al. (2007) Dongjiang Basin, South 
China 

T 
P 

+1, +2, +4 °C 
0, ±10%, ± 20% 

Guo et.al. (2002) China  T 
P 

 ±1, ±2, ±3 ° C  
0%, ±25%, 50%, 
100% 

* Response surfaces  plotting; Abbreviations: T–Temperature, P– Precipitation, ET– Potential 

Evapotranspiration (Islam, 2011a). 

2.1.1.2 Analogue Approach of Climate Change Modeling  

In analogue approach, climate change scenarios are constructed by identifying 

recorded climate regimes which may resemble the future climate in a given region 

(IPCC, 2001). In this approach the fundamental assumption is that, climate will 

respond in the same way to a unit change in forcing despite its source or the boundary 

conditions in place at the time. Analogue approach can be spatial or temporal. In 

spatial analogue approach attempts are made to identify regions which have a climate 

that is similar to that projected for the study region in the future. In temporal 

analogues for a given location a past climate is analyzed to resemble the projected 

future climate for that location (Islam, 2011a).  
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Table 2.2: Spatial Resolution of selected GCMs in IPCC TAR and AR5 

 Model Institution Resolution 
Lat x Long  

Reference 

1 BCC-CSM 1.1 Beijing Climate Center, China 
Meteorological Administration 

2.8125 x 
2.8125 

Wu, T., 2012 

2 BCC-CSM 
1.1(m) 

Beijing Climate Center, China 
Meteorological Administration 

2.8125 x 
2.8125 

Wu, T., 2012 

3 CSIRO-Mk3.6.0 Commonwealth Scientific and 
Industrial Research Organisation 
and the Queensland Climate 
Change Centre of Excellence 

1.875 x 
1.875 

Collier, M.A.et.al., 2011  

4 FIO-ESM The First Institute of 
Oceanography 

2.812 x 
2.812 

Song, Z., Qiao, F., Song, Y. 

5 GFDL-CM3 Geophysical Fluid Dynamics 
Laboratory 

2.0 x 2.5 Donner, L.J.et.al., 2011 

6 GFDL-ESM2G Geophysical Fluid Dynamics 
Laboratory 

2.0 x 2.5 Dunne, J.P.et.al., 2012 

7 GFDL-ESM2M Geophysical Fluid Dynamics 
Laboratory 

2.0 x 2.5 Dunne, J.P.et.al., 2012 

8 GISS-E2-H NASA Goddard Institute for 
Space Studies 

2.0 x 2.5 Schmidt, G.A.et.al., 2006.  

9 GISS-E2-R NASA Goddard Institute for 
Space Studies 

2.0 x 2.5 Schmidt, G.A.et.al., 2006 

10 HadGEM2-ES Met Office Hadley Centre 1.2414 x 
1.875 

Collins, W.J.et.al.2011) 

11 IPSL-CM5A-LR Institut Pierre-Simon Laplace 1.875 x 
3.75 

Dufresne, J.L.et.al., 2013 

12 IPSL-CM5A-
MR 

Institut Pierre-Simon Laplace 1.2587 x 
2.5 

Dufresne, J.L.et.al., 2013 

13 MIROC-ESM Atmosphere and Ocean Research 
Institute (The University of 
Tokyo), National Institute for 
Environmental Studies, and Japan 
Agency for Marine-Earth Science 
and Technology 

2.8125 x 
2.8125 

Watanabe, S.et.al., 2011 

14 MIROC-ESM-
CHEM 

Atmosphere and Ocean Research 
Institute (The University of 
Tokyo), National Institute for 
Environmental Studies, and Japan 
Agency for Marine-Earth Science 
and Technology 

2.8125 x 
2.8125 

Watanabe, S.et.al.,2011 

15 MIROC5 Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean Research 
Institute (The University of 
Tokyo) and National Institute for 
Environmental Studies 

1.4063 x 
1.4063 

Watanabe, S.et.al.,2010 

16 MRI-CGCM3 Meteorological Research Institute 1.125 x 
1.125 

Yukimoto, S., 2012 

17 NorESM1-M  Norwegian Climate Centre 1.875 x 2.5 Kirkevag, A., Iversen, T., Seland, 
O., debernard,J.B., Storelvmo, T., 
Kristjansson, J.E.,2008 

 

 

Many climate change studies on water resources are found in literature were based on 

analogue approach (e.g. Palutikof, 1987; Krasovskaia and Gottschalk, 1992; 
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Knox,1993; Zorita and Storch, 1999; Cohen and Kulkarni, 2001; Bouraoui  et.al., 

2004; Yao et.al., 2009; Orlowsky et.al., 2010). Most of them used temporal analogue 

approach based on historical measurement of precipitation, temperature and river 

flows.  

 

2.1.1.3 Climate change modeling based on general circulation models 

Development of General Circulation Models (GCMs) is one of the most prominent 

climate change research advancements starting from the early 1990s onwards, and 

they are the most advanced tools currently available for simulating the response of the 

global climate system to changing atmospheric composition (e.g. increase in  

atmospheric CO2 on the mean global climate) ( IPCC, 2001; Shackley et.al., 1998). 

GCMs are numerical atmospheric model coupled with three dimensional dynamic 

ocean models, together with complex land surface schemes and sea ice models, and 

can provide considerable potential for the study of climate change and variability 

(Fowler et.al., 2007; Shackley et.al., 1998).  GCMs used to solve equations describing 

the movement of energy and momentum, along with the conservation of mass at 

discrete points on the entire surface of the Earth, at a fixed time interval, and for 

separate layers in the atmosphere defined by a regular grid (Wilby, 2009). 

 

Initially atmospheric General Circulation Models (GCMs) were run to equilibrium 

under current (1xCO2) and doubled (2xCO2) emissions forcing to estimate their 

potential effect on global climate. After being coupled with Oceanic Circulation 

Models, these GCMs are forced with transient greenhouse emissions to allow for the 

estimation of the rate at which climate changes might occur. Table 2.2 shows different 

GCMs available, their institution and resolutions. 

2.1.2 Climate Change Scenarios 

The new scenarios are called Representative Concentration Pathways (RCPs). There 

are four pathways: RCP8.5, RCP6, RCP4.5 and RCP2.6. According to van Vuuren 

(2011a)- 

“Two important characteristics of RCPs are reflected in their names. The word 

“representative” signifies that each of the RCPs represents a larger set of scenarios 

in the literature. In fact, as a set, the RCPs should be compatible with the full range of 



12 
 

emissions scenarios available in the current scientific literature, with and without 

climate policy. The words “concentration pathway” are meant to emphasize that 

these RCPs are not the final new, fully integrated scenarios (i.e. they are not a 

complete package of socio-economic, emission and climate projections), but instead 

are internally consistent sets of projections of the components of radiative forcing that 

are used in subsequent phases. The use of the word “concentration” instead of 

“emissions” also emphasizes that concentrations are used as the primary product of 

the RCPs, designed as input to climate models. Coupled carbon-cycle climate models 

can then as well calculate associated emission levels (which can be compared to the 

original emissions of the IAMs) (see Hibbard et.al., 2007). In total, a set of four 

pathways were produced that lead to radiative forcing levels of 8.5, 6, 4.5 and 2.6 

W/m2,bythe end of the century. Each of the RCPs covers the 1850–2100 period, and 

extensions have been formulated for the period thereafter (up to 2300).” 

2.1.2.1 RCP Primary Characteristics 

RCP 8.5 was developed using the MESSAGE model and the IIASA Integrated 

Assessment Framework by the International Institute for Applied Systems Analysis 

(IIASA), Austria. This RCP is characterized by increasing greenhouse gas emissions 

over time, representative of scenarios in the literature that lead to high greenhouse gas 

concentration levels (Riahi et.al., 2007).  

 

RCP6.0 was developed by the AIM modeling team at the National Institute for 

Environmental Studies (NIES) in Japan. It is a stabilization scenario in which total 

radiative forcing is stabilized shortly after 2100, without overshoot, by the application 

of a range of technologies and strategies for reducing greenhouse gas emissions 

(Fujino et.al., 2006; Hijioka et.al., 2008).  

 

RCP 4.5 was developed by the GCAM modeling team at the Pacific Northwest 

N        L         ‘  J     G      C      R        I          JGCRI         U      

States. It is a stabilization scenario in which total radiative forcing is stabilized shortly 

after 2100, without overshooting the long-run radiative forcing target level (Clarke 

et.al., 2007; Smith and Wigley, 2006; Wise et.al., 2009).  
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RCP2.6 was developed by the IMAGE modeling team of the PBL Netherlands 

Environmental Assessment Agency. The emission pathway is representative of 

scenarios in the literature that lead to very low greenhouse gas concentration levels. It 

     ―    -and-       ‖         ;                                                      

around 3.1 W/m2 by mid-century, and returns to 2.6 W/m2 by 2100. In order to reach 

such radiative forcing levels, greenhouse gas emissions (and indirectly emissions of 

air pollutants) are reduced substantially, over time (Van Vuuren et.al., 2007). 

(Characteristics quoted from van Vuuren et.al,. 2011a) 

 

Emissions and concentrations, forcings and temperature anomalies Each 

Representative Concentration Pathway (RCP) defines a specific emissions trajectory 

and subsequent radiative forcing (a radiative forcing is a measure of the influence a 

factor has in altering the balance of incoming and outgoing energy in the Earth-

atmosphere system, measured in watts per square metre). 

 

Table 2.3: Median temperature anomaly over pre-industrial levels and SRES 
comparisons based on nearest temperature anomaly (Moss et.al., 2010). 

Name Radiative 
forcing 

CO2  
equiv 
(p.p.m.) 

Temp 
anomaly 
(C) 

Pathway SRES temp 
anomaly 
equivalent 

RCP8.5 8.5 W/m2 in 
2100 

1370 4.9 Rising SRES A1F1 

RCP6.0 6 W/m2 post 
2100 

850 3.0 Stabilization without 
overshoot 

SRES B2 

RCP4.5 4.5 W/m2 post 
2100 

650 2.4 Stabilization without 
overshoot 

SRES B1 

RCP2.6 
(RCP3PD) 

3 W/m2 before 
2100, declining 
to 2.6 Wm2 by 
2100 

490 1.5 Peak and decline None 
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Figure 2.2: Changes in radiative forcing relative to pre-industrial conditions. Bold 
coloured lines show the four RCPs; thin lines show individual scenarios from 
approximately 30 candidate RCP scenarios that provide information on all key factors 
affecting radiative forcing (Moss et. al., 2010) 

The forcing trajectories are consistent with socio-economic projections unique to each 

RCP. For example, RCP2.6 (RCP3PD) assumes that through drastic policy 

intervention, greenhouse gas emissions are reduced almost immediately, leading to a 

                         ‘                  T                       - RCP8.5 - 

assumes more or less unabated emissions. 

 
Figure 2.3: Trends in concentrations of greenhouse gases (van Vuuren, 2011). Grey 
area indicates the 98th, 90th percentile (light/dark grey) of the recent EMF-22 study 
(Clarke et.al., 2010) 
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Figure 2.4: Emissions of main greenhouse gases across the RCPs. Grey area indicates 
the 98th and 90th percentiles (light/dark grey) of the literature. The dotted lines 
indicate four of the SRES marker scenarios. Note that the literature values are not 
harmonized (van Vuuren et.al., 2011a). 

2.1.3 Downscaling Climate Parameters 

Climate scenarios based on GCMs simulations have been using increasingly to predict 

future climatic change impact studies. However, they are not designed to assess the 

hydrological impact and to do so we need to resolve some of their limitations: GCMs 

remain coarse in spatial resolution and are unable to resolve various subgrid scale 

features required for impact studies (Fowler et.al., 2007); Techniques of resolving 

these gaps between GCMs and hydrological models are usually known as 

‗           ‘  T              GCM                                                   

wide numbers of downscaling techniques are found in literature. These techniques can 

broadly be classified into two categories: statistical downscaling and dynamic 

downscaling and will be discussed in the following paragraphs. 

2.1.3.1 Statistical Downscaling  of GCMs Outputs to Local Scale 

In statistical downscaling, empirical relationships are established between the GCM-

scale climate variables (predictors) and local-scale meteorological variables 

(predictands) using various statistical methods (Fowler et.al., 2007; Boe et.al., 2007). 

In general, the empirical relationship can be expressed as,  

 

)(XfY           (2.3) 
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Where, Y is the local climate variable not adequately described in GCMs and need to 

be downscaled for hydrologic impact studies, X is the set of large-scale climate 

variables and f  is the function relating them. 

 

Statistical downscaling techniques may be such as delta change method (or 

perturbation method) or more sophisticated methods as regression models, weather 

typing schemes and weather generators (Fowler et.al., 2007). 

2.1.3.1.1 Delta Change Approach 

Given that GCMs can simulate the relative changes more accurately than the actual 

values (Smith and Pitts, 1997; Fowler et al,. 2007), in this approach the changes 

between the control and future GCM simulations are applied to the baseline 

observations, usually known as climate normal, by adding or multiplying the mean 

climatic change factors. For example, the temperatures and precipitations are 

downscaled as,  

)( 1212 TTTT          (2.4) 

1

2
12 P

PPP



          (2.5) 

Where,T1 (P1) is the baseline observed temperature (precipitation), T2 (P2) is the future 

temperature (precipitation), 1T  ( 1P ) is the GCM simulated mean temperature 

(precipitation) for control run, and 2T   ( 2P )is the GCM simulated mean temperature 

(precipitation) for future climate scenario. 

 

Delta change approach has been used in a wide number of climate change studies on 

water resources. Early studies are based on GCMs simulations for equilibrium 2 x 

CO2 condition (e.g.  Lettenmaier and Gan, 1990; Chiew et.al., 1995; Arnell and 

Reynard, 1996; Middelkoop et.al., 2001)  and later studies are based on IPCC SRES 

emission scenarios (e.g. Miller et al, 2003; Kerkhoven and Gan, 2008; Githui et.al., 

2009; Boyer et.al., 2010;  Kerkhoven and Gan, 2010).  

2.1.3.1.2 Regression Model Approach 

Regression models techniques includes multiple regression model (MLR), artificial 

neural networks (ANNs), canonical correlation analysis (CCA),  singular value 
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decomposition (SVD), logistic regression model, multi-way partial least squares 

regression model (N-PLS) etc (Islam, Z., 2011a). In many studies the regression 

approach started with principal component analysis (PCA) of both the large and local 

scale variables, which eventually resulted in a significant reduction in data while 

retaining the signal in the time series. 

 

Multiple linear regressions (MLR) are the least computationally demanding 

downscaling techniques. In this method predictands (e.g. temperature, precipitation) 

are downscaled from a set of predictors using least squares. MLR may be based either 

directly on GCMs grid point data or on principal components (PCs) of predictor fields 

(Huth, 2002). 

2.1.3.1.3 Weather Typing Approach 

Weather types are defined as aggregate representation of meteorological variables 

characterizing regional weather patterns (Hay et.al., 1992). In this downscaling 

approach empirical relationships are developed between the weather classes and local 

and regional climate variations. General steps are: 

 Defining the weather types,  

 Conditioning local surface variables, 

 Modeling  the circulation-surface climate relationship, 

 Estimating climate change by applying GCMs simulated outputs into the 

model. 

 

There are different approaches to define a weather type or large scale atmospheric 

patterns.  They may be based on exiting circulation-type catalogues (synoptically), by 

statistical groupings, and by fuzzy rules. Synoptic method (e.g. Lamb Weather Types) 

typically defines weather types based on empirical orthogonal functions (EOFs) from 

pressure data or by indices from sea level pressure (SLP) data. Statistical methods 

include principal components analysis, canonical correlation analysis, and cluster 

analysis. Recent development is fuzzy rules method. Local surface variables (e.g. 

precipitation) are conditioned on daily weather patterns by deriving conditional 

probability distributions for observed statistics, associated with a given atmospheric 

circulation pattern. General approaches to model the circulation-surface climate 
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relationship are using Markov Chain models, linear regression, canonical correlation 

analysis, sampling from present-day instrumental analogue data (Islam, 2011a).  

2.1.3.1.4 Weather Generator Approach 

Weather generators (WGs) are statistical models that produce time series of 

meteorological data that have similar statistical properties as that of observed data 

(Chen et al, 2010). In other words, WGs replicate statistical attributes (e.g. mean and 

variance) of meteorological observation, but do not reproduce actual sequences of 

observed events (Wilks and Wilby, 1999). WGs simulating precipitation have two 

components: precipitation occurrence model and precipitation amount model. In 

Simple WGs, precipitation occurrence are modeled stochastically by first-order 

Markov Chain model that emulates transitions between wet and dry spells or dry-

days. The probability of precipitation on a given day is based on the wet or dry status 

of the previous day and can be defined in terms of the two transition probabilities,  

 

P00 = 1- P01    (2.6) 

P10 = 1 -P11   (2.7) 

where, P01 is the probability of a wet day following a dry day (i.e. probability of 

{precipitation on day t and no precipitation on day t-1}) and P11= the probability of a 

wet day following a wet day (i.e. probability of {precipitation on day t and 

precipitation on day t-1})  

 

More sophisticated WGs includes second-order and third-order Markov chain models 

for precipitation occurrence and exponential or fourth root methodfor quantifying 

precipitation amount and are better able to reproduce precipitation occurrence or 

persistence (Fowler et.al., 2007).   

 

In order to adapt a WG for climate change assessment the model parameters need to 

be adjusted. There are two approaches (Wilby et.al., 2009):  

 

First, relationships between key parameters (e.g. wet day probabilities) and slowly 

varying indices of atmospheric circulation that are well simulated by GCMs are 

developed. Then, the changes in the frequency of those atmospheric patterns as 
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projected by GCMs are translated into revised weather generator parameters, and 

daily weather sequences under future forcing are generated. 

 

Second, delta change approach is applied to generate daily weather series for climate 

change period and the WG is recalibrated. Then, recalibrated WG is driven to 

synthesize infinitely long daily sequences with the same statistical properties as 

climate change period.  

 

Table 2.4: List of recent studies on effect of climate change on water resources based 
on statistical downscaling approach of GCMs output. 

Authors  Study Area  Techniques Predictand 
Kerkhoven and Gan 
(2008; 2010) 

Athabasca River Basin, Fraser River 
Basin, Canada 

Delta Change  
 

P,T 

Githui et.al. (2009) Nzoia river catchment in western 
Kenya 

Delta Change  P, T 

Boyer et.al. (2010) Hydrological regimes of the St. 
Lawrence tributaries, Quebec, Canada.  

Delta Change  
 

P, Tmax, 
Tmin 

Huth (2002) Central Europe. MLR, SVD T 
Tolika et.al. (2007) Greece ANN P 
Matulla (2005) Austria  CCA P, T 
Penlap (2004) Cameron  CCA P 
Windman et.al. 
(2003) 

Oregon and Washington Area, USA SVD P 

Abaurrea and Asín 
(2005) 

Ebro valley, Spain LRM P 

Bergant and Kajfez-
Bogataj (2005) 

Slovenia  N-PLS P,T 

Bárdossy et.al. 
(2005) 

Ruhr catchment, Germany WT P 

Vrac et.al. (2007) Illinois, USA. WT P 
Cheng et.al. (2010) Ontario, Canada WT P 
Qian et.al. (2010) Agricultural Regions of Canada WG P 
Eum et al (2010) Nakdong River Basin in Korea WG P 
Wilby et al (2006) Kennet catchment, UK SDSM 

(Hybrid) 
P 

Souvignet et.al. 
(2010). 

Upper-Elqui watershed, Chile SDSM 
(Hybrid) 

P 

Abbreviations for techniques: MLR – Multiple Linear Regression methods, ANN –Artificial 
Neural Networks, CCA – Canonical Correlation Analysis, SVD – Singular Value 
Decomposition, LRM – Logistic Regression Model, N-PLS – Multi way Partial Least Square 
Method, WG – Weather Generators, WT – Weather Typing, SDSM – Statistical Down 
Scaling Model (hybrid); Abbreviations for predictands: T – temperature, P – precipitation 
(Islam, 2011b) 
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2.1.3.1.5 Other Statistical Downscaling Approaches 

Wilby et.al. (2002) developed a hybrid of stochastic weather Generator and regression 

model, namely, SDSM (Statistical Downscaling Model). The regression component of 

SDSM uses daily atmospheric circulation patterns and moisture variables to condition 

local weather generator parameters at application sites and the stochastic component 

enables the generation of multiple simulations by slightly differing time series 

attributes while maintaining the same overall statistical properties (Wilby, 2006; 

Fowler, 2007). Table 2.4 shows a list of recent studies conducted on the effect of 

climate change on water resources based on statistical downscaling. 

2.1.3.2 Dynamic Downscaling of GCMs Outputs to Local Scale 

In dynamic downscaling, a higher resolution climate model, usually Regional Climate 

Model (RCM) is used to produce higher resolution outputs. RCM can be nested 

within a GCM or large-scale and lateral boundary conditions from GCMs may be 

used to run RCMs in offline mode to produce downscaled meteorological variables 

required to drive hydrological models. Typically atmospheric fields simulated by a 

GCM (e.g. surface pressure, wind, temperature and vapor) are fed into the boundary 

of the RCM at different vertical and horizontal levels (Wilby et al, 2009).  

 

Table 2.5: List of recent studies n effect of climate change on water resources based 
on dynamic downscaling downscaling (Islam, 2011b) 

Authors Area RCMs GCMs 
Sushama et.al. 
(2006) 

UK CRCM CGCM2 

Fowler and 
Ekström (2009) 

UK ARPEGE, HadRM3P, 
HIRHAM, RCAO, 
CHRM, CLM, REMO, 
PROMES, RegCM, 
RACMO2, METNO 

HadCM3, 
HadAM3P, 
HadAM3H, 
ECHAM4 

López-Moreno 
et.al. (2008) 

Pyrenees HIRHAM, METNO, 
HadRM3, RCAO, UCM 

HadAM3H 

Kay and Jones 
(2010) 

UK. HadRM3 HadCM3 

Chiew et.al. 
(2010) 

South-east Australia CCAM CSIRO MK3.0 

Qian et.al. (2010) Western United States WRF CAM 
Zhang et.al. 
(2011) 

Assiniboia watershed, 
Canada 

PRECIS, CRCM HadCM3, 
CGCM3 
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Several studies are found in literature to assess the ability of RCMs to simulate 

climate variables relevant to hydrological impact studies and noticeable illustrations 

                                                           ‗           ‘  to the 

study of climate change and its potential impacts (Fowler et.al., 2007).  Table 2.5 

shows some of the recent studies.  

2.1.4 Pattern Scaling 

The conceptual framework of the scalability hypothesis is that the regional response 

of a climate variable is linearly related to the global mean temperature change. These 

ideas were first introduced by Santer et.al. (1990) and referred to as the pattern scaling 

technique. This technique relies on the assumption that the anthropogenic climate 

change signal at any region and/or any time horizon, referred to as the response 

pattern, is linearly related with the global temperature change at the corresponding 

scenario and period. 

 

Justification of applying pattern-scaling techniques in climate scenario construction as 

summarized in the IPCC Third Assessment Report, there are five key sources of 

uncertainties associated with constructing climate scenarios for impact and adaptation 

assessments (Lu, X. and Hulme, M., 2002): (1) Uncertainties in future emissions of 

greenhouse gases (GHGs); (2) Uncertainties in converting emissions to GHG 

concentrations; (3) Uncertainties in converting concentrations to radiative forcing; (4) 

Uncertainties in modelling climate response to a given forcing; (5) Uncertainties in 

converting model response into inputs for impact studies. While the results of GCM 

simulations probably capture a large part of the uncertainty ranges in (4) and (5), they 

certainly do not encapsulate the range of uncertainties in (1), (2) and (3). 

 

The application of pattern scaling has a rich literature behind it. Murphy et.al. (2007), 

Watterson (2008), Giorgi (2008), Harris et.al. (2006) and Harris et.al. (2010), May 

(2008), Ruosteenoja et.al. (2007), Raisanen and Ruokolainen (2006), Cabre et.al. 

(2010) and Watterson and Whetton (2011) use it to produce regional climate change 

projections, and Dessai et.al. (2005) and Fowler et.al. (2007) for impact studies. It has 

been recently used to describe the regional effects of global temperatures reaching 

high thresholds of change, e.g., 4°C(May, 2008; Sanderson et.al. 2011) and its 

performance has been tested using the RCPs (Ishizaki et.al.2012). 
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Mitchell et.al. (1999) and Huntingford and Cox (2000) used a linear least squares 

regression on a sequence of periods. More recently Hulme et.al. (2002) and 

Kjellström and Bärring (2006) applied this technique to construct regional climate 

change scenarios. They assessed the application of pattern-scaling technique to 

regional climate model experiments and evaluated the validity of the technique 

applied to for different surface variables. More recently Giorgi (2008) proposed a 

simple equation to express regional climatic changes for thetwenty first century in 

terms of the global temperature change without dependence on the emission 

pathways, using the latest multi-model ensemble of global change simulations. 

 

Due to constraints of time and resources, only a limited number of GCM experiments 

can be conducted. However, if we are truly to assess the risk of climate change being 

dangerous, impact and adaptation studies need scenarios that span a very substantial 

part of the possible range of future climates (Pittock, 1993; Parry et.al., 1996; Risbey, 

1998; Jones, 1999; Hulme and Carter, 2000). As a convenient solution to the scarcity 

of GCM experiments that have sampled the range of climate projection uncertainties, 

in particular uncertainties caused by different emissions scenarios, pattern-scaling 

techniques have been developed to provide a low cost alternative to expensive 

AOGCM and RCM experiments for creating a range of climate scenarios that 

embrace uncertainties relating to different emissions, concentration and forcing 

scenarios. This approach involves normalising GCM response patterns (usually) 

according to the respective GCM global mean temperature change. These normalised 

patterns are then rescaled using a scalar (global mean temperature change, DTg) 

derived from simple climate models (e.g. MAGICC) and representing the particular 

emissions scenario under consideration. 

 

Pattern-scaling method was first suggested by Santer et.al. (1990) and was employed 

in the IPCC First Assessment Report to generate climate scenarios for the year 2030 

(Mitchell et.al., 1990) using patterns from 2xCO2 GCM experiments. It has 

subsequently been widely adopted in climate scenario generators and have been used 

with results from coupled ocean-atmosphere global models (e.g., in ESCAPE 

(Rotmans et.al., 1994), IMAGE-2 (Alcamo et.al., 1994), SCENGEN (Hulme et.al., 

1995a,b; 2000), SILMUSCEN (Carter et.al., 1995, 1996), COSMIC (Schlesinger 
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et.al., 1997) and CLIMPACTS (Kenny et.al., 2000)). More recently, Hulme et.al. 

(2002) applied pattern-scaling method to results from regional climate model 

simulations to construct nationwide climate scenarios. 

 

Steps to scale GCM response patterns across emissions scenarios and time horizons. 

Four steps that illustrates process for scaling one GCM climate response pattern to 

generate climate change patterns corresponding to a range of emissions scenarios and 

time horizons.  

 

Step 1: D            ―              ‖ 

I                 z               ‗      -to-     ‘                                   

           ‗              ‘   f changes in one climate variable from the average of a 

good number of ensemble GCM experiments forced with the highest emissions 

scenarios (e.g. SRES A1FI) for the time period far into the future (e.g. 2080s) 

 

Step 2: Normalizing     ―              ‖ 

Clim                                             ―              ‖      STEP       

normalized by the global mean warming of that GCM experiment1 from which the 

―              ‖              

 

Step 3: Obtaining scalars 

This is to derive the magnitude of global warming by a specified time period in the 

future for a given emissions scenario simulated by the simple climate model (e.g. 

MAGICC). For the IPCC TAR, MAGICC was run to estimate the annual global mean 

temperature changes up to 2100 for SRES emissions scenarios. This model was tuned 

to reproduce the climate responses from much more complex GCMs. MAGICC 

simulated annual global mean temperature changes from 1990 to 2100 for seven 

SRES emissions scenarios and seven GCMs are available from the IPCC DDC 

website (http://ipcc-ddc.cru.uea.ac.uk/asres/sres_home.html).  

 

Step 4: Scaling the normalized pattern 

The pattern of changes in climate variables for a specified time period in the future 

and a given emissions scenario can be obtained by multiplying normalised pattern 

from STEP 2 by the respective scalar from STEP 3.  
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2.1.4.1 Uncertainties Introduced by Pattern-Scaling  

All pattern-scaling applications rely on the following two fundamental assumptions: - 

the anthropogenic climate change signal can be adequately defined from GCM 

response patterns; - these response patterns are representative across a wide range of 

possible anthropogenic forcings; - regional climate response patterns are a function of 

global temperature change. This could be problematic. First, it can be difficult to 

establish whether the pattern of change represents a climatic response to radiative 

forcing or is simply (largely or partly) an artifact of natural climatic variability. It may 

                                                          ―      ‖    q               

         ―     ‖         to year variability, especially for some variables (e.g. 

precipitaiton) rather than others (e.g. temperature). Second, regional climate may not 

respond coherently to increased radiative forcing, and hence the pattern of change 

may not be constant over time. This is particularly a potential problem for the 

application to cases of stabilisation forcing scenarios.  

 

Whetton et.al. (1998) have shown that for parts of the Southern Hemisphere a highly 

non-linear regional rainfall response was demonstrated in an AOGCM forced with a 

stabilisation scenario, a response that could not easily be handled using a linear 

pattern-scaling technique. Third, similar global mean temperature change can be 

associated with quite different regional climate response patterns, depending on the 

magnitude and pattern of the aerosol forcing. Pattern – scaling using single global 

warming scalar is unlikely to work well to capture the regional variations in climate 

responses, especially in the case of heterogeneous aerosol forcing. There is some 

evidence, however, to suggest that separate greenhouse gas and aerosol response 

patterns can be assumed to be additive (Ramaswamy and Chen, 1997) and pattern-

scaling methods have subsequently been adapted by Schlesinger et.al. (1997, 2000) 

for the case of heterogeneously forced scenarios. 

 

Assessment of uncertainties introduced by pattern-scaling Mitchell et.al. (1999) have 

explored the assumptions underlying pattern-scaling techniques by examining the 

effect of scaling decadal, ensemble mean temperatureand precipitation patterns in the 

suite of HadCM2 experiments. Although their response patterns were defined using 

only 10-year means, using four-member ensemble means improved the performance 
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of the technique when applied to reconstructing climate response patterns in AOGCM 

experiments forced with alternative scenarios. This confirmed earlier work by 

Oglesby and Saltzman(1992), among others, who demonstrated that temperature 

response patterns derived from equilibrium GCMs were fairly uniform over a wide 

range of concentrations, scaling linearly with global mean temperature. The main 

exception occurred in the regions of enhanced response near sea ice and snow 

margins. Mitchell et.al. (1999) concluded that the uncertainties introduced by scaling 

ensemble decadal mean temperature patterns across different forcing scenarios are 

                                   ‘                                                  

may not hold for variables with high spatial variability such as precipitation. Hulme 

et.al. (2002) assessed the application of pattern-scaling technique to Hadley Centre 

regional climate model (HadRM3) experiments. They compared the seasonal average 

temperature and precipitation changes for the 2080s from the scaled SRES A2 

scenario to represent SRES B2 scenario and a single HadRM3 B2 simulation. The 

differences between these two scenarios are generally small for temperature and in 

some seasons for precipitation. However, precipitation in winter is significantly 

different and in autumn the two scenarios contain a different sign of change in some 

parts of the UK. The differences could be attributed to a combination of the internal 

variability of the climate system and from errors introduced by pattern-scaling. To 

quantify the relative contribution of these two factors to the expressed differences, a 

larger set of model experiments would be needed.  

 

Pattern-scaling techniques almost certainly perform best in the case of surface air 

temperature and in cases where the response pattern has been constructed so as to 

maximize the signal-to-noise ratio. Though pattern-scaling approach is problematic in 

cases of heterogeneous aerosol forcing, the SRES scenarios generally include only 

rather small aerosol forcing. In fact, for most parts of the world, particularly in Europe 

and North America, sulphate aerosol emissions are projected to decline over time, 

although South-east Asia may experience increased level of aerosol forcing. The 

SRES forced GCM experiments did not separate aerosol forcing from greenhouse gas 

forcing and so application of separate greenhouse gas and aerosol forced patterns (as 

was done in SCENGEN 2.4) is no longer possible. While pattern-scaling techniques 

are a convenient way of handling emissions uncertainty, they introduce an uncertainty 

of their own into climate scenarios that is difficult to quantify. In the absence of much 
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larger samples of climate model experiments to draw upon, pattern-scaled climate 

change scenarios are likely to continue to be widely used in impacts and integrated 

assessments. It is therefore important to consider, or to assess where possible, this 

aspect of uncertainty when applying pattern-scaling techniques to develop climate 

change scenarios. For instance, most GCM experiments reviewed by IPCC TAR (and 

will be available from the IPCC DDC website) are forced by more than one SRES 

emissions scenario, it would be beneficial to assess the uncertainty introduced by 

pattern-scaling via comparing pattern-scaled scenario against the scenario derived 

directly from the model simulation. 

 

Much of the evaluation of pattern scaling in the literature has been conducted on just a 

single variable– surface temperature. In many ways this variable may represent the 

best opportunity for pattern scaling: 

 temperature is the same variable as the scaler, 

 temperature is spatially continuous, 

 temperature is represented well by GCMs, 

 temperature has a high signal-to-noise ratio under radiative forcing. 

 

Precipitation offers a much sterner test for pattern scaling: 

 precipitation is notthe same variable as the scaler, 

 precipitation is spatially discontinuous, 

 precipitation is notrepresented as well as temperature by GCMs, 

 precipitation has a relatively lowsignal-to-noise ratio. 

 

Mitchell et.al. (2001) confirmed the accuracy of pattern scaling for precipitation, since 

             ‗      ‘                                                         

temperature pattern. If pattern scaling may be applied to precipitation, we might 

                                                          ‗         ‘          . 

2.1.5 Marksim Tool 

MarkSim was developed in the 1980s and 1990s to simulate weather from known 

sources of monthly climate data from around the world (Jones & Thornton 1993, 

1997, 1999, 2000). It divides the world into 720 clusters of climate that are distinct 
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from one another and fits a third order Markov model to the precipitation data. The 

temperature data simulation is derived from SIMMETEO (Geng et.al., 1988). The 

radiation data are based on the model of Donatelli and Campbell (1997).  

 

For each of the about 9,200 stations with usable daily data, the third order Markov 

chain model of rainfall was developed. The results were grouped according to climate 

cluster, and regression equations for each of the Markov parameters were calculated 

using the monthly average rainfall and temperature figures for each station within the 

cluster. The model can now be fitted to any monthly climate data record by 

determining to which cluster it belongs, and using the relevant regression equations. 

 

Markov models are excellent simulations of the rainfall process, but they do have 

limitations. It was found quite early in the analysis (Jones & Thornton, 1993) that a 

simple first or second order process, while adequate for temperate regions, would not 

fit well enough for the tropics. Hence we went with the third order model. Another 

deficiency we found was that Markov processes ordinarily underestimate the variance 

of rainfall. This is solved in MarkSim by resampling the Markov probability 

coefficients for each year of simulation. This is because the coefficients themselves 

are only estimates and have an error term. Once we reincorporate this error term by 

resampling, the rainfall variance agrees with the observed.  The latest publication for 

MarkSimGCM and for this application is that for the 4th approximation models. 

(Jones and Thornton 2013) 

 

Table 2.2 shows all the models used by MarkSim for pattern scaling. Yearly data 

interpolated by bilinear interpolation from the original GCM pixel sizes (Brown, O. 

2013)  ‗H       ‘          e for the period ran from 1961 to 2005. Prediction data ran 

from 2006 to 2099. Means for rainfall, tmax and tmin were calculated from the 

‗        ‘                                         ‘                 GCM               

 

The process used is the delta process in its simplest form, all variables were adjusted 

                                       ‗        ‘                             

WorldClim.v1.3. The GCM data provided annual deviations for the years 2006 to 

2099. 4th order polynomials were fitted to every pixel. 
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2.2 Review of Physically Based Hydrological Modeling 

Hydrologic modeling involves formulating the mathematical models to represent the 

hydrologic processes such as, precipitation, snowmelt, interception, 

evapotranspiration, infiltration, sub-surface flow, and surface flow, as well as the 

interaction between them.  Hydrologic  modeling  can  be  challenging  because  it  

involves  highly  nonlinear processes, complex interactions and high spatial variability  

at basin scale. Starting from the mid of the nineteenth century, the evolution of 

hydrologic modeling is continuing from lumped conceptual models to physically 

based distributed models  with the  development  of  understanding the  physical  

processes,  computational  efforts  and  data retrieving facilities. Lumped conceptual 

hydrologic models consider three basic processes within a river basin: the loss of 

water from storage to atmosphere; storage of water in soil, vegetation, aquifer, and in 

rivers; routing of flow over the surface (Gosain et.al., 2009).  Physically based 

hydrologic models are based on known scientific principles of energy and water 

fluxes whereas, conceptual models are based on conceptual storages and model 

parameters that require calibration. In physically based hydrologic modeling the 

hydrologic process of water movement are modeled either by the finite difference 

approximation of the  partial  differential  equation representing  the  mass,  

momentum and  energy  balance  or  by  empirical  equations (Abbott et.al., 1986b). 

Typically the primary components of hydrologic cycle related to the land phase are 

taken into consideration. These are:  interception, snowmelt, evapotranspiration, sub-

surface runoff, groundwater flow, surface runoff and channel routing.   

 

Hydrologic models can be classified according to the physical processes involved in 

modeling as conceptual and physically based (Refsgaard, 1996). In conceptual models 

each of the hydrologic processes, that we r ead into our observations  of  the  

catchment,  are  represented  by  simplified  mathematical  relationships,  where  as  in  

physically based  model  the  detail  physical  processes  can  be  represented  in  a  

deterministic  way  by  representations  of  mass, momentum  and  energy  

conservation  (Refsgaard,  1996).  According  to  the  spatial  description  of  the  

watershed process,  hydrologic  models  can  be  classified  as  lump  and  distributed  

models.  In a lumped model the spatial variability of watershed characteristics are 

ignored, while in a distributed model the spatial variability of vegetation, soil, 
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topography, etc are taken into account. The conceptual models are usually lumped 

while the physically based model in practice has to be distributed in manner 

(Refsgaard, 1996). 

Table 2.6: Selected physically based hydrologic model, spatial description and 
discretization type (Islam, 2011b) 

Model Acronym Model Definition Principle Reference(s) Semi/Fully 
Distributed 

Discretization 
type* 

TOPMODEL TOPography based 
hydrological MODEL 

Beven and Kirby 
(1976,1979) 
Beven et.al. (1995) 

Semi HRU 

WATBAL  Knusden et.al. (1986) Semi OG 
SHE European Hydrologic 

System 
Abbot et.al. (1986a, 
1986b) 

Fully OG 

ISBA Interaction Soil 
Biosphere Atmosphere 

Nolihan and Planton 
(1989) 
Nolihan and Mahfouf 
(1995) 

Fully OG 

IHDM Institute of Hydrology 
Distributed Model 

Beven et.al. (1987) 
Calver and Wood (1995) 

Fully HRU 

THALES  Grayson et.al. (1992a; 
1995) 

Fully IE 

SLURP Semi-distributed Land 
Use-based Runoff 
Processes 

Kite (1995) Semi GRU 

MIKE SHE MIKE System 
Hydrologique European 

Refsgaard and Storm 
(1995) 

Fully OG 

SWAT Soil and Water 
Assessment Tool 

Arnold et.al. (1998a) Semi HRU 

WATFLOOD/SPL9 Waterloo Flood 
Forecasting Model 

Kouwen (1988) 
Kouwen (2000) 
Kouwen and Mousavi 
(2002) 

Fully OG 

HRCDHM Hydrologic Research 
Centre Distributed 
Hydrologic Model 

Carpenter et.al. (2001) Semi HRU 

DPHM-RS Semi-distributed 
Physically based 
Hydrologic Model using 
Remote Sensing and GIS 

Biftu and Gan (2001, 
2004) 

Semi HRU 

R.WATER.FEA  Vieux and Gaver (1994) Fully IE 
tRIBS TIN-based Real-time 

Integrated Basin 
Stimulator 

Ivanov et.al., 2004 Flly TIN 

TOPNET  Bandaragoda et.al. 
(2004) 

Semi HRU 

MISBA Modified Interaction Soil 
Biosphere Atmosphere 

Kerkhoven and Gan 
(2006) 

Fully OG 

LISTFLOOD  Van der Knijff et.al. 
(2010) 
De Roo et.al. (2000) 

Fully OG 

HydroGeoSphere  Therrien et.al. (2005; 
2010) 

Fully OG 

PAWS Process-based Adaptive 
Watershed Simulator 

Shen and Phanikumar 
(2010) 

Fully OG 

CREST The Coupled Routing 
and Excess Storage 

Wang et.al. (2011) Fully OG 
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2.2.1 Modeling Concepts of Hydrologic Processes 

In physically based hydrologic modeling the hydrologic process of water movement 

are modeled either by the finite difference approximation of the partial differential 

equation representing the mass, momentum and energy balance or by empirical 

equations (Abbott et.al., 1986b).  

 

Typically the primary components of hydrologic cycle related to the  land  phase  are  

taken  into  consideration.  These  are:  interception,  snowmelt,  evapotranspiration,  

sub-surface runoff,  groundwater  flow,  surface  runoff  and  channel  routing.  A 

number of physically based hydrologic models have been reviewed and modeling 

concepts of these physical processes used by various hydrologic models will be 

discussed in the following sections. Selected model acronyms and principal 

reference(s) are listed in Table 2.6. 

2.2.2 Advantages and Limitations of Physically Based Hydrologic Modelling 

Lumped conceptual hydrologic models consider three basic processes within a river 

basin: the loss of water from storage to atmosphere; storage of water in soil, 

vegetation, aquifer, and in rivers; routing of flow over the surface (Gosain et.al., 

2009). Focus on the physically based distributed hydrologic modeling started in order 

to minimize or overcome the deficiencies of the conceptual models.  Conceptual 

models are controlled by various parameters to represent the hydrologic processes. 

Parameters of these models are estimated either by manual curve fitting or by 

optimizing the objective functions, thus making less or no physical interpretation of 

the fitted parameters. Therefore, unrealistic  parameter  values  may  be  obtained  

through  errors  in  measurements  (Abbott  et  al.,  1986a).  In lumped conceptual 

models the mathematical representation of hydrologic processes are only an 

approximate representation of the real world. So the errors in parameter estimation 

also can be raised from model structure (Beven, 1989). The calibration  of  conceptual  

models  requires  long  meteorological  and  hydrological  records  which  are  not  

always available, especially for the un-gauged catchments (Gosain et.al., 2009). 

Spatial heterogeneities of landuse, soil, and input  variables  are  not  considered  in  

lumped  conceptual  models  (Abbott  et  al.,  1986a).  The  effects  of  landuse 

changes  resulting  from  the       ‘                                                    

be  undertaken  by  altering  the parameter values to reflect changes as the parameters 
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are not based on physical processes (Abbott et.al., 1986a). The calibration and  

validation  of  lumped  conceptual  models  depends  on  the  accuracy  of  both inputs  

and  outputs.  So, uncertainty  is  involved  in  estimating  the  input  variables,  

especially  the  evapotranspiration  may  cause  significant changes in calibration and 

validation processes (Beven, 1989). Different set of parameter values may result equal 

quality of good results in a lumped conceptual model (Beven, 1989). As  discussed  in  

the  previous  paragraph,  the  development  of  physically  based  hydrologic  model  

was  initiated  to overcome the deficiencies associated with the lumped  conceptual 

models,  by using parameter values with physical interpretation  and  considering their  

spatial  variability  (Abbott  et  al.,  1986a).  However,  the  physics  on  which  the 

equations of physically based hydrologic models are based is the small scale physics 

of homogeneous system and in application these models lump up the small scale 

physics to the model grid scale without considering any theoretical framework  

(Beven,  1989).     

 

Table 2.7: Advantages and limitations of physically based distributed hydrologic 
models over lumped conceptual models (Islam, 2011b) 

Advantages Over Lumped Conceptual Model 
 Parameters in physically based models are based on physics 
 Physically based are developed from well established scientific laws at micro-

scale to water behavior at the meso-scale or regional scale 
 Consider the spatial heterogeneities of landuse, soil, and input variables. 
 Can consider the effects of the landuse changes on the hydrologic cycle. 
 Less (or no) calibration is needed. 

 
Limitations 

 Lump up the small scale physics to the model grid scale without considering 
any theoretical framework. 

 Calibration by the comparison of the predicted and observed hydrograph 
cannot be considered a sufficient test of model that implies the internal 
response of catchment. 

 Context of original purpose of development is often lost when models applied 
beyond the scope of their capabilities. 

 Development of some physically based model is not dynamic nor it is in 
conjunction of a field program 

 Many models are developed from limited data sources. 
 Calibration testing on one or two catchments is also insufficient test of 

     ‘                             
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Calibration  of  most  physically  based  hydrologic  models  is  usually  performed  by  

the comparison of predicted and observed hydrograph which is a necessary test but 

cannot be considered a sufficient test of  model  that  implies  the  internal  response  

of  catchment  (Beven,  1989).  In application of physically based hydrologic models, 

the context of their original purpose of development is often lost when they are 

applied beyond the scope of their capabilities (Grayson et.al., 1992a).  Development 

of some physically based model is not dynamic nor is it in conjunction of a field 

program (Dunne, 1983).    Many models are developed from limited data sources. 

C                                                                              ‘   

universal applicability (Grayson et.al., 1992a). A summary of advantages and 

limitations of physically based distributed hydrologic models over lumped conceptual 

models discussed in the aforementioned paragraphs is listed in below. 

2.3 Review of Climate Change Impact on Water Availability of BRB 

Several climate change studies on water availability in Ganges-Brahmaputra-Meghna 

basin have been conducted (e.g. Mirza et al, 1997; Seidal et.al., 2000; Mirza, 2002; 

Mirza, 2003; Gain et.al., 2011; Jeulanda, 2013; Ghosh, 2012). However, only a few 

studies have been conducted to assess the water availability of Brahmaputra river 

basin (BRB). In most of the cases empirical or regression model were developed 

relating the climate parameters to the streamflow. Due to the nonlinearity of the 

hydrologic processes it is not sufficient to use conceptual, empirical or regression 

models to predict streamflow. Also, some calibrated model parameters of these 

models may not be valid when the hydrologic regime of the river basin changes 

because of anthropogenic impacts. 

 

Mirza et.al.(1997) used an empirical model  to test the sensitivity of  runoff  of 

Ganges-Brahmaputra-Meghna basin to the change in temperature and precipitation 

from -1C to +5C and -10% to +20% respectively.  It was observed that Ganges 

basin is relatively sensitive to the changes in temperature and precipitation. For 

temperature and precipitation change of +2C,+10% and +4C, 20% runoff at Delhi 

station precipitation change was found +19% and 29% respectively. For temperature 

beyond 4C runoff tend to decrease. Whereas at Gauhati station on Brahmaputra river 

runoff change for +2C temperature and +10% precipitation changes was found +13% 

which is lower than Ganges. On the other hand runoff increase in Meghna basin at 
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Sylhet station for +2C(P), +10%(P) was +11%. For +5C(T), +20%(P) scenario 

runoff  change at Gauhati, Delhi and Sylhet was found +22% , +35% and  21%.  

 

Seidal et.al. (2000) used the Snowmelt Runoff Model (SRM) to determine the 

changes in flood for +1.5C temperature change and 10% precipitation change 

(summer). It was found that in the new climate, the flood peaks will be increased by 

about 20% for Ganges and  30% for  Brahmaputra as compared with the year 1995 

(Seidal et.al., 2000). 

 

T          C                                      C temperature and strandardized 
precipitation 

Basin CSIRO9(ΔP%) HadCM2(ΔP%) GFDL(ΔP%) LLNL(ΔP%) 
Ganges 25.94(25.5) -30.12(-8.4) 28.14(13.8) -11.94(1.5) 
Brahmaputra -3.24(-1.5) 25.25(21.6) -10.43(21.6) -8.67(4.2) 
Meghna 24.13(13.5) 14.67(29.1) 12.47(33.9) -11.99(23.1) 
Note: Mean Annual Peak Discharge: Ganges=54000m3/s, Brahmaputra= 67000m3/s, 
Meghna=14000m3/s (Mirza, 2002) 
 

Mirza(2002) studied the sensitivity of 20 yr  floods to the changes in temperature of 2, 

4, 6C and standardized precipitation change on Ganges-Brahmaputra-Meghna basin. 

4GCM model (CSIRO9, HadCM2, GFDL, LLNL) outputs were used in a simple 

empirical model to evaluate the sensitivity. Mirza (2002) stated that HadCM2, GFDL 

and LLNL models are in agreement about increases in precipitation whereas CSIRO9 

model shows a very slight decrease in precipitation. GFDL was found to project 

highest increase in precipitation and LLNL with lowest. Percentage changes in mean 

                       C temperature and standardized precipitation are shown in 

Table 2.8. 

 

Mirza (2003)      z                                                              C 

temperature change and standardized precipitation change using sequence of 

empirical models. Similar to his previous study (Mirza, 2002) he used the results of 

CSIRO9, GFDL and LLNL GCMs to calculate the changes in mean annual discharge 

and mean peak discharge in Ganges-Brahmaputra-Meghna basin, HadCM2 was 

replaced by UKTR. The changes in mean annual and mean peak discharge for GBM 

are shown in Table 2.9. 
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Table 2.9:Changes in mean annual and mean peak discharge of GBM basin for 
CSIRO9, UKTR, GFDL and LLNL. 

GCM T(◦C) 

Ganges Brahmaputra Meghna 
Changes in 
mean annual 
discharge 
(%) 

Changes in 
mean peak 
discharge 
(%) 

Changes in 
mean annual 
discharge 
(%) 

Changes in 
mean peak 
discharge 
(%) 

Changes in 
mean annual 
discharge 
(%) 

Changes in 
mean peak 
discharge 
(%) 

CSIRO9 
2 13.5 9.7 –0.03 –0.02 4.5 7.9 
4 27 19.4 –0.06 –0.04 9 15.7 
6 40.5 29.1 –0.09 –0.06 13.5 23.6 

UKTR 
2 21.1 15.2 6.3 5.6 11.4 19.9 
4 42.2 30.4 12.8 11.2 22.8 39.8 
6 63.3 45.6 19.2 17 34.2 59.7 

GFDL 
2 7.3 5.2 4.5 4.04 11.3 19.8 
4 14.6 10.4 9 8.09 22.6 39.5 
6 21.9 15.6 13.5 12.14 33.9 59.4 

LLNL 
2 0.8 0.6 0.9 0.8 7.7 13.5 
4 1.6 1.2 1.8 1.6 15.4 26.9 
6 2.4 1.8 2.7 2.4 23.1 40.4 

 

Gain et.al. (2011) investigated the effect of climate change on both low and high 

flows of the lower Brahmaputra. Twelve GCMs (MICRO, GFDL, GISS, CCCMA, 

CGCM, BCCR, HADGEM, NCAR,ECHAM and three others) results for A1B and 

A2 scenarios were used through discharge-ensemble modeling. GCMs were 

prioritized through weighing based on their performance. The change in 10 year 

return period floods for projected scenarios are shown in Table 2.10. A peak flow that 

currently occurs every 10 yr will occur at least once every two years during the time 

slice 2080–2099 (Gain, 2011). 

 

Table 2.10:Changes in 10 year return period flood for A1B and A2 scnerio in 2080-
2099 

 

 

 

 
Note: Current 1:10 year flood= 82000m3/s 

 

Ghosh(2012) used the downscaled data of A2 scenario from PRECIS to estimate the 

annual peak discharge and frequency of annual peak discharge in Brahmaputra basin 

using a distributed hydrological model RISE (Rice Irrigation System Evaluation). It 

was found that Tezpur gauging site might experience an increment of 11.7% in the 

 
A1B_2080-99 A2_2080-99 

Discharge(m3/s) 130000 140000 
Percent Change 58.54 70.73 
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median value of pre-monsoonal peak discharge series. Whereas the increasing trend at 

Guwahati and Dhrubi station were expected to increase 27.8% and 27.7% respectively 

(Ghosh, 2012). 

 

Jeulanda (2013) considered the results of 16 GCMs for A2 scenario to determine the 

flow in Ganges basin using semi-distributed hydrological model SWAT (Soil Water 

Assessment Tool) and hydrological routing model. Three of the 16 models show 

decreased flow at Farakka whereas six models show increase in flow more than 20%. 

Overall range of change in mean flow was found between -21% (CM4 (IPSL)) to 

+37%(CGCM2 (MRI)). 

 

M. Masood et. al. (2014) assessed the impact of climate change on GBM basin in 

three time slices- present-day (1979–2003), near-future (2015–2039) and far-future 

(2075–2099) periods.  He used MRI   AGCM3.2S data as input in a macro scale 

hydrologic model H08. It was found that by the end of 21st century +14, +15, and +18 

%  changes in runoff will occur in the Brahmaputra, Ganges and Meghna basin due to 

the mean change in precipitation of +14.0, +10.4, and +15.2 % (entire GBM is 

projected to be warmed 3ºC). 

2.4 SWAT Model 

2.4.1 Conceptual Basis 

SWAT divides a watershed into subwatersheds. Each subwatershed is connected 

through a stream channel and further divided into Hydrologic Response Unit (HRU). 

HRU is a unique combination of a soil and a vegetation type in a subwatershed, and 

SWAT simulates hydrology, vegetation growth, and management practices at the 

HRU level.  

2.4.2 Water Balance 

Water balance is the driving force behind everything that happens in the watershed. 

To accurately predict the movement of pesticides, sediments or nutrients, the 

hydrologic cycle as simulated by the model must conform to what is happening in the 

watershed. The simulation of hydrologic cycle can be separated into land phase and 

water or routing phase. Land phase controls the amount of water, sediment, nutrient 

and pesticide loading to the main channel in each subbasin whereas routing phase 
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defines the movement of water, sediments, etc through the channel network of the 

watershed to the outlet.Schematic of pathways available for water movement in 

SWAT is shown in the Figure 2.6. It involves various elements such as snow, canopy 

storage, infiltration, evapotranspiration, lateral subsurface flow, surface runoff, 

transmission losses, return flow etc. 

 

 
Figure 2.5: Hydrologic process in SWAT 

2.4.2.1 Land phase of the hydrologic cycle: 

Hydrologic cycle simulated by swat is based on the water balance equation 
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Where SWt is the final soil water content (mm H2O), SW0 is the initial soil water 

content on day i (mm H2O), Qsurf is the amount of surface runoff on day i (mm H2O), 

Ea is the amount of evapotranspiration on day i (mm H2O), wseep is the amount of 

water entering the vadose zone from the soil profile on day i(mm H2O), and Qgw is the 

amount of return flow on day i(mm H2O). 
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Figure 2.6: HRU/Subbasin in command loop (Neitsch, S.L.et. al., 2005 ) 
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2.4.2.1.1 Snow 

Swat classifies precipitation as rain or freezing rain/snow using the average daily 

temperature.  

 

Snow cover:  This component of swat can handle simple uniform cover to complex 

non-uniform cover due to shading, drifting, topography and land cover. User defines a 

threshold snow depth above which snow coverage will always extend over 100% of 

the area. 

 

Snow melt: snow melt is controlled by air and snow pack temperature, melting rate, 

and the areal coverage of snow. If snow is present, it is melted on days when the 

maximum temperature exceeds 0C using a linear function of the difference between 

the average snow pack-maximum air temperature and the base or threshold 

temperature for snow melt. Melted snow is treated the same as rainfall for estimating 

runoff and percolation. 

2.4.2.1.2 Canopy Sorage 

Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it 

is held and made available for evaporation. When using the curve number method to 

compute surface runoff, canopy storage is taken into account in the term initial 

abstractions. However, if methods such as Green & Ampt are used to model 

infiltration and runoff, canopy storage must be modeled separately. SWAT allows the 

user to input the maximum amount of water that can be stored in the canopy at the 

maximum leaf area index for the land cover. This value and the leaf area index are 

used by the model to compute the maximum storage at any time in the growth cycle 

of the land cover/crop. When evaporation is computed, water is first removed from 

canopy storage. 

2.4.2.1.3 Infiltration 

Infiltration refers to the entry of water into a soil profile from the soil surface. As 

infiltration continues, the soil becomes increasingly wet, causing the rate of 

infiltration to decrease with time until it reaches a steady value. The initial rate of 

infiltration depends on the moisture content of the soil prior to the introduction of 

water at the soil surface. The final rate of infiltration is equivalent to the saturated 
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hydraulic conductivity of the soil. Because the curve number method used to calculate 

surface runoff operates on a daily time-step, it is unable to directly model infiltration. 

The amount of water entering the soil profile is calculated as the difference between 

the amount of rainfall and the amount of surface runoff. The Green & Ampt 

infiltration method does directly model infiltration, but it requires precipitation data in 

smaller time increments. 

2.4.2.1.4 Evapotranspiration 

Evapotranspiration is a collective term for all processes by which water in the liquid 

or solid phase at or near the earth's surface becomes atmospheric water vapor. 

Evapotranspiration includes evaporation from rivers and lakes, bare soil, and 

vegetative surfaces; evaporation from within the leaves of plants (transpiration); and 

sublimation from ice and snow surfaces. The model computes evaporation from soils 

and plants separately as described by Ritchie (1972). Potential soil water evaporation 

is estimated as a function of potential evapotranspiration and leaf area index (area of 

plant leaves relative to the area of the HRU). Actual soil water evaporation is 

estimated by using exponential functions of soil depth and water content. Plant 

transpiration is simulated as a linear function of potential evapotranspiration and leaf 

area index.  

 

Potential evapotranspiration:  Potential evapotranspiration is the rate at which 

evapotranspiration would occur from a large area completely and uniformly covered 

with growing vegetation which has access to an unlimited supply of soil water. This 

rate is assumed to be unaffected by micro-climatic processes such as advection or 

heat-storage effects. The model offers three options for estimating potential 

evapotranspiration: Hargreaves (Hargreaves et.al., 1985), Priestley-Taylor (Priestley 

and Taylor, 1972), and Penman-Monteith (Monteith, 1965). The three PET methods 

included in swat vary in the amount of required inputs. The Penman-Monteith method 

requires solar radiation, air temperature, relative humidity and wind speed. The 

Priestley-Taylor method requires solar radiation, air temperature and relative 

humidity. The Hargreaves method requires air temperature only. 
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2.4.2.1.5 Lateral Subsurface Flow 

Lateral subsurface flow, or interflow, is streamflow contribution which originates 

below the surface but above the zone where rocks are saturated with water. Lateral 

subsurface flow in the soil profile (0-2m) is calculated simultaneously with 

redistribution. A kinematic storage model is used to predict lateral flow in each soil 

layer. The model accounts forvariation in conductivity, slope and soil water content.  

2.4.2.1.6 Surface Runoff 

Surface runoff, or overland flow, is flow that occurs along a sloping surface. Using 

daily or subdaily rainfall amounts, SWAT simulates surface runoff volumes and peak 

runoff rates for each HRU. 

 

Surface Runoff Volume: It is computed using a modification of the SCS curve 

number method (USDA Soil Conservation Service, 1972) or the Green & Ampt 

infiltration method (Green and Ampt, 1911). In the curve number method, the curve 

number varies non-linearly with the moisture content of the soil. The curve number 

drops as the soil approaches the wilting point and increases to near 100 as the soil 

approaches saturation. The Green & Ampt method requires sub-daily precipitation 

data and calculates infiltration as a function of the wetting front matric potential and 

effective hydraulic conductivity. Water that does not infiltrate becomes surface 

runoff. SWAT includes a provision for estimating runoff from frozen soil where a soil 

is defined as frozen if the temperature in the first soil layer is less than 0°C. The 

model increases runoff for frozen soils but still allows significant infiltration when the 

frozen soils are dry. 

 

Peak Runoff Rate: Peak runoff rate predictions are made with a modification of the 

rational method. In brief, the rational method is based on the idea that if a rainfall of 

intensity i begins instantaneously and continues indefinitely, the rate of runoff will 

increase until the time of concentration, tc, when all of the subbasin is contributing to 

flow at the outlet. In the modified Rational Formula, the peak runoff rate is a function 

of the proportion of daily precipitation that falls during the subbasin tc, the daily 

surface runoff volume, and the subbasin time of concentration. The proportion of 

rainfall occurring during the subbasin tc is estimated as a function of total daily 
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rainfall using a stochastic technique. The subbasin time of concentration is estimated 

using Mannin ‘  F                                                   

2.4.2.1.7 Transmission Losses 

Transmission losses are losses of surface flow via leaching through the streambed. 

This type of loss occurs in ephemeral or intermittent streams where groundwater 

contribution occu                                                     SWAT      L   ‘  

method described to estimate transmission losses. 

2.4.2.1.8 Return Flow 

Return flow, or base flow, is the volume of streamflow originating from groundwater. 

SWAT partitions groundwater into two aquifer systems: a shallow, unconfined 

aquifer which contributes return flow to streams within the watershed and a deep, 

confined aquifer which contributes return flow to streams outside the watershed 

(Arnold et.al., 1993). Water percolating past the bottom of the root zone is partitioned 

into two fractions—each fraction becomes recharge for one of the aquifers. In 

addition to return flow, water stored in the shallow aquifer may replenish moisture in 

the soil profile in very dry conditions or be directly removed by plant. Water in the 

shallow or deep aquifer may be removed by pumping. 

2.4.2.2 Routing Phase of Hydrologic Cycle 

Once swat determines the loading of water, sediment, nutrients and pesticides to the 

main channel, the loading are routed through the stream network of the watershed 

using a command structure similar to that of HYMO (Williams and Hann, 1972). 

Additionally swat also models the transformation of chemicals in the stream and 

streambed. 

 
Figure 2.7: In-stream processes modeled by SWAT 
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2.4.2.2.1 Routing in the Main Channel or Reach 

As water flows downstream, a portion may be lost due to evaporation and 

transmission through the bed of the channel. Another potential loss is removal of 

water for agricultural or human use. Flow may be supplemented by the fall of rainfall 

or addition of water from point source. In swat flow is routed using variable storage 

coefficient method developed by Williams (1969) or the Maskinghum routing 

method. 

2.4.2.2.1.1 Variable Storage Routing 

The variable storage routing method was developed by Williams (1969) and used in 

the HYMO (William and Hann, 1973) and ROTO (Arnold et.al., 1995) models. 

For a given reach segment, storage routing is based on the continuity equation 

 

Vin – Vout=Δ Vstored      (2.9) 

 

Where Vin  is the volume of inflow during the time step (m3 H2O), Vout is the volume 

of outflow during the time step (m3 H2O       Δ Vstored is the change in volume of 

storage during time step (m3 H2O). After rearranging the equation it can be written as  

 

Qout,2=SC (qin,ave + Vstored,1/ Δ t)       (2.10) 

 

SC is the storage coefficient, qin,ave is the average of qin,1 and qin,2 where qin,1 is the 

inflow rate at the beginning of the time (m3/s), qin,2 is the inflow rate at the end of the 

time step (m3/s), qout,2                                              Δ                    

time step (s). 

2.4.2.2.1.2 Muskinghum Routing  

The Muskingum method is a commonly used hydrologic routing method in situations 

requiring a variable storage-discharge relationship (Chow et.al., 1988). The 

Muskingum method models the storage volume of flooding in a river channel using a 

combination of wedge and prism storage (see schematic below). The key parameters 

in Muskingum routing are K (travel time) and X (weighting coefficient). The value of 

X depends on the shape of the wedge storage to be modeled, and the value of X 

ranges from 0 for reservoir type storage to 0.5 for a full wedge. In natural streams, X 
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is between 0 and 0.3 with a mean value near 0.2 (Chow et.al., 1988). K is the time 

required for an incremental flood wave to traverse its reach, and it may be estimated 

as the observed time of travel of peak flow through the reach (Chow et.al., 1988). If 

observed inflow and outflow hydrographs are available for a river reach the values of 

K and X can be determined to provide the best fit (or narrowest loop) relative to the 

observed flows. 

 

It is necessary to enter a bankfull discharge, Manning's N parameter, slope, length, 

width, number of segments to represent the reach, an averaging weighting coefficient 

(X), and weighting coefficient for celerity. The weighting coefficient for celerity is 

the weight that should be given to the celerity calculated for the bankfull discharge. 

The weighting coefficient should be between 0 and 1. A weight of 1 uses the bankfull 

discharge celerity; a weight of zero uses only the celerity calculated for discharge at 

10 percent of bankfull. In any case, the weighted estimate of celerity is used for all 

routing, regardless of changes in inflow. This differs from variable parameter 

Muskingum Cunge routing, where the celerity is calculated with each change in flow. 

2.4.3 Hydrology 

2.4.3.1 Rainfall Intensity 

The rainfall intensity is the average rainfall rate during the time of concentration. 

Based on this definition, it can be calculated with the equation  

 

I=Rtc / tconc         (2.11) 

 

Where I is the rainfall intensity (mm/hr) , Rtc is the amount of rain falling during the 

time of concentration (mm H2O), and tconc is the time of concentration for the subbasin 

(hr). 

2.4.3.2 Percolation 

Percolation is calculated for each soil layer in the profile. Water is allowed to 

percolate if the water content exceeds the field capacity water content for that layer 

and the layer below is not saturated. 

The volume of water available for percolation in the soil layer is calculated 
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SWly,access=SWly-FClyif   SWly>FCly(2.12) 

SWly,access=0             if    SWly<= FCly(2.13) 

 

Where SWly,access is the drainable volume of water on a given day (mm H2O), SWly is 

the water content of the soil layer on a given day (mm H2O). The amount of water that 

moves from one layer to the underlying layer is calculated using storage routing 

methodology. 

2.4.3.3 Lateral Flow 

Lateral flow will be significant in areas with soils having high hydraulic 

conductivities in surface layers and an impermeable semi permeable layer at a shallow 

depth. In such a system, rainfall will percolate vertically until it encounters the 

impermeable layer. The water then ponds above the impermeable layer forming a 

saturated zone of water, i.e. a perched water table. This saturated zone is the source of 

water for lateral subsurface flow. 

 

Swat incorporates a kinematic storage model for subsurface flow developed by Sloan 

et al (1983) and summarized by Sloan and Moore (1984). This model simulates 

subsurface flow in a two dimensional cross-section along a flow path down a steep 

hillslope. 

2.4.3.4 Groundwater System 

An aquifer    ―                                                                           

                                       ‖ D        99    A              q            

aquifer whose upper boundary is the water table whereas a confined aquifer is 

bounded above and below by geologic formations whose hydraulic conductivity are 

significantly lower than that of the aquifer. 

2.4.3.5 Shallow Aquifer 

The water balance for the shallow aquifer is: 

aqsh,i = aqsh,i-1+ wrchrg,sh – Qgw – wrevap – wpump,sh    (2.14) 

 

where aqsh,i is the amount of water stored in the shallow aquifer on day i (mm H2O), 

aqsh,i-1 is the amount of water stored in the shallow aquifer on day i-1 (mm H2O),  
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wrchrg,sh is the amount of recharge entering the shallow aquifer on day I (mm H2O),  

Qgw is the groundwater flow, or base flow, into the main channel on day i (mm H2O),  

wrevap is the amount of water moving into the soil zone in response to water 

deficiencies on day (mm H2O)  and wpump,sh is the amount of water removed from the 

shallow aquifer by pumping on day i (mm H2O). 

2.4.3.6 Deep Aquifer 

The water balance for the deep aquifer is: 

aqdp,i = aqdp,i-1 + wdeep – wpump,dp      (2.15) 

 

where aqdp,i is the amount of water stored in the deep aquifer on day i (mm H2O), 

aqdp,i-1 is the amount of water stored in the deep aquifer on day i-1(mm H2O), wdeep is 

the amount of water percolating from the shallow aquifer into the deep aquifer on day 

i (mm H2O),  and wpump,dp is the amount of water removed from the deep aquifer by 

pumping on day i (mm H2O). If the deep aquifer is specified as the source of 

irrigation water or water removed for use outside the watershed, the model will allow 

an amount of water up to the total volume of the deep aquifer to be removed on any 

given day. 

2.4.3.7 Transmission Loss 

During periods when a stream receives no groundwater contributions, it is possible for 

water to be lost from the channel via transmission through the side and bottom of the 

channel. Transmission losses are estimated with the equation 

tloss=Kch x TT x Pch x Lch       (2.16) 

 

Where tloss are the channel transmission losses (m2 H2O), Kch is the effective 

hydraulic conductivity of the channel alluvium (mm/hr), TT is the flow travel time 

(hr), Pch is the wetted perimeter (m), and Lch is the channel length (km). Transmission 

losses from the main channel are assumed to enter bank storage or the deep aquifer. 

2.4.3.8 Evaporation Loss 

Evaporation losses from the reach are calculated: 

Ech=coefev x Eo x Lch x W x frΔt      (2.17) 
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Where Ech is the evaporation from the reach for the day (m3 H2O), coefev is an 

evaporation coefficient, Eo is the potential evaporation (mm H2O), Lch is the channel 

length (km), W is the channel width at water level (m), and frΔ  is the fraction of the 

time step in which water is flowing in the channel. 

 

The evaporation coefficient is a calibration parameter for the user and is allowed to 

vary between 0 and 1. The fraction of the time step in which water is flowing in the 

channel is calculated by dividing the travel time by the length of the time step. 

2.4.3.9 Bank Storage 

The amount of water entering bank storage on a given day is calculated 

bnkin= tloss x(1-frtrans)       (2.18) 

 

Where bnkin is the amount of water entering bank storage (m3H2O), tloss are the 

channel transmission losses (m3H2O), and frtrans is the fraction of transmission losses 

portioned to the deep aquifer. 

 

Bank storage contributes flow to the main channel or reach within the subbasin. Bank 

flow is simulated with a recession curve similar to that used for groundwater. The 

volume entering the reach from bank storage is calculated 

Vbnk=bnk x (1-exp[-αbnk])       (2.19) 

 

Where Vbnk is the volume of water added to the reach via return flow from bank 

storage (m3 H2O), bnk is the total amount of water in bank storage (m3 H2O), and 

αbnk is the bank flow recession constant or constant of proportionality. 

2.4.3.10 Channel Water Balance 

Water storage in the reach at the end of the time step is calculated: 

Vstored,2 = Vstored,1 + Vin - Vout – tloss - Ech + div + Vbnk   (2.20) 

 

Where Vstored,2 is the volume of water in the reach at the end of the time step (m3 

H2O), Vstored,1 is the volume of water in the reach at the beginning of the time step 

(m3H2O), Vin is the volume of water flowing into the reach during the time step(m3 

H2O), Vout is the volume of water flowing out of the reach during the time step 
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(m3H2O), tloss is the volume of water lots from the reach via transmission through the 

bed(m3 H2O), Ech is the evaporation from the reach for the day (m3 H2O), div is the 

volume of water added or removed from the reach for the day through diversions (m3 

H2O), and Vbnk is the volume of water added to the reach via return low from bank 

storage (m3 H2O).  As the transmissions losses, evaporation and other water losses for 

the reach segment are calculated, the amount of outflow to the next reach segment is 

reduced by the amount of the loss. 

2.4.4 SWAT Advanages 

 Physically based 

 Requires generally available information as input 

 Computationally efficient 

 Capable of being used on ungauged watersheds 

 Enables users to study long-term impacts. 
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Chapter 3 Methodology 
Methodology 

3.1 Introduction 

Assessment of climate change impact on the flow of any river basin using 

hydrological model involves several steps. Numerous amount of preprocessing and 

post-processing is one of the major difficulties faced by the researchers. In the present 

work initially several types of data such as, Digital Elevation Model, land use pattern, 

soil distribution, climate data and flow time series were collected to setup a semi-

distributed model using SWAT. Steps followed in the present research can be 

described as following: 

 

Step 1-Data Collection: This include DEM, land use pattern, soil distribution, 

climate data and flow time series 

 

Step 2- Bias Correction: Correcting bias in the climate data (specifically 

precipitation) 

 

Step 3-Model Setup: Model setup which includes watershed delineation, weather 

data setup, HRU definition and selection of calculation methods. 

 

Step 4-Sensitivity Analysis: Sensitivity analysis of the calibration parameters, 

calibration using the selected parameters, validation of the model and evaluation of 

the performance 

 

Step 5-Scenario Selection: Selection of scenarios for climate change impact 

assessment.  

 

Step 6-PatternScaling: Obtaining high resolution projected climate data of selected 

scenarios 

 

Step 7-Climate Change Impact Assessment: Run the model with high resolution 

projected data and analyzed the impact of climate change on the flow of Brahmaputra 

river Basin 
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3.2 Data Collection 

3.2.1 Digital Elevation Model, Land use and Soil Data 

Digital Elevation Model (DEM) of 3 arc second or 90 m grid resolution was 

downloaded from Shuttle Rudder Topography Mission (SRTM) website 

(http://srtm.csi.cgiar.org). Collected DEM was resampled to obtain relatively coarser 

resolution data in order to increase the computation efficiency. This was further used 

to delineate the watershed and the drainage pattern for the surface area analysis.  

 

Soil map of the selected area was collected from Harmonized World Soil Database 

(HWSD). It has 1km grid resolution and provides soil properties of two layers (0-30 

cm) and (30-100 cm) depth. It includes soil properties like particle-size distribution, 

bulk density, organic carbon content, available water capacity, soil texture, available 

water content, saturated hydraulic conductivity etc. There are 29 types of soil class 

data in the GBM basins. 

 

Table 3.1:Land use distribution in Brahmaputra River Basin 

Land use Area (%) 
Agricultural land 23 
Deciduous forest  - 
Evergreen forest 17 
Mixed forest 6 
Herbaceous land 36 
Shrub Land 9 
Pasture - 
Water bodies - 
Snow and ice 5 
Bare land 2 
Other type 2 
Total 100 

 
Land use is one of the most important factors that affect surface erosion, runoff, and 

evapotranspiration in a watershed. Parameters like infiltration, root depth and 

M      ‘                                                 L                 BRB     

been collected from USGS (United State Geological Survey) - Global Land Cover 

2000 database. The required area is available from South Central Asia dataset. The 

data is available in geographic coordinate system - WGS84 datum. There are 11 types 

of land use data in GBM basins. Land use classes for Brahmaputra river basin is 

http://srtm.csi.cgiar.org/
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shown in Table 3.1. Land use classes have been parameterized based on existing 

SWAT land use classes.  

 

SWAT model stores the information required to simulate plant growth, in the plant 

growth database file for individual plant. The plant growth database distributed with 

SWAT includes parameters for most of the common plant species.  

 

 

Figure 3.1: Digital Elevation Model of Brahmaputra River Basin 

 

Figure 3.2:Land use map of Brahmaputra River Basin 
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Figure 3.3:Soil use map of Brahmaputra River Basin 

3.2.2 Weather and Discharge data 

The SWAT model requires different types of meteorological data to simulate the 

hydrological processes. These include daily values of precipitation, maximum and 

minimum temperature, solar radiation, relative humidity and wind speed. For this 

study, meteorological   data for the BRB have been collected from the National 

Aeronautics and Space Administration Prediction of Worldwide Energy (NASA 

POWER, link http://power.larc.nasa.gov).  The  data  includes  daily  meteorological 

data  (precipitation,  minimum  and  maximum  temperature)  for the climate normal 

period (1981  to  2010). Table 3.2 shows basic data used in this study including their 

source, resolution and time period. 
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Table 3.2: Basic input data used in this study 

Type Description Source/Reference Original 
spatial 
resolution 

Period Remarks 

 
Physical Data 

 
Digital 
Elevation Map 
(DEM) 

 
SRTMa 

 
90 m x 90 m 

  
DEM was resampled to 
get relatively coarser 
resolution raster file for 
faster computation 

 Soil data 
 

HWSDb 30 arc second   

 Land use data USGS    
 
Meteorological 
Data 

 
Precipitation, 
temperature 

 
Bangladesh 
Meteorological 
Department 
(BMD) 
 
NASA Powerc 
 
NCDCd 
 
 

 
Ishurdi, 
Tangail, 
Sayedpur 
station 
 
 
           
 
Nagqu (China) 
and Lhasa 
(China) 
 
Shilguri 
(India) 

 
1981-
2010 
 
 
 
1981-
2010 
 
All 
available 
 

 
NCDC and BMD data 
were used for the bias 
correction of NASA 
Power precipitation 
data. While using 
NCDC stations some 
data were missing. Data 
period for comparison 
were kept same for this 
source. 
 
 
 

 
Hydrological 
Data 

 
Discharge 

 
Bangladesh Water 
Development 
Board (BWDB) 

 
Gauged 

 
1981-
2010 

 
Discharge (monthly) 
data was collected at 
Bahadurabad station. 
Some data were missing 
for dry period flow. 

 
GCM Data 

 
Precipitation, 
maximum 
temperature, 
minimum 
temperature 

 
BCC-CSM1.1 
BCC-CSM1.1(m) 
GISS-E2-H 
GISS-E2-R 
HADGEM2-ES 
MRICGCM3 
MIROC-ESM 
MIROC-ESM-
CHEM 
 

 
2.8125    x 
2.8125   
2.8125    x 
2.8125   
2.0    x 2.5   
2.0    x 2.5   
1.2414    x 
1.875   
1.125   x 1.125   
2.8125    x 
2.8125   
2.8125    x 
2.8125   
 
 

 
2005-
2100 

 
All data are downloaded 
from ESGF Portale.  
 
Precipitation and 
temperature data were 
extracted at four points 
in Brahmaputra river 
basin. 

aShuttle Rudder Topographic Mission.bHarmonized World Soil Database 
cNASA Prediction of Power Worldwide Energy Resources  
(http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/hirestimeser.cgi?email=daily@larc.nasa.gov).  
dNational Climatic Data Center. eEarth System Grid Federation (http://pcmdi9.llnl.gov/esgf-web-fe/) 

3.3 Bias Correction 

NASA POWER precipitation data were corrected for bias after comparing with the 

measured precipitation data at six stations in BRB. The correction was made based on 

the monthly averaged data of both observed and nearest NASA Power station data. 

This bias corrected precipitation along with the temperature data were further used as 

http://pcmdi9.llnl.gov/esgf-web-fe/
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input in the SWAT model. Steps followed for bias correction of precipitation can be 

described as following: 

 

Step 1:Monthly average precipitation(mm) were calculated for each of the six 

observed stations and nearest NASA POWER stations. 

 

Step 2: Ratio of monthly precipitation for observed station and corresponding nearest 

NASA POWER station were determined (For each month separately, that is for one 

station 12 ratios for 12 months). 

 

Step3: Ratios of each month for six stations were averaged. So, finally 12 ratios for 

12 months obtained. 

 

Step 4: Averaged ratios for each month was multiplied to all the NASA POWER 

stations (different averaged value for different month). 

3.4 Steps of Model Setup 

Five sequential steps have been followed to set up the SWAT model, which are (1) 

watershed delineation, (2) weather data definition, (3) editing SWAT inputs and 

simulation, (4) model calibration and validation and (5) Finally, streamflow 

simulation (both for present condition as well as in future) at different crucial points 

in some major rivers which are basically outflow of different sub-catchments. Detail 

description of model development is given in chapter 4. 

3.5 Synthetic Approach of Climate Change Scenario Generation 

In this study sensitivity of SWAT simulated streamflow has been investigated by 

changing precipitation and temperature by arbitrary amounts. The changes can be 

made in annual, seasonal or monthly scale. In this study the perturbation in 

precipitation and temperature were made in monthly scale. Climate change scenario 

generation in this method consists of two steps. First, estimation of average annual or 

monthly changes in climate data. Temperature and precipitation changes are estimated 

    ΔT   °    °        °     ΔP= 0, ±10%, ±20%, 30% and 40%. Second, 

perturbation of historical time series of climatic data.  The perturbation of temperature 
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                                T  T  ΔT     P  P  ΔP        T   T      P   P  

are the historic and future temperature and precipitation, respectively. 

3.6 Selection of Climate Models and Scenarios 

There are lots of GCMs available at different resolution for projecting future climate 

scenarios.   There exist great variations in outputs values from one GCM to another. 

Some tend to give high changes in temperature and precipitation, whereas some give 

moderate changes. Moreover it is very much difficult to work with all the GCMs at a 

time. So selecting a model for assessing the hydrological impact of climate change is 

one of the most important tasks.  Four points are selected all over the basin at which 

GCM results are extracted and used for further analysis. An assessment on different 

GCMs for four scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) according to 

IPCC AR5 (IPCC 5thAssessment Report) has been conducted to justify the use of 

specific GCM outputs. Projected temperature and precipitation over the three periods 

of the 21st century O                    GCM‘                   RCP  is analyzed for 

Brahmaputra river basin to identify the warmest, coolest, driest, wettest, moderate 

warm and moderate wet scenarios. Precipitation and mean temperature obtained from 

different GCMs were average for three periods, viz. 2010-2039 (2020s), 2040-2069 

(2050s) and 2070-2099 (2080s). Changes of precipitations and temperature from the 

base period were analyzed separately for all the periods. Finally, selection of 

scenarios were done based on the changes at the end of 21st century which is 

represented by 2080s. Steps followed can be summarized as following: 

 

Step 1: Precipitation, maximum and minimum temperature data are extracted at four 

points in Brahmaputra river basin for each of the eight GCMs and four RCP scenarios 

for the period 2010-2100. 

 

Step 2: Monthly average precipitation and maximum/minimum temperature were 

determined for three time periods, viz. 2020s (2010-2039), 2050s (2040-2069) and 

2080s (2070-2099). Monthly average precipitation and temperature (max/min) were 

also calculated for base period (GCM base period data is available up to 2005. So 

thirty year period was selected as base, viz. 1970-2000) for each GCM. 
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Step 3: C                          C                                                 

period were calculated for each GCM and RCPs.  

 

Step 4: For selecting scenarios for further study, changes at the end of 21st century 

(2080s) were considered. Scenario giving highest temperature and precipitation 

change were selected as the warmest and wettest. Driest and coolest scenario gave 

minimum positive or highest negative value of precipitation and temperature 

consecutively. Scenarios gave nearest changes in temperature and precipitation to 

median value were selected as moderate warm and moderate wet scenario 

respectively. 

3.7 Pattern Scaling 

In this study, Pattern scaling has been used to obtain future climate change scenarios. 

An open source tool namely MarkSim has been used for projecting climate change 

and obtaining high resolution precipitation and temperature data of selected six 

scena      R                                            M   S                    

(Latitude x Longitude). Marksim uses WorldClim climate data as the base period data 

source (most of the data cover period 1960-1990, It uses historical weather data from 

a number of databases.) (Jones, P.G. and Thornton P.K., 2013). For base period we 

get precipitation, maximum and minimum temperature data for 365 days (1961-2005 

averaged). For future projection of different scenarios we get data from 2013-2099. 

As described in section 3.6,we used 2010-2039 as 2020s, but as Marksim gives output 

from 2013 for projected scenarios. So, for the analysis of projected flow of different 

scenarios, we used 2013-2039 as 2020s (Other periods 2050s and 2080s are same as 

described earlier). Climate parameters derived from MarkSim have further been used 

as an input in SWAT model to generate future projected streamflow of BRB for the 

21st century. 

3.8 Future Scenario Generation 

Temperature and precipitation data of 6 climate change scenarios obtained from 

pattern scaling, viz. warmest, coolest, wettest, driest, moderate warm and moderate 

wet were used to characterize the range of potential impact of climate changes on 

flow of Brahmaputra river basin.  
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3.8.1 Correction of flow for future scenarios 

The hydrological model of BRB was run wit                                     

precipitation and maximum, minimum temperature data for base condition (Marksim 

uses 1961-2005 averaged data as base data, data source is WorldClim database) and 

six scenarios. Flow obtained using MarkSim base period data was lower than the 

observed data (Monthly average flow was compared, observed data period was 1981-

2010). So, it was necessary to adjust the flow obtained using high resolution data 

obtained after pattern scaling. For this following steps were followed: 

Step 1: Ratio of flow for projected scenario and base period (using Marksim base 

period data) was determined.  

 

Ratio=                                      

                                                         
   (3.1) 

 

Step 2: The Ratio obtained for each of the six scenarios (monthly average/ mean 

annual/ maximum annual/ minimum annual ) were multiplied by the observed data 

(1981-2010 averaged) to obtain the adjusted flow for each of the scenarios 

 

Adjusted flow = Ratio x Observed flow     (3.2) 
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Chapter 4 Model Development 
Model Development 

 

4.1 Introduction 

The physically based hydrological model SWAT of Arnold and Allen (1996) selected 

for this study operates on daily time step and uses physiographical data such as 

elevation, soil use, land use, meteorological data and river discharge. As described 

earlier, the effects of spatial variations in topography, land use, soil and other 

characteristics of watershed hydrology are incorporated by dividing a basin into 

several sub-basins based on drainage areas of tributaries and then the sub-basins are 

further divided into a number of Hydrological Response Units (HRUs) based on land 

cover and soils. Each HRU is assumed to be spatially uniform in terms of land use, 

soil, topography and climate.  

4.2 Steps of Model Setup 

Initially the climate data which would be used as input in the SWAT model should be 

checked for bias. Due to high level of variability and uncertainty only precipitation 

data is checked for bias comparing with the observed data. After bias correction five 

sequential steps have been followed to set up the SWAT model, which are watershed 

delineation, weather data definition, editing SWAT inputs and simulation. Finally, 

flow has been generated (both for present condition as well as in future) at different 

crucial points in some major rivers which are basically outflow of different sub-

catchments. The descriptions of these steps are given in the following sections: 

4.2.1 Biases in NASA POWER Precipitation 

Precipitation is the most important and sometimes an uncertain variable in 

hydrological modeling (Islam and Gan 2015). Mismatch between observed and 

NASA POWER precipitation may lead to greater uncertainty and less reliable outputs 

from the hydrologic assessment.  It is possible the adjust some model parameters to 

suppress over-simulated and increase under-simulated runoff, but that would not 

address the real problem and make more sense to question the validity of NASA 

POWER Precipitation data. So, comparison of mean monthly precipitation between 

few observed stations and nearby NASA POWER grid points for the same period 
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have been made to identify the extent of deviation. Six points have been selected 

within BRB based on the availability of data as shown in Figure 4.1. 

 

Figure 4.1: Location of NASA Power stations, BMD stations and NCDC stations 

 

Figure 4.2-4.7 show monthly comparison of average precipitation between NASA 

POWER and observed station. Precipitation data of Rangpur, Sayedpur, Ishurdi and 

Tangail have been collected from BMD whereas data of Shilguri, Lhasa and Nagqu 

were collected from NCDC website. It is evident there exist no similar pattern of 

variability, that is for some station observed value is higher where as at some stations 

NASA POWER is overestimating. This variability also exists between the months.  

 

In order to remove biases in NASA POWER data, a methodology applied in Islam 

and Gan (2015) has been adapted and will be discussed below:  

 

Step 1: Ratio of mean monthly observed precipitation and mean monthly 

precipitation from nearby NASA POWER grid has been determined for all the six 

stations. 
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Step 2:These month ratios of six stations were averaged for each month separately to 

estimate the average monthly precipitation bias ratio for the BRB 

 

Step 3: Monthly ratio obtained from previous step was used to adjust all NASA 

POWER stations precipitation to remove the bias. This adjustment leads the bias 

corrected precipitation. 
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Table 4.1: All the calculations done in this step to correct the bias in NASA POWER data. 

 

 

 

 Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
NASA POWER (mm) 0.2135 0.2056 0.3539 1.0400 2.7204 6.8282 9.1383 7.1301 6.3744 2.4416 0.2919 0.1671 
Sayedpur station(mm) 0.2860 0.4173 0.8679 3.7416 8.6842 15.8578 15.7559 11.6731 13.0189 6.0311 0.2622 0.2470 
Sayedpur/ NASA 
POWER 

1.3396 2.0299 2.4526 3.5977 3.1922 2.3224 1.7242 1.6372 2.0424 2.4702 0.8983 1.4785 

  

NASA POWER(mm) 0.2006 0.2788 0.6391 1.6127 3.5963 9.2413 11.5009 9.2308 8.8261 4.2111 0.4831 0.2432 
Ishurdi station(mm) 0.2148 0.5645 0.9631 2.2173 4.9263 8.0813 9.0436 6.8576 9.8604 4.0419 0.4841 0.2915 
Ishurdi/ NASA POWER 1.0707 2.0244 1.5071 1.3749 1.3698 0.8745 0.7863 0.7429 1.1172 0.9598 1.0022 1.1982 
  

NASA POWER(mm) 0.9011 0.8458 1.0222 3.2651 8.1501 13.4252 16.8461 13.3332 11.3976 4.9441 1.3570 0.5196 
Shilguri station(mm) 0.3900 1.5974 1.2438 5.7342 13.5906 18.0324 27.4000 22.1774 19.4308 8.7802 0.8766 1.3460 
Shilguri/ NASA 
POWER 

0.4328 1.8886 1.2168 1.7562 1.6676 1.3432 1.6265 1.6633 1.7048 1.7759 0.6460 2.5904 

  

NASA POWER(mm) 0.1264 0.1913 0.3468 0.7944 1.5998 3.1485 3.9579 4.4410 3.3290 0.9144 0.2075 0.0795 
Lhasa(mm) 0.0277 0.0491 0.0999 0.2446 0.9357 2.3918 3.9746 4.0158 2.3143 0.2327 0.0243 0.0239 
Lhasa/ NASA POWER 0.2194 0.2567 0.2880 0.3078 0.5849 0.7597 1.0042 0.9043 0.6952 0.2545 0.1173 0.3002 
  

NASA POWER(mm) 0.1859 0.3113 0.5061 0.9033 1.7311 3.4681 3.6945 3.8796 3.2004 1.0596 0.3012 0.1490 
Nagqu(mm) 0.4787 0.7063 1.1248 1.4567 1.7877 2.0082 2.2462 1.7800 1.4134 0.7918 0.4927 0.5359 
Nagqu/ NASA POWER 2.5749 2.2689 2.2225 1.6127 1.0327 0.5790 0.6080 0.4588 0.4416 0.7472 1.6361 3.5973 
  

NASA POWER(mm) 0.1505 0.2717 0.8090 2.2310 4.4656 9.8526 11.7031 9.0818 8.7149 4.5395 0.6364 0.1738 
Tangail(mm) 0.1987 0.8654 1.4645 3.6333 8.3665 10.5666 10.6955 8.7587 9.4107 5.3742 0.8373 0.3703 
Tangail/ NASA POWER 1.3208 3.1855 1.8102 1.6286 1.8735 1.0725 0.9139 0.9644 1.0798 1.1839 1.3157 2.1313 
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Table 4.2: Monthly ratios obtained for bias correction 

 

 

 

 

 

 

Sl. No Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Sayedpur 1.3396 2.0299 2.4526 3.5977 3.1922 2.3224 1.7242 1.6372 2.0424 2.4702 0.8983 1.4785 

Ishurdi 1.0707 2.0244 1.5071 1.3749 1.3698 0.8745 0.7863 0.7429 1.1172 0.9598 1.0022 1.1982 

Shilguri 0.4328 1.8886 1.2168 1.7562 1.6676 1.3432 1.6265 1.6633 1.7048 1.7759 0.6460 2.5904 

Lhasa 0.2194 0.2567 0.2880 0.3078 0.5849 0.7597 1.0042 0.9043 0.6952 0.2545 0.1173 0.3002 

Nagqu 2.5749 2.2689 2.2225 1.6127 1.0327 0.5790 0.6080 0.4588 0.4416 0.7472 1.6361 3.5973 

Tangail 1.3208 3.1855 1.8102 1.6286 1.8735 1.0725 0.9139 0.9644 1.0798 1.1839 1.3157 2.1313 

Average 1.1597 1.9423 1.5829 1.7130 1.6201 1.1585 1.1105 1.0618 1.1802 1.2319 0.9359 1.8827 
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Figure 4.2: Bias correction at Rangpur and Sayedpur station (Two stations average as 
both are near to one NASA Power station ) 

 
Figure 4.3: Bias correction at Ishurdi station 
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Figure 4.4: Bias correction at Tangail station 

 

 
Figure 4.5: Bias correction at Nagqu station 
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Figure 4.6: Bias correction at Shilguri station 

 

 

 
Figure 4.7: Bias correction at Lhasa station 

4.2.2 Watershed Delineation 

The first step in the model setup involves a delineation of the basin and sub-basin 

boundaries. This is accomplished using the automatic watershed delineation tool of 
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ArcSWAT 2012.10.2.16 employing a 900 m DEM (re-sampled from 90 m DEM) for 

GBM basins and 200 m DEM (re-sampled from 300 m DEM) for Bangladesh. The 

Universal Transverse Mercator (UTM) projection has been used for the DEM and all 

other GIS layers. All the watershed delineation steps such as filling sink, defining 

flow direction and accumulation have been done automatically through the user 

interface. After watershed delineation, BRB basins have been divided into 149 

watersheds based on the threshold area of 200,000 ha. After delineation, the basin was 

divided into 149 sub-basins as shown in Figure 4.8. Soil and landuse maps were 

loaded into SWAT to extract the landuse and soil information of the BRB. The land 

use, soil layer and slope class were overlaid to define the HRUs of the BRB. A total 

of 1020 HRUs (Average area 687 km2) were produced and included in the simulation. 

The discretization of basin into HRUs allows a detailed simulation of the hydrological 

processes. 

 
Figure 4.8: Sub basins and delineated stream network of Brahmaputra River Basin 

4.2.3 Weather Data Definition 

The climate of a watershed provides the moisture and energy inputs that control the 

water balance and determine the relative importance of the different components of 

the hydrologic cycle. The climatic variables required by SWAT consist of daily 

precipitation, maximum/minimum air temperature, solar radiation, wind speed and 
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relative humidity. The model allows values for daily precipitation, 

maximum/minimum air temperatures, solar radiation, wind speed and relative 

humidity to be input from records of observed or generated data using weather 

generator tools (WXGEN) (Arnold et.al., 2009b).  

 

The weather data for the GBM basins have been used from NASA power. The data 

includes daily weather data (precipitation, minimum and maximum temperature) 

starting from 1981 to 2010 which is used for SWAT modeling calibration. Similar 

weather data for Bangladesh from the BMD has been collected for the same time 

frame.  

4.2.4 Simulation Method Selection 

The SWAT model has been simulated for the period of 1981 to 2010 based on the 

availability of data. To describe the distribution of rainfall, SWAT provides two 

options: a skewed normal distribution and a mixed exponential distribution. In the 

simulation for the present study, the skewed normal probability distribution function 

                                                                SWAT      M      ‗  

equation to define the rate and velocity of flow. Water is routed through the channel 

network using the variable storage routing method or the Muskingum River routing 

method. In this simulation the variable storage method has been used for channel 

routing. For estimating runoff, the SCS curve number method has been used . The 

Hargreaves method has been used to calculate potential evapotranspiration (PET) as it 

requires less weather parameter.The skewed normal distribution method has been 

used for rainfall distribution. Note that, the model was applied for 1978 to 2010 with a 

daily time step in order to facilitate the 3 years warm-up period where 1978-1980 was 

taken same as the year 1981. 

4.2.5 Sensitive Parameter Selection 

Model users are often faced with the different task of determining which parameters 

to calibrate so that the model response mimics the actual field, subsurface, and 

channel conditions as closely as possible. When the number of parameters in a model 

is substantial as a result of either a large number of sub-processes being considered or 

because of the model structure itself, the calibration process becomes complex and 

computationally extensive (Rosso, 1994; Sorooshian and Gupta, 1995). In such cases, 
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sensitivity analysis is helpful for identifying and ranking parameters that have a 

significant impact on specific model outputs of interests (Saltelli et.al., 2000). 

 

 
Figure 4.9: Global sensitivity analysis of calibration parameters 

 

Table 4.3: Most sensitive SWAT parameters and their fitter values for Brahmaputra 
river basin 

Rank Parameter Description Range Fitted 
value 

1 v__GW_REVAP.gw Ground water revap co-efficient 0.02 - 0.2 0.059 
2 v__GWQMN.gw Threshold water depth in the 

SA 
0 - 3000 2416.667 

3 v__ESCO.hru Soil evaporation factor 0 - 1 0.78 
4 r__SOL_AWC().sol Soil available water capacity ± 0.25 0.0776 
5 v__RCHRG_DP.gw Deep aquifer percolation 

fraction 
0 - 1 0.035 

6 r__CN2.mgt Curve number ± 0.25 -0.055 
7 r__SOL_K().sol Saturated hydraulic 

conductivity  
± 0.25 0.0833 

8 v__CH_N2.rte M      ‘                      0.02-0.03 0.029167 
9 v__GW_DELAY.gw Groundwater delay time  20-100 21.333 
10 v__ALPHA_BF.gw Baseflow alpha factor 0.02 - 0.2 0.197 
11 v__CANMX.hru Maximum canopy storate  0-10 1.833 

The qualifier (r_) refers that the value is multiplied by 1 plus a factor. 
The qualifier (v_) refers to the substitution of a parameter by a value.  
The qualifier (a_) refers to the addition of a parameter by a value. 
 

For the present study, sensitivity analysis was performed using the Latin hypercube 

one-factor-at-a- time (LH-OAT) (Van Griensven et.al., 2002, 2005) method to rank 
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the simulation parameters of the model for each sub basin. Sensitivity analysis can be 

performed for many inputs such as for flow, sediment discharge, Organic Nitrogen, 

Phosphorus etc. In this study, sensitivity analysis is performed only for stream flow, 

as the study objective is to assess the availability of water. Figure 4.9 shows the 

results and sensitivity of various parameters used in SWAT model calibration, this 

analysis was done by using SWAT-Cup tool Total 11 parameters have been selected 

to find out their sensitivity on flow conditions. Most sensitive parameters and their 

fitted values are shown in Table 4.3. 

 

4.3 Calibration and validation 

There are numerous parameters in hydrological models which can be classified as 

physical parameters (i.e., parameters that can be physically measurable from the 

properties of watershed) and process parameters (i.e., parameters represents properties 

which are not directly measurable) (Sorooshian and Gupta, 1995). A sensitivity 

analysis of parameters was carried out by regressing Latin Hypercube generated 

parameters against objective function values (SWAT-cup, 2012). It was found that, 

out of 27 selected parameters, the Ground water revap co-efficient, threshold water 

depth in the shallow aquifer for flow, soil evaporation compensation factor, available 

water capacity,                                       q                        ‘    

for main channel, curve number, saturated hydraulic conductivity, maximum canopy 

storage, groundwater delay time         fl                                         

parameters to which the flow has sensitivity. However the curve number (CN2) was 

found to be the main sensitivity parameter for all outlets. The model was calibrated 

from 1981 to 1995 and validated form 1996 to 2010 with monthly observed stream 

flow data at Bahadurabad station. 

 

In calibration and validation stage, model performance is evaluated based on 

statistically and graphically.  

4.3.1 Calibration using SWAT-CUP tool 

Automated model calibration requires that the uncertain model parameters are 

systematically changed, the model is run, and the required outputs (corresponding to 

measured data) are extracted from the model output files. The main function of an 
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interface is to provide a link between the input/output of a calibration program and the 

model. The simplest way of handling the file exchange is through text file formats. 

SWAT-CUP is an interface that was developed for calibration of SWAT. Using this 

generic interface, any calibration/uncertainty or sensitivity program can easily be 

linked to SWAT. The program links Sequential Uncertainty Fitting (SUFI2) 

(Abbaspour et.al., 2004; 2007), Particle Swarm Optimization (PSO), Generalized 

Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Parameter 

Solution (ParaSol) (Van Griensven and Meixner, 2003), and Markov chain Monte 

Carlo (MCMC) (e.g., Kuczera and Parent, 1998; Vrugt et.al., 2003) algorithm to 

SWAT. It enables sensitivity analysis, calibration, validation, and uncertainty analysis 

of SWAT models and can help decrease modelling uncertainty by removing some 

probable sources of modeling and calibration errors. Based on previous studies it was 

found that SUFI2 has better performances in calibrating SWAT quickly in a 

computationally less expensive method and also with less no. of iterations. So, SUFI2 

has been used to perform the calibration of SWAT at selected calibration points of the 

GBM basins.Figure 4.10 shows the graphical representation of monthly observed and 

simulated flow for both calibration and validation period. It was found that the 

simulated flow is in great compliance with the observed discharge for both monsoon 

and dry season. 

 

 
Figure 4.10: Monthly observed and simulated flows for the calibration and validation 
period 1981 to 2010 
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Table 4.4: Model performance statistics for calibration (1981-1995) and validation 
period (1996-2010) of the Brahmaputra river basin 

Period Observed 
Mean (m3/s) 

Simulated 
Mean (m3/s) 

Model performance 

NSE R2 PBIAS RSR 

Calibration 21205.34037 20468.29833 0.90 0.90 3.48 0.32 

Validation 21902.88773 19944.6344 0.89 0.89 0.29 0.34 
 

 

Table 4.5: General Reported ratings for Nash-Sutcliffe efficiency (NSE), Mean 
relative bias (PBIAS), Root mean square error-standard deviation ratio (RSR) and 
Coefficient of determination (R2) for calibration and validation process (Rossi et al, 
2008). 

Formula Value Rating 

      [
∑                    

 

∑              ̅̅ ̅̅ ̅̅    
 

] 
>0.65 
0.54 to 0.65 
>0.50 

Very Good 
Adequate 
Satisfactory 

      [
∑                   

 

∑         
 

] 
< ± 20% 
± 20% to ± 40% 
> ± 40% 

Good 
Satisfactory 
Unsatisfactory 

    

[
 
 
 
√∑                    

 

√∑              ̅̅ ̅̅ ̅̅    
 ]

 
 
 

 

    ≤   RSR ≤     
    ≤   RSR ≤     
    ≤   RSR ≤   7  
RSR ≥   7  

Very Good 
Good 
Satisfactory 
Unsatisfactory 

  

 [
[∑              ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅   

 ]
 

[∑              ̅̅ ̅̅ ̅̅    
 ∑              ̅̅ ̅̅ ̅̅ ̅̅   

 

 
]
] 

 Satisfactory 

       Note: xobs=observed flow, ymod= model/simulated flow 

4.3.2 Model Performance Evaluation 

Statistically the performance of the model has been evaluated using the Nash–

Sutcliffe Efficiency value (NSE), the coefficient of determination (proportion of the 

variance in the observations explained by the model, R2), percent bias (PBIAS) and 

the ratio of the root mean square error between the simulated and observed values to 
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the standard deviation of the observations (RSR). The statistical model performance is 

given in Table 4.4. General reported rating of NSE, R2, PBIAS and RSR are given in 

Table 4.5. The NSE values are 0.90 and 0.86 for calibration and validation period 

respectively. The co-efficient of determination (R2) values are 0.90 for calibration and 

0.87 for validation period. The PBIAS and RSR values are found to be 3.48 and 0.32 

in calibration stage and 3.27 and 0.56 in validation stage, respectively. These statistics 

demonstrate SWAT generally performed well in both calibration and validation stages 

based on historical measured data for BRB (Moriasi et.al., 2007), which establishes 

the basis for conducting climate change studies based on the simulations of SWAT, 

                   ‘                                      unchanged. Scatter plot of 

observed vs simulated flow at Bahadurabad station for 1981-2010 has been plotted in 

Figure 4.11. Simulated flow shows good compliance with the observed flow at this 

station. 

 

 
Figure 4.11: Scatter plot of observed vs simulated flow at Bahadurabad station for 
1981-2010 
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Chapter 5 Results and Discussions 
Results and Discussions 

5.1 Introduction 

After model setup and calibration/validation, several types of analysis were done in 

order to assess the water availability in BRB and impact of climate change on flow for 

different scenarios. In this chapter, initially the basin water balance was discussed 

which quantifies water distribution throughout the basin. After this, temperature and 

precipitation change obtained for several GCMs and RCPs were discussed based on 

which six climate scenarios were selected. Projected flow for high resolution 

precipitation and temperature of six selected scenarios were then analyzed to identify 

the impact of climate change on flow of Brahmaputra river basin. 

 

Table 5.1: Annual average water balance of Brahmaputra River Basin.(1981-1995) 

Water Balance Component Amount(mm) 

Precipitation (PR) 1342 

Snowfall(SF) 153 

Surface runoff (SR) 246.65 

Lateral soil flow contribution(LatQ) 119.31 

Ground water contribution to streamflow (GWQ) 555.52 

Revap or shallow aquifer recharges(SAR) 33.61 

Deep Aquifer Recharges (DAR) 21.74 

Total water yield/ flow(WY) 925.98 

Percolation out of soil(PER) 621.27 

Actual evapotranspiration(ET) 328.1 

Potential evapotranspiration(PET) 579.1 

Change in soil water storage (SW) 37.07 
Note: SW=PR+SF-SR-LatQ-GWQ-SAR-DAR-ET 

 

5.2 Water Balance of the BRB 

Water balance is the assessment of water resources and its use in the system. The 

computation includes all water receiving components (rainfall, snow fall etc.) within 

the system as well as water losses (evaporation, percolation, runoff etc) from the 

system. The main principle of water balance is the difference between total incoming 

water and total losses equal to storage in the system. For water balance analysis of the 

study area, the calibrated SWAT models have been simulated for the time period of 

1981 to 2010 and the hydrological components have been analyzed to compute 



73 
 

average annual water balance. The simulation results of the annual water balance for 

the Brahmaputra River Basin (BRB) is given in Table 5.1. 

 

The water balance in SWAT considers precipitation and snow fall as inflow to the 

sub-basin (the basic modeling unit in SWAT), evapotranspiration and deep 

percolation as loss and surface runoff and lateral flow as the outflow. The average 

annual basin precipitation and snowfall over the BRB are about 1342 mmand 153.29 

mm respectively.  

 

 
Figure 5.1: Schematic figure of water balance of Brahmaputra River Basin. 

 
Figure 5.2: Average (1981-1995) monthly water availability of Brahmaaputra River 
Basin (all in mm) 
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Table 5.2: Average monthly water availability of Brahmaaputra river basin (all in 
mm) 

Month 
Rain 
(mm) 

Snowfall 
(mm) 

Surface Q 
(mm) 

Lateral Q 
(mm) 

Water yield 
(mm) 

ET 
(mm) 

PET 
(mm) 

1 24.63 15.85 3.57 0.6 8.58 11.66 42.53 
2 32.02 21.32 5.49 0.71 9.43 11.26 32.57 
3 50.95 28 17.94 1.43 23.79 17.07 58.13 
4 81.85 27.5 28.28 4.41 44.55 25.62 65.35 
5 128.43 13.07 45.2 8.85 77.51 38.71 68.27 
6 212.97 1.41 44.61 20.66 118.04 45.52 57.02 
7 257.26 0.3 33.82 25.94 167.04 49.47 53.33 
8 215.33 0.94 19.83 21.81 165.39 38.85 40.87 
9 183.28 5.43 23.84 19.1 160.77 30.56 33.06 
10 103.07 17.57 18.66 11.24 114.71 25.28 36.23 
11 32.08 11.83 3.26 3.45 39.24 20.21 47.93 
12 19.9 10.07 2.13 1.1 14.07 13.78 43.5 
 

The annual evapotranspiration loss is 328.1 mm, which is 35% of annual inflow for 

Brahmaputra basins. Annual percolation in the Brahmaputra basin is 621.27 mm 

which is 67% of annual inflow. After the losses, the remaining water contributes to 

stream flow as surface runoff and lateral flow. A schematic figure of water 

availability in BRB is shown in Figure 5.1.  

 

Monthly water availability of the base scenario has been analyzed and given in Table 

5.2.  Flows are mainly concentrated in the wet period (June to November). For 

Brahmaputra basin peak flow occurs during July. 

5.3 Selection of Climate Change Scenarios 

Numerous GCMs are available at different resolution for projecting future climate 

scenarios. There exist great variations in output values from one GCM to another. 

Some tend to give high changes in temperature and precipitation, whereas some give 

moderate changes. Moreover it is very much cumbersome to work with all the GCMs 

at the same time. So selecting a model for assessing the hydrological impact of 

climate change is one of the most important tasks. In the present study an attempt has 

been made to identify the warmest, coolest, wettest, driest, moderate warm and 

moderate wet scenarios for the BRB. Eight models have been selected for this 
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analysis based on the availability of data. So there were 32 scenarios (8 GCMs and 4 

RCPs, viz RCP 2.6, RCP 4.5, RCP6.0, RCP 8.5) for selecting the required scenarios.  

 
Figure 5.3: Selected locations in Brahmaputra river basin for GCM data extraction 
and analysis 

5.3.1 Selection of Points for Analysis: 

Because of their  coarse resolution, only a few GCM grids fall upon Brahmaputra 

River Basin. Estimating the temperature and precipitation of the whole basin for all 

the models and RCPs using all the grids are quite cumbersome. So an attempt has 

been made to select a few representative points over the BRB which can provide a 

better idea of the climate parameters such as temperature and precipitation. In the 

present study four points are selected over the basin at which GCM projected climatic 

variables are extracted and used for further analysis. Figure 5.3 shows the location of 

the points selected for extracting the GCM outputs. Following sections analyzes the 

temperature and precipitation data obtained from eight GCMs. Appendix A represents 

all box-plot, bar chart and scatter plots generated from the results of the analysis of 

climate data obtained from GCM data. 
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5.3.1.1 RCP 2.6 

Temperature and precipitation change for eight GCMs are analyzed for RCP 2.6. The 

results are separated for three periods; viz. 2010-2039 (2020s), 2040-2069 (2050s) 

and 2070-2099 (2080s). Monthly precipitation/temperature data for each model was 

averaged and compared with the base period data (1971-2000). Table 5.3 shows the 

changes in precipitation (%) for 8 GCMs. 

ΔP(%) =            

      
 x 100    (5.1) 

 

Table 5.3: Precipitation change (%) for RCP 2.6 

Model 2020s 2050s 2080s 

BCC-CSM1.1 7.36 14.36 16.10 

BCC-CSM1.1(m) 5.82 7.68 1.83 

GISS-E2-H 3.56 3.86 6.05 

GISS-E2-R 2.85 3.38 -0.58 

HadGEM2-ES -5.59 -3.95 2.37 

MIROC-ESM 6.33 10.77 11.89 

MIROC-ESM-CHEM 5.70 9.31 18.58 

MRI-CGCM3 2.68 9.43 3.76 
 

It is found that the precipitation changes (%) varied between -5.589% to 7.36%, -

3.95% to 14.36% and -0.58% to 18.58% for 2020s, 2050s and 2080s, respectively. 

Median values for these three periods are 4.627%, 8.493% and 4.903%. There is a 

great variation among the trends of precipitation change. MIROC-ESM-CHEM 

projects the wettest scenario and GISS-E2-R projects the driest scenario for the RCP 

2.6. 

 

Changes in temperature were also analyzed for all the models as shown in Figure 5.4. 

Temperature changes vary from a minimum of 0.58, 0.69 and 0.67 degree Celsius to 

maximum of 1.52, 2.11 and 2.01 degree Celsius for 2020s, 2050s and 2080s, 

respectively. Medians of the temperature change are 0.90, 1.43 and 1.43 degree 

Celsius for the 2020s, 2050s and 2080s, respectively. MRI-CGCM3 was found to be 

the warmest and BCC-CSM1.1 was found to be the coolest scenario for RCP 2.6. 

Figure 5.4 shows the relative position of each scenario for 2020s, 2050s and 2080s. 
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ΔT  C   Trcp-Tbase        (5.2) 

 

Table 5.4: T               C             RCP     

Model 2020s 2050s 2080s 
BCC-CSM1.1 0.86 1.16 1.15 
BCC-CSM1.1(m) 0.79 1.26 1.20 
GISS-E2-H 1.26 1.61 1.66 
GISS-E2-R 0.58 0.69 0.67 
HadGEM2-ES 1.37 1.75 1.97 
MIROC-ESM 0.94 1.63 1.90 
MIROC-ESM-CHEM 1.52 2.11 2.01 
MRI-CGCM3 0.70 0.88 1.15 

 

 
Figure 5.4: ΔT     C     ΔP(%) plot of all the models for RCP2.6 

5.3.1.2 RCP 4.5 

Similar to RCP2.6 all other RCP scenarios were also analyzed to determine 

temperature and precipitation change for eight GCMs. Results obtained for RCP4.5 

are separated for three periods; viz. 2010-2039 (2020s), 2040-2069 (2050s) and 2070-

2099 (2080s). Monthly precipitation/temperature data for each model was averaged 

and compared with the base period data (1971-2000). Table 5.5 shows the changes in 

precipitation (%) and temperature for 8 GCMs. 
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Table 5.5: Precipitation change (%) for RCP 4.5 

Model 2020s 2050s 2080s 

BCC-CSM1.1 13.08 17.57 15.91 

BCC-CSM1.1(m) 2.46 7.27 8.34 

GISS-E2-H 3.75 12.39 19.80 

GISS-E2-R 8.00 5.47 9.56 

HadGEM2-ES -0.57 3.02 3.82 

MIROC-ESM -2.50 4.21 10.22 

MIROC-ESM-CHEM 1.19 8.51 19.41 

MRI-CGCM3 5.17 8.25 7.11 
 

It is found that the precipitation changes (%) varied between -2.50% to 13.08%, 

3.03% to 17.57% and 3.82% to 19.80% for 2020s, 2050s and 2080s respectively. 

Median values for these three periods are 3.11%, 7.76% and 8.89%. There is a great 

variation among the trends of precipitation change. Based on the % change in 2080s 

HadGEM2-ES projects the driest and GISS-E2-H projects the wettest scenario for the 

RCP 4.5. 

T          T               C             RCP     

Model 2020s 2050s 2080s 

BCC-CSM1.1 0.86 1.52 2.11 

BCC-CSM1.1(m) 1.06 1.77 2.00 

GISS-E2-H 1.51 2.49 2.95 

GISS-E2-R 0.86 1.40 1.68 

HadGEM2-ES 1.31 2.22 3.14 

MIROC-ESM 1.25 2.08 2.97 

MIROC-ESM-CHEM 1.11 2.17 3.18 

MRI-CGCM3 0.80 1.48 2.08 
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Changes in temperature were also analyzed for all the models as shown in Table 5.6. 

Temperature changes vary from a minimum of 0.80, 1.40 and 1.68 degree Celsius to 

maximum of 1.51, 2.49 and 3.18 degree Celsius for 2020s, 2050s and 2080s 

respectively. Medians of the temperature changes are 1.08, 1.92 and 2.53degree 

celsius for 2020s, 2050s and 2080s respectively. Based on the temperature change in 

2080s GISS-E2-R is the coolest and HAD-GEM2-ES is the warmest scenario for RCP 

4.5.Figure 5.5 shows the relative position of each scenario for 2020s, 2050s and 

2080s. 

 

 

 
Figure 5.5: ΔT     C     ΔP(%) plot of all the models for RCP 4.5 

5.3.1.3 RCP 6.0 

Similar to RCP2.6 all other RCP scenarios were also analyzed to determine 

temperature and precipitation change for eight GCMs. Results obtained for RCP6.0 

are separated for three periods; viz. 2010-2039 (2020s), 2040-2069 (2050s) and 2070-

2099 (2080s). Monthly precipitation/temperature data for each model was averaged 

and compared with the base period data (1971-2000). Table 5.7 shows the changes in 

precipitation (%) and temperature for 8 GCMs. 
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Table 5.7: Precipitation change (%) for RCP 6.0 

Model 2020s 2050s 2080s 

BCC-CSM1.1 12.30 18.61 21.08 

BCC-CSM1.1(m) 4.22 0.69 8.77 

GISS-E2-H 1.63 4.17 10.00 

GISS-E2-R 7.47 4.48 10.12 

HadGEM2-ES -0.56 -9.60 -1.00 

MIROC-ESM 6.73 7.45 17.55 

MIROC-ESM-CHEM 4.91 12.00 20.01 

MRI-CGCM3 4.61 9.23 11.74 
 

It is found that the precipitation changes (%) varied between -0.56% to 12.30%, -

9.599% to 18.61% and -1.00% to 21.08% for 2020s, 2050s and 2080s respectively. 

Median values for these three periods are 4.76%, 5.96% and 10.93%. There is a great 

variation among the trends of precipitation change. Based on the % change in 2080s 

HadGEM2-ES projects the driest and BCC-CSM1.1 projects the wettest scenario for 

RCP 4.5.  

 

 
Figure 5.6: ΔT     C     ΔP(%) plot of all the models for RCP 6.0 

Changes in temperature was also analyzed for all the models as shown in Table 5.8. 
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respectively. Median of the temperature changes are 0.84, 1.74 and 2.88 degree 

Celsius. Based on the temperature change in 2080s MRI-CGCM3 projects the coolest 

and MIROC-ESM-CHEM projects the warmest scenario for the RCP 6.0. Figure 5.6 

shows the relative position of each scenario for 2020s, 2050s and 2080s. 

Table 5.8  T               C             RCP     

Model 2020s 2050s 2080s 
BCC-CSM1.1 0.75 1.40 2.42 
BCC-CSM1.1(m) 1.08 1.70 2.41 
GISS-E2-H 1.40 2.03 3.11 
GISS-E2-R 0.68 1.60 2.65 
HadGEM2-ES 1.09 2.13 3.43 
MIROC-ESM 0.77 1.79 3.26 
MIROC-ESM-CHEM 0.91 2.28 3.59 
MRI-CGCM3 0.62 1.25 2.31 

5.3.1.4 RCP 8.5 

RCP scenarios were analyzed to determine temperature and precipitation change for 

eight GCMs. Results obtained for RCP8.5 are separated for three periods; viz. 2010-

2039 (2020s), 2040-2069 (2050s) and 2070-2099 (2080s). Monthly 

precipitation/temperature data for each model was averaged and compared with the 

base period data (1971-2000). Table 5.9 shows the changes in precipitation (%) and 

temperature for 8 GCMs. 

Table 5.9: Precipitation change (%) for RCP 8.5 

Model 2020s 2050s 2080s 

BCC-CSM1.1 10.39 18.90 38.38 

BCC-CSM1.1(m) 6.36 6.82 14.29 

GISS-E2-H 10.38 10.18 22.96 

GISS-E2-R 7.48 14.52 20.92 

HadGEM2-ES -6.67 -6.01 -2.16 

MIROC-ESM 6.70 10.45 19.10 

MIROC-ESM-CHEM 6.18 17.14 21.70 

MRI-CGCM3 8.15 9.34 21.18 
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It is found that the precipitation changes (%) varied between -6.67% to 10.40%, 

6.01% to 18.90% and -2.16% to 38.38% for 2020s, 2050s and 2080s respectively. 

Medians values for these three periods are 7.10%, 10.31% and 21.05%. There is a 

great variation among the trends of precipitation change. Based on the % change in 

2080s HadGEM2-ES projects the driest and BCC-CSM1.1 projects the wettest 

scenario for RCP 8.5.  

 

Changes in temperature was also analyzed for all the models. Temperature changes 

vary from a minimum of 0.76, 2.20 and 3.84 degree Celsius to maximum of 1.33, 3.33 

and 5.96 degree Celsius for 2020s, 2050s and 2080s respectively. Medians of the 

temperature changes are 1.07, 2.44 and 3.92 degree celsius for the 2020s, 2050s and 

2080s respectively. Based on the temperature change in 2080s GISS-E2-R is the 

coolest and MIROC-ESM-CHEM is the warmest model for RCP 8.5.Figure 5.7 shows 

the relative position of each scenario for 2020s, 2050s and 2080s. 

 

Table 5.10  T               C         for RCP 8.5 

Model 2020s 2050s 2080s 

BCC-CSM1.1 1.03 2.21 3.92 

BCC-CSM1.1(m) 1.06 2.36 3.88 

GISS-E2-H 1.16 2.51 3.92 

GISS-E2-R 1.07 2.28 3.84 

HadGEM2-ES 1.33 3.02 5.04 

MIROC-ESM 1.04 3.00 5.45 

MIROC-ESM-CHEM 1.32 3.33 5.96 

MRI-CGCM3 0.76 2.19 3.87 
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Figure 5.7: ΔT     C     ΔP(%) plot of all the models for RCP 8.5 

5.3.2 Selection of Scenarios: 

All the GCM results for 2080s were compared to obtain the warmest, coolest, driest, 

wettest, moderate warm and moderate wet scenarios for the BRB. Warmest and 

coolest scenarios are MIROC-ESM-CHEM RCP 8.5 and GISS-E2-R RCP 2.6 which 

gives the highest and lowest temperature change with respect to base period. On the 

other hand HadGEM2-ES RCP 8.5 and BCC-CSM1.1 RCP 8.5 are the driest and 

wettest scenarios based on the change in precipitation with respect to base period. 

Other two scenarios were selected from the median of changes of precipitation and 

temperature. GISS-E2-H RCP 4.5 is having a temperature change closest to median 

value of temperature change whereas MRI-CGCM3 RCP 6 shows precipitation 

change close to the median value of precipitation change. Fine resolutiontemperature 

and precipitation projection forthese scenarios will further be generated using pattern 

scaling which will be used to assess the impact of climate change in BRB. 

 

Table 5.11: Selected scenarios from the analysis of precipitation and temperature 
change of all the scenarios 

ΔP  Max  38.37762 BCC-CSM1.1 RCP 8.5 
 ΔP  Min -2.15689 HadGEM2-ES RCP 8.5 
 ΔP  Median 11.81264 MRI-CGCM3 RCP 6 Close to Median Value 

ΔT Max  5.961434 MIROC-ESM-CHEM RCP 8.5 
 ΔT Min 0.669602 GISS-E2-R RCP 2.6 
 ΔT Median 2.802164 GISS-E2-H RCP 4.5 Close to Median Value 
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5.4 Sensitivity Analysis 

The changes in streamflow under the impact of climate change was investigated by 

using several hypothetical scenarios (synthetic approach) applied to the climate 

normal (1981–2010) meteorological data. Incremental climate change scenarios were 

applied with a hypothetical temperature increase (0, +2 °C , +4 °C and +6 °C) and a 

                         −     −                     3                

examine the change of the SWAT simulated streamflow. Model results (monthly and 

annual flow) at Bahadurabad station for all these scenarios are given in Appendix B. 

From the analysis of GCM precipitation it is found that the magnitude at the end of 

21st century (2080s) varies between -10% to +40%. So, a detailed analysis of ΔT      

    C                 and ΔP  -10% to +40% (10% increment) for impact of flow on 

BRB at Bahadurabad station is presented in this section.  

Table 5.12: Mean annual discharge (m3/s) due to the changes in temperature and 
precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

ΔT    °C  17456 20206 22969 25737 28510 31279 
ΔT    °C  16972 19722 22482 25247 28016 30782 
ΔT    °C  16413 19157 21911 24673 27439 30205 
ΔT    °C  15870 18597 21340 24092 26852 29614 
 

Table 5.13: Changes in mean annual discharge (%) due to the changes in temperature 
and precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

ΔT    °C  -13.61 0.00 13.67 27.37 41.10 54.80 
ΔT    °C  -16.01 -2.40 11.26 24.95 38.65 52.34 
ΔT    °C  -18.77 -5.19 8.44 22.11 35.80 49.49 
ΔT    °C  -21.46 -7.96 5.61 19.23 32.89 46.56 
 

 

Table 5.14: Mean dry season (Jan-May) discharge (m3/s) due to the changes in 
temperature and precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

ΔT    °C  7157 8330 9525 10732 11954 13190 
ΔT    °C  6908 8079 9269 10474 11694 12926 
ΔT    °C  6548 7739 8950 10182 11426 12682 
ΔT    °C  6145 7326 8537 9777 11039 12318 
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Table 5.15: Changes in mean dry season (Jan-May) discharge (%) due to the changes 
in temperature and precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

ΔT    °C  -14.08 0.00 14.35 28.84 43.51 58.34 
ΔT    °C  -17.07 -3.01 11.27 25.74 40.38 55.17 
ΔT    °C  -21.39 -7.09 7.44 22.23 37.17 52.24 
ΔT    °C  -26.23 -12.05 2.48 17.37 32.52 47.88 
 

Table 5.16: Mean wet season (June-December) discharge (m3/s) due to the changes in 
temperature and precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

24813 28689 32572 36455 40336 44199 24813 
24161 28039 31920 35800 39674 43536 24161 
23460 27313 31169 35023 38877 42722 23460 
22816 26648 30484 34316 38147 41968 22816 
 

Table 5.17: Changes in mean wet season (June-December) discharge (%) due to the 
changes in temperature and precipitation 

 
ΔP  -10% ΔP     ΔP      ΔP       ΔP  3   ΔP     

ΔT    °C  -13.51 0.00 13.53 27.07 40.60 54.06 
ΔT    °C  -15.78 -2.27 11.26 24.79 38.29 51.75 
ΔT    °C  -18.23 -4.80 8.64 22.08 35.51 48.91 
ΔT    °C  -20.47 -7.11 6.26 19.61 32.97 46.29 
 

5.4.1 Sensitivity to Precipitation Change: 

For the BRB changes in average annual streamflow due to the changes in 

precipitation, while keeping the temperature constant are shown in Figure 5.8. 

Various precipitation scenarios are analyzed which include -10%, 0%, 10%, 20%, 

30% and 40% changes with respect to the base period of 1981-2010. As a first 

approximation, a linear regression analysis of the streamflow responses for the 

various scenarios indicated that a 10 % change in precipitation would produce a 13.6 

% change in streamflow for Brahmaputra river basin. Table 5.12 and Figure 5.8 

shows that the BRB is almost equally sensitive to a reduction and increase in 

precipitation and the      ‘                         sensitive to the precipitation 
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changes.Table 5.14, Table 5.16 and Table 5.18 shows the annual, dry period and wet 

period discharge (m3/s) consecutively for various combinations of temperature and 

precipitation changes. Percentage changes of discharge for annual, dry and wet period 

is presented in Table 5.15, Table 5.17 and Table 5.19. Mean monthly discharge for 

variable precipitation while keeping temperature fixed is shown in Figure 5.9. It is 

observed that the peak discharge is found in July in almost all cases. Changes in 

monthly mean discharge is shown in Figure 5.10. 

 

 
Figure 5.8: Changes in annual mean streamflow (%) at Bahadurabad station dueto 
changing ΔP (%). 

 
Figure 5.9: Mean monthly streamflow at Bahadurabad station due to ΔT     C     
ΔP=-10% to +40% (10% increment) 
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Figure 5.10: Changes in mean monthly streamflow (%) at Bahadurabad station due to 
ΔT     C     ΔP=-10% to +40% (10% increment) 

5.4.2 Sensitivity to Temperature Change: 

The relative sensitivity of streamflow due to the changes in temperature, while 

keeping the precipitation unchange was assessed for BRB at Bahadurabad station.  

The relative sensitivity of streamflow to the changes in temperature, while keeping 

the precipitation unchanged, gives a moderate changes in streamflow as compare to 

the changes due to precipitation for the basin (Figure 5.11). A linear regression 

analysis of the streamflow responses for the vario                                   

          C                                           33                            

for BRB . The sensitivity was found linear. Table 5.14, Table 5.16 and Table 5.18 

shows the annual, dry period and wet period discharge (m3/s) consecutively for 

various combination of temperature and precipitation change. Percentage change of 

discharge for annual, dry and wet period is presented in Table 5.15, Table 5.17 and 

Table 5.19. Mean monthly discharge for variable temperature holding precipitation 

fixed is shown in Figure 5.12. It is observed that the peak discharge is found in July 

and September. Changes in monthly mean discharge is shown in Figure 5.13. 

Discharge is found to decrease in all cases due to evaporation all over the 

basin.However, monthly discharge in November-March projected to be increased 

because of enhanced snowmelt due to increase in temperature. 
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Figure 5.11: Changes in ΔQ (%) at Bahadurabad station due to changing ΔT     C  

 

 

 

 
Figure 5.12: Mean monthly streamflow (m3/s) at Bahadurabad station due to ΔP=0% 
and ΔT                       C 
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Figure 5.13: Changes in mean monthly streamflow (%) at Bahadurabad station due to 
ΔP=0% and ΔT                       C  

5.4.3 Sensitivity to the Combined Effect of Temperature and Precipitation 

Sensitivity of the flow when both temperature and precipitation changes are taken into 

account is analyzed. Combination of 0°, 2°, 4° and 6°C temperature change with 

−                      3                                                    

the changes in flow. Figure 5.14 shows that the change in slope of ΔQ vs ΔP  is very 

much small and no rapid increase or decrease in the flow has been found for 

precipitation change holding temperature fixed (holds true vice versa as shown in 

Figure 5.15).  Average ΔQ vs ΔP  is around 1.36 and which slightly increases upto 

30% ΔP. ΔQ vs ΔP  as shown in Figure 5.15 shows a decreasing trend with increasing 

ΔT upto 4 °C, above which it becomes almost horizontal. 

 

 
Figure 5.14: Changes in ΔQ vs ΔP       at Bahadurabad station due to changing ΔP 
and ΔT 
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Figure 5.15: Changes in ΔQ vs ΔT       at Bahadurabad station due to changing ΔT 
    C  

5.5 Spatial Distribution of High Resolution Climate Data 

High resolution precipitation and maximum, minimum temperature data obtained 

through patterns scaling were used as input for assessment of future flow of 

Brahmaputra river basin. Spatial distribution of temperature and precipitation were 

plotted for each of the scenarios and time periods (2020s, 2050s and 2080s). Figure 

5.16-5.18 shows the spatial distribution of precipitation and maximum, minimum 

temperature for base period (MarkSim base period: 1961-2005). Spatial distribution 

of precipitation and temperature for each of the six selected scenarios were also 

determined for 2020s, 2050s and 2080s. Figure 5.16-5.18 are samples of distribution, 

all other distributions are shown in Appendix E.  

 
Figure 5.16: Spatial distribution of precipitation for base period 
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Figure 5.17: Spatial distribution of maximum temperature for base period 

 

 
Figure 5.18: Spatial distribution of minimum temperature for base period 

5.6 Climate Change Impact on Flow of BRB 

Compared to the climate normal, the average annual temperature of the BRB is 

projected  to  increase  by  0.58-1.51°C, 0.69-3.33°C,  and  0.67-5.96°C  in  2020s,  

2050s,  and  2080s, respectively while precipitation is projected to change between  -

6.67% to 10.39 % by 2020s, -6.01% to 18.90% by 2050s, and  -2.6% to 38.38 % by 

2080s, respectively. In response  to  these  projected  changes  to  the  primary  

climatic  factors,  SWAT simulated  the  mean  annual  streamflow for six projected 
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climate  change  scenarios which are warmest(MIROC-ESM-CHEM RCP 8.5), 

coolest (GISS-E2-R RCP 2.6), driest (HadGEM2-ES RCP 8.5), wettest (BCC-

CSM1.1 RCP 8.5), moderate warm (GISS-E2-H RCP 4.5) and moderate wet (MRI-

CGCM3 RCP 6)  for  2020s,  2050s,  and  2080s,  with  respect  to  that  of  the  

climate  normal were analyzed. It was found that the discharge of BRB is increasing 

in all of the cases over the 21st century. The enhanced precipitation usually causes an 

increase in discharge while the enhanced temperature causes decrease in discharge by 

increasing evaporative losses. It was revealed that for BRB increased discharge due to 

enhanced precipitation offset the decreased discharge due to enhanced evaporation. 

 

Figure 5.19-5.21 shows monthly mean discharge hydrograph at Bahadurabad station 

for 2020s, 2050s and 2080s. It is observed that flow hydrographs has a rising trend 

from 2020s to 2080s, though the flow from December to February decreases for the 

future scenarios. Monthly range of discharge is lower in 2020s, which increases 

towards 2080s. From Figure 5.20-21 it is observed that the variability tend to increase 

between March to May. Flow  hydrograph is quite stable during the recession period 

(Sep-Dec). Almost all the models are seem to give decreased flow during recession 

for all the periods. 

 

 
Figure 5.19: Mean monthly discharge (m3/s) for 2020s at Bahadurabad station for 
Brahmaputra river basin 
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Figure 5.20: Mean monthly discharge (m3/s) for 2050s at Bahadurabad station for 
Brahmaputra river basin 

 

 
Figure 5.21: Mean monthly discharge (m3/s) for 2080s at Bahadurabad station for 
Brahmaputra river basin 

5.6.1 Mean Annual Stream Flow Analysis 

The model simulated percentage changes in the mean annual streamflow from the 

climate normal (1981-2010) with respect to climate change scenarios.  Figure 5.22-

5.24  shows  boxplots  of  differences  in  the  mean  annual average  streamflow  

simulated  by  the model  for  warmest, coolest, driest, wettest, moderate warm  
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andmoderate wet  with  respect  to  the  climate normal. A gradual increase in annual 

average flow is found from 2020s to 2080s. The range of 75th and 25th percentile is 

grows from 2020s to  2080s which indicates that  uncertainty associated with the 

projected streamflow of BRB increases as we go distant future.The mean  dry season 

streamflow increase is found to be gradual from 2020s to 2080s, the rate of increase 

enhanced from 2050s to 2080s. Similar to the mean annual streamflow, the range of 

variability is higher for the 2080s compared to the early 21st century. Mean wet 

season flow showed slight increasing pattern in 2020s to 2050s which then decreased 

from 2050s to 2080s. The range between 75th and 25th percentile is relatively small for 

2080s, though the highest and the lowest value is having long range of variation. 

 

 
Figure 5.22: Box-plot of mean annual discharge (m3/s) of all the scenarios for 2020s, 
2050s and 2080s 
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Figure 5.23: Box-plot of mean dry period discharge (m3/s) of all the scenarios for 
2020s, 2050sand 2080s 

 

 
Figure 5.24: Box-plot of mean wet period discharge (m3/s) of all the six scenarios for 
2020s, 2050sand 2080s 
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scenarios showed increase in projected annual discharges which were very close in 

percentage change, viz. 11.04%, 10.18% and 11.70% for wettest, moderate warm and 

moderate wet scenarios. 

5.6.1.1.2 Dry Period Flow Analysis for 2020s 

Mean dry season (Dec-May) flow was found to increase for all the scenarios in 2020s 

(Table 5.18). Maximum projected increase in discharge was found for GISS-E2-H 

(RCP 4.5) with 80.09% change and the minimum projected increase was 12.42% 

which was given obtained for HADGEM2-ES (RCP 8.5). MIROC-ESM-CHEM 

(RCP 8.5) gave relatively high increase in discharge with 73.99% change. All other 

scenarios, viz. GISS-E2-R (RCP 2.6), BCC-CSM1.1 (RCP 8.5) and MRI-CGCM3 

(RCP 6.0) gave an increased projected discharge with 46.13%, 31.37% and 33.35% 

consecutively. 
 

Table 5.18: Change in Discharge (%) for all the six scenarios in 2020s 

 

5.6.1.1.3 Wet Period Flow Analysis for 2020s 

In 2020s, mean wet season (Jun-Nov) flow was found to increase for almost all the 

scenarios (Table 5.18). Highest increase in projected flow was found for MIROC-

ESM-CHEM (RCP 8.5) with 10.03% change. BCC-CSM1.1 (RCP 8.5) and MRI-

CGCM3 (RCP 6.0) also gave high increase in flow with 9.32% and 9.87% 

consecutively. Highest decrease in discharge was found for the driest scenario 

HADGEM2-ES (RCP 8.5) with -4.62% change. GISS-E2-R (RCP 2.6) also projects a 

decreasing flow with -3.04% changes. The moderate warm scenario GISS-E2-H (RCP 

4.5) gave slight increase in flow with 4.26% change compared to the base flow. 
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Mean Annual 15.02 0.80 -3.29 11.04 10.18 11.70 
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Season (Jan-
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73.99 46.13 12.42 31.37 80.09 33.35 

Mean Wet 
Season (June-
December) 

10.03 -3.04 -4.62 9.32 4.26 9.87 
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5.6.1.2 Changes in Streamflow in 2050s 

5.6.1.2.1 Mean annual flow analysis for 2050s 

In 2050s, mean annual streamflow is found to increase in all the scenarios (Table 

5.19). The maximum projected increase in discharge of 32.46% was found for GISS-

E2-H (RCP 4.5), whereas GISS-E2-R (RCP 2.6) was found to give the minimum 

projected increase in discharge with 1.80% change compared to the base flow. Driest 

scenario gave slight increase of 2.78% in mean annual discharge. MIROC-ESM-

CHEM (RCP 8.5) and BCC-CSM1.1 (RCP 8.5) showed almost same increase in 

projected annual discharges which are 26.89% and 26.27% consecutively. MRI-

CGCM3 (RCP 6.0) gave medium change of 13.38% compared to the base period 

flow. 

5.6.1.2.2 Dry Period Flow Analysis for 2050s 

Mean dry season (Dec-May) flow was found to increase for all the scenarios in 

2050s(Table 5.19). Maximum projected increase in discharge was found for GISS-E2-

H (RCP 4.5) with 232.49% change and the minimum projected increase was 41.93% 

which was given obtained for MRI-CGCM3 (RCP 6.0). MIROC-ESM-CHEM (RCP 

8.5) gave relatively high increase in discharge with 139.26% change. All other 

scenarios, viz. GISS-E2-R (RCP 2.6), BCC-CSM1.1 (RCP 8.5) and HADGEM2-ES 

(RCP 8.5) gave an increased projected discharge with 91.17%, 77.16% and 48.82% 

consecutively. 

5.6.1.2.3 Wet Period Flow Analysis for 2050s 

In 2050s, mean wet season (Jun-Nov) flow was found to increase for almost all the 

scenarios (Table 5.19). Highest increase in projected flow was found for BCC-

CSM1.1 (RCP 8.5) with 22.63% change. MIROC-ESM-CHEM (RCP 8.5) and GISS-

E2-H (RCP 4.5) also gave high increase in flow with 16.71% and 15.52% 

consecutively. Highest decrease in discharge was found for the GISS-E2-R (RCP 2.6) 

with -5.76% change. HADGEM2-ES (RCP 8.5) also projects a decreasing flow with -

1.12% change. The remaining scenario, viz. moderate wet scenario MRI-CGCM3 

(RCP 6.0) gave increase in flow with 10.96% change compared to the base flow. 
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Table 5.19: Change in Discharge (%) for all the six scenarios in 2050s 

 

5.6.1.3 Changes in Streamflow in 2080s 

5.6.1.3.1 Mean Annual Flow Analysis for 2080s 

In 2080s, mean annual streamflow is found to increase compared to the mean base 

flow in all the scenarios other than the coolest one (GISS-E2-R RCP 2.6)as shown in 

Table 5.20. The maximum projected increase in discharge of 47.44% was found for 

BCC-CSM1.1 (RCP 8.5), whereas GISS-E2-R (RCP 2.6) was found to give the 

maximum projected decrease in discharge with -0.91% change compared to the base 

flow. Other scenarios gave variable increase indischarge, 29.50%, 18.96%, 38.82% 

and 13.60% increase in mean annual streamflow were found for MIROC-ESM-

CHEM (RCP 8.5), HADGEM2-ES (RCP 8.5), GISS-E2-H (RCP 4.5) and MRI-

CGCM3 (RCP 6.0). 

5.6.1.3.2 Dry Period Flow Analysis for 2080s 

Mean dry season (Dec-May) flow was found to increase for all the scenarios in 2080s 

(Table 5.20). Maximum projected increase in discharge was found for GISS-E2-H 

(RCP 4.5) with 335.54% change and the minimum projected increase was 41.35% 

which was given obtained for MRI-CGCM3 (RCP 6.0). All other scenarios, viz. 

MIROC-ESM-CHEM (RCP 8.5), GISS-E2-R (RCP 2.6), HADGEM2-ES (RCP 8.5)  

and BCC-CSM1.1 (RCP 8.5) gave an increased projected discharge with 187.03%, 

140.37%, 173.80% and 189.48% consecutively. 

5.6.1.3.3 Wet Period Flow Analysis for 2080s 

In 2080s, mean wet season (Jun-Nov) flow was found to increase for all the scenarios 

except GISS-E2-R (RCP 2.6) which gave -12.86% change in mean wet period flow 

(Table 5.20). Highest increase in projected flow was found for BCC-CSM1.1 (RCP 

 Warmest 
(MIROC-
ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-
R 
RCP 2.6) 

Driest 
(HadGEM2-
ES 
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-
H RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Mean Annual 26.27 1.80 2.78 26.89 32.46 13.38 
Mean Dry Season 
(Jan-May) 139.26 91.17 48.82 77.16 232.49 41.93 
Mean Wet Season 
(June-December) 16.71 -5.76 -1.12 22.63 15.53 10.96 
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8.5) with 35.42% change. MIROC-ESM-CHEM (RCP 8.5), GISS-E2-H (RCP 4.5) 

and MRI-CGCM3 (RCP 6.0) gave high increase in flow with 16.17%, 13.71% and 

11.25% consecutively. Highest decrease in discharge was found for the GISS-E2-R 

(RCP 2.6) with -12.86% change. HADGEM2-ES (RCP 8.5) also projects a small 

increase in flow with 5.86% change.  

 

Table 5.20: Changes in Discharge (%) for all the six scenarios in 2080s 

 
 

For better understanding of the relative changes in mean annual, mean dry period and 

mean wet period discharge, scatter plot of changes in discharge (%) for both changes 

                 C) and precipitation (%) is shownin Figure 5.25-5.30. 

 

 
Figure 5.25: ΔT     C                                                              
2020s, 2050s and 2080s 
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Warmest 
(MIROC-
ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-
E2-R 
RCP 2.6) 

Driest 
(HadGEM2-
ES 
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-
H RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Mean Annual 29.50 -0.91 18.96 47.44 38.82 13.60 

Mean Dry Season 
(Jan-May) 187.03 140.37 173.80 189.48 335.54 41.35 

Mean Wet Season 
(June-December) 16.17 -12.86 5.86 35.42 13.71 11.25 
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Figure 5.26   ΔT     C                                                     
scenariosfor 2020s, 2050s and 2080s 

 

 
Figure 5.27  ΔT     C                                                               
for 2020s, 2050s and 2080s 
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Figure 5.28  ΔP (%) vs changes in mean annual discharge (%) of six scenarios 
for2020s, 2050s and 2080s 

 

 
Figure 5.29  ΔP (%) vs changes in mean dry period discharge (%) of six scenarios 
for2020s, 2050s and 2080s 
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Figure 5.30  ΔP                                                    six scenarios 
for2020s, 2050s and 2080s 

5.6.1.4 Multiple Linear Regression Analysis for Mean Annual Streamflow 

As discussed in Section 5.4, changes in Brahmaputra River Basin (BRB) streamflow 

under the impact of climate change is sensitive to the changes in temperature and 

precipitation in the basin.  An attempt has been taken to develop an equation to 

project the future streamflow of BRB under various changes in temperature and 

precipitation. Since changes in streamflow is linearly related to temperature change 

and precipitation changes, a multiple regression model has been setup to study how 

the changes in streamflow will behave under variable precipitation and temperature 

changes.  

 

Multiple linear regression attempts to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to observed 

data. In this study, precipitation and temperature changes projected by 6 selected 

climate change scenarios (e.g., Warmest, Coolest, Wettest, Driest, Moderate 

Warming, and Moderate Wetting) have been used as predictors and SWAT simulated 

streamflow of BRB under those temperature and precipitation changes have been used 

as observed data. The model has been presented below: 

 

)()( 221 PaTaaQMean        (5.3) 
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where, QMean is the modeled future average annual streamflow of BRB under the 

impact of climate change; ΔT and ΔP are the projected changes in temperature (°C) 

and precipitation (%) with respect to the base period (1971-2000), respectively; and 

a1, a2, a3 are the regression coefficient.  

 

SWAT simulated QMean of equation 5.3 has been fitted against the projected ΔT and 

ΔP of selected climate scenarios to determine the coefficients a1, a2, anda3, 

 

)(349)(57521535 PTQMean         m
3/s   (5.4) 

 

Equation 5.4 has been used to model the average annual streamflow of BRB at 

Bahadurabad station under changed future climate of 21st century using the projected 

changes in temperature (°C) and precipitation (%) with respect to the base period 

(1971-2000) and compared with the SWAT simulated average annual streamflow and 

good correlation (R2=0.78) has been achieved. Table C19 and Table C31 (Appendix 

C) shows the overall statistics and goodness of fit of this multivariate regression 

model.  Figure 5.31 shows the correlation where the SWAT simulated average annual 

streamflow under 6 selected climate change scenarios for the 2020s, 2050s, and 2080s 

has been plotted in the X-axis and estimated average annual streamflow of BRB using 

equation  5.4 has been plotted in Y-axis. In general, the relationship is quite linear 

over the 21st century. However, as expected the uncertainty increase as we go distant 

future which can be observed by increasing scattering from 2020s to 2080s. Equation 

5.4 may be used to project average annual streamflow of BRB under changing climate 

where detailed hydrologic modeling is constraint. 

 

The equation 5.4 has been tested for historical data at Bahadurabad station. Due to the 

lack of observed historical climate data outside Bangladesh, basin averaged 

precipitation before base period (1981-2010) was collected from literature. Average 

precipitation in BRB during the period 1961-1990 is 1276.97 mm (Immerzeel, 2008). 

Though the period used here overlaps with the base period of current model, it was 

the only reliable option we could take into consideration.  Average annual 

precipitation for the model base period 1981-2010 was found 1479 mm, this is the 
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averaged precipitation used in the present model which is bias corrected NASA 

POWER data.  Temperature change per 100 year in BRB is 0.6 ᵒC (immerzeel, 2008). 

So, temperature change per 30 years can be considered about 0.20 ᵒC. The change in 

temperature and precipitation during 1960-1990 compared to 1981-2010 was found 

about -0.2ᵒC and 15.82%. Mean annual flow using the equation was found 26941 m3/s 

whereas observed discharge of that station for that period was found 20036 m3/s. A 

deviation of 6904 m3/s is found at Bahadurabad which is quite high. So, it is evident 

that the equation does not represent the historical flow condition, only projected flow 

in future obtained using this equation can only be used. 

Figure 5.31: Modeled vs Estimated Qmean (m3/s) plot of all the scenarios for 2020s, 
2050s and 2080s 

5.6.2 Maximum Annual Stream Flow Analysis 

The model simulated percentage changes in the maximum annual streamflow from 

the climate normal (1981-2010) for different climate change scenarios has been 

assessed .  Figure 5.31-5.33   shows boxplots  of  differences  in  the  maximum  

annual average  streamflow  simulated  by  the model  for  warmest, coolest, driest, 

wettest, moderate warm  and moderate wet  with  respect  to  the  climate normal. The 

maximum annual average flow is found increasing from 2020s to 2080s. Range of 

variability also increased which indicates increasing uncertainty. For maximum 

average dry period flow increased at relatively higher rate. The range of 75th and 25th 

percentile decreased in 2080s though the range between the highest and lowest flow 

was found too high. Maximum average wet period flow increased gradually from 
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2020s to 2050s, the rate of increase slowed from 2050s to 2080s. The range of 

variability is found high for both 2050s and 2080s in case of maximum annual wet 

period flow.  

 

 
Figure 5.32: Box-plot of max annual discharge (m3/s) of all the six scenariosfor 
2020s, 2050s and 2080s 

 

 
Figure 5.33: Box-plot of max dry period discharge (m3/s) of all the six scenariosfor 
2020s, 2050s and 2080s 
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Figure 5.34: Box-plot of max wet period discharge (m3/s) of all the six scenariosfor 
2020s, 2050s and 2080s 

5.6.2.1 Changes in streamflow in 2020s 

5.6.2.1.1 Maximum Annual Flow Analysis for 2020s 

In 2020s, maximum annual streamflow is found to increase in almost all the 

scenarios. The maximum projected increase in discharge of 16.70% was found for 

MIROC-ESM-CHEM (RCP 8.5), whereas GISS-E2-R (RCP 2.6) was found to give 

the maximum projected decrease in discharge with -3.59% change compared to the 

base flow. HADGEM2-ES (RCP 8.5) gave slight decrease of -1.83% in maximum 

annual discharge. All the other scenarios showed increase in projected annual 

discharges which were 7.62%, 1.32% and 4.96% for wettest, moderate warm and 

moderate wet scenarios. 

5.6.2.1.2 Maximum Dry Period Flow Analysis for 2020s 

Maximum dry season (Dec-May) flow was found to increase for all the scenarios in 

2020s. Maximum projected increase in discharge was found for GISS-E2-H (RCP 

4.5) with 94.80% change and the minimum projected increase was 25.58% which was 

given obtained for HADGEM2-ES (RCP 8.5). MIROC-ESM-CHEM (RCP 8.5) gave 

relatively high increase in discharge with 88.91% change. All other scenarios, viz. 

GISS-E2-R (RCP 2.6), BCC-CSM1.1 (RCP 8.5) and MRI-CGCM3 (RCP 6.0) gave 

an increased projected discharge with 48.69%, 26.89% and 29.62% consecutively. 
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5.6.2.1.3 Maximum Wet Period Flow Analysis for 2020s 

In 2020s, max wet season (Jun-Nov) flow was found to increase for almost all the 

scenarios. Highest increase in projected flow was found for MIROC-ESM-CHEM 

(RCP 8.5) with 16.70% change. BCC-CSM1.1 (RCP 8.5) also gave relatively high 

increase in flow with 7.62%. Highest decrease in discharge was found for the driest 

scenario GISS-E2-R (RCP 2.6) with -3.59% change. HADGEM2-ES (RCP 8.5) 

projects a decreasing flow with -1.83% change. The moderate warm GISS-E2-H 

(RCP 4.5) and moderate wet MRI-CGCM3 (RCP 6.0) scenarios gave slight increase 

in flow with 1.31% and 4.96% change consecutively. 

 

Table 5.21: Change in Maximum Discharge (%) for all the six scenarios in 2020s 

 
Warmest 

(MIROC-ESM-
CHEM RCP 

8.5) 

Coolest 
(GISS-E2-

R 
RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 
8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Max Annual 16.71 -3.59 -1.83 7.62 1.32 4.96 
Max Dry 
Season  
(Dec-May) 88.91 48.69 25.58 26.89 94.80 29.62 
Max Wet 
Season  
(June-Nov) 16.71 -3.59 -1.83 7.62 1.32 4.96 

5.6.2.2 Changes in streamflow in 2050s 

5.6.2.2.1 MaximumAnnual Flow Analysis for 2050s 

In 2050s, maximum annual streamflow is found to increase for almost all the 

scenarios (Table 5.22). The maximum projected increase in discharge of 37.47% was 

found for MIROC-ESM-CHEM (RCP 8.5), whereas GISS-E2-R (RCP 2.6) was found 

to give the maximum projected decrease in discharge with 

-3.59% change compared to the base flow. BCC-CSM1.1 gave relatively higher 

change with 29.69% and HAD-GEM2-ES gave small decrease in flow with -0.88% 

change. Rest of the scenarios, viz. GISS-E2-H (RCP 4.5) and MRI-CGCM3 (RCP 

6.0) gave 15.52% and 7.64% increase in flow compared to the base flow. 

5.6.2.2.2 MaximumDry Period Flow Analysis for 2050s 

Maximum dry season (Dec-May) flow was found to increase for all the scenarios in 

2020s(Table 5.22). Maximum projected increase in discharge was found for GISS-E2-
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H (RCP 4.5) with 229.60% change and the minimum projected increase was 34.54% 

which was given obtained for MRI-CGCM3 (RCP 6.0). MIROC-ESM-CHEM (RCP 

8.5) gave relatively high increase in discharge with 160.91% change. All other 

scenarios, viz. GISS-E2-R (RCP 2.6), BCC-CSM1.1 (RCP 8.5) and HADGEM2-ES 

(RCP 8.5) gave an increased projected discharge with 110.71%, 82.83% and 71.85% 

consecutively. 

5.6.2.2.3 MaximumWet Period Flow Analysis for 2050s 

In 2050s, maximum wet season (Jun-Nov) flow was found to increase for almost all 

the scenarios (Table 5.22). Highest increase in projected flow was found for MIROC-

ESM-CHEM (RCP 8.5) with 37.47% change. BCC-CSM1.1 (RCP 8.5) and GISS-E2-

H (RCP 4.5) also gave high increase in flow with 29.69% and 15.52% consecutively. 

Highest decrease in discharge was found for the GISS-E2-R (RCP 2.6) with -4.32% 

change. HADGEM2-ES (RCP 8.5) also projects a decreasing flow with -0.88% 

change. The remaining scenario, viz. moderate wet scenario MRI-CGCM3 (RCP 6.0) 

gave increase in flow with 7.64% change compared to the base flow. 

 

Table 5.22: Change in Maximum Discharge (%) for all the six scenarios in 2050s 

 Warmest 
(MIROC-ESM-

CHEM RCP 
8.5) 

Coolest 
(GISS-E2-

R 
RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 8.5) 

Mod 
Warm 

(GISS-E2-
H RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Max Annual 37.47 -4.33 -0.88 29.69 15.52 7.64 
Max Dry Season  
(Dec-May) 160.91 110.72 71.85 82.83 229.60 34.54 
Max Wet 
Season  
(June-Nov) 37.47 -4.33 -0.88 29.69 15.52 7.64 

5.6.2.3 Changes in Streamflow in 2080s 

5.6.2.3.1 Maximumannual flow analysis for 2080s 

In 2080s, maximum annual streamflow is found to increase in all the scenarios other 

than the coolest one (GISS-E2-R RCP 2.6) as shown in Table 5.23. The maximum 

projected increase in discharge of 63.58% was found for the wettest scenario BCC-

CSM1.1 (RCP 8.5), whereas GISS-E2-R (RCP 2.6) was found to give the maximum 

projected decrease in discharge with -13.28% change compared to the base flow. 

Other scenarios gave variable increase in flow, 41.07%, 14.36%, 18.12% and 5.62% 
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increase in mean annual streamflow were found for MIROC-ESM-CHEM (RCP 8.5), 

HADGEM2-ES (RCP 8.5), GISS-E2-H (RCP 4.5) and MRI-CGCM3 (RCP 6.0). 

5.6.2.3.2 MaximumDry Period Flow Analysis for 2080s 

Mean dry season (Dec-May) flow was found to increase for all the scenarios in 

2080s(Table 5.23). Maximum projected increase in discharge was found for GISS-E2-

H (RCP 4.5) with 285.87% change and the minimum projected increase was 35.82% 

which was given obtained for MRI-CGCM3 (RCP 6.0). All other scenarios, viz. 

MIROC-ESM-CHEM (RCP 8.5), GISS-E2-R (RCP 2.6), HADGEM2-ES (RCP 8.5) 

and BCC-CSM1.1 (RCP 8.5) gave an increased projected discharge with 172.25%, 

149.41%, 195.70% and 169.88% consecutively. 

5.6.2.3.3 MaximumWet Period Flow Analysis for 2080s 

In 2080s, maximum wet season (Jun-Nov) flow was found to increase for all the 

scenarios except GISS-E2-R (RCP 2.6) which gave -12.86% change in mean wet 

period flow(Table 5.23). Highest increase in projected flow was found for BCC-

CSM1.1 (RCP 8.5) with 41.07% change. MIROC-ESM-CHEM (RCP 8.5), GISS-E2-

H (RCP 4.5), HADGEM2-ES (RCP 8.5) and MRI-CGCM3 (RCP 6.0) gave high 

increase in flow with 41.07%, 18.13%, 14.36% and 5.63% consecutively. Highest 

decrease in discharge was found for the GISS-E2-R (RCP 2.6) with -13.28% change.  

 

Table 5.23: Change in Maximum Discharge (%) for all the six scenarios in 2080s 

 
Warmest 

(MIROC-ESM-
CHEM RCP 

8.5) 

Coolest 
(GISS-E2-

R 
RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 
8.5) 

Mod 
Warm 
(GISS-
E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Max Annual 41.07 -13.28 14.36 63.59 18.13 5.63 
Max Dry 
Season  
(Dec-May) 172.25 149.41 195.70 160.88 285.87 35.82 
Max Wet 
Season  
(June-Nov) 41.07 -13.28 14.36 63.59 18.13 5.63 
 

For better understanding of the relative changes in maximum annual, maximum dry 

period and maximum wet period discharge, scatter plot of changes in discharge (%) for 
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                              C) and precipitation (%) is shown in Figure 5.35-5.40. 

 

 
Figure 5.35  ΔT     C                                                              
for2020s, 2050s and 2080s 

 

 
Figure 5.36  ΔT     C                                                                  
for2020s, 2050s and 2080s 
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Figure 5.37  ΔT     C                                                        
scenarios for 2020s, 2050s and 2080s 

 

 
Figure 5.38  ΔP (%) vs changes in maximum annual discharge (%) of six scenarios 
for2020s, 2050s and 2080s 
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Figure 5.39  ΔP (%) vs changes in maximum dry period discharge (%) of six 
scenarios for 2020s, 2050s and 2080s 

 

 
Figure 5.40  ΔP (%) vs changes in maximum wet period discharge (%) of six 
scenarios for 2020s, 2050s and 2080s 
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and precipitation. Since changes in streamflow is linearly related to temperature 

change and precipitation changes, a multiple regression model has been setup to study 

how the changes in streamflow will behave under variable precipitation and 

temperature changes.  

 

Multiple linear regression attempts to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to observed 

data. In this study, precipitation and temperature changes projected by 6 selected 

climate change scenarios (e.g., Warmest, Coolest, Wettest, Driest, Moderate 

Warming, and Moderate Wetting) have been used as predictors and SWAT simulated 

maximum annual streamflow of BRB under those temperature and precipitation 

changes have been used as observed data. The model has been presented below: 

 

)()( 221 PaTaaQMax       (5.5) 

 

where, QMaxis the modeled future maximum annual streamflow of BRB under the 

impact of climate change; ΔT and ΔP are the projected changes in temperature (°C) 

and precipitation (%) with respect to the base period (1971-2000), respectively; and 

a1, a2, a3 are the regression coefficient.  

 

SWAT simulated QMax of equation 5.5 has been fitted against the projected ΔT and ΔP 

of selected climate scenarios to determine the coefficients a1, a2, anda3, 

 

)(731)(265547110 PTQMax  m3/s   (5.6) 

 

Equation 5.6 has been used to model the annual maximum streamflow of BRB under 

changed future climate of 21st century using the projected changes in temperature (°C) 

and precipitation (%) with respect to the base period (1981-2010) and compared with 

the SWAT simulated annual maximum streamflow and good correlation (R2=0.92) 

has been achieved. Table C27 and Table C29 (AppendixC) shows the overall statistics 

and goodness of fit of this multivariate linear regression model.  Figure 5.41 shows 

the correlation where the SWAT simulated annual maximum streamflow under 6 

selected climate change scenarios for the 2020s, 2050s, and 2080s has been plotted in 
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the X-axis and estimated annual maximum streamflow of BRB using equation 5.6 has 

been plotted in Y-axis. In general, the relationship is quite linear over the 21st century. 

However, as expected the uncertainty increase as we go distant future which can be 

observed by increasing scattering from 2020s to 2080s. Equation 5.6 may be used to 

project average annual streamflow of BRB under changing climate where detailed 

hydrologic modeling is constraint. 

 

 
Figure 5.41: Modeled vs Estimated Qmax (m3/s) plot of all the scenarios for 2020s, 
2050s and 2080s 
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E2-H (RCP 4.5) and MRICGCM3 gave a decrease in flow with -24.86%, -12.49% 

and -16.68% change. 

5.6.3.1.2 Minimum Dry Period Flow Analysis for 2020s 

Minimum dry season (Dec-May) flow for 2020s is identical to the minimum annual 

flow described in the previous section (Minimum Annual Flow Analysis for 2020s). 

As described earlier other than the wettest and warmest scenarios, all other scenarios 

gave decrease in minimum dry period flow. 

5.6.3.1.3 Minimum Wet Period Flow Analysis for 2020s 

Minimum wet period flow was found to decrease in all the scenarios except the 

wettest and moderate wet scenarios  which gave 29.90% and 9.78% increase 

consecutively.Other scenarios, viz. warmest, coolest, driest and mod.warm scenarios 

gave -25.36%, -11.67%, -18.91% and -4.61% change. Magnitude of minimum flow 

for mean annual, dry period and wet period is presented in Appendix C. 

Table 5.24: Change in Minimum adjusted discharge (%) for all the six scenarios in 
2020s 

 
Warmest 
(MIROC-

ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-
E2-R 

RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 8.5) 

Mod 
Warm 
(GISS-
E2-H 

RCP 4.5) 

Mod 
Wet 

(MRI-
CGCM3 
RCP 6) 

Min Annual 47.37 -24.86 -91.08 46.39 -12.49 -16.68 
Min Dry Season 
(Dec-May) 47.37 -24.86 -91.08 46.39 -12.49 -16.68 
Min Wet Season  
(June-Nov) -25.36 -11.67 -18.91 28.90 -4.61 9.78 

 

5.6.3.2 Changes in streamflow in 2050s 

5.6.3.2.1 Minimum Annual Flow Analysis for 2050s 

In 2050s, minimum annual streamflow showed both increasing and decreasing 

pattern. Highest increase in minimum projected discharge was found for BCC-

CSM1.1 (RCP 8.5)  with +55.19% change whereas highest decrease was found for 

HADGEM2-ES (RCP 8.5) with -96.42% change. MIROC-ESM-CHEM (RCP 8.5), 

BCC-CSM1.1 (RCP 8.5) and GISS-E2-H (RCP 4.5)  gave 47.04%, 55.19% and 
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46.72% increase in discharge. All other scenarios, viz. GISS-E2-R (RCP 2.6), and 

MRICGCM3 gave a decrease in flow with -50.05% and -11.65% change. 

5.6.3.2.2 Minimum Dry Period Flow Analysis for 2050s 

Minimum dry season (Dec-May) flow for 2050s is identical to the minimum annual 

flow described in the previous section (Minimum Annual Flow Analysis for 2050s).  

5.6.3.2.3 Minimum Wet Period Flow Analysis for 2050s 

Minimum wet period (June-November) flow was found to decrease in all the 

scenarios except the moderate wet scenario which gave 10.15% increase.Other 

scenarios, viz. warmest, coolest, driest, wettest and mod.warm scenarios gave -

50.56%, -37.46%, -46.99% and  -24.67%  and -11.51% change. Magnitude of  

minimum flow for mean annual, dry period and wet period is presented in 

AppendixC. 

 
Table 5.25: Change in Minimum adjusted discharge (%) for all the six scenarios in 
2050s 

 

5.6.3.3 Changes in Streamflow in 2080s 

5.6.3.3.1 Minimum annual flow analysis for 2080s 

In 2080s, minimum annual streamflow showed decreasing pattern for all the scenarios 

except the warmest one (MIROC-ESM-CHEM RCP 8.5)  which gave an increase of 

41.07%. All other scenarios viz. coolest, driest, wettest, mod.warm and mod. wet gave 

decrease in discharge with -99.07%, -99.95%, -97.53%, -99.24% and -99.48% 

change. 

 Warmest 
(MIROC-
ESM-
CHEM 
RCP 8.5) 

Coolest 
(GISS-
E2-R  
RCP 2.6) 

Driest 
(HadGEM2-
ES  
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod 
Warm 
(GISS-
E2-H 
RCP 4.5) 

Mod 
Wet 
(MRI-
CGCM3 
RCP 6) 

Min Annual 47.04 -50.05 -96.42 55.19 46.72 -11.65 
Min Dry Season 
(Dec-May) 47.04 -50.05 -96.42 55.19 46.72 -11.65 
Min Wet Season 
(June-Nov) -50.56 -37.46 -46.99 -24.67 -11.51 10.15 
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5.6.3.3.2 Minimum Dry Period Flow Analysis for 2080s 

Similar to minimum annual flow in 2080s, only warmest scenario gave increase in 

discharge during dry period with 172.25% change. All other scenarios viz. coolest, 

driest, wettest, mod.warm and mod. wet gave decrease in discharge with -98.64%, -

99.79%, -88.80%, -96.53% and -97.63 change. 

5.6.3.3.3 Minimum Wet Period Flow Analysis for 2080s 

Minimum wet period discharge for 2080s also showed increase in discharge for 

warmest scenario with 41.07% change. All other scenarios viz. coolest, driest, wettest, 

mod.warm and mod. wet gave decrease in discharge with -95.69%, -96.36%, -

94.06%, -92.71% and -88.87% change. 

 
Table 5.26: Change in Minimum adjusted discharge (%) for all the six scenarios in 
2080s 

 Warmest 
(MIROC-
ESM-
CHEM 
RCP 8.5) 

Coolest 
(GISS-
E2-R  
RCP 
2.6) 

Driest 
(HadGEM2-
ES  
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Min Annual 41.07 -99.70 -99.95 -97.53 -99.24 -99.48 
Min Dry Season 
(Dec-May) 172.25 -98.64 -99.79 -88.80 -96.53 -97.63 
Min Wet Season  
(June-Nov) 41.07 -95.69 -96.36 -94.06 -92.71 -88.87 

 
 

For better understanding of the relative changes in maximum annual, maximum dry 

period and maximum wet period discharge, scatter plot of changes in discharge (%) 

                                  C) and precipitation (%) is shown in Figure 5.42-

5.47. 
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Figure 5.42  ΔT     C                minimum annual discharge (%) of six scenarios for 
2020s, 2050s and 2080s 

 

 

 

 
Figure 5.43  ΔT     C                minimum dry period discharge (%) of six scenarios for 
2020s, 2050s and 2080s 
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Figure 5.44: ΔT     C                minimum wet period discharge (%) of six scenarios for 
2020s, 2050s and 2080s 

 

 

Figure 5.45  ΔP (%) vs changes in minimum annual discharge (%) of six scenarios for 
2020s, 2050s and 2080s 
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Figure5.46  ΔP (%) vs changes in minimum dry period discharge (%) of six scenarios 
for 2020s, 2050s and 2080s 

 
Figure 5.47  ΔP (%) vs changes in minimum wet period discharge (%) of six scenarios 
for 2020s, 2050s and 2080. 
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5.6.4 Climate Change Impact at Kurigram Station 

Mean monthly discharge hydrograph at Kurigram station for 2020s, 2050s and 2080s 

is shown in Figure 48-50. It is observed that flow hydrographs has a rising trend from 

2020s to 2080s, though the flow from December to February decreases for the future 

scenarios. Monthly range of discharge is lower in 2020s, which increases towards 

2080s. It is observed that the variability tend to increase between March to May. Flow  

hydrograph is quite stable during the recession period (Sep-Dec). Almost all the 

models are seem to give decreased flow during recession for all the periods. 

 

 

 

 

 
Figure 5.48: Mean monthly streamflow at Kurigram station in 2020s 
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Figure 5.49: Mean monthly streamflow at Kurigram station in 2050s 

 

 

 
Figure 5.50: Mean monthly streamflow at Kurigram station in 2080s 
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Chapter 6 Conclusions and Recommendations 
Conclusions and Recommendations 

6.1 Conclusions 

In  this  study,  potential  impacts  of  climate  change  on  the  future  streamflow of 

BRB has been assessed by using SWAT hydrological model on the basis of climate 

change scenarios projected by  multiple GCMs forced  by  several RCP scenarios of  

IPCC  5th Assessment (AR5) report for  2020s,  2050s, and  2080s  of  the  21st  

century.  

 

Initially after calibration and validation of the hydrological model of Brahmaputra 

River Basin, sensitivity of the flow to temperature and precipitation change at 

Bahadurabad station was assessed. Changes in discharge (ΔQ  due to changes in 

temperature (ΔT, holding precipitation fixed) and due to changes in precipitation (ΔP, 

holding temperature fixed) were found almost linear in both cases. Average slope of 

ΔQ/ΔP with precipitation change is around 1.36. Average slope of ΔQ/ΔT with 

Temperature change is around -1.35. 

 

Six climate change scenarios, viz. warmest, coolest, driest, wettest, moderate warm 

and moderate wet were selected based on the precipitation and temperature data 

obtained from four RCPs (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) of eight GCMs 

(BCC-CSM1.1, BCC-CSM1.1(m), GISS-E2-H, GISS-E2-R, Had-GEM2-ES, 

MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3). From the analysis of 

temperature and precipitation data BCC-CSM1.1 RCP 8.5, HadGEM2-ES RCP 8.5, 

MIROC-ESM-CHEM RCP 8.5, GISS-E2-R RCP 2.6, MRI-CGCM3 RCP 6.0 and 

GISS-E2-H RCP 4.5 were selected as the wettest, driest, warmest, coolest, moderate 

wet and moderate warm scenario, respectively. In order to obtain high resolution 

temperature and precipitation data of these scenarios, pattern scaling technique  was 

used. These data was further used to run SWAT model of Brahmaputra River Basin. 

 

In general, Brahmaputra River Basin  projected  an increase in the mean annual 

streamflow for the 21st century under the climate change projections for almost all the 

six scenarios considered in  this  study.  However, GISS-E2-R RCP2.6 (coolest) and 

HadGem2-ES RCP8.5 (driest) projected decrease in annual average flow at 
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Bahadurabad station during 2080s and 2020s respectively. The maximum projected 

increase in mean annual streamflow found are 15.019%, 32.457% and 47.436% for 

MIROC-ESM-CHEM RCP8.5 (warmest), GISS-E2-H RCP4.5 (mod. warm) and 

BCC-CSM1.1 RCP8.5 (wettest) in 2020s, 2050s and 2080s respectively. The 

minimum projected change in streamflow found are -3.290%, 1.800% and -0.908% 

for HadGEM2-ES RCP8.5 (driest), GISS-E2-R RCP2.6(coolest) and GISS-E2-R 

RCP2.6  in 2020s, 2050s and 2080s respectively.  

 

On the average, at the end of 21stcentury (2080s), the mean dry and wet period 

streamflow of BRB is  projected  to  increase  by  about  177.93%  and  11%  of  their  

mean  dry and wet period discharge, respectively. In 2080s, maximum increase in dry 

and wet period flow was found for GISS-E2-H RCP 4.5 (mod. warm) and BCC-

CSM1.1 RCP8.5 (wettest), respective. Lowest dry and wet period flow were found for 

MRI-CGCM3 RCP6.0 (mod. wet) and GISS-E2-R RCP2.6 (coolest) consecutively. 

 

Multiple variable linear regression analysis was done to generate  q                 

                                           BRB                             

                C                         R2for the equations of mean annual discharge 

(m3/s) and maximum discharge (m3/s) were found to be 0.78 and 0.98, respectively.. It 

is to be noted that, Bangladesh is a flood prone country and very much susceptible to 

climate change where sophisticated models are not available to local community. So, 

the equation obtained through multi variable regression, especially the equation for 

maximum discharge may be used by local authorities and community to get a good 

idea about flow near Bahaduabad station for planning, agricultural production and 

other important aspects. 

6.2 Recommendations for Future Studies 

Recommendations for further extension of the present work and minimize the 

uncertainties have been discussed in the following section 

 

The model was calibrated and validated at Bhadurabad station as data was available at 

this station only for Brahmaputra River Basin. As there exists numerous flow 

regulations in the upstream of Bangladesh, it is recommended  to calibrate the model 
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at more upstream points outside the boundary of Bangladesh if it is possible to collect 

data either through Indo-Bangladesh Join River Commission, or others sources. 

 

In the present research eight GCMs were taken into consideration based on the 

availability of GCM output for selecting scenarios. In order to minimize uncertainties 

associated with streamflow projection for future period, it is recommended to select 

the scenarios comparing outputs of more GCMs. 

 

In the present study land cover map was taken for one year at the beginning of 21st 

century. For better approximation of future projected flow land use scenarios can be 

incorporated in this model. 

 

Pattern scaling method was used to obtain high resolution climate data. In future the 

model can be tested with statistically and dynamically downscaled climate data which 

may give better approximation of the flow with reduced uncertainty. 
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Climate Model Selection 

 
 

 
Figure A1: Box plot of change in precipitation for RCP 2.6 

 

 

 

 
Figure A2: Box plot of change in precipitation for RCP 4.5 
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Figure A3: Box plot of change in precipitation for RCP 6.0 

 

 

 

 
Figure A4: Box plot of change in precipitation for RCP 8.5 
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Figure A5: Box plot of change in temperature for RCP 2.6 

 

 

 

 
Figure A6: Box plot of change in temperature for RCP 4.5 
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Figure A7: Box plot of change in temperature for RCP 6.0 

 

 

 

 
Figure A8: Box plot of change in temperature for RCP 8.5 
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Figure A9: ΔT     C                        G CM      RCP                         

2080s 

 

 

 

 

 

 

 
Figure A10: ΔT     C                        G CM      RCP                         
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Figure A11: ΔT     C                        G CM      RCP                         

2080s 

 

 

 

 

 

 

 
Figure A12: ΔT     C                        G CM      RCP                         

2080s 
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Figure A13: ΔP (%) bar chart of all the GCMs for RCP 2.6 in 2020s, 2050s and 2080s 

 

 

 
 

Figure A14: ΔP (%) bar chart of all the GCMs for RCP 4.5 in 2020s, 2050s and 2080s 
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Figure A15: ΔP (%) bar chart of all the GCMs for RCP 6.0 in 2020s, 2050s and 2080s 

 

 

 
 

Figure A16: ΔP (%) bar chart of all the GCMs for RCP 8.5 in 2020s, 2050s and 2080s 
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Sensitivity analysis of mean discharge 

Table B1: Flow at Bahadurabad station due to ΔT     C     ΔP=-20% to +40% (10% 

increment) 
Month Average of 

ΔP% = -20 
Average of 
ΔP% = -10 

Average 
of ΔP% = 
0 

Average of 
ΔP% = 10 

Average of 
ΔP% = 20 

Average of 
ΔP% = 30 

Average of 
ΔP% =40 

1 1408 1729 2059 2394 2730 3073 3413 

2 1723 2097 2472 2849 3223 3593 3969 

3 3818 4552 5286 6027 6770 7507 8236 

4 8302 9933 11609 13316 15044 16798 18558 

5 14773 17473 20225 23037 25891 28801 31774 

6 23242 27663 32173 36745 41386 46118 50897 

7 30363 36089 42014 48134 54357 60746 67195 

8 29681 35396 41087 46765 52407 57978 63446 

9 30383 36014 41588 47046 52444 57725 62977 

10 21806 25558 29177 32734 36236 39678 43055 

11 8249 9582 10890 12176 13437 14680 15895 

12 2878 3387 3896 4407 4919 5425 5931 

Annual 
Average 

14719 17456 20206 22969 25737 28510 31279 

 

 

Table B2: Flow at Bahadurabad station due to ΔT     C     ΔP=-20% to +40% (10% 

increment) 
Month Average of 

ΔP    -20 
Average of 
ΔP    -10 

Average of 
ΔP      

Average of 
ΔP       

Average of 
ΔP       

Average of 
ΔP    3  

Average of 
ΔP      

1 1471 1823 2185 2558 2936 3315 3695 

2 1930 2374 2834 3289 3750 4208 4662 

3 3838 4668 5509 6363 7213 8060 8913 

4 7304 8781 10295 11856 13468 15127 16818 

5 14247 16895 19570 22280 25005 27759 30544 

6 20234 24473 28837 33327 37915 42613 47398 

7 29189 34807 40589 46494 52498 58587 64741 

8 28849 34550 40243 45919 51545 57128 62609 

9 29692 35305 40823 46236 51556 56804 61964 

10 22345 26271 30077 33793 37460 41041 44592 

11 8708 10161 11586 12996 14385 15750 17092 

12 3012 3561 4117 4676 5238 5798 6358 

Annual  
Average 

14235 16972 19722 22482 25247 28016 30782 
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Table B3: Flow at Bahadurabad station due to ΔT     C     ΔP=-20% to +40% (10% 

increment) 
Month Average of 

ΔP    -20 
Average of 
ΔP    -10 

Average of 
ΔP      

Average of 
ΔP       

Average of 
ΔP       

Average of 
ΔP    3  

Average of 
ΔP      

1 1527 1906 2301 2703 3110 3522 3939 

2 2109 2622 3145 3674 4209 4748 5288 

3 3545 4337 5155 5997 6863 7741 8629 

4 7272 8781 10338 11925 13532 15166 16814 

5 12482 15092 17754 20453 23194 25955 28738 

6 18267 22239 26344 30579 34914 39384 43927 

7 28226 33759 39470 45295 51232 57218 63294 

8 28014 33639 39348 45035 50676 56254 61804 

9 28892 34525 40030 45450 50760 56030 61174 

10 22146 26130 29986 33751 37455 41091 44673 

11 8821 10332 11836 13320 14789 16239 17677 

12 3030 3598 4174 4753 5337 5923 6506 

Annual 
Average 

13694 16413 19157 21911 24672 27439 30205 

 

 

 

Table B4: Flow at Bahadurabad station due to ΔT     C     ΔP=-20% to +40% (10% 

increment) 
Month Average of 

ΔP    -20 
Average of 
ΔP    -10 

Average of 
ΔP      

Average of 
ΔP       

Average of 
ΔP       

Average of 
ΔP    3  

Average of 
ΔP      

1 1565 1967 2387 2818 3259 3703 4153 

2 2116 2650 3200 3769 4350 4942 5541 

3 3637 4435 5253 6097 6954 7834 8733 

4 7395 8966 10589 12248 13950 15663 17383 

5 10302 12709 15200 17755 20374 23052 25781 

6 17059 20902 24870 28928 33075 37318 41633 

7 27496 32997 38635 44399 50280 56232 62249 

8 27139 32720 38394 44068 49706 55292 60879 

9 27991 33591 39114 44583 49943 55217 60400 

10 21543 25515 29414 33189 36893 40557 44125 

11 8792 10332 11859 13371 14864 16349 17821 

12 3064 3653 4248 4849 5452 6062 6670 

Annual 
Average 

13175 15870 18597 21340 24092 26852 29614 
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Analysis of Mean Discharge- 2020s (2010-2030) 
Table C1:  Discharge (m3/s) for all the six scenarios in 2020s 

 

Observed 
(1981-
2010) 

Swat (Nasa 
power)1981-
2010 

Swat 
(Worldclim)
1961-2005 

Warmest(MIRO
C-ESM-CHEM 
RCP 8.5) 

Coolest(GIS
S-E2-R RCP 
2.6) 

Driest(HadG
EM2-ES RCP 
8.5) 

Wettest(BCC
-CSM1.1 RCP 
8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Jan 5692.74 2058.95 227.23 334.87 170.75 94.67 348.91 228.72 189.32 

Feb 4620.01 2472.41 262.72 394.10 175.91 20.26 332.64 198.85 331.78 

Mar 5348.66 5285.60 697.23 979.51 1149.86 401.35 895.56 1276.26 1097.87 

Apr 9697.71 11609.37 2091.67 3315.93 3584.63 2268.37 2954.48 3572.07 3329.37 

May 16728.98 20225.33 9022.37 17044.07 13415.37 11330.11 11448.78 17575.93 11694.93 

Jun 31039.59 32173.00 26545.67 30070.74 30422.96 25357.78 28421.11 30078.15 32032.33 

Jul 48707.46 42014.00 37704.00 46491.11 39510.00 35725.56 42264.81 40131.48 43015.00 

Aug 43420.81 41087.33 40981.33 47827.41 36402.59 40230.37 44104.81 41522.22 42404.00 

Sep 40124.35 41588.33 31076.67 29910.37 27264.81 28132.96 34541.11 30149.63 33544.67 

Oct 26920.65 29177.33 14670.67 13315.56 13151.85 15162.22 14896.67 15908.15 14886.33 

Nov 13699.61 10889.97 4224.77 3153.41 3731.67 3425.89 5445.81 4029.96 4638.03 

Dec 7979.98 3895.97 832.16 781.99 694.64 649.21 1272.64 799.93 869.79 

 

Table C2:  Discharge (m3/s) for all the six scenarios in 2020s 

 

Observed 
(1981-
2010) 

Swat (Nasa 
power)1981-
2010 

Swat 
(Worldclim) 
1961-2005 

Warmest(MIRO
C-ESM-CHEM 
RCP 8.5) 

Coolest(GIS
S-E2-R RCP 
2.6) 

Driest(HadG
EM2-ES RCP 
8.5) 

Wettest(BCC
-CSM1.1 RCP 
8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Mean Annual 21165.05 20206.47 14028.04 16134.92 14139.59 13566.56 15577.28 15455.95 15669.45 

Mean Dry 
Season  
(Dec-May) 8344.68 7591.27 2188.89 3808.41 3198.53 2460.66 2875.50 3941.96 2918.84 

Mean Wet 
Season (June-
Nov) 33985.41 32821.66 25867.18 28461.43 25080.65 24672.46 28279.06 26969.93 28420.06 
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Table C3:  Change in Discharge (%) for all the six scenarios in 2020s 

 
 

 

 

 

 

 

 

 

 

 

 Warmest 
(MIROC-ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R 
RCP 2.6) 

Driest 
(HadGEM2-ES 
RCP 8.5) 

Wettest 
(BCC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Jan 47.37 -24.86 -58.34 53.55 0.66 -16.68 
Feb 50.01 -33.04 -92.29 26.62 -24.31 26.29 
Mar 40.49 64.92 -42.44 28.45 83.05 57.46 
Apr 58.53 71.38 8.45 41.25 70.78 59.17 
May 88.91 48.69 25.58 26.89 94.80 29.62 
Jun 13.28 14.61 -4.47 7.06 13.31 20.67 
Jul 23.31 4.79 -5.25 12.10 6.44 14.09 
Aug 16.71 -11.17 -1.83 7.62 1.32 3.47 
Sep -3.75 -12.27 -9.47 11.15 -2.98 7.94 
Oct -9.24 -10.35 3.35 1.54 8.44 1.47 
Nov -25.36 -11.67 -18.91 28.90 -4.61 9.78 
Dec -6.03 -16.53 -21.98 52.93 -3.87 4.52 
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Table C4: Ratios (Projected flow for different scenarios/Base flow (Worldclim))of Discharge for all the six scenarios in 2020s. 

 

Warmest 
(MIROC-ESM-

CHEM RCP 8.5) 

Coolest 
(GISS-E2-R RCP 

2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-CGCM3 

RCP 6) 

Jan 1.4737 0.7514 0.4166 1.5355 1.0066 0.8332 

Feb 1.5001 0.6696 0.0771 1.2662 0.7569 1.2629 

Mar 1.4049 1.6492 0.5756 1.2845 1.8305 1.5746 

Apr 1.5853 1.7138 1.0845 1.4125 1.7078 1.5917 

May 1.8891 1.4869 1.2558 1.2689 1.9480 1.2962 

Jun 1.1328 1.1461 0.9553 1.0706 1.1331 1.2067 

Jul 1.2331 1.0479 0.9475 1.1210 1.0644 1.1409 

Aug 1.1671 0.8883 0.9817 1.0762 1.0132 1.0347 

Sep 0.9625 0.8773 0.9053 1.1115 0.9702 1.0794 

Oct 0.9076 0.8965 1.0335 1.0154 1.0844 1.0147 

Nov 0.7464 0.8833 0.8109 1.2890 0.9539 1.0978 

Dec 0.9397 0.8347 0.7802 1.5293 0.9613 1.0452 
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Table C5:Adjusted discharge (m3/s) for all the six scenarios in 2020s 
 

Observed Warmest 
(MIROC-ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Jan 5692.74 8389.21 4277.65 2371.71 8741.05 5730.04 4743.03 
Feb 4620.01 6930.54 3093.47 356.34 5849.75 3496.81 5834.54 
Mar 5348.66 7514.19 8820.96 3078.88 6870.16 9790.58 8422.13 
Apr 9697.71 15373.81 16619.61 10516.97 13698.02 16561.40 15436.12 
May 16728.98 31602.56 24874.34 21007.92 21227.95 32588.71 21684.36 
Jun 31039.59 35161.42 35573.27 29650.60 33232.52 35170.08 37455.09 
Jul 48707.46 60058.99 51040.52 46151.63 54599.30 51843.38 55568.42 
Aug 43420.81 50674.41 38569.51 42625.14 46730.22 43993.90 44928.16 
Sep 40124.35 38618.50 35202.71 36323.62 44597.44 38927.42 43310.89 
Oct 26920.65 24434.02 24133.63 27822.65 27335.36 29191.43 27316.40 
Nov 13699.61 10225.52 12100.64 11109.10 17659.09 13067.92 15039.71 
Dec 7979.98 7498.86 6661.20 6225.63 12203.96 7670.91 8340.80 
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Table C6: Adjusted discharge (m3/s) for all the six scenarios in 2020s 
 

Observed 
Warmest 
(MIROC-ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Mean Annual 21165.05 24706.84 21747.29 19770.02 24395.40 24002.71 24006.64 

Mean Dry Season (Dec-
May) 8344.68 12884.86 10724.54 7259.57 11431.82 12639.74 10743.50 
Mean Wet Season 
(June-Nov) 33985.41 36528.81 32770.05 32280.46 37358.99 35365.69 37269.78 

 

Analysis of Mean Discharge- 2050s (2040-2069) 
Table C7:  Discharge (m3/s) for all the six scenarios in 2050s 

 

Observed 
(1981-
2010) 

Swat (Nasa 
power) 
1981-2010 

Swat 
(Worldclim) 
1961-2005 

Warmest(MIROC-
ESM-CHEM RCP 
8.5) 

Coolest(GIS
S-E2-R RCP 
2.6) 

Driest(HadGE
M2-ES RCP 
8.5) 

Wettest(B
CC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Jan 5692.74 2058.95 227.23 334.13 113.51 61.40 352.64 333.39 200.75 

Feb 4620.01 2472.41 262.72 501.41 149.46 8.13 880.45 779.98 337.42 

Mar 5348.66 5285.60 697.23 987.03 1529.46 606.34 1571.17 2860.80 1239.53 

Apr 9697.71 11609.37 2091.67 5567.63 3885.87 2950.53 3281.90 8990.13 3856.87 

May 16728.98 20225.33 9022.37 23540.67 19011.67 15505.00 16496.00 29737.67 12138.57 

Jun 31039.59 32173.00 26545.67 36016.33 33729.33 30995.00 33558.00 39009.67 31778.00 

Jul 48707.46 42014.00 37704.00 56336.67 39207.00 40622.00 53149.00 47342.67 42851.67 

Aug 43420.81 41087.33 40981.33 48829.33 35912.00 39922.67 52784.67 42513.00 44113.67 

Sep 40124.35 41588.33 31076.67 27484.33 24143.33 27793.67 34782.33 31717.00 34035.33 

Oct 26920.65 29177.33 14670.67 10382.00 10624.53 11898.67 12872.67 14985.33 14787.33 

Nov 13699.61 10889.97 4224.77 2088.90 2642.37 2239.37 3182.63 3738.67 4653.50 

Dec 7979.98 3895.97 832.16 491.50 417.59 413.38 684.50 965.22 866.65 
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Table C8:  Discharge (m3/s) for all the six scenarios in 2050s 

 

Observed 
(1981-
2010) 

Swat (Nasa 
power) 
1981-2010 

Swat 
(Worldclim) 
1961-2005 

Warmest(MIROC-
ESM-CHEM RCP 
8.5) 

Coolest(GIS
S-E2-R RCP 
2.6) 

Driest(HadGE
M2-ES RCP 
8.5) 

Wettest(B
CC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Mean 
Annual 21165.05 20206.47 14028.04 17713.33 14280.51 14418.01 17799.66 18581.13 15904.94 

Mean Dry 
Season  
(Dec-May) 8344.68 7591.27 2188.89 5237.06 4184.59 3257.46 3877.78 7277.87 3106.63 

Mean Wet 
Season 
(June-Nov) 33985.41 32821.66 25867.18 30189.59 24376.43 25578.56 31721.55 29884.39 28703.25 

 

Table C9: Ratios (Projected flow for different scenarios/Base flow (Worldclim))of Discharge for all the six scenarios in 2050s. 

 

Warmest 
(MIROC-ESM-

CHEM RCP 8.5) 

Coolest 
(GISS-E2-R RCP 

2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-CGCM3 

RCP 6) 

Jan 1.4704 0.4995 0.2702 1.5519 1.4672 0.8835 
Feb 1.9086 0.5689 0.0310 3.3514 2.9689 1.2844 

Mar 1.4157 2.1936 0.8696 2.2535 4.1031 1.7778 
Apr 2.6618 1.8578 1.4106 1.5690 4.2981 1.8439 

May 2.6091 2.1072 1.7185 1.8283 3.2960 1.3454 
Jun 1.3568 1.2706 1.1676 1.2642 1.4695 1.1971 
Jul 1.4942 1.0399 1.0774 1.4096 1.2556 1.1365 

Aug 1.1915 0.8763 0.9742 1.2880 1.0374 1.0764 
Sep 0.8844 0.7769 0.8944 1.1192 1.0206 1.0952 
Oct 0.7077 0.7242 0.8111 0.8774 1.0214 1.0080 

Nov 0.4944 0.6254 0.5301 0.7533 0.8849 1.1015 
Dec 0.5906 0.5018 0.4968 0.8226 1.1599 1.0415 
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Table C10: Adjusted discharge (m3/s) for all the six scenarios in 2050s 
 Observed Warmest 

(MIROC-ESM-
CHEM RCP 

8.5) 

Coolest 
(GISS-E2-R 

RCP 2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Jan 5692.736 8370.668 2843.721 1538.149 8834.472 8352.13 5029.265 
Feb 4620.013 8817.585 2628.399 142.9936 15483.28 13716.46 5933.785 
Mar 5348.659 7571.863 11733.03 4651.412 12052.95 21946.16 9508.824 
Apr 9697.707 25813.52 18016.25 13679.72 15216.05 41681.44 17881.8 
May 16728.98 43648.33 35250.81 28748.86 30586.34 55138.61 22506.93 
Jun 31039.59 42113.54 39439.38 36242.15 39239.04 45613.62 37157.7 
Jul 48707.46 72777.85 50649.1 52477.05 68659.9 61159.06 55357.42 
Aug 43420.81 51735.97 38049.72 42299.12 55926.75 45043.65 46739.6 
Sep 40124.35 35486.14 31172.44 35885.54 44908.89 40951.11 43944.41 
Oct 26920.65 19050.95 19496 21834.03 23621.32 27498.06 27134.73 
Nov 13699.61 6773.656 8568.377 7261.573 10320.3 12123.34 15089.86 
Dec 7979.978 4713.227 4004.437 3964.097 6564.028 9255.985 8310.751 

 
Table C11:  Adjusted discharge (m3/s) for all the six scenarios in 2050s 

 Observed Warmest 
(MIROC-ESM-

CHEM RCP 
8.5) 

Coolest 
(GISS-E2-R 

RCP 2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Mean Annual 21165.05 27239.44 21820.97 20727.06 27617.78 31873.30 24549.59 
Mean Dry Season (Dec-
May) 8344.68 16489.20 12412.77 8787.54 14789.52 25015.13 11528.56 
Mean Wet Season 
(June-Nov) 33985.41 37989.69 31229.17 32666.58 40446.03 38731.47 37570.62 
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Analysis of Mean Discharge- 2080s (2070-2099) 
 

Table C12:  Discharge (m3/s) for all the six scenarios in 2080s 

 

Observed 
(1981-
2010) 

Swat (Nasa 
power) 
1981-2010 

Swat 
(Worldclim) 
1961-2005 

Warmest(MIROC-
ESM-CHEM RCP 
8.5) 

Coolest(GIS
S-E2-R RCP 
2.6) 

Driest(HadGE
M2-ES RCP 
8.5) 

Wettest(B
CC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-CGCM3 
RCP 6) 

Jan 5692.74 2058.95 227.23 297.77 122.71 35.87 1010.44 312.86 213.89 

Feb 4620.01 2472.41 262.72 375.25 447.95 18.94 2936.40 1500.75 396.43 

Mar 5348.66 5285.60 697.23 2748.67 2175.00 1491.56 2894.50 4139.87 1083.29 

Apr 9697.71 11609.37 2091.67 9340.57 6038.70 7462.17 5783.90 15613.33 3748.13 

May 16728.98 20225.33 9022.37 24563.67 22503.00 26679.00 23537.67 34814.67 12254.10 

Jun 31039.59 32173.00 26545.67 45449.00 35537.67 39377.00 41685.00 44785.00 32833.67 

Jul 48707.46 42014.00 37704.00 57813.33 35144.33 46866.67 67040.00 48410.00 42907.33 

Aug 43420.81 41087.33 40981.33 44627.33 30405.33 41380.00 56594.67 39865.67 43288.00 

Sep 40124.35 41588.33 31076.67 23292.00 22786.00 26225.00 32229.67 27812.00 34093.67 

Oct 26920.65 29177.33 14670.67 7722.63 9599.90 8958.47 10185.00 12621.67 14978.33 

Nov 13699.61 10889.97 4224.77 1395.10 1765.27 1490.87 2436.10 2986.67 4562.63 

Dec 7979.98 3895.97 832.16 370.91 281.48 271.58 1855.30 820.13 868.18 
 

Table C13:  Discharge (m3/s) for all the six scenarios in 2080s 

 

Observed 
(1981-
2010) 

Swat  
(Nasa 
power) 
1981-2010 

Swat 
(Worldclim) 
1961-2005 

Warmest(MIRO
C-ESM-CHEM 
RCP 8.5) 

Coolest(GIS
S-E2-R  
RCP 2.6) 

Driest(HadG
EM2-ES  
RCP 8.5) 

Wettest(B
CC-
CSM1.1 
RCP 8.5) 

Mod 
Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 RCP 
6) 

Mean Annual 21165.05 20206.47 14028.04 18166.35 13900.61 16688.09 20682.39 19473.55 15935.64 

Mean Dry Season  
(Dec-May) 8344.68 7591.27 2188.89 6282.81 5261.47 5993.19 6336.37 9533.60 3094.00 

Mean Wet Season 
(June-Nov) 33985.41 32821.66 25867.18 30049.90 22539.75 27383.00 35028.41 29413.50 28777.27 
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Table C14:  Change in Discharge (%) for all the six scenarios in 2080s 
 Warmest 

(MIROC-
ESM-CHEM 

RCP 8.5) 

Coolest 
(GISS-E2-R 

RCP 2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Jan 31.04 -46.00 -84.21 344.67 37.68 -5.87 

Feb 42.84 70.51 -92.79 1017.71 471.25 50.90 

Mar 294.23 211.95 113.93 315.14 493.76 55.37 

Apr 346.56 188.70 256.76 176.52 646.45 79.19 

May 172.25 149.41 195.70 160.88 285.87 35.82 

Jun 71.21 33.87 48.34 57.03 68.71 23.69 

Jul 53.33 -6.79 24.30 77.81 28.39 13.80 

Aug 8.90 -25.81 0.97 38.10 -2.72 5.63 

Sep -25.05 -26.68 -15.61 3.71 -10.51 9.71 

Oct -47.36 -34.56 -38.94 -30.58 -13.97 2.10 

Nov -66.98 -58.22 -64.71 -42.34 -29.31 8.00 

Dec -55.43 -66.18 -67.36 122.95 -1.45 4.33 
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Table C15: Ratios (Projected flow for different scenarios/Base flow (Worldclim))of Discharge for all the six scenarios in 2080s. 

 

Warmest 
(MIROC-ESM-

CHEM RCP 8.5) 

Coolest 
(GISS-E2-R RCP 

2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-CSM1.1 

RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-CGCM3 

RCP 6) 

Jan 1.3104 0.5400 0.1579 4.4467 1.3768 0.9413 

Feb 1.4284 1.7051 0.0721 11.1771 5.7125 1.5090 

Mar 3.9423 3.1195 2.1393 4.1514 5.9376 1.5537 

Apr 4.4656 2.8870 3.5676 2.7652 7.4645 1.7919 

May 2.7225 2.4941 2.9570 2.6088 3.8587 1.3582 

Jun 1.7121 1.3387 1.4834 1.5703 1.6871 1.2369 

Jul 1.5333 0.9321 1.2430 1.7781 1.2839 1.1380 

Aug 1.0890 0.7419 1.0097 1.3810 0.9728 1.0563 

Sep 0.7495 0.7332 0.8439 1.0371 0.8949 1.0971 

Oct 0.5264 0.6544 0.6106 0.6942 0.8603 1.0210 

Nov 0.3302 0.4178 0.3529 0.5766 0.7069 1.0800 

Dec 0.4457 0.3382 0.3264 2.2295 0.9855 1.0433 
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Table C16:Adjusted discharge (m3/s) for all the six scenarios in 2080s 

 Observed Warmest 
(MIROC-

ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R 

RCP 2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-

CSM1.1 RCP 
8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Jan 5692.74 7459.94 3074.29 898.74 25313.93 7837.89 5358.45 
Feb 4620.01 6599.05 7877.48 333.04 51638.29 26391.62 6971.45 
Mar 5348.66 21085.94 16685.15 11442.26 22204.68 31758.30 8310.31 
Apr 9697.71 43306.17 27997.55 34597.25 26816.21 72388.94 17377.67 
May 16728.98 45545.15 41724.33 49467.33 43642.77 64552.21 22721.15 
Jun 31039.59 53143.07 41553.84 46043.14 48741.86 52366.66 38392.08 
Jul 48707.46 74685.47 45400.79 60544.15 86604.83 62537.88 55429.33 
Aug 43420.81 47283.84 32215.26 43843.21 59963.55 42238.73 45864.78 
Sep 40124.35 30073.25 29419.93 33860.17 41613.04 35909.21 44019.72 
Oct 26920.65 14171.02 17615.80 16438.77 18689.46 23160.74 27485.22 
Nov 13699.61 4523.88 5724.21 4834.42 7899.52 9684.84 14795.21 
Dec 7979.98 3556.83 2699.21 2604.34 17791.39 7864.62 8325.39 

 
Table C17: Adjusted discharge (m3/s) for all the six scenarios in 2080s 

 Observed Warmest 
(MIROC-

ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R 

RCP 2.6) 

Driest 
(HadGEM2-ES 

RCP 8.5) 

Wettest 
(BCC-

CSM1.1 RCP 
8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Mean Annual 21165.05 29286.13 22665.65 25408.90 37576.63 36390.97 24587.56 

Mean Dry Season (Dec-May) 8344.68 21258.85 16676.33 16557.16 31234.54 35132.26 11510.74 

Mean Wet Season (June-Nov) 33985.41 37313.42 28654.97 34260.64 43918.71 37649.68 37664.39 
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Table C18: Multi-variable regression of simulated (RCP) and estimated ΔQ (%) at Bahadurabad station of Brahmaputra river basin 

Criteria Model and Scenario Period ΔT ΔP% ΔQ% (RCPs) ΔQ% (Estimated) 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2020s 1.322 6.176 15.019 11.003 
Coolest Coolest (GISS-E2-R RCP 2.6) 2020s 0.578 2.847 0.795 5.692 
Driest Driest (HadGEM2-ES RCP 8.5) 2020s 1.327 -6.672 -3.290 -1.357 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2020s 1.032 10.395 11.044 14.244 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2020s 1.511 3.755 10.179 9.205 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2020s 0.620 4.607 11.701 7.506 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2050s 3.327 17.144 26.271 27.241 
Coolest Coolest (GISS-E2-R RCP 2.6) 2050s 0.691 3.382 1.800 6.525 
Driest Driest (HadGEM2-ES RCP 8.5) 2050s 3.025 -6.011 2.780 4.082 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2050s 2.207 18.903 26.886 25.766 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2050s 2.492 12.385 32.457 20.293 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2050s 1.251 9.232 13.380 13.746 

Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2080s 5.961 21.698 29.500 39.080 
Coolest Coolest (GISS-E2-R RCP 2.6) 2080s 0.670 -0.584 -0.908 2.645 
Driest Driest (HadGEM2-ES RCP 8.5) 2080s 5.044 -2.157 18.962 13.508 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2080s 3.919 38.378 47.436 49.367 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2080s 2.952 19.802 38.819 28.739 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2080s 2.307 11.738 13.598 19.145 
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Table C19: Calculation of multi-variable regression for simulated (RCP) and estimated ΔQ (%). 
SUMMARY OUTPUT 

       
  

 

Regression Statistics 
Multiple R 0.924219062 

       R Square 0.854180875 
       Adjusted R 

Square 0.834738325 
       Standard Error 5.872048887 
       Observations 18 
       

         
         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept 1.313380446 2.476347987 0.530369905 0.603619184 -3.96483032 6.591591213 -3.96483032 6.591591213 
X Variable 1 2.82959906 1.009931015 2.801774594 0.013411619 0.676982067 4.982216053 0.676982067 4.982216053 
X Variable 2 0.963140472 0.141235356 6.819400608 5.79887E-06 0.662104438 1.264176506 0.662104438 1.264176506 

 
 
 
 
 
 
 
 
 
 
 

ΔP%*0.96314ΔT*2.82961.3134ΔQ mean 
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Table C20: Multi-variable regression of simulated (RCP) and estimated Q (m3/s) at Bahadurabad station of Brahmaputra river basin 
 

Criteria Model and Scenario Period ΔT ΔP% Q (RCPs) Q (Estimated) 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2020s 1.322 6.176 24706.836 24451.366 
Coolest Coolest (GISS-E2-R RCP 2.6) 2020s 0.578 2.847 21747.293 22861.329 
Driest Driest (HadGEM2-ES RCP 8.5) 2020s 1.327 -6.672 19770.016 19967.840 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2020s 1.032 10.395 24395.402 25757.316 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2020s 1.511 3.755 24002.714 23714.249 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2020s 0.620 4.607 24006.638 23499.875 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2050s 3.327 17.144 27239.443 29433.711 
Coolest Coolest (GISS-E2-R RCP 2.6) 2050s 0.691 3.382 21820.971 23112.780 
Driest Driest (HadGEM2-ES RCP 8.5) 2050s 3.025 -6.011 20727.058 21174.247 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2050s 2.207 18.903 27617.777 29403.995 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2050s 2.492 12.385 31873.302 27291.614 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2050s 1.251 9.232 24549.590 25477.533 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2080s 5.961 21.698 29286.134 32537.687 
Coolest Coolest (GISS-E2-R RCP 2.6) 2080s 0.670 -0.584 22665.654 21715.561 
Driest Driest (HadGEM2-ES RCP 8.5) 2080s 5.044 -2.157 25408.900 23680.618 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2080s 3.919 38.378 37576.626 37188.216 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2080s 2.952 19.802 36390.970 30145.913 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2080s 2.307 11.738 24587.564 26959.037 
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Table C21: Calculation of multi-variable regression for simulated (RCP) and estimated Q (m3/s).  

SUMMARY 

OUTPUT 

  

 

 
 

     
         Regression Statistics 

       Multiple R 0.880750148 
       R Square 0.775720823 
       Adjusted R Square 0.745816933 
       Standard Error 2510.047702 
       Observations 18 
       

         
           Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 
Intercept 21534.73652 1058.531987 20.3439639 2.46411E-12 19278.529 23790.94405 19278.529 23790.94405 

X Variable 1 574.7788625 431.7019617 1.331425181 0.202930513 -345.3720875 1494.929813 
-

345.3720875 1494.929813 
X Variable 2 349.1789346 60.37202474 5.783787045 3.60649E-05 220.4990099 477.8588592 220.4990099 477.8588592 

 

 

 

 

 

 

 

 

 

ΔP%*ΔT*21535Q mean 349575 
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Table C22:  Calculation of minimum, maximum, median, 2nd and 3rd quartile of mean discharge (Annual, Dry and wet) for all the scenarios. 

 
Qmean Qmean (Dry) Qmean (Wet) 

Model 2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s 
Warmest (MIROC-ESM-CHEM RCP 8.5) 
 

24706.84 27239.44 29286.13 12884.86 16489.2 21258.85 36528.81 37989.69 37313.42 

Coolest (GISS-E2-R RCP 2.6) 
 

21747.29 21820.97 22665.65 10724.54 12412.77 16676.33 32770.05 31229.17 28654.97 

Driest (HadGEM2-ES RCP 8.5) 
 

19770.02 20727.06 25408.90 7259.574 8787.539 16557.16 32280.46 32666.58 34260.64 

Wettest (BCC-CSM1.1 RCP 8.5) 
 

24395.40 27617.78 37576.63 11431.82 14789.52 31234.54 37358.99 40446.03 43918.71 

Moderate Warm (GISS-E2-H RCP 4.5) 
 

24002.71 31873.30 36390.97 12639.74 25015.13 35132.26 35365.69 38731.47 37649.68 

Moderate Wet(MRI-CGCM3 RCP 6) 24006.64 24549.59 24587.56 10743.5 11528.56 11510.74 37269.78 37570.62 37664.39 

Min 19770.02 20727.06 22665.65 7259.574 8787.539 11510.74 32280.46 31229.17 28654.97 
Quartile 1 22311.15 22503.13 24792.90 10729.28 11749.61 16586.95 33418.96 33892.59 35023.84 
Median 24004.68 25894.52 27347.52 11087.66 13601.15 18967.59 35947.25 37780.15 37481.55 
Quartile 3 24298.21 27523.19 34614.76 12337.76 16064.28 28740.62 37084.54 38546.03 37660.71 
Max 24706.84 31873.30 37576.63 12884.86 25015.13 35132.26 37358.99 40446.03 43918.71 
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Analysis of Max discharge-2020s 
 
 

Table C23: Maximum adjusted discharge for all the six scenarios in 2020s 
 Observed Warmest 

(MIROC-
ESM-CHEM 

RCP 8.5) 

Coolest 
(GISS-E2-

R 
RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Max Annual 48707.46 60058.99 51040.52 46151.63 54599.30 51843.38 55568.42 

Max Dry Season (Dec-May) 16728.98 31602.56 24874.34 21007.92 21227.95 32588.71 21684.36 

Max Wet Season (June-Nov) 48707.46 60058.99 51040.52 46151.63 54599.30 51843.38 55568.42 
 
 
 

Analysis of Max discharge-2050s (2040-2069) 
 
 

Table C24: Maximum adjusted discharge (m3/s) for all the six scenarios in 2050s 
 Observed Warmest 

(MIROC-ESM-
CHEM RCP 
8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Max Annual 48707.46 72777.85 50649.10 52477.05 68659.90 61159.06 55357.42 

Max Dry Season (Dec-May) 16728.98 43648.33 35250.81 28748.86 30586.34 55138.61 22506.93 

Max Wet Season  
(June-Nov) 48707.46 72777.85 50649.10 52477.05 68659.90 61159.06 55357.42 
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Analysis of Max discharge-2080s (2070-2099) 

 
 
 
 
 

Table C25: Maximum adjusted discharge (m3/s) for all the six scenarios in 2080s 
 Observed Warmest 

(MIROC-
ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Max Annual 48707.46 74685.47 45400.79 60544.15 86604.83 72388.94 55429.33 
Max Dry Season 
 (Dec-May) 16728.98 45545.15 41724.33 49467.33 51638.29 72388.94 22721.15 

Max Wet Season 
 (June-Nov) 48707.46 74685.47 45400.79 60544.15 86604.83 62537.88 55429.33 
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Table C26: Multi-variable regression of simulated (RCP) and estimated  maximumΔQ (%) at Bahadurabad station of Brahmaputra river basin 

Criteria Model and Scenario Period ΔT ΔP% ΔQ% (RCPs) ΔQ% (Estimated) 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2020s 1.322 6.176 16.705 5.480 
Coolest Coolest (GISS-E2-R RCP 2.6) 2020s 0.578 2.847 -3.590 -1.995 
Driest Driest (HadGEM2-ES RCP 8.5) 2020s 1.327 -6.672 -1.832 -10.146 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2020s 1.032 10.395 7.622 9.282 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2020s 1.511 3.755 1.320 3.398 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2020s 0.620 4.607 4.962 0.341 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2050s 3.327 17.144 37.469 28.059 
Coolest Coolest (GISS-E2-R RCP 2.6) 2050s 0.691 3.382 -4.330 -0.827 
Driest Driest (HadGEM2-ES RCP 8.5) 2050s 3.025 -6.011 -0.877 -1.536 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2050s 2.207 18.903 29.691 25.051 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2050s 2.492 12.385 15.523 18.420 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2050s 1.251 9.232 7.643 8.875 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2080s 5.961 21.698 41.072 45.717 
Coolest Coolest (GISS-E2-R RCP 2.6) 2080s 0.670 -0.584 -13.283 -5.755 
Driest Driest (HadGEM2-ES RCP 8.5) 2080s 5.044 -2.157 14.361 12.442 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2080s 3.919 38.378 63.587 56.643 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2080s 2.952 19.802 18.127 29.570 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2080s 2.307 11.738 5.629 16.780 
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Table C27: Calculation of multi-variable regression for simulated (RCP) and estimated max Δ Q (%).  

SUMMARY OUTPUT 
     

   

 

   Regression Statistics 
     Multiple R 0.938704463 
     R Square 0.881166069 
     Adjusted  R 

Square 0.865321545 
     Standard Error 7.043755246 
     Observations 18 
     

         Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept -8.12252839 2.970477505 -2.73441841 0.015359976 -14.45395131 -1.79110546 
X Variable 1 4.598154167 1.211452258 3.795571914 0.001759083 2.016004802 7.180303533 
X Variable 2 1.217983805 0.169417404 7.189248421 3.12822E-06 0.856879156 1.579088454 

 
 
 
 
 
 
 
 
 
 
 

ΔP%*1.218ΔT*4.5982-8.1225ΔQ max 
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Table C28: Multi-variable regression of simulated (RCP) and estimated  maximum Q (m3/s) at Bahadurabad  station of Brahmaputra river basin 
Criteria Model and Scenario Period ΔT ΔP% Q(RCPs) Q(Estimated) 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2020s 1.322 6.176 60058.990 55134.180 
Coolest Coolest (GISS-E2-R RCP 2.6) 2020s 0.578 2.847 51040.524 50726.393 
Driest Driest (HadGEM2-ES RCP 8.5) 2020s 1.327 -6.672 46151.635 45758.537 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2020s 1.032 10.395 54599.299 57445.347 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2020s 1.511 3.755 51843.378 53865.520 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2020s 0.620 4.607 55568.417 52123.674 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2050s 3.327 17.144 72777.854 68472.351 
Coolest Coolest (GISS-E2-R RCP 2.6) 2050s 0.691 3.382 50649.097 51415.792 
Driest Driest (HadGEM2-ES RCP 8.5) 2050s 3.025 -6.011 52477.048 50747.567 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2050s 2.207 18.903 68659.904 66784.166 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2050s 2.492 12.385 61159.062 62776.164 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2050s 1.251 9.232 55357.417 57178.663 
Warmest Warmest (MIROC-ESM-CHEM RCP 8.5) 2080s 5.961 21.698 74685.468 78792.670 
Coolest Coolest (GISS-E2-R RCP 2.6) 2080s 0.670 -0.584 45400.790 48461.090 
Driest Driest (HadGEM2-ES RCP 8.5) 2080s 5.044 -2.157 60544.147 58924.294 
Wettest Wettest (BCC-CSM1.1 RCP 8.5) 2080s 3.919 38.378 86604.828 85560.501 
Moderate Warming Moderate Warm (GISS-E2-H RCP 4.5) 2080s 2.952 19.802 72388.941 69417.954 
Moderate Wetting Moderate Wet(MRI-CGCM3 RCP 6) 2080s 2.307 11.738 55429.329 61811.265 

 
 
 
 
 
 
 
 
 



177 
 

Table C29: Calculation of multi-variable regression for simulated (RCP) and estimated maximum Q (m3/s).  
 

SUMMARY 
OUTPUT 

        
   

 

     Regression Statistics 
       Multiple R 0.961291587 
       R Square 0.924081515 
       Adjusted R Square 0.913959051 
       Standard Error 3262.247272 
       Observations 18 
       

         
  Coefficients 

Standard 
Error t Stat P-value Lower 95% Upper 95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 47110.46948 1375.747992 34.24353135 1.17409E-15 44178.13205 50042.80691 44178.13205 50042.80691 
X Variable 1 2654.785418 561.0724233 4.731626984 0.000267519 1458.887856 3850.682979 1458.887856 3850.682979 
X Variable 2 730.7566528 78.4640359 9.31326874 1.26348E-07 563.5145191 897.9987864 563.5145191 897.9987864 

 
 
 
 
 
 
 
 
 
 
 
 
 

ΔP%*ΔT*Qmax 731265547110 
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Table C30:  Calculation of minimum, maximum, median, 2nd and 3rd quartile of max discharge (Annual, Dry and wet) for all the scenarios. 

 
Qmax 

 
Qmax (Dry) 

 
Qmax (Dry) 

Model 2020s 2050s 2080s 
 

2020s 2050s 2080s 
 

2020s 2050s 2080s 
Warmest (MIROC-ESM-
CHEM RCP 8.5) 

60058.99 72777.85 74685.47   31602.56 43648.33 45545.15  60058.99 72777.85 74685.47 

Coolest (GISS-E2-R RCP 
2.6) 

51040.52 50649.10 45400.79  24874.34 35250.81 41724.33  51040.52 50649.1 45400.79 

Driest (HadGEM2-ES RCP 
8.5) 

46151.63 52477.05 60544.15  21007.92 28748.86 49467.33  46151.63 52477.05 60544.15 

Wettest (BCC-CSM1.1 RCP 
8.5) 

54599.30 68659.90 86604.83  21227.95 30586.34 51638.29  54599.3 68659.9 86604.83 

Moderate Warm (GISS-E2-
H RCP 4.5) 

51843.38 61159.06 72388.94  32588.71 55138.61 72388.94  51843.38 61159.06 62537.88 

Moderate Wet(MRI-
CGCM3 RCP 6) 

55568.42 55357.42 55429.33   21684.36 22506.93 22721.15  55568.42 55357.42 55429.33 

Min 46151.63 50649.10 45400.79 
 21007.92 22506.93 22721.15  46151.63 50649.1 45400.79 

Quartile 1 51241.24 53197.14 56708.03  21342.05 29208.23 42679.53  51241.24 53197.14 56708.03 
Median 53221.34 58258.24 66466.54 

 23279.35 32918.58 47506.24  53221.34 58258.24 61541.02 
Quartile 3 55326.14 66784.69 74111.34 

 29920.51 41548.95 51095.55  55326.14 66784.69 71648.57 

Max 60058.99 72777.85 86604.83 
 32588.71 55138.61 72388.94  60058.99 72777.85 86604.83 
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Analysis of Min discharge-2020s 
 
 

Table C31: Minimum adjusted discharge for all the six scenarios in 2020s 
 

 Observed Warmest 
(MIROC-

ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-

R 
RCP 2.6) 

Driest 
(HadGEM2-

ES 
RCP 8.5) 

Wettest 
(BCC-

CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 

RCP 4.5) 

Mod Wet 
(MRI-

CGCM3 
RCP 6) 

Min Annual 4620.01 6930.54 3093.47 356.34 5849.75 3496.81 4743.03 

Min Dry Season (Dec-May) 4620.01 6930.54 3093.47 356.34 5849.75 3496.81 4743.03 

Min Wet Season (June-Nov) 13699.61 10225.52 12100.64 11109.10 17659.09 13067.92 15039.71 
 
 

Analysis of Min discharge-2050s (2040-2069) 
 

Table C32: Minimum adjusted discharge (m3/s) for all the six scenarios in 2050s 
 Observed Warmest 

(MIROC-ESM-
CHEM RCP 
8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Min Annual 4620.01 4713.23 2628.40 142.99 6564.03 8352.13 5029.27 

Min Dry Season (Dec-May) 4620.01 4713.23 2628.40 142.99 6564.03 8352.13 5029.27 
Min Wet Season  
(June-Nov) 13699.61 6773.66 8568.38 7261.57 10320.30 12123.34 15089.86 
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Analysis of Min discharge-2080s (2070-2099) 
 

Table C33: Minimum adjusted discharge (m3/s) for all the six scenarios in 2080s 
 Observed Warmest 

(MIROC-
ESM-CHEM 
RCP 8.5) 

Coolest 
(GISS-E2-R  
RCP 2.6) 

Driest 
(HadGEM2-ES  
RCP 8.5) 

Wettest 
(BCC-
CSM1.1 
RCP 8.5) 

Mod Warm 
(GISS-E2-H 
RCP 4.5) 

Mod Wet 
(MRI-
CGCM3 
RCP 6) 

Min Annual 4620.01 3556.83 2699.21 333.04 7899.52 7837.89 5358.45 
Min Dry Season 
 (Dec-May) 4620.01 3556.83 2699.21 333.04 17791.39 7837.89 5358.45 

Min Wet Season 
 (June-Nov) 13699.61 4523.88 5724.21 4834.42 7899.52 9684.84 14795.21 
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Analysis of Mean Discharge 

 
Figure D1: Mean monthly discharge (m3/s) for the warmest scenario for Brahmaputra 

river basin 

 

 

 
Figure D2: Mean monthly discharge (m3/s) for the coolest scenario for Brahmaputra 

river basin 
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Figure D3: Mean monthly discharge (m3/s) for the driest scenario for Brahmaputra 

river basin 

 

 
Figure D4: Mean monthly discharge (m3/s) for the wettest scenario for Brahmaputra 

river basin 
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Figure D5: Mean monthly discharge (m3/s) for the moderate warm scenario for 

Brahmaputra river basin 

 

 
Figure D6: Mean monthly discharge (m3/s) for the moderate wet scenario for 

Brahmaputra river basin 
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Figure D7: ΔT     C) vs mean annual discharge (m3/s) of six scenarios for 2020s, 2050s 

and 2080s

 

 

 

 
Figure D8: ΔT     C) vs mean dry period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s 
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Figure D9: ΔT     C) vs mean wet period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s

 

 

 
Figure D10: ΔP (%) vs mean annual discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s
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Figure D11: ΔP (%) vs mean dry period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s 

 

 
Figure D12: ΔP (%) vs mean wet period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s 
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Figure D13: Modeled vs Estimated ΔQmean (%) plot of all the scenarios for 2020s, 

2050s and 2080s 
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Analysis of Maximum Discharge 

 
Figure D14 ΔT     C) vs maximum annual discharge (m3/s) of six scenarios for 2020s, 2050s 

and 2080s 

 

 

 
Figure D15  ΔT     C) vs maximum dry period discharge (m3/s) of  scenarios for 2020s, 

2050s and 2080s 
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Figure D16  ΔT     C) vs changes in maximum wet period discharge (m3/s) of six scenarios 

for 2020s, 2050s and 2080s 

 

 

 

 
Figure D17  ΔP (%) vs maximum annual discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s
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Figure D18  ΔP (%) vs maximum dry period discharge (m3/s) of six scenarios for 

2020s, 2050s and 2080s

 

 

 
Figure D19  ΔP (%) vs maximum wet period discharge (m3/s) of six scenarios for 

2020s, 2050s and 2080s
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Figure D20: Modeled vs Estimated ΔQmax (%) plot of all the scenarios for 2020s, 

2050s and 2080s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-20

-10

0

10

20

30

40

50

60

-20 0 20 40 60 80

Δ
Q

m
a

x 
%

 (
Es

ti
m

a
te

d
) 

ΔQmax % (RCPs Modelled) 

Warmest (MIROC-ESM-CHEM RCP 8.5)
Coolest (GISS-E2-R RCP 2.6)
Driest (HadGEM2-ES RCP 8.5)
Wettest (BCC-CSM1.1 RCP 8.5)
Moderate Warm (GISS-E2-H RCP 4.5)
Moderate Wet(MRI-CGCM3 RCP 6)
2020s
2050s
2080s



193 
 

Analysis of Minimum Discharge 

 
Figure D21 ΔT     C) vs minimum annual discharge (m3/s) of six scenarios for 2020s, 2050s 

and 2080s 

 

 

 
Figure D22  ΔT     C) vs minimum dry period discharge (m3/s) of  scenarios for 2020s, 2050s 

and 2080s 
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Figure D23  ΔT     C) vs changes in minimum wet period discharge (m3/s) of six scenarios for 

2020s, 2050s and 2080s 

 

 

 

 
Figure D24  ΔP (%) vs minimum annual discharge (m3/s) of six scenarios for 2020s, 2050s and 

2080s
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Figure D25  ΔP (%) vs minimum dry period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s 

 

 
Figure D26  ΔP (%) vs minimum wet period discharge (m3/s) of six scenarios for 2020s, 

2050s and 2080s
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Figure E1: Spatial variation of precipitation (mm) for GISS-E2-H (RCP 4.5) in 2020s 

 

 

 

 
Figure E2: Spatial variation of precipitation (mm) for GISS-E2-H (RCP 4.5) in 2050s 
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Figure E3: Spatial variation of precipitation (mm) for GISS-E2-H (RCP 4.5) in 2080s 

 

 

 

 
Figure E4  S                                          C      GISS-E2-H (RCP 4.5) 

in 2020s 
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Figure E5  S                                          C      GISS-E2-H (RCP 4.5) 

in 2050s 

 

 

 

 
Figure E6: Spatial                                    C      GISS-E2-H (RCP 4.5) 

in 2080s 
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Figure E7  S                                          C      GISS-E2-H (RCP 4.5) in 

2020s 

 

 

 
Figure E8  S                                          C      GISS-E2-H (RCP 4.5) in 

2050s 
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Figure E9  S                                          C      GISS-E2-H (RCP 4.5) in 

2080s 

 

 

 
Figure E10: Spatial variation of precipitation (mm) for GISS-E2-R (RCP 2.6) in 

2020s 
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Figure E11: Spatial variation of precipitation (mm) for GISS-E2-R (RCP 2.6) in 

2050s 

 

 

 

 
Figure E12: Spatial variation of precipitation (mm) for GISS-E2-R (RCP 2.6) in 

2080s 
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Figure E13  S                                          C      GISS-E2-R (RCP 2.6) 

in 2020s 

 

 

 

 
Figure E14: Spatial variation of maximu                C      GISS-E2-R (RCP 2.6) 

in 2050s 
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Figure E15  S                                          C      GISS-E2-R (RCP 2.6) 

in 2080s 

 

 

 

 
Figure E16  S                                          C      GISS-E2-R (RCP 2.6) 

in 2020s 
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Figure E17  S                                          C      GISS-E2-R (RCP 2.6) 

in 2050s 

 

 

 
Figure E18  S                                          C      GISS-E2-R (RCP 2.6) 

in 2050s 
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Figure E19: Spatial variation of precipitation (mm) for MRI-CGCM3 (RCP 6.0) in 

2020s 

 

 

 

 
Figure E20: Spatial variation of precipitation (mm) for MRI-CGCM3 (RCP 6.0) in 

2050s 
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Figure E21: Spatial variation of precipitation (mm) for MRI-CGCM3 (RCP 6.0) in 

2080s 

 

 

 
Figure E22  S                                          C      MRI-CGCM3 (RCP 

6.0) in 2020s 
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Figure E23  S                                          C      MRI-CGCM3 (RCP 

6.0) in 2050s 

 

 

 

 
Figure E24  S                                          C      MRI-CGCM3 (RCP 

6.0) in 2080s 
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Figure E25: Spatial variation of                       C      MRI-CGCM3 (RCP 

6.0) in 2020s 

 

 
Figure E26  S                                          C      MRI-CGCM3 (RCP 

6.0) in 2050s 

 

 



210 
 

 
Figure E27  S                                          C      MRI-CGCM3 (RCP 

6.0) in 2080s 

 

 

 
Figure E28: Spatial variation of precipitation (mm) for MIROC-ESM-CHEM(RCP 

8.5) in 2020s 
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Figure E29: Spatial variation of precipitation (mm) for MIROC-ESM-CHEM(RCP 

8.5) in 2080s 

 

 
Figure E30: Spatial variation of precipitation (mm) for MIROC-ESM-CHEM(RCP 

8.5) in 2080s 
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Figure E31  S                                          C      MIROC-ESM-

CHEM(RCP 8.5) in 2020s 

 

 

 

 
 

Figure E32  S                                          C      MIROC-ESM-

CHEM(RCP 8.5) in 2050s 
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Figure E33: Spatial variation of maximum               C      MIROC-ESM-

CHEM(RCP 8.5) in 2080s 

 

 

 

 
Figure E34  S                                          C      MIROC-ESM-

CHEM(RCP 8.5) in 2020s 
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Figure E35  S                                          C      MIROC-ESM-

CHEM(RCP 8.5) in 2050s 

 

 
Figure E36  S                                          C      MIROC-ESM-

CHEM(RCP 8.5) in 2080s 
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Figure E37: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2020s 

 

 

 

 

 
Figure E38: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2050s 
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Figure E39: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2080s 

 

 

 

 
Figure E40  S                                          C      BCC-CSM1.1(RCP 

8.5)  in 2080s 
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Figure E41: Spatial variation of minimum               C      BCC-CSM1.1(RCP 

8.5) in 2080s 

 

 

 

 
Figure E42: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2020s 
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Figure E43: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2050s 

 

 
 

Figure E44: Spatial variation of precipitation (mm) for BCC-CSM1.1(RCP 8.5)  in 

2080s 
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Figure E45  S                                          C      BCC-CSM1.1(RCP 

8.5)  in 2020s 

 
Figure E46  S                                          C      BCC-CSM1.1(RCP 

8.5)  in 2050s 
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Figure E47  S                                          C  for BCC-CSM1.1(RCP 

8.5)  in 2080s 

 
 

Figure E48  S                                          C) for BCC-CSM1.1(RCP 

8.5) in 2020s 
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Figure E49  S                                          C) for BCC-CSM1.1(RCP 

8.5) in 2050s 

 

 
Figure E50  S                                          C) for BCC-CSM1.1(RCP 

8.5) in 2080s 

 

 

 

 

 

 

 




