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Abstract 
 
 

In this thesis titled “Numerical Investigation of the Unsteady Convective Flow 

along a Wedge with Thermophoresis” characteristic of an unsteady two-

dimensional laminar forced convective hydrodynamic heat and mass transfer flow 

of a viscous incompressible fluid along a heated wedge in the presence of 

thermophoresis have been studied. The potential flow velocity has been taken as a 

function of the distance x and time t. The governing time dependent non-linear 

partial differential equations are reduced to a set of non-linear ordinary 

differential equations by introducing a new class of similarity transformations. 

Comparisons with published works are done, and the results are found to be in 

excellent agreement. The resulting local similarity equations for unsteady flow 

have been solved numerically by applying Nachtsheim-Swigert shooting iteration 

technique along with sixth order Runge-Kutta integration scheme. Depending on 

various flow conditions the work can be summarized as follows: 

 
Local similarity solutions for unsteady two-dimensional forced convective heat 

and mass transfer flow along a wedge with thermophoresis are investigated at the 

outset. Numerical results for the velocity, temperature  and concentration profiles 

as well as local skin-friction coefficient, rate of heat and mass transfer, 

thermophoretic velocity and  thermophoretic particle deposition velocity for 

different values of unsteadiness parameter, wedge angle parameter, Prandtl 

number, Schmidt number, thermophoretic coefficient, thermophoresis parameter 

and concentration ratio are displayed graphically in addition to tabular form. The 

results show that the thermophoretic particle deposition velocity decreases as the 

thermophoretic coefficient increases but it increased a bit with the increase of 

unsteadiness parameter. 

 

Secondly, the effects of thermophoresis particle deposition on an unsteady two 

dimensional forced convective heat and mass transfer flow past a wedge with 

respect to variable fluid viscosity due to changes in temperature and Prandtl 



 x

number has been studied. Results for the non-dimensional velocity, temperature, 

concentration, variable Prandtl number and thermophoretic velocity are presented 

graphically whereas thermophoretic particle deposition velocity is shown in the 

tabular form for various values of the pertinent parameters. The obtained 

numerical results indicate that in modeling the thermal boundary-layer flow with 

a temperature-dependent viscosity, the Prandtl number shall be treated as a 

variable rather than a constant within the boundary layer to obtain realistic results. 

 

Thirdly, unsteady two dimensional magnetohydrodynamic (MHD) forced 

convective heat and mass transfer flow of a viscous, incompressible and 

electrically conducting fluid along a porous wedge in the presence of the 

temperature-dependent  thermal conductivity and variable Prandtl number have 

been carried out numerically. The velocity, temperature, concentration, 

thermophoretic velocity and thermophoretic particle deposition velocity are 

computed and discussed in details for various parametric conditions. The 

numerical results show that the heat transfer rate decreases by 45% when the 

thermal conductivity variation parameter varies from 0 to 9 for variable Prandtl 

number, but decreases by 77% for constant Prandtl number in case of suction.  

 

Finally, thermophoretic particle deposition on unsteady two dimensional 

convective slip flow over a wedge with temperature dependent fluid properties 

such as fluid viscosity and thermal conductivity have been studied numerically. 

The nondimensional velocity, temperature and concentration as well as 

thermophoretic velocity and thermophoretic particle deposition velocity for 

different values of the related parameters are displayed graphically and tabular 

form. The obtained numerical results show that both the fluid velocity and 

thermophoretic particle deposition velocity increase with the increasing values of 

the variable viscosity parameter as well as wedge angle parameter.  
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Chapter I 
 

1.1 Introduction  

Thermophoresis is a phenomenon, which causes small particles (such as soot 

particles or aerosol particles) to be driven away from a hot surface towards a cold 

one. Thermophoresis is important when temperature gradient is very large and 

particle diameter lies between 0.1µ m-1.0µ m. As the temperature of the hotter 

region is greater than that of the colder region, a temperature gradient will be 

developed between these two regions. In Figure 1.1, it has been considered two 

regions one is hot and other is cold. When the wall is hot, the particles tend to 

repel from that surface, while when the wall is cold, the small particles tend to 

deposit on the surface due to thermophoresis. These phenomenons depend on 

many factors like thermal conductivity of aerosol particles, thermophoretic 

coefficient, the heat capacity of the gas and the Knudsen number. Blackening of 

glass globe of kerosene lanterns, chimneys and industrial furnace walls by carbon 

particles, corrosion of heat exchanger, which reduces heat transfer coefficient, and 

fouling of gas turbine blades are examples of thermophoresis phenomenon. 

Thermophoresis plays a vital role in the mass transfer mechanism of several 

devices involving small micron sized particles and large temperature gradients. 

Thermophoresis principle is utilized to manufacture graded index silicon dioxide 

and germanium dioxide in the fabrication of optical fiber used in the field of 

communications. 

The thermophoretic force is the force on particles submerged in a gas or liquid 

with a temperature gradient. The direction of the force is opposite to the 

temperature gradient. The thermophoretic force is a strong function of Knudsen 

number, Kn = 2 pd/ξ , where pd is the particle diameter and ξ is the gas mean 

free path. The mean free path of a gas is the average distance a gas molecule 
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travels between collisions with other gas molecules. The velocity acquired by the 

particles is called the thermophoretic velocity.  

 
               
          Hot region                                                                   Cold region 
                               
                              Figure 1.1: Thermophoresis phenomenon. 

 

Heat transfer is the transfer of thermal energy from one region to another. The 

basic requirement for heat transfer is the presence of temperature difference. The 

transfer of energy as heat is always from the higher temperature medium to the 

lower temperature one and heat transfer stops when the two mediums reach the 

same temperature. Heat transfer plays an important role in many fields due to the 

heating and cooling processes involved. Increase of the heat transfer efficiency in 

macro- and nano-devices is desirable, because increasing efficiency, reduce 

process time of work and lengthen the working life of equipment. There are 

several methods to improve the heat transfer efficiency. Some methods use 

extended surfaces, application of vibration to the heat transfer surfaces, and usage 

of micro channels. Heat transfer efficiency can also be improved by increasing the 

thermal conductivity of the working fluid. Commonly used heat transfer fluids 

such as water, ethylene glycol, and engine oil, have relatively low thermal 

conductivities compared to the thermal conductivity of solids. High thermal 

conductivity of solids can be used to increase the thermal conductivity of a fluid 

by adding small solid particles to that fluid. Heat transfer is commonly 

encountered in engineering systems and other aspects of life. The human body is 

constantly rejecting heat to its surroundings, and human comfort is closely tied to 

the rate of heat rejection. Many ordinary household appliances are designed by 

using the principles of heat transfer. Some examples include the electric or gas 

range, the heating and air-conditioning system, the refrigerator and freezer, the 

water heater, the iron, and even the computer, the television etc. Heat transfer 

plays a major role in the design of many other devices, such as car radiators, solar 

collectors, various components of power plants, and even spacecraft.  In the 

design of nuclear-reactor cores, a thorough heat transfer analysis of fuel elements 
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is important for proper sizing of fuel element to prevent burnout. In aerospace 

technology, heat transfer problems are crucial because of weight limitations and 

safely considerations. The optimal insulation thickness in the walls and roofs of 

the houses, on hot water or steam pipes, or on water heaters is determined on the 

basis of a heat transfer analysis with economic consideration. 

There are three distinct modes of heat transfer, namely conduction, convection 

and radiation. All mode of heat transfer require the existence of temperature 

difference, and all modes are from the high temperature medium to a lower- 

temperature one. In reality, the combined effects of these three modes of heat 

transfer control temperature distribution in a medium. 

Conduction is the transfer of energy through matter from particle to particle. For 

example, a spoon in a cup of hot soup becomes warmer because the heat from the 

soup is conducted along the spoon. Conduction is the mode of heat transfer in 

which energy exchange takes place from the region of higher temperature to that 

of lower temperature by the kinetic motion or direct impact of molecules, as in the 

case of fluid at rest, and by the drift of electrons, as in the case of metals. 

Convection is possible only in the presence of a fluid medium. When a fluid flows 

inside a duct or over a solid body while temperatures of the fluid and the solid 

surface are different, heat transfer between the fluid and the solid surface takes 

place as a consequence of the motion of fluid relative to the surface; this 

mechanism of heat transfer is called convection. The convective mode of heat 

transfer is divided into two basic processes. The fluid motion artificially induced 

with a pump or a fan forces the fluid flow over the surface. This heat transfer is 

termed as forced convection. Such problems are very frequently encountered in 

technology where the heat transfers to or from a body is often due to an imposed 

flow of a fluid at a different temperature from that of the body. If the fluid motion 

is set up by buoyancy effects resulting from density difference caused by 

temperature difference in the fluid, the heat transfer is said to be free or natural 

convection. There are essentially three factors, which govern the natural 

convection processes, namely the body force, the temperature variation in the 

flow field and the fluid density variation with temperature. Free convection is the 
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principal mode of heat transfer from pipes, transmission lines, refrigerating coils, 

hot radiators and many other practical situations in everyday life. But in many 

cases of practical interest, both processes are important and heat transfer is by 

mixed convection, in which neither mode is truly predominant. The mode of heat 

transfer by which this equilibrium is achieved is called thermal radiation. In fact 

the energy transfer by radiation is maximum when the two bodies exchanging 

energy are separated by a perfect vacuum. Thermal radiation depends only on the 

temperature and on the optical properties of the emitter. 

Mass transfer is the net movement of mass from one location to another. Mass 

transfer occurs in many processes, such as absorption, evaporation etc. Some 

common examples of mass transfer processes are the evaporation of water from a 

pond to the atmosphere, the purification of blood in the kidney and liver, and the 

distillation of alcohol. On the other hand examples of mass transfer in everyday 

life are the diffusion of smoke through tall chimneys into the environment, the 

dissolution of sugar added to a cup of tea, the separation of the components of a 

mixture by distillation or absorption, There are some other examples of mass 

transfer for industrial applications such as refrigeration by the evaporation of 

liquid ammonia in the atmosphere of H2 is electrolux refrigerator, humidification 

of air in cooling tower, evaporation of petrol in the carburetor of an I. C. engine, 

neutron diffusion within nuclear reactors, estimation of depth to which carbon 

will penetrate in a mild steel specimen during the act of carburizing etc. 

The mechanism of mass transfer depends greatly on the dynamics of the system in 

which it occurs. Like those of heat transfer, there are three different modes of 

mass transfer, which are mass transfer by diffusion or molecular diffusion, mass 

transfer by convection and mass transfer by the change of phase. The transport of 

water on a microscopic level as a result of diffusion from a region of high 

concentration to a region of low concentration in a system/mixture of liquids or 

gases is called molecular diffusion. It occurs when a substance diffuses through a 

layer of stagnant fluid and may be due to concentration, temperature or pressure 

gradients. In a gaseous mixture, molecular diffusion occurs due to random motion 

of the molecules. Mass transfer by convection involves transfer of mass between a 
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moving fluid and a surface, or between two relatively immiscible moving fluids. 

The convective mass transfer depends on the transport properties and on the 

dynamic (laminar or turbulent) characteristics of the flowing fluid. As in heat 

convection, mass convection can also takes place under free or forced convection. 

The buoyancy force causing circulation in free convection, mass transfer results 

from the differences in density of the vapor air mixtures of varying compositions.  

The evaporation of alcohol and heat and mass transfer from the human body are 

examples where free convection mechanism dominates. The evaporation of water 

from an ocean when air blows over it, is a case of forced convection mass 

transfer. Mass transfer also occurs whenever a change from one phase to another 

takes place. The mass transfer in such case occurs due to simultaneous action of 

convection and diffusion. Hot gases escaping from the chimney rise by 

convection and then diffuse into the air above the chimney is an example of mass 

transfer by the phase change.  

Magnetohydrodynamics (MHD) is that branch of science, which deals with the 

motion of highly conducting ionized (electric conductor) fluid in presence of 

magnetic field. Examples of such fluids include plasmas, liquid metals and salt 

water. The motion of the conducting fluid across the magnetic field generates 

electric currents which change the magnetic field and the action of the magnetic 

field on these currents give rise to mechanical forces, which modify the fluid. It is 

possible to attain equilibrium in a conducting fluid if the current is parallel to the 

magnetic field. Then the magnetic forces vanish and the equilibrium of the gas is 

the same as in the absence of magnetic fields. But most liquids and gases are poor 

conductors of electricity. In the case when the conductor is either a liquid or a gas, 

electromagnetic forces will be generated which may be of the same order of 

magnitude as the hydrodynamical and inertial forces. Thus in the equation of 

motion these electromagnetic forces should be taken into account. The MHD was 

originally applied to astrophysical and geophysical problems, where it is still very 

important but more recently applied to the problem of fusion power where the 

application is the creation and containment of hot plasmas by electromagnetic 

forces, since material walls would be destroyed. Astrophysical problems include 

solar structure, especially in the outer layers, the solar wind bathing the earth and 
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other planets and interstellar magnetic fields. The primary geophysical problem in 

planetary magnetism produced by currents deep in the planet a problem that has 

not been solved to any degree of satisfaction. The interaction of the magnetic field 

and the moving electric charge carried by the flowing fluid induces a force, which 

tends to oppose the fluid motion and near the leading edge, the velocity is very 

small, so that the magnetic force which is proportional to the magnitude of the 

longitudinal velocity and acts in the opposite direction is also very small. 

Consequently, the influence of the magnetic field on the boundary layer is exerted 

only through induced forces within the boundary layer itself without additional 

effects arising from the free stream pressure gradient. Solid matter is generally 

excluded from MHD effects, but it should be realized that the same principles 

would apply. The motion of an electrically conducting fluid, like mercury, under a 

magnetic field, in general, gives rise to induced electric currents on which 

mechanical forces are exerted by the magnetic field. On the other hand, the 

induced electric currents also produce induced magnetic field. Thus there is a 

two-way interaction between the flow field and the magnetic field, the magnetic 

field exerts force on the fluid by producing induced currents and the induced 

currents change the original magnetic field. Therefore, the magnetohydrodynamic 

flows (the flows of electrically conducting fluids in the presence of magnetic 

field) are more complex than the ordinary hydrodynamic flows.  

Several  methods  of  controlling  the  boundary layer  have  been  developed  

experimentally  and  also  on  the  basis of  theoretical  considerations. The 

suction is one of them.  It is the most efficient, simple and common method of 

controlling the boundary layer. Hence, the effect of suction on 

magnetohydrodynamic boundary layer is of great interest in astrophysics. It is 

often necessary to prevent separation of the boundary layer to reduce the drag and 

attain high lift values. On the other hand, one of the important problems facing in 

engineering for high-speed flow is the cooling of the surface to avoid the 

structural failures as a result of frictional heating. In this respect the possibility of 

using the injection at the surface is a measure to cool the body in the high 

temperature fluid.  



 7

Injection of secondary fluid through porous walls is of practical importance in 

flim cooling of turbine blades combustion chambers. In such applications 

injection usually occur normal to the surface and the injected fluid may be similar 

to or different from the primary fluid. Due to the importance of suction or 

injection for the boundary layer control in the field of aerodynamics space 

science, many research papers along these lines have been published for both 

steady and unsteady flows. Moreover, the stability of the boundary layer and the 

transition to turbulence are also considerably influenced by continuous suction 

and injection. Suction always stabilizes the boundary layer growth. 

Slip velocity is a function of the velocity gradient near the wall. It is known that 

for gaseous flow there always exists a non–zero velocity near the wall and based 

on a momentum balance at the wall. In certain situations, the assumption of no 

slip boundary condition does no longer apply. When fluid flows in micro electro 

mechanical systems (MEMS), the no-slip condition at the solid fluid interface is 

no longer applicable. A slip flow model more accurately describes the non- 

equilibrium near the interface. A partial slip may occur on a stationary and 

moving boundary when the fluid is particulate such as emulsions, suspensions, 

foams, and polymer solutions. 

Viscosity is the “resistance to flow” of a liquid. Viscosity of a fluid depends on 

temperature. In liquids, viscosity decreases with increasing temperature (i.e. 

cohesion decreases with increasing temperature). In gases, viscosity increases 

with increasing temperature (i.e. molecular interchange between layers increases 

with temperature setting up strong internal shear). The viscosity of air is 1.3289 

kg m 1− s 1− , 2.671 kg m 1− s 1− , and 3.625 kg m 1− s 1− , at 100 0 C, 500 0 C and 800 0 C 

temperature, respectively. The viscosity of water is 1006.523 kg m 1− s 1− , 471.049 

kg m 1− s 1− , and 282.425 kg m 1− s 1− , at 20 0 C, 60 0 C and 100 0 C temperature, 

respectively. 

Thermal conductivity is the intensive property of material that indicates its ability 

to conduct heat. Thermal conductivity approximately tracks electrical 

conductivity, as freely moving valence elections transfer not only electric current 
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but also heat energy. A high value for thermal conductivity indicates that the 

material is a good heat conductor and a low value for thermal conductivity 

indicates that the material is a poor heat conductor or insulator. For example the 

material such as copper and silver that are good electric conductors are also good 

heat conductors, and have high values of thermal conductivity. Materials such as 

rubber, wood are poor conductors of heat and have low conductivity values. For 

liquid, it has been found that the thermal conductivity κ varies with temperature 

in an approximately linear manner in the range from 0 to 400 0  F. 

1.2 Literature survey 

Thermophoresis is an instrument of particle deposition, moreover other ones like 

inertial impaction, sedimentation etc. A synthetic description of this phenomenon 

may be the following: submicron sized (nano) particles suspended in a moving 

isothermal gas are subjected to a driving force towards the wall, when this wall is 

cold and away from the wall when it is hot. Thermophoretic force would act upon 

particles of aerosol while a temperature gradient is present. The effect was first 

observed by Tyndall (1870), when he observed that a particle free zone around a 

heated surface appeared in dusty air. In Aitken (1884) proved that the microscopic 

explanation to the effect was due to the heavier bombardment of the particle from 

the gas molecules on the hot side compared to the cold side. The thermophoretic 

transport involved in simple one-dimensional flows for the measurement of 

thermophoretic velocity was studied by Goldsmith and May (1966). Hales et al. 

(1972) studied the thermophoretic deposition in geometry of engineering interest 

and they solved the laminar boundary layer equations for simultaneous aerosol 

and steam transport to an isothermal vertical flat surface situated adjacent to a 

large body of an otherwise quiescent air-steam-aerosol mixture. Derjaguin et al. 

(1976) performed various experiments on the thermophoresis of aerosol particles 

and measured the thermal slip coefficient to calculate thermophoretic velocity, 

and then compared it with a theoretical one. Goren (1977) analyzed 

thermophoresis in laminar flow over a horizontal flat plate. He found the 

deposition of particles on cold plate and particle free layer thickness in hot plate 

case. The deposition efficiency of small particles due to thermophoresis in a 
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laminar tube flow was calculated by Walker et al. (1979). Thermophoresis of 

particles in a heated boundary layer was studied by Talbot et al. (1980). They 

calculated the trajectory of a particle entering the boundary layer by using several 

available theoretical expressions for the thermophoretic force. Measurements of 

the thickness of the particle-free layer next to the heated plate were compared 

with the calculated particle trajectories. Blasius series solution for thermophoretic 

deposition of small particles was studied by Homsy et al. (1981). Thermophoresis 

in natural convection for a cold vertical flat surface has been analyzed by Epstein 

et al. (1985). Numerical analysis for thermophoretic deposition of a laminar slot 

jet on an inclined plate has been studied by Garg and Jayaraj (1988). In their 

analysis, they used cold, hot and adiabatic wall conditions. Garg and Jayaraj 

(1990) studied the thermophoretic transport of aerosol particles through a forced 

convection laminar boundary layer in cross flow over a cylinder. Jia et al. (1992) 

investigated numerically the interaction between radiation and thermophoresis in 

forced convection laminar boundary layer flow. Chiou and Cleaver (1996) studied 

the effect of thermophoresis on submicron particle deposition from a laminar 

forced convection boundary layer flow on to an isothermal cylinder whereas 

Chiou (1998) analyzed the effect of thermophoresis on submicron particle 

deposition from a forced convective boundary layer flow on to an isothermal 

moving plate through similarity solutions. Thermophoretic analysis in narural 

convection laminar flow over a cold vertical flat plate has been studied by Jayaraj 

et al. (1999). He observed that for a cold plate, the wall concentration increases 

with the decrease of the Prandtl number.  The problem of steady, two-

dimensional, laminar, hydromagnetic flow with heat and mass transfer over a 

semi-infinite, permeable flat surface in the presence of thermophoresis and heat 

generation/absorption was studied numerically by Chamkha and Issa (2000). 

Thermophoresis of particles in gas-particle two-phase flow with radiation effect 

was investigated by Sohn et al. (2002) and they observed that gas as well as 

particle radiation exists; the deposition of particle is mainly influenced by the gas. 

The effect of surface mass transfer on mixed convection flow past a heated 

vertical flat permeable plate with thermophoresis has been studied numerically by 

Selim et al. (2003). In their investigation they found that as the thermophoretic 
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parameter increases, the surface mass flux increases. The steady and two-

dimensional free convection boundary layer flow over an isothermal vertical 

circular cylinder in a fluid-saturated porous medium in the presence of the 

thermophoresis particle deposition effect was analyzed by Chamkha et al. (2004). 

Wang and Chen (2006) studied numerically the thermophoretic deposition of 

particles from a boundary layer flow onto a continuously moving wavy surface. 

Their numerical results showed that the mean deposition effect of the wavy plate 

is greater than the flat plate. Mixed convection heat and mass transfer flow along 

an isothermal vertical flat plate embedded in a fluid-saturated porous medium and 

the effects of viscous dissipation and thermophoresis in both aiding and opposing 

flows have been studied numerically through similarity solutions by Seddeek 

(2006). Postelnicu (2007) studied the effects of thermophoresis particle deposition 

in free convection boundary layer from a horizontal flat plate embedded in a 

porous medium. Bakier and Mansour (2007) studied numerically the combined 

effects of magnetic field and thermophoresis particle deposition in free convection 

boundary layer flow along a vertical flat plate embedded in a porous medium. 

Their numerical results showed that the nature of variation of particle 

concentration profile and magnetic field with respect to buoyancy force and 

Prandtl number was found to be similar. Duwairi and Damesh (2008) analyzed 

the effects of thermophoresis particle deposition on mixed convection from 

vertical surfaces embedded in saturated porous medium. Alam et al. (2008 and 

2009) studied the effects of thermophoresis on steady two-dimensional 

hydromagnetic heat and mass transfer flow over an inclined flat plate with various 

flow conditions. Damesh et al. (2009) studied non-similar solutions of 

magnetohydrodynamic and thermophoresis particle deposition on mixed 

convection problem in porous media along a vertical surface with variable wall 

temperature. Rahman and Postelnicu (2010) studied the effects of thermophoresis 

on the forced convective laminar flow of a viscous incompressible fluid over a 

rotating disk. Postelnicu (2012) studied the thermophersis particle deposition in 

natural convection over inclined surfaces in porous media.   

The unsteady mixed convection flow past an infinite vertical isothermal plate of 

an incompressible fluid is a physical situation, which is often experienced, in the 
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industrial applications. Some important contributions in this aspect have been 

given by Schneider (1979). Jha (1991) investigated the MHD unsteady mixed 

convection flow through a porous medium. He, however, obtained the solutions 

by employing Laplace transform technique and taking the value of the Prandtl 

number to be equal to one. Sattar et al. (1997) obtained an analytical solution of 

an unsteady MHD forced convective flow through a porous medium taking a 

constant heat source and a variable suction velocity. The phenomenon of natural 

convection heat and mass transfer is carried on MHD flow by many investigators. 

The effects of mass transfer on free convective flow of an electrically conducting, 

viscous fluid past an infinite porous plate with constant suction and transversely 

applied magnetic field studied by Haldavneker and Soundalgeker (1977). Raptis 

and Kafoussias (1982) considered the free convection and mass transfer steady 

hydromagnetic flow of an electrically conducting viscous incompressible fluid 

through a porous medium, occupying a semi-infinite region of the space bounded 

by an infinite vertical and porous plate under the action of a transverse magnetic 

field. The solution of velocity, temperature, concentration field and rate of heat 

transfer are obtained for the effects of different parameters. An analytical study is 

performed showing the effects of magnetic field on the free convection and mass 

transfer flow through porous medium by Jha and Prasad (1989). The solutions to 

the problem are obtained by Laplace transform technique. Later, the same method 

is employed by Jha et al. (1994) for the study of unsteady free convection and 

mass transfer flow past an exponentially accelerated infinite non-conducting 

vertical plate through a porous medium in the presence of uniform transverse 

magnetic field. Hossain et al. (2006) studied the unsteady mixed-convection 

boundary layer flow along a symmetric wedge with variable surface temperature. 

Singh et al. (2009) analyzed the unsteady mixed convection flow over a vertical 

wedge. Sparrow and Cess (1961) considered the case of a constant magnetic field, 

and have used a perturbation scheme, taking the non-magnetic case as the first 

approximation. Their results are applicable in the immediate neighborhood of the 

leading edge and for weak magnetic fields. Cramer (1963) studied the influence 

of magnetic field on the laminar free convection flow of liquid metals over a 

vertical flat plate and between two parallel plates. He obtained an analytical 
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solution for liquid metals. MHD mixed convection flow investigated by many 

researchers such as Yu (1965), Gardner and Lo (1975), Hossain and Ahmed 

(1990) and Al-Khawaja (1999). Yu (1965) showed the stabilizing effect of 

magnetohydrodynamic on combined forced and free convection channel flows 

similar to the case of horizontal layer heated from below. Grardner and Lo (1975) 

investigated the combined free and forced convection problem using a 

perturbation method, which produced some details of the secondary flow but his 

result, were limited to small values of the Hartman number. Hossain and Ahmed 

(1990) studied the combined forced and free convection of an electrically 

conducting fluid past a vertical flat plate at which the surface heat flux was 

uniform and a magnetic field was applied parallel to the direction normal to the 

plate. Recently, Vajravelu et al. (2013) analyzed unsteady convective boundary 

layer flow of a viscous fluid at a vertical surface with variable fluid properties. 

Hasimoto (1957) studied the boundary layer growth on an infinite flat plate with 

uniform suction or injection. Exact solutions of the Navier-Stokes equations of 

motion were derived for the case of uniform suction and injection. Nanbu (1971) 

studied the vortex flow over a flat surface for large suction. He obtained the 

solutions by using perturbation method. The conditions under which similarity 

solutions exist to the hydromagnetic flow over a semi-infinite flat plate in the 

presence of a magnetic field and a pressure gradient with or without suction and 

injection are obtained by Cobble (1977). Following this, Soundalgeker and 

Ramanamurthy (1980) analyzed the thermal boundary layer and they solved the 

similarity equations taking into account the effects of suction or injection and 

pressure gradient. Gupta et al. (2003) studied the effects of suctrced coion or 

blowing (injection) on the velocity and temperature distribution in the flow past a 

porous flat plate of a power-law fluid. Alam and Rahman (2006) studied the 

combined free-forced convection and mass transfer flow past a vertical porous 

plate in a porous medium with heat generation and thermal diffusion. Recently, 

Noor et al. (2013) analyzed heat and mass transfer of thermophoretic MHD flow 

over an inclined radiate isothermal permeable surface in the presence of heat 

source/sink. 
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The slip flows under various flow configurations for Newtonian and non- 

Newtonian fluids have been studied widely in the literature on a stationary flat 

plate, moving plate as well as on a stretching surface (see for examples, Hasimoto 

(1958), Martin and Boyd (2000, 2006, 2010), Vedantam (2006), Andersson 

(2002), Wang ( 2006, 2009) and Aziz (2010). The general conclusion is as the slip 

parameter increases, the slip velocity increases and the wall shear stress 

decreases. Very recently, Rahman et al. (2014) analyzed the boundary layer flow 

of a nanofluid past a permeable exponentially shrinking/stretching surface with 

second order slip using Buongiorno’s model. 

All the above studies were confined to a fluid with constant viscosity. However, it 

is known that this physical property may change significantly with temperature. 

The effect of variable viscosity on hydrodynamic flow and heat transfer past a 

continuously moving porous boundary with radiation has been investigated by 

Seddeek (2000). Ali (2006) analyzed the effect of variable viscosity on mixed 

convection heat transfer along a vertical moving surface. Alam et al. (2009) 

studied transient magnetohydrodynamic free convective heat and mass transfer 

flow with thermophoresis past a radiative inclined permeable plate in the presence 

of variable chemical reaction and temperature-dependent viscosity. Pantokratoras 

(2005) obtained some new results on forced and mixed convection boundary layer 

flow along a flat plate with variable viscosity and variable Prandtl number while 

Pantokratoras (2007) further studied non-Darcian forced convection heat transfer 

over a flat plate in a porous medium with variable viscosity and variable Prandtl 

number. Rahman and his co-workers (2009 and 2011) analyzed several thermal 

boundary-layer problems taking into account the variability of viscosity for both 

Newtonian and Non-Newtonian fluids in different geometry with various flow 

conditions. All of these studies confirmed that for the accurate prediction of the 

thermal characteristics of variable viscosity and thermal conductivity, the Prandtl 

number must be treated as a variable rather than a constant. One of the main 

focuses behind this study is also to investigate how the Prandtl number varies 

within the boundary layer when fluid properties are depended on temperature. 
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        Figure 1.2: Variation of dynamic viscosity of several fluids with temperature      

                           (Cebeci and Bradshaw, 1984) 
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1. 3 Objectives of the present study  

The objective of the present research is to investigate numerically the effect of 

unsteady convective flow along a wedge with thermophoresis. Then it is extended 

considering temperature dependent viscosity and thermal conductivity with 

variable Prandtl number, magnetohydrodynamic, slip flow, suction and injection 

on the flow field. The potential flow velocity has been taken as a function of the 

distance x and time t. The governing time dependent non-linear partial differential 

equations are reduced to a set of non-linear ordinary differential equations by 

introducing similarity transformations. Numerical results for the velocity, 

temperature  and concentration profiles as well as local skin-friction coefficient, 

rate of heat and mass transfer, thermophoretic velocity and  thermophoretic 

deposition velocity for different values of unsteadiness parameter, wedge angle 

parameter, Prandtl number, Schmidt number, thermophoretic coefficient, 

thermophoresis parameter and concentration ratio are displayed in graphically and 

tabulated form. 

The major objectives of this study are: 

 
i. To develop a mathematical model regarding the unsteady convective flow 

along a wedge with thermophoresis using Nachtsheim-Swigert shooting 

iteration technique along with sixth order Runge-Kutta integration scheme. 

ii. To analyze heat and mass transfer characteristics of the unsteady convective 

flow along a wedge with thermophoresis from the obtained solution. 

iii. To investigate the effects of unsteadiness parameter, wedge angle parameter, 

Prandtl number, Schmidt number, thermophoretic coefficient, 

thermophoresis parameter, concentration ratio and variable viscosity 

parameter on the velocity, temperature and concentration profiles as well as 

local skin-friction coefficient, rate of heat and mass transfer, thermophoretic 

velocity and thermophoretic particle deposition velocity. 

iv. To compare the results with previously published results. 
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1. 4 Applications 

Thermophoresis phenomenon has many engineering applications in removing 

small particles from gas streams, in determining exhaust gas particle trajectories 

from combustion devices, and in studying the particulate material deposition on 

turbine blades. Thermophoresis is also important in thermal precipitators, which 

are sometimes more effective than electrostatic precipitators in removing 

submicron-sized particles from gas streams. Since industrial air pollution is of 

great concern in the world, this phenomenon can be utilized to control air 

pollution by removing small particles from gas streams and other flue gases. This 

phenomenon commonly contributes significantly to the atmospheric and 

environmental sciences, aerosol science and technology. This phenomenon can 

also be used for the production of fine ceramic powders like aluminum nitride in 

the high temperature aerosol flow reactors. In aerosol flow reactors, the 

thermophoretic depositions are important since it is desired to decrease the 

deposition during the process in order to increase product yield. Thermophoretic 

deposition of radioactive particles is one of the major factors causing accidents in 

nuclear reactors. Thermophoresis is considered to be the dominant mass transfer 

mechanism in the modified chemical vapour deposition (MCVD) processes as 

currently used in the manufacturing of graded index optical fiber performs            

( i. e. the production of optical fiber performs by using MCVD). In optical fiber 

process, high deposition levels are desired since the goal is to coat the interior of 

the tube with particles. The fabrication of high yield processors is highly 

dependant on thermophoresis because of the repulsion and or deposition of 

impurities on the wafer as it heats up during fabrication. 

1. 5 Outline of the thesis 

The chapter 1 is an introductory chapter which includes physical phenomena of 

thermophoresis, heat and mass transfer, magnetohydrodynamics, suction/ 

injection, slip flow and temperature dependent viscosity and thermal conductivity 

with applications. An extensive literature review of the past studies on the above 

physical facts is included with the aim of the present studies.  
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The basic governing equations for the flow field heat and mass transfer from 

standard vector form to the case by case form are discussed elaborately in    

chapter 2. The dimensionless form of the governing equations is presented with 

careful discussion. At the end of this chapter, a comprehensive discussion 

regarding the method of solution of the non-linear dimensionless governing 

equations is introduced. 

Local similarity solution for unsteady two dimensional forced convective heat and 

mass transfer flow along a wedge with thermophoresis is investigated in      

chapter 3. Numerical solutions have been obtained for wedge angle parameter, 

unsteadiness parameter, Prandtl number, Schmidt number, thermophoresis 

parameter and concentration ratio. 

In chapter 4, thermophoresis particle deposition on unsteady two-dimensional 

forced convective heat and mass transfer flow along a wedge with variable 

viscosity and variable Prandtl number has been considered. The main focuses of 

this study is to investigate how the Prandtl number varies within the boundary 

layer when the viscosity is dependent on temperature.  

Unsteady MHD forced convective flow along a porous wedge with variable fluid 

properties and thermophoresis is considered in chapter 5. Three new parameters 

are present in this chapter, namely Hartman number, suction parameter and 

thermal conductivity variation parameters. The characteristics of these new 

parameters are presented graphically and discussed elaborately. 
 

In chapter 6, thermophoretic particle deposition on unsteady convective slip flow 

over a wedge with variable fluid properties and variable prandtl number has been 

analyzed. New parameters are added with the parameters introduced in chapter 3, 

namely viscosity variation parameter, thermal conductivity variation parameter 

and slip parameter. The properties of this parameter on the fluid flow, heat and 

mass transfer are widely explained in chapter 6. 

Finally, a final clarification and possible future work on this thesis has been 

discussed in chapter 7. 
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Chapter 2 
 

Mathematical modeling of the problem 
 
  

The convective heat and mass transfer occur due to temperature difference and 

concentration difference. The starting point of any numerical method is the 

mathematical model, i.e. the set of partial differential equation and boundary 

conditions. A solution method is usually designed for a particular set of equations.  

The generalized governing equations are used based on the conservation laws of 

mass, momentum, energy and concentration. As the heat and mass transfer 

depend upon a number of factors, a dimensional analysis is presented to show the 

important non-dimensional parameters which influence the dimensionless heat 

and mass transfer, i.e. local Nusselt number and local Sherwood number.  

2.1 Basic equations 

2.1.1 Equation of continuity 

The principle of conservation of mass (i. e equation of continuity) states that          

the rate at which mass increases with the control volume = the rate at which mass 

enters the control volume through its boundaries. 

The MHD continuity equation for viscous incompressible electrically conduction 

fluid remains as that of usual continuity equation: 

.0. =∇ qr
r

             (2.1) 

 2.1.2 Equation of Navier-Stokes  

The motion of conducting fluid across the magnetic field generates electric 

currents, which change the magnetic field and the action of the magnetic field on 

these current give rises to mechanical forces, which modify the flow of the fluid. 

Thus, the fundamental equation of the magneto-fluid combines the equations of 
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the motion from the fluid mechanics with Maxwell’s equations from 

electrodynamics.  

Then the Navier-Stokes equation for an unsteady laminar viscous incompressible 

fluid with constant viscosity may be written in the following form:  
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t

rrrrrrrrr
×++∇+∇−=⎟

⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂ 2. µρ                                                         (2.2)             

where ρ is the density, µ  is the viscosity of the fluid and P is the pressure. The 

Navier-Stokes equation for an unsteady laminar viscous incompressible fluid with 

variable viscosity may be written in the following form:  
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The left side of the equation (2.2) is the mass time acceleration; the first term on 

the right hand side is the pressure gradient, second term is the viscous force, third 

term is the body force per unit volume and the last term is the electromagnetic 

force due to motion of the fluid. 

2.1.3 Equation of energy  

The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This 

equation can be written as:  
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( ) ( )TTq
t
Tc fp ∇∇=⎥⎦

⎤
⎢⎣
⎡ ∇+
∂
∂ rrrr κρ ..                                                        (2.4) 

where fκ is the thermal conductivity of the fluid, pc is the specific heat at 

constant pressure. 

The left side of the equation (2.4) represents the net energy transfer due to mass 

transfer. The right hand side represents conductive heat transfer.  

In the above equations, ∇
r

 is the vector differential operator and for two 

dimensional case it is defined as: 

 

 

where ji ˆandˆ  are the unit vectors along x  and y  axes, respectively. If it is 

considered that the external electric field is zero and induced magnetic field is 

negligible, then the current density is related to the velocity by Ohm’s law as 

follows:  

( )BqJ
rrr

∧= σ   (2.5) 

where Bq
rr

∧  is the electrical fluid vector and σ denotes the electrical 

conductivity of the fluid. This condition is usually well satisfied in terrestrial 

applications, especially so in (low-velocity) free convection flows. So, we can 

write 0
ˆBjB =

r
                         (2.6) 

using equations (2.5) and (2.6) the force per unit volume BJ
rr

×  acting along the 

x axis takes the following form: 

uBBJ 2
0σ−=×

rr
.           (2.7) 

2.1.4 Equation of concentration 

The concentration equation can be written as: 

( ) CVCDCq
t
C

T∇−∇=∇+
∂
∂ rrrr 2.                                                                          (2.8) 

where D is the molecular diffusivity and TV is the thermophoretic velocity, which 

is defined as  
T
TVT

∇
−=

r

κυ . 

y
j

x
i

∂
∂

+
∂
∂

=∇ ˆˆr
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The left side of the equation (2.8) represents the net concentration due to mass 

transfer; the first term of the right hand side represents diffusive mass transfer and 

the second term of the right hand side represents thermophoretic velocity term.  

2.2 Physical configuration  

Consider, an unsteady two-dimensional laminar forced convective hydrodynamic 

heat and mass transfer flow of a viscous incompressible fluid along a heated 

wedge. The angle of the wedge is given by βπ=Ω . The flow is assumed to be in 

the x-direction which is taken along a direction of the wedge and the y-axis is 

normal to it. The surface of the wedge is maintained at a uniform constant 

temperature wT  and a uniform constant concentration wC  which are higher than 

the ambient temperature ∞T  and ambient concentration ∞C , respectively. In 

addition, a uniform transverse magnetic field of strength 0B  is applied parallel to 

the y-axis. Besides, fluid suction or injection is imposed on the wedge surface as 

shown in Figure 2.1.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     0B  
                                                     ∞∞ CT ,                     
                                                                     x                
              y 
                                                                       ww CT ,    
 
             U(x,t)                        
 
                                                          Ω = βπ 
 
 
                                                                       ww CT ,    
 
                                    Boundary condition 
                                           ∞∞ CT ,  

                            

    Figure 2.1: The physical model of 2-D wedge flow 
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2. 3 Assumptions of the study 

The present work is based on the following assumptions. 

i. The flow is unsteady, laminar, two-dimensional, viscous and 

incompressible. 

ii. The fluid may be treated as continuous and is describable in terms of local 

properties. 

iii. The wedge surface is heated. 

iv. The temperature gradient in the y-direction is much larger than that in the 

x-direction and hence, only the thermophoretic velocity component, which 

is normal to the surface, is of importance. 

 

2.4 Mathematical formulation 

The mathematical analysis of the present problem has been discussed in this 

section. There are four cases considered in the current study, therefore, the case 

by case mathematical formulations of the analysis are presented in the following 

sub-sections. 

2.4.1 Case I: Unsteady forced convective flow  

Consider an unsteady two-dimensional laminar forced convective hydrodynamic 

heat and mass transfer flow of a viscous incompressible fluid along a heated 

impermeable wedge in the presence of thermophoresis. The governing boundary- 

layer equations (2.1), (2.2), (2.4) and (2.8) are: 

Continuity equation: 

,0=
∂
∂

+
∂
∂

y
v

x
u                                                                                                 (2.9) 
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Momentum equation: 
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Energy equation: 
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Concentration equation: 
 

),(2

2
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x
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−
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=
∂
∂

+
∂
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where u, v are the velocity components in the x and y directions respectively, t is 

the time,  p is the pressure ,υ  is the kinematic viscosity, ρ is the density of the 

fluid. T, Tw and ∞T  are the temperature of the fluid inside the thermal boundary 

layer, the wedge surface temperature and the fluid temperature in the free stream, 

respectively, while C, Cw and ∞C  are the corresponding concentration, fκ  is the 

thermal conductivity of the fluid, cp is the specific heat at constant pressure, D is 

the molecular diffusivity of the species concentration and VT is the thermophoretic 

velocity. 

In boundary-layer flow, the temperature gradient in the y-direction is much larger 

than that in the x-direction and hence only the thermophoretic velocity in              

y-direction is considered. As a consequence, in equation (2.12), the 

thermophoretic velocity VT, was recommended by Talbot et al. (1980) as         

,
y
T

T
VT ∂

∂
−=
κυ                                                                                                  (2.13) 

The negative sign in equation (2.13) means that the particles move down the 

temperature gradient, i.e., from hot to cold. Here, κυ represents the 

thermophoretic diffusivity and κ is the thermophoretic coefficient which ranges in 

value from 0.2 to 1.2 as indicated by Batchelor and Shen (1985) and is defined by 
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κ                                                          (2.14) 

where fκ and pλ are the thermal conductivities of the fluid and diffused particles, 

respectively. mC = 1.146, sC = 1.147, tC = 2.20 are constants obtained from the 

experimental data. )](1[ /
21

3 KnC
c eCCKnC −++=  is the Stokes-Cunningham 

correction factor and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

pd
Kn ξ2  is the Knudsen number of the particle, where 

1C = 1.2, 2C = 0.41, 3C = 0.88, pd is the particle diameter and ξ is the mean free 

path of molecule. 

 

2.4.1.1 Boundary conditions 

The applicable boundary conditions for the present model are: 

i. On the wedge surface ( )0=y : 

     0=u , v = 0, wTT = , wCC = ,                                                              (2.15a) 

     (no-slip and impermeable wall condition) 

 

ii. Matching with quiescent free stream ( )∞→y : 

       ( )txUu ,= , ∞= TT , ∞= CC .                                                          (2.15b) 

 

It has been established ( Schlichting:1958) long ago that similar solutions of the 

steady  2-D boundary layer equations exist when the velocity of the potential flow 

is proportional to a power of the length coordinate along the boundary. Following 

this phenomenon, it can also be established that similar solutions of the unsteady 

2-D boundary layer equations exist when the velocity of the potential flow is 

inversely proportional to the power of a length scale which is a function of time. 

Thus for the present unsteady case we consider the potential flow velocity U(x, t) 

for the wedge flow as [see Sattar (2011)] 
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,),( 1+= m

mxtxU
δ
υ                                                                                                  (2.16) 

where m is an arbitrary constant and is related to the wedge angle and δ is the time 

dependent length scale,  which is taken to be [see  Sattar ( 2011) and  Mia et al. 

(2011)] as     

)(tδδ =                                                                                                            (2.17) 

Since the potential flow velocity is defined as a function of (x, t), we have from 

(2.16) and (2.17)  
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2.4.1.2 Solution for unsteady case                                                                                                               

In order to obtain similarity solution of the problem we introduce the following 

non-dimensional variables: 
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where η is the similarity variable, ψ is the stream function  that satisfies the 

continuity equation (2.9) and is defined by 

 
y

u
∂
∂

=
ψ

 and 
x

v
∂
∂

−=
ψ , 
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we have from (2.19) 
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where f is non dimensional stream function and prime denotes differentiation with 

respect to η.                                             

Now using equations (2.17)-(2.20) into equations (2.10)-(2.12) we obtain the 

following non linear ordinary differential equations: 

0)22()1( 1
2 =′′−′−−′−+′′+′′′ − ff

dt
d

x
ffff m

m

ηδ
υ
δβ ,                                   (2.21) 
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with the transformed boundary conditions:         

1,1,0,0 ===′= φθff  at 0=η ,                                                  (2.24a) 

0,0,1 ===′ φθf as  ,∞→η                                                   (2.24b) 

where 
1

2
+

=
m

mβ is the Hartree  pressure gradient  or wedge angle that 

corresponds to βπ=Ω  for a total angle Ω  of the wedge, 
f

pc
κ
µ

=Pr  is the 

Prandtl number,
D

Sc υ
=  is the Schmidt number,

∞

∞

−
=

TT
TN

w
t  is the 

thermophoresis parameter,
∞

∞

−
=

CC
CN

w
c is the concentration ratio. 

Now in order to make the equations (2.21)-(2.23) locally similar,  

let ,1 λδ
υ
δ

=− dt
d

xm

m

                                                                                            (2.25) 

where λ  is taken to be a constant and thus can be treated as a dimensionless 

measure of the unsteadiness. 
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Hence equations (2.21)-(2.23) becomes 

0)22()1( 2 =′′−′−−′−+′′+′′′ ffffff ηλβ ,                                                  (2.26) 

0PrPr =′+′+′′ θηλθθ f ,                                                                                (2.27) 
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Further, we suppose that  1−= mx
cλ  , so that  

                                         
dt
dc

m δ
υ
δ

= .                                                             (2.29) 

Thus integrating (2.29) we obtain    

[ ] 1/1)1( ++= mtmc υδ  .                                                                                        (2.30) 

Now taking 2=c  and 1=m  in equation (2.30) we obtain 

 tυδ 2= .                                                                                                       (2.31) 

The length scales tυ2  for the ordinate similar to one seen in (2.31) was initially 

used by Stokes (1856)  for an unsteady parallel  flow, but )t(δ  form of the length 

scale was initially developed by Sattar and Hossain (1992)  in case of a solution 

of an unsteady one-dimensional boundary-layer  problem. The characteristics 

length scale )t(δ defined particularly in (2.31) physically related to the boundary-

layer thickness which can be viewed in Schlichting (2000).  

 

2.4.1.3 Parameters of engineering interest 

 

The local skin friction coefficient (wall shear stress), wall heat transfer rate (local 

Nusselt number), mass transfer rate (local Sherwood number) and thermophoretic 

particle deposition velocity are important physical parameters which are defined 

respectively by the following relations:  
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( )

0=∞
⎥
⎦

⎤
⎢
⎣

⎡
−

=
yw

w
d CC

M
V .                                                                                  (2.35) 

Now the wall shear stress on the surface wτ , rate of heat transfer wq  and rate of 

mass transfer wM are given by 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= yw y
uµτ ,                                                                                                (2.36) 

0=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
y

fw y
Tq κ ,                                                                                           (2.37) 

0=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
y

w y
CDM ,                                                                                           (2.38) 

using (2.19) and (2.36)-(2.38) the quantities of (2.32)-(2.35) can be written as 

follows: 

Local skin-friction coefficient: 

)0(Re2
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β ,                                                                              (2.39) 

Local Nusselt number: 

)0(Re2 2
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Local Sherwood number: 
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Non-dimensional thermophoretic velocity are evaluated as 
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Thermophoretic particle deposition velocity at the surface of the wedge is 
evaluated as 
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Therefore non-dimensional thermophoretic particle deposition velocity is 

obtained as 

( )0Re1
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1 2
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φ
βυ

′
−

−==∗
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V d
d ,                                                                 (2.44) 

where 
υ

Ux
=Re is the Reynolds number.  

Thus from equations (2.42) and (2.44) we observe that the non-dimensional 

thermophoretic velocity is proportional to the numerical values of ( )0θ ′−  whereas 

the non-dimensional particle deposition velocity is proportional to the numerical 

values of ( )0φ′−  which are evaluated when the corresponding differential 

equations are solved satisfying the convergence criterion. 

2.4.2 Case II: Temperature dependent viscosity and Prandtl number 

In this case, temperature dependent viscosity and variable Prandtl number in the 

momentum equation (2.2) are taking into account. The momentum equation for 

this case is 
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The fluid viscosity in the momentum boundary layer decreases with the increase 

of temperature, which in turn affects the heat transfer rate at the surface of the 

wedge. Thus in order to predict the flow and heat transfer rate accurately, Ling 

and Dybbs (1987) suggested a temperature-dependent viscosity of the form: 

[ ])(1 ∞

∞

−+
=

TTτ
µ

µ                                                                                            (2.46) 

Where τ is the thermal property of the fluid. Equation (2.46) can be rewritten as  

)(1
rTTA −=

µ
,   where ∞= µτA  and τ1−= ∞TTr .                                    (2.47)                                    

In the relation (2.47), both A  and rT are constants and their values depend on the 

reference state andτ . It is mentioned that for liquids, A > 0 and for gases, A < 0. 

Typical values of τ  and A for air are τ  = 0.026240 and A = -123.2 [see Weast 

(1990)].  
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The dimensionless temperature θ  can also be written as  

r
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r
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where )(1)()( ∞∞∞ −−=−−= TTTTTT wwrr τθ  and its value is determined by 

the viscosity/temperature  characteristics of the fluid under consideration and the 

temperature difference ∞−TTw . It is to be mentioned that for ∞−TTw > 0, θr   must 

physically be greater than 1 for gases and θr < 0 for liquids. On the other hands, 

opposite is true if ∞−TTw < 0, where θr must physically be greater than 1 for 

liquids and θr < 0 for gases [for detailed discussion of the values of rθ , see also 

Elbashbeshy and Bazid (2000) and Ali (2006)]. Using equations (2.46)-(2.48) 

becomes 
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The energy equation, concentration equation and the boundary conditions remain 

same as equations (2.27), (2.28) and (2.24), respectively. 

Now introducing the equations (2.19), (2.20), (2.25) and (2.49) into equation 

(2.45), we obtain the following non linear ordinary differential equation: 
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The local skin friction coefficient (wall shear stress), is important physical 

parameters which is defined by the following relations:  
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Now the wall shear stress on the surface wτ is given by 
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Using equations (2.19) and (2.52) the quantities of equation (2.51) can be written 

as follows: 
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2.4.2.1 Variable Prandtl number 

From the definition of Prandtl number, we see that it is a function of viscosity, 

and as the viscosity varies across the boundary layer, the Prandtl number also 

varies. The assumption of constant Prandtl number inside the boundary layer may 

produce unrealistic results [more detailed in Rahman and Eltayeb (2011) and 

Pantokratoras (2005, 2007)]. Therefore, the Prandtl number related to the variable 

viscosity is defined as 
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At the surface (η = 0) of the wedge, this can be written as 
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From equation (2.54), it can be seen that for ∞→rθ , the variable Prandtl number 

Prv is equal to the ambient Prandtl number ∞Pr . For ∞→η , i.e. outside the 

boundary layer, θ(η) becomes zero; therefore, Prv equals ∞Pr regardless of the 

values of θr. 

 

In the light of the above discussion and using equation (2.54), the non-

dimensional temperature equation (2.27) can be expressed as 
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Equation (2.56) is the corrected non-dimensional form of the energy equation in 

which Prandtl number is treated as variable. 
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2.4.3 Case III: The study of MHD and temperature dependent thermal 

conductivity 

In the above cases, the studies are confined with constant thermal conductivity but 

it is observed from definition that thermal conductivity is a function of 

temperature. For some liquids like engine oil, mercury and water it is inversely 

proportional to temperature and for air and hydrogen it is directly proportional to 

temperature. The momentum equation (2.2) and energy equation (2.4) for the 

unsteady, two dimensional forced convective flow of an electrically conducting, 

viscous and incompressible fluid with variable thermal conductivity along a 

wedge after simplifying can be written as                                                                                                     
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The applicable boundary conditions for the present model are: 

i. On the wedge surface ( )0=y : 

      0=u , ),( txvv w±= , wTT = , wCC =                                         (2.59a) 

      (no-slip and permeable wall condition) 

ii. Matching with quiescent free stream ( )∞→y : 

            ( )txUu ,= , ∞=TT , ∞= CC ,                                                          (2.59b) 

where wv (x, t) represents the suction/ injection velocity at the  porous surface 

where its sign indicates suction ( < 0 ) or injection ( > 0 ) and ( )txU ,  is the 

potential velocity generated by the wedge.  

Following Chiam (1996, 1998) the model for a variable thermal conductivity is 

considered as:  
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where ∞κ is the thermal conductivity of the ambient fluid andγ  is the thermal 

conductivity variation parameter. 
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The concentration equation remains same as equations (2.28). 

Now employing the equations (2.18)-(2.20), (2.25) and (2.59) into equations 

(2.57) and (2.58), we obtain the following non linear ordinary differential 

equations: 
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with the transformed boundary conditions: 

0110 ====′= ηφθ at,,f,ff w ,                                                       (2.63a) 

∞→===′ ηφθ asf 0,0,1 .                                                        (2.63b) 

The dimensionless  parameters appear in the above equations are 
∞
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κ
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δ
 is the wall mass transfer coefficient which is 

positive ( wf > 0) for suction and negative ( wf < 0 ) for injection, β , λ , tN , cN , 

and Sc are defined earlier in case I. 

The local Nusselt number within the boundary-layer can be calculated by the 

relations (2.37) the quantity (2.33) can be written as 
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2.4.3.1 Variable Prandtl number  

Prandtl number is a function of thermal conductivity and specific heat. However, 

since the thermal conductivity varies across the boundary layer, the Prandtl 

number also varies. The assumption of constant Prandtl number inside the 

boundary layer when thermal conductivities are temperature-dependent leads to 
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unrealistic results. Therefore, in the present work, the Prandtl number related to 

the variable thermal conductivity is defined as: 
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At the surface ( 0=η ) of the wedge, this can be written as 

                      ( )γ+= ∞

1
PrPrw .                                                                       (2.66)                  

From equation (2.65), it can be seen that for 0→γ , the variable Prandtl number 

Prv is equal to the ambient Prandtl number ∞Pr .  

In light of the above discussion and using equation (2.65), the non-dimensional 

temperature equation (2.62) can be expressed as: 
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2.4.4 Case IV: Temperature dependent viscosity and thermal conductivity 

with slip flow 

The mathematical statement of the basic conservation lows of momentum 

equation (2.2) and energy equation (2.4) for the unsteady, two dimensional forced 

convective flow of a viscous incompressible fluid with combined effect of 

temperature dependent fluid properties like as viscosity and thermal conductivity 

along a wedge  after simplifying can be written  as                                                                                       
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The applicable boundary conditions for the present model are: 

  ww CCTTv
y
uLu ===⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ,,0, , at  0=y ,                                               (2.70a)  

  ∞∞ === CCTTtxUu ,),,( , as   ∞→y ,                                              (2.70b) 

where L is the slip length and U(x,t) is the potential  flow velocity for the wedge 

flow which is taken as follows [see Rahman and Eltayeb (2011) ]. 

The fluid viscosity in the momentum boundary layer decreases with the increase 

of temperature, which in turn affects the heat transfer rate at the surface of the 

wedge. Thus in order to predict the flow and heat transfer rate accurately, Ling 

and Dybbs (1987) suggested a temperature-dependent viscosity of the form: 
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where τ is the thermal property of the fluid. For liquid metals, the thermal 

conductivity varies linearly with temperature in the range 0-400 0 F studied by 

Savvas et al. (1994). Chiam (1998) considered a temperature dependent thermal 

conductivity as  
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where ∞κ  is the thermal conductivity of the ambient fluid andγ is the thermal 

conductivity variation parameter. 

Now introducing the equations (2.18)-(2.20), (2.71), (2.72) and (2.70) into 

equations (2.68) and (2.69), we get the following non linear ordinary differential 

equations: 
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with the transformed boundary conditions: 
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where 
∞

∞
∞ =

κ
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Pr  is the Prandtl number, 
D

Sc ∞=
υ  is the Schmidt number, 
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parameter andβ , λ , tN and cN  are defined earlier in case I. 

2.4.4.1 Variable Prandtl number 

The definition of Prandtl number shows that it is a function of viscosity, thermal 

conductivity and specific heat. Because both viscosity and thermal conductivity 

vary across the boundary layer, the Prandtl number also varies. The assumption of 

constant Prandtl number inside the boundary layer when the viscosity and thermal 

conductivity are temperature dependent, leads to unrealistic results. Therefore, the 

Prandtl number related to the variable viscosity and variable thermal conductivity 

is defined as: 
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At the surface (η = 0) of the wedge, this can be written as  
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From equation (2.76), it can be seen that for ∞→rθ  and 0=γ , the variable 

Prandtl number Prv is equal to the ambient Prandtl number ∞Pr . In light of the 

above discussion and using equation (2.76), the non-dimensional temperature 

equation (2.74) can be expressed as: 
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Equation (2.77) is the corrected non- dimensional form of the energy equation in 

which Prandtl number is treated as variable.  
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2.5 Method of numerical solutions 

In all cases of this thesis, the author has applied sixth order Runge-Kutta 

integration scheme together with Nachtsheim-Swigert (1965) shooting iteration 

technique to get the numerical solution for the velocity, temperature and 

concentration within boundary-layer and the skin friction coefficient, heat and 

mass transfer rate along the surface of the wedge, A complete discussion on the 

development of vector form of Nachtsheim-Swigert shooting iteration technique 

for case I of this thesis is given below.  

2.5.1 Numerical experiment 

The set of non-linear ordinary differential equations (2.26)-(2.28) together with 

the boundary conditions (2.24) have been solved numerically by applying 

Nachtsheim-Swigert (1965) iteration technique (for detailed discussion see 

Appendix). In equation (2.24) there are three asymptotic boundary conditions and 

hence three unknown surface conditions ( ) ( )0,0 θ ′′′f  and ( )0φ′ . 

Within the context of the initial-value method and Nachtsheim-Swigert iteration 

technique the outer boundary conditions may be functionally represented as 

( ) ,62,1,)0(),0(),0()( max L==′′′′Φ=Φ jf jjj δφθη      (2.78) 

where f ′=Φ1 , θ=Φ 2 , φ=Φ3 , f ′′=Φ 4 , θ ′=Φ5 , φ′=Φ6 .  The last three of 

these represent asymptotic convergence criteria. Choosing ( ) ( ) 21 0,0 ggf =′=′′ θ  

and ( ) 30 g=′φ  and expanding in a first-order Taylor’s series after using equations 

(2.78) yield 
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where subscript ‘c’ indicates the value of the function at maxη determined from the 

trial integration. Solution of these equations in a least-square sense require 

determining the minimum value of  
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with respect to ig  ( 3,2,1=i ). 

Now differentiating E with respect to ig  we obtain 
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Substituting equations (2.79) into (2.81) after some algebra we obtain 
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Now solving the system of linear equations (2.82) using Cramer’s rule we obtain 

the missing (unspecified) values of ig  as 

iii ggg ∆+≈ .           (2.84) 

Thus adopting this numerical technique, a computer program was set up for the 

solutions of the governing non-linear partial differential equations of our problem 

where the integration technique was adopted as a sixth-order Runge-Kutta method 

of integration. A step size of 01.0=∆η  was selected to be satisfactory for a 

convergence criterion of 10−6 in all cases. The value of ∞η  was found to each 

iteration loop by the statement ηηη ∆+= ∞∞ . The maximum value of ∞η  for each 

group of parametersβ ,λ , κ , Pr, Sc and tN  is determined when the value of the 

unknown boundary conditions at 0=η  does not change in the successful loop 

with an error less than 10−6.  
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Chapter 3 

 
Local Similarity Solutions for Unsteady Two- 

Dimensional Forced Convective Heat and Mass Transfer 

Flow along a Wedge with Thermophoresis 

 

3.1 Introduction 

 
Similar solutions to a boundary layer flow are important with respect to the 

mathematical character of the solution. The present work is to investigate the 

effects of thermophoresis on an unsteady laminar two-dimensional hydrodynamic 

forced convective heat and mass transfer flow of a viscous incompressible fluid 

along a heated impermeable wedge. Mathematical analysis of this problem is 

discussed in section 2.4.1 as case I of chapter 2. The equations (2.26), (2.27) and 

(2.28) are the dimensionless form of the momentum equation, energy equation 

and concentration equation. The final form of the momentum, energy and 

concentration equations are solved numerically by applying shooting method 

based on the boundary condition defined in equation (2.24). 

 

3.2 Mathematical analysis 

The numerical results obtained from the governing equations (2.26), (2.27) and 

(2.28) based on the boundary conditions in equation (2.24) are presented and 

some of the numerical results are tabulated in the following sub-sections. A 

comparison of the stream function, velocity and the local skin friction coefficient 

obtained in the present work and obtained by White (2006) is shown in section 

3.2.1 and the graphical presentation of the numerical results for the dimensionless 

velocity, temperature and concentration within the boundary layer and the local 

skin friction coefficient, the local rate of heat and mass transfer, thermophoretic 
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velocity and thermophoretic particle deposition velocity along the surface with an 

elaborate discussion are presented in section 3.2.2. 

In order to see the effects of step size (∆η) we ran the code for our model with 

three different step sizes as ∆η = 0.01, ∆η = 0.004, ∆η = 0.001 and in each case 

we found excellent agreement among them. Figure 3.1 depicts the dimensionless 

velocity, temperature and concentration profiles, respectively for different step 

sizes. These Figures show that step size ∆η = 0.01 is sufficient to getting a 

convergent solution.  

3.2.1 Testing of the code 

Since the experimental results are not available in literature so the present results 

have been compared with the previous studies, which are shown in Table 3.1. The 

comparison of the dimensionless stream function )0(f , velocity )0(f ′  and the 

local skin friction coefficient )0(f ′′  obtained in the present work with 

0,0 == λβ  and obtained by White (2006) are made available in Table 3.1. Thus 

from Table-3.1, it is observed that the data produced by the present code and 

those of White (2006) are in excellent agreement, hence an encouragement for the 

use of the present numerical code. 

3.2.2 Results and discussion 

The numerical simulations are carried out for different values of the physical 

parameters such as wedge angle parameter β , unsteadiness parameterλ , Prandtl 

number Pr, thermophoresis parameter tN , thermophoretic coefficientκ , Schmidt 

number Sc and concentration ratio cN . The values of Prandtl number Pr are taken 

to be 0.71, 1.0, 4.34 and 7.0 which correspond physically to air, electrolyte 

solution and water at two different temperatures 400C and 200C, respectively. The 

values of Schmidt number Sc are taken for hydrogen )22.0( =Sc , 

helium )30.0( =Sc , water-vapor )60.0( =Sc  and Carbon-Dioxide )94.0( =Sc . 

The default values of the parameters are chosen as β  = 1/6 (i. e. Ω = 300),          
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Pr = 0.71, Sc = 0.94, λ  = 0.50, κ  = 0.50, Nt = 2.0 and Nc = 0.50, unless 

otherwise specified. 

The effect of changes in the wedge angle parameter β  on the dimensionless 

velocity f ′  against η  is displayed in Figure 3.2 (a) for the values 0, 1/6, 1/2, 1 

and 1.6. The value of 0=β corresponds to wedge angle of zero degree  i. e. flat 

plate, 2/1=β  corresponds to the wedge angle of 90 degrees i. e. the vertical 

plate and 1=β corresponds to the wedge angle of 180 degrees i. e. stagnation 

point flow. From this Figure it is clear that velocity of the fluid within the 

boundary layer increases with the increasing values of wedge angle parameter β . 

This is due to fact that fluid always flows along the direction of the negative 

pressure gradient, i.e. high pressure to low pressure. Negative pressure gradient 

means accelerates flow. So a positive value of β  indicates a negative (or 

favorable) pressure gradient. For accelerated flows, i.e. positive values ofβ , 

velocity profiles squeeze closer and closer to the surface of the wedge. It is also 

mentionable here that separation is found to occur for very small non-negative 

values ofβ . This is due to the fact that for unsteadiness. Figures 3.2 (b)-(c) shows 

non-dimensional temperature and concentration profiles within the boundary layer 

for different values of the wedge angle parameter. From these Figures we see that 

both the temperature and concentration of the fluid within the boundary layer 

decrease with the increasing values of the wedge angle parameterβ . This is due 

to accelerate flow. 

The effects of the unsteadiness parameter λ  on the dimensionless velocity 

profiles within the boundary layer are shown in Figure 3.3 (a) when wedge angle 

parameterβ  takes the value 1/6 (i. e. Ω = 300). From this Figure we observe that 

for large values of the parameter  λ   that is for higher unsteadiness, separation 

occurs even in the case of accelerated flow or of adverse pressure 

gradient )0,0( >> βm . Furthermore, from Figure 3.3 (a) for sufficiently strong 

unsteadiness forλ > λ critical (not precisely determined) it is observed that back 

flow occurs close to the wall indicating that unsteadiness may gives rise to 

turbulence close to the wall. Velocity here is also found to decrease with the 
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increase of the parameter λ within some domain criticalη η≤  and then for 

criticalη η>  the tendency is reversed in the upper portion of the boundary layer. 

This is due to the fact that as λ influence the kinematic viscosity of the fluid 

decreases to its ambient value therefore back flow occurs very close to the surface 

of the body. But far away from the surface of the body criticalη η>  this situation 

breaks down and fluid viscosity becomes stronger and reaches to its ambient 

value as a consequence velocity profile increases. This is an interesting 

phenomenon of unsteadiness. The effects of the unsteadiness parameter on the 

non-dimensional temperature and concentration profiles are displayed in Figures 

3.3 (b)-(c), respectively. From these Figures it is observed that both the 

temperature and concentration decrease with the increasing values of the 

unsteadiness parameterλ . 

The influence of Prandtl number Pr on the temperature profiles within the 

boundary layer is depicted in Figure 3.4 (a). It is well known that Prandtl number 

is the ratio of viscous force and thermal force. So increasing values of Pr decrease 

thermal action of the fluid, for this reason it can be observed from Figure 3.4 (a) 

that the temperature of the fluid decreases with the increasing Prandtl number Pr. 

In order to examine the effect of thermophoresis on particle deposition onto a 

wedge surface, the concentration profiles are displayed in Figure 3.4 (b), for 

thermophoresis parameter tN . From this Figure it is clear that the concentration of 

the fluid particles decreases for the increasing values of tN . This is due to the fact 

that from definition of thermophoresis parameter increasing values of tN  reduces 

temperature at the surface of the wedge. For this reason, the particles tend to 

deposit on the surface from the fluid. The effect of the thermophoretic coefficient 

κ on the concentration profiles are shown in Figure 3.4 (c). This Figure shows 

that the concentration of the fluid particles within the boundary layer increases 

with the increasing values of thermophoretic coefficient; this is due to favorable 

temperature gradients. 

Figure 3.5 (a) shows the effect of the Schmidt number Sc on the dimensionless 

concentration profiles. It can be noted that the Schmidt number embodies the ratio 

of the momentum to the mass diffusivity. Schmidt number therefore quantities the 
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relative effectiveness of the momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and concentration (species) boundary layers. From this 

Figure it is seen that the concentration of the fluid particles within the boundary 

layer decreases with the increasing values of Sc and this is the analogous to the 

effect of increasing the Prandtl number on the thickness of the thermal boundary 

layer. From Figure 3.5 (b) it is observed that the concentration of the fluid 

particles within the boundary layer increases with the increasing values of cN  and 

this is due to the favorable concentration difference between the wedge surface 

and the free stream conditions. 

The combined effects of wedge angle parameter β  and unsteadiness parameter 

λ on the local skin-friction coefficient, local Nusselt number and the local 

Sherwood number are shown in Figures 3.6 (a)-(c), respectively. From these 

Figures, it is clear that the local skin-friction coefficient, the local Nusselt number 

and local Sherwood number increase with increasing values of wedge angle 

parameterβ . It is also evident from these Figures that both the local Nusselt 

number and local Sherwood number increase whereas the local skin-friction 

coefficient decreases with increasing values of the unsteadiness parameter for all 

values of wedge angle parameter. These behaviors depict the nature of the profiles 

shown in Figures 3.2 (a)-(c) and Figures 3.3 (a)-(c). 

The combined effects of β andλ , κ andλ , tN and λ  on thermophoretic velocity 

TwV  are shown in Figures 3.7 (a)-(c), respectively. From definition of 

thermophoretic velocity, Nt is inversely proportional to thermophoretic velocity 

and κ  is directly proportional to thermophoretic velocity. For this reason from 

these Figures it is seen that the thermophoretic velocity decreases with the 

increasing values of thermophoresis parameter tN  whereas thermophoretic 

velocity increases for the increasing values of κ  andβ . These Figures, also 

confirm that unsteadiness parameter enhance the thermophoretic velocity. 

 

Finally, Table 3.2 and Table 3.3 show the variations of the thermophoretic 

particle deposition velocity ( 21Re−∗
dV ) at the wedge surface for different values 

of thermophoretic coefficientκ , wedge angle parameter β   and unsteadiness 
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parameterλ . These Tables show that the thermophoretic particle deposition 

velocity decreases with the increase of the thermophoretic coefficient κ while it 

increases with the increase of the unsteadiness parameterλ . From Table 3.3 it is 

also clear that as the wedge angle parameter increases the thermophoretic particle 

deposition velocity also increases for fixed values of the unsteadiness parameter. 

This is because for increasing non negative values of β  the driving force of the 

fluid motion intensifies which then accelerates the fluid flow and carries more 

heat from the surface of the wedge to the fluid. So the temperature at the surface 

of the wedge decreases. 

Table 3.1: Comparison of the present numerical results of stream function )(ηf , 

velocity )(ηf ′  and local skin friction coefficient )(ηf ′′ with White (2006) for 

different values of η  when wedge angle parameter β = 0 and unsteadiness 

parameter 0=λ . 

η  ( )ηf  )(ηf ′ )(ηf ′′  

 Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

0.0 0.00000000 0.00000 0.00000000 0.00000 0.47027089 0.46960 

0.5 0.05872926 0.05864 0.23456114 0.23423 0.46568757 0.46503 

1.0 0.23332581 0.23299 0.46127690 0.46063 0.43494906 0.43438 

1.5 0.51575598 0.51503 0.66235843 0.66147 0.36218408 0.36180 

2.0 0.88800281 0.88680 0.81770859 0.81669 0.25581418 0.25567 

3.0 1.79780496 1.79557 0.97006212 0.96905 0.06763291 0.06771 

4.0 2.78709815 2.78388 0.99872084 0.99777 0.00684790 0.00687 

5.0 3.78738993 3.78323 1.00087632 0.99994 0.00025589 0.00026 
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Table 3.2: Variations of thermophoretic particle deposition velocity at the wedge 

surface for different values of κ  while β  = 1/6 (i. e. Ω = 300), Pr = 0.71,            

Sc = 0.94, λ  = 0.50, Nt = 2.0 and cN  = 3.0. 

 
κ   0.2 0.5 0.8 1.0 1.2 

2
1

Re
−∗

dV  
 

0.4650164 

 

0.4060784 

 

0.3495130 

 

0.3134839 

 

0.2780497 

 

 

 

Table 3.3: Variations of thermophoretic particle deposition velocity at the wedge 

surface for different values of β  and λ while Pr = 0.71, Sc = 0.94, κ = 0.50,       

Nt =2.0 and cN  = 3.0. 

 

β  λ  
2
1

Re
−∗

dV  

 

0.5 

(vertical plate) 

0.0 

0.5 

1.0 

1.2 

0.275058 

0.354816 

0.415233 

0.428337 

 

1.0 

(stagnation point flow) 

0.0 

0.5 

1.0 

1.2 

0.485798 

0.627626 

0.742530 

0.782386 

 

1.6 

(wedge flow) 

0.0 

0.5 

1.0 

1.2 

0.796992 

1.021776 

1.210440 

1.277976 

 
 

 
 
 



 46

 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
(b) 

 
 
 
 
 
 
 
 
(c) 

 
 
 
 
 
 
Figure 3.1: Dimensionless (a) velocity, (b) temperature and (c) concentration for 
different step sizes 
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Figure 3.2: Dimensionless (a) velocity, (b) temperature and (c) concentration for 
different values ofβ   
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Figure 3.3: Dimensionless (a) velocity, (b) temperature and (c) concentration for 
different values ofλ  
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Figure 3.4: Dimensionless (a) temperature for different values of Pr and concentration 
for different values of (b) Nt (κ = 0.50) and (c) κ (Nt = 2.00) 
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Figure 3.5: Dimensionless concentration for different values of (a) Sc ( cN = 3.00) and 
(b) Nc (Sc = 0.94) 
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Figure 3.6: Effects of  λ  and β  on (a) local skin-friction coefficient, (b) local Nusselt 
number and (c) local Sherwood number 
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Figure 3.7: Effect of (a) λ and β , (b) λ andκ , (c) λ and tN  on thermophoretic velocity 
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3.3 Conclusions 
 
In this model, we have discussed the effects of thermophoresis on an unsteady 

two-dimensional forced convective heat and mass transfer flow over a heated 

impermeable wedge. The governing non-linear partial differential equations are 

transformed into locally similar boundary layer equations which are solved 

numerically by applying shooting method. Comparisons with previously 

published work were performed and the results were found to be in excellent 

agreement. The numerical results have been presented in the form of graphs and 

tables. From the present numerical investigations the following major conclusions 

may be drawn: 

 

i. Velocity of the fluid within the boundary layer increases with the 

increasing values of wedge angle parameterβ . For accelerated flows, 

the velocity profiles squeeze closer and closer to the surface of the 

wedge. Separation may occur for non-negative small values of 0≥β . 

 

ii. Temperature and concentration of the fluid within the boundary layer 

decrease with the increasing values of the wedge angle parameterβ . 

 

iii. Concentration of the fluid particles decreases for the increasing values 

of thermophoresis parameter tN . This is due to the fact that increasing 

values of thermophoresis parameter tN , reduces temperature at the 

surface of the wedge. For this reason, the particles tend to deposit on 

the surface from the fluid. 

iv. Concentration of the fluid particles within the boundary layer increases 

with the increasing values of cN  and this is due to the favorable 

concentration difference between the wedge surface and the free 

stream conditions. 
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v. Both the local Nusselt number and local Sherwood number increase 

whereas the local skin-friction coefficient decreases with increasing 

values of the unsteadiness parameter λ for all values of wedge angle 

parameterβ . 

vi. Thermophoretic velocity decreases for increasing thermophoresis 

parameter tN  whereas it increases with the increasing values of 

thermophoretic coefficientκ  and wedge angle parameterβ . 

vii. Thermophoretic particle deposition velocity decreases with the 

increase of the thermophoretic coefficient κ  while it increases with 

the increase of the unsteadiness parameterλ . 
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Chapter 4 

 
Thermophoresis Particle Deposition on Unsteady Two-

Dimensional Forced Convective Heat and Mass Transfer 

Flow along a Wedge with Temperature Dependent Viscosity 

and Prandtl Number 

 

4.1 Introduction 

In the classical treatment of thermal boundary layers, the kinematic viscosity is 

assumed to be constant; however, experimental studies indicate that this 

assumption is valid only if the temperature variation during the flow is not large. 

But when the variation of temperature within the boundary layer is large, then the 

variation of viscosity in thermal boundary layers is significant in many 

applications such as wire drawing, hot rolling, glass fiber production, paper 

production, gluing of labels on hot bodies, drawing of plastic films, etc. In view of 

this importance, Kafoussias and Williams (1995) studied the thermal diffusion 

and diffusion thermo effects on mixed free-forced convective heat and mass 

transfer flow with temperature-dependent viscosity. The effect of variable 

viscosity on hydrodynamic flow and heat transfer past a continuously moving 

porous boundary with radiation has been investigated by Seddeek (2000). Flow of 

viscous incompressible fluid with temperature dependent viscosity and thermal 

conductivity past a permeable wedge with uniform surface heat flux has been 

studied by Hossain et al. (2000). Ali (2006) analyzed the effect of variable 

viscosity on mixed convection heat transfer along a vertical moving surface. Alam 

et al. (2009) studied transient magnetohydrodynamic free convective heat and 

mass transfer flow with thermophoresis past a radiative inclined permeable plate 
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in the presence of variable chemical reaction and temperature-dependent 

viscosity. 

The thickness of the thermal boundary layer relative to the velocity boundary 

layer depends on the Prandtl number which by its definition varies directly with 

the fluid viscosity and inversely with the thermal conductivity of the fluid. As the 

viscosity varies with temperature so does the Prandtl number. Despite this fact is 

all the afore-mentioned studies treated, the Prandtl number is considered as a 

constant. The use of a constant Prandtl number within the boundary layer when 

the fluid properties are temperature dependent, introduces errors in the computed 

results. Pantokratoras (2005) investigated some new results on forced and mixed 

convection boundary layer flow along a flat plate with variable viscosity and 

variable Prandtl number while Pantokratoras (2007) further studied non-Darcian 

forced convection heat transfer over a flat plate in a porous medium with variable 

viscosity and variable Prandtl number. Rahman and his co-workers (2010 and 

2011) analyzed several thermal boundary-layer problems taking into account the 

variability of viscosity for both Newtonian and Non-Newtonian fluids in different 

geometry with various flow conditions. All of these studies confirmed that for the 

accurate prediction of the thermal characteristics of variable viscosity, the Prandtl 

number must be treated as a variable rather than a constant.  

The objective of the present study is to investigate the effects of thermophoresis 

particle deposition on an unsteady two-dimensional forced convective heat and 

mass transfer flow of a viscous incompressible fluid along a heated wedge with 

variable viscosity and variable Prandtl number.  

4.2 Governing equations 

Mathematical formulation of the present investigation has been discussed 

elaborately in section 2.4.2 as case II of chapter 2. The dimensionless 

concentration equation and boundary conditions are same as equation (2.28) and 

(2.24), however there are some modifications in the momentum equation and 

energy equation due to temperature dependent viscosity and variable Prandtl 

number. The modified dimensionless momentum equation and energy equation 
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are given in equations (2.50) and (2.56). The resulting local similarity equations 

for unsteady flow have been solved numerically by applying Nachtsheim-Swigert 

shooting iteration technique along with sixth order Runge-Kutta integration 

scheme based on the boundary condition defined in equation (2.24). The shearing 

stress, the local rate of heat and mass transfer in terms of local skin friction 

coefficient, local Nusselt number and local Sherwood number, respectively and 

the velocity, temperature and concentration within the boundary-layer can be 

calculated by the relations (2.53), (2.40) and (2.41), respectively. A comparison 

will be provided in section 4.3 with a complete discussion. 

4.3 Code verification 

The comparison of the dimensionless stream function, velocity and the local skin 

friction coefficient obtained in the present work with 0,0 == λβ , ∞→rθ  

and obtained by White (2006) has been shown in Table 4.1. From this Table it has 

been observed that there is an excellent agreement between these results. 

4.4 Results and discussion 

For the purpose of discussing the effects of various parameters  namely viscosity 

variation parameter rθ , wedge angle parameterβ , unsteadiness parameterλ , 

Schmidt number Sc, thermophoretic coefficientκ , thermophoresis parameter Nt, 

and variable Prandtl number vPr on the flow behavior near the wedge surface, the 

numerical calculations are presented in the form of non-dimensional velocity, 

temperature and concentration profiles. The default values of the pertinent 

parameters considered in the numerical simulation are 3/1=β  (i. e. Ω = 600), κ  

= 0.50, Sc = 0.94, Nc = 2.00, λ = 0.10, Nt = 2.00 and θr = 2.00, unless otherwise 

stated. When viscosity does not depend on the temperature, the values of the 

ambient Prandtl number, 71.0Pr =∞ , 97.2Pr =∞ and 00.7Pr =∞  correspond to 

air, methylchloride and water, respectively. As viscosity depends on the 

temperature, then these values at the surface of the wedge ( )0=η  and for             



 58

θr = 2.00 correspond to 1.42, 5.94 and 14, respectively. Therefore, in the 

simulation the value of the variable Prandtl number vPr  is chosen as 1.42.  

The effect of the variable viscosity parameter rθ  on the dimensionless velocity is 

displayed in Figures 4.1 (a) and 4.2 (a) for rθ  > 0 and rθ  < 0, respectively. From 

Figure 4.1(a) we see that the velocity within the boundary-layer increases with the 

increase of rθ  when it is positive. The opposite effect is observed for rθ < 0 on the 

velocity from Figure 4.2 (a). It is also mentionable from these both Figures that 

for very large rθ  change in ( )ηf ′  are negligible. This is because for ∞→rθ , the 

viscosity of the fluid ( )µ  equals the viscosity of the fluid ( )∞µ  at the ambient 

temperatures and corresponds to the constant viscosity case. The effects of the 

variable viscosity parameter rθ  on the temperature fields within the boundary-

layer are shown in Figures 4.1 (b) and 4.2 (b) for rθ  > 0 and rθ  < 0, respectively. 

From Figure 4.1 (b), it is observed that the temperature within the boundary layer 

decrease with the increase of rθ  and asymptote to zero as ∞→η . This Figure 

also confirms that when rθ  is very large, variations in the temperature profiles 

become less pronounced, since equation (2.49) implies that ∞→ µµ as ∞→rθ . 

On the other hand, from Figure 4.2 (b), it is seen that for rθ  < 0, the temperature 

within the boundary-layer increases with the increasing negative values of rθ . The 

effects of rθ  on the concentration fields within the boundary-layer are shown in 

Figures 4.1 (c), and 4.2 (c) for rθ > 0 and rθ < 0, respectively. Figure 4.1 (c), 

shows that the concentration of the fluid particles within the boundary-layer 

decrease with the increase of rθ . On the other hand, from Figure 4.2 (c), it is seen 

that the concentration of the fluid increases with the increasing negative values 

of rθ .  

The effect of the wedge angle parameter β  on the dimensionless velocity is 

displayed in Figure 4.3 (a) for the values 0, 1/6, 1/3, 1/4 and 1/2. The value of 

0=β corresponds to wedge angle of zero degree i. e. flat plate whereas 2/1=β  

corresponds to the wedge angle of 90 degrees i. e. the vertical plate. From this 
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Figure, it is clear that as the wedge angle parameter β  increases the fluid velocity 

also increases. The wedge angle parameter is a measure of the pressure gradient 

and so positive values of β  indicates a negative (or favorable) pressure gradient. 

For accelerated flows, i. e. positive values ofβ , velocity profiles squeeze closer 

and closer to the surface of the wedge, and overshoot or backflow phenomenon 

does not occur. From Figure 4.3 (b) and Figure 4.3 (c), we see that both the 

temperature and concentration of fluid decrease with the increasing non-negative 

values of wedge angle parameter β . It is also clear from these two Figures that the 

maximum temperature and concentration can be found for the flow over a wedge. 

The effects of unsteadiness parameter λ  on the dimensionless velocity, 

temperature and concentration profiles within the boundary-layer have been 

displayed in Figures 4.4 (a)-(c), respectively. Figure 4.4 (a), shows that the 

velocity reduces with the increasing values of unsteadiness parameterλ . This is 

due to the fact that λ influences the kinematic viscosity of the fluid.  From Figure 

4.4 (b) and Figure 4.4 (c), it can be observed that both the temperature and 

concentration of the fluid increase with the increasing values of the unsteadiness 

parameterλ .  

The variation of dimensionless concentration profiles for various values of 

Schmidt number Sc , thermophoresis parameter tN  and thermophoretic 

coefficient κ are shown in Figures 4.5 (a)-(c), respectively. From these Figures, it 

is shown that concentration of the fluid particles within the boundary-layer 

increases with the increasing values of the thermophoretic coefficient κ  whereas 

it decreases with the increasing values of both Sc  and tN . 

The combined effects of variable viscosity parameter rθ  and unsteadiness 

parameter λ on the local skin-friction coefficient, local Nusselt number and the 

local Sherwood number are shown in Figures 4.6 (a)-(c), respectively. From these 

Figures it is seen that local skin-friction coefficient, the local Nusselt number and 

local Sherwood number increases with the increasing values of the variable 

viscosity parameter rθ . It is also evident from these Figures that as the 
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unsteadiness parameter increases, the local skin-friction coefficient, local Nusselt 

number and the local Sherwood number also decrease for a fixed value of the 

variable viscosity parameter rθ . These behaviors depict the nature of the profiles 

shown in Figures 4.1(a)-(c) and Figures 4.4 (a)-(c), respectively. 

 

The combined effects of vPr and Nt, κ  and Nt, rθ  and Nt on thermophoretic 

velocity TwV  are shown in Figures 4.7 (a)-(c), respectively. From definition of 

thermophoretic velocity, Nt is inversely proportional to thermophoretic velocity 

and κ  is proportional to thermophoretic velocity. For this reason from these 

Figures we see that the thermophoretic velocity decreases with the increasing 

values of thermophoresis parameter tN , whereas thermophoretic velocity 

increases for the increasing values of vPr , κ and rθ .  

Figure 4.8 (a) and Figure 4.8 (b) depict the variable Prandtl number vPr within the 

boundary-layer for various values of the variable viscosity parameter rθ > 0 and 

rθ < 0, respectively at an ambient Prandtl number 71.0Pr =∞ . From both these 

Figures, it is seen that variable Prandtl number vPr asymptotically converges to 

the value of ambient Prandtl number ∞Pr as ∞→η . It is noticeable that at the 

surface of the wedge variable Prandtl number vPr approaches ambient Prandtl 

number ∞Pr for large values of rθ . From these two Figures, it is also seen that 

vPr decreases with the increase of rθ when it is positive while an opposite effect is 

observed for 0<rθ . The variation of the variable Prandtl number within the 

boundary layer for different values of the wedge angle parameter is shown in 

Figure 4.8 (c). This Figure reveals that variable Prandtl number vPr  decreases 

with the increase of the wedge angle parameter β .  

The variations of the thermophoretic particle deposition velocity ( 21Re−∗
dV ) at 

the wedge surface for different values of thermophoretic coefficient κ has been 

displayed in Table 4.2. This Table shows that the thermophoretic particle 

deposition velocity decreases with the increase of the thermophoretic 
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coefficientκ . Table 4.3 shows the variation of the Prandtl number at the surface 

of the wedge for several values of θr for a fixed value of the ambient Prandtl 

number ∞Pr = 0.71. From this Table, it is observed that for a positive value of θr, 

Prandtl number at the surface of the wedge  wPr  decreases as θr increases. On the 

other hand, the opposite effect is observed for θr < 0.  

 

Finally, the significance of the variable viscosity parameter rθ  within the 

boundary layer on the local Nusselt number for both constant Prandtl number and 

variable Prandtl number are shown in Table 4.4. This Table shows that the local 

rate of heat transfer in a fluid of constant Prandtl number is lower than in a fluid 

of variable Prandtl number when rθ  is negative while the opposite result is found 

for positive values of rθ .  The most interesting feature of this table is the variation 

among the results produced by considering Prandtl number as variable and 

constant within the boundary layer. From this Table, it also can be seen that the 

variation between the produced results differs by less than 1% when the values of 

rθ  (whether positive or negative) are very large. The variation between the 

produced results is more than 4% when 2=rθ , but these difference become 

20.51% at 5.0−=rθ .  
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Table 4.1: Comparison of the present numerical results of stream function )(ηf , 

velocity )(ηf ′  and local skin friction coefficient )(ηf ′′ with White (2006) for 

different values of η  when wedge angle parameter β = 0, unsteadiness 

parameter 0=λ  and ∞→rθ . 

η  ( )ηf  )(ηf ′  )(ηf ′′  

 Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

0.0 0.00000000 0.00000 0.00000000 0.00000 0.47027089 0.46960 

0.5 0.05872926 0.05864 0.23456114 0.23423 0.46568757 0.46503 

1.0 0.23332581 0.23299 0.46127690 0.46063 0.43494906 0.43438 

1.5 0.51575598 0.51503 0.66235843 0.66147 0.36218408 0.36180 

2.0 0.88800281 0.88680 0.81770859 0.81669 0.25581418 0.25567 

3.0 1.79780496 1.79557 0.97006212 0.96905 0.06763291 0.06771 

4.0 2.78709815 2.78388 0.99872084 0.99777 0.00684790 0.00687 

5.0 3.78738993 3.78323 1.00087632 0.99994 0.00025589 0.00026 

 

Table 4.2: Variations of thermophoretic particle deposition velocity at the surface 

of the wedge for different values of thermophoretic coefficientκ . 

 

κ  0.2 0.5 0.8 1.0 1.2 

2
1

Re
−∗

dV  
 

0.358873 

 

0.317314 

 

0.287061 

 

0.253014 

 

0.231675 

 

Table 4.3: Values of Prandtl number at the wedge Prw versus variable viscosity 

parameter θr  for ambient Prandtl number ∞Pr = 0.71 at η = 0. 

 

θr -1.0 -0.5 -0.1 2.0 3.0 5.0 10.0 

Prw 0.355 0.236 0.065 1.42 1.06 0.887 0.788 
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Table 4.4: Values of local Nusselt number ( 2
1

Re
−

xNu  ) for different values of 

variable viscosity parameter rθ . 

 

2
1

Re
−

xNu  

θr (i) For constant 

Prandtl number 

(i) For variable 

Prandtl number 

Variation in % 

-100 0.3600719 0.3618878 < 1 

-10 0.3646713 0.3680900 < 1 

-5 0.3683388 0.3758403 2.036 

-2 0.3784811 0.3980864 5.18 

-1 0.3901856 0.4311427 10.49 

-0.5 0.4059519 0.4891995 20.51 

2 0.3324099 0.3181646 4.29 

2.5 0.3395494 0.3254091 4.16 

3 0.3437905 0.332639 3.24 

4 0.3490905 0.3393183 2.79 

5 0.3512969 0.3437517 2.14 

10 0.3562204 0.3517553 1.25 

100 0.3602290 0.3592557 < 1 
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Figure 4.1: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of rθ > 0 
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Figure 4.2: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of rθ < 0 
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Figure 4.3: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of β 
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Figure 4.4: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of λ 
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Figure 4.5: Variation of dimensionless concentration profiles for various values of (a) 
Sc , (b) tN and (c) κ  
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Figure 4.6:  Effects of  λ  and rθ  on (a) local skin-friction coefficient, (b) local Nusselt 
number and (c) local Sherwood number
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Figure 4.7: Effect of (a) vPr and tN , (b) κ and tN , (c) rθ  and tN  on thermophoretic 
velocity 
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Figure 4.8: Variation of dimensionless variable Prandtl number vPr for different values 
of (a) rθ > 0, (b) rθ < 0 and (c)β  
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4.5 Conclusions 

In this work, the effects of thermophoresis on an unsteady two-dimensional forced 

convective heat and mass transfer flow along a wedge with variation of fluid 

viscosity and fluid Prandtl number have been analyzed. Comparisons with 

previously published work were performed, and the results were found to be in 

excellent agreement. From the present numerical investigations, the following 

major conclusions can be drawn: 

i. Velocity within the boundary-layer increases with the increasing values of 

variable viscosity parameter rθ  when it is positive. The opposite effect is 

observed for rθ < 0.  

ii. Temperature and concentration of fluid within the boundary layer decrease 

with the increasing positive values of rθ  and asymptote to zero as ∞→η . 

On the other hand, the opposite effect is observed for negative values 

of rθ .  

iii. Velocity boundary-layer thickness reduces with the increasing values of 

variable viscosity parameter rθ  when it is positive while it increases for 

increasing values of variable viscosity parameter rθ  when it is negative. 

Furthermore, as the wedge angle parameterβ  increases, the growth of the 

velocity boundary-layer thickness decreases. 

iv. Local skin-friction coefficient, local Nusselt number and local Sherwood 

number decrease with the increasing values of unsteadiness parameterλ . 

v. Thermophoretic velocity TwV  increases with the increasing values of 

variable Prandtl number vPr . 

vi. Thermophoretic particle deposition velocity ( 21Re−∗
dV ) at the wedge 

surface decreases with the increase of the thermophoretic coefficientκ .  
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Chapter 5 
 

Unsteady MHD Forced Convective Flow along a Porous 

Wedge with Temperature Dependent Thermal 

Conductivity and Thermophoresis
 

 

5.1 Introduction 

The study of magnetohydrodynamic (in short MHD) flow of an electrically 

conducting fluid is of considerable interest in modern metallurgical and metal-

working processes. Heat transfer flow is deemed as of great interest due to the 

effect of the magnetic field on the boundary-layer flow control and on the 

performance of many systems using electrically conducting fluids. Some of the 

engineering applications are in MHD generators, plasma studies, nuclear reactor, 

geothermal energy extractions, and purifications of metal from non-metal 

enclosures, polymer technology and metallurgy. Various industrial heat transfer 

processes involved the hydromagnetic flows and thermophoresis such as in MHD 

energy systems, many numerical studies on magnetohydrodynamic heat and mass 

transfer. Some examples of investigations dealing with hydromagnatic flows over 

a surface can be found throughout the work of Watanabe and Pop (1993), 

Chandran et al. (1996), Yih (1999) and Muhaimin et al. (2013). In all these 

studies, the thermo-physical properties of the fluid, especially the thermal 

conductivities were assumed to be constant. However, it is well known that the 

thermal conductivity of fluid may change with temperature [see Chiam (1996, 

1998)]. Prasad and Vajravelu (2009) performed the effect of variable thermal 

conductivity in a non-isothermal sheet stretching through power law fluids. Abel 

et al. (2009) investigated the combined effects of thermal buoyancy and variable 

thermal conductivity on a magnetohydrodynamic flow and the associated heat 

transfer through a power-law fluid past a vertical stretching sheet in the presence 
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of a non-uniform heat source. Both studies revealed that the variable thermal 

studied the unsteady convective boundary-layer flow of a viscous fluid at a 

vertical surface with variable fluid properties.  

The thickness of the thermal boundary layer relative to the velocity boundary 

layer depends upon the Prandtl number which by its definition varies inversely 

with the thermal conductivity of the fluid. As the thermal conductivity varies with 

temperature so does the Prandtl number. Despite this fact, all the afore-mentioned 

studies treated the Prandtl number as a constant. The use of a constant Prandtl 

number within the boundary layer when the thermal conductivities of fluid are 

temperature dependent, introduces errors in the computed results. Recently, 

Rahman and Eltayeb (2011) initiated the effect of variable thermal conductivity 

and variable Prandtl number on convective slip flow of rarefied fluids over a 

wedge with thermal jump. Both studies confirmed that in modeling, the thermal 

boundary-layer flow when the thermal conductivities of fluid are temperature 

dependent, the Prandtl number must be treated as a variable to obtain realistic 

results. 

Therefore, the aim of the present study is to investigate the thermophoresis 

particle deposition on an unsteady two-dimensional forced convective heat and 

mass transfer flow along a permeable wedge taking into account the variable 

thermal conductivity. Thus, one of the main focuses behind this study is also to 

investigate how the Prandtl number varies within the boundary layer when the 

thermal conductivities are linearly dependent on temperature and in addition, 

there is a mass transfer (suction or injection) at the wedge surface. The governing 

non-linear partial differential equations have been reduced to locally similar 

ordinary differential equations, which are solved numerically using Nachtsheim-

Swigert shooting iteration procedure. Graphs and table are presented to show the 

important features of the solution. 
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5.2. Prandtl boundary layer equations 

Mathematical formulation of the present problem has been discussed in section 

2.4.3 as case III of chapter 2. The dimensionless concentration equation is same as 

equation (2.28). On the other hand, there are some changes in the momentum 

equation, energy equation and boundary conditions due to magnatohydrodynamic, 

temperature dependent thermal conductivity, variable Prandtl number and 

suction/injection. The modified dimensionless momentum equation, energy 

equation and boundary conditions are given in equations (2.61), (2.62) and (2.63). 

Thus the modified equations governing present problem and the boundary 

conditions are: 
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 is the wall mass transfer coefficient 

which is positive ( wf  > 0) for suction and negative ( wf  < 0 ) for injection. 

 

The rate of heat transfer in terms of the local Nusselt number within the 

boundary-layer has been modified as equation (2.64) due to temperature 

dependent thermal conductivity. 
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5.3 Code verification 

To check the validity of the present code, the values of stream function 

( ),0f velocity ( )0f ′  and local skin friction coefficient ( )0f ′′  for the Falkner-Skan 

boundary-layer equation for the case 0=γ (for constant fluid thermal 

conductivity), 0=β , Ha = 0, 0=wf  (impermeable wedge) and 0=λ (for steady 

flow) for different values of η  are presented in Table 5.2. This Table shows that 

the present result is a close agreement with White (2006).  

5.4 Findings and analysis 

Numerical values of velocity, temperature, concentration and thermophoretic 

velocity are presented graphically for different values of the mass transfer 

coefficient wf  = - 0.5 to 1.0,  Hartmann number Ha = 0.0 (non magnetic field) to 

4, thermal conductivity variation parameter γ  = 0.0 (constant thermal 

conductivity) to 7.0, Schmidt number Sc = 0.22 to 2, thermophoresis parameter  

Nt = 2 to 50, concentration ratio Nc = 2 to 9, wedge angle parameterβ = 0 (flat 

plate) to 4, thermophoretic coefficient κ = 0.2 to 1.2. When thermal conductivity 

does not depend on the temperature, the values of the ambient Prandtl 

number, ∞Pr = 0.71, 1, 2.97, 4.24, and 7.0 correspond to air, electrolyte solution 

such as salt water, methylchloride, sulfur dioxide and water at 200. When thermal 

conductivity depends on the temperature, these values at the surface of the wedge 

)0( =η  and for 5.0=γ  correspond to 0.47, 0.66, 1.98, 2.83, and 4.66, 

respectively. The values of Schmidt number Sc are taken for hydrogen                

(Sc = 0.22), helium (Sc = 0.30) and water-vapor (Sc = 0.60).  

Figures 5.1 (a)-(c) depict the influence of the suction/injection parameter wf  on 

the dimensionless velocity, temperature and concentration profiles within the 

boundary layer, respectively. It is to be mentioned that wf > 0 represents fluid 

suction, whereas wf < 0 represents fluid injection.  Figure 5.1 (a) shows that the 

velocity within the boundary layer enhances with the increase of the suction 

parameter wf .  It  is  also  noticeable  that  the  thickness  of the  velocity  
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boundary  layer  decreases  with  the  increase  of the  suction  parameter wf .  The 

physical explanation for such a behavior  that  removal  of  the decelerated  fluid  

particles  through  the  porous  surface  reduce  the growth  of  the  boundary  

layer. Variation  of both the temperature and the concentration   profiles  against 

η  for  different  values  of  the  parameter wf  = − 0.5,  0,  0.5  and  1.0 are shown 

in Figures 5.1 (b)-(c), respectively. It  is  found  that  the  temperature and 

concentration of the  fluid  within  the  boundary  layer  decreases  with  the  

increase  of the  values  of wf  for  suction wf > 0 ,  whereas  for  injection wf < 0  

reverse  trend  is  observed. Suction therefore acts as a powerful mechanism for 

cooling the flow and such features are important in high temperature energy 

systems such as magnetohydrodynamic power generators, nuclear energy 

processes etc. These Figures also show that velocity, thermal and concentration 

boundary layer thickness decrease with the increase of the suction velocity even 

in the presence of thermophoresis. 

Figures 5.2 (a)-(c) show that dimensionless velocity, temperature and 

concentration profiles against η  for various values of Hartman number Ha, 

respectively. Figure 5.2 (a) presents significant impact of the applied magnetic 

field on the flow field. The velocity increases hence thickness of the 

hydrodynamic boundary layer decreases with the increase of Hartman number 

Ha. This is due to the fact that the application of a magnetic field moving with the 

free stream has the tendency to induce a motive force, which increases the motion 

of the fluid.  On the other hand the temperature and concentration of the fluid 

within the boundary layer decrease with the increase of Hartman number Ha. It 

can further be noted that the thickness of the thermal and concentration boundary 

layers decrease with the increase of the strength of the applied magnetic field. 

This work is consistent throughout the work of Ishak et al. (2008). 

The effects of the unsteadiness parameter λ  on the dimensionless velocity within 

the boundary layer are shown in Figure 5.3 (a). From this Figures it is observed 

that for large values of the parameter λ that is for higher unsteadiness, separation 

occurs even in the case of accelerated flow or of adverse pressure 
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gradient )0,0( >> βm . Velocity here is also found to decrease with the increase of 

the parameter λ within some domain criticalηη ≤  and then for criticalηη >  the 

tendency is reversed in the upper portion of the boundary layer. Similar behavior 

has been observed by Sattar (2011). Figures 5.3 (b)-(c), depict the non-

dimensional temperature and concentration profiles for different values of the 

unsteadiness parametersλ. From these figures, it is observed that both the 

temperature and concentration of the fluid within the boundary layer decrease 

with the increasing values of the unsteadiness parameterλ . 

The effects of the thermal conductivity variation parameter γ  on the non-

dimensional temperature profiles have been displayed in Figure 5.4 (a). From this 

Figure, we observe that the non-dimensional temperature of the fluid increases 

with the increase of the thermal conductivity variation parameter as expected. The 

value of 0=γ  corresponds to the constant conductivity of the fluid. Thus for the 

constant conductivity of the fluid the surface temperature is found to be low 

compared that of the variable conductivity. This can be explained as; when γ  

increases i. e. thermal conductivity of the fluid increases, the value of the Prandtl 

number decreases (see equation (2.65) which then increases the temperature of the 

fluid. That is temperature of the fluid increases, if the Prandtl number decreases. 

On the other hand, from Figure 5.4 (b), we see that the dimensionless 

concentration of the fluid particles within the boundary layer decreases with the 

increase of the thermal conductivity variation parameter. Figure 5.4 (c) presents 

variation of variable Prandtl number vPr within the boundary layer for different 

values ofγ  for fixed values of ambient Prandtl number 71.0Pr =∞ . From this 

Figure it is found that variable Prandtl number vPr within the boundary layer 

decreases with the increase of the thermal conductivity variation parameterγ . For 

constant thermal conductivity it is found that variable Prandtl number at the 

surface of the wedge is lower than the ambient Prandtl number 71.0Pr =∞ . The 

results also show that the values of variable Prandtl number vPr within the 

boundary layer asymptotically converge to the value of ∞Pr  far away from the 

surface of the wedge (i.e. ∞→η ). This figure clearly establishes that the Prandtl 
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number varies significantly within the boundary layer when the fluid thermal 

conductivity varies with temperature. 

The variation of dimensionless concentration inside the boundary layer for 

various values of Schmidt number Sc, thermophoresis parameter tN and 

concentration ratio cN are displayed in Figures 5.5 (a)-(c), respectively. From 

these Figures, It is observed that concentration of the fluid particles within the 

boundary layer increases with the increasing values of the concentration ratio 

whereas it decreases  with the increasing  values of both Sc  and tN . It has been 

detailed in chapter 3. 

Figure 5.6 (a) presents dimensionless velocity profiles for different values of 

wedge angle parameterβ  due to the temperature dependent thermal conductivity. 

It is clearly shown that the velocity of the fluid increases whereas the temperature 

and concentration of the fluid are not significant with increase of the wedge angle 

parameterβ . The results also show that the velocity profiles become steeper for 

larger values of the wedge angle parameterβ . The wedge angle parameter is a 

measure of the pressure gradient and so positive values of β  indicate a negative 

(or favorable) pressure gradient. For accelerated flows, i. e. positive values of β , 

velocity profiles squeeze closer and closer to the surface of the wedge and 

overshoot or backflow phenomenon does not occur. The influence of variable 

Prandtl number vPr on the temperature within the boundary layer is depicted in 

Figure 5.6 (b). It is well known that Prandtl number is the ratio of viscous force 

and thermal force. So increasing values of variable Prandtl number vPr decreases 

thermal action of the fluid, for this reason it can be observed from Figure 5.6 (b) 

that the temperature of the fluid decreases with the increasing values of variable 

Prandtl number vPr . Figure 5.6 (c) shows that the concentration of the fluid 

particles increases with the increasing values of thermophoretic coefficient. This 

is because when the values of thermophoretic coefficient increases, the 

thermophoretic force increases and also mass transfer enhance as a result 

concentration of the fluid increases. 
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The combined effects of γ  and tN , κ  and tN  on thermophoretic velocity 

( 21Re −
TwV ) are shown in Figures 5.7 (a)–(b), respectively. From these Figures, it 

is seen that the thermophoretic velocity increases with the increasing values of κ  

while it decreases with the increasing values of the thermal conductivity variation 

parameter γ  and the thermophoresis parameter tN . This behavior is expected 

since thermophoretic velocity is proportional toκ  and inversely proportional to 

tN  [see equation (2.42)]. 

Table 5.1 shows the variation of the Prandtl number at the surface of the wedge 

for several values of γ  for a fixed value of the ambient Prandtl number ∞Pr = 

0.71. From this Table, it is observed that Prandtl number at the surface of the 

wedge wPr  decreases asγ  increases. As the value of thermal conductivity 

variation parameterγ  is increased from 0.0 to 7.0 the Prandtl number decrease by 

87.46%.  

Table 5.3 presents the variations of the thermophoretic particle deposition 

velocity ( 21Re−∗
dV ) at the wedge surface for various values of Schmidt number 

for both suction wf > 0 as well as injection wf < 0 cases. From this Table, It is 

seen that the thermophoretic particle deposition velocity decreases with the 

increase of the Schmidt number for both suction as well as injection. For 

experimental interest, the thermophoretic particle deposition velocity decreases by 

50.95% and 64.93% with the increase in the Schmidt number from 0.22 to 0.94 

for both suction as well as injection. 

The significance of the thermal conductivity variation parameter γ  on the local 

rate of heat transfer for both variable Prandtl number vPr  and constant Prandtl 

number cPr  is displayed in Table 5.4 for both suction wf > 0 as well as injection 

wf < 0 cases. From this Table, it is found that in both cases, the local rate of heat 

transfer - )0(θ′  for the variable Prandtl number vPr  case is higher than the constant 

Prandtl number cPr  case, and the variation between them increases significantly 

with the increases ofγ . Therefore, consideration of Prandtl number as constant 
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within the boundary layer for variable thermal conductivity is unrealistic. It is also 

found that the heat transfer rate decreases by 45.18% when the thermal 

conductivity variation parameter γ  varies from 0 to 9 for variable Prandtl 

number, whereas the corresponding decreases by 76.56% for constant Prandtl 

number in case of suction. 

Table 5.1: Values of Prw versus thermal conductivity variation parameterγ  for 

ambient Prandtl number ∞Pr  = 0.71 at η = 0. 

γ  0.0 0.50 1.0 3.0 5.0 7.0 

Prw 0.71 0.473 0.355 0.177 0.118 0.089 

 

Table 5.2: Comparison of the present numerical results of stream function, 

velocity and local skin friction coefficient with White (2006) for case of                

β = 0, 0=γ , Ha = 0 , 0=wf  and 0=λ . 

η  ( )ηf  )(ηf ′  )(ηf ′′  

 Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

Present 

work 

White 

(2000) 

0.0 0.00000000 0.00000 0.00000000 0.00000 0.47027089 0.46960 

0.5 0.05872926 0.05864 0.23456114 0.23423 0.46568757 0.46503 

1.0 0.23332581 0.23299 0.46127690 0.46063 0.43494906 0.43438 

1.5 0.51575598 0.51503 0.66235843 0.66147 0.36218408 0.36180 

2.0 0.88800281 0.88680 0.81770859 0.81669 0.25581418 0.25567 

3.0 1.79780496 1.79557 0.97006212 0.96905 0.06763291 0.06771 

4.0 2.78709815 2.78388 0.99872084 0.99777 0.00684790 0.00687 

5.0 3.78738993 3.78323 1.00087632 0.99994 0.00025589 0.00026 
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Table 5.3: Variations of thermophoretic particle deposition velocity at the wedge 

surface for several values of Schmidt number Sc. 

wf  Sc 21Re −∗
dV  

 

0.5 

(suction) 

 

0.22 

0.30 

0.60 

0.94 

1.464883 

1.251766 

0.890707 

0.718497 

 

- 0.5 

(injection) 

 

0.22 

0.30 

0.60 

0.94 

1.116588 

0.906355 

0.556096 

0.391592 
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Table 5.4:  Numerical values of rate of heat transfer )0(θ ′− for various values of 

thermal conductivity variation parameterγ . 

wf  )0(θ ′−  Variation 

 γ  
vPr  cPr   

 

      0.5 

(suction) 

 

0.0 0.902102 0.902102 0.00% 

1.0 0.675392 0.551469 18.35% 

2.0 0.599989 0.423934 29.34% 

3.0 0.562266 0.355324 36.08% 

5.0 0.524614 0.280500 46.53% 

7.0 0.505784 0.238762 52.79% 

9.0 0.494490 0.211389 57.25% 

 

-0.5 

(injection) 

0.0 0.426180 0.426180 0.00% 

1.0 0.318993 0.313947 1.58% 

2.0 0.283352 0.264757 6.56% 

3.0 0.265515 0.235251 11.40% 

5.0 0.247676 0.199283 19.54% 

7.0 0.238789 0.177172 25.80% 

9.0 0.223472 0.161631 30.77% 
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Figure 5.1: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of wf  
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Figure 5.2: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of Ha 
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Figure 5.3: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values ofλ  
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Figure 5.4: Dimensionless (a) temperature, (b) concentration and (c) variable Prandtl 
number vPr  for several values ofγ  
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Figure 5.5: Variation of dimensionless concentration profiles for various values of (a) Sc, 
(b) tN and (c) cN  
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Figure 5.6 Variation of dimensionless concentration profiles for various values of (a) β , 
(b) vPr and (c) κ  
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Figure 5.7: Variation of termophoretic velocity for various values of (a) γ  and tN  and 
(b) κ and tN  
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5.5 Conclusions 

Thermophoresis particle deposition on unsteady MHD forced convective flow 

along a porous wedge with variable thermal conductivity, and variable Prandtl 

number has been analyzed. A set of similarity equations governing the fluid 

velocity, temperature and the particle mass concentration are obtained by using 

similarity transform. A comparison with previously published work was 

performed, and the results were found to be in excellent agreement. From the 

present numerical computations, the following major conclusions may be listed: 

i. Suction or injection strongly controls the boundary-layer growth. 

ii. Velocity within the boundary layer enhance with the increase of 

the suction parameter wf . On the other hand, the  thickness  of the  

velocity  boundary  layer  reduces with  the  increase  of the  

suction  parameter wf . 

iii. Velocity increases hence thickness of the hydrodynamic boundary 

layer decreases with the increase of Hartman number Ha. 

Moreover, the temperature and concentration of the fluid within 

the boundary layer decrease with the increase of Hartman number. 

iv. Concentration of the fluid particles within the boundary layer 

decreases with the increase of the thermal conductivity variation 

parameterγ . 

v. Thermophoretic particle deposition velocity ( 21Re −∗
dV ) increases 

with the increase of Schmidt number Sc.  

vi. Thermophoretic velocity TwV  increases with the increasing values 

of thermophoretic coefficientκ .  

vii. Heat transfer rate decreases by 45.18% when the thermal 

conductivity variation parameter varies from 0 to 9 for variable 

Prandtl number, whereas the corresponding decreases by 76.56% 

for constant Prandtl number in case of suction. 
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Chapter 6 

 
Thermophoretic Particle Deposition on Unsteady 

Convective Slip Flow over a Wedge with Variable Fluid 

Properties and Prandtl Number 

 

6.1 Introduction  

Slip velocity is a function of the velocity gradient near the wall. It is known that 

for gaseous flow there always exists a non–zero velocity near the wall and based 

on a momentum balance at the wall. In certain situations, the assumption of no 

slip boundary condition does no longer apply. When fluid flows in micro electro 

mechanical systems (MEMS), the no-slip condition at the solid fluid interface is 

no longer applicable. A slip flow model more accurately describes the non- 

equilibrium near the interface. A partial slip may occur on a stationary and 

moving boundary when the fluid is particulate such as emulsions, suspensions, 

foams, and polymer solutions. The slip flows under various flow configurations 

for Newtonian and non-Newtonian fluids have been studied widely in the 

literature on a stationary flat plate, moving plate as well as on a stretching surface 

(see for examples, Hasimoto (1958), Vedantam (2006), Martin and Boyd (2010)). 

Therefore the present study is to investigate the effects of thermophoresis particle 

deposition on unsteady convective slip flow over a wedge with variable fluid 

properties and variable Prandtl number. The governing non-linear partial 

differential equations are reduced to locally similar ordinary differential 

equations, which are solved numerically by applying shooting method and the 

results are discussed from the physical point of view. 
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6.2 Governing equations 

Formulation of the governing equations has been discussed in section 2.4.4 as 

case IV of chapter 2. The dimensionless concentration equation is same as 

equation (2.28), however there are some modifications in the momentum 

equation, energy equation and boundary conditions due to variable viscosity, 

variable thermal conductivity, variable Prandtl number and slip flow. The 

modified dimensionless momentum equation, energy equation and boundary 

conditions are given in equations (2.73), (2.77) and (2.75).  

6.3 Numerical results and explanation   

In order to investigate the effects of pertinent parameters on the flow fields, there 

are ten parameters in the governing equations which are very important to analyse 

the flow, heat and mass transfer behaviour for the current problem. Three 

parameters in momentum equation and they are wedge angle parameter, 

unsteadiness parameter and temperature dependent viscosity variation parameter, 

two parameters in the energy equation namely Prandtl number and thermal 

conductivity variation parameter, four parameters in the concentration equation 

like as Schmidt number, concentration ratio, thermophoretic coefficient parameter 

and thermophoresis parameter and one in the boundary condition which is slip 

parameter.  

When the viscosity and the thermal conductivity does not depend on the 

temperature the value of the ambient Prandtl number, 71.0Pr =∞ , 2.97 and 7.0 

corresponds to air, methyl chloride and water. When the viscosity and the thermal 

conductivity depend on the temperature the value of the variable Prandtl number 

at the surface of the wedge ( 0=η ) correspond to 1.18, 4.95 and 11.66, 

respectively when θr = 2.00 and 2.0=γ . Therefore, in the simulation the value of 

the variable Prandtl number vPr  is chosen as 1.18. 

The governing momentum equation (2.73), energy equation (2.77) and 

concentration equation (2.28) have been solved numerically based on the 
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boundary condition (2.75) for different values of the above parameters 

numerically by applying Nachtsheim-Swigert shooting iteration technique along 

with sixth order Runge-Kutta integration scheme which is elaborately discussed in 

Appendix. 

The values of Schmidt number Sc = 0.60, 0.78, 0.94 represents water-vapour, 

ammonia and Carbon-Dioxide, respectively. The remaining parameters are taken 

as follows: unsteadiness parameter =λ 0.10-0.20; temperature dependent viscosity 

variation parameter 1002 −=rθ ; thermal conductivity variation 

parameter 90.00.0 −=γ , thermophoresis parameter 152 −=tN and concentration 

ratio 73−=cN . The default values of the parameters throughout the simulation 

are considered as θr = 2.0, γ  = 0.2, ε = 0.5, λ = 0.10, 3/1=β  (i. e. Ω = 600),       

κ  = 0.5, cN = 2.0, Nt = 2.0 and ∞Pr = 0.71 unless otherwise specified. 

6.3.1 Effects of the wedge angle parameterβ  

Figures 6.1 (a)-(c), present dimensionless velocity, temperature and concentration 

profiles within the boundary layer for both no-slip )0( =ε  and slip ( )0≠ε flows 

for various values of wedge angle parameterβ . The dashed lines represent when 

there is no-slip at the boundary and the solid lines represent when there is slip at 

the surface of the boundary. From Figure 6.1 (a) it is observed for both no-slip 

and slip cases velocity within the boundary-layer increases with the increasing 

values of wedge angle parameterβ . The thickness of the velocity boundary layer 

also reduces with the increase ofβ . It is also mentionable that velocity is lower 

for the case of no-slip than the presence of slip which is expected. For 

experimental interest at 0=η , the velocity increases by approximately 40.09% 

and 62.88% (for )0≠ε  when wedge angle parameterβ  increases from 1/6 to 1/3 

and 1, respectively. From Figures 6.1(b)-(c) it is seen that both the temperature 

and concentration of the fluid within the boundary-layer decrease with the 

increasing value ofβ . It is also noticeable that thickness of the thermal and 

concentration boundary layer decrease with the increasing values ofβ .  
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6.3.2. Effects of the unsteadiness parameterλ  

The variation of dimensionless velocity, temperature and concentration profiles 

for different values of unsteadiness parameterλ  for both no-slip )0( =ε and slip 

( )0≠ε  flows at the boundary are displayed in Figures 6. 2 (a)-(c), respectively. 

The increasing values of unsteadiness parameter reduce fluid motion within the 

boundary layer which is illustrated in Figure 6.2 (a). This is due to the fact that the 

viscosity is higher at the surface of the wedge.  At 0=η , the velocity decreases 

by approximately 15.92% and 27.65% (for )0≠ε  with the increase in the 

unsteadiness parameterλ  from 0.10, 0.15 and 0.20, respectively. From Figures 

6.2 (b)-(c) it can be seen that both the temperature and concentration of fluid 

increase with the increasing values of the unsteadiness parameterλ . It is also 

observed that both the temperature and concentration are higher for the case of 

no-slip than the presence of slip flows. 

6.3.3 Effects of the variable viscosity parameter rθ  

The effect of the variable viscosity parameter rθ  (for rθ  > 0 and rθ  < 0) on the 

dimensionless velocity, temperature, concentration for both slip and no- slip flows 

are depicted in Figures 6.3 (a)-(c) and Figures 6.4 (a)-(c), respectively . Figure   

6.3 (a) shows that the velocity within the boundary-layer increases, i.e. thickness 

of the velocity boundary layer decreases with the increasing values of variable 

viscosity parameter rθ  when it is positive. An opposite effect of variable viscosity 

parameter rθ on the velocity and on the boundary layer thickness is observed 

when it is negative which is displayed in Figure 6.4 (a). Both the Figure 6.3 (a) 

and Figure 6.4 (a) reveal that for very large variable viscosity parameter rθ  

change in )(ηf ′  is negligible. This is due to the fact that ∞→rθ , the dynamic 

viscosity of the fluid (µ ) equals viscosity of the fluid at the ambient temperature 

( ∞µ ). For rθ > 0 (Figures 6.3 (b)-(c)) both the temperature and concentration 

decrease with the increasing values of variable viscosity parameter rθ  but for  

rθ < 0 (Figures 6.4 (b)-(c)) both the temperature and concentration increase with 
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the increasing values of rθ . In both the case of slip ( )0≠ε and no-slip )0( =ε , 

the thickness of the thermal and concentration boundary layer decrease when   

rθ > 0 and increase when rθ < 0. However, the values of the velocity are 0.17162, 

0.23762, 0.25564 and 0.27050 for 5.0=ε  which occurs at the surface of the 

wedge. It is also seen that the velocity increases by approximately 57.62% as 

variable viscosity parameter rθ  increases from 2 to 100. On the other hand, the 

values of the velocity are 0.33667, 0.30095, 0.28716 and 0.27362 for 5.0=ε  

which occurs at the surface of the wedge. It is also seen that the velocity decreases 

by approximately 18.73% as variable viscosity parameter rθ  increases from                

-2 to -100. 

6.3.4. Effects of the thermal conductivity variation parameterγ  and variable 

Prandtl number vPr  

The temperature profiles against η  for different values of variable Prandtl number 

are presented graphically in Figure 6.5 (a). The temperature of the fluid within the 

boundary layer decreases for the increasing values of the variable Prandtl number 

which is observed from Figure 6.5 (a). Moreover, it is observed that the thickness 

of the thermal boundary layer become thinner for increasing values of the variable 

Prandtl number. The above are the predictable physical significance of the Prandtl 

number as it is known that the Prandtl number is the ratio of viscous force and 

thermal action. Thus the increasing value of the Prandtl number represents a fluid 

with increasing viscosity or decreasing thermal conductivity. Therefore the 

increasing viscosity reduces the flow of the fluid and lower thermal conductivity 

decreases temperature within the boundary layer. 

The variation of temperature and thermophoretic velocity profiles for different 

values of thermal conductivity variation parameter for both no-slip and slip flows 

at the boundary are presented in Figures 6.5 (b)-(c), respectively. From         

Figure 6.5 (b), it is seen that the non-dimensional temperature increases with the 

increase of the thermal conductivity variation parameterγ  as expected. It is also 

found that temperature of the fluid is lower for the case of a constant conductivity 
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than the variable conductivity, which is true for both the case of no-slip )0( =ε  

and slip ( )0≠ε . It is known that thermophoresis parameter is inversely 

proportional to the thermophoretic velocity as a result thermophoretic velocity 

decreases with the increase of thermophoresis parameter tN , which is depicted 

from Figure 6.5(c).  

6.3.5. Effects of the Schmidt number Sc, thermophoresis parameter tN and 

concentration ratio cN  

The concentration profiles against η  for different values of Schmidt number, 

thermophoresis parameter and concentration ratio are displayed graphically in 

Figures 6.6 (a)-(c), respectively. Figure 6.6 (a) shows typical concentration 

profiles for various values of the Schmidt number Sc. It is clear from this figure 

that the concentration of the fluid particles within the boundary layer thickness 

reduces as the Schmidt number Sc increases and this is the analogous to the effect 

of increasing the Prandtl number on the thickness of a thermal boundary layer. 

From Figure 6.6 (b) it is readily seen that the concentration of the fluid particles 

within the boundary-layer decreases with the increasing values of tN . Physical 

significance of the values of the thermophoretic parameter used here: when the 

wall is warm, bearing in mind the definition of thermophoresis parameter, 

∞+= TNTN twt )1( , so that 1=tN  means a wall twice warmer than the ambient 

fluid, i. e. ∞= TTw 2 , while 1000=tN  describes a very cold wall. From these 

Figure it is noticeable that thickness of the thermal boundary layer is higher for 

the slip no-slip )0( =ε case than the slip ( )0≠ε case. From Figure 6.6 (c) it is 

seen that the concentration of the fluid particles within the boundary-layer 

increases with the increasing values of cN . 
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6.3.6 Effects of the ambient Prandtl number ∞Pr  

The effect on ambient Prandtl number ∞Pr for different values of rθ  > 0 and       

rθ  < 0 are displayed in Figure 6.7(a) and Figure 6.7(b). The ambient Prandtl 

number ∞Pr at the surface of the wedge increases with the increasing positive 

values of rθ , which is presented in Figure 6.7(a). The results also show that the 

values of ambient Prandtl number ∞Pr within the boundary layer asymptotically 

converge to the value of variable Prandtl number vPr as ∞→η . Figure 6.7 (b) 

shows that the ambient Prandtl number decreases for increasing values of rθ . It is 

observed that the ambient Prandtl number asymptotically converge to the value of 

vPr as ∞→η . On the other hand from equation (2.76) it can be seen that for large 

negative value of rθ , the ambient Prandtl number, at the surface of the wedge 

approaches the value 1+γ . It is also seen that for large rθ , i.e. ∞→rθ and 

constant conductivity, i.e. 0=γ , the variable Prandtl number vPr equals to the 

ambient Prandtl number ∞Pr . This means that consideration of prandtl number as 

a constant within the boundary layer except for very large rθ  produce unrealistic 

result. 

Figure 6.7 (c) illustrates variation of ambient Prandtl number ∞Pr  within the 

boundary layer for different values of thermal conductivity variation parameterγ . 

The ambient Prandtl number, at the surface of the wedge increases for the 

increasing values of the thermal conductivity variation parameterγ . From this 

Figure it is also observed that values of ambient Prandtl number ∞Pr within the 

boundary layer converge asymptotically to the value of variable Prandtl number 

vPr far away from the surface of the wedge. 

Table 6.1 presents the comparison of the stream function )0(f , velocity )0(f ′ and 

the local skin friction )0(f ′′  obtained in the present work with ∞→rθ ,wedge 

angle parameter 0=β , thermal conductivity variation parameter 0=γ , no slip 

parameter 0=ε and 0=λ (for steady flow) for different values of η . Thus from 
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Table 6.1 it is observed that the data produced by the present code and those of 

White (2006) are in excellent agreement, which gives us confidence to use the 

present numerical code. 

Table 6.2 shows the fluid velocity and the thermophoretic particle deposition 

velocity for different values of variable viscosity parameter rθ  and wedge angle 

parameterβ . From Table 6.2 it can be concluded that the correlation coefficient r 

between fluid velocity f ′and thermophoretic particle deposition 

velocity 21* (Re) −dV . From this Table, the values of r show that fluid velocity and 

thermophoretic particle deposition velocity are highly correlated for all values 

of rθ . From this table it is clearly observed that when the fluid velocity increases, 

the thermophoretic particle deposition velocity also increases which is expected.  

Table 6.3 shows the variation of thermophoretic particle deposition velocity for 

different values of Schmidt number Sc and slip parameterε . The Table shows that 

thermophoretic particle deposition velocity decreases with the increase of 

Schmidt number for both no-slip )0( =ε  and slip ( )0≠ε flows. From Table 6.4 it 

is observed that the local skin friction coefficient and the local rate of heat transfer 

in a fluid of constant Prandtl number cPr  is lower  than in a fluid of variable 

Prandtl number vPr when no slip flows while the opposite result is found for slip 

flows. From this Table, it is also seen that the variation between the produced 

results differ by less than 1% when the negative values of variable viscosity 

parameter rθ are very large. The variation between the produced results is more 

than 2.98% when 5.0−=rθ  (for local skin friction and no slip flow) but these 

variations become 25.87% at 5.0−=rθ  (for local skin friction and slip flow). On 

the other hand, the variation in - )0(θ ′ is 50.57% at 5.0−=rθ  when slip flow is 

applied at the surface of the wedge. 

Table 6.5 shows values of )0(f ′′ , )0(θ ′− and )0(φ′− which are respectively 

proportional to local skin friction coefficient, local rate of heat transfer  and local 

rate of mass transfer for different values of variable viscosity parameter rθ , 
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wedge angle parameterβ  and unsteadiness parameterλ for variable Prandtl 

number vPr = 1.18. From this Table it is seen that local skin friction coefficient, 

the local rate of heat transfer and local rate of mass transfer increase with the 

increasing values of variable viscosity parameter rθ  and wedge angle 

parameterβ . These behaviors depict the nature of the profiles shown in Figures 

6.3 (a)-(c), Figures 6.1 (a)-(c) and Figures 6.2 (a)-(c), respectively. It is also 

observed that for slip flow ( 0≠ε ) the values of local skin friction coefficient are 

lower than the corresponding values of no-slip ( 0=ε ). On the other hand, for slip 

flow ( 0≠ε ) local rate of heat transfer and local rate of mass transfer are higher 

than the corresponding values of no-slip ( 0=ε ) case.  

Table 6.1: Comparison of the present numerical results of stream function, 

velocity and local skin friction coefficient with White (2006) for different values 

of η  when β = εγ =  = 0=λ and ∞→rθ . 

η  ( )ηf  )(ηf ′  )(ηf ′′  

 Present 

work 

White 

(2006) 

Present 

work 

White 

(2006) 

Present 

work 

White 

(2000) 

0.0 0.00000000 0.00000 0.00000000 0.00000 0.47027089 0.46960 

0.5 0.05872926 0.05864 0.23456114 0.23423 0.46568757 0.46503 

1.0 0.23332581 0.23299 0.46127690 0.46063 0.43494906 0.43438 

1.5 0.51575598 0.51503 0.66235843 0.66147 0.36218408 0.36180 

2.0 0.88800281 0.88680 0.81770859 0.81669 0.25581418 0.25567 

3.0 1.79780496 1.79557 0.97006212 0.96905 0.06763291 0.06771 

4.0 2.78709815 2.78388 0.99872084 0.99777 0.00684790 0.00687 

5.0 3.78738993 3.78323 1.00087632 0.99994 0.00025589 0.00026 
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Table 6.2: Effects of variable viscosity parameter rθ and wedge angle parameterβ  

on the fluid velocity and thermophoretic particle deposition velocity. 

 

rθ  β  f ′  
2
1

* (Re)
−

dV  )()(
),(

YVXV
YXCOVr =  

2 1/3 0.172790 0.607769 0.998761 

5 1/3 0.238197 0.641280 

10 1/3 0.255921 0.648418 

2 1 0.280901 0.561996 0.985634 

5 1 0.356388 0.577122 

10 1 0.375487 0.580865 

 

 

 

Table 6.3:Variation of thermophoretic particle deposition velocity for different 

values of Schmidt number Sc. 
 

Parameters 0=ε  ε  = 0.5 

Sc 0.22 0.30 0.60 0.94 0.22 0.30 0.60 0.94 

*2
1

Re dV
−

 0.915 0.744 0.470 0.334 0.986 0.809 0.525 0.384 
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Table 6.4: Values of local skin friction coefficient )0f ′′  and local rate of heat 

transfer )0(θ ′−  for different values of slip parameter ε  and variable viscosity 

parameter rθ . 

 

Parameters (i) Constant Prandtl 
number cPr   

(ii) Variable Prandtl 
number vPr   

Variation 
in 

  )0f ′′  

Variation 
in 

)0(θ ′−  
ε  rθ  )0f ′′  )0(θ ′−  )0(f ′′  )0(θ ′−  

 

 

0 

-100 0.626462 0.487600 0.626477 0.499818 <1% 2.50% 

-10 0.665711 0.492882 0.666026 0.510886 <1% 3.65% 

-5 0.707475 0.498546 0.708079 0.522764 <1% 4.85% 

-2 0.820679 0.512554 0.823687 0.555938 <1% 8.46% 

-1 0.979338 0.530394 0.990346 0.605700 1.12% 14.19% 

-0.5 1.225401 0.553306 1.262082 0.691934 2.98% 25.05% 

 

 

 

0.5 

-100 0.622368 0.589572 0.547269 0.498215 12.06% 18.34% 

-10 0.660767 0.604805 0.573659 0.503896 13.18% 20.03% 

-5 0.701292 0.621413 0.601069 0.509726 14.29% 21.91% 

-2 0.811729 0.667154 0.671292 0.525057 17.30% 27.06% 

-1 0.964188 0.735753 0.762221 0.543540 20.95% 35.36% 

-0.5 1.199220 0.854953 0.888958 0.567824 25.87% 50.57% 
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Table 6.5: Values of local skin friction coefficient )0(f ′′ , local rate of heat 

transfer )0(θ ′− and local rate of mass transfer )0(φ′−  for different values of rθ , 

wedge angle parameter β  and unsteadiness parameterλ . 

 

Parameters 0=ε  5.0=ε  

rθ  β  λ  )0(f ′′  )0(θ ′−  )0(φ′−  )0(f ′′  )0(θ ′−  )0(φ′−  

2 31  0.10 0.362133 0.427890 0.411904 0.345581 0.486456 0.466470 

2 31  0.15 0.280273 0.426332 0.410684 0.270822 0.485501 0.464907 

2 31  0.20 0.223084 0.417398 0.400549 0.210691 0.472746 0.452444 

2 21  0.10 0.464185 0.447128 0.430217 0.416003 0.508721 0.487193 

2 21  0.15 0.401204 0.454672 0.436708 0.377269 0.514558 0.492178 

2 21  0.20 0.328025 0.459173 0.440621 0.310314 0.517128 0.494311 

2 1 0.10 0.700149 0.483080 0.468643 0.561801 0.549186 0.528277 

2 1 0.15 0.657524 0.494517 0.476003 0.540310 0.559565 0.535475 

2 1 0.20 0.612561 0.506012 0.485252 0.516981 0.570734 0.544830 

5 1 0.10 0.972205 0.527592 0.477773 0.712776 0.611039 0.542495 

5 1 0.15 0.919019 0.540978 0.487309 0.691689 0.623865 0.552039 

5 1 0.20 0.862710 0.553746 0.497197 0.668690 0.635933 0.561031 

10 1 0.10 1.050410 0.541239 0.480204 0.750975 0.629501 0.546014 

10 1 0.15 0.994431 0.555063 0.490240 0.730157 0.642700 0.555172 

10 1 0.20 0.935130 0.568148 0.499729 0.707466 0.655137 0.563758 
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Figure 6.1: Variation of dimensionless (a) velocity, (b) temperature and(c) concentration 
for several values ofβ  andε  
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Figure 6. 2: Variation of dimensionless (a) velocity, (b) temperature and(c) concentration 
for several values ofλ  andε  
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Figure 6.3: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of rθ > 0 andε  
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Figure 6.4: Variation of dimensionless (a) velocity, (b) temperature and (c) concentration 
for several values of rθ < 0 andε  
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Figure 6.5: Variation of dimensionless temperature for several values of (a) vPr andε , 
(b) γ and ε  and (c) thermophoretic velocity for several values of γ andε  
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Figure 6.6: Variation of dimensionless concentration for several values of ε and (a) Sc, 
(b) tN  and (c) cN  
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Figure 6.7: Variation of dimensionless ambient Prandtl number ∞Pr for different values 
of (a) rθ > 0, (b) rθ < 0 and (c) γ  
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6. 4 Conclusions 

In this work, the effects of thermophoretic particle deposition on unsteady 

convective slip flows over a wedge with variable fluid properties and variable 

Prandtl number have been studied numerically. The fluid properties such as 

viscosity and thermal conductivity are considered to be temperature dependent. 

From the present numerical investigations, the following major conclusions can 

be drawn: 
 

i. Velocity within the boundary-layer increases with the increasing values of 

wedge angle parameterβ  for both no-slip and slip cases. The thickness of 

the velocity boundary layer also decreases with the increase of β . It is also 

mentionable that velocity is lower for the case of no-slip than the presence 

of slip which is expected. At 0=η , the velocity increases by approximately 

40.09% and 62.88% (for )0≠ε  when wedge angle parameterβ  increases 

from 1/6, 1/3 and 1, respectively. 

 

ii. The increasing values of unsteadiness parameter reduce fluid motion within 

the boundary layer. This is due to the fact that the viscosity is higher at the 

surface of the wedge. On the other hand, both the temperature and 

concentration of fluid increase with the increasing values of the unsteadiness 

parameterλ . 

 
iii. The ambient Prandtl number ∞Pr at the surface of the wedge increases with 

the increasing positive values of variable viscosity parameter rθ . 

 
iv. The local skin friction and the local rate of heat transfer in a fluid of 

constant Prandtl number is lower than in a fluid of variable Prandtl number 

when no slip flows while the opposite result is found for slip flows. 

v. Thermophoretic particle deposition velocity decreases ( *2
1

Re dV
−

) with the 

increase of Schmidt number Sc. 
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Chapter 7 
 

 
 
 

Final Clarification and Future Works 
 

7.1 Conclusions 

Thermophoresis is an important phenomenon in several scientific and engineering 

applications, and can be the dominant mechanism of transport of sun-micron 

particles. In the current study, the author has developed a physical model of 

unsteady Magnetohydrodynamic (MHD) convective heat and mass transfer flow 

of Newtonian, viscous incompressible and electrically conducting fluid along a 

wedge with thermophoresis considering boundary layer approximation. Various 

flow conditions such as temperature dependent viscosity, thermal conductivity 

and slip flow have been considered in different models. The potential flow 

velocity has been taken as a function of the distance x and time t. The governing 

time dependent non-linear partial differential equations are reduced to a set of 

non-linear ordinary differential equations by introducing a new class of similarity 

transformations. The resulting local similarity equations for unsteady flow have 

been solved numerically by applying Nachtsheim-Swigert shooting iteration 

technique along with sixth order Runge-Kutta integration scheme. Steady 

solutions are compared with previously published works which show excellent 

agreement. There are twelve parameters obtained throughout the thesis, seven 

parameters in chapter 3 and those are wedge angle parameter β , unsteadiness 

parameterλ , Prandtl number Pr, thermophoresis parameter Nt, thermophoretic 

coefficientκ , Schmidt number Sc, and concentration ratio Nc.; two new 

parameters in chapter 4 and those are viscosity variation parameter rθ , and 

variable Prandtl number vPr ; three new parameters in chapter 5 and those are 

suction/injection parameter wf , Hartman number Ha ,thermal conductivity 

variation parameter γ and one new parameter in chapter 6 and that is slip 

parameterε . A representative set of numerical results for the velocity, 

temperature and concentration profiles, the local skin friction coefficients as well 
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as the local rate of heat and mass transfer, thermophoretic velocity and 

thermophoretic particle deposition velocity are presented graphically and 

discussed in the respective chapters for the above parameters. However, overall 

discussions on the works are presented below in brief: 

The effects of wedge angle parameterβ  on the dimensionless velocity, 

temperature and concentration profiles as well as on the local skin-friction 

coefficient, the local Nusselt number and the local Sherwood number are 

discussed in chapter 3, chapter 4, chapter 5 and chapter 6. For accelerated flows, 

i.e. positive values of wedge angle parameterβ , velocity profiles squeeze closer 

and closer to the surface of the wedge. Both the temperature and concentration of 

the fluid within the boundary layer decrease with the increasing values of the 

wedge angle parameterβ . But separation is found to occur for very small non-

negative values of wedge angle parameterβ  in chapter 3. 

The velocity of the fluid within the boundary layer decreases whereas both the 

temperature and concentration of the fluid within the boundary layer increase with 

the increasing values of the unsteadiness parameterλ . Both the local Nusselt 

number and local Sherwood number increase whereas the local skin-friction 

coefficient decreases with increasing values of the unsteadiness parameter as 

discussed in chapter 4, chapter 5 and chapter 6.  

In chapter 4 and chapter 6, the effect of variable viscosity parameter rθ  on the 

dimensionless velocity, temperature and concentration profiles are discussed for 

various parametric conditions. Hydrodynamic boundary-layer thickness decreases 

with the increasing values of a variable viscosity parameter rθ  when it is positive 

while it increases for increasing values of a variable viscosity parameter when it is 

negative. The local rate of heat transfer in a fluid of constant Prandtl number is 

lower than in a fluid of variable Prandtl number when variable viscosity 

parameter rθ  is negative while the opposite result is found positive values of 

variable viscosity parameter rθ .   
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The non-dimensional temperature of the fluid increases with the increase of the 

thermal conductivity parameterγ . Variable Prandtl number within the boundary 

layer vPr decreases with the increase of the thermal conductivity parameterγ . The 

results also show that the values of vPr within the boundary layer asymptotically 

converge to the value of ∞Pr far away from the surface of the wedge (i.e. ∞→η ). 

It is clearly established that the Prandtl number varies significantly within the 

boundary layer when the fluid thermal conductivity varies with temperature as 

discussed in chapter 5 and chapter 6. 

In chapter 5, it is exposed that the  thickness  of the  hydrodynamic, thermal and 

concentration  boundary  layer  decrease  with  the  increasing values of the  

suction  parameter. Magnetic field moving with the free stream has the tendency 

to induce a motive force which increases the motion of the fluid and decreases its 

boundary layer.  

The dimensionless concentration of the fluid particles within the boundary-layer 

increases with the increasing values of the thermophoretic coefficient κ  whereas 

it decreases with the increasing values of both Sc  and tN . Thermophoretic 

velocity decreases for increasing thermophoresis parameter tN  whereas it 

increases with the increasing values of κ  andβ . Thermophoretic particle 

deposition velocity decreases with the increase of the thermophoretic coefficient 

κ  while it increases with the increase of the unsteadiness parameterλ  which is 

found in chapter 3, chapter 4, chapter 5 and chapter 6. 

The combined effect of the temperature dependent variable viscosity and thermal 

conductivity with slip flow has been discussed in chapter 6. It is found that the 

fluid velocity within the boundary-layer is found lower whereas both the 

temperature and concentration are higher for the case of no slip flows than the slip 

flows. It is also found that for slip flow ( 0≠ε ) the values of local skin friction 

coefficient are lower than the corresponding values for no-slip ( 0=ε ). On the 

other hand, for slip flow ( 0≠ε ) local Nusselt number and the local Sherwood 

number are higher than the corresponding values for no-slip ( 0=ε ) case. 
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Since no experimental results of the corresponding studies are available, the 

obtained numerical results have been compared with that of the established 

numerical results. As for example, qualitative agreement of our results with those 

of White (2006) is excellent. 

Finally, it is expected that the presented numerical works can be used as a vehicle 

for understanding the thermophoresis particle deposition on MHD heat and mass 

transfer produced unsteady laminar convective boundary-layer flows along a 

permeable wedge in the presence of a magnetic field and heat source. 

 

7.2 Recommendations for future works based on the thesis 

The study on this thesis may be extended considering following cases: 

i. The effect of thermophoresis particle deposition with thermal radiation has 

not been considered throughout the thesis; this mode of heat transfer may 

be considered with the present model. 

ii. The study can be extended considering porous medium. 

iii. The author has considered an unsteady two-dimensional laminar flow in 

this thesis. One can consider unsteady three dimensional flows. 

iv. The effect of temperature dependent viscosity may be extended 

considering Joule heating, heat generation, stress work and viscous 

dissipation. 

v. This study may be extended with considering these fluid properties with 

different geometry. 
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Appendix 
 

Nachtsheim-Swigert shooting technique 

 

In a shooting method, the missing (unspecified) initial condition at the initial 

point of the interval is assumed, and the differential equation is then integrated 

numerically as an initial value problem to the terminal point. The accuracy of the 

assumed missing initial condition is then checked by comparing the calculated 

value of the dependent variable at the terminal point with its given value there. If 

a difference exists, another value of the missing initial condition must be assumed 

and the process is repeated. This process is continued until the agreement between 

the calculated and the given condition at the terminal point is within the specified 

degree of accuracy. For this type of iterative approach, one naturally inquires 

whether or not there is a systematic way of finding each succeeding (assumed) 

value of the missing initial condition. 

The Nachtsheim-Swigert iteration technique thus needs to be discussed 

elaborately. The boundary condition (2.24) associated with the non-linear 

ordinary differential equations (2.21)-(2.23) [in chapter 2] are the two-point 

asymptotic class. Two-point boundary conditions have values of the dependent 

variable specified at two different values of independent variable. Specification of 

an asymptotic boundary condition implies that the first derivative (and higher 

derivatives of the boundary layer equations, if exist) of the dependent variable 

approaches zero as the outer specified value of the independent variable is 

approached. 

The method of numerically integrating a two-point asymptotic boundary-value 

problem of the boundary-layer type, the initial-value method is similar to an 

initial-value problem. Thus it is necessary to estimate as many boundary 

conditions at the surface as were (previously) given at infinity. The governing 

differential equations are then integrated with these assumed surface boundary 
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conditions. If the required outer boundary condition is satisfied, a solution has 

been achieved. However, this is not generally the case. Hence, a method must be 

devised to estimate logically the new surface boundary conditions for the next 

trial integration. Asymptotic boundary value problems such as those governing 

the boundary-layer equations are further complicated by the fact that the outer 

boundary condition is specified at infinity. In the trial integration infinity is 

numerically approximated by some large value of the independent variable. There 

is no a priori general method of estimating these values. Selecting too small a 

maximum value for the independent variable may not allow the solution to 

asymptotically converge to the required accuracy. Selecting large a value may 

result in divergence of the trial integration or in slow convergence of surface 

boundary conditions. Selecting too large a value of the independent variable is 

expensive in terms of computer time. 

Nachtsheim-Swigert (1965) developed an iteration method to overcome these 

difficulties. Extension of the Nachtsheim-Swigert iteration scheme to the system 

of equation (2.21)-(2.23) and the boundary conditions (2.24) [in chapter 2] is 

straightforward. In equation (2.24) [in chapter 2] there are three asymptotic 

boundary conditions and hence three unknown surface conditions ( ) ( )0,0 θ ′′′f  

and ( )0φ ′ . 

Within the context of the initial-value method and Nachtsheim-Swigert iteration 

technique the outer boundary conditions may be functionally represented as 

( ) ( ) ( ) ( )( ) 1max 0,0,0 δφθη =′′′′′=′ fff ,                                                               (A.1) 

( ) ( ) ( ) ( )( ) 2max 0,0,0 δφθθηθ =′′′′= f ,                                                                  (A.2) 

( ) ( ) ( ) ( )( ) 3max 0,0,0 δφθφηφ =′′′′= f ,                                                                  (A.3) 

with the asymptotic convergence criteria given by 

( ) ( ) ( ) ( )( ) 4max 0,0,0 δφθη =′′′′′′=′′ fff ,                                                              (A.4) 

( ) ( ) ( ) ( )( ) 5max 0,0,0 δφθθηθ =′′′′′=′ f ,                                                                (A.5)                                     

( ) ( ) ( ) ( )( ) 6max 0,0,0 δφθφηφ =′′′′′=′ f .                                                              (A.6) 
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Choosing ( ) ( ) 21 0,0 ggf =′=′′ θ  and ( ) 30 g=′φ  and expanding in a first-order 

Taylor’s series after using equations (A.1)-(A.6) yields 
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where subscript ‘C’ indicates the value of the function at maxη determined from 

the trial integration. 

Solution of these equations in a least-squares sense requires determining the 

minimum value of  
2
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2
1 δδδδδδ +++++=E                                                                      (A.13) 

with respect to 21 , gg  and 3g . 

Now differentiating E with respect to 1g  yields 
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Similarly differentiating E with respect to 2g  and 3g , we obtain respectively 
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We can write equations (A.14)-(A.16) in a system of linear equations as follows: 

1313212111 bgagaga =∆+∆+∆ ,                                                                        (A.17) 

2323222121 bgagaga =∆+∆+∆ ,                                                                      (A.18) 

3333232131 bgagaga =∆+∆+∆ .                                                                       (A.19) 
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Now solving the equations (A.17)-(A.19) by using Cramer’s rule, we have 

A
A

g
det
det 1

1 =∆ , 
A
Ag

det
det 2

2 =∆  and   
A
A

g
det
det 3

3 =∆  

where 

( ) ( ) ( )132223123331213322233233221

33323

23222

13121

1det aaaabaaaabaaaab

aab

aab
aab

A −+−+−==

, 

( ) ( ) ( )231113213133133112332123311

33331

23221

13111

2det aaaabaaaabaaaab
aba
aba
aba

A −+−+−==

, 

( ) ( ) ( )122122113321112312223132211

33231

22221

11211

3det aaaabaaaabaaaab
baa
baa
baa

A −+−+−==

, 

( ) ( ) ( )132223123133121332213223332211

333231

232221

131211

det aaaaaaaaaaaaaaa
aaa
aaa
aaa

A −+−+−==

. 

Then we obtain the missing (unspecified) values g1, g2 and g3 as 



 133

111 ggg ∆+≈ , 

222 ggg ∆+≈ , 

333 ggg ∆+≈  

Thus adopting the numerical technique aforementioned, the solution of the 

equations (2.21)-(2.23) with boundary conditions (2.24) [in chapter 2] is obtained 

together with sixth-order implicit Runge-Kutta initial value solver.  

 
 


