
M. Sc. Engineering Thesis

Spatio Temporal Keyword Search
for Nearest Neighbor Queries

by

Saif-Ul-Islam Khan

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING

Department of Computer Science and Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Dhaka-1000, Bangladesh

April, 2014



The thesis titled “Spatio Temporal Keyword Search for Nearest Neighbor

Queries”, submitted by Saif-Ul-Islam Khan, Roll No. 0411052003P, Session April

2011, to the Department of Computer Science and Engineering, Bangladesh Uni-

versity of Engineering and Technology, has been accepted as satisfactory in partial

fulfillment of the requirements for the degree of Master of Science in Computer Sci-

ence and Engineering and approved as to its style and contents. Examination held

on April 26, 2014.

Board of Examiners

1.

Dr. Mohammed Eunus Ali Chairman

Associate Professor (Supervisor)

Department of CSE, BUET, Dhaka 1000.

2.

Dr. Mohammad Mahfuzul Islam Member

Professor & Head (Ex-officio)

Department of CSE, BUET, Dhaka 1000.

3.

Dr. Md. Mostofa Akbar Member

Professor

Department of CSE, BUET, Dhaka 1000.

4.

Dr. Md. Yusuf Sarwar Uddin Member

Assistant Professor

Department of CSE, BUET, Dhaka 1000.

5.

Dr. Mohammad Nurul Huda Member

Professor (External)

Department of CSE & MSCSE Coordinator

United International University,Dhaka-1209.

ii



Candidate’s Declaration

This is to certify that the work presented in this thesis entitled “Spatio

Temporal Keyword Search for Nearest Neighbor Queries” is the out-

come of the investigation carried out by me under the supervision of Asso-

ciate Professor Dr. Mohammed Eunus Ali in the Department of Computer

Science and Engineering, Bangladesh University of Engineering and Technol-

ogy (BUET), Dhaka. It is also declared that neither this thesis nor any part

thereof has been submitted or is being currently submitted anywhere else for

the award of any degree or diploma.

Saif-Ul-Islam Khan

Candidate

iii



Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgments x

Abstract xi

1 Introduction 1

2 Preliminaries 7

2.1 Spatial Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Spatial Queries . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Spatial Indexes . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Query Modes . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Similarity Measures . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Keyword Indexing . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Hybrid Index Framework: The IR-Tree . . . . . . . . . . 21

3 Related Work 22

3.1 Nearest Neighbor Queries . . . . . . . . . . . . . . . . . . . . . 22

3.2 Spatial Keyword Queries . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Temporal and Textual Queries . . . . . . . . . . . . . . . . . . . 36

4 Problem Definition 39

iv



5 Our proposed STIR-tree 41

5.1 Indexing Location . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Indexing Keywords . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Time Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 STIR Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Query processing using STIR-tree 47

6.1 Processing of spatio-temporal keyword queries for k nearest neigh-

bor (STK-kNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Time Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 STK-kNN with Time Uncertainty . . . . . . . . . . . . . 54

6.2.2 Time based Nearest Neighbor with STIR-tree . . . . . . 57

6.3 Spatio-Temporal Keyword Stream:

An Application Scenario . . . . . . . . . . . . . . . . . . . . . . 60

7 Experimental Study 62

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3.1 STK-kNN . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.2 STK-kTU . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.3 STK-kTNN . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Conclusion 71

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 73

Index 77

A STIR Simulator 77

A.1 Using the Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . 79

v



B Spatio-Temporal Data set 81

C Search Query set 83

D Structure of STIR tree 85

E Performance Measurement Data set 91

F STK-kNN set 93

G STK-kNN with Time Uncertainty set 95

H STK with Time based Nearest Neighbor set 98

vi



List of Figures

1.1 Google Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Location based marketing . . . . . . . . . . . . . . . . . . . . . 3

1.3 Location of spatio-temporal objects . . . . . . . . . . . . . . . . 4

1.4 Seller and buyer community . . . . . . . . . . . . . . . . . . . . 5

2.1 Example of spatial queries . . . . . . . . . . . . . . . . . . . . . 9

2.2 R-tree examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Node examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The circle around query object q depicts the search region after

reporting o as next nearest object . . . . . . . . . . . . . . . . . 12

2.5 IR-tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Inverted File and R∗ tree double index . . . . . . . . . . . . . . 25

3.2 Zhou’s index structure . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Space diagram and KR* tree . . . . . . . . . . . . . . . . . . . . 27

3.4 IR2 tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 A spatial keyword query on documents with location information 32

3.6 Space partitioned into grid cells . . . . . . . . . . . . . . . . . . 32

3.7 Spatial Inverted index and the aR tree of terms t1 and t3 . . . . 34

3.8 Temporal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Our location indexing . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Time indexing (a)Month (b)Day (c)Hour . . . . . . . . . . . . 44

5.3 Time indexing in various node . . . . . . . . . . . . . . . . . . . 45

5.4 STIR tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Query on STIR tree . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 An example of time uncertainty . . . . . . . . . . . . . . . . . . 52

vii



6.3 Q is point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Q is range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Nearest time query on STIR tree . . . . . . . . . . . . . . . . . 57

6.6 Flowchart of seller and buyer community . . . . . . . . . . . . . 60

7.1 Experimental graph for STK-kNN . . . . . . . . . . . . . . . . . 64

7.2 Experimental graph for STK-kTU . . . . . . . . . . . . . . . . . 66

7.3 Experimental graph for STK-kTNN . . . . . . . . . . . . . . . . 69

A.1 STIR simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 A snapshot of creating STIR . . . . . . . . . . . . . . . . . . . . 78

A.3 A Snapshot of data retrieving using STK-kNN . . . . . . . . . . 79

viii



List of Tables

2.1 Document set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Document level Inverted File . . . . . . . . . . . . . . . . . . . . 19

2.3 Score of documents . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Example GIS database . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Distribution of keywords in space . . . . . . . . . . . . . . . . . 26

3.3 Documents describing the location . . . . . . . . . . . . . . . . 31

3.4 Keywords describing the objects . . . . . . . . . . . . . . . . . . 34

3.5 S2I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Sample data set of seller object . . . . . . . . . . . . . . . . . . 39

5.1 Inverted list for leaf nodes R1, R2, R3, and R4 . . . . . . . . . . 43

5.2 Inverted list for non leaf nodes R5, R6, and R7 . . . . . . . . . . 43

6.1 Notations used in algorithm . . . . . . . . . . . . . . . . . . . . 48

7.1 Table of data set . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



Acknowledgments

I thank Allah for giving me the ability to work on the thesis. My deepest

gratitude goes to my supervisor, Associate Prof. Dr. Mohammed Eunus Ali,

who was the only person behind motivating me to work in this hybrid indexing

field. Starting from the idea upto writing he was with me. Indeed, he played

the most instrumental role in my thesis completion and I shall forever treasure

this entire period that I have spent working with him.

I earnestly thank my thesis committee members, Prof. Dr. Mohammad

Mahfuzul Islam, Prof. Dr. Md. Mostofa Akbar, Prof. Dr. Mohammad Nurul

Huda and Assistant Prof. Dr. Md. Yusuf Sarwar Uddin, whose suggestions

were very beneficial for this work.

I would deeply like to thank my ever-caring wife, my loving parents and

parents in law for consistently encouraging me, with great patience, at every

moment of this wonderful and challenging journey of completing my thesis. I am

also grateful to my mother from whom I often used to take help while writing

this book. Finally, I would like to record my deep appreciation and respect

with my heavy heart to the very recently departed soul of my elder sister, Dr.

Tabassum F. Khan who in spite of her long enduring struggle with cancer in her

mid-forties, helped me immensely in preparing this book. She left this world

throwing us in the sea of bereavement only on the other day 13 Apr 2014. May

Allah keep her soul in peace.

x



Abstract

The widespread availability and the technological advancements of geo-

positioning devices enable users to generate a huge volume of geo-tagged objects

everyday. These objects include points of interest (e.g., restaurants), photos,

and buying/selling items. To describe such an object, which is commonly re-

ferred as a spatial objet, users often use textual information or keywords along

with the geographic location of the entity. Based on these geo-tagged objects, a

large variety of location based services has been emerged. For example, a user

often issues a query like “find the Italian restaurant nearest to my location” to

a location based service provider (LSP), and the LSP returns the Italian hotel

that is nearest to the user’s location as an answer. Due to the popularity of

keyword search, this field leads much work on querying spatial keyword (SK)

search. However, there are many new applications which require incorporat-

ing time along with location and textual information, e.g., “find the Italian

restaurant nearest to my location which opens at 10pm today”. We term this

type of query as an spatio-temporal keyword (STK) query. A straightforward

way of answering STK queries using existing spatial keyword search technique

requires retrieving objects that are not temporally relevant to the query time.

To solve this issue, in this paper, we introduce a new index structure that hi-

erarchically organizes time along with location and keywords, and develop an

efficient algorithm for processing STK queries. We also extend our work to

handle time uncertainty. An extensive experimental study shows the efficiency

and effectiveness of our proposed techniques.

xi



Chapter 1

Introduction

The proliferation of location aware portable devices (e.g., GPS enabled mobile

phones) enables users to generate a large amount of geo-tagged objects. These

objects include different point of interests (POIs), saleable items, photos, etc.

Each object is defined using textual information (keywords), location informa-

tion (latitude and longitude), and other meta-data (e.g., time, image, etc.).

These data sets provide a new platform for answering a large variety of location

based services (LBSs) like Google Map, Foursquare. For example, a user may

be interested in finding the nearest Italian restaurant from her location. To find

the nearest spatial object (e.g., restaurant) that matches with user interest (e.g.,

Italian restaurant), the user provides her location and keywords (e.g., Italian) to

the location based service provider (LSP). The LSP returns the nearest object

whose description/keywords matches with the query the search keywords. This

type of query is known as a spatial keyword query.

Existing works on spatial keyword search focus on developing hybrid index

structures that organize both locations and keywords in a hierarchical tree [7,

8, 10]. These approaches essentially merge location index R−tree with keyword

index inverted file. These approaches are suitable for processing different types

of spatial keyword queries such as kNN query and top-k NN query. A kNN

query finds the k objects nearest to the user’s location, where each object’s text

description contains query keywords; whereas a top-k NN query returns the k

objects with the highest scores measured as a combination of the distance from

the user location and the relevance of their text description with the given query

keywords.

1



Figure 1.1: Google Map

Emergence of location based information has contributed many popular ap-

plication. For example location base service (LBS) like Google Map, Foursquare,

location based marketing (LBM) and location based advertisement (LBA) like

facebook. With LBM or LBA it becomes easier for the marketer or advertiser to

send relevant product information or advertise to nearest users’ mobile. Again

users can also search for nearest shop having their desired products by utilizing

their location information and text information. Google Maps, Facebook allow

the users to provide a list of keyword or text information that a spatial ob-

jects contain and returns the nearest spatial objects. Such queries require the

processing of text relevancy and location proximity to prune the search space.

Users very often are interested in a number nearest objects than a single nearest

object. This draws attention on development of Top-k retrieval of objects. Here

k is the desired number of objects in ordered of their increasing distance from

user location.

We envision a new set of applications that require incorporating time along

with spatial and textual information. Let us consider the following scenario.

Farmers in rural area of Bangladesh produce a plenty of seasonal fruits and

vegetables. In most of the cases, these farmers need to sale these items as

quickly as possible to avoid being rotten as they do not have any access to

cold storage. Due to lack of infrastructure, these farmers cannot afford to carry

these items to distant urban area where the demand is more. Middle-men exploit

these shortcomings of farmers, and deliberately reduce the buying price. Hence,

2



Figure 1.2: Location based marketing

farmers did not get any profit, and even in some cases incurred huge loses, of

their hard-earned investment. It has become a serious concern of farmers in

recent years [1, 2].

To solve the problem, we envision a novel concept of future marketing for

farmers, which can be described as follows. After planting and harvesting the

crops, farmers generally know the probable time when their products will be

ready for sale. Thus, farmers can plan ahead and start selling their products in

advance. This allows a farmer to utilize a time span to market their product

to potential buyers. Also, buyers can plan to buy appropriate items based on

their near future demand. Thereby, for such a future marketing platform, a

large number of buyers may continuously search for sellers to get their desired

products at their expected time. Similarly sellers may also search for suitable

buyers to sell their products in time. In such cases, a seller publishes an item

location, description, and a time range denoting the expected availability du-

ration of the item. A buyer issues a query that contains its location, item

description, and the time when the buyer needs the item. As we can see, to

answer such queries, we need to manage time along with spatial (location) and

textual (description) attributes of data objects (items).

3



Figure 1.3: Location of spatio-temporal objects

Besides future marketing, another class of application requires handling lo-

cation, time and keyword together. For example, a user may want to search for

the nearest restaurant of her choice (e.g., Italian) that is open or hosts an event

of her choice (e.g., music event) at a specific time. To answer such queries, the

LSP stores list of restaurants with their locations, descriptions, and time for

opening/hosting different events.

In all of the above scenarios, since a query involves location, time, and

keywords, we term it as a spatio-temporal Keyword (STK) query. When a

user is interested on finding the nearest object with respect to his location, we

call this as an STK nearest neighbor (STK-NN) query. Generalization of the

STK-NN query is termed as an STK-kNN query where the user is interested in

finding the k nearest object.

Figure 1.3 represents an example of an STK-NN query, where the point

location of the spatio-temporal objects S1, S2, S3, S4, and S5 are tagged with

text and time. Once a user located at a point location q submits a query “find

the Italian restaurant that is nearest my location and has a music event during

11pm - 1am today”. This query returns a restaurant that is nearest to the

user’s location and matches keywords (“Italian”, “Restaurant”, “Music”) and

time (11pm - 1am today). In this example S1 and S5 are reported as first and

second nearest object respectively. Though S3 matches it’s textual description

and is the nearest object among all but it is not retrieved as it’s time does not

match the query’s time.

To solve an STK-kNN query, a straightforward approach is to use existing

4



hybrid indexing techniques where location and text are indexed and time is

filtered out at the final level. However, this approach requires high processing

time and I/O cost as time is not considered as a while retrieving objects by

traversing the index. To resolve this problem, we develop a new hybrid in-

dex structure called spatio-temporal inverted file-R (STIR) tree that includes

time dimension into hierarchical structure embedded with spatial and textual

attributes. We incorporate the time in the STIR-tree in such a way that lower

level contains the fine granularity of time and upper level contains the coarse

granularity of time while constructing STIR-tree. Our pruning starts from the

beginning of tree traversal by keyword and time together and thereby reduce

processing time and I/O costs significantly. Based on our index structure we

propose an efficient algorithm that finds kNN spatio- temporal objects.

(a) An example of Time Uncertainty (b) An example of Nearest Time

Figure 1.4: Seller and buyer community

We also propose a variant of the STK-kNN query that incorporates time

uncertainty in the query evaluation. In our motivating example, farmers may

not be able to fix a specific date/time for the availability of a product, however,

they can predict a date/time range when the product will be ready for sell (e.g.,

a seller/farmer publishes that popular seasonal fruit “Lichi” will be available

anytime between “01 Feb 2014 to 07 Feb 2014”). As we can see that the value

for time data is uncertain in this case, and thus the query answer will have

some associate probabilities. We propose an efficient algorithm for processing

STK-kNN queries with time uncertainty. In addition to all of the above queries,

we have also proposed another variant that finds the closest match with respect

5



a give query time instead of considering the location proximity.

In summary, the contribution of this paper are as follows.

• We formulate the problem of spatio-temporal keyword search for the near-

est neighbor (STK-NN) query.

• We develop time indexing and an efficient hybrid index structure that

integrates location, keyword, and time.

• We present efficient algorithm for answering STK-kNN.

• We extend our STK-kNN query to support time uncertainty.

• We conduct an extensive experimental study which shows that our ap-

proach outperforms the straightforward approach significantly.

The structure of this book is as follows: In Chapter 2 we discuss the prelim-

inaries. In Chapter 3 we provide an overview of the related work. In Chapter 4

we define our problem definition. In Chapter 5 we describe our hybrid indexing.

In Chapter 6 we show our three types of query processing and their algorithm

for spatio-temporal keyword search for nearest neighbor. Chapter 7 reports our

experimental result and finally Chapter 8 concludes the book.

6



Chapter 2

Preliminaries

Today data is housed and managed via a database management system (DBMS).

Traditional role of DBMS is simple but effective warehouse of business and ac-

counting data. Data residing in these databases is simple, consisting of number,

names, addresses, product information etc. These DBMS are very efficient for

the task they were designed for. For example, a query like “List the top ten

customer, in terms of sales, in the year 2014” will be very efficiently answered

by a DBMS even if the database has to scan through a large customer database.

Such commands are called “queries”. The database will not scan all the cus-

tomer, it will use an index. On the other hand, a relatively simple query such

as “List all the customer who resides within fifty miles of the company head-

quarters” will confound the database. To process this query, database will have

to transform the company headquarters’ and customers’ addresses into suitable

reference system, possibly latitude and longitude, in which distance can be com-

puted and compared. Then database has to scan through the entire customer

list, compute the distance between the company and the customer, and if this

distance less than fifty miles, save the customer’s name. It will not be able

to use an index to narrow down the search, because traditional database are

incapable of ordering multidimensional coordinate data. Therefore the need for

database demands for handling spatial data and spatial queries.

In this chapter we will discuss spatial databases, spatial data (objects), spa-

tial index, spatial queries, text search, keyword index and hybrid index structure

based on spatial data and text.

7



2.1 Spatial Databases

Spatial data is known as geospatial data that identifies the geographic location

of features and boundaries on Earth, such as natural or constructed features,

oceans, and more. Spatial data is usually stored as coordinates and topology,

and is data that can be mapped. Spatial data is often accessed, manipulated or

analyzed through Geographic Information Systems (GIS). A spatial database

system is a database system that offers additional support to spatial data or

objects such as points, lines, and polygons. A spatial database system provides

support for spatial objects in its data model and query language, and employs

spatial indexes for processing spatial queries efficiently. In this section, we focus

on the main concepts of spatial database systems employed in Geographical

Information Systems (GIS).

2.1.1 Spatial Queries

Before describing spatial queries, we state an assumption about the underlying

space and present the most important spatial relationships employed in spatial

database systems.

• Underlying space. Unless explicitly mentioned, an Euclidean space is

implicitly assumed. Therefore, a point (object) is represented by a pair

of real numbers, and the distance between two points is defined by the

Euclidean distance.

• Spatial relationships. The spatial algebra offers a set of spatial rela-

tionships among the objects. The most important are: 1) topological such

as adjacent, inside, and disjoint; 2) directional such as above, below, and

left; and 3) metric such as distance.

The most important query types supported by spatial database systems are

spatial selection and spatial join. Given a dataset, a spatial selection returns the

set of objects that satisfy a predicate. The predicate can contain one or more

spatial relationships. For example, “Find all restaurants within a radius 100m

from my current location”. A spatial join, on the other hand, compares two

or more datasets through a predicate on their spatial attributes. For example,

“Find all pairs of farms and rivers that intersect”.

8



There are two major spatial queries , such as:

Range query. Given a query location q.l (point) and a distance r (radius)

from q.l, the range query returns all objects p whose distance to q.l is smaller

or equals r, dist(p, q.l) ≤ r.

Nearest neighbor queries are also very popular in spatial database systems and

is defined as:

Nearest neighbor query(k-NN). Given a query location q.l and an integer

k, the k -NN query returns the k objects nearest to q.l (shortest distance).

(a) Range query (b) Nearest neighbor (3-NN)

Figure 2.1: Example of spatial queries

Example. Figure 2.1 shows an example of range and nearest neighbor queries.

In Figure 2.1a, the range query returns the object p3 and p4 that are within

a distance r to q.l. In Figure 2.1b, the nearest neighbor query (3-NN) returns

the three objects p3, p4, and p5 nearest to the query location q.l.

2.1.2 Spatial Indexes

In this section, we describe one spatial indexes used in the thesis: R-tree. In

addition, we present how to perform spatial queries employing these indexes.

R-tree

One of the most influential access methods in the area of Spatial Data Man-

agement is the R-tree structure proposed by Guttman in 1984 [13]. It is a

hierarchical data structure based on B+-trees, used for the dynamic organi-

zation of a set of d-dimensional geometric objects. The original R-tree was

designed for efficiently retrieving geometric objects contained within a given

9



query range. Every object in the R-tree is represented by a minimum bounding

d-dimensional rectangle (MBR). Data objects are grouped into larger MBRs

forming the leaf nodes of the tree. Leaf nodes are grouped into larger inter-

nal nodes. The process continues recursively until the last group of nodes that

form the root of the tree. The root represents an MBR that encloses all objects

and nodes indexed by the tree, and each node corresponds to the MBR that

bounds its children (Figure 2.2a). A range query can be answered efficiently by

traversing the tree starting from the root and ending at the leaves, accessing

only nodes whose MBR intersect with the query range. At the leaf level of the

tree, the actual geometric objects are retrieved and tested for true containment

in the query.

An R-tree of order (m,M) has the following characteristics:

• The root node of the tree contains at least two entries, unless it is a leaf

(in this case, it may contain zero or a single entry).

• Internal nodes(Figure 2.3a) can store between m ≤ M/2 and M child

entries. Each entry is of the form (p, mbr), where p is a pointer to

a children node and mbr is the MBR that spatially encloses all entries

contained in the sub-tree rooted at this child.

• Each leaf node (unless it is the root) as shown in Figure 2.3b can store

between m ≤ M/2 and M entries. Each entry is of the form (oid, mbr),

where oid is an object identifier and mbr is the MBR that spatially en-

closes this object.

• The R-tree is a height-balanced structure, i.e., all leaves appear at the

same level of the tree.

Figure 2.2 shows an example of a spatial area (Figure 2.2a) whose the objects

are indexed in an R-tree (Figure 2.2b). In Figure 2.2b, the root is an interme-

diary node that contains three intermediary-entries pointing to the leaf-nodes

n1, n2, and n3. The intermediary-entry (m1, ∗n1) has an MBR m1 that encloses

all objects in the node n1, where ∗n1 represents a pointer to n1. The leaf-node

n1 contains two leaf-entries (mp1 , p1) and (mp3 , p3) where mp1 is a MBR that

bounds the spatial object p1 and ∗p1 is a pointer (identification) to p1 in the
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(a) Spatial query on R-tree

S1 S2

A

S3 S9

m1 m2 m3

P1 P3 P2 P4 P6 P5 P7

(b) R-tree

Figure 2.2: R-tree examples

(a) Structure of a non leaf node (b) Structure of a leaf node

Figure 2.3: Node examples

dataset.

Example. Figure 2.2a shows an example of a range query on the R-tree. The

query is looking for the objects within radius r from the cross mark q.l (query

location). The query starts at the root node searching for all entries whose

MBRs have a minimum distance to q.l smaller or equals r. Two entries satisfy

this constraints (m1, ∗n1) and (m2, ∗n2). Therefore, the leaf-nodes n1 and n2

are accessed searching for the leaf-entries whose the MBRs are within a distance

at most r from q.l. After this filtering step, the object p3 is found.

2.1.3 Cost

Most algorithms that traverse R-tree in a top-down manner use some form of

depth-first or breadth first tree traversal. Finding a leaf node containing a query

object q in a spatial index can be done in a depth first manner by recursively

descending the tree structure. With this method, the recursion stack keeps

11



Figure 2.4: The circle around query object q depicts the search region after

reporting o as next nearest object

track of what nodes have yet to be visited. Having reached a leaf, it needs to

extend this technique to find the nearest object, as the leaf may not actually

contain the nearest neighbor. The problem here is that it need to unwind the

recursion to find the nearest object. Moreover, if we want to find the second

nearest object, the solution becomes even tougher. With breadth-first traversal,

the nodes of the tree are visited level by level, and a queue is used to keep track

of nodes that have yet to be visited. However, with this technique, a lot of

work has to be done before reaching a leaf node containing q. To resolve the

problems with depth-first and breadth-first traversal, the incremental nearest

neighbor algorithm employs what may be termed best-first traversal (BFS).

When deciding what node to traverse next, it picks the node with the least

distance in the set of all nodes that have yet to be visited. This means that

instead of using a stack or a plain queue to keep track of the nodes to be visited,

we use a priority queue where the distance from the query object is used as a

key. The key feature of this solution is that the objects as well as the nodes are

stored in the priority queue.

Best First Search using R-trees

If the spatial objects are stored external to the R-tree, such that leaf nodes

contain only bounding rectangles for objects, then this adaptation leads to a

considerably more efficient incremental algorithm. This enables the bounding

rectangles to be used as pruning devices, thereby reducing the disk I/O needed

to access the spatial descriptions of the objects. In Best First Search method,

12



the search starts from the root of the tree, and the child nodes are recursively

accessed in the increasing order of their distances from the query point. The

search process terminates as soon as the k nearest data points (kNN) are re-

trieved from the tree. The Best First Search method maintains a priority queue

to store nodes to be explored through the search process. The nodes in the pri-

ority queue are sorted according to their minimum distance to the query point.

During the search process, Best First Search method repeatedly dequeues top

entry in the queue and enqueues its child nodes with their minimum distance

into the queue. When a data point is dequeued, it is included in the result set.

Suppose that we want to find the three nearest neighbors to query point q

in the R-tree given in Figure 2.2a, where the spatial objects are stored exter-

nal to the R-tree. Below, we show the dequeue and enqueue process by Best

First Search method for finding three nearest object. The process starts with

enqueueing Root node and then executes the following step:

1. Dequeue Root, enqueue m1, m2, m3

Queue:{m1, m2, m3}

2. Dequeue m1, enqueue p3, p1

Queue:{m2, p3, p1}

3. Dequeue m2, enqueue p6, p4, p2

Queue:{p3, p6, p4, p2, p1}

4. Dequeue p3, and report as 1st nearest object.

Queue:{p6, p4, p2, p1}

5. Dequeue p6, and report as 2nd nearest object.

Queue:{p4, p2, p1}

6. Dequeue p4, and report as 3rd nearest object.

Finally p3, p6, and p4 reported as 3 NN object.

Analysis

Let O be the kth nearest neighbor of the query object q, and let r be the

distance of O from q. The region within distance r from q is called the search
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region. Since q is a point, the search region is a circle radius r. Figure 2.4

depicts this scenario. Observe that all objects inside the search region have

already been reported by the algorithm (as the next nearest object), while all

nodes intersecting the search region have been examined and their contents

put on the priority queue. If n is a node that is completely inside the search

region, all nodes and objects in the subtree rooted at n have already been

taken off the queue. Thus all elements on the priority queue are contained in

nodes intersecting the boundary of the search region (the dark shaded region in

Figure 2.4). Any algorithm that uses a spatial index must visit all the nodes that

intersect the search region; otherwise, it may miss some objects that are closer

to the query object than O. Thus it is established that the algorithm visits the

minimal number of nodes necessary for finding the kth nearest neighbor. This

can be characterized by saying that the algorithm is optimal with respect to

the structure of the spatial index.

Generally, two steps are needed to derive performance measures for the

incremental nearest neighbor algorithm. First, the expected area of the search

region is determined. Then, based on the expected area of the search region

and an assumed distribution of the locations and sizes of the leaf nodes, we

can derive such measures as the expected number of leaf nodes accessed by

the algorithm (i.e., intersected by the search region) or the expected number of

objects in the priority queue. Henrich describes one such approach, which uses

a number of simplifying assumptions [3]. In particular, it assumes N uniformly

distributed data points in the two-dimensional interval [0; 1] X [0; 1], the leaf

nodes are assumed to form a grid at the lowest level of the spatial index with

average occupancy of c points, and the search region is assumed to be completely

contained in the data space. Since we assume uniformly distributed points, the

expected area of the search region is k/N and the expected area of the leaf node

regions is c/N . The area of a circle of radius r is πr2 , so for the search region

we have πr2= k/N , which means that its radius is r =
√
k/πN . If the leaf node

regions are squares, so their side length is s =
√
c/N . Henrich points out that

the number of leaf node regions intersected by the boundary of the search region

is the same as that intersected by the boundary of its circumscribed square [3].

Each of the four sides of the circumscribed square intersects [2r/s] ≤ 2r/s leaf

node regions. Since each two adjacent sides intersect the same leaf node region
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at a corner of the square, the expected number of leaf node regions intersected

by the search region is bounded by

4(2r/s− 1) = 4

(
2
√
k/(πN)√
c/N

− 1

)
= 4

(
2

√
k

πc
− 1

)
It is reasonable to assume that, on the average, half of the c points in these leaf

nodes are inside the search region, while half are outside. Thus the expected

number of points remaining in the priority queue (the points in the dark shaded

region in Figure 2.4) is at most

c

2
4

(
2

√
k

πc
− 1

)
= 2c

(
2

√
k

πc
− 1

)
=

4√
π

√
ck − 2c ≈ 2.26

√
ck − 2c

The number of points inside the search region (the light shaded region in Fig-

ure 2.4) is k. Thus the expected number of points in leaf nodes intersected by

the search region is at most k + 2.26
√
ck-2c. Since each leaf node contains c

points, the expected number of leaf nodes that were accessed to get these points

is bounded by k/c + 2.26
√
k/c - 2

To summarize, the expected number of leaf node accesses is O(k +
√
k) and

the expected number of objects in the priority queue is O(
√
k).

2.2 Text Search

The technology underlying text search engines has advanced dramatically in

the past decade. The development has led to a wide range of innovations in

keyword indexing and query evaluation. Search engines are structurally similar

to database systems. Documents are stored in a repository, and an index is

maintained. Queries are evaluated by processing the index to identify matches

which are then returned to the user. However, there are also many differences.

Database systems must contend with arbitrarily complex queries, whereas the

vast majority of queries to search engines are lists of terms and phrases. In a

database system, a match is a record that meets a specified logical condition;

in a search engine, a match is a document that is appropriate to the query

according to statistical heuristics and may not even contain all of the query

terms. Database systems return all matching records; search engines return a

fixed number of matches, which are ranked by their statistical similarity.
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2.2.1 Query Modes

In traditional databases, the primary method of searching is by key or record

identifier. Such searching is rare in text databases. The dominant mode of text

search is by its content in order to satisfy an information need. People search

in a wide variety of ways. Perhaps the commonest mode of searching is to issue

an initial query, scan a list of suggested answers, and follow pointers to specific

documents. If this approach does not lead to discovery of useful documents,

the user refines or modifies the query and may use advanced querying features

such as restricting the search domain or forcing inclusion or omission of specific

query terms. In this model of searching, an information need is represented by a

query, and the user may issue several queries in pursuit of one information need.

Users expect to be able to match documents according to any of the terms they

contain. Another contrast with traditional databases is the notion of matching.

A record matches an SQL query if the record satisfies a logical condition. A

document matches an information need if the user perceives it to be relevant.

But relevance is inexact, and a document may be relevant to an information

need even though it contains none of the query terms or irrelevant even though

it contains them all. Thus a measure is needed to identify the documents that

are relevant to users query.

2.2.2 Similarity Measures

All current search engines use ranking to identify potential answers. In a ranked

query , a statistical similarity measure is used to assess the closeness of each

document to the textual query. The underlying principle is that the higher the

similarity score awarded to a document, the greater the estimated likelihood

that a human would judge it to be relevant. Most similarity measures use some

composition of a small number of fundamental statistical values:

- fd,t , the frequency of term t in document d;

- fq,t , the frequency of term t in the query;

- ft , the number of documents containing one or more occurrences of term

t;

- Ft , the number of occurrences of term t in the collection;
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- N , the number of documents in the collection;

- n , the number of indexed terms in the collection.

Following three monotonicity are enforced:

1. Less weight is given to terms that appear in many documents.

2. More weight is given to terms that appear many times in a document.

3. Less weight is given to documents that contain many terms.

The intention is to bias the score towards relevant documents by favoring terms

that appear to be discriminatory and reducing the impact of terms that appear

to be randomly distributed.

A simple and very common formula to calculate the similarity between a

document d and the query q is given below:

wq,t = ln

(
1 +

N

ft

)
wd,t = ln

(
1 +

N

fd,t

)

Wd =

√∑
t

w2
d,t Wq =

√∑
t

w2
q,t

Sq,d =

∑
twd,t.wq,t

Wd.Wq

The quantity wq,t typically captures the property often described as the inverse

document frequency of the term, or IDF, while wd,t captures the term frequency,

or TF, hence the common description of similarity measures as TF x IDF for-

mulations. An algorithm for exhaustive ranking using the similarity measure is

shown below:
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Algorithm 1 To rank a document collection with regard to a query q and

identity the top r matching documents:

1: Calculate wq,t for each query term t in q ;

2: for each document d in the collection do

3: Set Sd ← 0;

4: for each query term t do

5: Calculate or read wd,t, and

6: Set Sd ← Sd + wq,t x wd,t;

7: end for

8: Set Sd ← Sd/Wd;

9: Identify the r greatest Sd values and return the corresponding documents;

10: end for

Given a formulation, ranking a query against a collection of documents is

in principle straightforward: each document is fetched in turn, and the simi-

larity between it and the query calculated. The documents with the highest

similarities can then be returned to the user.

2.2.3 Keyword Indexing

Fast query evaluation makes use of an index: a data structure that maps terms

to the documents that contain them. For example, the index of a book maps a

set of selected terms to page numbers. With an index, query processing can be

restricted to documents that contain at least one of the query terms.

In applications involving document, the single most suitable structure is an

inverted file [27]. An inverted file contains, for each term in the lexicon, an

inverted list that stores a list of pointers to all occurrences of that term in the

document, where each pointer is, in effect, the number of a document in which

that term appears.

Baseline Inverted File.

An inverted file index consists two major components. The search keyword or

vocabulary stores for each distinct word t,

- a count ft of the documents containing t.
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- a pointer to the start of the corresponding inverted list.

The second component of the index is a set of inverted lists where each list

stores for the corresponding word t,

- the identifiers d of documents containing t, represented as ordinal docu-

ment numbers.

- the associated set of frequencies fd,t of terms t in document d.

The lists are represented as sequences of < d, fd,t > pairs. There is a simple

example on how to build inverted file index.

Document Text

1 Material world is

2 Bounded by time and space

3 There is no time and space

4 In spiritual world

Table 2.1: Document set

Table 2.1 represents the document set. We build the corresponding word-

level inverted file index as shown in Table 2.2. Together with an array of Wd

values (stored separately as shown in Table 2.3), these components provide all

the information required for both Boolean and ranked query evaluation.

Number Term t Times ft Inverted list for t

1 Bounded 1 < 2, 1 >

2 Material 1 < 1, 1 >

3 Space 2 < 2, 1 > < 3, 1 >

4 Spiritual 1 < 4, 1 >

5 Time 2 < 2, 1 > < 3, 1 >

6 World 2 < 1, 1 > < 4, 1 >

Table 2.2: Document level Inverted File

Notice that the word like “By”, “Is”, “In”, “No”, “There” are not considered

as distinct vocabulary . They are considered as STOP WORDS. No inverted

list is created for such type of stop words.
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d 1 2 3 4

Wd 1.41 1.73 1.41 1.41

Table 2.3: Score of documents

Ranking using an inverted file is described in Algorithm 3. In this algorithm,

the query terms are processed one at a time. Initially each document has a

similarity of zero to the query; this is represented by creating an array A of

N partial similarity scores referred to as accumulators, one for each document

d. Then, for each term t, the accumulator Ad for each document d mentioned

in ts inverted list is increased by the contribution of t to the similarity of d

to the query. Once all query terms have been processed, similarity scores Sd

are calculated by dividing each accumulator value by the corresponding value

of Wd . Finally, the r largest similarities are identified, and the corresponding

documents returned to the user.

Algorithm 2 To use an inverted index to rank a document collection with

regard to a query q and identify the top r matching documents:

1: Allocate an accumulator Ad for each document d and set Ad ← 0;

2: for each query term t in q do

3: Calculate wq,t, and fetch the inverted list for t ;

4: for each pair < d, fd,t > in the inverted list do

5: Calculate wd,t, and

6: Set Ad ← Ad + wq,t x wd,t;

7: end for

8: end for

9: Read the array of Wd values;

10: for each Ad > 0 do

11: Set Sd ← Ad/Wd;

12: end for

13: Identify the r greatest Sd values and return the corresponding documents;

The cost of ranking via an index is far less than with the exhaustive Algo-

rithm 2. Nonetheless, the costs are still significant. Disk space is required for

the index at 20% ∼ 60% of the size of the data for an index of the type shown

in Table 2.2; memory is required for an accumulator for each document and for
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some or all of the vocabulary; CPU time is required for processing inverted lists

and accumulators; and disk traffic is used to fetch inverted lists.

2.2.4 Hybrid Index Framework: The IR-Tree

The R-tree is the dominant index for spatial queries, and the inverted file is

the most efficient index for text information retrieval. These were developed

separately and for different kinds of queries. IR-tree utilizes both indexing

structures in a combined fashion.

The IR-tree is essentially an R-tree, where each node of which is enriched

with reference to an inverted file for the objects contained in the sub-tree rooted

at the node. In the IR-tree, a leaf node N contains a number of entries of the

form (O,rectangle,O.ψ), where O refers to an spatial object in database D,

rectangle is the bounding rectangle of object O, and O.ψ is the k keyword of

the spatial object O.

A non-leaf node R contains a number of entries of the form (N ,rectangle,N.ψ)

where N is the address of a child node of R, rectangle is the Minimum Bounding

Rectangle of all rectangles in entries of the child node, and N.ψ is the identifier

of an of an inverted list which is the union of all item in the lists of it’s child

nodes.

Figure 2.5: IR-tree.

In this chapter, we have discussed location indexing (R-tree), text indexing

(Inverted file), hybrid indexing based on location and text (IR-tree). We have

also highlighted spatial query, mainly Nearest Neighbor query and Range query.

We have discussed the Similarity Measure that current search engine use to

assess the closeness of each document to the textual query and inverted file.
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Chapter 3

Related Work

In this chapter, we discuss the related works based on indexing technique and

their query. Basing on the hybrid index structure, we classify the existing works

into three categories.

1. Nearest Neighbor Queries.

2. Spatial Keyword Queries.

3. Tempo-Textual Queries.

3.1 Nearest Neighbor Queries

Searching for a nearby data object from a database based on the location has

received considerable attention from database community. Existing technique

for processing k queries assume that data objects are indexed, e.g. using an

R-tree [13]. In order to find kNN from a query point, the tree can be traversed

in a depth-first (DF) [18] or a best-first (BF) [15] manner. In the BF technique

, the search starts from the root of the R-tree. Initially, all child nodes of the

root nodes are stored in a priority queue. The entries in the priority queue

are ordered based on the minimum distance between the query point and the

minimum bounding rectangles (MBRs) of R nodes or data objects. In the next

step, it removes the top element from the queue, which is the node representing

the MBR or a data object with the minimum distance from the query point. If

the removed element is a node, algorithm again inserts the child nodes or data

objects of the removed node into the priority queue. On the other hand if the
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dequeued item is a data object, then the corresponding object is reported as

the next nearest neighbor. The above process continues until k data objects,

i.e., k NNs are dequeued from the queue.

Finding a leaf node containing a query object q in a spatial index can be done

in a depth first (DF) manner by recursively descending the tree structure [16].

With this method, the recursion stack keeps track of what nodes have yet to

be visited. Having reached a leaf, it needs to extend this technique to find the

nearest object, as the leaf may not actually contain the nearest neighbor. The

problem DF technique is that it has to unwind the recursion to find the nearest

object. Moreover, if it needs to find the second nearest object, the solution

becomes even tougher.

3.2 Spatial Keyword Queries

There is more and more commercial and research interest in location-based web

search, i.e. finding web content whose topic is related to a particular place or

region. In this type of search, location information should be indexed as well as

text information. However, the index of conventional text search engine is set-

oriented, while location information is two-dimensional and in Euclidean space.

This brings new research problems on how to efficiently represent the location

attributes of web pages and how to combine two types of indexes and how to

efficiently search location specific information. A straight forward approach is to

treat textual information which represent spatial object as common keywords,

and to retrieve spatial object in the same way to keyword matching. However,

simple keyword matching neglects underlying spatial relationships.

Zhou et al. [26] tackled the problem of retrieving web documents relevant

to a keyword query within a pre-specified spatial region. They proposed three

approaches based on loose combination of of an inverted files and R* -trees. R*

tree is another variant of R-tree. Inverted file is a structure to index keywords

of a document which we have described elaborately in Chapter 2. They studied

three different combining schemes:

1. Inverted file and R*-tree double index.

2. First inverted file then R*-tree.
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3. First R*-tree then inverted file.

In the first scheme web pages are indexed separately twice, once by R*-tree

and once by inverted files. All MBRs are indexed by an R*-tree. The difference

from conventional R*-tree is that each leaf node of the MBR tree points to a

page list whose scope includes this MBR, as shown in Figure 3.1. Inverted files

are the same to conventional search engines. Thus it maintains two kinds of

page lists whose entry is either an MBR or a keyword.

In the second scheme, first an inverted index file is built. Then, the file is

modified by building a R*-tree to the set of objects MBR pointed to by each

keyword in the file. The leaf node of R*-tree points to a page list of object

ids whose entry contain the keyword and the MBR. This entry is called a geo-

keyword. When a query is issued, the query keywords are filtered using the

inverted index. Later, the R*-tree corresponding to each query keyword are

used to filter the spatial part of the query. The intersection of object ids from

the R*-trees produces the final answer set. This approach is highly insensitive

to Spatial Keyword queries with the AND semantics as this approach does not

take advantage of the association of keywords in space.

In third scheme, as shown in Figure 3.2b, an R*-tree is first built for all

the objects MBR irrespective of keywords. An inverted index file is created for

keywords that appear in the leaf node of the tree. Each keyword in this inverted

index points to a page list of object ids whose entries contain both the MBR and

the keyword, again referred to as geokeyword. When a query is issued, a set of

leaf nodes that intersect with the query rectangle is retrieved first. Then using

the retrieved nodes inverted file index, object ids satisfying the query keywords

are obtained. In this approach, the leaf nodes point to inverted index lists that

are usually small and causes generating of many candidate object ids during

spatial filtering stage.

Zhou’s’ hybrid index structure prune the search space by spatial pruning

and textual pruning separately and retrieve relevant documents within a given

geographic region. Hariharan et al. [14] proposed an improved hybrid index

structure called Keyword R (KR∗) tree. KR∗ tree consist of an R*-tree and

an inverted file for the nodes of the R*-tree. The nodes of KR*-tree are vir-

tually augmented with the sets of keywords that appear in the subtrees rooted

at that nodes. Thus, many keywords appear in the upper level nodes of the
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Figure 3.1: Inverted File and R∗ tree double index

(a) Inverted File-R*-tree (b) R*-tree Inverted File

Figure 3.2: Zhou’s index structure

tree and smaller number of keywords appear in the lower level nodes of the

tree. At query time, the KR*-tree based algorithm finds the nodes that contain

the query keywords and then uses these as candidates for subsequent search.

This approach suffers from unnecessary overhead when there are many candi-

dates. KR∗ tree only good for spatial objects with a small number of keywords.

Though his keyword query works on integrated manner but his work does not

support nearest neighbor queries.

Consider a simple emergency GIS database presented in Table 3.1. The

database has 10 objects whose spatial distribution and the corresponding KR*-

tree nodes are shown in Figure 3.3a. Now, let us consider an SK query: <
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OID X Y keywords

1 x1 y1 {fire,medical}
2 x2 y2 {earthquake,medical}
3 x3 y3 {fire,medical}
4 x4 y4 {facility,medical}
5 x5 y5 {earthquake,hazard}
6 x6 y6 {earthquake,medical}
7 x7 y7 {fire,facility}
8 x8 y8 {earthquake,shelter}
9 x9 y9 {fire,shelter}
10 x10 y10 {earthquake,shelter}

Table 3.1: Example GIS database

Node keywords

r {earthquake, medical, shelter,fire,facility, hazard}
n1 {fire, medical, earthquake, facility, hazard}
n2 {fire, medical, earthquake,shelter,facility}
n3 {fire, medical,earthquake}
n4 {fire, medical,earthquake, facility }
n5 {medical, fire, earthquake,facility}
n6 {earthquake,shelter,fire}

Table 3.2: Distribution of keywords in space

q, {earthquake, shelter > that asks for earthquake shelter in spatial region q.

In order to answer this query KR∗ tree performs better than previous three

index structure.

Using R*-tree Inverted file: For the same example query, the R*-tree nodes

r, n1, n2, n3, n4, n5, n6 are accessed to generate the candidate object set. Next,

the inverted index list of leaf nodes n3, n4, n5, n6 are accessed to filter objects

that contain the keywords earthquake and shelter to finally arrive at the answer

set o8, o10.

Using Inverted file R*-tree: For the example query, first the R*-trees of the

keywords earthquake and shelter are loaded to get the candidate object id lists.
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(a) Objects Distributed in Space (b) KR*-tree

Figure 3.3: Space diagram and KR* tree

Then, the intersection of the two candidate object id lists gives the answer set

o8, o10.

Using KR*-tree: Table 3.2 shows the keywords that appear in space covered

by all nodes of the KR∗ tree. For the given query, the root is first accessed

to get its children n1 and n2. Now, for each child node, its spatial intersection

with the query region and the presence of query keywords in it are checked. In

this case, n1 does not contain both the keywords, but n2 does, hence only node

n2 is opened. Applying the same principle for n2ś children, we see that only

n6 satisfies the SK query. Hence only {r, n2, n6} are accessed to generate the

candidate object set.

Yiu et al. [23] worked on spatial preference query that ranks objects based on

the qualities of features in their spatial neighborhood and retrieves the spatial

objects basing on their rank. In his work, spatial data are ranked by the user

with respect to the appropriateness of their location, the qualities of other

features (e.g., restaurants, cafes, hospital, market, etc.) within a distance range

from them. However, here he did not consider the keywords to search those

spatial objects.

Many applications require finding objects closest to a specified location that

contains a set of keywords. For example, online yellow pages allow users to

specify an address and a set of keywords. In return, the user obtains a list of

businesses whose description contains these keywords, ordered by their distance

from the specified address. This kind of application require spatial indexing
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Figure 3.4: IR2 tree

for finding the nearest object from query’s precise location (point location) and

keyword indexing to get keyword as an input to search the spatial object by

it’s description (textual information). Felipe for the first time combined these

index in a single structure called Information Retrieval R (IR2) tree [12]. IR2

tree is an R-tree where a signature [11] is added instead of inverted file to each

node of the IR2 tree to denote the textual content of all spatial objects in the

subtree rooted at that node.

A signature file is a technique applied to document retrieval. In this tech-

nique, the documents are stored sequentially in the “text file” and their ab-

straction are stored sequentially in the “signature file”. The signature of a node

of IR2 tree (Figure 3.4) is the superimposition (OR-ing) of all the signatures of

its entries. Thus a signature of a node is equivalent to a signature for all the

documents in its subtree. When a query arrives, the signature file is scanned

sequentially, and a large number of non qualifying documents are discarded.

A drawback of the IR2-tree is that the same signature length is used for

all levels which leads to more false positives in the higher levels, that have

more 1s (since they are the superimpositions of the lower levels). To address

this problem, they use varying signature lengths for different levels. This is

achieved using multi-level superimposed coding, which reduces the number of

false positives, particularly in non-leaf nodes. In this case, they use the optimal

signature length for each level and superimpose the signatures of all objects

in the subtree of each node, instead of the signatures of the children nodes as

before. This variant is called Multi-level IR2-tree (MIR2 tree). A drawback

of this MIR2 tree, is that it significantly increases the complexity of the tree

maintenance operations (Insert and Delete) since for each object inserted or
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deleted, it need to recompute the signatures of all ancestor nodes by accessing

all underlying objects and not just by superimposing the childrens signatures

as before. In his proposed index structure performance get worst when the

number of keyword increases. At times, signature files are not able to eliminate

the objects not satisfying the query keywords (false hits). This result in loading

and reading more objects, which is costly. However their work support nearest

neighbor queries by keyword search for the first time in hybrid indexing field.

Work discussed so far is based on spatio object retrieval by keyword match-

ing. In many cases user may interest on finding spatial objects that is textually

relevant to user’s search keyword. In this case, a new method is required to

rank an object how much relevant they are to user’s search keyword. Cong

proposed a new kind of ranking query which is called location aware top-k text

retrieval (LkT ) query [10]. Their index approach called the Inverted File R

(IR) tree which is essentially an R-tree extended with inverted files. Their

query processing algorithm utilizes the location index information to estimate

the spatial distance of a query to the objects in the nodes sub-tree, and it uses

the text index to estimate the text relevancy scores for these objects. Thus their

query returns objects ranked according to a linear interpolation function that

combines normalized location proximity and text relevancy. If D be a spatial

database and each spatial object S in D is defined as pair (S.loc, S.doc), where

S.loc is a location descriptor in multidimensional space and S.doc is a document

(e.g., a dining menu) that describes the object (e.g., an Italian restaurant). Doc-

ument S.doc is represented by a vector in which each dimension corresponds to

a distinct term in the document. The value of a term in the vector is computed

by a language model [22, 24] as follows:

p̂(t | θS.doc) = (1− λ)tf(t, S.doc)
|S.doc|

+ λ
tf(t, Coll)

|Coll|
where tf(t,S.doc) is the number of occurrences of term t in document S.doc

and tf(t,Coll) is the count of term t in the document collection Coll of D;

tf(t,S.doc)/|S.doc| is the maximum likelihood estimate of term t in document

S.doc and tf(t,Coll)/|Coll| is the maximum likelihood estimate of term t in

collection Coll ; λ is a smoothing parameter of the Jelinek-Mercer smoothing

method. Given a query Q and a document S.doc, the ranking function for the

query likelihood language model is as follows:
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P (Q.keywords|S.doc) =
∏

t∈Q.keywords

p̂(t | θS.doc)

To rank an spatial object S with respect to query object Q, they derived a

ranking function as a linear interpolation of normalized factors.

DST (Q,O) = λ
De(Q.loc, S.loc)

maxD
+ (1− λ)(1− P (Q.keywords|S.doc)

maxP
)

where λ ∈ (0, 1) is a parameter used to balance spatial proximity and text

relevancy; the Euclidian distance between Q and S, De(Q.loc, S.loc), is normal-

ized by maxD, which is the the maximum distance between two objects in D ;

and maxP is used to normalize the probability score into the range from 0 to 1

and is computed by:

∏
t∈Q.keywords

max
S′∈D

p̂(t|S ′.doc)

This ranking function is used when their query algorithm reaches leaf nodes.

During visiting the internal node of IR tree they use the following ranking

function:

MINDST (Q,N) = λ
MINDe(Q.loc,N.mbr)

maxD
+(1−λ)(1−P (Q.keywords|N.doc)

maxP
)

HereMINDST (Q,N) is the minimum Euclidian distance between Q.loc and

N.mbr. N.doc is the pseudo document on node N and,

P (Q.keywords|N.doc) =
∏

t∈Q.keywords

p̂(t | θN.doc)

They also proposed another variant of IR tree called DIR tree . While IR

tree considers only location information when generating it’s MBRs, the DIR

tree considers both location information and document similarity. LkT query

is able to prune the search space by simultaneous use of both spatial proximity

and text relevancy and result in retrieval of kNN spatial objects.

There are some major problems with IR tree. First, one inverted file needs

to be stored. For web, total number of documents and keywords are very

large, that results huge number of nodes in R-tree and also large inverted file
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Location Documents keywords

Soccer League

Redonda beach d1 5 4

Culver city d2 3 0

Palma d3 1 1

Santa Monica d4 1 1

Downtown d5 2 2

Pasedena d6 0 2

Table 3.3: Documents describing the location

in each node. Addressing this problem, Khodaeil et al. [20] work on web pages

containing documents that describe specific object for a specific location. They

present a ranking method that considers both the spatial overlap of a document

with a query and the frequency of the query keywords in the document in order

to compute relevance score of the document to the query. To measure the

textual relevancy they use a similarity measure (tf-idf ) .

In most keyword queries, a similarity measure is determined by using the

following important parameters:

where

- fd,k , the frequency of keyword k in document d;

- maxfd,k , the maximum value of fd,k over all the keywords in document

d;

- fd,k , normalized of fd,k, which is
fd,k

max(fd,k)
;

- fk , the number of documents containing one or more occurrences of key-

word k ;

Using these values, three monotonicity observations are enforced (1) less

weight is given to the terms that appear in many documents; (2) more weight

is given to the terms that appear many times in a document; and (3) less

weight is given to the documents that contain many terms. The first property

is quantified by measuring the inverse of frequency of keyword k among the

documents in the collection. This factor is called inverse document frequency
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Figure 3.5: A spatial keyword query on documents with location information

(a) Property (2) and (3) (b) Example of SK query considering cell

Figure 3.6: Space partitioned into grid cells

or the idf score. The second property is quantified by the raw frequency of

keyword k inside a document d. This is called term frequency or tf score, and it

describes how well that keyword describes the contents of the document. The

third property is quantified by measuring the total number of keywords in the

document. This factor is called document length.

In order to be able to use the analogous ideas used in the regular tf-idf score,

they treat spatial data similar to textual data. For this, they partition the

space into grid cells and assign unique identifiers to each cell. Therefore, each

location in document can be associated with a set of cell identifiers. These cells

are defined as the cells which overlap with the document location. With spatial

tf-idf, the overlap of a cell with the document is analogous to the existence of

a keyword in document with tf-idf. They use the overlap area between each

cell and the document to provide a measure of how well that cell describes

the document. Analogous to frequency of term t in document d, they define

frequency of cell c in document d as fd,c = Ld∩c
c

, which is the area of overlap
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between the document location Ld and cell c divided by the area of cell c.

Analogous to textual relevancy following parameter can be defined:

- fd,c , the frequency of cell c in document d;

- maxfd,c , the maximum value of fd,c over all the cells in document d;

- fd,c , normalized of fd,c, which is
fd,c

max(fd,c)
;

- fc , the number of documents containing one or more occurrences of cell

c;

So (1) less weight is given to cells that appear in many documents; (2) more

weight is given to cells that overlap largely with a document; and (3) less weight

is given to documents that contain many cells. For example in Figure 3.6a, cell

C9 better describes the document d2 than C3 as it largely overlaps document d2.

As per property 3, document d1 should be weighted more than d2 as d1 contain

less cells. Cell C8 should be weighted less than cell C9 as per property 1 as C8 is

appeared in document d2 only. By combining these two relevancy they propose

new index structure called spatial keyword inverted file (SKIF ) and treat the

spatial data similar to textual data and thus avoid using R-tree. SKIF structure

is capable of indexing and searching both textual and spatial data in a similar

and integrated manner. Their work did not consider NN queries.

LkT query returns ranked objects that are near to a query location and

their textual descriptions match query keywords. However, it is found that a

relevant object with nearby objects that are also relevant to the query is likely

to be preferable over a relevant object without relevant nearby objects. Based

on this findings, a new type of query, the Location-aware top-k Prestige-based

Text retrieval (LkPT) query is proposed [7] that retrieves the top-k spatial

web objects ranked according to both prestige-based relevance and location

proximity. LkPT query takes into account both location proximity and prestige

based text relevance (PR). PR score of an object is affected by the PR scores

of its neighbors.

Hybrid index( [7], [10], [14]) discussed so far augments the nodes of an R-

tree with inverted indexes. The inverted index at each node refers to a pseudo-

document that represents all the objects under the node. Therefore, in order to

verify if a node is relevant for a set of query keywords, the current approaches
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Object keywords

P1 {bar, pub, pop, pop}
P2 {pub, rock}
P3 {bar, rock }
P4 {bar, bar, samba}
P5 {pub, samba }
P6 {pub, bar, pub, bar}
P7 {pub, samba}

Table 3.4: Keywords describing the objects

Term id dft type ptr storage

bar t1 4 tree ↪→ aRt1

pop t2 2 block ↪→ ⟨P1, P5⟩
pub t3 5 tree ↪→ aRt3

rock t4 2 block ↪→ ⟨P2, P3⟩
samba t5 2 block ↪→ ⟨P4, P7⟩

Table 3.5: S2I

(a) aRt1
(b) aRt3

Figure 3.7: Spatial Inverted index and the aR tree of terms t1 and t3

access the inverted index at each node to evaluate the similarity between the

query keywords and the pseudo-document associated with the node. This pro-

cess incurs in non-negligible processing cost that results in long response time.

To increase the performance of top-k spatial keyword queries Rocha-Junior et

al. [17] proposed a novel hybrid index called spatial inverted index (S2I ) in-

stead of employing single R-tree embedded with inverted indexes. S2I maps

each keyword (term) to a distinct aggregated R-tree (aR-tree) that stores the

objects with the given term. The S2I maps each term t to an aR-tree or to a

block that stores the spatio-textual objects p that contain t. The most frequent

terms are stored in aR-trees, one tree per term. The less frequent terms are

stored in blocks in a file, one block per term. Similarly to a traditional inverted

index, the S2I maps terms to objects that contain the term. Thus S2I consists

of three components: vocabulary, blocks, and trees as shown in Table 3.5.
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Vocabulary. The vocabulary stores, for each distance terms the number of

objects in which the term appears (dft), a flag indicating the type of storage

used by the term (block or tree), and a pointer to a block or aR-tree that stores

the objects containing the given term.

Blocks.Each block stores a set of objects, the size of a block is an application

parameter. For each object, object identification p.id, the object location p.l,

and the impact of term t in textual document p.d (λt,p.d).

Trees. The aggregated R-tree of a term aRt (Figure 3.7a,3.7b) follows the same

structure of a traditional R-tree. A leaf-node stores information about the data

objects: p.id, p.l, and λt,p.d. An intermediary-node stores for each entry (child

node) a minimum bounding rectangle (MBR) that encloses the spatial location

of all objects in the sub-tree. Differently from an R-tree, the nodes of an aR-tree

store also an aggregated non-spatial value among the objects in its sub-tree. In

this case, the aggregated value is the maximum impact of the term t among the

objects in the sub-tree of the node.

In many cases user’s need may not be easily satisfied by a single objects, but

a group of objects can collectively better satisfy an user need. Considering this

scenario Cao et al. [8] again used the IR-tree. But here they worked on retrieving

group of object having lowest inter object distances between them and are close

to query point. Their method collectively meet the query keywords. If D be

a database consisting of m spatial objects then a spatial group keyword query

q = ⟨q.λ, q.ψ⟩ where q.λ is a location and q.ψ represents a set of keywords will

retrieve a group of objects χ, χ ⊆ D, such that ∪r∈χr.ψ ⊇ q.ψ and such that

the cost Cost(χ) is minimized. Their cost function has two weighted function

as follows:

Cost(q, χ) = αC1(q, χ) + (1− α)C2(χ)

where C1(.) is dependent on the distance of the objects in χ to the query object

and C2(.) characterizes the inter-object distances among the objects in χ. α

is the parameter that is used to give preference on C1 and C2. Most existing

works on spatial keyword queries retrieve single objects that are close to the

query point and are relevant to the query keywords. In contrast, her work

retrieve groups of objects that are close to the query point and collectively

meet the keywords requirement.

The proliferation of geo-social network, such as Foursquare and Facebook
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Places, enables users to generate location information and its corresponding

descriptive tags. Using geo-social networks, users with similar interests can

plan for social activities collaboratively. Zhang et al. [25] proposes a novel type

of query, called tag-based top-k collaborative spatial (TkCoS ) query, for users

to make outdoor plans collaboratively. This type of queries retrieve groups of

geographic objects that can satisfy a group of users requirements expressed in

tags, while ensuring that the objects be within the minimum spatial distance

from the users. To answer TkCoS queries efficiently, an hybrid index structure

called spatial-tag R-tree (STR-tree) is proposed, which is an extension of the

R-tree.

Many location-based service (LBS) users have direction-aware search re-

quirement. For example, a user on the highway wants to find nearest gas sta-

tions or restaurants. She has a search requirement that the answers should

be in the right front of her driving direction, if in a right-hand traffic coun-

try. To address this issue, Li and Xu work on direction-aware spatial keyword

queries [21] called Desks and proposed direction-aware index structure to prune

unnecessary directions.

3.3 Temporal and Textual Queries

Modern text analytics applications operate on large volumes of temporal text

data such as Web archives, newspaper archives, blogs, wikis, and micro-blogs.

In these settings, searching and mining needs to use constraints on the time

dimension in addition to keyword constraints. Anand et al. [5] worked on Web

archives, newspaper archives, blogs, wikis, and micro-blogs which consists of

large volumes of temporal text data. Their queries that combine the content

and temporal predicates are termed as time-travel queries. For efficient queries,

they temporally partitioned inverted index which essentially meant that the

time enriched inverted indexes are sliced along the time-axis (or partitioned

vertically). Such index organization suffers from an index-size blowup incurred

during the slicing process. Considering this later they proposed to shard or hor-

izontally partition each index list along document identifiers, instead of time [6].

Again Khodaeil and Shahabi work on web pages [19]. But this time they

considered handling the time with document’s textual information. To index
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temporal and textual attributes of document he proposed tempo-textual in-

verted index (T 2I2). T 2I2 index structure is capable of indexing and searching

both textual and temporal data in a similar and integrated manner and results

in retrieval of top-k document based on temporal and textual relevance score.

Here, they did not consider location indexing.

Figure 3.8: Temporal cells

In order to use the analogous ideas of regular tf-idf score, they treat temporal

data similar to textual data. Hence they partition the time domain into con-

secutive cells and assign unique identifiers to each cell (Figure 3.8). Therefore,

each time span in the document can be associated with a set of cell identifiers.

These cells are defined as the cells which overlap with the document time span.

With temporal tf-idf, the overlap of a cell with the document is analogous to

the existence of a keyword in the document with tf-idf. These cell describes the

temporal content of the document that comes from following three properties.

1. Less weight is given to cells that appear in many documents.

2. More weight is given to cells that overlap largely with a document.

3. Less weight is given to documents that contain many cells.

Thus in Figure 3.8 we find that cell C6 better describes document d1 than cell

C5 as per property 2. Document d1 should be weighted less than document d5

as per property 3. Cell C3 should be weighted less than cell C5 as per property

1.
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Finally Chen et al. [9] provides an all around survey of hybrid indexing that

comprised of location and keyword indexing only. So far we have discussed the

related works on spatial keyword queries, most of them is based on location and

keyword[6,7,9,11,13,17,20,21,25,26] and very few works[4,5,19] based on text

and time. We focus on spatio-temporal keyword search, where we need to

incorporate time in tandem with location and keywords and to the best of our

knowledge no work has been done so far on our proposed area.

In this chapter, we have discussed current works related to hybrid index

structure that mostly based on location indexing and keyword indexing and

their queries. We also have highlighted few works on hybrid index structure

based on text indexing and time indexing. Finally, we have mentioned our

proposed index structure that based on location index, keyword index, and

time index.
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Chapter 4

Problem Definition

In this chapter, we first formulate our problem based on a real world application.

Let us consider our future marketing based location based services. The

application hosts a list of sellable items/objects described by their locations,

descriptions, and the time of item availability from sellers. A buyer submits an

STK-kNN query represented as buyer’s location, item description, and desired

time when the buyer wants the item.

Seller X Y Item From To

S1 5 9 Potato, Onion 07/06/14 0900hrs 07/06/14 1500hrs

S2 9 6 Onion,Garlic 12/06/14 1200hrs 12/06/14 1800hrs

S3 2 17 Potato,Garlic 14/08/14 0600hrs 14/08/14 1200hrs

S4 17 16 Onion,Potato,Garlic 30/06/14 0600hrs 12/07/14 0800hrs

S5 23 21 Apple,Onion 14/08/14 0900hrs 14/08/14 1200hrs

S6 22 11 Lemon,Cucumber 01/07/14 1500hrs 01/07/14 1800hrs

S7 17 5 Onion,Potato 02/06/14 0600hrs 29/06/14 1800hrs

S8 23 3 Cucumber,Potato 07/06/14 0900hrs 31/07/14 2100hrs

S9 5 14 Garlic,Potato 22/08/14 0900hrs 15/09/14 0900hrs

Table 4.1: Sample data set of seller object

Table 4.1 shows location, textual description (keyword), and temporal de-

scription for a set S of seller objects as {S1, S2, ........, Sn} in a spatial database

D. Object Si is defined as triple (Si.λ, Si.ψ, Si.t) where Si.λ denotes location,

Si.ψ is a set of keywords, and Si.t is time stamp of the object. Similarly we

can represent a STK-kNN query Q as (Q.λ,Q.ψ,Q.t). Once buyer submit a

STK-kNN query to location based service provider, it returns k nearest objects

(with respect to buyer’s location) that match the query’s keyword and time.

In this paper, we develop an efficient technique to answer STK-kNN queries.
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Moreover, since sellers may not certain about the item availability, time

range given by the seller needs to be considered as uncertain data, where the

item will be available at any point of time in the given time range. In such

cases, the answer of an STK-kNN query will have a probability value assigned

to the returned object. For example, a seller S1 publishes an item as “Lichi

will available anytime between 03 Feb 2014 and 10 Feb 2014”. Another seller S2

with more confidence publishes his item as “Lichi will be available between 03

Feb 2014 and 05 Feb 2014”. Now if a buyer submit a query like “Find nearest

seller location having Lichi on 01 Feb 2014”, then an STK-kNN query retrieves

the k nearest objects each having with probability value. This probability value

determines how reliable and relevant they are to the query’s time. In this

case, seller S2 has more probability value than seller S1 as S2 predicts the item

availability in a short time span. In this paper, we extend the STK-kNN query

to handle time uncertainty.
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Chapter 5

Our proposed STIR-tree

In this chapter, we first discuss location indexing and keyword indexing based

spatial information and text information on Table 4.1 of Chapter 4. Then

discuss our time indexing method and how to integrate time indexing with

existing hybrid index structure based on location and keyword. We call our

proposed hybrid index structure as STIR-tree.

5.1 Indexing Location

For location indexing we use the R-tree [13]. Every object in the R-tree is

represented by a minimum bounding d dimensional rectangle (MBR). Data

objects are grouped into larger MBRs forming the leaf nodes of the tree. Leaf

nodes are grouped into larger internal node or non leaf node. The process

continues recursively until the last group of nodes form the root of the tree.

The root represents the MBR that encloses all objects and nodes indexed by

the tree and each node corresponds to the MBR that bounds it’s children.

Figure 5.1(a) shows point location of the spatial objects taken from Table 4.1

and their bounding rectangle and Figure 5.1(b) shows corresponding R-tree.

5.2 Indexing Keywords

A keyword index is a mechanism for locating a given term in a document.

In applications involving document, the most suitable structure is an inverted

file [27]. Inverted file consist of lists, one per keyword (K ), recording the iden-
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(a) Objects and their

bounding rectangles

(b) R-tree formed by location of the objects

Figure 5.1: Our location indexing

tifier of the documents containing the keywords. This file consists of two major

parts.

• Vocabulary list. The vocabulary list is a distinct keywords that describe

the object. Vocabulary list can also be taken as keyword list.

• Posting list. A posting list for each distinct keywordK which is a identifier

of the object that contain the respective keyword.

In our application since list of items (Column 4) describe their respective

entity as shown in Table 4.1, our inverted file contains for each item K an

inverted list as a sequence of < l, fl,K >. Here l is the list identifier and fl,K is

the frequency of the item that appears in that list. In the leaf node of R-tree,

we index the keyword or item by list identifier and in the non leaf node we

index the item by an identifier which is the union of all item in the lists of it’s

child node. Table 5.1 shows the inverted list of leaf nodes R1, R2, R3, and R4

and Table 5.2 shows the inverted list of non leaf nodes R5, R6, and R7. For

example, item Onion available at entity S1, S2, S4, S5, and S7. Since leaf node

R1 bounds S1 and S2, R3 bounds S4 and S5 and R4 bounds S6, S7, and S8, so

the inverted list of Onion for leaf node R4 is < S7, 1 >. Here S7 is the identity

where Onion is available and 1 is the frequency that the item appears in the

object. In this case, Onion appears once in S7. Though R3 bounds S6 and S8

but they are not listed in the inverted list as Onion is not available at S6 and

S8. Similarly inverted list of Onion for leaf node R3 is < S4, 1 >,< S5, 1 >.

Non leaf node R5 and R6 bounds leaf nodes R1, R2 and R3, R4 respectively.

So the inverted list of Onion for R6 is < R3, 2 >,< R4, 1 >. As inverted
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R4 R3 R2 R1

Potato: < S7, 1 >,< S8, 1 > Potato: < S4, 1 > Potato: < S3, 1 >,< S9, 1 > Potato: < S1, 1 >

Onion:< S7, 1 > Onion:< S4, 1 >,< S5, 1 > Garlic:< S3, 1 >,< S9, 1 > Onion:< S1, 1 >,< S2, 1 >

Lemon:< S6, 1 > Garlic:< S4, 1 > Garlic:< S2, 1 >

Cucumber:< S6, 1 >,< S8, 1 > Apple:< S5, 1 >

Table 5.1: Inverted list for leaf nodes R1, R2, R3, and R4

Root(R7) R6 R5

Potato: < R5, 2 >,< R6, 2 > Potato: < R3, 1 >,< R4, 2 > Potato: < R1, 1 >,< R2, 2 >

Onion:< R5, 1 >,< R6, 2 > Onion:< R3, 2 >,< R4, 1 > Onion:< R1, 2 >

Garlic:< R5, 2 >,< R6, 1 > Garlic:< R3, 1 > Garlic:< R1, 1 >,< R2, 2 >

Apple:< R6, 1 > Apple:< R3, 1 >

Lemon:< R6, 1 > Lemon:< R4, 1 >

Cucumber:< R6, 1 > Cucumber:< R4, 1 >

Table 5.2: Inverted list for non leaf nodes R5, R6, and R7

list for Onion appears twice in leaf node R3 and once in leaf node R4, so the

number 2 and 1 appears in R6’s inverted list. Similarly inverted list for non

leaf node R5 is < R1, 2 >. Likewise inverted list of Onion for root node R7 is

< R5, 1 >,< R6, 2 >.

5.3 Time Indexing

In this section, we have developed a methodology that allows us to organize

time hierarchically in the R-tree in tandem with location and keywords. The

intuition behind our index is to exploit the natural time-granularity, i.e., hour,

day, etc., and embed them in the hierarchical tree from leaf to root in order of

fine (e.g., hour) to coarse (e.g., month) granularity of time.

In our approach, we model the time in 3 different forms, i.e. Hour, Day,

and Month. The fine granular form is “hour” and the coarse granular form is

“month”. We further represent each hour, day, and month type of time-form

into 24, 31, and 12 fixed cells, respectively, as shown in Figure 5.2. Thus, each

cell of a day points to cells of hour of that particular day. Similarly, each cell of

a month points to cells of day of that particular month. We embed the time in

our index in such a way that leaf node contains the fine granularity of time and

root node contains the coarse granularity of summarized time of all its child

nodes.
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Figure 5.2: Time indexing (a)Month (b)Day (c)Hour

Let us explain the concept with our running example. In our example, Table

4.1 contains spatio-temporal objects S5, S6, S7, and S8. We see from the entry

S5 that onion and apple are available on 14 Aug 2014 from 0900 hours upto 1200

hours. So we can represent the time dimension of S5 using the hour-type form,

i.e., we set cell entries 9, 10, 11, and 12 in an hour-type time form. Similarly

we can set entity S6’s time dimension using an hour-type form. On the other

hand, the time dimension of entry S7, from 02 Jun 2014, 0600 hours to 29 Jun

2014, 1800 hours, needs to be represented using a day-type time form. Here we

set cells from 2 to 29 in day-type time form for representing S7 time dimension.

Similarly, the time dimension of entry S8 ranges from 07 Jun 2014, 0900 hours

to 31 Jul 2014, 2100 hours. Thus, we need to use the month-type time form

to represent the time range, where we set 6 and 7 in month granular form.

Similarly, we can represent time dimension of S4.

Now, based on the above time representation, we can hierarchically organize

these times in an R-tree that also organizes spatial and textual dimensions.

Since, R4 is bounding the location of spatial object S6, S7, and S8 (in Figure 5.3),

the time content of node R4 is the aggregate time of its child nodes. Thus, in

this example, time entry of node R4 is represented using a month-type time

form, where we set months 6 and 7 that covers the time dimensions of all of its

child nodes. Similarly time entry of node R3 is of month-type and we set its

time contents as 6, 7, and 8 in month-type time form.

The time content of an internal node R6 is obtained by aggregating the time

contents of node R3 and R4 as shown in Figure 5.3. The above process continues

in such a way that any non-leaf node contains the aggregate time of its child

nodes’ time. In this way, the root also gets its time entry, which covers the time

dimensions of the entire data sets.
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Figure 5.3: Time indexing in various node

5.4 STIR Tree

Figure A.2 represents our proposed hybrid index structure STIR-tree. Leaf node

of STIR-tree contains a number of entries. Each entry is of the form (S.mbr,

S.ψ, S.t), where S.mbr is the bounding rectangle of the object S, S.ψ is the

keyword or item list of object S and S.t is the time dimension.

Figure 5.4: STIR tree

A non-leaf node contains child entries. Each child entries is of the form

(N.mbr,N.ψ,N.t) where N.mbr is the minimum bounding rectangle that spa-
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tially encloses all entries contained in the sub-tree rooted at this node, N.ψ is

the identifier of an inverted list which is the union of all item in the lists of its

child nodes and N.t is the aggregate time that covers time dimensions of all of

its child nodes.

In this chapter, we have discussed our location indexing using R-tree, key-

word indexing using inverted file and time indexing. Base on our data structure,

we organize the time hierarchically in R-tree with location and keyword from

leaf to root in order of fine to coarse granularity of time.
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Chapter 6

Query processing using

STIR-tree

In this chapter, we first show algorithm for query processing of spatio-temporal

keyword (STK) search of k nearest neighbor (STK-kNN) using our proposed

hybrid index structure STIR-tree. We also discuss time uncertainty of each

spatio-temporal object. To measure the uncertainty, we introduce probability

math model in our second algorithm which we call STK-kNN with time uncer-

tainty (STK-kTU). As a last step, we discuss another algorithm to find out time

based nearest neighbor search (STK-kTNN). Finally, we show an application

scenario based on our hybrid index structure.

6.1 Processing of spatio-temporal keyword queries

for k nearest neighbor (STK-kNN)

To process spatio-temporal keyword search for k nearest neighbor (STK-kNN)

queries using our proposed STIR-tree, we adopt the concept of best first search [16].

Best first search starts from the root node of a tree and the child nodes are recur-

sively accessed in the increasing order of their distances from the query point.

The search process terminates as soon as the k nearest objects are retrieved

from the STIR-tree. As a pruning strategy a priority queue is maintained to

keep only those nodes whose inverted list and temporal list matches the query’s

keyword and time. When deciding what node to visit next, it picks the node

having least distance from set of all nodes in a priority queue.
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We assume that each spatial data objects have different time range and

number of keywords. We also consider that time dimension of each spatial

object is certain. Data objects’ location are indexed using an R-tree in the

database. Keywords are indexed using inverted file and time is indexed as

discussed in Chapter 5. Here we propose algorithm STK-kNN that follows

the best first search technique to incrementally access only those data objects

having desired keyword and time to find the Top k NN query. (discussed in

Chapter 3)

Algorithm 3 shows the steps of finding k nearest neighbor for spatio-temporal

keyword search. The algorithm takes the following parameter as input: a query

object Q having attributes location, item and fixed time, index R of STIR-tree,

and number of expected results k. We summarize the common notations used

in this section in Table 6.1.

Notation Description

Q.λ Query’s location

Q.ψ Query’s item/keyword

Q.t Query’s time

k Number of expected result

N.ψ Nodes’s item/keyword list

N.t Nodes’s time

DISTe Euclidean distance between Q.λ and object

DISTmin Minimum distance between Q.λ and object

bounding rectangle (MBR)

Table 6.1: Notations used in algorithm

In Algorithm 3, a priority queue is maintained to store explored nodes

through the search process. The nodes in the queue are sorted according to

their minimum distance to the query point. During the search process, best

first method repeatedly dequeues the top entry in the queue and enqueues its

child nodes with their minimum distance into the queue. When the first data

object is dequeued, it is reported as first nearest object. The whole process

continues until number of expected result k is found or the priority queue is

empty. Steps of Algorithm 3 is given below:
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Algorithm 3 STK − kNN(Query,R, k)

1: INPUT: Query object Q, Index of STIR-tree, expected number of result k.

2: OUTPUT: Top-k spatio-temporal object.

3: Queue←NewPriorityQueue();

4: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t ∩N.t ̸= ∅) then
5: Queue.Enqueue(Index.RootNode, 0); */ Root node is queued first along

with distance 0*/

6: end if

7: while (not Queue.IsEmpty()) do

8: Element← Queue.Dequeue();

9: if (Element is an object) then

10: if (not Queue.IsEmpty()andDISTe(Query,Object) >

Queue.First().Key) then

11: Queue.Enqueue(Object, DISTe(Query,Object));

12: else

13: Report Element as the nearest object;

14: if k nearest objects have been found then

15: break;

16: end if

17: end if

18: else if (Element is a leaf node) then

19: for each entry(Object) in leaf node Element do

20: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t ∩N.t ̸= ∅) then
21: Queue.Enqueue(Object, DISTe(Query,Object));

22: end if

23: end for

24: else

25: for each entry(Node) in node Element do

26: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t ∩N.t ̸= ∅) then
27: Queue.Enqueue(Node, DISTmin(Query,Node));

28: end if

29: end for

30: end if

31: end while
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Step of the Algorithm 3 is given below:

Step 1: A user first sends her query that contain keyword, time, and her point

location. (Line 1)

Step 2: A Queue is initialized. (Line 3)

Step 3: The algorithm first starts with the root node and check whether root

node contain query’s keyword and time. (Line 4)

Step 4: If root node contains query’s keyword and time, then algorithm en-

queues it into Queue along with it’s distance (i.e. 0 ) from the query’s point

location. (Line 5)

Step 5: Algorithm dequeue the top entry in the queue and keep it in the Ele-

ment. (Line 8)

Step 6: In each iteration, Element is checked for whether it is a data object

or node. If it is a node, then algorithm checks it’s child nodes contain query’s

keyword and time. If any child node contains those then algorithm enqueues it

into Queue. If the element is a data object then it is reported as first nearest

spatio-temporal object. The whole process continues until the Queue is empty

or number of expected result k nearest object is found. (Lines 7-31)

Figure 6.1: Query on STIR tree

In Figure 6.1 the query starts at the root node R7. Assume R5, R6 matches

the keyword and time, so they are kept in priority queue. Since R5 is nearer to

Q.λ so it is popped up from the priority queue and checked it’s child nodes’ key-

word and time. The process continues recursively until top-K spatio-temporal

object is found. We are going to explain the algorithm with an example.
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Example 1:Consider the query Q in Figure 6.1 where Q.λ = (11, 11), Q.ψ =

Onion, Q.t = 30/06/14 1500hrs and k = 2

The algorithm starts with enqueueing R7 and executes the following step:

1. Dequeue R7, enqueue R5, R6

Queue:{(R5,2,M{6,8,9}),(R6,6,M{6,7,8})}

2. Dequeue R5, enqueue Nothing [R1 pruned by time, R2 pruned by keyword

and time]

Queue:{(R6,6,M{6,7,8})}

3. Dequeue R6, enqueue R3, R4

Queue:{(R4,6,M{6,7}), (R3,7.81,M{6,7,8})}

4. Dequeue R4, enqueue S7 [S6, S8 pruned by keyword]

Queue:{(R3,7.81,M{6,7,8}), (S7,8.48,M{6,7})}

5. Dequeue R3, enqueue S4 [S5 pruned by time]

Queue:{(S4,7.81,M{6,7}), (S7,8.48,M{6,7})}

6. Dequeue S4, and report as 1st nearest object.

Queue:{(S7,8.48,M{6,7})}
item Dequeue S7 and report as 2nd nearest object.

Finally S4, S7 reported as 2 NN object.

6.2 Time Uncertainty

Uncertainty is an inherent property in many database application that includes

location based service [4]. In our envisioned application, there exists time un-

certainty as items may be available at predicted time interval. For example,

a seller may predict that his item “Brown rice” may be available from 01 Oct

2014 to 07 Oct 2014. Again when a buyer submit a search query like “I may

need brown rice from 02 Oct 2014 to 06 Oct 2014”. From both the seller’s and

buyer’s point of view, there exists an uncertainty about the exact time when

an item is available or wanted. So in our application, each spatio-temporal

object has time uncertainty. In this section, we first discuss time uncertainty
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and propose one algorithm that handles time uncertainty of spatio-temporal

objects.

Let S be a set of uncertain retrieved object. An uncertain object Si ∈ S

is represented by a d dimensional uncertain range Ri and probability density

function(pdf ) fi(u) that satisfies
∫
Ri
fi(u)du = 1 for u ∈ Ri. If u ̸∈ Ri, then

fi(u) = 0. For uniform distribution, the pdf of Si can be expressed as fi(u) =
1

Area(Ri)
for u ∈ Ri. For one dimensional object Si, uncertainty region and the

pdf can be represented as Ri= [li, ui] and fi(t) = 1
ui−li

, where li is the lower

bound of time, ui is the upper bound of time and li < ui.

Figure 6.2: An example of time uncertainty

Suppose number of retrieved objects is four (i.e. S1, S2, S3 and S4) with

various time interval(ti) as shown in Figure 6.2 . Here the resolution metric is

hour. If the uncertainty regions are R1=(l1, u1), R2=(l2, u2), R3=(l3, u3), and

R4=(l4, u4) for objects S1, S2, S3, and S4 respectively, then nearest neighbor

return all four (S1, P1), (S2, P2), (S3, P3) and (S4, P4) as probable nearest NN

for query point q where P1, P2, P3, and P4 represents probability value of their

respective spatial object.

The probability P (Si, q) of an object Si being the most probable in terms of

time to a query point(q) time can be computed as follows. For any point t ∈ Ri,

we need to first find out the probability of Si being at t and multiply it by the

probability of all other objects being farther than t with respect to q, and then

summing up these products for all t to compute P (Si, q). Thus P (Si, q) can be

expressed as follows:
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P (Si, q) =

∫
t∈Ri

fi(t)dt(
∏
j ̸=i

∫
v∈Rj∧d(q,t)≤d(q,v)

fj(v)dv) (6.1)

Figure 6.2 shows a query point having fixed time Q, and four objects S1,

S2, S3, and S4. In this example, we assume a discrete space where the time

interval of four objects are 3, 5, 4, and 3 units respectively. Time distance

between S1 and q is 6 units. Suppose that dashed circles (q, 6), (q, 7), (q, 8),

and (q, 9) centered at q with radii 6, 7, 8, and 9 units respectively, divide the

uncertain region R1 of S1 into three sub-regions S11 , S12 , and S13 . Based on

Equation 6.1, p(S1, q) can be computed by summing: (1) the probability of S1

being within the sub-region S11 , multiplied by the probabilities of S2, S3, and S4

being outside the circular region (q, 7), (2) the probability of S1 being within the

sub-region S12 , multiplied by the probabilities of S2, S3, and S4 being outside

the circular region (q, 8), (3) the probability of S1 being within the sub-region

S13 , multiplied by the probabilities of S2, S3, and S4 being outside the circular

region (q, 9).

Now if q has a uncertain time instead of fixed time, then P (Si, q) can be

expressed as follow:

P (Si, q) =
∑
qi∈Q

∫
t∈Ri

fi(t)dt(
∏
j ̸=i

∫
v∈Rj∧d(qi,t)≤d(qi,v)

fj(v)dv) (6.2)

Now we are going to explain this with an example.

Figure 6.3: Q is point

Figure 6.4: Q is range

Example 2: For simplicity let us assume that three NN objects as shown

in Figure 6.3(a) S1, S2 and S3 having time information “07/6/14, 0900∼1200
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hours”, “7/6/14, 1400∼1600 hours” and “7/6/14, 1500∼1700 hours”. If Q ’s

time is “07/6/14, 1300 hours”. The score of S1 with respect to S2 and S3 is

(1
3
∗ 1

2
∗ 1 + 1

3
∗ 0 ∗ 1

2
+ 1

3
∗ 0 ∗ 0) or 0.1667. Now the score of S2 with repect to

S1 and S3 is (1
2
∗ 2

3
∗ 1 + 1

2
∗ 1

3
∗ 1

2
) or 0.416. Finally the score of S3 with repect

to S1 and S2 is (1
2
∗ 1

3
∗ 0 + 1

2
∗ 0 ∗ 0) or 0.00.

Example 3: If Q ’s time is “07/6/14, 1300∼1400 hours” as shown in Fig-

ure 6.4(b) then the score of S1 with respect to S2 and S3 is 1
2
(1
3
∗ 1 ∗ 1 + 1

3
∗ 1

2
∗

1 + 1
3
∗ 0 ∗ 1

2
) + 1

2
(1
3
∗ 0 ∗ 1

2
+ 1

3
∗ 0 ∗ 0) or 0.25.

6.2.1 STK-kNN with Time Uncertainty

In previous section, we have shown STK-kNN query that takes time, keyword,

and point location as input and retrieves k number of spatio-temporal objects

where we assume that time dimension of each object is certain. In this section,

we assume that each spatio-temporal object has time uncertainty at different

degree. Our second algorithm STK-kNN with time uncertainty (STK-kTU)

takes time (uncertain), keyword, and point location as input and retrieves k

number of spatio-temporal objects and associated probabilities denoting the

likelihood of the object being nearest to the query object. Very often user may

be interested to find the list of nearest objects that fall in the given range from

a fixed time. To realize this scenario, we introduce one additional parameter

α in this algorithm (STK-kTU) which is used to find a range (lower time and

upper time) from a fixed time. We also add probability function (Equation

1) to calculate probability value of each retrieved object with respect to query

object’s time.

Difference between algorithm STK-kTU and STK-kNN is that algorithm

STK-kTU has one additional parameter α to check whether nodes’ time con-

tent intersects lower time and upper time. It also has one computational cost

to calculate time probability of each retrieved object with respect to other re-

trieved objects. Algorithm STK-kTU takes the following parameter as input: a

query object Q having attributes location, item, and time, index R of STIR-tree,

number of expected results k, and threshold α. Algorithm checks each node’s

time content. If node’s time content intersects lower time and upper time then

algorithm visits it’s child nodes. Gradually it reaches leaf nodes and retrieves
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k nearest neighbor spatio-temporal objects with respect to query’s point loca-

tion. As these spatio-temporal objects have time with uncertainty, so as a last

step algorithm calculates the time probability of each of the k spatio-temporal

objects with respect to k -1 objects. Step of the Algorithm STK-kTU is given

below:

Step 1: A user first sends her query that contain keyword, time, threshold,

and her point location. (Line 1)

Step 2: Initialize lower time and upper time. (Line 3,4)

Step 3: Initialize a list S. (Line 5)

Step 4: A Queue is initialized. (Line 6)

Step 5: The algorithm first starts with the root node and checks whether root

node contain query’s keyword and time that intersects lower time and upper

time. (Line 7)

Step 5: If root node contains query’s keyword and required time, then algo-

rithm enqueues it into Queue along with it’s distance. (Line 8)

Step 6: Algorithm dequeues the top entry in the queue and keep in the Ele-

ment. (Line 11)

Step 7: In each iteration, Element is checked for whether it is a data object

or node. If it is a node, then algorithm checks it’s child nodes’ whether they

contain query’s keyword and time that intersects lower and upper time. If any

child node fulfill the condition then algorithm enqueues it into Queue. If the

element is a data object then it is included in the list S. The whole process

continues until the Queue is empty or number of expected result k object is

found. (Lines 7-35)

Step 8: When S is filled up by k spatio-temporal objects then algorithm cal-

culates the time probability score of each object in list S by equation 1 with

respect to k -1 objects. (Line 8)
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Algorithm 4 STK − kTU(Query,R, k, α)

1: INPUT: Query object Q, Index of STIR-tree, expected number of result k, thresh-

old α.

2: OUTPUT: Top-k spatio-temporal object with probability score.

3: αl ← Qt − α;
4: αu ← Qt + α;

5: S ← ϕ;

6: Queue←NewPriorityQueue();

7: if (Q.ψ ∩N.ψ ̸= ∅ and (αl, αu) ∈ N.t) then
8: Queue.Enqueue(Index.RootNode, 0); */ Root node is queued first along with

distance 0*/

9: end if

10: while (not Queue.IsEmpty()) do

11: Element← Queue.Dequeue();

12: if (Element is an object) then

13: if (not Queue.IsEmpty()andDISTe(Query,Object) > Queue.First().Key)

then

14: Queue.Enqueue(Object, DISTe(Query,Object));

15: else

16: S ← Element;

17: if k nearest objects have been found then

18: Calculate time probability of each object in S ;

19: break;

20: end if

21: end if

22: else if (Element is a leaf node) then

23: for each entry(Object) in leaf node Element do

24: if (Q.ψ ∩N.ψ ̸= ∅ and (αl, αu) ∈ N.t) then
25: Queue.Enqueue(Object, DISTe(Query,Object));

26: end if

27: end for

28: else

29: for each entry(Node) in node Element do

30: if (Q.ψ ∩N.ψ ̸= ∅ and (αl, αu) ∈ N.t) then
31: Queue.Enqueue(Node, DISTmin(Query,Node));

32: end if

33: end for

34: end if
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6.2.2 Time based Nearest Neighbor with STIR-tree

In previous subsection, we have discussed STK-kNN query with time uncer-

tainty. In this subsection, we discuss time based nearest neighbor queries. Very

often a user may be interested in nearest time. For example, when a user sub-

mit a query like “find brown rice around 18 Sep 2014”. In such scenario, query

retrieves a list of spatio-temporal object that is nearest to query’s time. In this

subsection, we propose Algorithm 5(STK − kTNN) that takes the following

parameter as input: a query object Q having attributes location, item and fixed

time, index R of STIR-tree, and number of expected results k.

Figure 6.5: Nearest time query on STIR tree

Consider query point time Q.t = 30/10/14 1500 hrs. In Figure 6.5 the query

starts at the root node R7. Consider R5, R6 matches the keyword, so they are

kept in priority queue. Since R5 has nearest available time (i.e. 9 ) than R6 (i.e.

8) so it is popped up from the priority queue and checked for it’s child nodes

keyword and further nearest available granular time. The process continues

recursively until top-K spatio-temporal object having nearest time is found.

The difference between algorithm STK-kTNN and STK-kTU is that al-

gorithm STK-kTNN checks nearest neighbor time in each node of STIR-tree

(Lines 4, 20, and 26) and it does not calculate time probability after retrieving

k objects. Step of the Algorithm 5 is given below:

Step 1: A user first sends her query that contain keyword, time, and her

point location. (Line 1)

Step 2: A Queue is initialized. (Line 3)

Step 3: The algorithm first starts with the root node and checks whether root

node contain query’s keyword and nearest time. (Line 4)
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Step 4: If root node contains query’s keyword and nearest time, then algorithm

enqueues it into Queue along with it’s distance (i.e. 0 ) from the query’s point

location. (Line 5)

Step 5: Algorithm dequeues the top entry in the queue and keep in the Ele-

ment. (Line 8)

Step 6: In each iteration, Element is checked for whether it is a data object

or node. If it is a node, then algorithm checks whether it’s child nodes contain

query’s keyword and nearest time. If any child node contain query’s keyword

and nearest time, then algorithm enqueues it into Queue, otherwise that node

is pruned. If the element is a data object then it is reported first and algorithm

derives the time distance(threshold) between query’s time and object’s farthest

time. Then algorithm retrieves other spatio-temporal objects that falls within

the threshold. The whole process continues until the Queue is empty or number

of expected result k object is found. (Lines 7-31)
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Algorithm 5 STK − kTNN(Query,R, k)

1: INPUT: Query object Q, Index of STIR-tree, expected number of result k.

2: OUTPUT: Top-k spatio-temporal object.

3: Queue←NewPriorityQueue();

4: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t nearest to N.t) then

5: Queue.Enqueue(Index.RootNode, 0); */ Root node is queued first along

with distance 0*/

6: end if

7: while (not Queue.IsEmpty()) do

8: Element← Queue.Dequeue();

9: if (Element is an object) then

10: if (not Queue.IsEmpty()andDISTe(Query,Object) >

Queue.First().Key) then

11: Queue.Enqueue(Object, DISTe(Query,Object));

12: else

13: Report Element as the nearest object and find it’s nearest time;

14: if k nearest objects have been found then

15: break;

16: end if

17: end if

18: else if (Element is a leaf node) then

19: for each entry(Object) in leaf node Element do

20: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t nearest to N.t) then

21: Queue.Enqueue(Object, DISTe(Query,Object));

22: end if

23: end for

24: else

25: for each entry(Node) in node Element do

26: if (Q.ψ ∩N.ψ ̸= ∅ and Q.t nearest to N.t) then

27: Queue.Enqueue(Node, DISTmin(Query,Node));

28: end if

29: end for

30: end if

31: end while
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6.3 Spatio-Temporal Keyword Stream:

An Application Scenario

Our proposed methodologies for spatio-temporal keyword search can handle

continuous stream of seller and buyer requests. In our envisioned buyer-seller

community application, a seller can post an item any time or a buyer can search

for his desired item at any time. To support a continuous matching of buyers

and sellers requests, we maintain two STIR-trees, one for sellers’ posted items,

an another for buyers’ requested items. Initially, all sellers’ items are indexed

in a seller index tree (seller-tree). When a buyer sends a query for a desired

item, the system searches for the desired item in the seller-tree. If it finds

desired item, the buyer query is retrieved from the system. However, if there

is no match of the buyer’s desired item in the existing seller-tree, the buyer’s

query is saved in the buyer-tree if the buyer requests an item for a future time.

Whenever, a new seller item appears in the system, the system first searches the

item in the buyer-tree to see if there is a match with any of the pending queries

saved in the buyer-tree. If the system finds a match, it reports the answer to

both seller and buyer. Otherwise, the seller item is saved in seller-tree.

Figure 6.6: Flowchart of seller and buyer community

Figure 6.6 shows a flow-chart of the buyer-seller community application. The

figure shows two indices, STIRA is the seller-tree and STIRB is the buyer-tree.

Here a buyer searches for his desired item at a specified time. If the item

is found in STIRB, the application retrieves those seller with location as an

ascending order of the distance from the query (buyer) location and delete that

seller object from the seller-tree if there is no more item left. If the item is not

found, the system inserts the requested item along with their other attributes
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(i.e., location, keyword/item, and time) into the buyer-tree, STIRB. Similarly

when a seller object appears in the system, it also searches the buyer-tree for

the desired item. If the suitable buyers are found that matches seller’s query

keyword and time, then it retrieves buyers’ location as an ascending order of

their distance from seller’s location and delete that buyer object from STIRB.

If the item is not found then it inserts that seller along with other attributes

into STIRA.

In this chapter, we have have highlighted 3 types of queries mainly spatio-

temporal keyword search for k nearest neighbor (STK-kNN), STK-kNN with

time uncertainty, and time based nearest neighbor search (STK-kTNN). Finally,

we have shown an application scenario based on our proposed hybrid index

structure (STIR tree).
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Chapter 7

Experimental Study

In this section, we discuss the performance of our STIR based spatio-temporal

keyword search queries with an extensive set of experiments.

7.1 Experimental Setup

We use synthetic datasets and query sets in our experiment. We generate syn-

thetic dataset with uniform distribution representing a wide range of real sce-

nario. We vary the data size as 5000, 10,000, 15,000, and 20,000 point locations.

We randomly choose the time-stamps with different granularity for each spatial

object. For keyword, we randomly choose keyword/item from a list and embed

them in data object.

We also generate synthetic query sets with uniform distribution and vary

the query size as 500, 1000, 1500 and 2000 number. Here we embed the key-

word by randomly choosing from a list of keyword, and embed the time by

randomly choosing the time-stamps with different granularity. We vary the

number of expected result k as 1, 2, 4, 8, 16, and 20. We also vary the time

range/threshold(α) as 0, 5, 10, 15, and 20 for the experiment STK-kNN with

time uncertainty. Necessary parameter, parameter range and their default value

are shown in Table 7.1.

In our experiment, objects’ point location are indexed using R-tree [13],

keyword are indexed using inverted file [27], and time is indexed as described

in Chapter 5 which results our index structure STIR-tree. We use the node

capacity of 50 entries for the STIR-tree.
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All the experiment are conducted on a system with Intel dual core 2.66 GHz

processor and 2 GB of memory running Windows XP. We implement our hybrid

index structure and search algorithm in C#.

7.2 Experimental Evaluation

We evaluate our proposed STIR index based algorithms for three types of

queries, i.e. spatio-temporal keyword search for nearest neighbor queries (STK-

kNN), spatio-temporal keyword search for nearest neighbor queries with time

uncertainty (STK-kTU), and spatio-temporal keyword search for time based

nearest neighbor queries (STK-kTNN). We compare our approach with a naive

approach. In the naive approach, we have used IR-tree [10] to index location

and keywords of spatio-temporal object, and filter out time at the final refin-

ing stage while running the queries. In all experiments, we measure the query

processing time and I/O cost as the efficiency measures of the algorithm.

Parameter Range Default

k 1, 2, 4, 8, 16, 20 4

Data set 5000, 10000, 15000, 20000 10000

Number of query (q) 500, 1000, 1500, 2000 1000

Time threshold (α) 0, 5, 10, 15, 20 10

Table 7.1: Table of data set

7.3 Experimental Results

Here we elaborately discuss the performance of our proposed algorithm STK-

kNN, STK-kTU, and STK-kTNN in sub-subsection 7.3.1, 7.3.2, and 7.3.3 re-

spectively.
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Figure 7.1: Experimental graph for STK-kNN

7.3.1 STK-kNN

In our first experiment, we vary the number of expected result k, number of

search query q, and number of dataset to measure the performance of the al-

gorithm. Here we consider that, time dimension of each spatial object is certain.
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Effect of k : In this experiment, we vary the value of k using 1, 2, 4, 8, 16, and

20. Figure 7.1(a) and 7.1(b) show that our STIR structure outperforms than

IR structure. At lower value of k(<8) processing time and I/O cost is 10-15

times faster and requires 7-8 times less I/O cost than that of naive approach.

At upper values of k(>8) processing time is 15-20 times faster and it needs

6-7 times less I/O than that of naive approach. This is expected, since with

IR approach it need to access more tree nodes and more objects. In contrast,

STIR-tree uses time index to prune the whole subtree if node time list does not

match the query time.

Effect of Number of Search Queries: We vary the number of search queries

q in the range of 500 to 2000 with a step size of 500 units as shown in Fig-

ure 7.1(c) and 7.1(d). Query processing time is 11.8-14 times faster than IR

approach when we use STIR-tree and it requires 7-9 times less I/O cost than

that of IR approach. Thus we find that our algorithm outperforms for STIR

approach by a greater margin for an increased value of q. With increase of

number of search query there is a great possibility of having node with more

irrelevant time which is pruned in STIR approach and decreases processing time

and I/O cost significantly.

Effect of Number of Dataset: Figure 7.1(e) and 7.1(f) show the required

processing time and I/O cost in STIR and IR approach. In this experiment,

we vary the dataset size using 5K, 10K, 15K, and 20K with step size of 5000.

Here query processing time for STIR approach is 20-27 times faster than naive

approach and it requires around 6-11 times less I/O cost than that of naive

approach.

7.3.2 STK-kTU

In our second experiment, we first vary α. Then we keep α=10 while varying

other parameter k, q, and dataset size to measure the performance of the algo-

rithm. Here we consider that, time dimension of each spatial object is uncertain.

Effect of α: Figure 7.2(a) and 7.2(b) shows the required processing time and

I/O cost in STIR by varying α. In this experiment, we vary time threshold α
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Figure 7.2: Experimental graph for STK-kTU66



using 0, 5, 10, 15, and 20. From the graph, we find that as α increases process-

ing time and I/O of STIR also increases. It is expected, as increasing α causes

more node of STIR-tree to be opened for processing. In IR structure, since it

does not consider time, so varying α does not change the processing time and

I/O cost and it remains constant for whole range of α.

Effect of k : Here, we investigate the effect of varying the number of results k

using 1, 2, 4, 8, 16, and 20. Figure 7.2(c) and 7.2(d) show query processing time

and I/O cost increases for STIR approach in comparison to IR approach. We

find that at lower value of k(<8) query processing time is 2.8-3.8 times faster

and require 2.6-3.1 times less I/O cost than that of IR approach, whereas at

upper value of k(>8) processing time is 3.9-5.3 times faster and it requires 2.3-

2.5 times less I/O cost than that of IR approach when we take STIR approach.

For STK-kTU, query processing time and I/O cost increases by 3.7-4.6 times

and 2.7-3.2 times respectively than STK-kNN query due to time threshold α

and computing probability score (Figure 7.1(a), 7.1(b)).

Effect of Number of Search Queries: Figure 7.2(e) and 7.2(f) show the

results when we vary the number of search queries in the range of 500 to 2000

with a step size of 500. Here, STIR is on average 3 times faster and it needs

on average 2.6 times less I/O cost than that of IR approach. We find that,

for STK-kTU, query processing time and I/O cost increases than STK-kNN

query on average 4 times and 3 times respectively (Figure 7.1(c), 7.1(d)). It

is expected, as time threshold α causes more nodes of STIR to be opened

for further processing and there also involve extra computational cost while

calculating the probability of each spatio-temporal object. But there always

remain a great margin between STIR and IR approach.

Effect of Number of Dataset: In this experiment, we vary the dataset size

using 5K, 10K, 15K, and 20K with step size of 5000 (Figure 7.2(g), 7.2(h)). Here

query processing time is 4.8-6.9 times faster and it needs around 2.4-3.1 times

less I/O cost than that of IR approach when we use STIR approach. For STK-

kTU, query processing time and I/O cost increases on average 3.9-5.4 times and

2.5-4.5 times respectively than that of STK-kNN query (Figure 7.1(e), 7.1(f)).
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7.3.3 STK-kTNN

In our third and final experiment, we have considered nearest neighbor time in

each node and finally retrieve the time based nearest object that falls within

a threshold which is derived from a first retrieved spatio-temporal object. To

measure the performance, we vary the parameter k, q and dataset size. Here

we consider that, time dimension of each spatial object is certain.

Effect of k : Figure 7.3(a) and 7.3(b) show that processing time and I/O cost

increases as in comparison to IR approach for all values of k. At lower value of

k(<8) query processing time is 1.7-4.5 times faster and for upper value of k(>8)

processing time is 12-14 times faster and it needs around 4 times less I/O cost

for all values of k than IR approach. For STK-kTNN, query processing time

and I/O cost increase 1.2-6 times and 1.4-2.3 times respectively than that of

STK-kNN query (Figure 7.1(a), 7.1(b)). On the other hand, query processing

time increases by 1.2-1.6 times for k<8 and decreases by 1.2-3.6 times for k>8

and I/O decreases by 1.15-2 times for all values of k than that of STK-kTU

(Figure 7.2(c), 7.2(d)). It is expected, as STK-kTU approach, algorithm has to

compute probability score for significant number of spatio-temporal objects for

upper value of k(>8), and for k<8, it has to calculate probability score for rel-

atively less number of spatio-temporal objects. Again for STK-kTU approach,

default value of α=10 causes more nodes to be explored than STK-kTNN, hence

I/O cost decreases in third experiment.

Effect of Number of Search Queries: Figure 7.3(c) and 7.3(d) shows the

results when we vary the number of search queries in the range of 500 to 2000

with a step size of 500 units. Here, STIR is around 2.6 times faster and it

requires 4.3-4.8 times less I/O cost than IR approach. For STK-kTNN query,

processing time and I/O cost increase 4.5-5.4 times and 1.8 times respectively

than STK-kNN query (Figure 7.1(c), 7.1(d)). Again query processing time

increases 1.1-1.4 times and I/O cost decreases by 1.6-1.8 times than that of

STK-kTU (Figure 7.2(e), 7.2(f)). It is expected as STK-kTNN algorithm takes

more processing time while visiting the nodes and checking the nearest time.

But for STK-kTU, opening α causes more node to visit than STK-kTNN.
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Figure 7.3: Experimental graph for STK-kTNN

Effect of Number of Dataset: Figure 7.3(e) and 7.3(f) show the required

processing time and I/O cost in STIR and IR approach. Here, STIR is 3.5-4.3

times faster and it needs 3-4.7 times less I/O cost than IR approach. Its query

processing time and I/O cost increase by 4.9-8.4 times and 1.9-2.4 times respec-

tively than that of STK-kNN query (Figure 7.1(e), 7.1(f)). Again processing

time increases by 1.2-1.6 times whereas I/O decreases around 1.6 times than
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STK-kTU query (Figure 7.2(g), 7.2(h)). Similarly we can explain this result.

In this chapter, we have discussed the results that comes out as extensive

experiment. We have evaluated our three types of query i.e. STK-kNN, STK-

kNN with time uncertainty and STK with time based nearest neighbor(NN),

and compare the results with the IR approach. In all experiments, we measure

the query processing times and I/O costs as the efficiency measures of the

algorithm.

70



Chapter 8

Conclusion

In this chapter, we summarize our work and highlight promising direction for

future work.

8.1 Summary

We have introduced a new type of query, namely spatio-temporal keyword search

for nearest neighbor (STK-NN) query. To process STK-NN queries efficiently,

we developed a time indexing method and integrate with location and key-

word index to form new hybrid index structure spatio-temporal information

retrieval R-tree (STIR-tree). Our proposed hybrid index structure handles spa-

tial, textual, and temporal features of data objects simultaneously. We have

also extended our approach to handle time uncertainty and propose techniques

to process STK-NN queries and time based nearest neighbors with time uncer-

tainty. Our proposed algorithm for finding the nearest neighbor spatio-temporal

object significantly outperforms than that of IR approach. We conduct an ex-

tensive experiment of query processing using STIR structure. Experimental

studies proves its superior performance over state of the art technique in terms

of both query processing time and I/O cost. For STK-kNN query, STIR ap-

proach is on average 16.6 times faster and access 7.6 times less I/O than that of

naive approach. For STK-kTU query, STIR approach is on average 4.3 times

faster and access 2.6 times less I/O than that of naive approach. For STK-

kTNN query, STIR approach is on average 4.1 times faster and access 4 times

less I/O than that of naive approach.

71



8.2 Future work

Our work on integrating time indexing with location and keyword indexing

opens to a number of promising directions for future work. In this work, we

have assumed that user’s location is a point. In the future work, we will consider

user’s location as region instead of point thus considering user’s privacy. Though

we consider time uncertainty while processing our query but we can also consider

the location as uncertain and formulate the new problem. While processing our

queries we can consider the query location region and develop algorithms for

other type of queries, e.g., range queries.
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Appendix A

STIR Simulator

STIR simulator is a GUI-enabled software tool that allows the user to obtain

hybrid index structure STIR. The tool has been entirely coded in C#. This

section describes the various features of the tool. Subsection A.1 elaborates on

how to use the tool. Subsection A.2 gives minimum system requirements of the

tool.

A.1 Using the Simulator

Figure A.1: STIR simulator
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In order to execute the application the user has to STIR.exe application file of

the software. The tool consist of several buttons with various function. “Cre-

ate Simulated DS” button will create spatio-temporal dataset. “Create Search

data” will create query set and “Data Retrieval from Script” will function as

STK-kNN. Finally “Tree traverse with probability” will function as STK-kNN

with time uncertainty or or STK-kNN with nearest neighbor time depending

on the function calling.

Figure A.2: A snapshot of creating STIR

A.1.1 Input

The user will have to select the number of expected result from dropdown list

labeled as “Top” and create a .doc file with spatio-temporal dataset. To create

data file (with .doc extension), user need to click “Create Simulated DS”. By

default, 10000 spatio-temporal dataset with uniformly distributed location will

be created. Each data will be integrated with randomly chosen keyword and

time from keyword and time list. Necessary spatio-temporal data is shown in

Appendix B.

To create query set, user need to click “Create Search data” button which

will create 1000 (by default) query set with uniformly distributed location. Each

query set will be embedded with randomly chosen keyword and time. Necessary
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query set is shown in Appendix C.

Figure A.3: A Snapshot of data retrieving using STK-kNN

A.1.2 Output

In order to create hybrid index structure, user need to click on “Create Tree

from Generated data” as shown in Figure A.1. After clicking the button, hybrid

index tree will be created and confirmation note come in the message box as

shown in Figure A.2. STIR tree structure is shown in Appendix D.

To get the retrieved dataset user need to click “Data Retrieval from the

Script”. Software tool then will start retrieving data and measure total time

and I/O cost for IR structure and STIR structure as shown in Figure A.3. Time

and I/O will be recorded in separate file as shown in Appendix E. Retrieved

dataset considering STK-kNN, STK-kNN with Time Uncertainty and STK-

kNN with nearest neighbor time is shown in Appendix F, Appendix G, and

Appendix H respectively.

A.2 System Requirements

STIR simulator is a windows based application that can be used in Windows

based machines. For best user experience, we recommend the application to be

used in a system configured with at least the following settings,

• Operating System: Windows XP.
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• Processor:Intel dual core 2.66 GHz.

• RAM 2 GB.
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Appendix B

Spatio-Temporal Data set

Our default data set size was 10000. We have shown our dataset (partial) as

follow:

S1,1040,2000,1040,2000,0,0,Lemon:130:3;Pumpkin:150:6;,5/6/2012,0900,5/6/2012,1200

S2,612,688,612,688,0,0,Chilli:161:7;Carrot:180:6;,3/6/2012,1000,3/6/2012,1700

S3,1791,1667,1791,1667,0,0,Cabbage:192:7;Carrot:197:5;,27/3/2012,1600,27/3/2012,1700

S4,1336,1083,1336,1083,0,0,Cabbage:130:8;Cucumber:99:7;,7/1/2012,1600,7/1/2012,1700

S5,899,1629,899,1629,0,0,Lemon:108:4;Cucumber:183:8;,27/10/2012,0900,27/10/2012,1200

S6,19,425,19,425,0,0,Cabbage:196:4;Pumpkin:145:5;,3/10/2012,1800,3/10/2012,2000

S7,1104,291,1104,291,0,0,Tomatoe:113:9;Pumpkin:177:8;,13/6/2012,1100,13/6/2012,1500

S8,1205,1968,1205,1968,0,0,Lemon:54:8;Cucumber:97:7;,7/7/2012,1000,7/7/2012,1500

S9,134,1037,134,1037,0,0,Tomatoe:144:3;Pumpkin:72:4;,27/6/2012,0900,27/6/2012,1000

S10,972,290,972,290,0,0,Lemon:69:3;Pumpkin:69:4;,7/3/2012,1500,7/3/2012,1800

S11,931,618,931,618,0,0,Tomatoe:152:3;Carrot:129:4;,17/6/2012,1200,17/6/2012,1800

S12,1474,1456,1474,1456,0,0,Lemon:191:8;Cucumber:193:7;,3/7/2012,1000,3/7/2012,1100

S13,1672,349,1672,349,0,0,Cabbage:108:7;Carrot:122:8;,30/6/2012,1600,30/6/2012,1700

S14,166,1670,166,1670,0,0,Cabbage:55:4;Carrot:137:7;,9/1/2012,1000,9/1/2012,1800

S15,1316,1412,1316,1412,0,0,Lemon:97:4;Cucumber:188:5;,3/10/2012,1100,3/10/2012,2000

S16,1609,1032,1609,1032,0,0,Tomatoe:76:4;Cucumber:117:5;,19/1/2012,1800,19/1/2012,2000

S17,195,1382,195,1382,0,0,Tomatoe:182:9;Carrot:114:8;,1/7/2012,1100,1/7/2012,1700

S18,578,1945,578,1945,0,0,Tomatoe:117:3;Carrot:78:5;,13/6/2012,1100,13/6/2012,1700

S19,46,909,46,909,0,0,Tomatoe:126:9;Pumpkin:159:8;,21/1/2012,1000,21/1/2012,1100
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S20,821,632,821,632,0,0,Lemon:121:4;Pumpkin:99:2;,1/6/2012,1500,1/6/2012,1800

S21,1577,818,1577,818,0,0,Chilli:85:5;Pumpkin:146:3;,21/7/2012,1100,21/7/2012,1700

.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

S9973,8909,9692,8909,9692,0,0,Rice:136:4;Flour:122:7;,3/6/2012,1000,4/6/2012,2000

S9974,9271,9560,9271,9560,0,0,Potatoe:77:8;Pulse:188:6;,3/6/2012,1100,4/6/2012,2000

S9975,9367,8204,9367,8204,0,0,Flour:107:8;Potatoe:102:8;,3/6/2012,0900,4/6/2012,1200

S9976,9230,8371,9230,8371,0,0,Pulse:98:9;Salt:105:2;,3/6/2012,0900,3/6/2012,1200

S9977,8311,9285,8311,9285,0,0,Flour:52:7;Potatoe:126:3;,3/6/2012,0900,4/6/2012,1700

S9978,8714,8760,8714,8760,0,0,Pulse:148:3;Sugar:135:6;,4/6/2012,1000,4/6/2012,1200

S9979,8777,9304,8777,9304,0,0,Sugar:151:3;Salt:157:2;,3/6/2012,0900,4/6/2012,1500

S9980,9966,8007,9966,8007,0,0,Flour:99:3;Rice:190:4;,3/6/2012,1100,4/6/2012,1700

S9981,9048,9033,9048,9033,0,0,Salt:80:2;Potatoe:77:2;,3/6/2012,1200,4/6/2012,1800

S9982,8928,8737,8928,8737,0,0,Flour:138:9;Flour:196:8;,3/6/2012,1100,3/6/2012,1200

S9983,9827,8078,9827,8078,0,0,Flour:181:8;Flour:182:8;,3/6/2012,1600,4/6/2012,1700

S9984,8254,9191,8254,9191,0,0,Sugar:141:4;Salt:80:3;,3/6/2012,1600,4/6/2012,2000

S9985,9824,8070,9824,8070,0,0,Potatoe:106:2;Flour:140:4;,4/6/2012,1100,4/6/2012,1700

S9986,9208,9327,9208,9327,0,0,Potatoe:74:4;Pulse:167:2;,3/6/2012,1000,4/6/2012,1000

S9987,8220,8886,8220,8886,0,0,Rice:101:8;Pulse:65:5;,3/6/2012,0900,3/6/2012,1700

S9988,8361,8321,8361,8321,0,0,Flour:177:3;Pulse:89:7;,3/6/2012,0900,4/6/2012,2000

S9989,8568,9323,8568,9323,0,0,Sugar:130:8;Rice:111:7;,3/6/2012,1100,4/6/2012,1500

S9990,9007,9838,9007,9838,0,0,Flour:99:3;Rice:61:5;,3/6/2012,1000,4/6/2012,1800

S9991,8698,9951,8698,9951,0,0,Sugar:114:8;Potatoe:85:3;,3/6/2012,1200,4/6/2012,1800

S9992,9425,9017,9425,9017,0,0,Rice:189:3;Potatoe:79:5;,3/6/2012,0900,4/6/2012,1000

S9993,9278,9638,9278,9638,0,0,Rice:118:5;Flour:75:9;,3/6/2012,1700,4/6/2012,1800

S9994,9188,8314,9188,8314,0,0,Flour:62:8;Pulse:157:8;,3/6/2012,1100,4/6/2012,2000

S9995,8504,9570,8504,9570,0,0,Rice:134:7;Potatoe:55:2;,3/6/2012,1700,4/6/2012,1800

S9996,8144,9295,8144,9295,0,0,Flour:112:3;Sugar:150:2;,3/6/2012,1000,4/6/2012,1700

S9997,8999,8267,8999,8267,0,0,Pulse:155:6;Potatoe:101:6;,3/6/2012,1000,3/6/2012,1200

S9998,8947,8291,8947,8291,0,0,Sugar:148:2;Rice:153:4;,3/6/2012,1000,3/6/2012,2000

S9999,9544,9006,9544,9006,0,0,Sugar:127:2;Potatoe:92:7;,4/6/2012,1100,4/6/2012,1200

S10000,8498,8600,8498,8600,0,0,Potatoe:102:6;Flour:106:5;,3/6/2012,1700,4/6/2012,1800

End of file

18-Mar-13 11:25:23 AM
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Appendix C

Search Query set

Our default number of search query set was 1000. We have shown search query

set (partial) as follow:

B1,8,159,8,159,0,0,Pumpkin,101,2,4/3/2012,1200,9/3/2012,1600

B2,96,63,96,63,0,0,Cabbage,83,3,11/9/2012,1200,27/9/2012,1600

B3,29,162,29,162,0,0,Cabbage,86,5,20/4/2012,1600,20/4/2012,1700

B4,133,124,133,124,0,0,Pumpkin,185,9,16/11/2012,0900,25/11/2012,1500

B5,183,183,183,183,0,0,Lfinger,133,9,12/2/2012,1500,20/2/2012,1600

B6,79,141,79,141,0,0,Aubergine,169,8,15/6/2012,0900,16/6/2012,2000

B7,153,156,153,156,0,0,Aubergine,180,6,9/3/2012,0900,10/3/2012,1700

B8,190,65,190,65,0,0,Lemon,80,7,15/7/2012,0900,19/7/2012,1500

B9,183,186,183,186,0,0,Lfinger,51,8,15/7/2012,0900,22/7/2012,1200

B10,144,59,144,59,0,0,Spinach,131,5,20/2/2012,1100,22/2/2012,1200

B11,98,133,98,133,0,0,Lemon,152,3,2/7/2012,1000,25/7/2012,1000

B12,89,58,89,58,0,0,Aubergine,149,2,15/10/2012,0900,22/10/2012,1200

B13,62,193,62,193,0,0,Chilli,150,7,27/2/2012,1600,29/2/2012,1700

B14,61,190,61,190,0,0,Cabbage,82,8,18/11/2012,1000,22/11/2012,2000

B15,143,32,143,32,0,0,Lfinger,150,2,16/3/2012,1100,29/3/2012,1700

B16,4,51,4,51,0,0,Lemon,157,8,17/3/2012,0900,22/3/2012,1000

B17,198,9,198,9,0,0,Cabbage,171,5,1/3/2012,1000,28/3/2012,1200

B18,145,98,145,98,0,0,Aubergine,130,5,12/10/2012,1000,29/10/2012,1500

B19,70,196,70,196,0,0,Lfinger,146,4,1/2/2012,0900,7/2/2012,1700
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B20,168,169,168,169,0,0,Aubergine,77,3,16/11/2012,1000,17/11/2012,1100

B21,170,154,170,154,0,0,Cabbage,160,2,14/2/2012,1000,22/2/2012,1000

B22,189,155,189,155,0,0,Cabbage,67,3,15/12/2012,1100,16/12/2012,1700

B23,106,40,106,40,0,0,Pumpkin,199,7,5/12/2012,1600,13/12/2012,1700

.... .... .... .... .... .... .... .... .... .... .... .... ....

B974,995,938,995,938,0,0,Rice,186,6,23/11/2012,1800,27/12/2012,2000

B975,943,887,943,887,0,0,Salt,135,9,3/11/2012,1200,6/11/2012,1600

B976,864,960,864,960,0,0,Flour,85,8,4/12/2012,1500,28/12/2012,1600

B977,864,989,864,989,0,0,Rice,165,5,14/11/2012,0900,16/12/2012,1700

B978,974,950,974,950,0,0,Flour,180,4,8/11/2012,1100,26/11/2012,2000

B979,963,890,963,890,0,0,Sugar,104,4,10/11/2012,1100,22/12/2012,1500

B980,829,899,829,899,0,0,MilkPowder,84,8,2/11/2012,1000,15/11/2012,1800

B981,857,966,857,966,0,0,Salt,85,8,19/11/2012,1000,19/12/2012,1700

B982,876,873,876,873,0,0,Flour,61,6,8/11/2012,1700,29/12/2012,1800

B983,855,826,855,826,0,0,Salt,132,4,2/11/2012,1000,25/12/2012,1600

B984,948,883,948,883,0,0,Sugar,73,4,6/11/2012,0900,22/12/2012,1500

B985,843,989,843,989,0,0,Potatoe,193,8,15/12/2012,1500,27/12/2012,1800

B986,803,801,803,801,0,0,Rice,84,2,11/11/2012,1500,24/11/2012,1800

B987,957,864,957,864,0,0,Flour,199,9,11/12/2012,1600,13/12/2012,2000

B988,999,913,999,913,0,0,Salt,156,5,25/12/2012,1000,26/12/2012,1500

B989,877,892,877,892,0,0,Pulse,134,8,1/11/2012,1200,14/12/2012,1800

B990,892,938,892,938,0,0,Pulse,70,6,7/12/2012,1200,22/12/2012,1800

B991,921,808,921,808,0,0,Potatoe,140,9,12/11/2012,1200,16/11/2012,1800

B992,959,848,959,848,0,0,Sugar,101,7,7/11/2012,1200,12/12/2012,1800

B993,893,888,893,888,0,0,MilkPowder,63,5,8/11/2012,1800,20/12/2012,2000

B994,983,804,983,804,0,0,Salt,191,7,6/11/2012,1000,19/12/2012,1600

B995,927,837,927,837,0,0,Pulse,152,4,5/11/2012,0900,22/11/2012,1500

B996,841,985,841,985,0,0,Flour,99,2,3/11/2012,1000,27/12/2012,1500

B997,945,805,945,805,0,0,Sugar,113,2,6/11/2012,1100,13/12/2012,1700

B998,897,918,897,918,0,0,Pulse,132,5,8/11/2012,0900,13/12/2012,1000

B999,823,950,823,950,0,0,Rice,138,3,11/12/2012,1600,25/12/2012,1700

B1000,965,980,965,980,0,0,Salt,128,3,1/11/2012,1800,13/12/2012,2000

End of file
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Appendix D

Structure of STIR tree

Our STIR tree (partial) created from simulated data is shown below:

Simulated STIR Tree created on:18-Mar-13 11:31:32 AM

Object:(11, 162, 0), (11, 162, 0) Level:0 From:21-03-12 1000 Hrs To:21-03-12

1600 Hrs TimeTag:Hr TimeKeeper:10,16, Item:chilli:145:5,cucumber:176:8,

Object:(22, 378, 0), (22, 378, 0) Level:0 From:15-10-12 1100 Hrs To:15-10-12

1200 Hrs TimeTag:Hr TimeKeeper:11,12, Item:chilli:73:9,carrot:197:6,tomatoe:148:3,

Object:(25, 429, 0), (25, 429, 0) Level:0 From:15-10-12 1000 Hrs To:15-10-12

1800 Hrs TimeTag:Hr TimeKeeper:10,18, Item:chilli:158:6,carrot:78:2,

Object:(9, 66, 0), (9, 66, 0) Level:0 From:21-06-12 1200 Hrs To:21-06-12 1600

Hrs TimeTag:Hr TimeKeeper:12,16, Item:cabbage:61:7,cucumber:169:5,lemon:168:9,

Object:(9, 545, 0), (9, 545, 0) Level:0 From:27-03-12 1000 Hrs To:27-03-12 1200

Hrs TimeTag:Hr TimeKeeper:10,12, Item:chilli:168:5,pumpkin:121:5,

Object:(19, 425, 0), (19, 425, 0) Level:0 From:03-10-12 1800 Hrs To:03-10-12

2000 Hrs TimeTag:Hr TimeKeeper:18,20, Item:cabbage:196:4,pumpkin:145:5,cabbage:121:6,

Object:(2, 207, 0), (2, 207, 0) Level:0 From:03-03-12 1000 Hrs To:03-03-12 1100

Hrs TimeTag:Hr TimeKeeper:10,11, Item:tomatoe:162:6,carrot:137:8,

Object:(22, 71, 0), (22, 71, 0) Level:0 From:03-03-12 0900 Hrs To:03-03-12 1500

Hrs TimeTag:Hr TimeKeeper:9,15, Item:lemon:126:7,pumpkin:162:9,

Object:(6, 318, 0), (6, 318, 0) Level:0 From:19-10-12 1600 Hrs To:19-10-12 2000

Hrs TimeTag:Hr TimeKeeper:16,20, Item:tomatoe:164:5,cucumber:104:6,
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Object:(24, 522, 0), (24, 522, 0) Level:0 From:19-10-12 0900 Hrs To:19-10-12

2000 Hrs TimeTag:Hr TimeKeeper:9,20, Item:chilli:131:7,pumpkin:52:5,

Object:(18, 26, 0), (18, 26, 0) Level:0 From:03-03-12 0900 Hrs To:03-03-12 1500

Hrs TimeTag:Hr TimeKeeper:9,15, Item:tomatoe:197:9,cucumber:90:8,cabbage:164:3,

Object:(16, 299, 0), (16, 299, 0) Level:0 From:13-01-12 0900 Hrs To:13-01-12

1000 Hrs TimeTag:Hr TimeKeeper:9,10, Item:tomatoe:124:6,pumpkin:142:8,lemon:73:2,

————————————————————————

Node:(2, 26, 0), (25, 545, 0) Level:1 TimeTag:Dy TimeKeeper:3,13,15,19,21,27,

EntryCount:13 Entries:[(11, 162, 0), (11, 162, 0)];[(22, 378, 0), (22, 378, 0)];[(25,

429, 0), (25, 429, 0)];[(9, 66, 0), (9, 66, 0)];[(9, 545, 0), (9, 545, 0)];[(19, 425,

0), (19, 425, 0)];[(2, 207, 0), (2, 207, 0)];[(22, 71, 0), (22, 71, 0)];[(6, 318, 0),

(6, 318, 0)];[(14, 239, 0), (14, 239, 0)];[(24, 522, 0), (24, 522, 0)];[(18, 26, 0),

(18, 26, 0)];[(16, 299, 0), (16, 299, 0)]; Inverted List:chilli:145:5:(11, 162, 0), (11,

162, 0),cucumber:176:8:(11, 162, 0), (11, 162, 0),chilli:73:9:(22, 378, 0), (22,

378, 0),carrot:197:6:(22, 378, 0), (22, 378, 0),tomatoe:148:3:(22, 378, 0), (22,

378, 0),pumpkin:76:9:(22, 378, 0), (22, 378, 0),chilli:158:6:(25, 429, 0), (25, 429,

0),carrot:78:2:(25, 429, 0), (25, 429, 0),cabbage:61:7:(9, 66, 0), (9, 66, 0),cucum-

ber:169:5:(9, 66, 0), (9, 66, 0),lemon:168:9:(9, 66, 0), (9, 66, 0),cucumber:52:9:(9,

66, 0), (9, 66, 0),chilli:168:5:(9, 545, 0), (9, 545, 0),pumpkin:121:5:(9, 545, 0),

(9, 545, 0),cabbage:196:4:(19, 425, 0), (19, 425, 0),pumpkin:145:5:(19, 425, 0),

(19, 425, 0),cabbage:121:6:(19, 425, 0), (19, 425, 0),pumpkin:78:9:(19, 425, 0),

(19, 425, 0),tomatoe:162:6:(2, 207, 0), (2, 207, 0),carrot:137:8:(2, 207, 0), (2,

207, 0),lemon:126:7:(22, 71, 0), (22, 71, 0),pumpkin:162:9:(22, 71, 0), (22, 71,

0),tomatoe:164:5:(6, 318, 0), (6, 318, 0),cucumber:104:6:(6, 318, 0), (6, 318,

0),lemon:108:9:(14, 239, 0), (14, 239, 0),cucumber:75:6:(14, 239, 0), (14, 239,

0),chilli:131:7:(24, 522, 0), (24, 522, 0),pumpkin:52:5:(24, 522, 0), (24, 522,

0),tomatoe:197:9:(18, 26, 0), (18, 26, 0),cucumber:90:8:(18, 26, 0), (18, 26,

0),cabbage:164:3:(18, 26, 0), (18, 26, 0),cucumber:88:7:(18, 26, 0), (18, 26,

0),tomatoe:124:6:(16, 299, 0), (16, 299, 0),pumpkin:142:8:(16, 299, 0), (16, 299,

0),lemon:73:2:(16, 299, 0), (16, 299, 0),pumpkin:141:2:(16, 299, 0), (16, 299, 0),

Level:2

————————————————————————

Node:(467, 439, 0), (807, 2000, 0) Level:2 TimeTag:Mnth TimeKeeper:1,3,6,7,10,
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EntryCount:12 Entries:[(567, 1511, 0), (807, 1636, 0)];[(469, 705, 0), (528, 1079,

0)];[(641, 458, 0), (661, 1168, 0)];[(693, 1658, 0), (796, 2000, 0)];[(531, 857,

0), (610, 1177, 0)];[(486, 1204, 0), (562, 1554, 0)];[(467, 1642, 0), (617, 1998,

0)];[(667, 444, 0), (694, 1084, 0)];[(564, 1236, 0), (684, 1510, 0)];[(605, 1665, 0),

(736, 1969, 0)];[(467, 439, 0), (622, 688, 0)];[(537, 712, 0), (633, 840, 0)]; Inverted

List:lemon:186:5:(567, 1511, 0), (807, 1636, 0),carrot:181:7:(567, 1511, 0), (807,

1636, 0),chilli:57:4:(567, 1511, 0), (807, 1636, 0),carrot:123:8:(567, 1511, 0),

(807, 1636, 0),lemon:135:7:(567, 1511, 0), (807, 1636, 0),cucumber:153:5:(567,

1511, 0), (807, 1636, 0),cabbage:109:4:(567, 1511, 0), (807, 1636, 0),pump-

kin:189:7:(567, 1511, 0), (807, 1636, 0),chilli:99:8:(567, 1511, 0), (807, 1636,

0),carrot:147:6:(567, 1511, 0), (807, 1636, 0),tomatoe:156:5:(567, 1511, 0), (807,

1636, 0),cucumber:60:5:(567, 1511, 0), (807, 1636, 0),chilli:132:7:(567, 1511,

0), (807, 1636, 0),cucumber:179:2:(567, 1511, 0), (807, 1636, 0),chilli:67:8:(567,

1511, 0), (807, 1636, 0),cucumber:133:9:(567, 1511, 0), (807, 1636, 0),lemon:66:4:(567,

1511, 0), (807, 1636, 0),pumpkin:85:9:(567, 1511, 0), (807, 1636, 0),cabbage:72:7:(567,

1511, 0), (807, 1636, 0),pumpkin:188:6:(567, 1511, 0), (807, 1636, 0),lemon:77:3:(567,

1511, 0), (807, 1636, 0),pumpkin:53:2:(567, 1511, 0), (807, 1636, 0),cabbage:88:4:(567,

1511, 0), (807, 1636, 0),carrot:183:6:(567, 1511, 0), (807, 1636, 0),lemon:102:7:(567,

1511, 0), (807, 1636, 0),cucumber:98:2:(567, 1511, 0), (807, 1636, 0),cabbage:65:5:(567,

1511, 0), (807, 1636, 0),cucumber:140:4:(567, 1511, 0), (807, 1636, 0),lemon:96:5:(567,

1511, 0), (807, 1636, 0),cucumber:110:5:(567, 1511, 0), (807, 1636, 0),toma-

toe:164:9:(567, 1511, 0), (807, 1636, 0),cucumber:90:9:(567, 1511, 0), (807, 1636,

0),chilli:130:8:(567, 1511, 0), (807, 1636, 0),pumpkin:90:4:(567, 1511, 0), (807,

1636, 0),lemon:116:2:(567, 1511, 0), (807, 1636, 0),pumpkin:109:4:(567, 1511,

0), (807, 1636, 0),tomatoe:126:3:(567, 1511, 0), (807, 1636, 0),carrot:65:4:(567,

1511, 0), (807, 1636, 0),lemon:181:5:(567, 1511, 0), (807, 1636, 0),cucumber:63:7:(567,

1511, 0), (807, 1636, 0),cabbage:56:2:(567, 1511, 0), (807, 1636, 0),cucum-

ber:81:8:(567, 1511, 0), (807, 1636, 0),chilli:94:5:(567, 1511, 0), (807, 1636,

0),carrot:177:3:(567, 1511, 0), (807, 1636, 0),cabbage:94:5:(567, 1511, 0), (807,

1636, 0),carrot:99:5:(567, 1511, 0), (807, 1636, 0),tomatoe:94:5:(567, 1511, 0),

(807, 1636, 0),pumpkin:69:4:(567, 1511, 0), (807, 1636, 0),lemon:191:4:(469, 705,

0), (528, 1079, 0),pumpkin:67:5:(469, 705, 0), (528, 1079, 0),cabbage:191:5:(469,

705, 0), (528, 1079, 0),cucumber:98:9:(469, 705, 0), (528, 1079, 0),lemon:156:4:(469,

705, 0), (528, 1079, 0),pumpkin:81:3:(469, 705, 0), (528, 1079, 0),chilli:75:3:(469,
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705, 0), (528, 1079, 0),carrot:55:3:(469, 705, 0), (528, 1079, 0),lemon:78:3:(469,

705, 0), (528, 1079, 0),carrot:158:7:(469, 705, 0), (528, 1079, 0),chilli:124:5:(469,

705, 0), (528, 1079, 0),pumpkin:123:4:(469, 705, 0), (528, 1079, 0),lemon:181:5:(469,

705, 0), (528, 1079, 0),carrot:199:2:(469, 705, 0), (528, 1079, 0),lemon:153:4:(469,

705, 0), (528, 1079, 0),carrot:71:5:(469, 705, 0), (528, 1079, 0),tomatoe:195:7:(469,

705, 0), (528, 1079, 0),carrot:121:3:(469, 705, 0), (528, 1079, 0),chilli:170:6:(469,

705, 0), (528, 1079, 0),cucumber:183:5:(469, 705, 0), (528, 1079, 0),cabbage:84:5:(469,

705, 0), (528, 1079, 0),pumpkin:117:5:(469, 705, 0), (528, 1079, 0),lemon:104:8:(469,

705, 0), (528, 1079, 0),carrot:188:4:(469, 705, 0), (528, 1079, 0),cabbage:181:5:(469,

705, 0), (528, 1079, 0),cucumber:126:7:(469, 705, 0), (528, 1079, 0),cabbage:148:6:(469,

705, 0), (528, 1079, 0),pumpkin:68:2:(469, 705, 0), (528, 1079, 0),chilli:80:8:(469,

705, 0), (528, 1079, 0),cucumber:79:6:(469, 705, 0), (528, 1079, 0),tomatoe:194:3:(469,

705, 0), (528, 1079, 0),cucumber:110:9:(469, 705, 0), (528, 1079, 0),tomatoe:116:9:(469,

705, 0), (528, 1079, 0),pumpkin:83:8:(469, 705, 0), (528, 1079, 0),tomatoe:115:2:(469,

705, 0), (528, 1079, 0),carrot:194:3:(469, 705, 0), (528, 1079, 0),chilli:147:3:(469,

705, 0), (528, 1079, 0),carrot:53:7:(469, 705, 0), (528, 1079, 0),tomatoe:61:3:(469,

705, 0), (528, 1079, 0),pumpkin:64:9:(469, 705, 0), (528, 1079, 0),lemon:76:6:(469,

705, 0), (528, 1079, 0),pumpkin:149:7:(469, 705, 0), (528, 1079, 0),lemon:65:6:(469,

705, 0), (528, 1079, 0),pumpkin:94:7:(469, 705, 0), (528, 1079, 0),cabbage:143:4:(469,

705, 0), (528, 1079, 0),cucumber:180:6:(469, 705, 0), (528, 1079, 0),cabbage:153:4:(469,

705, 0), (528, 1079, 0),pumpkin:52:3:(469, 705, 0), (528, 1079, 0),cabbage:100:4:(469,

705, 0), (528, 1079, 0),carrot:143:4:(469, 705, 0), (528, 1079, 0),cabbage:121:8:(469,

705, 0), (528, 1079, 0),cucumber:117:4:(469, 705, 0), (528, 1079, 0),tomatoe:132:7:(469,

705, 0), (528, 1079, 0),carrot:104:3:(469, 705, 0), (528, 1079, 0),lemon:54:9:(469,

705, 0), (528, 1079, 0),cucumber:58:4:(469, 705, 0), (528, 1079, 0),tomatoe:52:3:(469,

705, 0), (528, 1079, 0),pumpkin:164:5:(469, 705, 0), (528, 1079, 0),tomatoe:86:7:(469,

705, 0), (528, 1079, 0),pumpkin:59:5:(469, 705, 0), (528, 1079, 0),cabbage:135:3:(641,

458, 0), (661, 1168, 0),carrot:50:7:(641, 458, 0), (661, 1168, 0),tomatoe:187:3:(641,

458, 0), (661, 1168, 0),pumpkin:87:3:(641, 458, 0), (661, 1168, 0),lemon:103:8:(641,

458, 0), (661, 1168, 0),pumpkin:109:7:(641, 458, 0), (661, 1168, 0),cabbage:175:7:(641,

458, 0), (661, 1168, 0),carrot:167:9:(641, 458, 0), (661, 1168, 0),chilli:130:5:(641,

458, 0), (661, 1168, 0),carrot:97:2:(641, 458, 0), (661, 1168, 0),tomatoe:134:5:(641,

458, 0), (661, 1168, 0),cucumber:70:8:(641, 458, 0), (661, 1168, 0),chilli:101:7:(641,

458, 0), (661, 1168, 0),pumpkin:146:7:(641, 458, 0), (661, 1168, 0),tomatoe:141:5:(641,
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458, 0), (661, 1168, 0),carrot:116:3:(641, 458, 0), (661, 1168, 0),tomatoe:141:3:(641,

458, 0), (661, 1168, 0),carrot:86:8:(641, 458, 0), (661, 1168, 0),tomatoe:83:9:(641,

458, 0), (661, 1168, 0),carrot:57:5:(641, 458, 0), (661, 1168, 0),tomatoe:58:3:(641,

458, 0), (661, 1168, 0),cucumber:137:9:(641, 458, 0), (661, 1168, 0),cabbage:159:9:(641,

458, 0), (661, 1168, 0),pumpkin:121:7:(641, 458, 0), (661, 1168, 0),tomatoe:182:2:(641,

458, 0), (661, 1168, 0),cucumber:198:3:(641, 458, 0), (661, 1168, 0),cabbage:109:9:(641,

458, 0), (661, 1168, 0),cucumber:197:6:(641, 458, 0), (661, 1168, 0),tomatoe:198:5:(641,

458, 0), (661, 1168, 0),cucumber:174:9:(641, 458, 0), (661, 1168, 0),cabbage:194:2:(641,

458, 0), (661, 1168, 0),pumpkin:74:2:(641, 458, 0), (661, 1168, 0),lemon:141:6:(641,

458, 0), (661, 1168, 0),cucumber:65:9:(641, 458, 0), (661, 1168, 0),lemon:180:2:(641,

458, 0), (661, 1168, 0),pumpkin:88:9:(641, 458, 0), (661, 1168, 0),cabbage:193:3:(641,

458, 0), (661, 1168, 0),cucumber:181:4:(641, 458, 0), (661, 1168, 0),cabbage:124:4:(641,

458, 0), (661, 1168, 0),pumpkin:165:8:(641, 458, 0), (661, 1168, 0),tomatoe:169:8:(693,

1658, 0), (796, 2000, 0),cucumber:142:3:(693, 1658, 0), (796, 2000, 0),chilli:71:9:(693,

1658, 0), (796, 2000, 0),cucumber:193:5:(693, 1658, 0), (796, 2000, 0),lemon:109:8:(693,

1658, 0), (796, 2000, 0),carrot:105:5:(693, 1658, 0), (796, 2000, 0),cabbage:111:8:(693,

1658, 0), (796, 2000, 0),carrot:79:2:(693, 1658, 0), (796, 2000, 0),chilli:96:5:(693,

1658, 0), (796, 2000, 0),carrot:136:9:(693, 1658, 0), (796, 2000, 0),cabbage:71:4:(693,

1658, 0), (796, 2000, 0),carrot:180:9:(693, 1658, 0), (796, 2000, 0),lemon:141:7:(693,

1658, 0), (796, 2000, 0),carrot:134:2:(693, 1658, 0), (796, 2000, 0),chilli:83:5:(693,

1658, 0), (796, 2000, 0),carrot:118:3:(693, 1658, 0), (796, 2000, 0),tomatoe:164:7:(693,

1658, 0), (796, 2000, 0),pumpkin:83:9:(693, 1658, 0), (796, 2000, 0),tomatoe:195:3:(693,

1658, 0), (796, 2000, 0),carrot:83:6:(693, 1658, 0), (796, 2000, 0),tomatoe:153:4:(693,

1658, 0), (796, 2000, 0),cabbage:99:9:(693, 1658, 0), (796, 2000, 0),chilli:156:2:(693,

1658, 0), (796, 2000, 0),carrot:134:6:(693, 1658, 0), (796, 2000, 0),chilli:192:3:(693,

1658, 0), (796, 2000, 0),pumpkin:180:3:(693, 1658, 0), (796, 2000, 0),toma-

toe:125:3:(693, 1658, 0), (796, 2000, 0),carrot:165:2:(693, 1658, 0), (796, 2000,

0),cabbage:82:4:(693, 1658, 0), (796, 2000, 0),cucumber:50:6:(693, 1658, 0),

(796, 2000, 0),chilli:86:8:(693, 1658, 0), (796, 2000, 0),carrot:126:5:(693, 1658,

0), (796, 2000, 0),tomatoe:122:9:(693, 1658, 0), (796, 2000, 0),pumpkin:60:6:(693,

1658, 0), (796, 2000, 0),cabbage:185:2:(693, 1658, 0), (796, 2000, 0),pump-

kin:167:4:(693, 1658, 0), (796, 2000, 0),tomatoe:149:2:(693, 1658, 0), (796, 2000,

0),carrot:194:6:(693, 1658, 0), (796, 2000, 0),cabbage:74:5:(693, 1658, 0), (796,

2000, 0),cucumber:81:6:(693, 1658, 0), (796, 2000, 0),tomatoe:161:6:(693, 1658,
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0), (796, 2000, 0),cucumber:123:4:(693, 1658, 0), (796, 2000, 0),lemon:112:9:(693,

1658, 0), (796, 2000, 0),cucumber:63:9:(693, 1658, 0), (796, 2000, 0),chilli:81:9:(693,

1658, 0), (796, 2000, 0),cucumber:160:4:(693, 1658, 0), (796, 2000, 0),toma-

toe:68:3:(531, 857, 0), (610, 1177, 0),pumpkin:130:3:(531, 857, 0), (610, 1177,

0),lemon:131:9:(531, 857, 0), (610, 1177, 0),pumpkin:189:2:(531, 857, 0), (610,

1177, 0),lemon:53:3:(531, 857, 0), (610, 1177, 0),cucumber:152:6:(531, 857, 0),

(610, 1177, 0),cabbage:54:3:(531, 857, 0), (610, 1177, 0),cucumber:54:2:(531,

857, 0), (610, 1177, 0),cabbage:87:4:(531, 857, 0), (610, 1177, 0),cucumber:173:5:(531,

857, 0), (610, 1177, 0),tomatoe:113:8:(531, 857, 0), (610, 1177, 0),cucumber:148:8:(531,

857, 0), (610, 1177, 0),lemon:143:3:(531, 857, 0), (610, 1177, 0),carrot:198:2:(531,

857, 0), (610, 1177, 0),tomatoe:199:8:(531, 857, 0), (610, 1177, 0),cucumber:139:5:(531,

857, 0), (610, 1177, 0),chilli:182:9:(531, 857, 0), (610, 1177, 0),carrot:175:8:(531,

857, 0), (610, 1177, 0),lemon:187:5:(531, 857, 0), (610, 1177, 0),cucumber:117:7:(531,

857, 0), (610, 1177, 0),chilli:102:3:(531, 857, 0), (610, 1177, 0),cucumber:113:3:(531,

857, 0), (610, 1177, 0),tomatoe:140:5:(531, 857, 0), (610, 1177, 0),cucumber:137:9:(531,

857, 0), (610, 1177, 0),tomatoe:196:4:(531, 857, 0), (610, 1177, 0),cucumber:177:7:(531,

857, 0), (610, 1177, 0),tomatoe:117:5:(531, 857, 0), (610, 1177, 0),cucumber:143:7:(531,

857, 0), (610, 1177, 0),chilli:168:2:(531, 857, 0), (610, 1177, 0),carrot:137:9:(531,

857, 0), (610, 1177, 0),chilli:139:5:(486, 1204, 0), (562, 1554, 0),cucumber:144:2:(486,

1204, 0), (562, 1554, 0),tomatoe:177:5:(486, 1204, 0), (562, 1554,

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Level:4

————————————————————————

Node:(1, 2, 0), (9999, 10000, 0) Level:4 TimeTag:Mnth TimeKeeper:1,3,6,7,10,

EntryCount:4 Entries:[(2001, 2003, 0), (4271, 4845, 0)];[(1, 2, 0), (2328, 3164,

0)];[(4002, 4001, 0), (8000, 6230, 0)];[(6000, 6220, 0), (9999, 10000, 0)]; Inverted

List:turmeric:162:3:(2001, 2003, 0), (4271, 4845, 0),pepper:190:2:(2001, 2003, 0),

(4271, 4845, 0),ginger:139:4:(2001, 2003, 0), (4271, 4845, 0),chilli:191:5:(2001,

2003, 0), (4271, 4845, 0),garlic:168:3:(2001, 2003, 0), (4271, 4845, 0),poppy-

seed:163:9:(2001, 2003, 0), (4271, 4845, 0),onion:90:5:(2001, 2003, 0), (4271,

4845,

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Appendix E

Performance Measurement Data

set

Following results show as an example of performance measurement data set

which is used for plotting the graph of IR structure and STIR structure

K vs TIME,I/O

IR

SearchData:1000,I/O:15937,Timetaken:594.511587400001,K=1,

SearchData:1000,I/O:19804,Timetaken:749.8406787,K=2,

SearchData:1000,I/O:21186,Timetaken:941.4657049,K=4,

SearchData:1000,I/O:23974,Timetaken:1630.9242325,K=8,

SearchData:1000,I/O:29667,Timetaken:4550.5868404,K=16,

SearchData:1000,I/O:34591,Timetaken:5545.6849,K=20,

STIR

SearchData:1000,I/O:4457,Timetaken:337.1293412,K=1,

SearchData:1000,I/O:4517,Timetaken:340.4078773,K=2,

SearchData:1000,I/O:4577,Timetaken:343.537919800001,

SearchData:1000,I/O:5550,Timetaken:357.3227812,K=8,

SearchData:1000,I/O:6618,Timetaken:373.218177,K=16,

SearchData:1000,I/O:7130,Timetaken:4550.5868404,K=20,
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SQ vs Time,I/O

IR

SearchData:500,I/O:10401,Timetaken:465.4484085,K=4,

SearchData:1000,I/O:21186,Timetaken:941.4657049,K=4,

SearchData:1500,I/O:30935,Timetaken:1316.6032043,K=4,

SearchData:2000,I/O:41905,Timetaken:1793.9051933,K=4,

STIR

SearchData:500,I/O:2401,Timetaken:174.7503981,K=4,

SearchData:1000,I/O:4577,Timetaken:343.537919800001,K=4,

SearchData:1500,I/O:6667,Timetaken:487.5905545,K=4,

SearchData:2000,I/O:8643,Timetaken:677.233157899999,K=4,

DS vs time,I/O

STIR

SearchData.:5000,I/O:4577,Timetaken:343.537919800001,K=4,

SearchData.:10000,I/O:6407,Timetaken:851.4727888,K=4,

SearchData.:15000,I/O:5645,Timetaken:1641.696207,K=4,

SearchData.:20000,I/O:7133,Timetaken:2455.6977427,K=4,
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Appendix F

STK-kNN set

Retrieved Top-7 spatio-temporal data set for the search data “B28,61,17,61,17,0,0,

Cabbage,192,5,01/7/2012,1000,30/7/2012,1000” is shown below:

Entity:S1428,Loc:(50, 91, 0), (50, 91, 0)

Distance:74.813102722168

chilli:108:6,pumpkin:92:4,cabbage:105:8,carrot:53:6,

From:27-07-12 11:00

To:27-07-12 15:00

Entity:S1212,Loc:(69, 168, 0), (69, 168, 0)

Distance:151.211776733398

cabbage:87:6,carrot:189:9,lemon:52:3,pumpkin:170:4,

From:15-07-12 11:00

To:15-07-12 20:00

Entity:S1045,Loc:(200, 128, 0), (200, 128, 0)

Distance:177.881988525391

chilli:111:6,carrot:149:7,cabbage:118:6,carrot:87:2,

From:19-07-12 10:00

To:19-07-12 20:00

Entity:S955,Loc:(254, 173, 0), (254, 173, 0)

Distance:248.16325378418
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lemon:108:2,carrot:178:4,cabbage:137:8,pumpkin:77:9,

From:21-07-12 11:00

To:21-07-12 15:00

Entity:S1543,Loc:(316, 53, 0), (316, 53, 0)

Distance:257.528625488281

cabbage:98:2,pumpkin:64:4,cabbage:73:7,pumpkin:143:7,

From:09-07-12 09:00

To:09-07-12 15:00

Entity:S261,Loc:(105, 380, 0), (105, 380, 0)

Distance:365.656951904297

cabbage:108:9,carrot:65:7,lemon:146:5,carrot:53:6,

From:13-07-12 09:00

To:13-07-12 15:00

Entity:S1005,Loc:(483, 163, 0), (483, 163, 0)

Distance:446.542266845703

tomatoe:191:2,cucumber:179:7,cabbage:119:8,cucumber:196:5,

From:05-07-12 09:00

To:05-07-12 15:00

Entity:S1996,Loc:(498, 128, 0), (498, 128, 0)

Distance:450.876922607422

lemon:197:5,pumpkin:107:3,cabbage:51:3,carrot:196:6,

From:05-07-12 10:00

To:05-07-12 20:00

Entity:S921,Loc:(332, 378, 0), (332, 378, 0)

Distance:451.400054931641

cabbage:105:7,cucumber:58:6,

From:21-07-12 10:00

To:21-07-12 15:00
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Appendix G

STK-kNN with Time

Uncertainty set

Retrieved 10 expected spatio-temporal data set with probability score for the

search data “B28,17,19,17,19,0,0, Cabbage,192,5,1/5/2012,1300,1/5/2012,1300”

is shown below:

S891,(7, 24, 0), (7, 24, 0)

Distance:11.18034

cabbage:87:6,carrot:189:9,lemon:52:3,

Score:0.125

01-05-12 12:00 01-05-12 16:00

S330,(55, 44, 0), (55, 44, 0)

Distance:45.48626

tomatoe:191:2,cucumber:179:7,cabbage:119:8,

Score:0.2296875

01-05-12 17:00 01-05-12 18:00

S603,(66, 38, 0), (66, 38, 0)

Distance:52.55473

chilli:108:6,pumpkin:92:4,cabbage:105:8,

Score:0.0328125

01-05-12 09:00 01-05-12 17:00
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S15,(95, 23, 0), (95, 23, 0)

Distance:78.10249

lemon:197:5,pumpkin:107:3,cabbage:51:3,carrot:196:6,

Score:0.0328125

01-05-12 10:00 01-05-12 18:00

S993,(72, 79, 0), (72, 79, 0)

Distance:81.3941

cabbage:105:7,cucumber:58:6,

Score:0.2296875

01-05-12 17:00 01-05-12 18:00

S42,(56, 103, 0), (56, 103, 0)

Distance:92.61209

pumpkin:92:4,cabbage:105:8,

Score:0.375

01-05-12 10:00 01-05-12 12:00

S60,(113, 34, 0), (113, 34, 0)

Distance:97.16481

pumpkin:107:3,cabbage:51:3,carrot:196:6,

Score:0.0189824380165289

01-05-12 09:00 01-05-12 20:00

S28,(51, 119, 0), (51, 119, 0)

Distance:105.622

Score:0.075

01-05-12 10:00 01-05-12 15:00

S629,(117, 64, 0), (117, 64, 0)

Distance:109.6586

cabbage:50:4,

Score:0.0189824380165289
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01-05-12 09:00 01-05-12 20:00

S982,(146, 50, 0), (146, 50, 0)

Distance:132.6725

tomatoe:191:2,cucumber:179:7,cabbage:119:8,

Score:0.375

01-05-12 10:00 01-05-12 11:00

———————————————————

Query point date:01-05-12 12:00 01-05-12 12:00

End of file

Print on:13-Jul-13 10:25:59 PM
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Appendix H

STK with Time based Nearest

Neighbor set

Retrieved 6 expected spatio-temporal data set based on nearest neighbor time

for the search data “B28,17,19,17,19,0,0, Cabbage,192,5,1/5/2012,0900,1/5/2012,0900”

is shown below:

S1669,(1941, 1950, 0), (1941, 1950, 0)

Distance:2725.90112304688

pumpkin:92:4,cabbage:105:8,

01-05-12 10:00 01-05-12 17:00

S1781,(1915, 1847, 0), (1915, 1847, 0)

Distance:2635.14477539063

tomatoe:191:2,cucumber:179:7,cabbage:119:8,

01-05-12 11:00 01-05-12 15:00

S1332,(1895, 1941, 0), (1895, 1941, 0)

Distance:2687.18579101563

lemon:197:5,pumpkin:107:3,cabbage:51:3,carrot:196:6,

01-05-12 11:00 01-05-12 15:00

S1437,(1908, 1960, 0), (1908, 1960, 0)

Distance:2709.86376953125
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cabbage:87:6,carrot:189:9,lemon:52:3,

01-05-12 15:00 01-05-12 16:00

S1877,(1949, 1966, 0), (1949, 1966, 0)

Distance:2742.8876953125

chilli:108:6,pumpkin:92:4,cabbage:105:8,

01-05-12 16:00 01-05-12 20:00

S1590,(1957, 1770, 0), (1957, 1770, 0)

Distance:2613.3505859375

cabbage:87:6,carrot:189:9,lemon:52:3,

01-05-12 18:00 01-05-12 20:00

———————————————————

Query point date:01-05-12 10:00 01-05-12 10:00

End of file

Print on:17-Sep-13 11:06:13 PM

Total data:6
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