
M.Sc. Engg. Thesis

On Approaches to

Detect Optimal Keep-alive Interval

of TCP Connections

by

Mohammad Saifur Rahman

Submitted to

Department of Computer Science and Engineering

in partial fulfilment of the requirments for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

May 2014

The thesis titled “On Approaches to Detect Optimal Keep-alive Interval of TCP

Connections”, submitted by Mohammad Saifur Rahman, Roll No. 0412052070P, Session April

2012, to the Department of Computer Science and Engineering, Bangladesh University of Engi-

neering and Technology, has been accepted as satisfactory in partial fulfillment of the require-

ments for the degree of Master of Science in Computer Science and Engineering and approved

as to its style and contents. Examination held on May 14, 2014.

Board of Examiners

1.

Dr. Md. Yusuf Sarwar Uddin Chairman

Assistant Professor (Supervisor)

Department of CSE

BUET, Dhaka.

2.

Dr. Mohammad Mahfuzul Islam Member

Professor & Head (Ex-officio)

Department of CSE

BUET, Dhaka.

3.

Dr. A.K.M. Ashikur Rahman Member

Associate Professor

Department of CSE

BUET, Dhaka.

4.

Dr. S. M. Farhad Member

Assistant Professor

Department of CSE

BUET, Dhaka.

5.

Dr. Mohammad Nurul Huda Member

Professor (External)

Department of CSE

United International University, Dhaka.

i

Candidate’s Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

Mohammad Saifur Rahman

Candidate

ii

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgments xiv

Abstract xv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Related Work . 4

1.3.1 Study of NAT binding timeouts . 5

1.3.2 Keep-alive in Existing Systems . 6

1.3.3 Impact of KA Interval on Power Consumption 7

1.3.4 Iterative Probing to Measure Network Parameters 8

1.4 Our Contribution . 9

1.5 Assumptions . 10

1.6 Organization of the Thesis . 11

iii

CONTENTS iv

2 Preliminaries 12

2.1 Middle-box . 12

2.1.1 Network Address Translator (NAT) 13

2.1.2 Firewall . 13

2.1.3 Proxy Server . 14

2.1.4 Binding Timeout . 14

2.2 Keep-alive . 15

2.2.1 TCP Keep-alive . 15

2.2.2 Application Keep-alive . 16

2.2.3 Keep-alive Interval . 16

2.2.4 Optimal Keep-alive Interval . 16

2.3 Mobile Access Point Name (APN) . 17

2.4 Power Consumption Model . 17

3 Keep-alive Interval Detection 20

3.1 KA Interval Detection Using Binary Search 22

3.1.1 Number of Test Probes . 23

3.1.2 Convergence Time . 24

3.2 KA Interval Detection Using Exponential Search 28

3.2.1 Number of Test Probes . 30

3.2.2 Convergence Time . 34

3.3 KA Interval Detection Using Hybrid Search 41

3.3.1 Number of Test Probes . 43

3.3.2 Convergence Time . 44

CONTENTS v

3.4 Comparative Analysis of Search Techniques 48

3.4.1 Probe Count Comparison . 48

3.4.2 Convergence Time Comparison . 50

3.4.3 Discussion . 52

4 Simulation Results 54

4.1 Simulation Setting . 54

4.2 Impact of Delay . 56

4.3 Reducing Convergence Time . 57

4.3.1 Settling to Sub-optimal Keep-alive Interval 58

4.3.2 Variations of Hybrid Search . 61

4.4 Number of Keep-alives Sent . 63

4.5 Impact of Packet Failure . 69

4.6 Retry on Packet Failure . 73

4.7 Performance of Modified Algorithm . 80

5 Conclusion 83

5.1 Major Contributions . 83

5.2 Directions of Further Research . 85

List of Figures

1.1 A model of notification service used in different mobile platforms. 2

1.2 (Excerpted from [13]) Direct Push Network Design. 6

2.1 A middle-box connecting a PC, a laptop, a PDA and a mobile phone to

the internet. 12

3.1 Flow chart of KA interval detection technique. 21

3.2 Probe count of binary search. 24

(a) Probe count as a function of binding timeout. 24

(b) Best, worst and average case probe count as a function of search range. 24

3.3 Convergence time of binary search. 25

(a) Convergence time as a function of binding timeout. 25

(b) Best, worst and average case convergence time as a function of search

range higher bound. 25

3.4 Probe count of exponential search. 31

(a) Probe count as a function of binding timeout. 31

(b) Best, worst and average case probe count as a function of search range

higher bound. 31

3.5 Convergence time of exponential search. 35

vi

LIST OF FIGURES vii

(a) Convergence time as a function of binding timeout. 35

(b) Best, worst and average case convergence time as a function of search

range. 35

3.6 Probe count of hybrid search. 43

(a) Probe count as a function of network timeout. 43

(b) Best, worst and average case probe count as a function of search range. 43

3.7 Convergence time of of hybrid search. 46

(a) Convergence time as a function of network timeout. 46

(b) Best, worst and average case convergence time as a function of search

range. 46

3.8 Probe count comparison. 49

(a) Probe count comparison for different binding timeouts. 49

(b) Best case probe count comparison for different search ranges. 49

(c) Worst case probe count comparison for different search ranges. 49

(d) Average case probe count comparison for different search ranges. . . . 49

3.9 Convergence time comparison. 51

(a) Convergence time comparison for different binding timeouts. 51

(b) Best case convergence time comparison for different search ranges. . . 51

(c) Worst case convergence time comparison for different search ranges. . 51

(d) Average case convergence time comparison for different search ranges. 51

4.1 Simulation topology. 55

4.2 Probe count of different search techniques in presence of network delay. . . 57

(a) Binary search. 57

(b) Exponential search. 57

LIST OF FIGURES viii

(c) Hybrid search. 57

4.3 Convergence time of different search techniques in presence of network delay. 58

(a) Binary search. 58

(b) Exponential search. 58

(c) Hybrid search. 58

4.4 Impact of relaxing optimality of α on convergence time of different search

techniques. 59

(a) Binary search. 59

(b) Exponential search. 59

(c) Hybrid search. 59

4.5 Average and median decrease in convergence time due to relaxing optimal-

ity of α. 60

(a) Average decrease (%) in convergence time. 60

(b) Median decrease (%) in convergence time. 60

4.6 Impact of relaxing optimality of α on detected binding timeout in different

search techniques. 61

(a) Binary search. 61

(b) Exponential search. 61

(c) Hybrid search. 61

4.7 Average and median decrease in detected binding timeout due to relaxing

optimality of α. 62

(a) Average decrease (%) in detected binding timeout. 62

(b) Median decrease (%) in detected binding timeout. 62

4.8 Number of keep-alive packets sent during meeting or seminar scenario. . . 64

(a) 30 minute run. 64

LIST OF FIGURES ix

(b) 1 hour run. 64

(c) 2 hour run. 64

4.9 Last known good keep-alive interval during meeting or seminar scenario. . 65

(a) 30 minute run. 65

(b) 1 hour run. 65

(c) 2 hour run. 65

4.10 Number of keep-alive packets sent over 1 data and 1 test connection over

longer durations. 66

(a) 6 hour run. 66

(b) 8 hour run. 66

(c) 12 hour run. 66

(d) 24 hour run. 66

4.11 Last known good keep-alive interval over longer durations. 67

(a) 6 hour run. 67

(b) 8 hour run. 67

(c) 12 hour run. 67

(d) 24 hour run. 67

4.12 6 hour run of variations of hybrid search. 69

(a) Here, the keep-alive interval search range is 1-128 minutes. 69

(b) For the same search range, here the curves are zoomed in the range

20-128 minutes. 69

4.13 Comparison of detected binding timeout among different search techniques,

when no more than 1% of keep-alive messages may fail due to transient

network failure. 70

(a) p = 0.005. 70

LIST OF FIGURES x

(b) p = 0.01. 70

4.14 Comparison of detected binding timeout among different search techniques,

when 0.01 < p ≤ 0.10. 71

(a) p = 0.02. 71

(b) p = 0.05. 71

(c) p = 0.10. 71

4.15 Error percentage in detected binding timeout among different search tech-

niques. 72

(a) p = 0.005. 72

(b) p = 0.01. 72

(c) p = 0.02. 72

(d) p = 0.05. 72

(e) p = 0.10. 72

4.16 Impact of packet failure on binary search technique. 74

(a) Detected binding timeout. 74

(b) Average and median error (%) in detected binding timeout. 74

4.17 Impact of packet failure on exponential search technique. 74

(a) Detected binding timeout. 74

(b) Average and median error (%) in detected binding timeout. 74

4.18 Impact of packet failure on hybrid search technique. 74

(a) Detected binding timeout. 74

(b) Average and median error (%) in detected binding timeout. 74

4.19 Average and median error percentage in detected binding timeout in dif-

ferent search techniques in presence of packet failure. 75

LIST OF FIGURES xi

(a) Average error (%) in detected binding timeout. 75

(b) Median error (%) in detected binding timeout. 75

4.20 Comparison of detected binding timeout among different search techniques

with retry, when p ≤ 0.01. 75

(a) p = 0.005. 75

(b) p = 0.01. 75

4.21 Comparison of detected binding timeout among different search techniques

with retry, when 0.01 < p ≤ 0.10. 76

(a) p = 0.02. 76

(b) p = 0.05. 76

(c) p = 0.10. 76

4.22 Impact of packet failure on binary search technique with retry. 77

(a) Detected binding timeout. 77

(b) Average and median error (%) in detected binding timeout. 77

4.23 Impact of packet failure on exponential search technique with retry. 77

(a) Detected binding timeout. 77

(b) Average and median error (%) in detected binding timeout. 77

4.24 Impact of packet failure on hybrid search technique with retry. 77

(a) Detected binding timeout. 77

(b) Average and median error (%) in detected binding timeout. 77

4.25 Impact of retry on convergence time of different search techniques. 78

(a) Binary search. 78

(b) Exponential search. 78

(c) Hybrid search. 78

LIST OF FIGURES xii

(d) Average increase (%) in convergence time due to retry. 78

(e) Median increase (%) in convergence time due to retry. 78

4.26 Impact of retry on probe count of different search techniques. 79

(a) Average increase (%) in probe count due to retry. 79

(b) Median increase (%) in probe count due to retry. 79

4.27 Number of keep-alive packets sent over 1 data and 1 test connection during

meeting or seminar scenario. (p = 0.02, q = 0.10). 80

(a) 30 minute run. 80

(b) 1 hour run. 80

(c) 2 hour run. 80

4.28 Number of keep-alive packets sent over 1 data and 1 test connection over

longer durations. (p = 0.02, q = 0.10). 82

(a) 6 hour run. 82

(b) 8 hour run. 82

(c) 12 hour run. 82

(d) 24 hour run. 82

List of Tables

1.1 (Excerpted from [23]) Current consumption by keep-alive interval. 8

2.1 (Excerpted from [16]) Energy model for downloading x kilobytes of data

over 3G, GSM and WiFi networks. All values except the Maintenance

values for 3G and GSM, are averaged over more than 50 trials. 18

3.1 Probe count comparison among optimal KA detection techniques. 49

3.2 Probe count of binary search vs. hybrid search. 49

3.3 Convergence time comparison among optimal KA detection techniques. . . 51

3.4 Convergence time of binary search vs. hybrid search. 51

4.1 Average convergence time in variations of hybrid search. The average is

taken over the search range of [1, 128] minutes. 62

4.2 Average reduction (%) of number of keep-alives sent when testing is per-

formed to improve the keep-alive interval from the conservative default value. 68

4.3 Average reduction (%) of number of keep-alives sent when applying varia-

tions of hybrid search to improve the keep-alive interval from the conser-

vative default value. 70

4.4 Average reduction (%) of number of keep-alives sent when testing is per-

formed to improve the keep-alive interval from the conservative default

value. Here p = 0.02 and q = 0.10. 82

xiii

Acknowledgments

In the name of Allah, the most benevolent and the most merciful.

All praises and thanks are due to Him.

I express my heart-felt gratitude to my supervisor, Dr. Md. Yusuf Sarwar Uddin, for his

constant supervision of this work. He is an awesome teacher, guide and a friend. He injected an

amazing amount of energy and enthusiasm in this research work. Bouncing ideas with him and

white-boarding in his office were memorable and fun experiences.

I would also want to thank the members of my thesis committee for their valuable suggestions.

I thank Professor Dr. Mohammad Mahfuzul Islam, Dr. A. K. M. Ashikur Rahman, Dr. S. M.

Farhad and specially the external member Professor Dr. Mohammad Nurul Huda.

Besides my supervisor and board members, I am specially thankful to my elder brother,

Professor Dr. M. Sohel Rahman. He has acted as an in-house supervisor throughout every stage

of my studies and career. I also thank Professor Dr. M. Kaykobad for being such an inspiration.

In this occasion, I commemorate my late mother. I missed her guidance and advices during

my M. Sc. studies. I acknowledge my father, my wife Tasneem, our two sons Abrar and Ahmad,

my sister in law Sara and my sweet niece Nazaha, for letting me time off from my social and

family responsibilities to focus on my thesis. I also acknowledge Paresa and Keya for preparing

great meals and snacks for me.

xiv

Abstract

When a TCP connection between a client behind a NAT and a server is idle for a long

time, it may get torn down due to TCP binding timeout. In order to keep the connection alive,

the client device needs to send keep-alive packets through the connection when it is otherwise

idle. To reduce resource consumption, it is preferred that the keep-alive packet is sent at the

farthest possible time within the NAT binding timeout. This interval is called the Optimal

Keep-alive Interval. Due to varied settings of different network equipments, optimal keep-alive

(KA) interval will not be identical in different networks. Hence, it needs to be dynamically

detected. In this thesis, we employ several search approaches to dynamically detect the optimal

KA interval. These include binary search, exponential search and hybrid search. Hybrid search

combines different aspects of binary and exponential search techniques. We present theoretical

analysis of different aspects of these techniques. We also conduct simulation based experiments

to compare these techniques. Based on the theoretical studies and the experimental results, we

conclude that hybrid search should be used in detecting the optimal keep-alive interval of a TCP

connection.

xv

Chapter 1

Introduction

Recently, power consumption of mobile devices has received significant research atten-

tion [18, 28, 30, 37]. Devices such as smart phones, tablet PCs and other customized

personal digital assistants (PDA) try to provide the user with fresh data. This includes

the user’s emails, social news feed, corporate recent activity logs etc. Since the devices

in question have limited battery life, they cannot frequently poll for information updates.

Rather, they rely on change notifications being pushed by a notification server. The device

remains connected to the server even during low power modes, typically via a Transmission

Control Protocol (TCP) connection. Such a connection is quiet for the most part, with

traffic flowing only when the server has an update to share. When the device is behind

a Network Address Translator (NAT) or any other middle-box, the connection would be

subjected to binding timeouts. That means, the connection state may be cleared by the

middle-box if no data has passed through it for some specified amount of time. Studies

have shown that the NAT binding timeouts vary dramatically amongst the commercially

available home gateways [22]. To safeguard against this timeout, the device needs to

periodically probe the other end of the connection when the connection is otherwise idle.

This is called a keep-alive [17] or a heartbeat; with the interval being referred to as keep-

alive interval or KA interval in short. To balance the battery life constraint with the

necessity of keeping the connection alive, it is preferred that the keep-alive probe is made

1

CHAPTER 1. INTRODUCTION 2

at the farthest possible time within the NAT binding timeout . This interval is termed as

optimal keep-alive or KA interval. Such an interval needs to be computed via experiment

in the network environment that the device is currently in.

In this thesis, we present several iterative probing approaches to dynamically detect

the optimal keep-alive interval. We compare these techniques by analyzing several quan-

titative aspects. We also conduct simulation based experiments to validate the theoretical

results as well as analyze the behavior of these techniques further. Based on the analysis,

we identify the technique that has superior performance.

1.1 Motivation

Figure 1.1: A model of notification service used in different mobile platforms.

As mentioned above, the motivation for this work is drawn from the scenarios enabled

by the mobile platforms of today. iPhone, Android, Windows Phone, Black Berry provide

the user a feeling that his mobile device is always on – fetching emails as soon as they

arrive in the email server; updating the social news feeds as soon as there are activities

in his social network. The same goes for tablet platforms like iPad, Android, Windows 8

and so on.

Each of these platforms provide a Notification Service which, at a high level, can

CHAPTER 1. INTRODUCTION 3

be modeled as shown in Figure 1.1. Rather than polling different services to check if

data needs to be downloaded, the user’s device only maintains a TCP connection to a

notification server. This is called a Notification Channel . When the user’s social network

service wants to send recent activity feeds, it sends a new activity notification to the

notification server. This is delivered to the device through the notification channel. Based

on this notification, the device opens a new connection to the social network service,

downloads the activity feed and closes the connection. In the same way, the device

receives emails as soon as they arrive to the email service. Therefore, to enable these

seemingly always connected scenarios, the device must keep the notification channel alive.

This channel remains idle most of the time; only getting notification messages from the

server when something happens. Therefore, periodic keep-alive messages must be sent

through the notification channel to keep its state active in the middle-box.

Without better information, the keep-alives would be sent at a very conservative in-

terval (e.g. 1 minute). Even when the device is in idle state, it needs to bring the CPU

and the radio module to high power state to send the keep-alive every minute. This has

a significant power consumption [23]. As such, it is important to use a higher interval.

On the other hand, the binding timeout of middle-boxes varies widely [22]. Therefore, we

cannot just guess a higher interval and hope it to be able to keep the notification channel

alive. It is extremely important to keep this channel active all the time. Otherwise, we will

miss notifications from the server and will not be able to fetch fresh data from different

services. This motivates the need to detect the optimal keep-alive interval dynamically in

the network environment that the device is in. This is done by testing higher keep-alive

intervals in a separate connection.

1.2 Problem Statement

When a TCP connection is established through a stateful middle-box, it may get dropped

by the middle-box if no data has passed through the connection for a long time. To

CHAPTER 1. INTRODUCTION 4

ensure that the state binding for the connection is not timed out, periodic heartbeat or

keep-alive messages need to be sent. This has some impact on power consumption. As

such, to balance the battery life constraint with the necessity of keeping the connection

alive, it is preferred that the keep-alive probe is made at the farthest possible time within

the binding timeout. In the optimal keep-alive interval detection problem, we try to find

out this optimal interval between successive keep-alives. This is done by keeping the

connection idle for different amount of times and then probing whether the connection is

still open.

If an interval being tested overshoots the optimal KA interval, the middle-box clears

the state of the connection. In such a case, we will be unable to receive data from the

server for some amount of time. To overcome this issue, the testing is performed by

opening a second connection to the server. The original TCP connection is used for

sending and receiving important data between the client and the server. This is referred

to as the Data Connection. The second connection, opened to perform the testing to

detect optimal KA interval, is called the Test Connection.

Before testing starts, keep-alives over the data connection are sent with a conservative

(small) interval so that the connection is not lost. As testing reveals better intervals, the

data connection’s keep-alive period is increased accordingly. We need to find a optimal

keep-alive interval detection technique that would result in minimum number of keep-alive

messages sent over a given amount of time.

1.3 Related Work

In this section we review some literature that is relevant to our work. We organized

the literature review in four sections. Firstly, we look at a study that suggests binding

timeout of TCP connections varies widely amongst different networking equipments. This

motivates the need for sending keep-alive packets periodically to retain the connection.

Then we review use of KA packets in existing systems. We also review some literature

CHAPTER 1. INTRODUCTION 5

on impact of KA interval on power consumption. This motivates the need for detecting

and using the optimal keep-alive interval. Finally, we review some earlier works that uses

iterative probing for measuring different network parameters.

1.3.1 Study of NAT binding timeouts

In [22], Hätönen et al. experimentally analyzed characteristics of a substantial number of

different home gateways. These characteristics include binding timeouts, queuing delays,

throughput, protocol support etc.

One of the experiments in their work focus on finding the TCP binding timeouts of

different home gateways. They used a modified binary search algorithm in their test bed

to detect the binding timeout for each home gateway they tested. To speed up the test,

multiple parallel connections were used. Testing was terminated if binding timeout of

a device was longer than 24 hours. The results show that TCP binding timeout varies

dramatically amongst the commercially available home gateways. The shortest timeout

observed was about 4 minutes, while the median timeout was about an hour. More than

50% of the devices did not meet the IETF recommended timeout of 124 min [21]. On the

other hand, some of the devices retained TCP bindings for considerably longer; they did

not timeout the TCP connection even after 24 hours of idleness.

As the binding timeout varies widely, a mobile device in real network environment may

also need to perform testing to find the optimal keep-alive interval and send keep-alives

using that period. While protocols such as NSIS [35] or SIMCO [36] do exist to explicitly

negotiate the binding timeout with the middle-box, equipments currently used by mobile

operators do not usually support these protocols.

CHAPTER 1. INTRODUCTION 6

Figure 1.2: (Excerpted from [13]) Direct Push Network Design.

1.3.2 Keep-alive in Existing Systems

In this section, we review use keep-alive messages in some existing systems. We look at

the Exchange Active Sync (EAS) protocol first. The Direct Push feature of EAS protocol

is designed to keep a mobile device up to date over a cellular network connection [13]. It

uses long-standing HTTPS requests to maintain a channel with the service. Each request

is ’parked’ at the server for a time specified by the request, if there is no update on the

server to share. After the time elapses, the server returns a ’200 OK’. If, however, the

underlying network has a smaller binding time out, then no response is received from the

server. Then the client sends another HTTPS request with a lesser amount of wait time

specified. Figure 1.2, excerpted from [13] shows an example run. Detailed discussion on

the keep-alive interval adjustment, along with the configurable parameters, can be found

in [6].

Windows Phone maintains a connection with Microsoft Push Notification Service

(MPNS) for receiving notifications [11]. Windows 8 devices connect to Windows No-

tification Service (WNS) for the same purpose [14]. Similarly, Apple Push Notification

Service (APNs) [3] serves iPad, iPhone while Google Cloud Messaging (GCM) serves An-

CHAPTER 1. INTRODUCTION 7

droid devices [5]. In all these cases a persistent connection must be maintained between

the client (device) and the server (notification service). As such, it is expected that each of

these eco-systems employ exchange of keep-alive messages periodically and has mechanism

to tune the keep-alive interval to obtain good battery life performance. The details of the

exact mechanism used are not available publicly. However, source code posted at [1] and

discussion threads in Google product forums [2] indicate that GCM uses 15 minutes over

WiFi network and 28 minutes over mobile or unknown network as the keep-alive interval.

The forum threads further indicate that these intervals result in frequent disconnects.

Patent applications filed by Microsoft Corporation indicate use of a test connection to

dynamically detect an efficient keep-alive interval for communication between client and

server via middle-box [20, 24]. We can infer, therefore, that MPNS and WNS clients test

different keep-alive intervals through a test connection. However, the exact strategy used

in choosing the test intervals is not called out in the patent applications.

The Transport Layer Security (TLS) protocol also uses keep-alive or heartbeat mes-

sages. TLS allows client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, or message forgery [19]. Originally, there was no fea-

ture in the protocol to keep the connection alive without continuous data transfer. This

limitation was overcome by the recently added Heartbeat Extension [33] – passing heart-

beat messages for ensuring liveness of peers. The user can use the new HeartbeatRequest

message, which has to be answered by the peer with a HeartbeartResponse immediately.

Incidentally, at the time of writing this thesis, a missing bounds check in the OpenSSL

library’s implementation of heartbeat extension was exposed and received widespread

attention. The bug was termed Heartbleed [7, 12].

1.3.3 Impact of KA Interval on Power Consumption

Haverinen et al. showed in [23] that battery life is significantly influenced by the fre-

quency of keep-alive messages. They performed real power measurements in two different

CHAPTER 1. INTRODUCTION 8

Table 1.1: (Excerpted from [23]) Current consumption by keep-alive interval.

Interval [s] Avg. current 2G [mA] Avg. current 3G [mA]

20 29 34

40 16 24

150 9.1 16

300 7.3 14

Infinite 5.2 6.1

3G networks. They also conducted measurements in 2G GPRS network. From these mea-

surements, they calculated the average energy consumption of a single keep-alive event.

The consumption of a single keep-alive transaction varied between 0.15 mAh and 0.6 mAh

in 3G, and between 0.11 mAh and 0.13 mAh in 2G. Table 1.1, excerpted from [23] shows

how current consumption is reduced with increased keep-alive interval. This is observed

in both 2G and 3G networks.

A comprehensive survey on general solutions for energy efficiency on mobile devices,

published between 1999 and May 2011, is available in [38]. Here the authors classify

and provide a short summary of the various efforts on studying, modeling and reducing

energy consumption in mobile devices. One of the power models, proposed by Balasubra-

manian et al. [16], is briefly described in Section 2.4. This model too indicates that power

consumption can be reduced by increasing keep-alive interval.

1.3.4 Iterative Probing to Measure Network Parameters

Iterative probing has been widely used in the literature for measuring different network

parameters like end-to-end available bandwidth (avail-bw), its variability, TCP congestion

window size etc. The congestion window size in TCP is initially set to at most four

segments. For each segment that gets acknowledged, the sender adds one segments worth

of bytes to the congestion window. Therefore, congestion window doubles up in each

round trip iteration. This is called slow start and continues until a slow start threshold

CHAPTER 1. INTRODUCTION 9

is reached. Subsequently, TCP switches from slow start to additive increase. In this

mode, the congestion window is increased by one segment in every round trip iteration.

Whenever a packet loss is detected, the slow start threshold is set to be half of the

congestion window size and the entire process is restarted [39].

When measuring avail-bw using iterative probing, several probing streams are used.

For each stream, the input and output rates are compared. If the output rate is found

smaller than the input rate, then the probing rate is larger than the avail-bw during the

probing stream. The probing rate is varied either linearly or based on what happened

in previous streams, until the probing process converges to an estimate of the average

avail-bw. Jain et al. used iterative probing to measure end-to-end avail-bw. They termed

their measurement methodology as Self-Loading Periodic Streams (SLoPS) [26]. They

also implemented it in a tool called pathload and examined the relation between avail-

bw and TCP throughput. Other iterative techniques for avail-bw measurements include

Bfind [15], PTR [25], TOPP [29], pathChirp [32] etc.

The variability in the available bandwidth has also been measured by Jain et al. using

iterative probing [27]. A number of N probing streams of duration τ and rate R are

sent through a path. Each stream provides an indication of whether the avail-bw in the

corresponding time interval is higher than R. The resulting N binary samples are used

to estimate the precentile of the avail-bw distribution.

1.4 Our Contribution

The main task of this thesis is to design techniques to detect the optimal keep-alive interval

of a TCP connection. We employ several search approaches to dynamically detect the

optimal KA interval. These include binary search, exponential search and hybrid search.

Hybrid search combines different aspects of binary and exponential search techniques.

We analyze the proposed techniques theoretically and validate them through simu-

CHAPTER 1. INTRODUCTION 10

lation. We make simulation based experiments using Omnet++ [8]. The results of the

experiments, their explanations and conclusions drawn from them are stated in Chapter 4.

We evaluate the performance of our techniques by varying various parameters (application

level packet failure rate, acceptable error in the detected keep-alive interval etc.). Exper-

iments reveal that hybrid and exponential search techniques result in the least number

of keep-alive messages sent over the data connection during several study durations of

different lengths. Additionally, the number of probe counts in the test connection and the

time taken to detect the optimal KA interval are less in hybrid search than in exponential

search. This is proved through theoretical analysis and is backed up by the simulation

results. Therefore, we conclude that hybrid search should be used in detecting the optimal

keep-alive interval of a TCP connection.

Implementing the KA interval detection techniques on a real mobile platform is left

as future work. All observations are made based on theoretical analysis and simulations.

1.5 Assumptions

We made the following assumptions for the scope of work in this thesis. However, in

Chapter 5, we have outlined how these assumptions could be removed.

1. We assume that once a keep-alive interval is detected by a device in a network, it does

not change. This assumption should hold in the real world most of the time. However,

If the middle-box is replaced or re-configured, then the binding timeout may become

different. But, we do not expect the middle-boxes to be re-configured frequently. As

such, we make the stated assumption.

2. The keep-alive interval detection will be triggered whenever a device detects that it is

in a new network. We assume that a device can accurately determine whether it is

connected to a new network or not. A device can look at the Access Point Name (APN)

of the mobile network for this detection. In case of WiFi network, the access point’s

CHAPTER 1. INTRODUCTION 11

Service Set Identifier (SSID) could be used. However, it is possible that 2 different

access points in different locations have been configured with the same SSID. The

APN could also be duplicated due to misconfiguration. In such cases, the assumption

does not hold. In Section 5.2 we outline a mitigation for this situation.

1.6 Organization of the Thesis

The rest of the chapters are organized as follows. Chapter 2 gives preliminary concepts and

terminologies that will be used in describing the contribution of this research in subsequent

chapters. Chapter 3 contains the core work of this thesis. It introduces several techniques

to detect the optimal keep-alive interval of TCP connection. Theoretical analysis and

comparison among these techniques are also provided in this chapter. Chapter 4 contains

setup of the simulation experiments and their results to further compare the performance

of these techniques. Chapter 5 concludes this dissertation by summarizing the major

contributions and providing some directions for further research in this field.

Chapter 2

Preliminaries

In this chapter, we review some preliminary concepts and terminologies that will be used

in describing the contribution of this research in subsequent chapters.

2.1 Middle-box

Figure 2.1: A middle-box connecting a PC, a laptop, a PDA and a mobile phone to the

internet.

Computers in a local network connect to the internet through stateful components

like firewalls, Network Address Translators (NATs) and proxy servers. These components

12

CHAPTER 2. PRELIMINARIES 13

maintain some state for each TCP connection. These are termed as middle-boxes, as they

stay in the middle between a computer and the internet. Figure 2.1 shows an example

configuration. The figure is relevant for any type of middle-box.

2.1.1 Network Address Translator (NAT)

Network Address Translator (NAT) is a widely used component in the IPv4 based internet.

In a typical NAT configuration, computers in the local network (i.e. behind the NAT)

are configured with IP addresses from a private IP address range. The NAT in the local

network is connected to the Internet with at least one publicly routable IP address. It

may optionally have more than one public IP address.

When a computer from the local network sends some data to a host in the internet,

the NAT translates the local IP address to one of its public address(es). The port number

of the TCP or UDP connection may also be modified. The NAT keeps track of active

connections so that it is able to translate inbound packets to the correct local addresses

and ports.

In essence, a NAT multiplexes its public IP address for many computers in the local

network which do not have public IP addresses of their own. As such, with the advent of

IPv6, we expect the use of NAT will slowly diminish. However, they may still remain in

use for purposes like protocol translation.

2.1.2 Firewall

Unlike NAT, a firewall do not typically make any changes to packets passing through them.

Instead, it monitors the traffic to ensure no unwanted or malicious traffic comes into the

local network. Therefore, it too needs to maintain some state about each connection that

goes through it. Typically, only hosts within the local network are allowed to initiate

new connections (i.e., cause firewall to create connection state). Packets coming from

CHAPTER 2. PRELIMINARIES 14

outside of the local network are dropped unless they belong to an existing connection, or

are otherwise explicitly permitted. While NATs are generally not needed for IPv6, the

firewalls will still be very much needed.

2.1.3 Proxy Server

According to [10], A proxy server is a server (a computer system or an application) that

acts as an intermediary for requests from clients seeking resources from other servers. A

client connects to the proxy server, requesting some service, such as a file, connection, web

page, or other resource available from a different server and the proxy server evaluates

the request as a way to simplify and control its complexity. Proxies were invented to add

structure and encapsulation to distributed systems. Today, most proxies are web proxies,

facilitating access to content on the World Wide Web and providing anonymity.

A proxy can also be used for monitoring and filtering traffic. As such, it also needs to

maintain some state about each connection that goes through it.

2.1.4 Binding Timeout

As discussed so far, all types of middle-boxes require to maintain some state for each TCP

or UDP connection passing through them. This takes up some resources; as such when

a connection is closed, the middle-box needs to detect it immediately. It would then be

able to release all those resources.

When a connection is closed gracefully, the middle-box can release the corresponding

resources right away. However, when a TCP connection is abruptly closed at one end the

other end and middle-boxes may not realize it until an attempt is made to send another

packet through that connection. Such connections may block resources of the middle-

box indefinitely, although no communication over the connection will succeed. To work

around this problem, the middle-box assumes that the connection is ungracefully closed,

CHAPTER 2. PRELIMINARIES 15

if no packet has passed through that connection for a specified amount of time. This time

is called the binding timeout.

A middle-box would create a timer for each connection and set it to fire after binding

timeout has elapsed. The timer is reset whenever there is traffic through the connection,

however. If the timer does fire, the corresponding connection is considered to be dead

and the state maintained for that connection is cleared.

Studies have shown that the NAT binding timeouts vary dramatically amongst the

commercially available home gateways [22]. We expect similar pattern for other middle-

boxes like firewalls and proxy servers as well.

2.2 Keep-alive

If the binding timeout is small, a middle-box may incorrectly close down active connections

with sparse traffic pattern. As such, when the expected traffic pattern is sparse, a client

needs to ensure that middle-box does not think that the connection became idle. This is

done by sending periodic dummy packets, even when there is no data to send. A dummy

packet sent to reset the binding timeout timer of the middle-box is called a heart beat or

a keep-alive (KA) packet.

Power consumption of a mobile device is significantly influenced by the frequency of

keep-alive messages [23]. As such, increasing the interval between successive keep-alive

packets without jeopardizing the connection integrity is of high significance.

2.2.1 TCP Keep-alive

The Transmission Control Protocol, TCP in short, is a widely used transport layer pro-

tocol. It provides reliable host-to-host communication in packet-switched computer net-

works, and in interconnected systems of such networks [31]. Some implementations of

TCP support keep-alive packets, although this is not universally accepted [17]. When the

CHAPTER 2. PRELIMINARIES 16

keep-alive timer fires, a keep-alive probe packet is sent by the TCP stack. It contains no

data and has the ACK flag turned on. The remote endpoint responds with a packet that

has the ACK set and contains no data. In an Ethernet network, a keepalive frame length

is 60 bytes; the response is 54 bytes long.

However, note that ACK segments that contain no data are not reliably transmitted

by TCP. If a TCP keep-alive fails, we may not reliably conclude that the connection has

been closed. As such, it is preferable to implement the keep-alive feature at the application

level.

2.2.2 Application Keep-alive

Application keep-alive is implemented in the application layer, instead of the transport

layer. An example is HTTP keep-alive. Notification services also use application keep-

alive to maintain the connection through middle-boxes. The client side component of the

notification service implements the keep-alive.

2.2.3 Keep-alive Interval

Keep-alive interval is the time between successive keep-alive messages. This interval

should be smaller than the binding timeout of middle-box. The keep-alive interval of an

application needs to adapt to the widely varying binding timeouts of different middle-

boxes. When a mobile device moves from one network to another, it needs to adjust any

application level keep-alive interval.

2.2.4 Optimal Keep-alive Interval

As mentioned earlier, increasing the interval between successive keep-alive packets without

jeopardizing the connection integrity is very much preferable. If the keep-alive packets are

sent just when the binding timeout timer of the middle-box is about to expire, then the

CHAPTER 2. PRELIMINARIES 17

timer will be reset instead and the connection will not get terminated. Such an interval

is called optimal keep-alive interval. We denote it by α. Obviously, α is slightly smaller

than the binding timeout of middle-box, due to propagation delay.

Since the binding timeout of different middle-boxes vary widely, the value of optimal

keep-alive interval cannot be pre-defined. Instead it needs to be dynamically detected

through testing in the network environment that the mobile device is in.

2.3 Mobile Access Point Name (APN)

An Access Point Name is the name of a gateway between a GPRS, 3G or 4G mobile

network and the Internet. It identifies the packet data network (PDN) that a mobile user

is communicating with.

A structured APN consists of two parts: a Network Identifier and an Operator Iden-

tifier. The network identifier is mandatory. It defines the external network to which the

Gateway GPRS Support Node (GGSN) is connected. The operator identifier, on the

other hand, is optional. It defines the specific operators packet domain network in which

the GGSN is located.

APN could potentially be used by a mobile device to detect whether it has been to

this network before or not. A mobile device can cache certain features of a network (e.g.

optimal keep-alive interval), using the APN as a key.

2.4 Power Consumption Model

A power consumption model helps in predicting power consumption due to some specific

events or during a scenario, without having to perform actual power measurements. Yang

proposed a M/G/1 vacation model for UMTS Discontinuous Reception (DRX) [42]. Using

this model, he shows how to select the best inactivity timer and DRX cycle values for

CHAPTER 2. PRELIMINARIES 18

Table 2.1: (Excerpted from [16]) Energy model for downloading x kilobytes of data over

3G, GSM and WiFi networks. All values except the Maintenance values for 3G and GSM,

are averaged over more than 50 trials.

3G GSM WiFi

Transfer Energy (R(x)) 0.025(x) + 3.5 0.036(x) + 1.7 0.007(x) + 5.9

Tail energy (E) 0.62 J/sec 0.25 J/sec NA

Maintenance (M) 0.02 J/sec 0.03 J/sec 0.05 J/sec

Tail-time (T) 12.5 seconds 6 seconds NA

various traffic patterns to optimize power consumption of the mobile station.

Balasubramanian et al. proposed another power consumption model for 3G, GSM

and WiFi networks [16]. Their model is shown in Table 2.1. In this energy model the

energy spent to download or upload x kilobytes of data over the cellular network consists

of three components: ramp energy, transmission energy and tail energy. R(x) denotes

the sum of the ramp energy and the transfer energy to send x bytes of data. Tail energy

is represented by E per second. For WiFi, there is no ramp energy. In this case, R(x)

denotes the sum of the transfer energy and the energy for scanning and association. Tail

energy is 0 in this case. The total energy to transmit a packet further depends on the

time the interface is on. The energy consumption to keep the interface on is represented

using M , the maintenance energy per second. Finally, T denotes the tail-time.

From this model, we can say that the cost of sending a keep-alive packet over 3G is

approximately 11.25 joules. Since the keep-alives are sent with a period that is longer

than the tail-time, each keep-alive incurs the overhead of the tail-time, if the device is not

transferring any other data at that time. Naturally, by reducing the number of keep-alives,

we can reduce the overall power consumption.

Zhang et al. described a novel automated power model construction technique in [43].

This technique uses built-in battery voltage sensors and knowledge of battery discharge

behavior to determine component-level power consumption. This approach was used to

CHAPTER 2. PRELIMINARIES 19

implement PowerTutor [9], a power estimation tool for Android platform. Several other

power models can be found in [34, 40, 41].

Chapter 3

Keep-alive Interval Detection

In this chapter, we apply several search techniques to dynamically detect the optimal

keep-alive interval of a network. The techniques are compared against each other based

on different criteria. This is done based on theoretical analysis. We have also performed

experiments on a simulation platform. The simulation results are discussed in the next

chapter.

Figure 3.1 shows a flow chart of the steps taken in detecting the optimal keep-alive

interval. The first step is to open a TCP connection with the target service. We apply

a conservative keep-alive interval in that connection that should just work. This is the

maximum keep-alive interval that is known to work. As such, we also use this as the lower

bound of the search range for searching a better interval. We also specify a higher bound

on the search space. The higher bound represents the maximum keep-alive interval that

may potentially work. Essentially, this is 1 less than the minimum keep-alive interval that

is already known to not work. In the figure, the search range has been represented as the

interval [low, high].

Starting from this lower bound, we try to improve by guessing new keep-alive intervals.

Once a guess is made, the connection is kept silent for that much time. Afterwards a keep-

alive is sent to check whether the connection is alive or not. If the connection is alive, it

20

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 21

means our guessed KA interval is able to keep the connection alive. Now, a higher KA

interval is guessed and tested. On the other hand, if the connection was dropped, then

we need to lower the guess and perform the test again. This process is continued until

the difference between 2 consecutive guesses is less than 1 minute.

Figure 3.1: Flow chart of KA interval detection technique.

To ensure that the data connection does not get adversely affected during the search

for optimal keep-alive interval, the search is performed on a separate connection. This

connection is called a Test connection. A test connection is preferable to have more

control over the testing as well – no data packet other than the keep-alive packets is sent

over this connection.

While the testing is happening, the data connection needs to send keep-alive with

conservative interval that would keep the connection alive in any home gateway scenario.

As the testing reveals improved intervals, the new intervals can be applied on the data

connection right away.

In the sections that follow, we explore three different techniques for optimal KA in-

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 22

terval detection. These techniques vary in how they select the next KA interval to test.

The techniques are: binary search, exponential search and a combination of both. We

refer to the latter approach as Hybrid Search. In our analysis and experiments, we have

set low = 1 minute for each of these techniques. This is a reasonable choice, since it is

smaller than the smallest keep-alive interval in a home gateway, as found from the data

presented in [22]. Exponential and hybrid search techniques do not need to specify a

higher bound on the search range. In other words, we set high = ∞. For binary search,

we have used high = 128 minutes. That means, the maximum candidate interval that

may work as keep-alive interval is 128 minutes. This is a power of 2 and is slightly higher

than the IETF recommended timeout of 124 minutes [21] for any TCP connection.

3.1 KA Interval Detection Using Binary Search

As mentioned earlier, the lower bound of the search space is set to 1 minute in binary

search. The higher bound is set to 2k for some k ≥ 1. At each step the mid-point of the

search space is chosen as the next KA interval to be tested. After the test is completed,

the search space gets halved. If the test was successful, then we search the second half

of the initial search space to see if a better interval can be obtained. If, on the other

hand, the test failed, then we continue searching in the first half of the initial search

space. And this process is repeated. As an example, if the binding timeout of a NAT

(or another middle-box) is 24 minutes, and the search range is [1, 128], the sequence of

intervals tested is ProbeSequence(24) = {65, 33, 17, 25, 21, 23, 24}. Algorithm 1 lists the

steps for KA interval detection using binary search.

In next few sections, we analyze the performance of binary search technique. We find

the number of tests performed and the time it takes to find the optimal keep-alive interval

in best, worst and average cases.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 23

Algorithm 1 KA Interval Detection by Binary Search

procedure KABinarySearch(low, high)

optimal← low ◃ optimal is a global parameter of the system

Establish TCP connection with server

while high− low ≥ 1 do

test← (low + high+ 1)/2

Wait for test units of time

Send a keep-alive message to server

if message was successfully sent then

low ← test

optimal← test

else

high← test

Re-establish TCP connection with server

end if

end while

end procedure

3.1.1 Number of Test Probes

Let α denote the optimal keep-alive interval. Let the search range be [1, h] where h = 2k

for some k ≥ 1. Let N(α) denote the number of test probes needed to detect the optimal

KA interval. With binary search, the total number of test probes for any value of α would

be lg h. Therefore,

N(α) = lg h (3.1)

Since the above expression is independent of α, the maximum (Nworst), minimum

(Nbest) and average (Navg) value of this function will also be lg h. Therefore,

Nbest = Navg = Nworst = lg h (3.2)

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 24

 6.92

 6.94

 6.96

 6.98

 7

 7.02

 7.04

 7.06

 7.08

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Binary Search

(a) Probe count as a function of binding

timeout.

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case probe

count as a function of search range.

Figure 3.2: Probe count of binary search.

Figure 3.2(a) shows the probe count for different values of α, when the search range is

[1, 128]. Figure 3.2(b) shows how the probe count increases with the search range higher

bound.

3.1.2 Convergence Time

Let T (α) denote the time it takes to detect the optimal KA interval α. This is called the

convergence time. The first probe takes 1 + 2k−1 unit time. if α ≥ 1 + 2k−1, then the

second probe takes 1+2k−1+2k−2 unit time after completion of first probe. On the other

hand, if α ≤ 2k−1, then the second probe takes only 1 + 2k−2 unit time. Similarly, third

probe will take at least 1 + 2k−3 unit time. If α ≥ 1 + 2k−2, then it takes 2k−2 unit more

time. If α ≥ 1 + 2k−1 then it takes a further 2k−1 unit more time.

Let ak−1ak−2...a1a0 denote the binary representation of α−1. Therefore, we can write

the following expression:

T (α) =
k−1∑
i=0

(1 + 2i) +
k−1∑
i=0

aii2
i

= (2k + k − 1) +
k−1∑
i=1

aii2
i

= (h+ lg h− 1) +

lg h−1∑
i=1

aii2
i

(3.3)

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 25

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Binary Search

(a) Convergence time as a function of bind-

ing timeout.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case conver-

gence time as a function of search range

higher bound.

Figure 3.3: Convergence time of binary search.

As an example, let us take the search range [1, 64]. Therefore, h = 64 and lg h = 6.

Let’s take α = 56. The bit pattern of α− 1 is 110111. Therefore,

T (56) = (64 + 6− 1)

+ 1× 5× 25 + 1× 4× 24 + 0× 3× 23

+ 1× 2× 22 + 1× 1× 21

= 69 + 160 + 64 + 8 + 2

= 303

On the other hand, if we take the probe sequence to converge to the optimal keep-alive

time of 56, it would be: ProbeSequence(α) = {33, 49, 57, 53, 55, 56}

Therefore, the total time for the testing is:

T (α) = 33 + 49 + 57 + 53 + 55 + 56

= 303

Thus, we have verified equation 3.3.

Figure 3.3(a) shows the convergence time for different values of α, when the search

range is [1, 128]. Clearly, convergence time is a monotone increasing function of binding

timeout. Convergence time is minimum, when all the bits, except the Least Significant

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 26

Bit (LSB), of α − 1 is 0. So, the best case convergence time happens when α is 1 or 2.

And that value is: 2k + k − 1 unit time. Therefore, convergence time in best case is:

Tbest = 2k + k − 1

= h+ lg h− 1

≈ O(h)

(3.4)

For T (α) to reach its maxima, all the bits, except the LSB, in α− 1 must be set. The

LSB may or may not be set. So, the worst case convergence time occurs for α = 2k or

α = 2k − 1.

Tworst = T (2k)

= (2k + k − 1) +
k−1∑
i=1

aii2
i

= (2k + k − 1) +
k−1∑
i=1

i2i

= (2k + k − 1) + 2k(k − 2) + 2

= 2k(k − 1) + k + 1

= h(lg h− 1) + 1 + lg h

= h lg h+ lg h− h+ 1

≈ O(h lg h)

(3.5)

Note that the following equality has been used in simplifying the above expression.

This will be used many times in our future calculations, so we call it out here:

k∑
i=1

i2i = 2k+1(k − 1) + 2 (3.6)

What would be the convergence time on average? We assume that the binding time-

out is equally likely to be any discrete value in the search range. Therefore, if we sum

the convergence time for all values of α and divide that by 2k, we can get the average

convergence time in the specified search range.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 27

Tavg =
1

2k

2k∑
α=1

T (α)

=
1

2k

2k∑
α=1

(2k + k − 1) +
1

2k

2k∑
α=1

k−1∑
i=1

aii2
i

= (2k + k − 1) +
1

2k

k−1∑
i=1

2k∑
α=1

aii2
i

In order to evaluate the second term of the right hand side of this expression, let us

look at
∑2k

α=1 aii2
i. This can be rewritten as

α−1=2k−1∑
α−1=0

aii2
i. Now, the ith bit is set for

exactly 2k−1 values of α − 1. Therefore, this reduces to 2k−1i2i. As such, we can rewrite

the expression as:

Tavg = (2k + k − 1) +
1

2k

k−1∑
i=1

2k−1i2i

= (2k + k − 1) +
1

2
{2k(k − 2) + 2}

= (2k + k − 1) + 2k−1(k − 2) + 1

= 2k−1k + k

= (2k−1 + 1)k

= (
h

2
+ 1) lg h

≈ O(h lg h)

(3.7)

Figure 3.3(b) plots the best, worst and average case convergence time for different

search range higher bounds. While the lower bound of the search range in these figures

are set to 1, we can easily extend the above equations for search range [β + 1, β + h], for

some β ≥ 0. We observe that, the size of the range is still the same; hence the probe

count, on average, will be lg h. For each probe, there will be an additional wait time of

β. Therefore,

Tavg = (
h

2
+ 1 + β) lg h

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 28

Based on the above calculations for convergence time and probe counts in binary

search, we can now write the following theorems.

Theorem 3.1.1. When detecting the optimal keep-alive interval using binary search tech-

nique in the range [1, h] for some h = 2k, k ≥ 1, the number of tests performed in best,

worst and average case is O(lg h).

Theorem 3.1.2. When detecting the optimal keep-alive interval using binary search tech-

nique in the range [1, h] for some h = 2k, k ≥ 1, the convergence time monotonically

increases with the binding timeout of middle-box. The best case convergence time is O(h).

In worst case, as well as on average, it is O(h lg h).

3.2 KA Interval Detection Using Exponential Search

In exponential search, the lower bound of the search space is set to 1 minute. The

algorithm does not require a higher bound initially. In other words, the higher bound

can be set to infinity. The difference between successive tested intervals follows geometric

progression. So, the first few test intervals are 2, 4, 8, 16, 32 minutes and so on. If the

next interval to be tested goes beyond the search range higher bound, then there is no

need to test that interval. Instead, the lower bound is increased to the last successfully

tested interval; and the geometric progression of the interval differences is restarted at 1.

On the other hand, if the next tested interval overshoots the binding timeout, then the

connection is lost. In this case, in addition to the updates mentioned above, the higher

bound of the search space is reduced to 1 minute less than the failed test interval. This

process is repeated until the optimal KA interval is reached. For example, if the binding

timeout is 24 minutes, the sequence of intervals tested would be ProbeSequence(24) =

{2, 4, 8, 16, 32, 17, 19, 23, 31, 24, 26, 25}. The steps of exponential search based approach is

shown in Algorithm 2.

In next 2 sections, we analyze the performance of exponential search technique. We

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 29

Algorithm 2 KA Interval Detection by Exponential Search

procedure KAExponentialSearch(low)

optimal← low ◃ optimal is a global parameter of the system

high←∞

increment← 1

Establish TCP connection with server

while high− low ≥ 1 do

if optimal + increment > high then

low ← optimal

increment← 1

continue

end if

test← optimal + increment

increment← increment× 2

Wait for test units of time

Send a keep-alive message to server

if message was successfully sent then

optimal← test

else

high← test− 1

low ← optimal

increment← 1

Re-establish TCP connection with server

end if

end while

end procedure

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 30

find the number of tests performed and the time it takes to find the optimal keep-alive

interval in best, worst and average cases.

3.2.1 Number of Test Probes

As before, let N(α) denote the number of test probes needed to detect the optimal keep-

alive interval α. The keep-alive interval is increased using geometric progression. There-

fore, the intervals that are tested are 2, 4, 8, 16 and so on. When a test fails, we take the

range between the last successful interval and the failed interval; we repeat the testing in

this range. Let p probes are performed until the first failure, where p ≥ 1. Then, we can

write:

2p−1 ≤ α < 2p

⇒p− 1 ≤ lg(α) < p

⇒p = 1 + ⌊lg(α)⌋

Afterwards, α is searched in the range [2p−1, 2p−1]. As far as probe count is concerned,

this is similar to as if searching for α+1− 2p−1 in the range [1, 2p−1]. Let N ′(α, k) denote

the number of probes for searching α in the bounded search space [1, 2k]. Then, N ′(α, k)

can be defined by the following recurrence:

N ′(α, k) =

 k when α = 2k

p+N ′(α + 1− 2p−1, p− 1) otherwise.

Then, we can write:

N(α) = p+N ′(α + 1− 2p−1, p− 1) (3.8)

Note that, using this expression of N(α), we can rewrite the expression of N ′(α, k) as

follows:

N ′(α, k) =

 k when α = 2k

N(α) otherwise.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 31

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Exponential Search

(a) Probe count as a function of binding

timeout.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case probe

count as a function of search range

higher bound.

Figure 3.4: Probe count of exponential search.

Figure 3.4(a) plots the probe count for each value of α in the range [1, 128]. It is obvious

from this plot that N(α) is not a monotonic function of α. We can also demonstrate this

by evaluating the function for different values of α. For example, we can check N(30) and

N(31) to show that N(α) is not monotonic.

N(30) = 1 + 4 +N ′(15, 4)

= 5 + 1 + 3 +N ′(8, 3)

= 9 +N ′(23, 3)

= 9 + 3

= 12

N(31) = 1 + 4 +N ′(16, 4)

= 5 +N ′(24, 4)

= 5 + 4

= 9

From Equation 3.8, we can say that the minimum value of N(α) is 1, which is due to

α = 1.

Nbest = N(1) = 1 (3.9)

We will now try to find out the worst case probe count, when α is in the range [1, h]

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 32

for some h = 2k, k ≥ 1. For α = 2k, the number of probes performed in the first phase

(until the first failure) is k+1. Then only 1 probe is performed in the next phase. So, the

total probe count is k + 2. For all other possible values of α, the maximum probe count

that can happen in phase one is k. The next range that is searched in phase 2 is no more

than half the size of the original range. As such, the maximum probe count in this phase

is no more than k−1. Continuing along this line of argument, the maximum probe count

can be no more than k + (k − 1) + · · ·+ 1 = k(k+1)
2

. However, we observe that,

k(k + 1)

2
< k + 2 when k < 3

Therefore, we can write:

Nworst

 = k + 2 when k < 3

≤ k(k+1)
2

otherwise.

We have established an upper bound on Nworst for k ≥ 3. Can we actually find an

α for which the upper bound is achieved? In fact, this is achieved for α = 2k − k. In

the first phase, there will be k probes. As pointed out earlier, the next phase would be

similar to searching for α + 1 − 2p−1 in the range [1, 2p−1]. Here p = k, so this is like

searching 2k−1 − (k − 1) in the range [1, 2k−1]. Therefore, (k − 1) probes will be needed

in this phase; and so on. As such, the worst case probe count is:

Nworst =

 k + 2 when k < 3

k(k+1)
2

otherwise.

=

 lg h+ 2 when h ≤ 4

lg h(lg h+1)
2

otherwise.

≈ O(lg2 h)

(3.10)

Now, we compute the average probe count. Let Fk denote the total number of probes

for all possible values of α in the bounded search space [1, 2k]. For α = 2k, the k-th probe

succeeds, and since the next interval to test is beyond the search range, we are done. As

such, the number of probes needed is k. On the other hand, the total number of probes for

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 33

all possible values of α in the sub-range [2p−1, 2p−1] would be 2p−1p+Fp−1 for 1 ≤ p ≤ k.

Therefore, we can write:

Fk =
k∑

p=1

2p−1p+
k∑

p=1

Fp−1 + k

=
1

2
{2k+1(k − 1) + 2}+

k∑
p=1

Fp−1 + k

= 2k(k − 1) + (k + 1) +
k∑

p=1

Fp−1

Therefore,

Fk − Fk−1 = 2k(k − 1) + (k + 1) +
k∑

p=1

Fp−1

− 2k−1(k − 2) + k +
k−1∑
p=1

Fp−1

= 2k−1k + 1 + Fk−1

⇒ Fk = 2k−1k + 1 + 2Fk−1

= 2k−1k + 1 + 2{2k−2(k − 1) + 1 + 2Fk−2}

= 2k−1{k + (k − 1)}+ 1 + 2 + 22Fk−2

= · · ·

= 2k−1{k + (k − 1) + · · ·+ 2}+ {1 + 2 + 22 + · · ·+ 2k−2}+ 2k−1F1

= 2k−2k(k + 1)− 2k−1 + 2k−1 − 1 + 2k

= 2k−2{k(k + 1) + 4} − 1

But, when the initial search space is unbounded, the probe count for α = 2k is k + 2

instead of k. Therefore, we can write:

Navg =
1

2k
(Fk + 2)

=
1

2k
[2k−2{k(k + 1) + 4}+ 1]

=
k(k + 1)

4
+ 1 +

1

2k

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 34

Replacing 2k with h and k with lg h, we can then write:

Navg =
lg h(1 + lg h)

4
+ 1 +

1

h

≈ O(lg2 h)

(3.11)

Figure 3.4(b) plots the best, worst and average case probe counts in exponential search

for different values of search range higher bound.

3.2.2 Convergence Time

As before, Let T (α) denote the convergence time when the binding timeout is α. As

mentioned earlier, the first failure occurs after p = 1 + ⌊lg(α)⌋ probes. Afterwards, α

is searched in the range [2p−1, 2p − 1]. This subsequent search is similar to searching for

α + 1 − 2p−1 in the range [1, 2p−1], except that each probe takes an additional time of

2p−1 − 1.

Let T ′(α, k) denote the convergence time, when searching α in the bounded search

space [1, 2k]. Then, T ′(α, k) can be defined by the following recurrence:

T ′(α, k) =

2k+1 − 2 when α = 2k

2p+1 − 2

+T ′(α + 1− 2p−1, p− 1)

+(2p−1 − 1)N ′(α + 1− 2p−1, p− 1) otherwise.

Then, we can write:

T (α) = 2p+1 − 2 + T ′(α + 1− 2p−1, p− 1)

+ (2p−1 − 1)N ′(α + 1− 2p−1, p− 1)
(3.12)

Using this expression of T (α), we can rewrite the expression of T ′(α, k) as follows:

T ′(α, k) =

 2k+1 − 2 when α = 2k

T (α) otherwise.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 35

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Exponential Search

(a) Convergence time as a function of bind-

ing timeout.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case conver-

gence time as a function of search range.

Figure 3.5: Convergence time of exponential search.

Figure 3.5(a) plots the convergence time for each value of α in the range [1, 128]. As

can be seen from this plot, T (α) is also not a monotonic function of α.

We can also demonstrated this by evaluating the function for different values of α.

For example, we can check T (30) and T (31) to show that T (α) is not monotonic.

T (30) = 26 − 2 + T ′(15, 4) + 15N ′(15, 4)

= 62 + {25 − 2 + T ′(8, 3) + 7N ′(8, 3)}+ 15× 7

= 62 + 30 + (24 − 2) + 7× 3 + 105

= 232

T (31) = 26 − 2 + T ′(16, 4) + 15N ′(16, 4)

= 62 + (25 − 2) + 15× 4

= 152

From equation 3.12, we can say that the minimum value of T (α) is 2, which is due to

α = 1.

Tbest = T (1) = 2 (3.13)

We will now try to find out the worst case convergence time, across the values of α

in the range [1, h] for some h = 2k, k ≥ 1. We will first find an upper bound on the

convergence time, and then show that the upper bound is achieved for some value of α.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 36

For α = 2k, the first failure happens when a probe is made with a timeout of 2k+1.

Subsequently, we will check with a timeout of 2k + 1, which will also fail. Thus we are

able to identify that the binding timeout is 2k.

T (2k) = (2 + 4 + · · ·+ 2k+1) + 2k + 1

= 2(2k+1 − 1) + 2k + 1

= 5.2k − 1

For α < 2k, it will take maximum time to reach first failure, if 2k−1 ≤ α < 2k; and

that time will be (2 + 4 + · · ·+ 2k) = 2k+1 − 2. Subsequent search is similar to searching

for α + 1 − 2k−1 in the bounded search space [1, 2k−1], except that each probe takes an

extra 2k−1 − 1 unit time. Therefore, after first failure, the maximum time we might need

to reach the second failure is: (k − 1)(2k−1 − 1) + (2k − 2). As such, the maximum time

possibly needed to identify the binding timeout would be:

= (2k+1 − 2)

+ (2k − 2) + (k − 1)(2k−1 − 1)

+ (2k−1 − 2) + (k − 2)(2k−1 − 1 + 2k−2 − 1)

+ · · ·

+ (22 − 2) + 1× {(2k−1 − 1) + (2k−2 − 1) + · · ·+ (21 − 1)}

= 2k+2 − 2(k + 2) + A

Where,

A = (k − 1)(2k−1 − 1) + (k − 2)(2k−1 − 1 + 2k−2 − 1)

+ · · ·+ 1.{(2k−1 − 1) + (2k−2 − 1) + · · ·+ (21 − 1)}

= (2k−1 − 1){1 + 2 + · · ·+ (k − 1)}+ (2k−2 − 1){1 + 2 + · · ·+ (k − 2)}

+ · · ·+ (21 − 1).1

= 1.(21 + 22 + · · ·+ 2k−1) + 2.(22 + 23 + · · ·+ 2k−1) + · · ·+ (k − 1)2k−1

− [1.(k − 1) + 2.(k − 2) + · · ·+ (k − 1).{k − (k − 1)}]

= B − C

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 37

Where,

B = 1.(21 + 22 + · · ·+ 2k−1) + 2.(22 + 23 + · · ·+ 2k−1) + · · ·+ (k − 1)2k−1

= 1.(2k − 2) + 2.(2k − 22) + · · ·+ (k − 1)(2k − 2k−1)

= 2k−1k(k − 1)− {2k(k − 2) + 2}

= 2k−1(k2 − 3k + 4)− 2

And,

C = [1.(k − 1) + 2.(k − 2) + · · ·+ (k − 1).{k − (k − 1)}]

=
k2(k − 1)

2
− (k − 1)k(2k − 1)

6

=
k(k + 1)(k − 1)

6

Therefore, the upper bound on the convergence time, for α < 2k, would be:

= 2k+2 − 2(k + 2) + 2k−1(k2 − 3k + 4)− 2− k(k + 1)(k − 1)

6

=
k2 − 3k + 12

2
2k − k3 + 11k + 36

6

Recall, on the other hand, that T (2k) = 5.2k − 1. Now, which one is bigger? To find

this out, we can write:

k2 − 3k + 12

2
2k − k3 + 11k + 36

6

= 5.2k − 1 + 2k + 1 +
k2 − 3k

2
2k − k3 + 11k + 36

6

= T (2k) + 2k−1(k − 1)(k − 2)− 1

6
(k3 + 11k + 30)

This will be greater than T (2k), if 2k−1(k − 1)(k − 2) − 1
6
(k3 + 11k + 30) > 0. This

holds when k ≥ 4. As such, we have established the upper bound on convergence time as

follows:

Tworst

 = 5.2k − 1 when k < 4

≤ k2−3k+12
2

2k − k3+11k+36
6

otherwise.

Now, when k ≥ 4, can we actually find an α for which the upper bound is achieved?

When calculating this upper bound, we envisioned an α for which all the following con-

ditions hold:

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 38

2k−1 ≤ α < 2k

2k−2 ≤ α + 1− 2k−1 < 2k−1

2k−3 ≤ α + 2− 2k−1 − 2k−2 < 2k−2

· · ·

1 ≤ α+ k + 1− 2k < 2

In fact, all these conditions are satisfied for α = 2k − k. Therefore, the upper bound

is tight.

Tworst =

 5.2k − 1 when k < 4

k2−3k+12
2

2k − k3+11k+36
6

otherwise.

=

 5h− 1 when h ≤ 8

lg2 h−3lgh+12
2

h− lg3 h+11 lg h+36
6

otherwise.

≈ O(h lg2 h)

(3.14)

Now, let us compute the convergence time on average. Let Xk denote the sum of

convergence times for all possible values of α in the bounded search space [1, 2k]. Let, Yp,k

denote the sum of convergence times for all α ∈ [2p−1, 2p− 1], where 1 ≤ p ≤ k. Also, For

α = 2k, the convergence time would be 2 + 4 + · · ·+ 2k = 2k+1 − 2. Therefore,

Xk = 2k+1 − 2 +
k∑

p=1

Yp,k

Let us first try to obtain an expression for Yp,k. To do so, we recall that, total

number of probes for all possible values of α in the bounded search space [1, 2k] is Fk =

2k−2{k(k + 1) + 4} − 1. Therefore, we can write:

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 39

Yp,k = 2p−1(2 + 4 + · · ·+ 2p) +Xp−1 + (2p−1 − 1)Fp−1

= 2p−1{2p+1 − 2}+Xp−1 + (2p−1 − 1)[2p−3{p(p− 1) + 4} − 1]

= 22p − 2p +Xp−1 + (2p−1 − 1){2p−3p(p− 1) + 2p−1 − 1}

= 22p − 2p +Xp−1 + 22p−4p(p− 1) + 22p−2 − 2p − 2p−3p(p− 1) + 1

=
p2 − p+ 20

16
22p − p2 − p+ 16

8
2p + 1 +Xp−1

Using the above expression, we can rewrite the expression for Xk as

Xk = 2k+1 − 2 +
k∑

p=1

[
p2 − p+ 20

16
22p − p2 − p+ 16

8
2p + 1 +Xp−1

]

Using the above to obtain Xk−1 and then deducting it from Xk, we get,

Xk −Xk−1 = 2k +
k2 − k + 20

16
22k − k2 − k + 16

8
2k + 1 +Xk−1

⇒ Xk = 2Xk−1 + 2k +
k2 − k + 20

16
22k − k2 − k + 16

8
2k + 1

= 2Xk−1 +
2k

16
(k22k − k2k)− 1

8
(k22k − k2k) +

5

4
22k − 2k + 1

= 22Xk−2 + (1 + 2) +
2k

16
{k22k + (k − 1)22k−1} − 2k

16
{k2k + (k − 1)2k−1}

− 2k

8
{k2 + (k − 1)2}+ 2k

8
{k + (k − 1)}+ 5

4
2k(2k + 2k−1)− (2k + 2k)

= · · ·

= 2kX0 + 2k − 1 +
2k

16

k∑
i=1

i22i − 2k

16

k∑
i=1

i2i

− 2k

48
k(k + 1)(2k + 1) +

2k

16
k(k + 1) +

5

4
2k+1(2k − 1)− k2k

We now need to find a closed form of
∑k

i=1 i
22i.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 40

k∑
i=1

i22i =
k∑

i=1

(i− 1 + 1)22i

=
k∑

i=1

(i− 1)22i + 2
k∑

i=1

(i− 1)2i +
k∑

i=1

2i

= 2
k−1∑
i=0

i22i + 4
k−1∑
i=0

i2i + 2(2k − 1)

= 2
k∑

i=1

i22i − 2k22k + 4{2k(k − 2) + 2}+ 2k+1 − 2

⇒
k∑

i=1

i22i = 2k+1k2 − 2k+2k + 2k+3 − 2k+1 − 6

= 2k+1k(k − 2) + 6(2k − 1)

Putting this into the expression for Xk, we get:

Xk = 2k.0 + 2k − 1 +
2k

16
{2k+1k(k − 2) + 6(2k − 1)} − 2k

16
{2k+1(k − 1) + 2}

− 2k

48
k(k + 1)(2k − 2) +

5

4
2k+1(2k − 1)− k2k

=
k2 − 3k + 24

8
22k − k3 + 23k + 48

24
2k − 1

But, when the initial search space is unbounded, two additional probes are needed for

α = 2k. After the probe with timeout 2k succeeds, we cannot assume that we have reached

the optimal timeout. We need to subsequently test the timeout of 2k+1. When that fails,

we check whether 2k +1 works or not. When that also fails, we are able to conclude that

the network time out is 2k. Therefore, the additional time spent is 2k+1+2k+1 = 3.2k+1.

Now, we can find the average convergence time:

Tavg =
1

2k
(Xk + 3.2k + 1)

=
1

2k

[
k2 − 3k + 24

8
22k − k3 + 23k − 24

24
2k
]

=
k2 − 3k + 24

8
2k − k3 + 23k − 24

24

=
lg2 h− 3 lg h+ 24

8
h− lg3 h+ 23 lg h− 24

24

≈ O(h lg2 h)

(3.15)

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 41

Based on the above calculations for convergence time and probe counts in exponential

search, we can now write the following theorems.

Theorem 3.2.1. When detecting the optimal keep-alive interval using exponential search

technique in the range [1, h] for some h = 2k, k ≥ 1, the number of tests performed is not

a monotonic function of the binding timeout of middle-box. The best case probe count is

1, while the worst case probe count O(lg2 h). On average, the number of tests performed

is also O(lg2 h).

Theorem 3.2.2. When detecting the optimal keep-alive interval using exponential search

technique in the range [1, h] for some h = 2k, k ≥ 1, the convergence time is not a

monotonic function of the binding timeout of middle-box. The best case convergence time

is 2. In worst case, as well as on average, it is O(h lg2 h).

3.3 KA Interval Detection Using Hybrid Search

Hybrid search is a combination of binary and exponential searches. Initially, it acts like

the exponential search. The lower bound of the search space is set to 1 minute; no higher

bound is needed initially. Like exponential search, the difference between successive tested

intervals follows geometric progression. When a tested interval overshoots the actual bind-

ing timeout, the test connection will get terminated. At that point, the lower bound is

increased to the last successfully tested interval; the higher bound of the search space is

reduced to 1 minute less than the failed test interval. Subsequently, binary search is per-

formed in the new search range. As an example, if the network timeout is 24 minutes, the

sequence of intervals tested would be ProbeSequence(24) = {2, 4, 8, 16, 32, 24, 28, 26, 25}.

The steps of hybrid search based approach is shown in Algorithm 3.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 42

Algorithm 3 KA Interval Detection by Hybrid Search

procedure KAHybridSearch(low)

high←∞

test← low

increment← 1

Establish TCP connection with server

repeat ◃ Exponential search phase

optimal← test ◃ optimal is a global parameter of the system

test← optimal + increment

increment← increment× 2

Wait for test units of time

Send a keep-alive message to server

until Sending the keep-alive message failed

high← test− 1

low ← optimal

Re-establish TCP connection with server

while high− low ≥ 1 do ◃ Binary search phase

test← (low + high+ 1)/2

Wait for test units of time

Send a keep-alive message to server

if message was successfully sent then

low ← optimal← test

else

high← test

Re-establish TCP connection with server

end if

end while

end procedure

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 43

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Hybrid Search

(a) Probe count as a function of network

timeout.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case probe

count as a function of search range.

Figure 3.6: Probe count of hybrid search.

3.3.1 Number of Test Probes

Let N(α) denote the number of test probes needed to detect the optimal keep-alive in-

terval α. In the first phase of hybrid technique, the keep-alive interval is increased using

geometric progression. Therefore, the intervals that are tested are 2, 4, 8, 16, 32 and so on.

When a test fails, we take the range between the last successful interval and the failed

interval; we perform binary search in this range there after.

If p probes are performed in the exponential phase (p ≥ 1), all but the p-th probe

succeed. As shown earlier, p = 1 + ⌊lg(α)⌋. Afterwards, α is searched in the range

[2p−1, 2p − 1], using binary search. The search range size is 2p−1. As such, number of

probes during binary search is p− 1. Therefore,

N(α) = p+ p− 1

= 2× (1 + ⌊lg(α)⌋)− 1

= 1 + 2⌊lg(α)⌋

(3.16)

Figure 3.6(a) plots the probe count for each value of α in the range [1, 128]. As can

be seen from the graph, N(α) is monotonic. The minima is reached for minimum value

of α.

Nbest = N(1) = 1 (3.17)

We would also like to identify the worst and average case probe count. To do so, we

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 44

consider the possible values of α in the range [1, h] for some h = 2k, k ≥ 1. N(α) will be

maximum when α is maximum, since the function is monotonic. Therefore,

Nworst = N(2k)

= 1 + 2⌊lg 2k⌋

= 2k + 1

= 1 + 2 lg h

≈ O(lg h)

(3.18)

Now, we compute the average probe count. We assume that the binding timeout is

equally likely to be any discrete value in the search range. We observed earlier that, when

α is in [2p−1, 2p − 1], total probe count is 2p − 1. The size of this range is 2p−1. The

entire range [1, 2k] can be thought of the collection of all such sub-ranges for 1 ≤ p ≤

k. Additionally, α = 2k is also in this range, which is not covered by the sub-ranges.

Therefore,

Navg =
1

2k
{N(2k) +

k∑
p=1

2p−1(2p− 1)}

=
1

2k
{2k + 1 +

k∑
p=1

2pp−
k−1∑
p=0

2p)}

=
1

2k
{2k + 1 + 2k+1(k − 1) + 2− 2k + 1}

=
1

2k
{2k+1k − 3× 2k + 2(k + 2)}

= 2k − 3 +
k + 2

2k−1

= 2 lg h+
2

h
(2 + lg h)− 3

≈ O(lg h)

(3.19)

3.3.2 Convergence Time

Let T (α) denote the convergence time for detecting the optimal keep-alive interval α. Let

te(α) and tb(α) be the time spent during the exponential and binary phases, respectively.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 45

Then,

te(α) = 2 + 4 + 8 + · · ·+ 2p

= 2p+1 − 2

Binary search for α is performed in the range, [2p−1, 2p−1]. This is similar to searching

for (α − 2p−1 + 1) in the range [1, 2p−1]; however for each probe, there is an additional

(2p−1 − 1) wait time. Therefore, we can write:

tb(α) = (2p−1 − 1)(p− 1) + (2p−1 + p− 2) +

p−2∑
i=1

aii2
i

= (2p−1 − 1)p+ (p− 1) +

p−2∑
i=1

aii2
i

Where, ap−1ap−2 · · · a1a0 is the binary representation of α. Combining the above ex-

pressions, we can write:

T (α) = te(α) + tb(α)

= 2p+1 − 2 + (2p−1 − 1)p+ (p− 1) +

p−2∑
i=1

aii2
i

= 2p−1(p+ 4)− 3 +

p−2∑
i=1

aii2
i

= 2⌊lg(α)⌋(5 + ⌊lg(α)⌋)− 3 +

p−2∑
i=1

aii2
i

= 2⌊lg(α)⌋(5 + ⌊lg(α)⌋)− 3 +

⌊lg(α)⌋−1∑
i=1

aii2
i

(3.20)

Figure 3.7 plots the convergence time for all values of α in the range [1, 128]. Like

probe count, convergence time is also a monotonic function of α. The minima is reached

for minimum value of α.

Tbest = T (1) = 2 (3.21)

T (α) will be maximum when α is maximum. As before, we will consider the range

[1, h] for some h = 2k, k ≥ 1.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 46

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Hybrid Search

(a) Convergence time as a function of net-

work timeout.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Search Range Higher Bound

Best
Worst

Average

(b) Best, worst and average case conver-

gence time as a function of search range.

Figure 3.7: Convergence time of of hybrid search.

Therefore,

Tworst = T (2k)

= 2k(k + 5)− 3

= h(5 + lg h)− 3

= h lg h+ 5h− 3

≈ O(h lg h)

(3.22)

Now, let us compute the convergence time on average. As before, we assume that the

binding timeout is equally likely to be any discrete value in the search range.

T (α) = te(α) + tb(α)

= 2p+1 − 2 + (2p−2 + 1 + 2p−1 − 1)(p− 1)

= 2p+1 − 2 + 3(p− 1)2p−2

Where tb(α) has been substituted using the expression for average convergence time

of binary search in the range [2p−1, 2p − 1]. Therefore, sum of convergence times for all α

in this range is:

2p−1{2p+1 − 2 + 3(p− 1)2p−2}

= 22p − 2p + 3(p− 1)22p−3

=
3p+ 5

8
22p − 2p

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 47

As such, sum of convergence times for all α across the entire range is:

Fk = 2k(k + 5)− 3 +
k∑

p=1

(
3p+ 5

8
22p − 2p)

= 2k(k + 5)− 3 +
5

6
(4k − 1)− 2(2k − 1) +

3

8
Gk

Where,

Gk =
k∑

p=1

22pp

= 1× 41 + 2× 42 + · · ·+ k × 4k

= 4 + 4(2× 41 + 3× 42 + · · ·+ k × 4k−1)

= 4 + 4(41 + 42 + · · ·+ 4k−1) + 4(1× 41 + 2× 42 + · · ·+ (k − 1)× 4k−1)

= 4 +
16

3
(4k−1 − 1) + 4Gk − k4k+1

⇒ 3Gk = k4k+1 − 4k+1

3
+

4

3

=
4k+1

3
(3k − 1) +

4

3

⇒ Gk =
1

9
{4k+1(3k − 1) + 4}

Putting the value of Gk into the expression for Fk, we get:

Fk = 2k(k + 5)− 3 +
5

6
(4k − 1)− 2(2k − 1) +

1

6
{4k(3k − 1) + 1}

= 22k
3k + 4

6
+ 2k(k + 3)− 5

3

Therefore, we can write:

Tavg =
1

2k

[
22k

3k + 4

6
+ 2k(k + 3)− 5

3

]
= 2k

3k + 4

6
+ (k + 3)− 5

3× 2k

= h
4 + 3 lg h

6
+ (3 + lg h)− 5

3h

= (
h

2
+ 1) lg h+

2

3
h+ 3− 5

3h

≈ O(h lg h)

(3.23)

Based on the above calculations for convergence time and probe counts in hybrid

search, we can now write the following theorems.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 48

Theorem 3.3.1. When detecting the optimal keep-alive interval using hybrid search tech-

nique in the range [1, h] for some h = 2k, k ≥ 1, the number of tests performed monoton-

ically increases with the binding timeout of middle-box. Probe count in best case is 1. In

worst case, as well as on average, it is O(lg h).

Theorem 3.3.2. When detecting the optimal keep-alive interval using hybrid search tech-

nique in the range [1, h] for some h = 2k, k ≥ 1, the convergence time monotonically

increases with the binding timeout of middle-box. The best case convergence time is 2. In

worst case, as well as on average, it is O(h lg h).

3.4 Comparative Analysis of Search Techniques

With the analysis of previous sections, we can now compare the behavior of these search

techniques. We will first compare the number of tests performed in each approach. Then

we will compare the convergence time. Finally, we will comment on the significance of

these features.

3.4.1 Probe Count Comparison

To begin with, we look at the number of tests performed by the search approaches side

by side in Table 3.1. From the order statistics, it is clear that binary search and hybrid

search are better than exponential search in terms of probe count on average. Both of

the latter have an average probe count of O(lg h). In order to differentiate between the

two, we can further look into the exact functions for the best, average and worst case

convergence time. This is listed in Table 3.2. Clearly, binary search outperforms hybrid

search on average and in worst case. In the best case scenario, however, hybrid search

will need only 1 probe, which is less than the lg h probes taken by binary search.

The probe count of these techniques has been compared graphically in Figure 3.8.

Figure 3.8(a) shows the number of tests performed by different KA interval detection

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 49

Table 3.1: Probe count comparison among optimal KA detection techniques.

Search technique Best case N Average case N Worst case N

Binary search O(lg h) O(lg h) O(lg h)

Exponential search 1 O(lg2 h) O(lg2 h)

Hybrid search 1 O(lg h) O(lg h)

Table 3.2: Probe count of binary search vs. hybrid search.

Search technique Best case N Average case N Worst case N

Binary search lg h lg h lg h

Hybrid search 1 2 lg h+ 2
h (2 + lg h)− 3 1 + 2 lg h

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Binary
Exponential

Hybrid

(a) Probe count comparison for different

binding timeouts.

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Binary
Exponential

Hybrid

(b) Best case probe count comparison for

different search ranges.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Binary
Exponential

Hybrid

(c) Worst case probe count comparison for

different search ranges.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Search Range Higher Bound

Binary
Exponential

Hybrid

(d) Average case probe count comparison

for different search ranges.

Figure 3.8: Probe count comparison.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 50

techniques for different binding timeouts in between 1 to 128 minutes. Both hybrid and

exponential search needs fewer tests than binary search for smaller values of binding

timeout. But, for larger binding timeouts, the number of probe count grows in these

approaches, while that of binary search remains constant. For example, for hybrid search

this cross over happens for α = 16.

Figure 3.8(b) and 3.8(c) show respectively the probe count comparison in best and

worst cases. The average case probe count is plotted in Figure 3.8(d).

3.4.2 Convergence Time Comparison

The convergence time of the different search approaches is shown side by side in Table 3.3.

From the order statistics, it is clear that binary search and hybrid search are better than

exponential search in terms of convergence time on average as well. Both of them have

an average convergence time of O(h lg h). In order to differentiate between the two, we

can further look into the exact functions for the best, average and worst case convergence

time. This is listed in Table 3.4. Clearly, binary search outperforms hybrid search on

average and in worst case. In the best case scenario, however, hybrid search will take less

time.

Figure 3.9 shows graphically the convergence time comparison of the search approaches.

For the binding timeouts in the range between 1 to 128 minutes, the time it takes for

each search technique to detect the optimal keep-alive interval is shown in Figure 3.9(a).

Much like the probe count, we observe that, for smaller binding timeouts, both hybrid

and exponential search performs better than binary search. But, for larger values of α,

convergence time of binary search is much less than the two. For hybrid search, this cross

over happens for α = 32. The curve for exponential search is not monotonic; it crosses

the curve for binary search several times. For the most part, it remains at much higher

than the curve for binary search along the Y-axis.

Figure 3.9(b) compares the best case convergence time of the search approaches, while

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 51

Table 3.3: Convergence time comparison among optimal KA detection techniques.

Search technique Best case T Average case T Worst case T

Binary search O(h) O(h lg h) O(h lg h)

Exponential search 2 O(h lg2 h) O(h lg2 h)

Hybrid search 2 O(h lg h) O(h lg h)

Table 3.4: Convergence time of binary search vs. hybrid search.

Search technique Best case T Average case T Worst case T

Binary search h+ lg h− 1 (h2 + 1) lg h h lg h+ lg h− h+ 1

Hybrid search 2 (h2 + 1) lg h+ 2
3h+ 3− 5

3h h lg h+ 5h− 3

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Binary
Exponential

Hybrid

(a) Convergence time comparison for differ-

ent binding timeouts.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Search Range Higher Bound

Binary
Exponential

Hybrid

(b) Best case convergence time comparison

for different search ranges.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Search Range Higher Bound

Binary
Exponential

Hybrid

(c) Worst case convergence time compari-

son for different search ranges.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Search Range Higher Bound

Binary
Exponential

Hybrid

(d) Average case convergence time compar-

ison for different search ranges.

Figure 3.9: Convergence time comparison.

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 52

Figure 3.9(c) compares the worst cases. The average convergence time of each technique

is plotted together in Figure 3.9(d). As discussed above, it is also visible in these plots

that binary search has the smallest convergence time, on average.

3.4.3 Discussion

As pointed out in the earlier section, binary search clearly has the better convergence

time. Long convergence time of exponential and hybrid search make them susceptible

to transient network failures and as such not being able to complete the testing. This

is especially important when the user is moving from one network to another frequently.

However, the search algorithm should cache the improved keep-alive interval in the persis-

tent store. Thus, the algorithm can resume with a reduced space to search on by retrieving

state from the persistent store. For all the search techniques, following data need to be

persisted: the largest keep-alive interval that is already known to work and the smallest

keep-alive interval that is already known not to work. For exponential search, the keep-

alive interval currently being tested need to be stored as well. For hybrid search, another

piece of information that should be stored is the current phase (binary/exponential) of

search.

Another point on convergence time is that it does not have any impact of the power

consumption on the end user’s device. There is no expensive computation happening on

the device due to longer convergence time. It however has some impact on the service. The

service needs to ensure that it is capable of handling all the test connections from millions

of devices. A port on the server machine is occupied to maintain the test connection until

testing has converged to the optimal interval. However, once again, there is no expensive

bandwidth or CPU consumptions in the test connections. So, we expect the impact on

the service is also minimal.

We have compared different techniques to detect optimal keep-alive interval of a TCP

connection. We have used convergence time and the probe count as two metrics in com-

CHAPTER 3. KEEP-ALIVE INTERVAL DETECTION 53

paring these techniques. No doubt, these are important metrics, but are these the only

or the most important metrics? As noted in Chapter 1, the goal of detecting optimal

keep-alive interval is to reduce the number of keep-alive packets we need to send to keep

the data connection active. Once we detect it, we can send keep-alive packets using that

period. But, when we haven’t reached the optimal interval in testing yet, at what fre-

quency would we send the KA packets? When we select an interval to test, if that test

is successful, we now have knowledge about a keep-alive interval that works and is longer

than what we knew before. As such, this updated interval can be used as the keep-alive

period in the data connection. This process is repeated every time a better KA interval

is detected through testing. Therefore, a detection technique that can quickly improve

the KA interval of the data connection is very preferable. We think the most important

criteria in comparing these techniques is the answer to the following question: over a span

of time, which detection technique results in the minimum number of keep-alive packets

sent over the data and the test connection combined? We have not obtained a theoretical

function to represent this value. However, in the next chapter, we will obtain this through

simulation and compare the search techniques accordingly.

Chapter 4

Simulation Results

We have implemented the different techniques to detect the optimal keep-alive interval

on a simulation platform. In this chapter, we present and analyze the data from that

simulation. Through simulation, we study the behavior of these techniques based on

some metrics.

4.1 Simulation Setting

We used Omnet++ as our simulation platform [8], which is a C++ based discrete event

simulator. In all our simulation, the delay from a node to the middle-box (NAT, Firewall,

Proxy server etc.) is set to 10ms. When connected to the network of the department of

CSE, BUET through different access points, we executed ping command to the default

gateway. The round trip time (RTT) to the gateway was always less than 20ms. Based

on this simple experiment, we chose the 10ms delay in one direction between a node and

a middle-box. Similarly, the RTT of pings to different prominent services like google.com,

yahoo.com etc. from CSE, BUET network has been used in setting the delay in one

direction between the middle-box and the server. The delay was set to 100ms. Results

of our experiment do not depend on these exact values of delays. As long as these delays

54

CHAPTER 4. SIMULATION RESULTS 55

are much less than 1 minute, our results will continue to hold.

For each experiment, a separate test connection was used for searching, while a data

connection was maintained using keep-alive packets. The keep-alive packets in both test

and data connections were sent on minute boundaries. The lower bound of the search

space was set to 1 minute. This also means that data connection sends a keep-alive packet

every minute when no testing is performed, or when no improved interval has yet been

reported from testing.

Binary search technique also requires a higher bound of the search space to be specified.

In our experiments, this was set to 128 minutes. This is slightly higher than the IETF

recommended timeout of 124 minutes [21] for any TCP connection. Therefore, the best

possible keep-alive interval we could achieve is 128 minutes. The binding timeout of the

middle-box was varied in the range [2, 129].

Figure 4.1: Simulation topology.

The topology of the simulation setup is shown in Figure 4.1. Here 3 end user devices

or nodes are connected to a server via a middle-box. The devices are named after the

search technique they employ in detecting the optimal KA interval. The devices do not

communicate with each other or interfere with each other in any ways.

Now that the basic setup is understood, we can jump into the different experiments we

CHAPTER 4. SIMULATION RESULTS 56

conducted and analyze their results. Firstly, we introduced the link delay and observed

how it impacted the probe count and convergence time of each technique. Then we ex-

perimented on relaxing the optimality requirement on the keep-alive interval to shave off

some portion of convergence time. To reduce convergence time, we additionally experi-

mented with some variations of hybrid search. We also ran the experiments over specific

amount of times to compare the number of keep-alives sent through the data connection,

while testing was in progress using the different approaches.

Afterwards, we introduced failures in the application level packets. This was to observe

the behavior of the search techniques in presence of transient network failures. We pro-

posed some modifications to cope with packet failures and evaluated their performance.

Finally, with the modified techniques, we again ran the experiments over specific amount

of times to compare the data connection keep-alive counts over specific time spans. In

the sections that follow, we provide details of the different experiments.

4.2 Impact of Delay

Figure 4.2(a) plots the probe count of binary search, as found through simulation, against

binding timeout. The theoretical curve is also put in the same plot. As can be seen,

they are identical. This is expected, since the probe count in a given search range is

independent of any specific binding timeout.

Figure 4.2(b) plots the probe count of exponential search as a function of binding

timeout. Observe that the experimental curve is off from the theoretical curve by 1

minute. That is, the observed probe count for any α is equal to the theoretical probe

count for α−1. This is due to network delay τ . While the middle-box times out a binding

after α unit of time, if a node sends keep-alive after α unit time of silence, the KA packet

reaches the middle-box after α + τ unit time of quietness, where 0 < τ ≪ α. Therefore,

the connection gets dropped. So, from the node’s perspective, a keep-alive interval of α

does not work. From its perspective the binding timeout is α− 1. As such, the observed

CHAPTER 4. SIMULATION RESULTS 57

 6.92

 6.94

 6.96

 6.98

 7

 7.02

 7.04

 7.06

 7.08

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Theoretical
Simulated

(a) Binary search.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Theoretical
Simulated

(b) Exponential search.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
ro

be
 c

ou
nt

Binding timeout (minutes)

Theoretical
Simulated

(c) Hybrid search.

Figure 4.2: Probe count of different search techniques in presence of network delay.

probe count matches with the theoretical probe count for α− 1.

Figure 4.2(c) plots the probe count of hybrid search as a function of binding timeout.

Like we have observed earlier, the hybrid curve too is off from the theoretical curve by 1

minute.

Figure 4.3(a) plots the experimental as well as theoretical convergence time curve for

binary search. Here too, the experimental curve is off from the theoretical curve by 1 unit

along the Y-axis. The same behavior is observed for exponential and hybrid search, as

can be seen from Figure 4.3(b) and Figure 4.3(c) respectively.

4.3 Reducing Convergence Time

As can be seen from theoretical analysis, as well as the previous experiment, it takes quite

a bit of time to detect the optimal KA interval, if the binding timeout of the middle-box

CHAPTER 4. SIMULATION RESULTS 58

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Theoretical
Simulated

(a) Binary search.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Theoretical
Simulated

(b) Exponential search.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 T
im

e
(m

in
ut

es
)

Binding timeout (minutes)

Theoretical
Simulated

(c) Hybrid search.

Figure 4.3: Convergence time of different search techniques in presence of network delay.

is large. As we discussed earlier, the long convergence time should not have any impact

on power consumption of the end user device. However, it will have some impact on

the server. If the convergence time could be reduced, then the test connection could be

released sooner, which would release a port on the server. It is always possible to design

the service with appropriate load balancing techniques in place to cope with the high

convergence times. We will not be focusing on the service design in this scope. Instead,

we will show that if there is a need to reduce load on the service by shaving off some

portion of the convergence time, this can be achieved by tuning several parameters in the

detection algorithm.

4.3.1 Settling to Sub-optimal Keep-alive Interval

So far, we have always focused on reaching the optimal keep-alive interval. In this section,

we show that we can reduce the convergence time by sacrificing accuracy or optimality of

CHAPTER 4. SIMULATION RESULTS 59

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(a) Binary search.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(b) Exponential search.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(c) Hybrid search.

Figure 4.4: Impact of relaxing optimality of α on convergence time of different search

techniques.

the converged interval.

Let α be the optimal keep-alive interval. In effort to reduce the convergence time, let

us settle on a sub-optimal keep-alive interval α′. We want to ensure that it admits an

error that is no more than q fraction of α, for some 0 ≤ q < 1. That is: α′ ≥ (1− q)α. In

each of Algorithms 1, 2, 3, the testing continues as long as high− low ≥ 1. Let us modify

this constraint so that the testing continues so long as high−low
high

> q. In that case, when

the testing is completed, we can write:

α′ = low

≥ (1− q)high

≥ (1− q)α

Thus with this simple modification, we can settle to a sub-optimal keep-alive interval

CHAPTER 4. SIMULATION RESULTS 60

 0

 10

 20

 30

 40

 50

 60

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

D
ec

re
as

e
(%

)
in

 c
on

ve
rg

en
ce

 ti
m

e

q

Binary
Exponential

Hybrid

(a) Average decrease (%) in convergence

time.

 0

 10

 20

 30

 40

 50

 60

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

D
ec

re
as

e
(%

)
in

 c
on

ve
rg

en
ce

 ti
m

e

q

Binary
Exponential

Hybrid

(b) Median decrease (%) in convergence

time.

Figure 4.5: Average and median decrease in convergence time due to relaxing optimality

of α.

with an assurance that it admits error no more than q fraction of the actual optimal

keep-alive interval. We implemented this change and ran our algorithms with different

values of q to see the impact on convergence time. The results are shown in Figure 4.4 and

Figure 4.5. Binary search has the most reduction in convergence time with admittance of

error in the detected keep-alive interval. The average decrease in convergence time in both

binary and hybrid search approach shows a linear relationship with q. Exponential search

shows less reduction in convergence time; about one-third of reduction observed in binary

search. However, for q ≥ 0.2, it exhibits increased amount of reduction in convergence

time.

Figure 4.6 shows the keep-alive interval detected by different search techniques for

different values of q. Observe the step pattern in each of the plots. This is due to

the fact that for several contiguous values of α, the algorithm settles to the same keep-

alive interval. For each α, we computed the percentage decrease in the detected binding

timeout, compared to α. Then we took the average and median in the range [1, 128]. We

performed this computation for different values of q. The resulting plots are shown in

Figure 4.7. The reduction in the keep-alive interval is very close in binary and hybrid

searches and shows a linear relationship with respect to q. Exponential search has almost

50% less reduction in the keep-alive interval, when compared with hybrid and binary

CHAPTER 4. SIMULATION RESULTS 61

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(a) Binary search.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(b) Exponential search.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

q=0.00
q=0.10
q=0.15
q=0.20
q=0.25

(c) Hybrid search.

Figure 4.6: Impact of relaxing optimality of α on detected binding timeout in different

search techniques.

search techniques. Therefore, we could potentially use higher values of q with exponential

search to further improve on its convergence time.

It is not necessary to hard code the value of q into the algorithm. Rather, it could

potentially be tuned dynamically. The server could send different values of q at different

times to different nodes, if it needed to balance some load. The value could be embedded

into the response to the KA message sent by the client.

4.3.2 Variations of Hybrid Search

In this section, we perform experiments to demonstrate another approach to reduce con-

vergence time. This approach is applicable to hybrid search only. Recall that hybrid

search acts like exponential search initially. When a tested interval overshoots the actual

binding timeout, the test connection gets terminated. Subsequently, binary search is per-

CHAPTER 4. SIMULATION RESULTS 62

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26D
ec

re
as

e
(%

)
in

 d
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut

q

Binary
Exponential

Hybrid

(a) Average decrease (%) in detected bind-

ing timeout.

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26D
ec

re
as

e
(%

)
in

 d
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut

q

Binary
Exponential

Hybrid

(b) Median decrease (%) in detected bind-

ing timeout.

Figure 4.7: Average and median decrease in detected binding timeout due to relaxing

optimality of α.

formed in the new search range. So, the transition to binary search happens upon the

first failure. We experiemented with a variation of hybrid search, where we introduced

another case for transitioning to the binary search phase. That is, if the next interval to

be tested is larger than a specified threshold r, exponential search phase is halted in that

case too; and binary search is started thereafter.

The convergence time of this variation of hybrid search for different values of r is

shown in Table 4.1. Here, the search technique name has been annotated with the value

of r used. In addtion, the convergence time of binary search and standard hybrid search

is also shown in the table for reference. Clearly, by tuning r, the convergence time can

Table 4.1: Average convergence time in variations of hybrid search. The average is taken

over the search range of [1, 128] minutes.

Search Technique Avg. Convergence Time

Binary 7 hours and 35 minutes

Hybrid 4 7 hours and 38 minutes

Hybrid 8 7 hours and 43 minutes

Hybrid 16 7 hours and 51 minutes

Hybrid 32 7 hours and 59 minutes

Hybrid 9 hours and 3 minutes

CHAPTER 4. SIMULATION RESULTS 63

be reduced considerably. Much like the parameter q, parameter r can also be tuned

dynamically from the server.

4.4 Number of Keep-alives Sent

From the commencement of testing, we counted the total number of keep-alive packets

sent through the data and test connection over a period of time. The smaller this number,

the better it is. Because, each time a keep-alive is sent, there is the cost of bringing the

radio to high power state, if the device was otherwise idle. We conducted this experiment

for several different time durations. The time durations are chosen to reflect some real

world scenarios.

Firstly, we performed a 30 minute and a 1 hour run. These are typical durations of

meetings in any organization. One may go to a different building for a meeting, that

belongs to a different APN than his own office building. It could also be the case that

the meeting room is in the same building but connects to internet through a different

gateway than his own office room. As such, even if the device has already detected the

optimal keep-alive interval from his office room, it will need to calculate it for this new

environment.

Another example could be a student attending an hour long class in different buildings

in the campus. Since graduate classes can be longer than a hour, we also simulated a

2 hour run. This duration also matches duration of seminars or mini workshops. We

plot the number of keep-alives sent over the data and the test connection against the

binding timeout of middle-box. The resulting curves are shown in Figure 4.8. No testing

is performed in case of the curve marked as ’Default’. One keep-alive packet is sent

every minute in this case. On the other hand, ’Oracle’ curve represents the behavior

of a system that knows the optimal keep-alive interval apriori. Observe that the curve

for binary search matches the Default curve in Figure 4.8(a) and Figure 4.8(b). This is

because the wait time for sending the first probe over the test connection is longer (65

CHAPTER 4. SIMULATION RESULTS 64

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(a) 30 minute run.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(b) 1 hour run.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Bin
Exp

Hybrid
Default

(c) 2 hour run.

Figure 4.8: Number of keep-alive packets sent during meeting or seminar scenario.

minutes) than the duration of the scenario. As such, no improvements could be offered by

the binary search technique. Figure 4.8(c) shows reduction in number of keep-alive sent

using binary search technique. The duration of this run permitted one or more probes,

which results in improved keep-alive interval. The updated keep-alive interval, at the end

of each time span is shown in Figure 4.9.

Let us take a look at the behavior of hybrid and exponential search, on the contrary,

in Figure 4.8. The curves for these approaches look identical. Both these techniques are

able to reduce the number of keep-alive packets sent significantly. This is because, the

initial improvements to the keep-alive intervals during the testing happens much earlier

in these approaches. The curves are within 20 units (along Y-axis) of the Oracle curve in

Figure 4.8(c).

The updated keep-alive interval at the end of each time span, as seen in Figure 4.9

is also identical for these approaches. In Figure 4.9(a) and Figure 4.9(b), hybrid and

CHAPTER 4. SIMULATION RESULTS 65

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(a) 30 minute run.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(b) 1 hour run.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(c) 2 hour run.

Figure 4.9: Last known good keep-alive interval during meeting or seminar scenario.

exponential techniques improved the KA interval while binary search failed to report any

improvements. In Figure 4.9(c), however, binary search reported a better KA interval

compared to the other techniques, when binding timeout was greater than 33 minutes.

Despite the better KA interval, binary search could not reduce the overall number of KA

packets sent. This is because this approach reports large improvements, but long time

apart. Hybrid and Exponential searches, on the other hand, report improvements in small

amount initially. This immediate feedback starts reducing the number of KA packets sent

over the data connection quickly.

Next, we experimented with 6 and 8 hour runs. The motivation for these durations is

as follows: On a Friday night (last working day), you go to a resort to spend the weekend.

You arrive at the resort at night. After sleeping through the night, you will engage in

fun activities from the next morning. Since this is a new place, your mobile phone (or

other hand held device capable of connecting to internet) will need to start testing for

the optimal keep-alive interval to the notification service. We expect the duration of your

CHAPTER 4. SIMULATION RESULTS 66

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(a) 6 hour run.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(b) 8 hour run.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(c) 12 hour run.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(d) 24 hour run.

Figure 4.10: Number of keep-alive packets sent over 1 data and 1 test connection over

longer durations.

sleep to be 6 to 8 hours. What is the number of keep-alives sent during this time?

In addition, we experimented with longer durations: 12 hours and 24 hours. The

number of keep-alives sent in all these cases, for the different search techniques are shown

in Figure 4.10. In all these runs, hybrid search and exponential search curves are almost

identical and they approach the Oracle curve with increasing study durations. The number

of keep-alives sent is highest in the binary search approach. However, in the 24 hour run,

the curve for binary search was adjacent to the other curves.

Figure 4.11 shows what the keep-alive interval was at the end of the study durations.

Observe the step pattern in each of these curves. Based on the test sequence, we may

reach the optimal keep-alive interval soon, but we may not realize that we reached it.

Subsequently, we spend some time to identify that no other interval greater than the

current one would work. For hybrid and exponential search, this happens for observed

CHAPTER 4. SIMULATION RESULTS 67

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(a) 6 hour run.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(b) 8 hour run.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(c) 12 hour run.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

La
st

 k
no

w
n

go
od

 k
ee

p-
al

iv
e

in
te

rv
al

Binding timeout (minutes)

Binary
Exponential

Hybrid

(d) 24 hour run.

Figure 4.11: Last known good keep-alive interval over longer durations.

binding timeouts that are power of 2. For example, in the 6 hour run when binding

timeout of middle-box is 129 minutes, the observed binding timeout is 128 minutes (recall

the impact of delay). Both hybrid and exponential search will report this KA interval,

after testing for around 4 hour 15 minutes. But, in exponential search we would not know

that this is the optimal value until about 6 hours later! In case of hybrid search, we would

have to wait for 21 more hours, after detecting this KA interval! But, much much before

these waits, we realize that this interval does work and are able to apply it to reduce the

KA count of data connection. On the other hand, if the observed binding timeout was

in the range [65, 127] minutes instead, the best keep-alive interval exponential search can

report within 6 hours of testing is 65 minutes. For hybrid search this would be 96 minutes

if the observed binding timeout was in the range [96, 127], or 65 minutes if it was in the

range [65, 95]. This is why we observe the step patterns. The steps in the binary search

curve are much more granular compared to the others. Exponential search exhibits the

largest steps.

CHAPTER 4. SIMULATION RESULTS 68

Table 4.2: Average reduction (%) of number of keep-alives sent when testing is performed

to improve the keep-alive interval from the conservative default value.

Experiment duration Binary Exponential Hybrid

(Hours) search search search

0.5 0 64.30 64.25

1 0 77.79 77.83

2 26.79 84.92 85.05

6 71.62 90.88 91.06

8 77.52 91.74 92.09

12 83.47 92.84 93.13

24 89.61 94.12 94.39

In the 12 hour run, binary search reached the optimal interval for all binding timeouts.

Hybrid search reached the optimal interval for most of the binding timeouts. In case of

24 hour run, both binary and hybrid searches reached the optimal interval. In this run,

exponential search too reached the optimal interval for most values of binding timeouts.

For some large binding timeouts, however, it did not reach the optimal interval even in

24 hours.

For each different binding timeout, we calculated the percentage reduction in the

number of KA packets sent using the different search techniques, compared to no testing.

Then we averaged this over the entire range of binding timeouts used in the experiments:

[1, 128]. This average percentage reduction in number of KA packets sent is listed in

Table 4.2. In each case, hybrid and exponential results almost exactly the same amount

of improvement; and they perform better than binary search. For larger durations (24

hours), binary search performs very close to the other two. For durations around and

less than 12 hours, results of hybrid and exponential search are much better than that

of binary search. For durations less than an hour, binary search is unable to reduce the

number of KA packets sent at all. The smaller duration runs will be more common in real

usage patterns. It is unlikely that a mobile device remains in the same APN or behind

the same gateway for long periods. Rather it moves from one APN to another, staying

CHAPTER 4. SIMULATION RESULTS 69

in each for short or moderate amounts of times. As such, exponential and hybrid search

techniques should be preferred to binary search. Since hybrid search has much better

convergence time than exponential search, it is fair to say that hybrid search is the best

choice.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Hybrid 4
Hybrid 8

Hybrid 16
Hybrid 32

Hybrid

(a) Here, the keep-alive interval search

range is 1-128 minutes.

 20

 25

 30

 35

 40

 45

 50

 55

 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s
Binding timeout (minutes)

Hybrid 4
Hybrid 8
Hybrid 16
Hybrid 32

Hybrid

(b) For the same search range, here the

curves are zoomed in the range 20-128

minutes.

Figure 4.12: 6 hour run of variations of hybrid search.

Figure 4.12 shows the performance of variations of hybrid search during a 6 hour

run. From the zoomed graph in Figure 4.12(b), we can see that for higher values of r,

performance is better. When r = 32, the average reduction (%) of number if keep-alives

sent is, in fact, slightly better than the standard hybrid search. The results for other run

durations are listed in Table 4.3. From these data, we see that by tuning r, we can reduce

convergence time significantly, with very little or no adverse impact on performance in

terms of number of KA packets sent.

4.5 Impact of Packet Failure

So far, when a keep-alive message fails over the test connection, we have assumed that the

middle-box has dropped the connection due to too long an idleness. However, a packet

could also be dropped for some transient issues in the network. But, when the keep-

alive message fails, the sender has no way to differentiate between the different causes

CHAPTER 4. SIMULATION RESULTS 70

Table 4.3: Average reduction (%) of number of keep-alives sent when applying variations

of hybrid search to improve the keep-alive interval from the conservative default value.

Experiment duration Hybrid 4 Hybrid 8 Hybrid 16 Hybrid 32 Hybrid

0.5 hours 61.26 64.25 64.25 64.25 64.25

1 hour 68.64 76.60 77.83 77.83 77.83

2 hours 75.77 82.23 84.31 85.05 85.05

6 hours 87.87 89.99 90.89 91.16 91.06

8 hours 89.69 91.29 91.87 92.07 92.09

12 hours 91.58 92.66 93.05 93.16 93.13

24 hours 93.66 94.20 94.39 94.44 94.39

of failure. As such, the algorithm we developed thus far will settle for a sub-optimal

keep-alive interval if a keep-alive message fails due to transient network failure.

In this experiment, we try to simulate transient network failures and observe the

behavior of the different search techniques. To model the transient failures, we define

a parameter p that represents the probability that a keep-alive message will fail. The

message failures are independent of each other. For different values of p, we observe the

detected binding timeout. For each value of p, we repeated our experiment 20 times

and averaged the results over those runs. Figure 4.13 and Figure 4.14 plots the detected

binding timeout against the actual binding timeouts. The curve marked as ’No Error’

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid
No Error

(a) p = 0.005.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid
No Error

(b) p = 0.01.

Figure 4.13: Comparison of detected binding timeout among different search techniques,

when no more than 1% of keep-alive messages may fail due to transient network failure.

CHAPTER 4. SIMULATION RESULTS 71

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid
No Error

(a) p = 0.02.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid
No Error

(b) p = 0.05.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid
No Error

(c) p = 0.10.

Figure 4.14: Comparison of detected binding timeout among different search techniques,

when 0.01 < p ≤ 0.10.

represents the detected binding timeout when there is no error involved. Recall that, this

is 1 minute less than the middle-box’s binding timeout, due to propagation delay.

From these curves, it is clear that, when p > 0.01, the impact cannot be neglected.

The percentage reduction in the detected binding timeout is plotted in Figure 4.15. This

further strengthens our observation.

To better understand the impact of packet failure on each KA detection technique

separately, we present the results for each technique independently as well. Figure 4.16

shows the impact of packet failure on binary search. The average percentage error in

detected binding timeout is less than 5%, even when up to 10% keep-alive packets may

be lost.

On the other hand, in Figure 4.17, we can see that when exponential search is used,

almost 40% error can be introduced in the detected binding timeout, on average, if p =

CHAPTER 4. SIMULATION RESULTS 72

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid

(a) p = 0.005.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid

(b) p = 0.01.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid

(c) p = 0.02.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid

(d) p = 0.05.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Actual Binding timeout (minutes)

Binary
Exponential

Hybrid

(e) p = 0.10.

Figure 4.15: Error percentage in detected binding timeout among different search tech-

niques.

CHAPTER 4. SIMULATION RESULTS 73

0.10. Hybrid search suffers similarly in presence of keep-alive packet failures.

The average percentage decrease in detected binding timeouts, due to packet failures,

is shown in Figure 4.19(a). In each search technique, the curve is linear. However, the

slope of the exponential and hybrid curves are much stiffer, compared to that of binary

curve. Similar behavior is observed in Figure 4.19(b), which plots the median, instead of

average, percentage decrease.

To summarize the results of this section, we can say, packet failure impacts all the

search techniques, specially when p > 0.01. Binary search technique, however, is the least

impacted. Since the impact is considerable, we need to propose a mitigation and analyze

its performance. We do that in the next section.

4.6 Retry on Packet Failure

We modified each algorithm as follows: When keep-alive message fails, we cannot auto-

matically assume that it failed due to exceeding the optimal keep-alive interval. It could

well have been due to some transient failure. Therefore, we re-establish the TCP con-

nection and test the same interval again. That means, we will again wait for the same

amount of time, then send a keep-alive message and check if it was successfully sent or

not. It is unlikely that both packets will encounter the transient failure. So, if the latter

attempt fails too, we conclude that we have overshoot the optimal KA interval. If, on the

other hand, the second attempt succeeds, we conclude that the earlier attempt failed due

to transient error and we have now found that the current test interval does work. And

we proceed to test the next possible interval.

After implementing this modification, we re-ran the same experiment that we did

to understand impact of packet failure earlier. The results are shown in figure 4.20 and

Figure 4.21. For p ≤ 0.01, the curve for detected binding timeout for each of the techniques

has converged back to the curve for no packet failure. The effect of packet failure has

CHAPTER 4. SIMULATION RESULTS 74

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.000
p=0.020
p=0.050
p=0.100

(a) Detected binding timeout.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.16: Impact of packet failure on binary search technique.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.000
p=0.020
p=0.050
p=0.100

(a) Detected binding timeout.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.17: Impact of packet failure on exponential search technique.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.000
p=0.020
p=0.050
p=0.100

(a) Detected binding timeout.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.18: Impact of packet failure on hybrid search technique.

CHAPTER 4. SIMULATION RESULTS 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Binary
Exponential

Hybrid

(a) Average error (%) in detected binding

timeout.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Binary
Exponential

Hybrid

(b) Median error (%) in detected binding

timeout.

Figure 4.19: Average and median error percentage in detected binding timeout in different

search techniques in presence of packet failure.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

No Error
Binary

Exponential
Hybrid

(a) p = 0.005.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

No Error
Binary

Exponential
Hybrid

(b) p = 0.01.

Figure 4.20: Comparison of detected binding timeout among different search techniques

with retry, when p ≤ 0.01.

completely been neutralized by single retry. For p = 0.02 and p = 0.05, the error in the

detected binding timeout is also negligible. For p = 0.10, however, we observe error that

is worth further investigation. We would therefore look at the behavior of each technique

separately for p = 0.10.

Figure 4.22 demonstrates that the retry scheme in binary search approach is quite

successful in coping with transient network issues. Figure 4.22(a) only plots the detected

binding timeout curve for the no error case and the case when p = 0.10. There is very

little deviation between the two. In fact, from Figure 4.22(b), we see that on average

the error in detected binding timeout is less than 0.5% even when 10% of the keep-alive

packets may fail. Therefore, the single retry scheme works satisfactorily in the binary

CHAPTER 4. SIMULATION RESULTS 76

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

No Error
Binary

Exponential
Hybrid

(a) p = 0.02.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

No Error
Binary

Exponential
Hybrid

(b) p = 0.05.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

No Error
Binary

Exponential
Hybrid

(c) p = 0.10.

Figure 4.21: Comparison of detected binding timeout among different search techniques

with retry, when 0.01 < p ≤ 0.10.

search case.

Figure 4.23 shows the impact of packet failure on exponential search technique with

retry. The impact is much higher, compared to binary search. However, it is still within

acceptable limits. On average, the error introduced in the detected binding timeout is

around 5%, when p = 0.10. For hybrid search, on the other hand, it is around 3.5%, as can

be seen from Figure 4.24 While the error is not negligible, we think this is within tolerable

limit. If, however, there is a need to further reduce this error, multiple retries should be

implemented. However, note that this can increase the convergence time significantly,

which can cause adverse impact on the service.

Figure 4.25 shows the adverse impact of retry on convergence time of each search

technique. In these graphs, the curve termed ’No retry’ represents the convergence time

when no retry scheme is implemented and there is no packet failure. The ’p = 0.00’ curve

CHAPTER 4. SIMULATION RESULTS 77

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.00
p=0.10

(a) Detected binding timeout.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.22: Impact of packet failure on binary search technique with retry.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.00
p=0.10

(a) Detected binding timeout.

 0

 1

 2

 3

 4

 5

 6

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.23: Impact of packet failure on exponential search technique with retry.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

D
et

ec
te

d
B

in
di

ng
 ti

m
eo

ut
 (

m
in

ut
es

)

Actual Binding timeout (minutes)

p=0.00
p=0.10

(a) Detected binding timeout.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.02 0.04 0.06 0.08 0.1

E
rr

or
 (

%
)

in
 d

et
ec

te
d

B
in

di
ng

 ti
m

eo
ut

Packet failure probability

Average
Median

(b) Average and median error (%) in de-

tected binding timeout.

Figure 4.24: Impact of packet failure on hybrid search technique with retry.

CHAPTER 4. SIMULATION RESULTS 78

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

No retry
p=0.00

(a) Binary search.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

No retry
p=0.00

(b) Exponential search.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Binding timeout (minutes)

No retry
p=0.00

(c) Hybrid search.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1

In
cr

ea
se

 (
%

)
in

 c
on

ve
rg

en
ce

 ti
m

e

Packet failure probability

Binary
Exponential

Hybrid

(d) Average increase (%) in convergence

time due to retry.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1

In
cr

ea
se

 (
%

)
in

 c
on

ve
rg

en
ce

 ti
m

e

Packet failure probability

Binary
Exponential

Hybrid

(e) Median increase (%) in convergence

time due to retry.

Figure 4.25: Impact of retry on convergence time of different search techniques.

CHAPTER 4. SIMULATION RESULTS 79

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1

In
cr

ea
se

 (
%

)
in

 p
ro

be
 c

ou
nt

Packet failure probability

Binary
Exponential

Hybrid

(a) Average increase (%) in probe count due

to retry.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1

In
cr

ea
se

 (
%

)
in

 P
ro

be
 c

ou
nt

Packet failure probability

Binary
Exponential

Hybrid

(b) Median increase (%) in probe count due

to retry.

Figure 4.26: Impact of retry on probe count of different search techniques.

represents the convergence time with retry scheme implemented, but in this case too,

there is no packet failure. Therefore, the increase in convergence time in the latter case

is not caused by any transient failures. Rather it is caused by the fact that, when a keep-

alive fails due to overshooting the optimal interval, we have to retry the test just to make

sure that we have not encountered a transient failure. For each valid keep-alive failure, we

encounter double the wait time as such. Hence the convergence time grows significantly.

Binary search encounters the most increase in convergence time: around 60% on average,

as can be seen in Figure 4.25(d). Exponential search has the least increase: around 40%

on average.

Probe count in each technique is also increased due to the retry scheme. Figure 4.26

shows the average and median increase (%) in probe count. Like convergence time, probe

count too is most increased in case of binary search; and least increased in case of expo-

nential search. The curve for hybrid search is closer to the curve for exponential search.

With single retry scheme, the error in detected binding timeout is in tolerable range.

And there is significant impact on convergence time and probe count for each number of

additional retries we introduce into our algorithms. As such, we would not implement

more than single retry on packet failure. In subsequent experiment, we show that this

indeed works satisfactorily.

CHAPTER 4. SIMULATION RESULTS 80

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(a) 30 minute run.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(b) 1 hour run.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Bin
Exp

Hybrid
Default

(c) 2 hour run.

Figure 4.27: Number of keep-alive packets sent over 1 data and 1 test connection during

meeting or seminar scenario. (p = 0.02, q = 0.10).

4.7 Performance of Modified Algorithm

With the retry scheme, we would now like to know how well do the different techniques

perform in reducing the number of keep-alive packets sent over the data and the test

connection combined. Like earlier, we conducted runs of different durations reflecting

real world scenarios. The packet failure probability p was set to 0.02. q was set to 0.10.

That means the search terminated when the detected KA interval had error no more than

10% of the optimal keep-alive interval. The parameter r was not used in case of hybrid

search – which means, binary search phase commenced after the first failure encountered

during the exponential search phase.

The result for each binding timeout was averaged over 20 repetitions. The results are

shown in Figure 4.27 and Figure 4.28. These curves are very similar to the corresponding

curves of Figure 4.8 and Figure 4.10. The average percentage reduction in number of KA

CHAPTER 4. SIMULATION RESULTS 81

packets sent is listed in Table 4.4. The values are comparable to the corresponding values

in Table 4.2.

Therefore, we can conclude that the modified techniques successfully coped with tran-

sient network failures and were able to reduce the number of keep-alive packets sent over

the data and test connection considerably. Using the q parameter, some accuracy of

detected binding timeout is sacrificed to reduce the convergence time. Even then, the

reduction in number of keep-alive packets sent were very much comparable with earlier

experiment. Overall, based on all the experiments, we conclude that hybrid search should

be used to detect the optimal keep-alive interval.

CHAPTER 4. SIMULATION RESULTS 82

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(a) 6 hour run.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(b) 8 hour run.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(c) 12 hour run.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

N
um

be
r

of
 k

ee
p-

al
iv

e
pa

ck
et

s

Binding timeout (minutes)

Oracle
Binary

Exponential
Hybrid

Default

(d) 24 hour run.

Figure 4.28: Number of keep-alive packets sent over 1 data and 1 test connection over

longer durations. (p = 0.02, q = 0.10).

Table 4.4: Average reduction (%) of number of keep-alives sent when testing is performed

to improve the keep-alive interval from the conservative default value. Here p = 0.02 and

q = 0.10.

Experiment duration Binary Exponential Hybrid

(Hours) search search search

0.5 0 62.37 62.37

1 0 75.44 75.58

2 26.45 82.39 82.62

6 71.59 88.19 88.56

8 77.57 89.03 89.52

12 83.59 90.10 90.56

24 89.61 91.32 91.69

Chapter 5

Conclusion

In this final chapter, we draw the conclusion of our thesis by describing the major contri-

butions of this research work. We follow that up by providing some directions for future

research.

5.1 Major Contributions

The major contributions of this thesis are as follows:

• We applied several search approaches to dynamically detect the optimal keep-alive

interval. These include binary search, exponential search and hybrid search. Hybrid

search combines different aspects of binary and exponential search techniques. We

performed theoretical analysis as well as experiments on a simulation platform to

compare these techniques. To the best of our knowledge, such analysis has not been

done in any earlier work.

• We showed that both binary search and hybrid search performs O(lg h) probes over

the test connection on average, when the optimal KA interval is in the range [1, h].

Exponential search, however, performs O(lg2 h) probes in the same setting.

83

CHAPTER 5. CONCLUSION 84

• We showed that total testing time to detect the optimal KA interval is O(h lg h)

in both binary and hybrid search. O(h lg2 h) time is taken in case of exponential

search.

• The optimal keep-alive interval is always less than the binding timeout of the middle-

box, due to propagation delay. We showed that this difference, however, is no more

than a minute, since the propagation delay is much less than a minute and KA

intervals that are tested are rounded to minute boundary.

• We defined a tunable parameter q in the search techniques. It represents the bound

on error admitted in the detected KA interval, as a fraction of the optimal KA

interval. By turning this parameter, the convergence time can be reduced.

• For hybrid search, we defined another tunable parameter r. It represents the maxi-

mum interval that may be tested during the exponential search phase. By turning

this parameter, the convergence time can be reduced with very little or no impact

on performance in terms of number of KA packets sent.

• Transient network failures may cause the search to settle on a keep-alive interval

lower than the optimal one. To mitigate this issue, we proposed a retry scheme

as follows: When a probe (sending of KA message) fails in the test connection, it

is retried once. If both attempts fail, then we rule out the possibility of transient

network issue. This scheme works very well; however, it increases the convergence

time.

• As testing reveals better KA intervals, we updated the KA period in the data con-

nection immediately. As such, reduction of number of KA packets sent is observed

well before the testing is complete.

• We ran all the techniques over different durations to compare the reduction in KA

count over data connection. The run durations are inspired by real world use cases

and scenarios. For larger durations (24 hours), binary search performs very close

CHAPTER 5. CONCLUSION 85

to the other two. For durations around and less than 12 hours, results of hybrid

and exponential search are much better than that of binary search. For durations

less than an hour, binary search is unable to reduce the number of KA packets

sent at all. The smaller duration runs will be more common in real usage patterns,

since a mobile device is expected to move from one APN to another, staying in each

for short or moderate amounts of times. As such, exponential and hybrid search

techniques should be preferred to binary search. And since exponential search has

very high convergence time, we concluded that hybrid search should be used to

detect the optimal keep-alive interval.

5.2 Directions of Further Research

The work in this thesis has introduced further research opportunities. These new research

directions are listed in this final section.

1. In this research work, we examined the behavior of binary, exponential and hybrid

searches thoroughly in detecting optimal keep-alive interval of TCP connections. We

provided theoretical analysis of convergence time and probe counts of each of these

techniques. But, we did not find any function to give the number of KA messages sent

via the data connection over a specified time duration, while testing is in progress in

parallel. We obtained this data only through simulation. Further work should be done

to calculate this number theoretically.

2. Additionally, we could explore other search techniques. One option could be linear

search, where we start with a small interval and upon each successful test, we increase

the interval by a constant amount. According to our early analysis, however, this will

be inferior to exponential search. Exponential search performs a slow start. Initially

it is like linear search. But, as more tests are successful, it increases the KA inter-

vals following geometric progression. However, some tweaks to linear search could be

CHAPTER 5. CONCLUSION 86

researched to improve it. For example, we could introduce some randomness: after a

test is successful the interval is increased by a constant amount or some multiple of

the constant amount probabilistically.

3. Searching with multiple test connections is also an interesting approach. This can

reduce the convergence time significantly and also improve the keep-alive intervals

quickly. The more connections we can use for testing purpose, the more improvements

we could potentially get. However, care should be taken to not overload the server

with too many connections. In what sequence should each connection search? Should

each connection employ the same technique, or is it better to mix different techniques

in different connections? There seems to be a good research opportunity here.

4. Since it is not possible currently to differentiate between keep-alive failures from tran-

sient network failures, we re-send the keep-alive packet once when a failure is detected.

This increases the convergence time. Could there be a way to isolate the transient er-

rors, without any adverse effect on convergence time? This needs further investigation.

5. We have implemented the KA detection techniques on a simulation platform only. We

have referenced the power model mentioned in Section 2.4 to infer that the reduction

in keep-alive count has resulted in improvements in power consumption. We have

not implemented the algorithms on real mobile devices. Also, we have not considered

presence of traffic other than the keep-alives. In a real device, the radio could be in high

power state due to transfer of some data from services like email, web browsing etc. If a

keep-alive is scheduled at this time, the power overhead would be much less, compared

to if it were scheduled when the device was otherwise idle. To get a more accurate

measurement of improvements due to keep-alive testing, further experiments can be

done in the simulation platform using usage traces from actual end user devices. Such

traces can possibly be obtained from [4]. Obviously, the most accurate and reliable

results can be obtained, once we implement the algorithms in real devices and perform

actual power measurements in those devices in different user scenarios.

CHAPTER 5. CONCLUSION 87

6. After the optimal keep-alive interval is detected, the data connection sends keep-alive

using the optimal interval. Occasionally, it is possible that due to changes in the net-

work infrastructure, the binding timeout of the middle-box has decreased. In that

case, the data connection will experience frequent disconnections. We need to develop

a strategy to bring the data connection out of this unstable state (frequent discon-

nections). The most conservative approach would be to revert back to the default or

the conservative keep-alive interval and restart testing for better intervals. Another

option is to remain cautiously optimistic: reduce the keep-alive interval to 50% of the

current value and restart testing. The former ensures stability of the connection right

away but incurs more power cost. The latter tries to cause little increase in power

consumption but may fail to stabilize the connection. Several other strategies could

be formulated. We could analyze these approaches in detail and run simulations to

compare their behaviors.

7. In Section 1.5, we made an assumption that a when a device connects to a mobile or

WiFi network, it can definitively tell whether it has connected to this network before.

That way, it can use keep-alive interval cached from prior testing. It can also resume

incomplete testing. If, on the other hand, the network is new to the device, it will

trigger the keep-alive interval detection algorithm. However, a device can only use

heuristics for this detection and may get it wrong sometimes. If a device thinks it has

visited a network before, but in reality it had not, then it can potentially start using

a keep-alive interval that overshoots the binding timeout of middle-box. In this case

too, the data connection would become unstable. The techniques discussed above also

helps in such situations to bring the data connection back to stable state and at the

same time to trigger new testing.

8. Finally, work could be done to write a redistributable library that can be plugged into

any device to detect the optimal keep-alive interval. The API and protocol design for

such a library remains to be investigated.

Bibliography

[1] https://chromium.googlesource.com/chromium/chromium/+/trunk/google_

apis/gcm/engine/heartbeat_manager.cc. [Online; Last accessed on 04-May-2014].

[2] https://productforums.google.com/forum/#!msg/nexus/fslYqYrULto/

lU2D3Qe1mugJ. [Online; Last accessed on 04-May-2014].

[3] Apple Push Notification Service. https://developer.apple.com/library/ios/

documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/

Chapters/ApplePushService.html. [Online; Last accessed on 25-April-2014].

[4] Crawdad: A Community Resource for Archiving Wireless Data At Dartmouth. http:

//www.crawdad.org/. [Online; Last accessed on 26-April-2014].

[5] Google Cloud Messaging for Android. http://developer.android.com/google/

gcm/index.html. [Online; Last accessed on 25-April-2014].

[6] Heartbeat Interval Adjustment. http://technet.microsoft.com/en-us/library/

cc182270.aspx. [Online; Last accessed on 04-May-2014].

[7] Heartbleed. http://en.wikipedia.org/wiki/Heartbleed. [Online; Last accessed

on 04-May-2014].

[8] Omnet++. http://www.omnetpp.org/. [Online; Last accessed on 25-April-2014].

[9] PowerTutor. A Power Monitor for Android-Based Mobile Platforms. http://www.

powertutor.org. [Online; Last accessed on 11-May-2014].

88

BIBLIOGRAPHY 89

[10] Proxy Server. http://en.wikipedia.org/wiki/Proxy_server. [Online; Last ac-

cessed on 25-April-2014].

[11] Push notifications for Windows Phone 8. http://msdn.microsoft.com/en-us/

library/windowsphone/develop/ff402558(v=vs.105).aspx. [Online; Last ac-

cessed on 25-April-2014].

[12] The Heartbleed Bug. http://heartbleed.com/. [Online; Last accessed on 04-May-

2014].

[13] Understanding Direct Push. http://technet.microsoft.com/en-us/library/

aa997252(EXCHG.80).aspx. [Online; Last accessed on 25-April-2014].

[14] Windows Push Notification Services (WNS) overview (Windows Runtime

apps). http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.

aspx. [Online; Last accessed on 25-April-2014].

[15] A. Akella, S. Seshan, and A. Shaikh. An empirical evaluation of wide-area inter-

net bottlenecks. In Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 101–114. ACM, 2003.

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consump-

tion in mobile phones: a measurement study and implications for network applica-

tions. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement

conference, pages 280–293. ACM, 2009.

[17] R. Braden. Requirements for Internet hosts-communication layers, October 1989.

RFC 1122 (Standard).

[18] A. Chakraborty, V. Navda, V. N. Padmanabhan, and R. Ramjee. Coordinating

cellular background transfers using LoadSense. In Proceedings of the 19th annual

international conference on Mobile computing & networking, pages 63–74. ACM,

2013.

BIBLIOGRAPHY 90

[19] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol version 1.2.

August 2008. RFC 5246 (Standard).

[20] S. R. Gatta, K. Srinivasan, O. N. Ertugay, D. G. Thaler, D. A. Anipko, J. Vanturen-

nout, M. S. Rahman, and P. R. Gaddehosur. Keep alive management, September

2011. US Patent App. 13/229,325.

[21] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behavioral

requirements for TCP. October 2008. RFC 5382 (Best Current Practice).

[22] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo. An

experimental study of home gateway characteristics. In Proceedings of the 10th ACM

SIGCOMM conference on Internet measurement, pages 260–266. ACM, 2010.

[23] H. Haverinen, J. Siren, and P. Eronen. Energy consumption of always-on applications

in WCDMA networks. In Proceedings of IEEE Vehicular Technology Conference,

pages 964–968. IEEE, April 2007.

[24] S. Herzog, R. Qureshi, J. Raastroem, X. Bao, R. Bansal, Q. Zhang, and S. M. Bragg.

Determining an efficient keep-alive interval for a network connection, February 2013.

US Patent App. 13/764,663.

[25] N. Hu and P. Steenkiste. Evaluation and characterization of available bandwidth

probing techniques. IEEE Journal on Selected Areas in Communications, 21(6):879–

894, 2003.

[26] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement methodol-

ogy, dynamics, and relation with TCP throughput. In ACM SIGCOMM Computer

Communication Review, volume 32, pages 295–308. ACM, 2002.

[27] M. Jain and C. Dovrolis. End-to-end estimation of the available bandwidth variation

range. In ACM SIGMETRICS Performance Evaluation Review, volume 33, pages

265–276. ACM, 2005.

BIBLIOGRAPHY 91

[28] V. Kononen and P. Paakkonen. Optimizing power consumption of always-on applica-

tions based on timer alignment. In Proceedings of the Third International Conference

on Communication Systems and Networks (COMSNETS), pages 1–8. IEEE, 2011.

[29] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end probing and

analysis method for estimating bandwidth bottlenecks. In Global Telecommunications

Conference, 2000. GLOBECOM’00, volume 1, pages 415–420. IEEE, 2000.

[30] L.-S. Meng, D.-s. Shiu, P.-C. Yeh, K.-C. Chen, and H.-Y. Lo. Low power consumption

solutions for mobile instant messaging. IEEE Transactions on Mobile Computing,

11(6):896–904, 2012.

[31] J. Postel. Transmission Control Protocol. September 1981. RFC 793 (Standard).

[32] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp: Efficient

available bandwidth estimation for network paths. In Proceedings of Passive and

active measurement (PAM) workshop, April 2003.

[33] R. Seggelmann, M. Tuexen, and M. Williams. Transport Layer Security (TLS) and

Datagram Transport Layer Security (DTLS) Heartbeat Extension. February 2012.

RFC 6520 (Standard).

[34] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user activity

patterns to guide power optimizations for mobile architectures. In Proceedings of

the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages

168–178. ACM, 2009.

[35] M. Stiemerling, E. Davies, C. Aoun, and H. Tschofenig. NAT/Firewall NSIS Signaling

Layer Protocol (NSLP). October 2010. RFC 5973 (Experimental).

[36] M. Stiemerling, J. Quittek, and C. Cadar. NEC’s Simple Middlebox Configuration

(SIMCO) Protocol Version 3.0. May 2006. RFC 4540 (Experimental).

BIBLIOGRAPHY 92

[37] A. Ukhanova, E. Belyaev, L. Wang, and S. Forchhammer. Power consumption anal-

ysis of constant bit rate video transmission over 3G networks. Computer Communi-

cations, 35(14):1695–1706, 2012.

[38] N. Vallina-Rodriguez and J. Crowcroft. Energy management techniques in modern

mobile handsets. Communications Surveys & Tutorials, IEEE, 15(1):179–198, 2013.

[39] D. J. Wetherall and A. S. Tanenbaum. Computer Networks, 1996.

[40] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savolainen, and A. Yla-Jaaski.

A system-level model for runtime power estimation on mobile devices. In Proceed-

ings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communi-

cations (GreenCom) & Int’l Conference on Cyber, Physical and Social Computing

(CPSCom), pages 27–34. IEEE, 2010.

[41] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Ylä-Jääski. Practi-

cal power modeling of data transmission over 802.11g for wireless applications. In

Proceedings of the 1st International Conference on Energy-efficient Computing and

Networking, pages 75–84. ACM, 2010.

[42] S.-R. Yang. Dynamic power saving mechanism for 3G UMTS system. Mobile Net-

works and Applications, 12(1):5–14, 2007.

[43] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. Ac-

curate online power estimation and automatic battery behavior based power model

generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP interna-

tional conference on Hardware/software codesign and system synthesis, pages 105–

114. ACM, 2010.

Index

Access Point Name (APN), 10, 17

Binary search, 22

Exchange Active Sync (EAS), 6

Direct Push, 6

Exponential search, 28

Heartbleed, 7

Hybrid search, 41

Keep-alive (KA), 1, 15

Application Keep-alive, 16

KA interval, 1, 16

KA interval detection, 20

Optimal KA interval, 2, 16

TCP Keep-alive, 15

Middle-box, 1

Binding timeout, 2, 14

Firewall, 13

Network Address Translator (NAT), 1, 13

Proxy server, 14

Notification Service, 2, 16

APNs, 6

Data Connection, 4

GCM, 6

MPNS, 6

Notification Channel, 3

Test Connection, 4

WNS, 6

Power consumption model, 7, 17

Service Set Identifier (SSID), 11

Transport Layer Security (TLS), 7

93

