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Abstract

An efficient way of improving pelformance of a database management system is

distributed processing. Distribution of data involves fragmentation, replication and

allocation process. Previous research works provided fragmentation solution based on

empirical data about the type and frequency of the queries. These solutions are not

suitable at th~ .initial stage of a distributed database.

In this thesis we have presented a fragmentation technique namely MCRUD Matrix

based Fragmentation (MMF) that can be applied at the initial stage as well as in later

stages of a distributed database system for partitioning the relations. Instead of using

empirical data, we have developed the matrix namely Modified Create, Read, Update

and Delete to make fragmentation decisions properly. The main 'concept of MMF is

finding the precedence of attributes to increase data locality. We have named it

Attribute Locality Precedence (ALP). The r~lations have been fragmented considering

the highest ALP value an10ng the attributes

Allocation of fragments is done simultaneously in our technique. So usingMMF, no

additional complexity is added for allocating the fragments to the sites of a distributed

database as fragmentation is synchronized with allocation. Performance of a DDBMS

can be improved significantly by avoiding frequent remote access and high data

transfer among the sites. Result shows that the proposed technique can solve initial

fragmentation problem of distributed system properly.

III

,l
\ I
II, '



 
 

 

1

Chapter 1 

Introduction 

 
A distributed database is a collection of data that logically belongs to the same system 

but spreads over the sites of a computer network. A distributed database management 

system (DDBMS) is defined as the software system that provides the management of 

the distributed database and makes the distribution transparent to the users [1], [2]. It 

is not necessary that database system have to be geographically distributed. The sites 

of the distributed database can have the same network address and may be in the same 

room but the communication between them is done over a network instead of shared 

memory.   

As communication technology: hardware and software advance rapidly and prices of 

network equipments fall every day, developing distributed database systems have 

become more and more feasible. Design of efficient distributed databases is one of the 

major research problems in database and information technology areas. DDBMS is an 

efficient way of improving the performance of applications that manipulate large 

volumes of data. Primary concerns of distributed database design are fragmentation of 

the relations in case of relational database or classes in case of object oriented 

databases, allocation of the fragments to different sites of the distributed system, and 

local optimization in each site [1], [2]. 

1.1 Background 
 Fragmentation is a design technique to divide a single relation or class of a database 

into two or more partitions such that the combination of the partitions provides the 

original database without any loss of information. This reduces the amount of 

irrelevant data accessed by the applications of the database, thus reducing the number 

of disk accesses.  

Fragmentation can be horizontal, vertical or mixed/hybrid. Horizontal fragmentation 

(HF) allows a relation or class to be partitioned into disjoint tuples or instances. 

Vertical fragmentation (VF) partitioned a relation or class into disjoint sets of 



 
 

 

2

columns or attributes except the primary key. Combination of horizontal and vertical 

fragmentations forms the mixed or hybrid fragmentations (MF). Allocation is the 

process of assigning the fragments of a database on the sites of a distributed network. 

The replication of fragments improves reliability and efficiency of read-only queries 

but increase update cost.  

Thus the main reasons of fragmentation of the relations are to:  increase locality of 

reference of the queries, improve reliability and availability of data and performance 

of the system, balance storage capacities and minimize communication costs among 

sites [1]-[4]. 

1.2 Problem Definition 
In distributed database design, the foundations of fragmentation (horizontal, vertical 

or mixed) of relations are: 

 Frequency of different queries executed in a system in a specified time,  

 Affinity matrix of minterm predicates constructed  from combination of 

predicates 

 Attribute affinity matrix constructed based on the relationship between 

different attributes of a table and run time transactions those access the 

attributes  

To know actual query frequencies or to construct above matrices sufficient 

experiential data are required. These data are not available in most cases at initial 

stage of a distributed database. 

If proper distribution is not done during the initial stage of the DDBMS, data 

distribution technique based on empirical data requires huge data transfer cost in most 

cases. So to reduce the data transfer cost during the evolution of DDBMS, 

fragmentation and allocation at initial stage is very important, very few work have 

been found in the literature in this regard. 

Almost all the previous techniques concentrated only fragmentation problem and 

overlooked allocation problem to reduce the complexity of the problem. But overall 

performance of a distributed system fragmented by a very good fragmentation 

technique can be very low if proper allocation of the fragments to the sites cannot be 

ensured.   
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1.3 Objectives of the Thesis 
The main objectives of the thesis are to: 

a) design of a fragmentation technique for distributed database management 

system (DDBMS) that can be applied at the initial stage of a DDBMS when no 

empirical data are available as well as in any stage of execution of DDBMS 

for partitioning the relations, 

b) design of an allocation technique to allocate the fragments of the relations in 

the sites of DDBMS properly,  

c) design algorithms to implement our fragmentation and allocation technique, 

d) analyze the performance of the technique by applying it in designing a 

DDBMS and 

e) compare the performance of our technique with the existing techniques to find 

the effectiveness and efficiency of the technique.  

1.4 Overview of the Thesis 
In this thesis we have presented a fragmentation technique namely MCRUD Matrix 

based Fragmentation (MMF) to partition relations of a distributed database properly at 

the initial stage. Instead of using empirical data, we have developed a matrix namely 

Modified Create, Read, Update and Delete (MCRUD) to make fragmentation 

decisions. Using our technique, no additional complexity is added for allocating the 

fragments to the sites of a distributed database as fragmentation is synchronized with 

allocation. So performance of a DDBMS can be improved significantly by avoiding 

frequent remote access and high data transfer among the sites. This improves the 

bandwidth of the system as well. 

1.5 Organization of the Thesis 
In chapter 2, a survey of the research in horizontal, vertical and mixed fragmentation 

techniques of distributed database is presented. Limitations of the available 

fragmentation techniques are also discussed in brief.  The motivation for the research 

work performed by the author and reported in this thesis is to overcome some of these 

limitations. 
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Chapter 3 describes the details of MCRUD Matrix based Fragmentation (MMF) 

technique that has been used for fragmentation of the relations of distributed database 

and allocation of the fragments in the sites of the system. Our fragmentation and 

allocation technique is explained in detail.  

Chapter 4 describes the experimental work that has been carried out to investigate the 

performance of our proposed technique. Results obtained from the experimental 

works are thoroughly discussed and compared with the experimental results of other 

existing techniques. 

Finally, Chapter 5 presents conclusions of this thesis work and provides suggestions 

for future research. 
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Chapter 2 

Literature Survey 
 
In this chapter, we have reviewed literature of various fragmentation techniques. We 

have used separate sections and sub sections for presenting the review of horizontal, 

vertical and mixed fragmentation. Finally a summary of the features and limitations of 

the present works is presented at the end.  

2.1 Design Techniques: Fragmentation and Allocation 
Design of distributed database is one of the major research problems whose solution is 

supposed to improve performance of a distributed system. It involves database design, 

data population, fragmentation of databases, allocation and replication of the 

fragments, and local optimization. Fragmentation and allocation are the most 

important elements of a distributed database design phase. They play important roles 

in the development of a cost efficient system [1].  

2.1.1 Fragmentation 
Fragmentation is a design technique to divide a single database into two or more 

partitions such that by the combination of the partitions original database can be found 

without any loss or addition of information. This reduces the amount of irrelevant data 

accessed by the application, thus reducing the number of disk accesses. The result of 

the fragmentation process is a set of fragments defined by a fragmentation schema. 

Fragmentation in relational database can be horizontal, vertical or mixed. 

Horizontal fragmentation (HF) partitions a relation or a class into disjoint parts 

(fragments), which will have exactly the same structure but different contents. Thus a 

horizontal fragment of a relation or class contains a subset of the whole relation or 

class instance.  

Vertical fragmentation (VF) results in attributes and methods being partitioned into 

different fragments and therefore reduces irrelevant data accessed by local 

applications [1] - [4]. 
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Mixed or Hybrid fragmentation (MF) can be achieve by performed VF followed by 

HF or vice versa. Thus benefits of both horizontal and vertical fragmentation can be 

attained [3].  

2.1.2 Allocation 
Allocation is the process of assigning a site to each fragment on the distributed 

network after the database has been properly fragmented [1]. When data are allocated, 

it may either be replicated or maintained as a single copy in only one site. The 

replication of fragments improves the reliability and efficiency of read-only queries 

and increases cost of update queries. The intention of allocation is to minimize the 

data transfer cost and the number of messages needed to process a given set of 

applications, so that the system functions effectively and efficiently [1], [5].  

The individual tuple or attribute of a relation cannot be considered as the unit of 

allocation because the allocation problem would become unmanageable. The 

fragments are constituted by grouping tuples or attributes that have the same 

“properties” from the viewpoint of their application. This is based on the idea that two 

elements in the same fragment that have the same “properties” will be accessed by the 

applications together. Therefore, the fragments obtained in this way are the 

appropriate units of allocation [2].  

2.1.3 Benefits of Database Fragmentation 
The reasons for fragmenting databases are discussed in [1], [2]: 

 Applications are usually based on the views of subsets of relations. Thus the 

applications often access any subset of an entire relation locally. Therefore, 

fragmentation can reduce irrelevant data accesses and increase data local 

availability. 

 If there is a relation on which many application views are defined at different 

sites, storing a given relation at one site will result in an unnecessarily high 

volume of remote data accesses. Storing a given relation at different sites will 

cause problems in executing updates and may not be desirable if storage is 

limited. 
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 The decomposition of a relation into fragments permits many transactions to 

be executed concurrently and results in the parallel execution of a single query 

by dividing it into a set of sub-queries that operate on fragments. 

2.1.4 Drawback of Database Fragmentation 
Fragmentation may introduce the following problems [1]: 

 Applications whose views are defined on more than one fragment may suffer 

performance degradation when the relations are not partitioned into mutually 

exclusive fragments.  

 When the attributes participating in a dependency of a relation are 

decomposed into different fragments and stored at different sites, the task of 

checking for dependencies would result in chasing after data in a number of 

sites. 

2.1.5 Complexity of the Problem 
The combined problem of fragmentation and allocation is proven NP-hard [6]. In the 

case of Horizontal fragmentation, if n simple predicates are considered then the 

number of horizontal fragments using minterm predicates is 2n. If there are k nodes, 

the complexity of allocating horizontal fragments is O (        ). 

For example, using 6 simple predicates to perform horizontal fragmentation results in 

26 = 64 fragments. To find the optimal allocation of the fragments in 4 sites one needs 

to compare all the 464  ≈ 1039 possible allocations.  

For Vertical fragmentation if a relation has m non-primary key attributes, number of 

possible fragments: Bell number B (m) ≈ mm. The fragment allocation is of 

complexity O (        ).  

Due to the complexity of both fragmentation and allocation, allocations of the 

fragments are often treated independently than fragmentation of the database.  

2.2 Horizontal Fragmentation 
There are two types of horizontal fragmentation, primary and derived. Primary 

horizontal fragmentation of a relation or a class is performed using predicates of 

queries accessing this relation or class, while derived horizontal fragmentation of a 

n

k 2

mmk
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relation or a class is performed based on horizontal fragmentation of another relation 

or class. 

2.2.1 Primary Horizontal Fragmentation for Relational Databases 
In the context of the relational data model, existing approaches for horizontal 

fragmentation mainly fall into following three categories [7], [1]: 

 minterm-predicate-based approaches: which perform primary horizontal 

fragmentation using a set of minterm predicates, e.g., [1], [2], [8]. 

 affinity-based approaches: which first group predicates according to predicate 

affinities and then perform primary horizontal fragmentation using 

conjunctions of the grouped predicates, e.g., [9] - [12]. 

 other approaches: approaches other than minterm predicate or predicate 

affinity based approach, e.g., [13] – [16]. 

2.2.1.1 Minterm Predicate Based Approaches 
Using minterm predicates to perform horizontal fragmentation was first proposed in 

[8] to fragment file horizontally to optimize the number of accesses performed by the 

application programs to different portions of data. They state that the minterm 

fragments contain records that are homogeneously accessed by all transactions and 

therefore are the proper units of allocation. 

Ceri and Pelagatti [2] proposed to use minterm predicates to fragment relations of a 

database. To perform primary horizontal fragmentation, a set of disjoint and complete 

selection predicates have to be determined. Firstly, based on application information 

simple predicates P = {p1, . . . , pn} have to be derived, which should satisfy complete 

and minimal properties. Then a set of minterm predicates are constructed from P. 

Often the size of the set of simple predicates is big, and the cost of computation might 

be too expensive. If resulting minterm fragments of a predicate are relevant and 

accessed differently by queries at the same site, they may still be allocated at the same 

site. That is, the fragmentation is not necessary and the predicate is not needed for 

fragmentation. 

Ozsu and Valduriez [1] presented COM_MIN, an iterative algorithm to generate a 

complete and minimal set of predicates Pr' from a given set of simple predicates Pr. 

The algorithm checks each predicate pi in the given set of simple predicates Pr to see 
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if it can be used to partition the relation R into at least two parts which are accessed 

differently by at least one application. If pi satisfies the fundamental rule of 

completeness and minimality then it should be included in Pr'. If pi is non-relevant 

then it should be removed from Pr'. But this algorithm is not practical because 

checking pi cannot be defined with machine readable language. An algorithm named 

PHORIZONTAL is introduced to describe primary horizontal fragmentation. It uses 

the algorithm COM_MIN and a set of implications I as inputs to produce a set of 

satisfiable miniterm predicates M. If a minterm predicate mi is contradictory to an 

implication rule in I, then it is removed from M. Minterm fragments are defined 

according to the set of satisfiable minterm predicates M. But the set I of implications 

is hard to define. In fact, the algorithm is not very practical, as it will always result in 

a subset Pr' of Pr, the set of minterm predicates M' determined by Pr' and the 

corresponding set of fragments. Simple predicates are omitted from Pr if they do not 

contribute to the fragmentation that is if they violate the minimality principle. This 

results in considering just the simple predicates in the most important queries and to 

take all satisfiable minterm predicates. This obviously leads to fragments that are 

accessed differently by at least two queries. The algorithm further does not give 

executable rules for eliminating the unsatisfiable minterm predicates. The major 

problem, however, is that the number of fragments resulting from the algorithm is 

exponential in the size of Pr. In practice, it would be important to reduce this number 

significantly, which would mean to re-combine some of the fragments. In fact, this 

implies giving up the completeness principle and replacing it by optimization criteria 

based on a cost model. 

2.2.1.2 Affinity Based Approaches 
To avoid the complexity of checking completeness of the set of simple predicates, 

Zhang [9] adopted an affinity-based vertical fragmentation approach to horizontal 

fragmentation. This approach takes predicate usage and predicate affinity matrix as 

input and employs the bond energy algorithm to cluster predicates. However, the 

fragments in the resulting fragmentation schema may overlap each other and therefore 

cannot satisfy the correctness criteria of fragmentation. Ra [10] presented a graph-

based algorithm for horizontal fragmentation, with which predicates are clustered 

based on the predicate affinities. To remove overlapping, an adjust function is 
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presented to merge two overlapped fragments if merging can reduce transaction costs 

using cost functions. However, the cost function does not show how costs are 

computed.  

Using predicate matrix as input, Cheng et al. [11] proposed a genetic algorithm-based 

clustering approach, which treats horizontal fragmentation as a traveling salesman 

problem (TSP). Horizontal fragmentation is achieved by performing selection 

operation using the set of the grouped predicates, which are grouped according to the 

distances. The distance of each pair of attributes actually measure the access 

frequencies of transactions that do not access the pair attributes together. Additional 

analysis is needed to simplify the clusters of predicates. The objective of this 

approach is to group attributes such that the difference between the average distance 

within groups and the average distance between groups is minimized. However, there 

is no proof that this approach can indeed minimize the total query costs.  

Mahboubi H. and Darmont J. [12] used predicate affinity for horizontal fragmentation 

in data warehouse. They showed that affinity-based fragmentation out-performed 

predicate construction based fragmentation in their experiments. They adopted 

primary horizontal fragmentation in XML context. Obviously, none of the affinity-

based horizontal fragmentation approaches takes into consideration of data locality 

while clustering predicates. 

2.2.1.3 Other Approaches 
Approaches other than affinity-based and minterm-based approaches are also found in 

the literature. Chang and Cheng [13] proposed a methodology of decomposition based 

on mapping user views onto a global schema. However, there is neither clear 

procedure for processing decomposition nor evaluation of the resultant 

decomposition. 

Shin and Irani [14] proposed a knowledge-based approach in which user reference 

clusters are derived from the user queries to the database and the knowledge about the 

data. Their paper mainly emphasizes the extension of first order logic without any 

procedure or algorithm on how to perform horizontal fragmentation procedurally. 

Also, the completeness of the knowledge base is a critical issue for the correctness of 

the final fragmentation. Shin and Irani [15] extended their work of [14] by presenting 

an example to illustrate how fragmentation can provide enhanced control over data 
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replication and reduce costs on selection operations. However, the discussion is not 

supported by any cost model.  

To minimize the total number of disk accesses, Khalil et al. [16] introduced a 

horizontal transaction-based partitioning algorithm, which takes a predicate usage 

matrix as input.  

2.2.2 Primary Horizontal Fragmentation for Object Oriented 
Databases 
Fragmentation of object-oriented databases (OODBs) using horizontal fragmentation 

technique have been proposed since 1990s. Algorithms proposed in the literature are 

mainly affinity-based and cost driven [7]. 

Karlapalem et al. [17] proposed to use predicate affinities to perform horizontal 

fragmentation. However, there is no detailed method on how to perform 

fragmentation. Ma et al. [18] provided a design procedure of horizontal 

fragmentation, including primary horizontal fragmentation and derived horizontal 

fragmentation, for complex data model. The paper presents an approach to 

minimizing the query processing costs by performing horizontal fragmentation and 

fragment allocation simultaneously. The technique uses a cost model and tried to 

globally minimizing costs. 

Bellatreche et al. [19] stated that the effect of horizontal fragmentation should be 

measured by evaluating the performance of the applications in a distributed database 

system. Cost-Driven Algorithm is presented to find a scheme that lead to the lowest 

total query cost based on a cost model. However, in the cost model CPU costs and 

network communication costs are disregarded because only centralized databases are 

considered. Therefore it cannot be applied to distributed databases, where network 

communication cost is predominant in calculating total costs. Bellatreche et al. [20] 

have studied horizontal class partitioning with input as queries which contain either 

simple and component predicates, the primary algorithm (PA) is based on a graph 

theoretic algorithm which clusters a set of predicates into a set of HCFs.  

A taxonomy of the fragmentation problem in a distributed object based system is 

presented in [21] to include four realizable class models, simple attributes and 

methods, complex attributes and simple methods, simple attributes and complex 

methods and complex attributes and methods. For one of these class models, simple 
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attributes and methods, a set of detailed horizontal fragmentation algorithms are 

proposed. Continuing the work in [21], Ezeife and Barker [22] presented a 

comprehensive set of algorithms for horizontally fragmenting over all the four 

realizable class models following [1]. Ezeife and Zheng [23] have proposed an Object 

Horizontal Partition Evaluator (OHPE), which contains two components, the local 

irrelevant access cost and the remote relevant access cost. However, both components 

only measure the number of instances of a fragment without taking into consideration 

of size of the object and network information. A class is fragmented using all 

predicates from the queries accessing the class directly, predicates of all queries of all 

the descendants of the class that access the class, and predicates of all its containing 

classes accessing the class, and predicates of all its complex method classes. An 

example is presented to show how to compute the performance of the object 

horizontal fragmentation schemata with proposed OHPE. However, it is not shown 

how the horizontal fragmentation schemata are achieved and how fragments are 

allocated. An algorithm is proposed to re-fragment the class once input information is 

changed, including the user query access pattern and frequencies, changes in class 

hierarchy, change in class composition hierarchy, and change in the instance objects 

of classes. 

Bai˜oo et al. [24], [4] adopted the algorithm proposed in [3] and take predicate affinity 

matrix as input to build a predicate affinity graph that is used to define horizontal 

class fragments. Again, the resulting horizontal fragmentation schema only reflects 

the togetherness of data accessed by transactions or queries but cannot reflect the 

affinities between data and network sites, that is, data locality.  

Marwa et al. [25] uses the instance request matrix to horizontally fragment DOODB. 

The proposed algorithm is based on the idea that addresses vertical fragmentation and 

allocation simultaneously for relational system but in the context of horizontal 

fragmentation of an object model. The investigated approach uses a cost model and 

claimed to globally minimizing the fragmentation and allocation costs though they did 

not provide any comparison of performance with recent algorithms. 



 
 

 

13

2.2.3 Derived Horizontal Fragmentation for Relational Databases 
Derived fragmentation refers to horizontal fragmentation defined on a member 

relation r of a link according to fragmentation of one of its owner relations s [26], [1]. 

Derived horizontal fragmentation can be performed by applying semi-join operations.  

In [26], a link among relations is introduced to depict the binary relationship between 

relations. A direct link is drawn between relations that are related to each other by an 

equijoin operation. The direction of a link shows a one-to-many relationship. It is 

assumed that the join attributes for a link include the primary key of the owner of the 

link. Note that, in our complex value data model an owner type is actually a 

component of a member type.  

In [1] it is emphasized that care should be taken with the relations that have more than 

one link to the owner relations. Two criteria are suggested in such cases: choosing the 

fragmentation with better join characteristics or choosing the fragmentation used in 

more applications.  

2.2.4 Derived Horizontal Fragmentation for Object Oriented 
Databases 
Unlike the relational model situation the definition of derived horizontal 

fragmentation is not straightforward in the object-oriented data model.  

In [27] owner and member relationships are defined based on paths that an operation 

navigates through, where a member class is always defined at the “1” side of the 

relationship link. Owner and member relationship is not defined for many to many 

relationship. 

In [17], derived horizontal fragmentation of a class is performed using component 

predicates that are defined with path expressions. This may result a set of overlapped 

fragments. The last step is then to remove overlap between fragments according to the 

sum of the frequency of accesses of the fragments. The overlapped objects are 

removed from the fragments that are accessed less frequently. However, it is not 

necessary to distinguish between simple attributes or complicated attributes. 

Similarly, it is not necessary to distinguish simple predicates and component 

predicates. The derived fragmentation is defined as using component predicates, the 

sink of which is an attribute of another class. The proposed algorithm uses logical 

connectives but does not mention when each connective should be used. Also, a 
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predicate defined on a path does not always mean that the predicate has a sink as an 

attribute of another class. 

In [21], derived horizontal fragments of a class are generated according to primary 

fragments of its subclasses, its complex attributes (contained classes), and/or its 

complex methods. Heuristics are proposed to choose the most appropriate primary 

fragment to merge with each derived fragment of the member class. At last, derived 

fragments are merged with a primary fragment that has the highest affinity with it. 

However, this approach leads to overlaps between resulting derived fragments. 

Inheritance links are considered in the process of horizontal fragmentation. It is 

assumed that a pointer is contained in an instance of a storage structure for a class in 

the class hierarchy. There is no evaluation of the proposed algorithms regarding how 

it will improve the system performance. 

In [4], derived horizontal fragmentation of each member class is performed according 

to its owner class in frag (owner, member) list, which is based on the owner-member 

classification. Derived horizontal fragmentation is implemented with a semi-join on 

the attribute used by the most frequent navigation operations from the member class 

to the owner class. However, it is not clear how to decide the owner classes to be used 

for fragmentation. The resulting distributed database schema is analyzed to show 

improvements in system performance. However, the analysis neither considers queries 

as distributed queries nor uses any cost models.  

2.3 Vertical Fragmentation 

Vertical fragmentation can be applied to different areas: file partitioning in centralized 

environment, data distribution among different levels of memory hierarchies of a 

database, and data distribution in distributed databases. For applications accessing 

fragments on different memory levels, the costs are dominated by the cost of 

retrieving data from secondary storage to main memory while for distributed 

databases, query costs are dominated by remote data transportation costs. The 

following reviews the work done regarding vertical fragmentation for relational 

databases. 
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2.3.1 Vertical Fragmentation for Relational Databases 
Vertical fragmentation of file system has been studied since 1970s. There are two 

main approaches [7]: 

 The pure affinity-based approach takes attribute affinities as the measure of 

togetherness of attributes to fragment attributes of a relation schema. Research 

work includes [28]-[35]. 

 The cost-driven approach uses a cost model while partitioning attributes of a 

relation schema. Research work includes [36] - [41]. 

2.3.1.1 Affinity Based Approaches 
Affinity-based vertical fragmentation was first proposed by Hoffer and Severance 

[28], who used Bond Energy Algorithm (BEA) to cluster attributes according to the 

affinities between attributes. Since then the affinity measure has been widely used for 

solving the fragmentation problems. Navathe et al.[29] extended the BEA approach in 

[28] by proposing algorithms that produce non-overlapping fragments and 

overlapping fragments. This approach minimizes the number of fragments accessed 

by transactions while considering storage cost factors involved in storing the 

fragments. This approach consists of two steps: 

 In the first step the given input parameters are used in the form of an attribute 

usage matrix (AUM) to construct an attribute affinity matrix (AAM) on which 

clustering is performed. 

 In the second step estimated cost factors, which reflect the physical 

environment of fragment storage, are considered to further refine the 

partitioning schema.  

The paper in [29] discusses vertical partitioning problem in three contexts: a database 

stored on devices of a single type, a database stored in different memory levels, and 

distributed database. Allocation of fragments in distributed databases targets at 

maximizing the amount of local transaction processing. At the first stage, the same 

objective function is used for single site one memory level, and single site with 

multiple memory levels. The objective function for distributed databases is designed 

with the consideration of the ratio of the transaction volume satisfied by the upper 

block to the total transaction volume and the ratio of the size of the fragment defined 

by upper block to the size of the object. At the second step, an objective function is 



 
 

 

16

presented to include cost factors, each of which is of different weight in different 

contexts. However, there is no justification of the values of the factors. Also, the 

transportation cost factor is fixed for all transactions between any pair of network 

nodes. 

Navathe and Ra [30] improved the previous work [29] by proposing a vertical 

partitioning algorithm using a graphical technique. The major feature of this graphical 

approach is that all fragments are generated by one iteration in a time of O(n2), which 

is better than O(n2 log n), the complexity of vertical partitioning algorithm in [29]. In 

the meantime, there is no need of an arbitrary empirical objective function for the 

algorithm of partitioning. This graphical approach starts with an attribute affinity 

matrix, based on which, an affinity graph is constructed, and then a linearly connected 

spanning tree is formed. Affinity cycles, which are the candidate partitions, are 

constructed simultaneously with the growing of the spanning tree. Partitions are made 

according to the weight of the edges comparing with the weight of each edge of 

candidate cycles. The output of the algorithm is a set of vertical partitions of a given 

relation. However, the resulted number of fragments is not related to the number of 

Sites of a distributed system. If the resulted number of fragments is bigger than the 

number of network nodes, fragment recombination needs to be performed. In 

addition, there is no evaluation of goodness of the resulting vertical fragmentation 

schema as to how it will improve the distributed database system performance.  

Lin and Zhang [31] pointed out that the restriction of an affinity cycle results in 

formalization is an NP-hard problem and therefore the claimed properties in [30] 

cannot be guaranteed. A new graphic algorithm is proposed by using 2-connectivity 

instead of affinity cycle to construct non-overlapping fragments, which is later 

allocated to distributed network nodes. 

Ma H. et al. (2006) used an attribute uses frequency matrix (AUFM) and a cost model 

for vertical fragmentation [32]. This paper addresses vertical fragmentation and 

allocation simultaneously in the context of the relational data model. The core of the 

paper is a heuristic approach to vertical fragmentation, which uses a cost model and is 

targeted at globally minimizing access costs. M. Alfares et al. used AAM to generate 

groups based on affinity values [33].  
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Ngo T. H. used AUM & partitioned a relation into two vertical fragments in the cache 

memory [34]. In this paper they derived an objective function for vertical partitioning 

with a new estimated criterion: cache hit probability.  

Runceanu A. presented a partition evaluator that used AUM to select attributes for 

vertical fragmentation [35]. In this paper implementation of a heuristic algorithm is 

presented that uses an objective function who takes over information about the 

administrated dates in a distributed database and evaluates all the scheme of the 

database vertical fragmentation.   

2.3.1.2 Cost Based Approaches 
Cost based vertical fragmentation approaches use cost functions to make proper 

fragmentation decision. Cornell and Yu [36] discussed vertical fragmentation for 

relational databases and considered that the response time of transactions is impacted 

by the number of disk accesses by the transaction. Considering the utility of vertical 

fragmentation is to minimize the number of disk accesses, Cornell and Yu [36], [37] 

proposed a two step methodology that consists of a query analysis step to estimate the 

parameters and a binary partitioning step that can be applied recursively. Chu [38] 

presented two procedures to solve the attribute partitioning problem to improve 

system performance by transferring small segments instead of big non-partitioned 

relations between the primary and the secondary storage. He first defined two 

concepts, sufficient and support, on which two procedures, MAX and FORWARD 

SELECTION, are proposed which are targeted at maximizing the value of v, the total 

reduction of costs which are expressed in terms of the number of disk accesses. The 

important characteristic of these two procedures is that they treat the transactions 

instead of the attributes as the decision variables. Therefore, the run time of these 

procedures does not depend on the number of attributes and can be efficiently 

executed when the number of attributes is very big. However, this approach may not 

be suitable to the situation when there are a large number of transactions but a small 

number of attributes over a relation. Also, this approach only discusses the problem of 

attribute partitioning for two memory levels on one disk. The objective function only 

counts the number of disk accesses. Approaches in both [36] and [38] are not suited 

for distributed databases. 
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Chakravarthy et al. [39] argued that there should be a way to measure the goodness of 

a vertical fragmentation schema. For this purpose they set up an objective function, 

Partition Evaluator (PE), for evaluating different vertical fragmentation algorithms 

using the same criteria. The PE consists of two components, irrelevant local attribute 

access cost and relevant remote attribute access cost. However, relevant remote 

attribute access cost reflects the number of relevant attributes in a fragment accessed 

remotely with respect to all other fragments by all transactions. Therefore, the PE 

cannot be used in distributed databases because neither size nor network transaction 

cost factors have been considered. 

Son and Kim [40] argued that vertical partitioning problem should consider the 

number of fragments finally generated. They discussed n-ary vertical partitioning 

problem which are more flexible than the optimal partitioning. Their novel 

contribution is an objective function which aims at minimizing not only the frequency 

of query accesses to different fragments but also the frequency of interfered accesses 

between queries. In the objective function, data localization is not considered because 

queries are not distinguished between sites. 

2.3.1.3 Initial Vertical Fragmentation 
Abuelyaman [41] provided a solution of initial fragmentation of database using 

vertical fragmentation technique namely StatPart. To fragment a relation, it starts with 

a randomly generated matrix of attribute vs. queries called reflexivity matrix. It then 

construct symmetry matrix from reflexivity matrix using two equations. Symmetry 

matrix is inputted to transitivity module which uses an algorithm to produce two set of 

attributes those will be used to break the relation into two binary vertical fragments.  

Main two drawbacks of StatPart [41] are: 

 It can suggest only two binary vertical fragments independent of number of 

sites of the distributed system. So this technique is not suitable for a 

distributed system with more than two allocation sites.   

 As it starts with a randomly generated matrix that represents the relationship 

among attributes and queries, optimum fragmentation decision cannot be 

provided using this algorithm. So it continuously shift attributes from one 

fragment to another fragment trial and error basis to improve hit ratio.  
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2.3.2 Vertical Fragmentation for Object Oriented Databases 
In the context of object-oriented data model, fragmentation algorithms are mainly 

affinity based, with different affinities used as parameters, e.g., attribute affinities, or 

instance variable affinities [42], [16]. An increasing demand on the performance of 

object oriented database systems has resulted in the adoption of vertical fragmentation 

techniques from the relational databases. The features of the object-oriented data 

model (such as inheritance, encapsulation, ISA relationship and the presence of 

method) add to the complexity of the partitioning problem [43]. Based on the existing 

work for vertical fragmentation for object-oriented databases, taxonomy is proposed 

in [43] has two categories, method based and attributed based.  

Karlapalem and Li [44] discussed the foundations of vertical fragmentation by giving 

a formal representation of vertical fragmentation. Issues regarding internal 

representation and reconstruction of fragments are discussed. In addition, approaches 

for supporting ISA relationships and methods are briefly mentioned. There are neither 

algorithms for horizontal, path and vertical fragmentation nor discussion on when 

vertical fragmentation should be applied to schema or to methods. Karlapalem et al. 

[45] presented guidelines for method induced partitioning in object-oriented 

databases. Karlapalem and Li [46] extended the work done in [44] and [45] through 

detailed discussions of the method induced partitioning on different types of methods 

in terms of instance variables accessed, and the complexity of the methods, with the 

focus on single method partitioning. There is no algorithm proposed in the paper. 

Treating relational database as a special case of object-oriented databases, Malinowski 

and Chakravarthy [47] generalized the work for relational databases in [39] to object-

oriented databases. Vertical fragmentation is performed using Transaction-Method 

Usage Matrix, Method-Method Usage Matrix and Method-Attribute Usage Matrix. A 

partition evaluator function for object-oriented databases, PEOO, adopted from the 

relational databases, is used to evaluate all possible combinations of attributes with 

the number of fragments varying from one to the total number of attributes in the 

class. However, without considering the size of data transferred among network 

nodes, the PEOO actually measures the number of irrelevant local accesses and 

relevant remote accesses rather than real total query costs. 
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Ezeife and Barker [42] discussed vertical partition for the most complex object model, 

consisting of complex attributes with complex methods. Ezeife and Barker [48] 

emphasized that the network communication costs dominate query processing costs. 

Vertical fragmentation is discussed with reference to four different class models, 

consisting of simple or complex attributes combined with simple or complex methods. 

Fragmentation of a class is processed to group all attributes and methods of the class 

that are frequently accessed together by applications accessing either the class itself, 

its subclasses, its containing classes, or its complex method classes. For different 

models affinity matrixes are computed by incorporating all the object-oriented 

features, e.g., inheritance links and subclasses. For each of the class model a formal 

vertical fragmentation is presented. Method affinities of a class are calculated by 

summing up the frequencies of queries that access both the methods simultaneously, 

either directly or through this subclasses or containing classes. Actually, site 

information are lost while building affinity matrixes, which means that data 

localization is not considered. The evaluation of proposed algorithm is based on the 

Partition Evaluator proposed in [39], which does not really measure the total query 

costs. 

Treating attributes and methods in a uniform and undistinguished way, Bai˜ao [4] 

adopted the graphical approach in [30] and [3] to object-oriented databases. The 

process of vertical fragmentation contains two steps, building an element affinity 

matrix and building an element affinity graph. However, during the process of 

building the element affinity matrix, data local requirement information is lost. 

Therefore, there is no link showing that vertical fragmentation using element affinity 

can improve data locality which in turn can reduce irrelevant remote data 

transportation costs.  

2.4 Mixed Fragmentation 

Navathe et al. [3] proposed a mixed fragmentation methodology for initial distributed 

database design. The process proposed simultaneously applies horizontal and vertical 

fragmentation on a relation. The input of the procedure comprises a predicate affinity 

table and an attribute affinity table. A set of grid cells are created first which may 
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overlap each other. Then some grid cells are merged such that total disk accesses for 

all transactions can be reduced. Finally, overlap between each pair of fragments is 

removed using two algorithms for the cases of contained and overlapping fragments. 

However, the merging algorithms are based on a model which measures times of disk 

access (I/O). Network factors are not considered. For distributed databases, it is 

important to not only reduce disk access but also reduce the data transportation 

between sites.  

Adopting some developed heuristics and algorithms in [3] to fragmentation in object 

oriented databases, Bai˜ao and Mattoso [27] proposed a design procedure which 

includes a sequence of steps: analysis phase, vertical and horizontal fragmentation. In 

the first step, a set of classes that are needed for horizontal fragmentation, vertical 

fragmentation, or non-fragmentation, are identified. In the second and third steps, 

vertical and horizontal fragmentations are performed on the classes identified in the 

first step, using algorithms extended from the one in [3]. All fragmentation algorithms 

are affinity based. The evaluations of the resulting fragmentation are not based on any 

cost model. Bai˜ao et al. [4] considered mixed fragmentation as a process of 

performing vertical fragmentation on classes first and then performing horizontal 

fragmentation on the set of vertical fragments. 

2.5 Allocation 

In the literature, allocation problems are first addressed for file allocation. Chu [49] 

presented a simple model for a non-redundant allocation of files. Casey [50] proposed 

a model which allows the allocation of multiple copies. Queries and updates are 

distinguished in the model. Mahmoud and Riodon [51] proposed a model for studying 

file allocation and the capacity of communication capacities to obtain optimized 

solution which minimize storage and communication cost. Since the early 1980s data 

allocation has been studied in the context of relational databases. Due to the 

complexity of the problem of data allocation, different researchers make different 

assumptions to reduce the size of the problem. Some works do not consider 

replication while making decision of allocation [26, 52, 53], while some others do not 

consider storage capabilities of network nodes [6, 54].  
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2.6 Summary 

As shown in the above sections, most of the literature about database distribution 

design considers fragmentation and allocation as two different steps even though they 

are strongly interrelated problems which take the same input information to achieve 

the same objectives of improving system performance, reliability and availability. 

Existing approaches for primary horizontal fragmentation can be characterized into 

three streams, one using minterm predicates, one using predicate affinity, and a cost-

driven approach using a cost model. Even though each of the approaches claims to be 

able to improve system performance, there is no evaluation to prove that resulting 

fragmentation schemata can indeed improve the system performance. Horizontal 

fragmentation with minterm predicates often results in a large number of fragments 

which will later be allocated to a limited number of network nodes. It can be expected 

that the number of network nodes gives the upper bound of fragments because 

fragments allocated at the same network node can be recombined for the benefits of 

most queries. Affinity-based horizontal fragmentation approaches cannot guarantee to 

achieve optimal system performance because the information of data local 

requirement is lost while computing predicate affinities. Cost-driven approaches use 

cost models to measure the number of disk accesses without considering 

transportation cost. None of the three approaches takes data local availability as the 

objective of fragmentation.  

For vertical fragmentation there are two main approaches existing in the literature: 

affinity based and cost-based. The affinity-based vertical fragmentation approach 

originated for centralized databases with hierarchical memory levels, for which the 

number of disk accesses is the main factor that affects the system performance. Later, 

this approach was adapted to distributed databases for which transportation cost is the 

main cost that affects the system performance. Attribute affinities only reflect the 

togetherness of attributes accessed by applications. Vertical fragmentation based on 

affinities may reduce the number of disk accesses. However, there is no clear proof 

that affinity-based vertical fragmentation can indeed improve data local availability 

and thus improve system performance. The cost-driven approach performs vertical 

fragmentation based on a cost model that measures the number of disk accesses. The 
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optimal solution chosen by this approach is the vertical fragmentation schema that 

have the fewest number of disk accesses.  

As to allocation, due to the complexity of the allocation problem that is closely related 

to query optimization problem, it is infeasible to find optimal solutions. One has to 

seek heuristic solutions. To do this, many assumptions have been made to reduce the 

complexity of the problem. The assumption that fragmentation is completed properly 

is not reasonable. Nor it is possible to solve the fragmentation problem independently 

from the allocation problem because the optimal fragmentation can only be achieved 

with respect to the optimal allocation of fragments [8]. However, there is no 

fragmentation approach, for both horizontal and vertical fragmentation, taking data 

locality into consideration [7].  

In summary, due to the deficiencies of fragmentation and allocation techniques 

existing in the literature, this research will study fragmentation and allocation in an 

integrated manner. Based on locality of data, fragmentation and fragment allocation 

are performed with the objective of minimizing data transmission costs and 

maximizing locality of data.  
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Chapter 3 

MCRUD Matrix based Fragmentation 

Technique (MMF) 
 
This chapter describes the details of our proposed fragmentation technique that can be 

used for fragmentation of the relations of distributed relational database and allocation 

of the fragments.  

3.1 Initial Fragmentation  
To achieve the benefits of distributed database, database designers are moving 

towards fragmentation of database relations or classes for allocating to the sites of 

distributed systems. Available techniques developed by the researchers so far to 

support fragmentation cannot provide solution at the initial level of a distributed 

system. They use frequency of queries executed in a system at runtime, affinity matrix 

of minterm predicates constructed  from combination of predicates or attribute affinity 

matrix constructed based on the relationship between different attributes of a table and 

runtime transactions those access the attributes as a basis of fragmentation of the 

relations. To construct these matrices, sufficient experiential data are required those 

are not available in most cases at initial stage of a distributed system. So using 

currently available techniques for fragmentation, the database administrator has to put 

whole database in a single site of the system and perform fragmentation and allocation 

after a long period when sufficient empirical data will be available to him.  

During this period facilities of distributed database cannot be enjoyed.  After the 

period the database can be fragmented correctly to some extent and allocated to the 

sites with a high communication cost of transferring huge amount of data from central 

node to all other nodes of the system. To solve the problem of taking proper 

fragmentation decision at the initial stage of a distributed database, we have 

developed a new fragmentation technique based on precedence of attributes to 

increase data locality. Instead of using empirical data, we have developed Modified 
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Create, Read, Update and Delete (MCRUD) matrix to obtain fragmentation decisions. 

The details of the technique are discussed in the following sections. 

3.2 CRUD Matrix 
A data-to-location Create, Read, Update and Delete (CRUD) matrix is a table in 

which rows indicate attributes of the entities of a relation and columns indicate 

locations of the applications [55]. It is used by the system analysts and designers in 

the requirement analysis phase of system development life cycle for making decision 

of data mapping to different locations [55], [56]. Example of a traditional CRUD 

Matrix is shown in Table 3.1. 

Table 3.1: Traditional CRUD Matrix  

                             Entity 
 

Use Case 

Order Chemicals Requestor Vendor 
Catalog 

Place Order C R R R 
Change Order U, D  R R 
Manage Chemical  
Inventory 

 C, U, D   

Report on Orders R R R  

Edit Requesters   C, U  

3.3 MCRUD Matrix 
We have modified the existing CRUD matrix according to our requirement of 

horizontal fragmentation and named it Modified Create, Read, Update, and Delete 

(MCRUD) matrix. It is a table constructed by placing predicates of attributes of a 

relation in the row side and applications of the sites of a DDBMS in the column side. 

We have used MCRUD matrix to generate attribute locality precedence (ALP) table 

for each relation. Example of a MCRUD Matrix is shown in Table 3.2. In this 

example the distributed system has three sites and one application is running in each 

site. Entity set, attribute and predicate are denoted by E, a and p respectedly. If an 

application of a site has chances to perform create or read or update or delete 

operation to an attribute’s certain predicate then C or R or U or D will be written in 

the intersecting cell of the matrix. 
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Table 3.2: An MCRUD Matrix for E Relation 
Site.Application

Entityset . Attribute . Predicates     
Site1/ Ap Site2/ Ap Site3 /Ap 

E . a1 . p1 CRUD R R 
E . a1 . p2 RU CRUD CRU 
E . a2  .  p1 R R CRUD 
E . a2 . p2 R RU R 
E . a3 . p1 CRUD  R 
E . a3 . p2 R R CRUD 

3.4 Attribute Locality Precedence (ALP) 
In our technique we fragment a relation according to precedence of attributes to 

increase data locality. We have named it Attribute Locality Precedence (ALP). We 

define ALP as the value of importance of an attribute with respect to the sites of a 

distributed database. A relation in a database contains different types of attributes 

those describe properties of the relation. But the important thing is that the attributes 

of a relation do not have same importance with respect to data distribution in different 

sites. For example in Table 3.2, there are three attributes a1, a2 and a3. Among them 

one may be more significant than others to increase data locality and to reduce remote 

access in the case of fragmentation.  According to the above importance we can 

calculate locality precedence of each attribute for each relation and construct ALP 

table for the relations.  

3.5 ALP Table 
ALP values of different attributes of a relation are placed in a table called ALP table. 

ALP table is constructed by database designer for each relation of a DDBMS at the 

time of designing the database with the help of MCRUD matrix and cost functions 

given in the following section 3.6. The algorithm that is used to calculate ALP and to 

construct ALP table is given in Algorithm I. An example of ALP table for the 

MCRUD matrix of Table 3.2 is shown in Table 3.3. Details of how the precedence 

values of attributes of Table 3.3 are calculated can be found in section 3.6. 
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___________________________________________________________________ 

Algorithm I: ALP calculation 
Input: MCRUD of a relation  

Output: ALP table of the relation 

for ( i =1; i <= TotalAttributes; i++){ 
 for ( j =1; j <= TotalPredicates[i]; j++){ 
  MAX[i][j] = 0;  
  for ( k =1; k <= TotalSites; k++){ 

for ( r =1; r <= TotalApplications[k]; r++){  /* Calculating sum of all    
applications’ cost of predicate j of attribute i at site k */ 

C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D;  
 S[i][j][k] + = C[i][j][k][r]; 

   If S[i][j][k] > MAX[i][j] {      /*Find out at which site cost of  
MAX[i][j] = S[i][j][k];  predicate j is maximum*/ 

     POS[i][j] = k; 
   SumOther = 0; 
   Count =0; 

 for ( r =1; r <= A[i][j][k]; r++){ 
If (r!=k){ 

SumOther + = S[i][j][r]; 
If (S[i][j][r]>MAX[i][j]/2)       /* selecting the sites where 
      Replicate[Count]=r;           replication of a fragment 
  Count++;               will be performed */ 

            ALPsingle[i][j] = MAX[i][j] – SumOther;           /* actual cost for predicate j  
of attribute i */ 

ALP[i] = 0; 
for ( j =1; j <= TotalPredicates[i]; j++)              /*calculating total cost for attribute i  

ALP[i] + = ALPsingle[i][j];   (locality precedence)*/ 
  
____________________________________________________________________ 

Table 3.3: An ALP Table  

EntitySet. Attribute Name Precedence 

E . a1 4

E . a2 8

E . a3 13

3.6 ALP Cost Functions  
We treated cost as the effort of access and modification of a particular attribute of a 

relation by an application from a particular site. For calculating precedence of an 

attribute of a relation we take the MCRUD matrix of the relation as an input and use 

the following cost functions: 
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MCRUD cell cost: 
Ci, j, k, r = fCC + fRR + fUU + fDD --------  

Here C, R, U, D denotes cost incurred for performing create, read, update and delete 

operation in the system and fC, fR, fU, fD are the frequencies of create, read, update 

and delete operation performed by an application of a site.  

Ci, j, k, r = cost of predicate j on attribute i accessed by application r at site k 

Site cost: 

Si, j, k  =  ∑
=

k j iA

1r
rk,j,i,C

  
 

Si, j, k = sum of all applications’ cost of predicate j of attribute i at site k. 

For all sites in the distributed system, cost incurred by the applications of a site is 

summed. 

Maximum-Site cost: 

Si, j, m = Max (Si, j, k)                    ------------    

Si, j, m = maximum cost among the sites for predicate j of attribute i.  

For a particular predicate of an attribute, maximum cost among all sites is 

calculated in Si, j, m 

Predicate ALP Cost: 

ALPi j = Si, j, m - ∑
≠

k j iA

mk
kj,i,S  

ALPi j = ALP cost for predicate j of attribute i.  

Predicate ALP cost can be found by deducting all costs incurred in the sites from 

the site where cost of accessing the predicate is maximum. 

Attribute ALP Cost: 

ALPi = ∑
=

l

j 1
ji,ALP  

ALPi = Total ALP cost of attribute i  (locality precedence) 

An attribute’s ALP cost is the summation of ALP costs of its predicates. 

At the design time of a distributed database, the designer will not know the actual 

frequencies of read, delete, create and update of a particular attribute from different 

(1) 

------------ (2) 

(3) 

---------  (4) 

           ----------- (5) 
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applications of a site. So initially we have assumed that fC, fR, fU and fD=1. Typical 

cost of update operation is more than create and delete operation in a database system 

and reading from database always incurs least cost.  So for simplicity we treated C=2, 

R=1, U=3 and D=2; Cost incurred for performing create, read, update and delete 

operations. Justifications of these assumptions can be found in [58]. 

Frequency Estimation for Cost Functions: 

Using the information gathered as in Table 3.4, more accurate estimation of frequency 

of create, read, update and delete operation by an application can be possible. This 

form can be used at the requirement analysis phase of a DDBMS design.  

Table 3.4: Information Need Analysis Form 

Access Statistics
 

Users 

Site k 

Application r 
attributei. predicatej 

Create Read Update Delete 
U1  x   
U2  x x  
U3 x x x x 
U4  x   
. 
. 
. 

    

Un x x x  

3.7 Fragmentation based on MCRUD Matrix   
In this section we have described MMF technique in details. The main functionalities 

of the technique are shown in Fig. 3.1. There are n number of relations in the database 

named R1, R2,…, Rn. First n number of MCRUD matrices is constructed by the 

system designer at design time. These n matrices will be the input of our technique. 

Then using the cost functions of Section 3.6, n number of ALP tables ALP (R1), ALP 

(R2), …, ALP (Rn) will be constructed. Then in the next step, n number of predicate 

sets named P1, P2, …, Pn will be generated for attributes with highest ALP value for 

each ALP table. Each predicate set Pi will contain m number of predicates. According 

to the predicate sets, each of the n relations Ri is fragmented into m fragments and 

allocate to m sites. 
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Fig. 3.1: Block Diagram of MMF Technique 

Following algorithm, Algorithm II has been used to implement MMF technique. 

___________________________________________________________________ 

Algorithm II: FragmentationAllocation  
Input: Total number of sites: S = {S1, S2,… ,Sn} 
 Relation to be fragmented: R 
 Modified CRUD matrix: MCRUD[R] 
Output: Fragments F = {F1, F2, F3,…, Fn} 
Step 1: Construct ALP[R] from MCRUD[R] based on Cost functions  
Step 2: For the significant highest valued attribute of ALP table 

a. Generate predicate set P={ P1, P2, … ,Pm } 

b. Fragment R using P as selection predicate  )( Rpp σ∀  
c. ALLOCATE F to S 

Step 3: For non-significant-highest-value (Max-Highest<1.5*2nd-Highest) in ALP[R]  

a. REPLICATE R to ∑
=

n

j
jS

1

if R is an entity set 

b. Derive Horizontally Fragment R using its owner relation  if R is a relationship set   
____________________________________________________________________ 

Algorithm II takes a relation to be fragmented, MCRUD matrix of the relation and 

number of allocation sites as input. It finally produces the fragments and allocates 

them in the sites of DDBMS. Working procedure of the algorithm will be clear in the 

following subsections. 

Now we are presenting a real life example to explain the steps shown in Fig. 3.1. Let 

we are designing a distributed banking database system (DBDS). One of the relations 

of this database is Accounts shown in Table 3.5. Initially number of allocation sites of 

MCRUD Matrix 

MCRUD (R1) 
MCRUD (R2) 

: 
MCRUD (Rn) 

ALP (R1) 
ALP (R2) 

: 
ALP (Rn) 

P1= {P11, P12…P1m} 
P2= {P21, P22…P2m} 

: 
Pn= {Pn1, Pn2…Pnm} 

R11, R12…R1m 
R21, R22…R2m 

: 
Rn1, Rn2…Rnm 

 
S1 

 : 
Sm 

R11, R21…..Rn1 

R1m, R2m…Rnm 

Relations of DDBMS 

R1 
R2 
: 

Rn 

ALP Tables 

Predicate Sets Fragmented Sub-relations 
Allocation to Sites 
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the distributed system is three namely Dhaka, Chittagong and Khulna as shown in Fig. 

3.2. 

Table 3.5: Accounts Relation 

AccountNo Type CustId OpenDate Balance BrName 
01 Ind 001 20/1/09 12500 Dhk 
02 Cor 002 23/1/09 35000 Dhk 
03 Cor 003 28/2/09 5200 Ctg 
04 Ind 004 25/3/09 15000 Khl 
05 Cor 005 17/4/09 50000 Dhk 

 
Fig. 3.2: Distributed Banking Database System 

3.7.1 MCRUD Construction 
The designer will construct the MCRUD matrix for the Accounts Database relation in 

the requirement analysis phase. An example of MCRUD matrix is shown in Table 3.6. 

It can be seen from the figure that predicates of the attributes of Accounts relation are 

shown in row sides and applications of different sites are placed in column sides. Here 

Ap1: Application deals with Customer information, Ap2: Application deals with 

Accounts information, Ap3: Application deals with Loan information. Relationship 

between predicates and applications are represented in their intersecting cells. For 

example attribute Type has two predicates: Ind (Individual) and Cor (Corporate). Ap2 

(Application 2) running in Site1 can performs read and update operation over Ind 

predicate. So R U is placed in the intersecting cell. In this way the whole matrix is 

filled up at requirement analysis phase. 

Site 1: 
Dhaka 

Site 2: 
Khulna 

Site 3: 
Chittagong 
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Table 3.6: MCRUD Matrix of Accounts Relation 
Site.Application 

Entity.Attribute.Predicates 
Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Accounts .AccountNo<10000 C  RU      R 

Accounts .AccountNo>=10000  R        
Accounts.Type=Ind CRD RU RUD  R     
Accounts.Type=Cor  RU R    CRUD RU R 

. 

. 
         

Accounts.Balance<50000 R  R   CRUD   R 
Accounts.Balance>=50000  CR        
Accounts.BrName=Dhk CRUD RU CRUD   R R   
Accounts.BrName=Ctg  R  CRUD CRUD R  R  
Accounts.BrName=Khl       CRUD RD CRU 

3.7.2 ALP Calculation 
The designer will calculate precedence of locality of each attribute from the MCRUD 

matrix of Accounts relation according to the cost functions given in section 3.6.  

Algorithm II represents the algorithm for ALP calculation. If a predicate of an 

attribute is accessed by more than one site, its precedence is decreased and also 

overall precedence of the attribute where the predicate belongs t, decreases in our cost 

function because it reduces data locality. To calculate precedence of a predicate, 

predicate access values of other sites are deducted from the site where value of 

accessing that predicate is maximum. 

Finding the ALP of the attribute BrName is shown in Table 3.7- 3.9. 

Table 3.7: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 
Site.Application 
 

Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 
Accounts .AccountNo<10000 C  RU      R 
Accounts .AccountNo>=10000  R        

Accounts.Type=Ind CRD RU RUD  R     
Accounts.Type=Cor  RU R    CRUD RU R 

.          

Accounts.Balance<50000 R  R   CRUD   R 
Accounts.Balance>=50000  CR        

Accounts.BrName=Dhk CRUD RU CRUD   R R   
ccounts.BrName=Ctg  R  CRUD CRUD R  R  

Accounts.BrName=Khl       CRUD RD CRU 
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Table 3.8: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Accounts .AccountNo<10000 C  RU      R 
Accounts .AccountNo>=10000  R        

Accounts.Type=Ind CRD RU RUD  R     
Accounts.Type=Cor  RU R    CRUD RU R 

.          
Accounts.Balance<50000 R  R   CRUD   R 
Accounts.Balance>=50000  CR        
Accounts.BrName=Dhk CRUD RU CRUD   R R   
Accounts.BrName=Ctg  R  CRUD CRUD R  R  
Accounts.BrName=Khl       CRUD RD CRU 

Table 3.9: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 

 

According to the cost functions, values of the predicates are as follows: 

BrName=Dhk: [{(2+1+3+2) + (1+3) + (2+1+3+2)} - {1+1}] = 18, (Table 3.7) 

BrName=Ctg is [{(2+1+3+2) + (2+1+3+2) + (1)} - {1+1}] = 15 (Table 3.8) and  

BrName=Khl is [{(2+1+3+2) + (1+2) + (2+1+3)} - {0+0}] = 17. (Table 3.9) 

So ALP of BrName = (18+15+1) = 50. 

3.7.3 ALP Table Construction 
ALP values of all the attributes of the Accounts relation are computed from its 

MCRUD matrix according to the previous sections. Table 3.10 shows the ALP table 

for Accounts relation. The attribute with highest precedence value is treated as most 

important attribute for fragmentation.  

 

Site.Application 
 

Entity.Attribute.Predicates 

Site1 Site2 Site3 
Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Accounts .AccountNo<10000 C  RU      R 
Accounts .AccountNo>=10000  R        

Accounts.Type=Ind CRD RU RUD  R     
Accounts.Type=Cor  RU R    CRUD RU R 

.          
Accounts.Balance<50000 R  R   CRUD   R 
Accounts.Balance>=50000  CR        
Accounts.BrName=Dhk CRUD RU CRUD   R R   
Accounts.BrName=Ctg  R  CRUD CRUD R  R  
Accounts.BrName=Khl       CRUD RD CRU 
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Table 3.10: ALP Table of Accounts Relation 

Attribute Name Precedence

AccountNo 6

Type 22

CustId 6

OpenDate 7

Balance 10

BrName 50

3.7.4 Predicate Set Generation 
Given a relation R (A1, A2,…, An) where attribute Ai has domain Di, a predicate pj 

defined on R has the form 

pj: Ai    Value Where                                  and value          . 

Predicate set of an attribute is the set of predicates used by the applications to access 

that attribute. In MMF technique, only the predicate set for the attribute with highest 

ALP value of a relation will be generated. We can see from ALP table of Accounts 

relation (Table 3.10) that BrName attribute has highest ALP value. So predicate set of 

BrName attribute is generated which is found in MCRUD matrix of Accounts 

relation.  

 
P= {p1: BrName=Dhk, p2: BrName=Ctg, p3: BrName= Khl} 

3.7.5 Fragmentation of Relation 
A horizontal fragmentation consists of a subset of the tuples of a relation. It is defined 

using Selection operation of relational algebra: σp(R). Here p is the predicate using 

which records are selected from relation R those satisfied p. So for each p of predicate 

set P, a set of records can be selected and treated as a fragment.  

According to the predicates of predicate set P which was generated in the previous 

subsection, the Account relation will be fragmented horizontally. As P consists of 

three predicates so three horizontal fragments were created.  

Allocation is the process of copying a fragment to a site of a system according to 

certain cost function. Here three fragment generated earlier is allocated to three sites 

shown in Table 3.11 – 3.13 according to predicate access in respected sites.  

θ },,,,,{ ≥>≤≠<=∈θ Di∈
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Table 3.11: Part of Accounts Relation Allocated to Site 1 

AccountNo Type CustId OpenDate Balance BrName 
01 Ind 001 20/1/09 12500 Dhk 
02 Cor 002 23/1/09 35000 Dhk 
05 Cor 005 17/4/09 50000 Dhk 

Table 3.12: Part of Accounts Relation Allocated to Site 2 

AccountNo Type CustId OpenDate Balance BrName 
04 Ind 004 25/3/09 15000 Khl 

Table 3.13: Part of Accounts Relation Allocated to Site 3 

AccountNo Type CustId OpenDate Balance BrName 
03 Cor 003 28/2/09 5200 Ctg 

 

3.8 Analysis of MMF technique 
The space complexity and time complexity of MCRUD Matrix based fragmentation 

technique have been discussed in the following sections.  

3.8.1 Memory Cost Analysis 
To store the MCRUD matrices of different relations in the system for further 

processing by Algorithm II, we have used four dimensional arrays.  As discussed in 

Section 3.5, for calculating ALP values we have to store four things: site number, 

application number, attribute number and predicate number. These values will be 

stored in 4D arrays and ALP tables are constructed using these arrays. Cost of each 

cell of MCRUD matrix is computed by the cost function of equation 1. 

Ci, j, k, r = fCC + fRR + fUU + fDD   

Where Ci, j, k, r = cost of predicate j on attribute i accessed by application r at site k.    

This is represented in the Algorithm I as follows: 
C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D,  

Where i: attribute number, j: predicate number, k: site number and r: application 

number. In this thesis number of sites is denoted by S, number of applications is 

denoted by N, number of Predicates is denoted by P and number of  attributes is 

denoted A. So space requirement to store an MCRUD matrix will be O(S*N*A*P) or 

O (n4) if S≈ N≈ A ≈P ≈ n. 
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For example, if for a MCRUD matrix there are 12 attributes, 5 predicates for each 

attribute, 10 sites and 3 applications running at each site that is A=12, P=5, S=10 and 

N=3 and also to store a real number if it requires 4 bytes of memory then memory 

requirement of this MCRUD matrix is: 12*5*10*3*4= 7200 Bytes or 7.2KB. If there 

are 200 tables in the database then total memory requirement is 7.2*200=1440KB or 

1.44MB.  

ALP table for a relation constructed from 4D array is stored in 2D array where 

attribute name and its ALP value is placed.  For this example, A=12 and if maximum 

length of an attribute name is 50 characters then ALP table consumes 

12*50*4=2400Byte or 2.4 KB. So for 200 database tables, it takes 200*2.4=480 Kilo 

Bytes or 0.48MB total memory to store all the ALP tables. So overall memory 

requirement is 1.44+0.48=1.92MB, approximately 2MB. Un-doubtfully this is quite 

less in comparison with huge memory requirement of several gigabytes in distributed 

database.   

3.8.2 Computational Cost Analysis 
Creation of MCRUD matrix for every relation and calculation of ALP from each 

matrix adds some additional cost in our system.  

For calculating ALP, Algorithm I is used. We can find from Algorithm I that, its 

maximum computational cost is dominated by the computation within four nested 

loops. The code is as follows: 
 for ( i =1; I <= TotalAttributes; i++){ 
 for ( j =1; j <= TotalPredicates[i]; j++){ 
   for ( k =1; k <= TotalSites; k++){ 

for ( r =1; r <= TotalApplications[k]; r++) 
  C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D  

     S[i][j][k] + = C[i][j][k][r] 

So computational order of this algorithm is O (i*j*k*r). As imax =A, jmax=P, kmax=S 

and rmax=N, so we can rewrite the order as O(A*P*S*N) or O (n4) if we treat S≈ N≈ A 

≈P ≈ n. 

Actual problem of horizontal fragmentation and allocation is O (
n

k 2
) where there 

are n simple predicates and k sites because all the combinations have to be generated 

to find a correct solution. This is impossible in practical large database systems [7]. 



 
 

 

37

We have reduced it to O (n4) by providing solution based on heuristic that use 

MCRUD matrix. 

If we consider the case of Section 3.8.1 that is A=12, P=5, S=10 and N=3 where i: 

attribute number, j: predicate number, k: site number and r: application number then 

to compute ALP cost of the cells 12*5*10*3 =1800 * 4 multiplication =7200 

multiplication operation and 1800*3=5400 addition operation is required.  

But this computational cost can be ignored because ALP calculation from MCRUD 

matrix will be performed offline during the requirement analysis phase of distributed 

database development. So this computation will not affect negatively on the 

performance of the system.  

3.9 Scalability of MMF Technique 
We have investigated some cases to check whether our technique is restricted to some 

particular predicate numbers, attribute number and site numbers or it is a scalable 

enough that is not restricted to certain number of predicates, attributes or sites. In the 

following subsections it can be seen that MMF technique is a generalized technique 

which can be applied in any distributed system. 

3.9.1 Relation between Number of Sites with Number of Predicates 
In practice, there may be three cases: number of sites (S) less than number of 

predicates (P), number of sites (S) equals to number of predicates(P) , number of sites 

(S) greater than number of predicates(P). It can be recalled that according to the 

number of predicates of the attribute with highest ALP value, a relation can be 

fragmented into same number of sub-relations. From the following sub-sections it is 

be clear that MMF is neither restricted to certain number of predicates nor fixed 

number of sites.  

 
Case 1: S < P 
If S is less than P, in this case total fragments will be more than total sites. So 

fragments will be assigned to corresponding sites where locality precedence of 

predicates is highest respectively. It can be clearly understood that in this case some 

sites will get more than one fragments. For example, in Table 3.14, P=3 namely 

LnType=SME, LnType=HOME and LnType=CAR of the attribute LnType with 
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highest locality precedence. So three horizontal fragments are created taking above 

predicates as selection predicates. But S=2 namely Site1 and Site2. So a fragment is 

allocated to a site where precedence of the predicate use to make the fragment is 

maximum. Here Site1 got two fragments and Site2 got one fragment. 

Table 3.14: Decision Table when S<P 

 
Case 2: S = P 
This is a straight forward case. Here fragments are assigned to corresponding sites 

where locality precedence of the site is maximum respectively. For example, in Table 

3.15, S=3 and P=3, we can see there are three predicates namely LnType=SME, 

LnType=HOME and LnType=CAR of the attribute LnType with highest locality 

precedence. So three horizontal fragments will be created taking above predicates as 

selection predicates. Number of allocation sites are also three namely Site1, Site2 and 

Site3. So a fragment will be allocated to a site where precedence of the predicate use 

to make the fragment is maximum. 

Table 3.15: Decision Table when S=P 
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Case 3: S > P 
In this case, fragments are assigned to corresponding sites where locality precedence 

of the predicates by which fragments are created is maximum respectively and the 

sites where no fragment is allocated initially, having  replica of a fragment whose 

predicate precedence value is maximum in the sites. Replication is for reducing 

remote access cost of the queries. For example when S=3 and P=2, in Table 3.16 

below we can see there are two predicates namely LnType=SME, and LnType=CAR 

of the attribute LnType with highest locality precedence. So two horizontal fragments 

are created taking above predicates as selection predicates. But number of allocation 

sites are three namely Site1, Site2 and Site3. So two fragments will be allocated to Site2 

and Site3 where precedence of the predicates use to make the fragments are maximum 

respectively and the Site1 will have a replica of that fragment whose predicate 

precedence is highest in Site1.  

Table 3.16: Decision Table when S>P 

 

3.9.2 Impact of Schema Change 
In MMF, relations of a distributed system are fragmented based on their respected 

MCRUD matrices. MCRUD matrix of a relation is constructed at system design time. 

If schema of a relation changes during the design phase or later on e.g. by addition of 

attributes then only the MCRUD matrix corresponding to the relation have to be 

reconstructed and then the relation can be fragmented from its ALP table generated 

from its reconstructed MCRUD matrix. So it can be understood that our technique is 

not restricted to a particular DDBMS or relations with particular schema.   
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3.9.2.1 Normalization 
 If a relation is split into two relations by the database designer after fragmentation 

process for normalization issue then the ALP table of the whole relation has to split 

into two ALP tables. If an attribute is present in one relation, its ALP value will be 

placed in respected ALP table. So no new MCRUD matrix has to be constructed. 

____________________________________________________________________ 

Algorithm III: Splitting of ALP Tables 
Input: Set of attributes for each of the normalized relations, Previous ALP Table 
Output: Fragments for each of the normalized relations 
Steps: 

1. Input set of attributes each of the normalized relations 
2. Divide ALP table into two ALP tables according to set of attributes 
3. For each new ALP table: 

a. Generate Predicate Set for Highest precedence attribute 
b. Fragment according to generated Predicate Set 
c. Allocate fragments to Previous and new sites 

____________________________________________________________________ 

3.9.2.2 De-Normalization 
If two relations are merged into one relation by the database designer after 

fragmentation process for de-normalization issue then both the ALP tables of the 

relations can be merged into one ALP table. So no new MCRUD matrix has to be 

constructed. 

____________________________________________________________________ 

Algorithm IV: Combining ALP Tables 
Input: ALP tables of two relations selected for De-Normalization 
Output: Fragments for De-Normalized relations 
Steps: 

1. Input two ALP tables 
2. Merge the rows of two tables into one table 
3. For highest precedence attribute of merged ALP table: 

a. Generate Predicate Set  
b. Fragment according to generated Predicate Set 
c. Allocate fragments to Previous and new sites 

____________________________________________________________________ 

3.9.3 Impact of Number of Site Increase  
As in MMF there is no restriction of total number of sites in a DDBMS, so our 

technique can be applicable for a distributed system with any number of sites. Sites of 
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a DDBMS are placed in column side of a MCRUD matrix. If number of sites 

increased, corresponding columns will be added to each MCRUD matrix for every 

relation. This is analyzed in section 4.7.The steps of site increment is shown in 

Algorithm V below: 

____________________________________________________________________ 

Algorithm V: Site Increment 
Input: MCRUD Matrix with additional site information 
Output: Fragments for updated site information 
Steps: 

4. Input Modified MCRUD matrix with new sites 
5. Calculate ALP table for Modified MCRUD matrix 
6. Generate Predicate Set for Highest precedence attribute 
7. Fragment according to generated Predicate Set 
8. Allocate fragments to Previous and new sites 

____________________________________________________________________ 

3.9.4 Rearranging based on Empirical Data 
After certain duration of database execution in the sites of a distributed system when 

enough empirical data of query execution, attribute access by transaction etc. are 

available, the MCRUD matrix of the relations can be modified based on those data. It 

will improve the hit rate (locality of access) of the system to certain extent at the price 

of data transfer cost among the sites of the distributed system. The process is shown in 

the following algorithm, Algorithm VI: 

___________________________________________________________________ 

Algorithm VI: Re-Fragmentation  
Input: Total number of sites: S = {S1, S2,… ,Sn} 
 Relation to be fragmented: R 
 Modified MCRUD matrix based on empirical data: MCRUD[R] 
Output: Fragments F = {F1, F2, F3,…, Fn} 
Step 1: Construct ALP[R] from MCRUD[R] based on Cost functions  
Step 2: For the significant highest valued attribute of ALP table 

a. Generate predicate set P={ P1, P2, … ,Pm } 

b. Fragment R using P as selection predicate  )( Rpp σ∀  
c. ALLOCATE F to S 

Step 3: For non-significant-highest-value (Max-Highest<1.5*2nd-Highest) in ALP[R]  

a. REPLICATE R to ∑
=

n

j
jS

1
if R is an entity set 

b. Derive Horizontally Fragment R using its owner relation  if R is a relationship set   
____________________________________________________________________ 
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3.9.5 Implementation of other Fragmentation Types 
In this thesis we have performed the fragmentation of the relations of distributed 

database using horizontal fragmentation technique. This is because of improving 

performance significantly of a distributed database, we have to maximize locality of 

data or hit rate of the queries. That is query generating in one site access data of that 

site only. This will reduce remote access cost and cost of data transfer among the 

sites. Locality of data can be achieved more using horizontal fragmentation than 

vertical fragmentation.  

MMF technique is not limited to horizontal fragmentation only. If we slightly modify 

the MCRUD matrix that is if we place attributes of a relation in the row side and 

applications of the sites of a DDBMS in the column side and modifying the cost 

functions we can produce vertical fragmentation using MMF technique. Modification 

of MCRUD matrix for vertical fragmentation is shown in Table 3.17: 

Table 3.17: MCRUD Matrix for Vertical Fragmentation 
Site.Application 

 
 

Entity.Attribute 

Site1 
 

Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Accounts .AccountNo C  RU      R 
Accounts.Type CRD RU RUD  R     

. 

. 
         

Accounts.Balance R  R   CRUD   R 
Accounts.BrName CRUD RU CRUD R R  

Like other Hybrid or Mixed fragmentation techniques, MF can be performed in our 

MMF technique by applying vertical fragmentation followed by horizontal 

fragmentation or vice versa.  It is worth mentioning that MF is only applied in 

distributed databases if the relations have too many attributes and huge number of 

records in the relations.  

3.10 Summary 
In this chapter we have presented a model for our proposed MMF technique of 

fragmentation of distributed database relations. Algorithms of ALP table construction 

and fragmentation are also presented and analyzed in details. Scalability of our 

technique has also analyzed from different perspectives.  
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Chapter 4 

Results and Discussion 
 
The objective of the experimental work is to verify the applicability and feasibility of 

MMF, the proposed fragmentation technique based on MCRUD matrix. The 

experimental evaluation has been performed with synthetic data and reasonable 

number of queries.  

4.1 Experimental Environment 
To justify our technique we have implemented a distributed banking database system 

in the post-graduate lab of BUET using DELL computers with Core-two Duo 2.80 

processors and 2GB RAM. We have used Windows XP operating system and Oracle 

10g for database creation. Entity Relationship Diagram of our implemented database 

namely Distributed Banking Database System (DBDS) is shown in Fig. 4.1.  

 
 

Fig 4.1: ER diagram of DBDS 
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The transformation of E-R schema of Figure 4.1 into relational schema is as follows: 

 

Fig 4.2: Relation Schema of E-R Diagram of Fig. 4.1 

Initially number of sites of the distributed system is three as shown in Fig. 4.2. In each 

site, three applications were executed.  

Application 1 deals with Customer related information.  

Application 2 deals with Account related information. 

Application 3 deals with Loan related information.  

 

 

 

 

 

 

 

 

Fig 4.3: Distributed Banking Database System Network 

4.2 Construction of MCRUD Matrix 
We have constructed the MCRUD matrix for each of the eight relations in the 

requirement analysis phase. An MCRUD matrix is constructed by placing predicates 

of attributes of a relation in the row side and applications of the sites of a DDBMS in 

the column side of a table in the requirement analysis phase of system development. 

The matrices constructed for all the relations of Fig. 4.2 are shown in Table 4.1 - 4.8. 

Customer-Schema = (Cid, Cname, Caddr, Cphn, BrNo) 

Loans-Schema = (LnNo, LnType, Amount) 

Accounts-Schema = ( AccNo, AccType, AccBalance) 

Branch-Schema = (BrNo, BrName, BrAddress) 

LnCust-Schema = (LnNo, Cid) 

AccCust-Schema = (AccNo, Cid) 

AccofBranch-Schema = (AccNo, Opendate, Status, BrNo) 

LnofBranch-Schema = (LnNo, Issuedate, Status, BrNo)  

Site 2 

Site 3 

Corporate Loc1 

Loc2 

Site 1 
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Table 4.1: MCRUD Matrix of Branch relation 
Site.Application

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 
Branch.BrNo=B01 R R R     R  

Branch.BrNo=B02   R R  R    

Branch.BrNo=B03       R  R 

Branch.BrName=Corporate R R        

Branch.BrName=Loc1    R R   R  
Branch.BrName=Loc2 R   R   R R  
Branch.BrAddress=?   R       

Table 4.2: MCRUD Matrix of Loan relation 
Site.Application

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD 

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD 

Loan.LnType=SME R  RU RU R CRUD R  RU 

Loan.LnType=HOME RU RU CRUD R  RU R  RU 

Loan.LnType=CAR R  RU R  RU RU  CRUD 

Loan.Amount<50000 R  CRUD R  CRUD R  CRUD 

Loan.Amount=50000:100000 R R CRUD R  CRUD R  CRUD 

Loan.Amount>100000 R  CRUD R  CRUD R  CRUD 

Table 4.3: MCRUD Matrix of Customer relation 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Customer.Cid<10000 CRUD R R CRUD R R CRUD R R 

Customer. Cid >=10000 CRUD R R CRUD R R CRUD R R 

Customer.Cname=? CRUD R R CRUD R R CRUD R R 

Customer.Cphn=? CRUD R R CRUD R R CRUD R R 

Customer.Caddr=? CRUD R R CRUD R RU CRUD R R 

Customer. BrNo=B01 CRUD R R RU R R RU   

Customer. BrNo=B02 RU   CRUD R R RU   

Customer. BrNo=B03 RU   RU   CRUD R R 
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Table 4.4: MCRUD Matrix of Accounts relation 
Site.Application
 

Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

Accounts .AccNo<10000 RU CRUD R RU CRUD RU R CRUD R 

Accounts .AccNo>=10000 R CRUD R R CRUD RU R CRUD R 

Accounts.AccType=Ind R RU R RU CRUD RU RU CRUD R 

Accounts.AccType=Cor RU CRUD RU R RU  R RU  

Accounts.AccBalance<50000  CRUD R  CRUD R  CRUD R 

Accounts.AccBalance=50000:100000 R CRUD R  CRUD R  CRUD R 

Accounts.AccBalance>100000  CRUD R  CRUD R  CRUD R 

Table 4.5: MCRUD Matrix of AccofBranch relation 
Site.Application

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

AccofBranch.AccNo<10000  CRUD   CRUD   CRUD  

AccofBranch.AccNo>=10000  CRUD   CRUD   CRUD  

AccofBranch.OpenDate=?  CRUD   CRUD   CRUD  

AccofBranch.Status=A  CRUD   CRUD   CRUD  

AccofBranch.Status=I  CRUD   CRUD   CRUD  

AccofBranch. BrNo=B01  CRUD        

AccofBranch. BrNo=B02     CRUD     

AccofBranch. BrNo=B03        CRUD  

Table 4.6: MCRUD Matrix of LnofBranch relation 
Site.Application
 

Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

LnofBranch.LnNo<10000   CRUD   CRUD   CRUD 

LnofBranch.BrNo>=10000   CRUD   CRUD   CRUD 

LnofBranch.IssueDate=?   CRUD   CRUD   CRUD 

LnofBranch.Status=R   CRUD   CRUD   CRUD 

LnofBranch.Status=D   CRUD   CRUD   CRUD 

LnofBranch. BrNo=B01   CRUD       

LnofBranch. BrNo=B02      CRUD    

LnofBranch. BrNo=B03         CRUD 
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Table 4.7: MCRUD Matrix of AccCust relation 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

AccCust.AccNo=?  CRUD   CRUD   CRUD  

AccCust.Cid=? CRUD   CRUD   CRUD   

Table 4.8: MCRUD Matrix of LnCust relation 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 

LnCust.AccNo=? R  CRUD   CRUD   CRUD 

LnCust.Cid=? CRUD   CRUD   CRUD   

4.3 Calculation of ALP Values and Construction of 
ALP Tables 
We have calculated locality precedence of each attribute from the MCRUD matrix of 

each relation using attribute locality precedence (ALP) calculation algorithm. Using 

the ALP values we have constructed ALP table for each relation. ALP table is a 2D 

array where attributes of a relation and its locality precedence is stored. For each 

attribute, Create, Read, Update and Delete operation over its predicates from different 

applications of different sites is calculated and sum up to have locality precedence of 

that attribute. Details ALP calculation and ALP table construction can be found in 

section 3.4.2 and 3.4.3. Attribute with highest precedence implies that taking 

predicates of this attribute as selection predicate for horizontal fragmentation will 

maximize the hit ratio. It is depicted in Table 4.9. 

Table 4.9: Precedence Calculation for LnType Attribute of Loan Relation 

Attribute 
Name 

Predicates Precedence 
in Site 1 

Precedence 
in Site 2 

Precedence 
in Site 3 

Precedence 
of Predicate 

ALP Decision 

LnType 

LnType = SME 5 13 5 13-5-5=3  

3+6+2=11 

Fragment 
in Site 2 

LnType = 
HOME 

16 5 5 16-5-5=6 
Fragment 
in Site 1 

LnType = CAR 5 5 12 12-5-5=2 
Fragment 
in Site 3 
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ALP tables of for all the relations of Fig. 4.2 are shown in Table 4.10 – 4.17. 

Table 4.10: ALP Table of Loan  

Table 4.11: ALP Table of Branch  

Attribute Name Precedence 

BrNo 5 

BrName 3 

BrAddress 1 

Table 4.12: ALP Table of Customer  

Attribute Name Precedence 

Cid -20 

Cname -10 

Cphn -7 

Caddr -10 

BrNo 6 

Table 4.13: ALP Table of Accounts  

Attribute Name Precedence 

AccNo -14 

AccType 3 

AccBalance -26 

Table 4.14: ALP Table of AccofBranch  

Attribute Name Precedence 

AccNo -8 

Opendate -8 

Status  -8 

BrNo 24 

Table 4.15: ALP Table of LnofBranch  

Attribute Name Precedence 

LnNo -8 

Issuedate -8 

Status  -8 

BrNo 24 

Table 4.16: ALP Table of AccCust  

Attribute Name Precedence 

AccNo -8 

Cid -8 

Table 4.17: ALP Table of LnCust  

Attribute Name Precedence 

LnNo -7 

Cid -8 

 

Attribute Name Precedence 

LnNo -20 

LnType 11 

LnAmount  -26 
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4.4 Generation of Predicate Set and Fragmentation of 
the Relations 
Predicate set was generated for the attributes with highest locality precedence of the 

relations respectively. These predicate sets were used to fragment the relations. 

PLoan ={LnType=SME, LnType=HOME , LnType=CAR } 

PCustomer ={BrNo=B01, BrNo=B02, BrNo=B03} 

PAccounts ={AccType=Ind, AccType=Cor} 

PAccofBranch ={BrNo=B01, BrNo=B02, BrNo=B03} 

PLnofBranch ={BrNo=B01, BrNo=B02, BrNo=B03} 

As for AccCust and LnCust relations, no attribute has significant higher precedence 

than other attributes, so predicate set was not generated for the relations. Instead these 

relations are to be fragmented derived horizontally with the help of their mother 

relation.   

For Horizontal fragmentation of Customer relation, following queries are used: 

QCustomer1 =Select * from Customer where BrNo=B01;  

QCustomer2 =Select * from Customer where BrNo=B02;  

QCustomer3 =Select * from Customer where BrNo=B03; 

For Horizontal fragmentation of Loan relation, following queries are used: 

QLoan1 =Select * from Loan where LnType=SME;  

QLoan2 =Select * from Loan where LnType= HOME;  

QLoan3 =Select * from Loan where LnType= CAR; 

For Horizontal fragmentation of Accounts relation, following queries are used: 

QAccounts1 =Select * from Accounts where AccType=Ind;  

QAccounts2 =Select * from Accounts where AccType=Cor;  

For Horizontal fragmentation of AccofBranch relation, following queries are used: 

QAccofBranch1 =Select * from AccofBranch where BrNo=B01;  

QAccofBranch2 =Select * from AccofBranch where BrNo=B02;  
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QAccofBranch3 =Select * from AccofBranch where BrNo=B03; 

For Horizontal fragmentation of LnofBranch relation following queries are used: 

QLnofBranch1 =Select * from LnofBranch where BrNo=B01;  

QLnofBranch2 =Select * from LnofBranch where BrNo=B02;  

QLnofBranch3 =Select * from LnofBranch where BrNo=B03; 

For Horizontal fragmentation of AccCust relation, following queries are used: 

QAccCust1 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =  

                Customer.Cid and Customer.BrNo=B01;  

QAccCust2 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =  

                Customer.Cid and Customer.BrNo=B02;  

QAccCust3 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =   
                Customer.Cid and Customer.BrNo=B03;  

For Horizontal fragmentation of LnCust relation, following queries are used: 

QLnCust1 =Select LnNo, Cid from LnCust, Customer where LnCust.Cid =  

                Customer.Cid and Customer.BrNo=B01;  

QLnCust2 = Select LnNo, Cid from LnCust, Customer where LnCust.Cid =  

                Customer.Cid and Customer.BrNo=B02;  

QLnCust3 = Select LnNo, Cid from LnCust, Customer where LnCust.Cid =  

                Customer.Cid and Customer.BrNo=B03;  

Branch relation was not fragmented as it is a very small relation and most of access to 

its records is by read operation. Instead Branch relation will be replicated to all the 

sites of the DBDS.  

In this way all the relations of the distributed banking system of Fig. 4.2 ware 

fragmented using the above queries and allocated to the three computers (sites). 

4.5 Queries for Performance Analysis of MMF 
We have executed twenty queries in each site with a total of sixty selected queries in 

the distributed system according to Pareto Principle often referred as 80/20 rule [59], 

[60] to see the performance of MMF. The queries were selected from the following 

query domain to accomplish enough variation of a real database system: 
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 Insertion e.g. Insert into RRR values (xxx, yyy, zzz); 

 Selection (Point) e.g. Select A1, A2... An from RRR where xxx= P 

 Selection (Range) e.g. Select A1, A2... An from RRR where xxx< BBB 

 Selection (Join) e.g. Select A1, A2 ... An from R1, R2 where R1.Ai=R2.Aj   

    AND R1.Ak=CCC 

 Selection (Aggregation) e.g. Select Sum (AA) from RRR where P 

 Update e.g. Update RRR set Ai = xxx where Aj = yyy 

 Deletion e.g. Delete * from RRR where P 

We define hit as a result of a query of any type accessed records of local fragment of 

the site where the query was initiated and miss as a result of a query of any type 

accessed records of one or more remote fragments of other sites. The results of our 

experiment are shown in Table 4.18 – 4.25 and Fig. 4.4 – 4.11 below: 

Table 4.18: Hit Miss Ratio for Loan 

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 75% 25% 

Site3 75% 25% 

Average 83.33% 16.67% 
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Fig. 4.4: Hit Miss Ratio for Loan Relation

From Table 4.18 we can see that all the queries of Site1 accessed records from local 

fragment of Loan relation. So hit ratio in Site1 is 100%. We also see that 75% queries 

executed at Site2 and Site3 accessed records of local fragment and 25% queries 

accessed records of fragment stored in other (remote) site rather than query generation 

site. Average hit ratio for Loan relation is 83.33%. 
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Table 4.19: Hit Miss Ratio for 
Customer  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 66.67% 33.33% 

Site3 100% 0% 

Average 88.89% 11.11% 
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Fig. 4.5: Hit Miss Ratio for Customer 

From Table 4.19 we can see that all the queries of Site1 and Site3 accessed records 

from local fragment of Customer relation. 33.33% queries generated in Site2 accessed 

data of remote fragments. Average hit ratio is 88.89% and miss ratio is 11.11%. 

Table 4.20: Hit Miss Ratio for Accounts 

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 66.67% 33.33% 

Site3 100% 0% 

Average 88.89% 11.11% 
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Fig. 4.6: Hit Miss Ratio for Accounts 

From Table 4.20 we can see that all the queries of Site1 and Site3 accessed records 

from local fragments of Customer relation. So hit ratio is 100%. 33.33% queries 

generated in Site2 accessed data of remote fragments. Average hit ratio is 88.89% and 

miss ratio is 11.11%. 
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Table 4.21: Hit Miss Ratio for 
AccofBranch  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 100% 0% 

Site3 50% 50% 

Average 83.33% 16.67% 
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Fig. 4.7: Hit Miss Ratio for AccofBranch 

From Table 4.21 we can see that all the queries of Site1 and Site2 accessed local 

fragment of AccofBranch relation. So hit ratio in Site1 and Site2 are 100%. We also 

see that 50% queries executed at Site3 accessed records of local fragment and. 

Average hit ratio for AccofBranch relation is 83.33%. 

Table 4.22: Hit Miss Ratio for 
LnofBranch  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 50% 50% 

Site2 66.67% 33.33% 

Site3 100% 0% 

Average 72.22% 27.78% 
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Fig. 4.8: Hit Miss Ratio for LnofBranch 

From Table 4.22 we can see that 50%, 66.67%, 100% queries of Site1, Site2 and Site3 

accessed local fragment of LnofBranch relation respectively, average hit ratio for the 

relation is 72.22%. 
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Table 4.23: Hit Miss Ratio for AccCust  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 50 50 

Site2 100% 0% 

Site3 100% 0% 

Average 83.33% 16.67% 
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Fig. 4.9: Hit Miss Ratio for AccCust relation 

From Table 4.23 we can see that all the queries of Site2 and Site3 accessed records 

from local fragment of AccCust relation. So hit ratio at these two sites are 100%. 50% 

queries of Site1 accessed data of remote sites. Average hit ratio is 83.33% and miss 

ratio is 16.67%. 

Table 4.24: Hit Miss Ratio for LnCust  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 100% 0% 

Site3 50% 50% 

Average 83.33% 16.67% 
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Fig. 4.10: Hit Miss Ratio for LnCust 

From Table 4.24 we can see that all the queries of Site1 and Site2 accessed records from 

local fragment of AccCust relation. So hit ratio at these two sites are 100%. 50% 

queries of Site3 accessed data of remote sites. Average hit and miss ratio are 83.33% 

and 16.67% respectively. 
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Table 4.25: Hit Miss Ratio for Branch  

Site Percentage 
of Hit 

Percentage 
of Miss 

Site1 100% 0% 

Site2 100% 0% 

Site3 100% 0% 

Average 100% 0% 
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 Fig. 4.11: Hit Miss Ratio for Branch 

From Table 4.25 we can see that all the queries of Site1, Site2 and Site3 accessed 

records from local fragment of LnCust relation. So hit ratio at all three sites as well as 

average hit ratio is 100% and miss ratio is 0%.  

Overall Performance: 
Table 4.26 and Fig. 4.12 show the overall performance of the distributed system after 

fragmenting the relations using MMF technique. We can see that after fragmentation 

and allocation using MMF technique, 85% of the queries generated in any site accessed 

records of only that site and remote access reduced to 15%. This is definitely a 

significant achievement.  

Table 4.26: Overall System Performances of MMF 

Site 
Name 

Queries 
executed 

Accessed 
fragment stored 
in local site 

Accessed 
fragment stored 
in remote site 

Percentage 
of Hit 

Percentage 
of Miss 

Site1 20 18 2 90% 10% 

Site2 20 16 4 80% 25% 

Site3 20 17 3 85% 15% 

DDBMS 60 51 9 85% 15% 



 
 

 

56

 

80%
85% 85%90%

10%
20% 15% 15%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

P
er

ce
nt

ag
e 

of
 H

it 
/ M

is
s

Hit
Miss

 

Fig. 4.12: Hit Miss Ratio of MMF Technique for Three Sites 

4.6 Comparison with other Techniques 
We have named the techniques deals with fragmentation problem of distributed 

database without addressing the initial stage problem as Techniques without Initial 

Fragmentation (TWIF) as in [1] – [40], [42] - [49]. TWIF uses the following model in 

general: 

 

Fig. 4.13: Model of other Non-initial Fragmentation Techniques 

TWIF first store the relations of a distributed database in a single site of the distributed 

system as a centralized database. The other sites where database is not stored, access 

the database with different type of queries using remote network connection of the 

system. Information about attribute, predicate access pattern and frequencies of access 

by different queries from different sites are gathered in tables called Attribute Usage 

Bond energy / algorithm 
to find affinity 
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Relation in 
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Matrix (AUM) or Predicate Usage Matrix (PUM) or similar tables. After a certain 

period when sufficient statistical data are gathered for calculating the relationship 

(known as affinity) of attribute or predicate with transaction of sites, Attribute Affinity 

Matrix (AAM) or Predicate Affinity Matrix (PAM) are generated using Bond Energy 

algorithm or similar algorithm. From AAM and PAM, vertical and horizontal 

fragmentation decision is made respectively.  Then produced fragments are to be stored 

in the sites of the distributed database though almost all TWIF ignore allocation of the 

fragments to reduce complexity.  

We have implemented the above model in our lab and execute the same sixty queries 

those were used to test our technique with the assumption that at the initial stage the 

centralized database is stored at Site1. Table 4.27 shows the overall system performance 

of TWIF before DDBMS is fragmented and allocated to sites. We can see from Table 

4.27 that during a long period before reasonable amount of statistical record access 

frequencies by transactions are available for constructing attribute affinity matrix or 

predicate affinity matrix and to fragment and allocate the database among the three 

sites, percentage of hit of the overall system is only 33.33% which is much less in 

comparison with our achieved 85.71% hit rate. This is graphically represented in Fig. 

4.14 below. The reason of poor performance of TWIF is that, all sites other than central 

site have no data. So all queries that are generating in those sites requires remote data 

access thus scores miss. Only site1 got 100% hit because the whole database is stored 

there centrally before fragmentation is performed to the DDBMS.  

Table 4.27: Overall System Performance of TWIF 

Site 
Name 

Queries 
executed 

Access 
fragment stored 
in local site 

Access 
fragment stored 
in remote site 

Percentage 
of Hit 

Percentage 
of Miss 

Site1 20 20 0 100% 0% 

Site2 20 0 20 0% 100% 

Site3 20 0 20 0% 100% 

DDBMS  60 20 40 33.33% 66.66% 
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Fig. 4.14: Hit Miss Ratio of TWIF for Three Sites 

Comparison of MMF and TWIF by their hit and miss ratio is represented in Fig. 4.15-

Fig. 4.16. 
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 Fig. 4.15: Comparison of Hit between MMF & TWIF for Three Sites 
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Fig. 4.16: Comparison of Miss between MMF & TWIF for Three Sites 
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After a long period when sufficient empirical data will be available for construction of 

AAM or PAM, TWIF will fragment their relations and allocate the fragmented sub-

relations to the sites of the distributed system. Then the percentage of hit of the overall 

system will increase. This is shown in Table 4.28. We have fragmented the Loan 

relation of the distributed banking database by the techniques of [1], [18] and [25]. We 

have used the statistics of the same queries executed to find out performance of MMF 

to construct predicate affinity matrix for TWIF. 

Table 4.28: Performance of TWIF for Loan Relation after Allocation 

Site Name Percentage of Hit Percentage of Miss 

Site1 75% 25% 

Site2 100% 0% 

Site3 100% 0% 

DDBMS  91.66% 8.33% 

We can see from Table 4.28 that after allocation of fragments of relation Loan into the 

sites of the distributed system, hit ratio of TWIF increases from 33.33% to 91.66%. As 

actual query statistics of the system is found and relations are fragmented based on that 

statistics in TWIF, so hit rate significantly increased. For the same relation, MMF 

achieves 83.33% hit ratio which is much closer to TWIF. This situation is depicted in 

Fig. 4.17.  
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 Fig. 4.17: Hit Miss Ratio of TWIF for Loan Relation after Allocation 

Cost of allocation of fragments for TWIF: 

From Table 4.28 it can be seen that performance of TWIF increases significantly after 

fragmentation based on empirical data and allocate the fragments to respective sites. An 

important thing to note that as TWIF stores all the data of the distributed database into a 

single site (Central node) before allocation, so transferring data to different sites will 

incur high cost. Following graph of Fig. 4.18 shows amount of data transfer and time 

required if fragmentation and allocation is performed after 1, 2, 3, 4, 5 and 6 months. A 

simulation was done in MATLAB with following assumptions: 

 Database used: Distributed Banking Database System (DBDS) 

 Number of tables: 8 

 Number of sites: 10 

 Number of application running in each site: 3 

 Frequency of data entry: 1 tuple in each table of each site every second  

 Data transfer rate among the sites of distributed system: 256 KBPS 

We can see from Fig. 4.18 that, for a very small database DBDS, about 110 GB data 

have to be transferred and approximately 4 days are required for fragmentation and 

allocation based on TWIF.  
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Fig. 4.18: Simulation Results for Data Transfer & Time Requirement (TWIF)   

Fig. 4.19 shows a comparison among total data generation, amount of data transfer 

required using MMF with updated MCRUD matrix based on empirical data and amount 

of data transfer required using TWIF for fragments allocation. We can see that if we 

fragment the relations based on MMF technique previously then total data transfer 

requirement is much less comparing with TWIF.   

0

20

40

60

80

100

120

140

1 2 3 4 5 6

Months

D
at

a 
(G

B
)

Total Data (DBDS)

Amount of Transfer
(MMF)
Amount of Transfer
(TWIF)

 

 Fig. 4.19: Comparison of Amount of Data 

Fig. 4.20 shows a comparison between data transfer time required using MMF with 

updated MCRUD matrix based on empirical data and transfer time required using 

TWIF for fragments allocation. We can see that if we fragment the relations based on 
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MMF technique previously then much less data transfer time required comparing with 

TWIF.   
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 Fig. 4.20: Comparison of Transfer Time for MMF and TWIF 

Comparison with StatPart: 

Existing technique that provided a solution of initial fragmentation is StatPart described 

in [41]. To fragment a relation, it starts with a randomly generated matrix of attribute 

vs. queries called reflexivity matrix. It then construct symmetry matrix from reflexivity 

matrix using two equations. Symmetry matrix is inputted to transitivity module which 

uses an algorithm to produce two set of attributes that are used to break the relation into 

two binary vertical fragments.  

Main drawbacks of StatPart [41] are: 

 It can suggest only two binary vertical fragments independent of number of sites 

of the distributed system. So this technique is not suitable for a distributed 

system with more than two allocation sites.   

 As it starts with a randomly generated matrix that represents the relationship 

among attributes and queries, optimum fragmentation decision cannot be 

provided using this algorithm. So it continuously shift attributes from one 

fragment to another fragment trial and error basis to improve hit ratio. But this 

policy is not feasible on trial because of high cost incurred by transferring large 

amount of data among sites.    
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Table 4.29 shows the comparison between MMF and StatPart techniques. Both the 

techniques address initial fragmentation problem. 

Table 4.29: Comparison between StatPart and MMF Techniques 

Criteria StatPart MMF 

Address initial 
fragmentation problem? Yes Yes 

Number of Fragments  Always two Any number 

Allocation Trial and error basis Where ALP maximum 

Replication Not supported Supported 

Performance Random Good and steady 

Fragmentation type Vertical Horizontal / Vertical 

4.7 Impact of the Increase of Number of Sites 
Now we want to experiment the generalization of MMF so that we can verify whether 
our technique is applicable to any number of sites of distributed system.  

4.7.1 Number of Allocation Site is Four 
We have increased total number of sites to four at design time by adding a local branch 

of DBDB named Loc3 at Site4. This situation is depicted in Fig. 4.21. 

 
Fig. 4.21: DBDB with Four Sites 

4.7.1.1 Implementation of MMF for Four Sites 
We have constructed the MCRUD matrix of Loan relation for four sites with three 

applications running in each site. It is shown in Table 4.30 below:  

Loc1 

Loc2 

Site 2 Corporate Site 1 
Loc3 

Site 4 

Site 3 
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Table 4.30: MCRUD Matrix of Loan Relation with Four Sites 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 Site4 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 
Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD RU R CRUD 

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD R RU CRUD 

Loan.LnType=SME R  RU RU R CRUD R  RU RU  CRUD 

Loan.LnType=HOME RU RU CRUD R  RU R  RU R  RU 

Loan.LnType=CAR R  RU R  RU RU  CRUD RU R CRUD 

Loan.Amount<50000 R  CRUD R  CRUD R  CRUD RU R CRUD 

Loan.Amount=50000:100000 R R CRUD R  CRUD R  CRUD R R CRUD 

Loan.Amount>100000 RU R CRUD R  CRUD R  CRUD R  RU 

From Table 4.30 we have calculated ALP table for Loan relation shown in Table 4.31. 

The process of how fragmentation and replication decision is made in four sites can be 

understood from Table 4.32.  

Table 4.31: ALP Table of Loan Relation with Four Sites 

Attribute Name Precedence 

LnNo -46 

LnType -17 

LnAmount  -42 

Table 4.32 Precedence Calculation and Fragmentation Decision for Loan Relation 

Attribute 
Name 

Predicates Precedence 
in Site 1 

Precedence 
in Site 2 

Precedence 
in Site 3 

Precedence 
in Site 4 

Decision 

LnType 

LnType = 
SME 5 13 5 12 

Fragment in Site 2 
Replica in site 4 

LnType = 
HOME 16 5 5 5 Fragment in Site 1 

LnType = 
CAR 5 5 12 13 

Fragment in Site 4 
Replica in site 3 
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Predicate set is generated for the attribute LnType of Loan relation. 

PLoan ={LnType=SME, LnType=HOME , LnType=CAR } 

For Horizontal fragmentation of Loan relation, following queries were used: 

QLoan1 =Select * from Loan where LnType=HOME;  

QLoan2 =Select * from Loan where LnType= SME;  

QLoan3 =Select * from Loan where LnType= CAR; 

QLoan4.1=Select * from Loan where LnType=SME;  

QLoan4.2 =Select * from Loan where LnType= CAR; 

4.7.1.2 Performance Analysis of MMF for Four Sites 
We have executed same queries as previous in four sites of DBDS to check the impact 

of site addition on hit miss ratio. Result is shown in Table 4.33 and Fig 4.22. We can 

see that average hit ratio is 81.25% that is very close to our previous result 83.33% 

achieved for three sites. 

Table 4.33: Performance of MMF for Loan Relation Distributed in Four Sites 

Site Percentage of Hit Percentage of Miss 

Site1 100% 0% 

Site2 75% 25% 

Site3 75% 25% 

Site4 75% 25% 

Average 81.25% 19.75% 
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Fig. 4.22: Hit Miss Ratio of MMF for Loan Relation Distributed in Four Sites 
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4.7.2 Number of Allocation Site is Five 
We have increased total number of sites to five at design time by adding a branch deals 

with industrial matters named Industrial at Site 5. This situation is depicted in Fig. 4.23. 

 
Fig. 4.23: DBDB with Five Sites 

4.7.2.1 Implementation of MMF for Five Sites 
We have constructed the MCRUD matrix of Loan relation for five sites with three 

applications running in each site. It is shown in Table 4.34. 

Table 4.34: MCRUD Matrix of Loan Relation with Five Sites 
Site.Application 

 
Entity.Attribute.Predicates 

Site1 Site2 Site3 Site4 Site5 

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 
Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD R R CRUD R R CRUD 

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD R RU CRUD R RU CRUD 

Loan.LnType=SME R  RU RU R CRUD R  RU RU  CRUD R  R 

Loan.LnType=HOME RU RU CRUD R  RU R  RU R  RU R  R 

Loan.LnType=CAR R  RU R  RU RU  CRUD RU R CRUD R R R 

Loan.LnType=INDSTRY R  R R  R R  RU R  R RU R CRUD 

Loan.Amount<50000 R  CRUD R  CRUD R  CRUD R  CRUD R  CRUD 

Loan.Amount=50000:100000 R R CRUD R  CRUD R  CRUD R  CRUD R  CRUD 

Loan.Amount>100000 R  CRUD R  CRUD R  CRUD R  CRUD R  CRUD 

From Table 4.34 we have calculated ALP table for Loan relation shown in Table 4.35. 

The process of how fragmentation and replication decision is made in five sites can be 

understood from Table 4.36.  

Loc1 

Site 2 

Site 3 

Corporate 

Loc2 

Site 1 
Loc3 

Site 4 
Site 5 Industrial
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Table 4.35: ALP Table of Loan relation with Five Sites 

Attribute Name Precedence 

LnNo -63 

LnType -22 

LnAmount  -80 

Table 4.36: Precedence Calculation and Fragmentation Decision for Loan Relation 

Attribute 
Name 

Predicates Precedence 
in Site 1 

Precedence 
in Site 2 

Precedence 
in Site 3 

Precedence 
in Site 4 

Precedence 
in Site 5 

Decision 

LnType 

LnType = SME 5 13 5 12 2 
Fragment in 

Site 2 
Replica in site 4 

LnType = HOME 16 5 5 5 2 
Fragment in 

Site 1 

LnType = CAR 5 5 12 13 3 
Fragment in 

Site 4 
Replica in site 3 

LnType= 
INDUSTRY 

2 2 4 2 13 
Fragment in 

Site 5 
 

 

Predicate set is generated for the attribute LnType of Loan relation. 

PLoan ={LnType=SME, LnType=HOME , LnType=CAR } 

For Horizontal fragmentation of Loan relation, following queries were used: 

QLoan1 =Select * from Loan where LnType=HOME;  

QLoan2 =Select * from Loan where LnType= SME;  

QLoan3 =Select * from Loan where LnType= CAR; 

QLoan4.1=Select * from Loan where LnType=SME;  

QLoan4.2 =Select * from Loan where LnType= CAR; 

QLoan5 =Select * from Loan where LnType= INDUSTRY; 

4.7.2.2 Performance Analysis of MMF for Five Sites 
We have executed same queries as previous in five sites of DBDS to check the impact 

of site addition on hit miss ratio. Result is shown in Table 4.37 and Fig. 4.20. We can 
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see that average hit ratio is 82% which is quite close to our previous result 83.33% 

achieved for three sites and 81.25% achieved for four sites. Another thing is to mention 

that from experimental result it can be concluded that MMF has no inverse relation of 

performance with increase of number of sites. Rather, in a site if the queries that are 

generating are identical to the MCRUD matrices, hit rate will better. Otherwise hit rate 

will decrease.  

Table 4.37: Performance of MMF for Loan Relation Distributed in Five Sites 

Site Percentage of Hit Percentage of Miss 

Site1 100% 0% 

Site2 75% 25% 

Site3 80% 20% 

Site4 80% 20% 

Site5 75% 25% 

Average 82% 18% 
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Fig. 4.24 Hit Miss Ratio of MMF for Loan Relation Distributed in Five Sites 
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Table 4.38 shows the hit and miss ratio of TWIF for Loan relation when number of 

sites of DBDB are five.  It can be seen that average hit ratio of the system is 20% which 

is very poor in comparison with MMF that achieves 82% hit.  

Table 4.38: Performance of TWIF for Loan Relation when Sites are Five 

Site Percentage of Percentage of 

Site1 100% 100% 

Site2 0% 0% 

Site3 0% 0% 

Site4 0% 0% 

Site5 0% 0% 

Average  20% 20% 
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Fig. 4.25: Hit Miss Ratio of TWIF for Loan Relation When Sites is Five 

Fig. 4.26 shows the performance of MMF and TWIF with the increase of number of 

sites in the distributed system. We can see that MMF shows much better and quite 

steady performance as sites increases from three to ten. In the same time performance 

of TWIF falls gradually as new sites are added to the system. This is because when 

new sites increase, they are only generating queries but have no data to answer the 

queries. So it contributes to increase the miss rate of overall system fragmented based 

on TWIF. It can be expressed by the equation: Hit rate = 1/S , where S is the total 

number of sites in the system.    
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Fig. 4.26: Comparison of Hit Ratio between MMF and TWIF with Increasing Number of Sites 

4.8 Summary 
From the above result we can see that our technique has clearly outperforms the 

technique stated in [41]. Our fragmentation technique achieved a very good hit rate 

which is approximately 84%. As other techniques described in [1] – [40], [42] - [49] 

could not provide solutions for initial state of the distributed system. Using TWIF 

initial performance (hit ratio) of the system is only 33.33%. After a long period when 

sufficient data for fragmenting the centralize database were available, hit rate of 

TWIF increased significantly as much as 91.66% but in the price of high transfer cost 

incurred for transferring data among the sites of the distributed system using 

communication network.  

Another thing is to mention that MMF achieves a steady hit rate over 80% and 

TWIF’s performance falls gradually from 33.33% to 10% with the increase of number 

of sites of DBDS from three to ten. 
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Chapter 5 

Conclusion and Future Research 
 
Making proper fragmentation of the relations and allocation of the fragments is a 

major research area in distributed systems. Many techniques have been proposed by 

the researchers using empirical knowledge of data access by different queries and 

frequencies of queries executed in different sites of a distributed system. But proper 

fragmentation and allocation at the initial stage of a distributed database has not yet 

been addressed.  

In this thesis we have presented a fragmentation technique to partition relations of a 

distributed database properly at the initial stage when no data access statistics and 

query execution frequencies are available. Instead of using empirical data, we have 

developed a matrix namely Modified Create, Read, Update and Delete (MCRUD) to 

find out precedence of attributes which increase locality of data. We have named this 

precedence as Attribute Locality Precedence (ALP) which is used for making 

fragmentation decisions. Using our technique no additional complexity is added for 

allocating the fragments to the sites of a distributed database as fragmentation is 

synchronized with allocation. So performance of a DDBMS can be improved 

significantly by avoiding frequent remote access and high data transfer among the 

sites.  

5.1 Contributions of the Thesis 
 The main contribution of this research is to develop a fragmentation technique 

that can fragment relations of distributed database without the help of runtime 

empirical data. 

 Relations are fragmented initially with the help of ALP tables those are 

constructed from MCRUD matrices using our developed cost functions. This 

overcomes initial fragmentation problem of distributed database that is not 

properly addressed in other fragmentation techniques. 

 A very good hit rate (Approximately 85%) is achieved using out technique for 

various kinds of insertion, selection, join, deletion and other queries.  
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 MMF technique can be applicable for any number of sites of the system. Its 

performance is quite stable with increasing number of sites. 

 In our technique large amount of costly data transfer using communicational 

network can be avoided as fragments are correctly allocated to different sites 

at the initial stage of the system. 

 Creation of MCRUD matrix for every relation and calculation of ALP from 

each matrix adds some additional cost in our system but this can be ignored 

because matrix construction and ALP calculation will be perform offline 

during the requirement analysis phase of distributed database development. 

5.2 Future Research 
In this research we have focused mainly on horizontal fragmentation of relational 

database using MCRUD matrix. Our research can be extended to several directions.  

Firstly, technique for vertical fragmentation of relational database using MCRUD 

matrix can be developed. Integrating horizontal and vertical fragmentation, a mixed or 

hybrid fragmentation technique can also be developed in the next step. 

As distributed object oriented databases and data warehouses are gaining popularities 

now a day so our research can be extended to support fragmentation in distributed 

object oriented databases and data warehouses as well. 
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