
A New Fragmentation and Allocation Technique for

Distributed Database System

by

Shahidul Islam Khan

A thesis submitted to the Department of Computer Science and Engineering in partial

fulfillment of the requirements for the degree of MASTER OF SCIENCE IN

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY,

DHAKA

March, 2011

The thesis “A New Fragmentation and Allocation Technique for Distributed
Database System”, submitted by Shahidul Islam Khan, Roll No. 040505016P, Session:
April 2005, to the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology, has been accepted as satisfactory for the
partial fulfillment of the requirements for the degree of Master of Science in Engineering
(Computer Science and Engineering) and approved as to its style and contents for the
examination held on March 13 , 2011.

Board of Examiners

1.

Dr. Abu Sayed Md. Latiful Hoque
Associate Professor, Department of CSE
BUET, Dhaka–1000

Dr. Md. Monirul Islam
Professor and Head, Department of CSE
BUET, Dhaka–1000

Dr. Mohammad Mahfuzul Islam
Associate Professor, Department of CSE
BUET, Dhaka–1000

Dr. Md. Reaz Ahmed
Associate Professor, Department of CSE
BUET, Dhaka–1000

Chairman
(Supervisor)

2.

Member
(Ex–officio)

3.
Member

4.

Member

5.

Dr. Mohammad Nurul Huda
Associate Professor, Department of CSE
United International University, Dhaka.

Member
(External)

Abstract

An efficient way of improving pelformance of a database management system is

distributed processing. Distribution of data involves fragmentation, replication and

allocation process. Previous research works provided fragmentation solution based on

empirical data about the type and frequency of the queries. These solutions are not

suitable at th~ .initial stage of a distributed database.

In this thesis we have presented a fragmentation technique namely MCRUD Matrix

based Fragmentation (MMF) that can be applied at the initial stage as well as in later

stages of a distributed database system for partitioning the relations. Instead of using

empirical data, we have developed the matrix namely Modified Create, Read, Update

and Delete to make fragmentation decisions properly. The main 'concept of MMF is

finding the precedence of attributes to increase data locality. We have named it

Attribute Locality Precedence (ALP). The r~lations have been fragmented considering

the highest ALP value an10ng the attributes

Allocation of fragments is done simultaneously in our technique. So usingMMF, no

additional complexity is added for allocating the fragments to the sites of a distributed

database as fragmentation is synchronized with allocation. Performance of a DDBMS

can be improved significantly by avoiding frequent remote access and high data

transfer among the sites. Result shows that the proposed technique can solve initial

fragmentation problem of distributed system properly.

III

,l
\ I
II, '

1

Chapter 1

Introduction

A distributed database is a collection of data that logically belongs to the same system

but spreads over the sites of a computer network. A distributed database management

system (DDBMS) is defined as the software system that provides the management of

the distributed database and makes the distribution transparent to the users [1], [2]. It

is not necessary that database system have to be geographically distributed. The sites

of the distributed database can have the same network address and may be in the same

room but the communication between them is done over a network instead of shared

memory.

As communication technology: hardware and software advance rapidly and prices of

network equipments fall every day, developing distributed database systems have

become more and more feasible. Design of efficient distributed databases is one of the

major research problems in database and information technology areas. DDBMS is an

efficient way of improving the performance of applications that manipulate large

volumes of data. Primary concerns of distributed database design are fragmentation of

the relations in case of relational database or classes in case of object oriented

databases, allocation of the fragments to different sites of the distributed system, and

local optimization in each site [1], [2].

1.1 Background
 Fragmentation is a design technique to divide a single relation or class of a database

into two or more partitions such that the combination of the partitions provides the

original database without any loss of information. This reduces the amount of

irrelevant data accessed by the applications of the database, thus reducing the number

of disk accesses.

Fragmentation can be horizontal, vertical or mixed/hybrid. Horizontal fragmentation

(HF) allows a relation or class to be partitioned into disjoint tuples or instances.

Vertical fragmentation (VF) partitioned a relation or class into disjoint sets of

2

columns or attributes except the primary key. Combination of horizontal and vertical

fragmentations forms the mixed or hybrid fragmentations (MF). Allocation is the

process of assigning the fragments of a database on the sites of a distributed network.

The replication of fragments improves reliability and efficiency of read-only queries

but increase update cost.

Thus the main reasons of fragmentation of the relations are to: increase locality of

reference of the queries, improve reliability and availability of data and performance

of the system, balance storage capacities and minimize communication costs among

sites [1]-[4].

1.2 Problem Definition
In distributed database design, the foundations of fragmentation (horizontal, vertical

or mixed) of relations are:

 Frequency of different queries executed in a system in a specified time,

 Affinity matrix of minterm predicates constructed from combination of

predicates

 Attribute affinity matrix constructed based on the relationship between

different attributes of a table and run time transactions those access the

attributes

To know actual query frequencies or to construct above matrices sufficient

experiential data are required. These data are not available in most cases at initial

stage of a distributed database.

If proper distribution is not done during the initial stage of the DDBMS, data

distribution technique based on empirical data requires huge data transfer cost in most

cases. So to reduce the data transfer cost during the evolution of DDBMS,

fragmentation and allocation at initial stage is very important, very few work have

been found in the literature in this regard.

Almost all the previous techniques concentrated only fragmentation problem and

overlooked allocation problem to reduce the complexity of the problem. But overall

performance of a distributed system fragmented by a very good fragmentation

technique can be very low if proper allocation of the fragments to the sites cannot be

ensured.

3

1.3 Objectives of the Thesis
The main objectives of the thesis are to:

a) design of a fragmentation technique for distributed database management

system (DDBMS) that can be applied at the initial stage of a DDBMS when no

empirical data are available as well as in any stage of execution of DDBMS

for partitioning the relations,

b) design of an allocation technique to allocate the fragments of the relations in

the sites of DDBMS properly,

c) design algorithms to implement our fragmentation and allocation technique,

d) analyze the performance of the technique by applying it in designing a

DDBMS and

e) compare the performance of our technique with the existing techniques to find

the effectiveness and efficiency of the technique.

1.4 Overview of the Thesis
In this thesis we have presented a fragmentation technique namely MCRUD Matrix

based Fragmentation (MMF) to partition relations of a distributed database properly at

the initial stage. Instead of using empirical data, we have developed a matrix namely

Modified Create, Read, Update and Delete (MCRUD) to make fragmentation

decisions. Using our technique, no additional complexity is added for allocating the

fragments to the sites of a distributed database as fragmentation is synchronized with

allocation. So performance of a DDBMS can be improved significantly by avoiding

frequent remote access and high data transfer among the sites. This improves the

bandwidth of the system as well.

1.5 Organization of the Thesis
In chapter 2, a survey of the research in horizontal, vertical and mixed fragmentation

techniques of distributed database is presented. Limitations of the available

fragmentation techniques are also discussed in brief. The motivation for the research

work performed by the author and reported in this thesis is to overcome some of these

limitations.

4

Chapter 3 describes the details of MCRUD Matrix based Fragmentation (MMF)

technique that has been used for fragmentation of the relations of distributed database

and allocation of the fragments in the sites of the system. Our fragmentation and

allocation technique is explained in detail.

Chapter 4 describes the experimental work that has been carried out to investigate the

performance of our proposed technique. Results obtained from the experimental

works are thoroughly discussed and compared with the experimental results of other

existing techniques.

Finally, Chapter 5 presents conclusions of this thesis work and provides suggestions

for future research.

5

Chapter 2

Literature Survey

In this chapter, we have reviewed literature of various fragmentation techniques. We

have used separate sections and sub sections for presenting the review of horizontal,

vertical and mixed fragmentation. Finally a summary of the features and limitations of

the present works is presented at the end.

2.1 Design Techniques: Fragmentation and Allocation
Design of distributed database is one of the major research problems whose solution is

supposed to improve performance of a distributed system. It involves database design,

data population, fragmentation of databases, allocation and replication of the

fragments, and local optimization. Fragmentation and allocation are the most

important elements of a distributed database design phase. They play important roles

in the development of a cost efficient system [1].

2.1.1 Fragmentation
Fragmentation is a design technique to divide a single database into two or more

partitions such that by the combination of the partitions original database can be found

without any loss or addition of information. This reduces the amount of irrelevant data

accessed by the application, thus reducing the number of disk accesses. The result of

the fragmentation process is a set of fragments defined by a fragmentation schema.

Fragmentation in relational database can be horizontal, vertical or mixed.

Horizontal fragmentation (HF) partitions a relation or a class into disjoint parts

(fragments), which will have exactly the same structure but different contents. Thus a

horizontal fragment of a relation or class contains a subset of the whole relation or

class instance.

Vertical fragmentation (VF) results in attributes and methods being partitioned into

different fragments and therefore reduces irrelevant data accessed by local

applications [1] - [4].

6

Mixed or Hybrid fragmentation (MF) can be achieve by performed VF followed by

HF or vice versa. Thus benefits of both horizontal and vertical fragmentation can be

attained [3].

2.1.2 Allocation
Allocation is the process of assigning a site to each fragment on the distributed

network after the database has been properly fragmented [1]. When data are allocated,

it may either be replicated or maintained as a single copy in only one site. The

replication of fragments improves the reliability and efficiency of read-only queries

and increases cost of update queries. The intention of allocation is to minimize the

data transfer cost and the number of messages needed to process a given set of

applications, so that the system functions effectively and efficiently [1], [5].

The individual tuple or attribute of a relation cannot be considered as the unit of

allocation because the allocation problem would become unmanageable. The

fragments are constituted by grouping tuples or attributes that have the same

“properties” from the viewpoint of their application. This is based on the idea that two

elements in the same fragment that have the same “properties” will be accessed by the

applications together. Therefore, the fragments obtained in this way are the

appropriate units of allocation [2].

2.1.3 Benefits of Database Fragmentation
The reasons for fragmenting databases are discussed in [1], [2]:

 Applications are usually based on the views of subsets of relations. Thus the

applications often access any subset of an entire relation locally. Therefore,

fragmentation can reduce irrelevant data accesses and increase data local

availability.

 If there is a relation on which many application views are defined at different

sites, storing a given relation at one site will result in an unnecessarily high

volume of remote data accesses. Storing a given relation at different sites will

cause problems in executing updates and may not be desirable if storage is

limited.

7

 The decomposition of a relation into fragments permits many transactions to

be executed concurrently and results in the parallel execution of a single query

by dividing it into a set of sub-queries that operate on fragments.

2.1.4 Drawback of Database Fragmentation
Fragmentation may introduce the following problems [1]:

 Applications whose views are defined on more than one fragment may suffer

performance degradation when the relations are not partitioned into mutually

exclusive fragments.

 When the attributes participating in a dependency of a relation are

decomposed into different fragments and stored at different sites, the task of

checking for dependencies would result in chasing after data in a number of

sites.

2.1.5 Complexity of the Problem
The combined problem of fragmentation and allocation is proven NP-hard [6]. In the

case of Horizontal fragmentation, if n simple predicates are considered then the

number of horizontal fragments using minterm predicates is 2n. If there are k nodes,

the complexity of allocating horizontal fragments is O ().

For example, using 6 simple predicates to perform horizontal fragmentation results in

26 = 64 fragments. To find the optimal allocation of the fragments in 4 sites one needs

to compare all the 464 ≈ 1039 possible allocations.

For Vertical fragmentation if a relation has m non-primary key attributes, number of

possible fragments: Bell number B (m) ≈ mm. The fragment allocation is of

complexity O ().

Due to the complexity of both fragmentation and allocation, allocations of the

fragments are often treated independently than fragmentation of the database.

2.2 Horizontal Fragmentation
There are two types of horizontal fragmentation, primary and derived. Primary

horizontal fragmentation of a relation or a class is performed using predicates of

queries accessing this relation or class, while derived horizontal fragmentation of a

n

k 2

mmk

8

relation or a class is performed based on horizontal fragmentation of another relation

or class.

2.2.1 Primary Horizontal Fragmentation for Relational Databases
In the context of the relational data model, existing approaches for horizontal

fragmentation mainly fall into following three categories [7], [1]:

 minterm-predicate-based approaches: which perform primary horizontal

fragmentation using a set of minterm predicates, e.g., [1], [2], [8].

 affinity-based approaches: which first group predicates according to predicate

affinities and then perform primary horizontal fragmentation using

conjunctions of the grouped predicates, e.g., [9] - [12].

 other approaches: approaches other than minterm predicate or predicate

affinity based approach, e.g., [13] – [16].

2.2.1.1 Minterm Predicate Based Approaches
Using minterm predicates to perform horizontal fragmentation was first proposed in

[8] to fragment file horizontally to optimize the number of accesses performed by the

application programs to different portions of data. They state that the minterm

fragments contain records that are homogeneously accessed by all transactions and

therefore are the proper units of allocation.

Ceri and Pelagatti [2] proposed to use minterm predicates to fragment relations of a

database. To perform primary horizontal fragmentation, a set of disjoint and complete

selection predicates have to be determined. Firstly, based on application information

simple predicates P = {p1, . . . , pn} have to be derived, which should satisfy complete

and minimal properties. Then a set of minterm predicates are constructed from P.

Often the size of the set of simple predicates is big, and the cost of computation might

be too expensive. If resulting minterm fragments of a predicate are relevant and

accessed differently by queries at the same site, they may still be allocated at the same

site. That is, the fragmentation is not necessary and the predicate is not needed for

fragmentation.

Ozsu and Valduriez [1] presented COM_MIN, an iterative algorithm to generate a

complete and minimal set of predicates Pr' from a given set of simple predicates Pr.

The algorithm checks each predicate pi in the given set of simple predicates Pr to see

9

if it can be used to partition the relation R into at least two parts which are accessed

differently by at least one application. If pi satisfies the fundamental rule of

completeness and minimality then it should be included in Pr'. If pi is non-relevant

then it should be removed from Pr'. But this algorithm is not practical because

checking pi cannot be defined with machine readable language. An algorithm named

PHORIZONTAL is introduced to describe primary horizontal fragmentation. It uses

the algorithm COM_MIN and a set of implications I as inputs to produce a set of

satisfiable miniterm predicates M. If a minterm predicate mi is contradictory to an

implication rule in I, then it is removed from M. Minterm fragments are defined

according to the set of satisfiable minterm predicates M. But the set I of implications

is hard to define. In fact, the algorithm is not very practical, as it will always result in

a subset Pr' of Pr, the set of minterm predicates M' determined by Pr' and the

corresponding set of fragments. Simple predicates are omitted from Pr if they do not

contribute to the fragmentation that is if they violate the minimality principle. This

results in considering just the simple predicates in the most important queries and to

take all satisfiable minterm predicates. This obviously leads to fragments that are

accessed differently by at least two queries. The algorithm further does not give

executable rules for eliminating the unsatisfiable minterm predicates. The major

problem, however, is that the number of fragments resulting from the algorithm is

exponential in the size of Pr. In practice, it would be important to reduce this number

significantly, which would mean to re-combine some of the fragments. In fact, this

implies giving up the completeness principle and replacing it by optimization criteria

based on a cost model.

2.2.1.2 Affinity Based Approaches
To avoid the complexity of checking completeness of the set of simple predicates,

Zhang [9] adopted an affinity-based vertical fragmentation approach to horizontal

fragmentation. This approach takes predicate usage and predicate affinity matrix as

input and employs the bond energy algorithm to cluster predicates. However, the

fragments in the resulting fragmentation schema may overlap each other and therefore

cannot satisfy the correctness criteria of fragmentation. Ra [10] presented a graph-

based algorithm for horizontal fragmentation, with which predicates are clustered

based on the predicate affinities. To remove overlapping, an adjust function is

10

presented to merge two overlapped fragments if merging can reduce transaction costs

using cost functions. However, the cost function does not show how costs are

computed.

Using predicate matrix as input, Cheng et al. [11] proposed a genetic algorithm-based

clustering approach, which treats horizontal fragmentation as a traveling salesman

problem (TSP). Horizontal fragmentation is achieved by performing selection

operation using the set of the grouped predicates, which are grouped according to the

distances. The distance of each pair of attributes actually measure the access

frequencies of transactions that do not access the pair attributes together. Additional

analysis is needed to simplify the clusters of predicates. The objective of this

approach is to group attributes such that the difference between the average distance

within groups and the average distance between groups is minimized. However, there

is no proof that this approach can indeed minimize the total query costs.

Mahboubi H. and Darmont J. [12] used predicate affinity for horizontal fragmentation

in data warehouse. They showed that affinity-based fragmentation out-performed

predicate construction based fragmentation in their experiments. They adopted

primary horizontal fragmentation in XML context. Obviously, none of the affinity-

based horizontal fragmentation approaches takes into consideration of data locality

while clustering predicates.

2.2.1.3 Other Approaches
Approaches other than affinity-based and minterm-based approaches are also found in

the literature. Chang and Cheng [13] proposed a methodology of decomposition based

on mapping user views onto a global schema. However, there is neither clear

procedure for processing decomposition nor evaluation of the resultant

decomposition.

Shin and Irani [14] proposed a knowledge-based approach in which user reference

clusters are derived from the user queries to the database and the knowledge about the

data. Their paper mainly emphasizes the extension of first order logic without any

procedure or algorithm on how to perform horizontal fragmentation procedurally.

Also, the completeness of the knowledge base is a critical issue for the correctness of

the final fragmentation. Shin and Irani [15] extended their work of [14] by presenting

an example to illustrate how fragmentation can provide enhanced control over data

11

replication and reduce costs on selection operations. However, the discussion is not

supported by any cost model.

To minimize the total number of disk accesses, Khalil et al. [16] introduced a

horizontal transaction-based partitioning algorithm, which takes a predicate usage

matrix as input.

2.2.2 Primary Horizontal Fragmentation for Object Oriented
Databases
Fragmentation of object-oriented databases (OODBs) using horizontal fragmentation

technique have been proposed since 1990s. Algorithms proposed in the literature are

mainly affinity-based and cost driven [7].

Karlapalem et al. [17] proposed to use predicate affinities to perform horizontal

fragmentation. However, there is no detailed method on how to perform

fragmentation. Ma et al. [18] provided a design procedure of horizontal

fragmentation, including primary horizontal fragmentation and derived horizontal

fragmentation, for complex data model. The paper presents an approach to

minimizing the query processing costs by performing horizontal fragmentation and

fragment allocation simultaneously. The technique uses a cost model and tried to

globally minimizing costs.

Bellatreche et al. [19] stated that the effect of horizontal fragmentation should be

measured by evaluating the performance of the applications in a distributed database

system. Cost-Driven Algorithm is presented to find a scheme that lead to the lowest

total query cost based on a cost model. However, in the cost model CPU costs and

network communication costs are disregarded because only centralized databases are

considered. Therefore it cannot be applied to distributed databases, where network

communication cost is predominant in calculating total costs. Bellatreche et al. [20]

have studied horizontal class partitioning with input as queries which contain either

simple and component predicates, the primary algorithm (PA) is based on a graph

theoretic algorithm which clusters a set of predicates into a set of HCFs.

A taxonomy of the fragmentation problem in a distributed object based system is

presented in [21] to include four realizable class models, simple attributes and

methods, complex attributes and simple methods, simple attributes and complex

methods and complex attributes and methods. For one of these class models, simple

12

attributes and methods, a set of detailed horizontal fragmentation algorithms are

proposed. Continuing the work in [21], Ezeife and Barker [22] presented a

comprehensive set of algorithms for horizontally fragmenting over all the four

realizable class models following [1]. Ezeife and Zheng [23] have proposed an Object

Horizontal Partition Evaluator (OHPE), which contains two components, the local

irrelevant access cost and the remote relevant access cost. However, both components

only measure the number of instances of a fragment without taking into consideration

of size of the object and network information. A class is fragmented using all

predicates from the queries accessing the class directly, predicates of all queries of all

the descendants of the class that access the class, and predicates of all its containing

classes accessing the class, and predicates of all its complex method classes. An

example is presented to show how to compute the performance of the object

horizontal fragmentation schemata with proposed OHPE. However, it is not shown

how the horizontal fragmentation schemata are achieved and how fragments are

allocated. An algorithm is proposed to re-fragment the class once input information is

changed, including the user query access pattern and frequencies, changes in class

hierarchy, change in class composition hierarchy, and change in the instance objects

of classes.

Bai˜oo et al. [24], [4] adopted the algorithm proposed in [3] and take predicate affinity

matrix as input to build a predicate affinity graph that is used to define horizontal

class fragments. Again, the resulting horizontal fragmentation schema only reflects

the togetherness of data accessed by transactions or queries but cannot reflect the

affinities between data and network sites, that is, data locality.

Marwa et al. [25] uses the instance request matrix to horizontally fragment DOODB.

The proposed algorithm is based on the idea that addresses vertical fragmentation and

allocation simultaneously for relational system but in the context of horizontal

fragmentation of an object model. The investigated approach uses a cost model and

claimed to globally minimizing the fragmentation and allocation costs though they did

not provide any comparison of performance with recent algorithms.

13

2.2.3 Derived Horizontal Fragmentation for Relational Databases
Derived fragmentation refers to horizontal fragmentation defined on a member

relation r of a link according to fragmentation of one of its owner relations s [26], [1].

Derived horizontal fragmentation can be performed by applying semi-join operations.

In [26], a link among relations is introduced to depict the binary relationship between

relations. A direct link is drawn between relations that are related to each other by an

equijoin operation. The direction of a link shows a one-to-many relationship. It is

assumed that the join attributes for a link include the primary key of the owner of the

link. Note that, in our complex value data model an owner type is actually a

component of a member type.

In [1] it is emphasized that care should be taken with the relations that have more than

one link to the owner relations. Two criteria are suggested in such cases: choosing the

fragmentation with better join characteristics or choosing the fragmentation used in

more applications.

2.2.4 Derived Horizontal Fragmentation for Object Oriented
Databases
Unlike the relational model situation the definition of derived horizontal

fragmentation is not straightforward in the object-oriented data model.

In [27] owner and member relationships are defined based on paths that an operation

navigates through, where a member class is always defined at the “1” side of the

relationship link. Owner and member relationship is not defined for many to many

relationship.

In [17], derived horizontal fragmentation of a class is performed using component

predicates that are defined with path expressions. This may result a set of overlapped

fragments. The last step is then to remove overlap between fragments according to the

sum of the frequency of accesses of the fragments. The overlapped objects are

removed from the fragments that are accessed less frequently. However, it is not

necessary to distinguish between simple attributes or complicated attributes.

Similarly, it is not necessary to distinguish simple predicates and component

predicates. The derived fragmentation is defined as using component predicates, the

sink of which is an attribute of another class. The proposed algorithm uses logical

connectives but does not mention when each connective should be used. Also, a

14

predicate defined on a path does not always mean that the predicate has a sink as an

attribute of another class.

In [21], derived horizontal fragments of a class are generated according to primary

fragments of its subclasses, its complex attributes (contained classes), and/or its

complex methods. Heuristics are proposed to choose the most appropriate primary

fragment to merge with each derived fragment of the member class. At last, derived

fragments are merged with a primary fragment that has the highest affinity with it.

However, this approach leads to overlaps between resulting derived fragments.

Inheritance links are considered in the process of horizontal fragmentation. It is

assumed that a pointer is contained in an instance of a storage structure for a class in

the class hierarchy. There is no evaluation of the proposed algorithms regarding how

it will improve the system performance.

In [4], derived horizontal fragmentation of each member class is performed according

to its owner class in frag (owner, member) list, which is based on the owner-member

classification. Derived horizontal fragmentation is implemented with a semi-join on

the attribute used by the most frequent navigation operations from the member class

to the owner class. However, it is not clear how to decide the owner classes to be used

for fragmentation. The resulting distributed database schema is analyzed to show

improvements in system performance. However, the analysis neither considers queries

as distributed queries nor uses any cost models.

2.3 Vertical Fragmentation

Vertical fragmentation can be applied to different areas: file partitioning in centralized

environment, data distribution among different levels of memory hierarchies of a

database, and data distribution in distributed databases. For applications accessing

fragments on different memory levels, the costs are dominated by the cost of

retrieving data from secondary storage to main memory while for distributed

databases, query costs are dominated by remote data transportation costs. The

following reviews the work done regarding vertical fragmentation for relational

databases.

15

2.3.1 Vertical Fragmentation for Relational Databases
Vertical fragmentation of file system has been studied since 1970s. There are two

main approaches [7]:

 The pure affinity-based approach takes attribute affinities as the measure of

togetherness of attributes to fragment attributes of a relation schema. Research

work includes [28]-[35].

 The cost-driven approach uses a cost model while partitioning attributes of a

relation schema. Research work includes [36] - [41].

2.3.1.1 Affinity Based Approaches
Affinity-based vertical fragmentation was first proposed by Hoffer and Severance

[28], who used Bond Energy Algorithm (BEA) to cluster attributes according to the

affinities between attributes. Since then the affinity measure has been widely used for

solving the fragmentation problems. Navathe et al.[29] extended the BEA approach in

[28] by proposing algorithms that produce non-overlapping fragments and

overlapping fragments. This approach minimizes the number of fragments accessed

by transactions while considering storage cost factors involved in storing the

fragments. This approach consists of two steps:

 In the first step the given input parameters are used in the form of an attribute

usage matrix (AUM) to construct an attribute affinity matrix (AAM) on which

clustering is performed.

 In the second step estimated cost factors, which reflect the physical

environment of fragment storage, are considered to further refine the

partitioning schema.

The paper in [29] discusses vertical partitioning problem in three contexts: a database

stored on devices of a single type, a database stored in different memory levels, and

distributed database. Allocation of fragments in distributed databases targets at

maximizing the amount of local transaction processing. At the first stage, the same

objective function is used for single site one memory level, and single site with

multiple memory levels. The objective function for distributed databases is designed

with the consideration of the ratio of the transaction volume satisfied by the upper

block to the total transaction volume and the ratio of the size of the fragment defined

by upper block to the size of the object. At the second step, an objective function is

16

presented to include cost factors, each of which is of different weight in different

contexts. However, there is no justification of the values of the factors. Also, the

transportation cost factor is fixed for all transactions between any pair of network

nodes.

Navathe and Ra [30] improved the previous work [29] by proposing a vertical

partitioning algorithm using a graphical technique. The major feature of this graphical

approach is that all fragments are generated by one iteration in a time of O(n2), which

is better than O(n2 log n), the complexity of vertical partitioning algorithm in [29]. In

the meantime, there is no need of an arbitrary empirical objective function for the

algorithm of partitioning. This graphical approach starts with an attribute affinity

matrix, based on which, an affinity graph is constructed, and then a linearly connected

spanning tree is formed. Affinity cycles, which are the candidate partitions, are

constructed simultaneously with the growing of the spanning tree. Partitions are made

according to the weight of the edges comparing with the weight of each edge of

candidate cycles. The output of the algorithm is a set of vertical partitions of a given

relation. However, the resulted number of fragments is not related to the number of

Sites of a distributed system. If the resulted number of fragments is bigger than the

number of network nodes, fragment recombination needs to be performed. In

addition, there is no evaluation of goodness of the resulting vertical fragmentation

schema as to how it will improve the distributed database system performance.

Lin and Zhang [31] pointed out that the restriction of an affinity cycle results in

formalization is an NP-hard problem and therefore the claimed properties in [30]

cannot be guaranteed. A new graphic algorithm is proposed by using 2-connectivity

instead of affinity cycle to construct non-overlapping fragments, which is later

allocated to distributed network nodes.

Ma H. et al. (2006) used an attribute uses frequency matrix (AUFM) and a cost model

for vertical fragmentation [32]. This paper addresses vertical fragmentation and

allocation simultaneously in the context of the relational data model. The core of the

paper is a heuristic approach to vertical fragmentation, which uses a cost model and is

targeted at globally minimizing access costs. M. Alfares et al. used AAM to generate

groups based on affinity values [33].

17

Ngo T. H. used AUM & partitioned a relation into two vertical fragments in the cache

memory [34]. In this paper they derived an objective function for vertical partitioning

with a new estimated criterion: cache hit probability.

Runceanu A. presented a partition evaluator that used AUM to select attributes for

vertical fragmentation [35]. In this paper implementation of a heuristic algorithm is

presented that uses an objective function who takes over information about the

administrated dates in a distributed database and evaluates all the scheme of the

database vertical fragmentation.

2.3.1.2 Cost Based Approaches
Cost based vertical fragmentation approaches use cost functions to make proper

fragmentation decision. Cornell and Yu [36] discussed vertical fragmentation for

relational databases and considered that the response time of transactions is impacted

by the number of disk accesses by the transaction. Considering the utility of vertical

fragmentation is to minimize the number of disk accesses, Cornell and Yu [36], [37]

proposed a two step methodology that consists of a query analysis step to estimate the

parameters and a binary partitioning step that can be applied recursively. Chu [38]

presented two procedures to solve the attribute partitioning problem to improve

system performance by transferring small segments instead of big non-partitioned

relations between the primary and the secondary storage. He first defined two

concepts, sufficient and support, on which two procedures, MAX and FORWARD

SELECTION, are proposed which are targeted at maximizing the value of v, the total

reduction of costs which are expressed in terms of the number of disk accesses. The

important characteristic of these two procedures is that they treat the transactions

instead of the attributes as the decision variables. Therefore, the run time of these

procedures does not depend on the number of attributes and can be efficiently

executed when the number of attributes is very big. However, this approach may not

be suitable to the situation when there are a large number of transactions but a small

number of attributes over a relation. Also, this approach only discusses the problem of

attribute partitioning for two memory levels on one disk. The objective function only

counts the number of disk accesses. Approaches in both [36] and [38] are not suited

for distributed databases.

18

Chakravarthy et al. [39] argued that there should be a way to measure the goodness of

a vertical fragmentation schema. For this purpose they set up an objective function,

Partition Evaluator (PE), for evaluating different vertical fragmentation algorithms

using the same criteria. The PE consists of two components, irrelevant local attribute

access cost and relevant remote attribute access cost. However, relevant remote

attribute access cost reflects the number of relevant attributes in a fragment accessed

remotely with respect to all other fragments by all transactions. Therefore, the PE

cannot be used in distributed databases because neither size nor network transaction

cost factors have been considered.

Son and Kim [40] argued that vertical partitioning problem should consider the

number of fragments finally generated. They discussed n-ary vertical partitioning

problem which are more flexible than the optimal partitioning. Their novel

contribution is an objective function which aims at minimizing not only the frequency

of query accesses to different fragments but also the frequency of interfered accesses

between queries. In the objective function, data localization is not considered because

queries are not distinguished between sites.

2.3.1.3 Initial Vertical Fragmentation
Abuelyaman [41] provided a solution of initial fragmentation of database using

vertical fragmentation technique namely StatPart. To fragment a relation, it starts with

a randomly generated matrix of attribute vs. queries called reflexivity matrix. It then

construct symmetry matrix from reflexivity matrix using two equations. Symmetry

matrix is inputted to transitivity module which uses an algorithm to produce two set of

attributes those will be used to break the relation into two binary vertical fragments.

Main two drawbacks of StatPart [41] are:

 It can suggest only two binary vertical fragments independent of number of

sites of the distributed system. So this technique is not suitable for a

distributed system with more than two allocation sites.

 As it starts with a randomly generated matrix that represents the relationship

among attributes and queries, optimum fragmentation decision cannot be

provided using this algorithm. So it continuously shift attributes from one

fragment to another fragment trial and error basis to improve hit ratio.

19

2.3.2 Vertical Fragmentation for Object Oriented Databases
In the context of object-oriented data model, fragmentation algorithms are mainly

affinity based, with different affinities used as parameters, e.g., attribute affinities, or

instance variable affinities [42], [16]. An increasing demand on the performance of

object oriented database systems has resulted in the adoption of vertical fragmentation

techniques from the relational databases. The features of the object-oriented data

model (such as inheritance, encapsulation, ISA relationship and the presence of

method) add to the complexity of the partitioning problem [43]. Based on the existing

work for vertical fragmentation for object-oriented databases, taxonomy is proposed

in [43] has two categories, method based and attributed based.

Karlapalem and Li [44] discussed the foundations of vertical fragmentation by giving

a formal representation of vertical fragmentation. Issues regarding internal

representation and reconstruction of fragments are discussed. In addition, approaches

for supporting ISA relationships and methods are briefly mentioned. There are neither

algorithms for horizontal, path and vertical fragmentation nor discussion on when

vertical fragmentation should be applied to schema or to methods. Karlapalem et al.

[45] presented guidelines for method induced partitioning in object-oriented

databases. Karlapalem and Li [46] extended the work done in [44] and [45] through

detailed discussions of the method induced partitioning on different types of methods

in terms of instance variables accessed, and the complexity of the methods, with the

focus on single method partitioning. There is no algorithm proposed in the paper.

Treating relational database as a special case of object-oriented databases, Malinowski

and Chakravarthy [47] generalized the work for relational databases in [39] to object-

oriented databases. Vertical fragmentation is performed using Transaction-Method

Usage Matrix, Method-Method Usage Matrix and Method-Attribute Usage Matrix. A

partition evaluator function for object-oriented databases, PEOO, adopted from the

relational databases, is used to evaluate all possible combinations of attributes with

the number of fragments varying from one to the total number of attributes in the

class. However, without considering the size of data transferred among network

nodes, the PEOO actually measures the number of irrelevant local accesses and

relevant remote accesses rather than real total query costs.

20

Ezeife and Barker [42] discussed vertical partition for the most complex object model,

consisting of complex attributes with complex methods. Ezeife and Barker [48]

emphasized that the network communication costs dominate query processing costs.

Vertical fragmentation is discussed with reference to four different class models,

consisting of simple or complex attributes combined with simple or complex methods.

Fragmentation of a class is processed to group all attributes and methods of the class

that are frequently accessed together by applications accessing either the class itself,

its subclasses, its containing classes, or its complex method classes. For different

models affinity matrixes are computed by incorporating all the object-oriented

features, e.g., inheritance links and subclasses. For each of the class model a formal

vertical fragmentation is presented. Method affinities of a class are calculated by

summing up the frequencies of queries that access both the methods simultaneously,

either directly or through this subclasses or containing classes. Actually, site

information are lost while building affinity matrixes, which means that data

localization is not considered. The evaluation of proposed algorithm is based on the

Partition Evaluator proposed in [39], which does not really measure the total query

costs.

Treating attributes and methods in a uniform and undistinguished way, Bai˜ao [4]

adopted the graphical approach in [30] and [3] to object-oriented databases. The

process of vertical fragmentation contains two steps, building an element affinity

matrix and building an element affinity graph. However, during the process of

building the element affinity matrix, data local requirement information is lost.

Therefore, there is no link showing that vertical fragmentation using element affinity

can improve data locality which in turn can reduce irrelevant remote data

transportation costs.

2.4 Mixed Fragmentation

Navathe et al. [3] proposed a mixed fragmentation methodology for initial distributed

database design. The process proposed simultaneously applies horizontal and vertical

fragmentation on a relation. The input of the procedure comprises a predicate affinity

table and an attribute affinity table. A set of grid cells are created first which may

21

overlap each other. Then some grid cells are merged such that total disk accesses for

all transactions can be reduced. Finally, overlap between each pair of fragments is

removed using two algorithms for the cases of contained and overlapping fragments.

However, the merging algorithms are based on a model which measures times of disk

access (I/O). Network factors are not considered. For distributed databases, it is

important to not only reduce disk access but also reduce the data transportation

between sites.

Adopting some developed heuristics and algorithms in [3] to fragmentation in object

oriented databases, Bai˜ao and Mattoso [27] proposed a design procedure which

includes a sequence of steps: analysis phase, vertical and horizontal fragmentation. In

the first step, a set of classes that are needed for horizontal fragmentation, vertical

fragmentation, or non-fragmentation, are identified. In the second and third steps,

vertical and horizontal fragmentations are performed on the classes identified in the

first step, using algorithms extended from the one in [3]. All fragmentation algorithms

are affinity based. The evaluations of the resulting fragmentation are not based on any

cost model. Bai˜ao et al. [4] considered mixed fragmentation as a process of

performing vertical fragmentation on classes first and then performing horizontal

fragmentation on the set of vertical fragments.

2.5 Allocation

In the literature, allocation problems are first addressed for file allocation. Chu [49]

presented a simple model for a non-redundant allocation of files. Casey [50] proposed

a model which allows the allocation of multiple copies. Queries and updates are

distinguished in the model. Mahmoud and Riodon [51] proposed a model for studying

file allocation and the capacity of communication capacities to obtain optimized

solution which minimize storage and communication cost. Since the early 1980s data

allocation has been studied in the context of relational databases. Due to the

complexity of the problem of data allocation, different researchers make different

assumptions to reduce the size of the problem. Some works do not consider

replication while making decision of allocation [26, 52, 53], while some others do not

consider storage capabilities of network nodes [6, 54].

22

2.6 Summary

As shown in the above sections, most of the literature about database distribution

design considers fragmentation and allocation as two different steps even though they

are strongly interrelated problems which take the same input information to achieve

the same objectives of improving system performance, reliability and availability.

Existing approaches for primary horizontal fragmentation can be characterized into

three streams, one using minterm predicates, one using predicate affinity, and a cost-

driven approach using a cost model. Even though each of the approaches claims to be

able to improve system performance, there is no evaluation to prove that resulting

fragmentation schemata can indeed improve the system performance. Horizontal

fragmentation with minterm predicates often results in a large number of fragments

which will later be allocated to a limited number of network nodes. It can be expected

that the number of network nodes gives the upper bound of fragments because

fragments allocated at the same network node can be recombined for the benefits of

most queries. Affinity-based horizontal fragmentation approaches cannot guarantee to

achieve optimal system performance because the information of data local

requirement is lost while computing predicate affinities. Cost-driven approaches use

cost models to measure the number of disk accesses without considering

transportation cost. None of the three approaches takes data local availability as the

objective of fragmentation.

For vertical fragmentation there are two main approaches existing in the literature:

affinity based and cost-based. The affinity-based vertical fragmentation approach

originated for centralized databases with hierarchical memory levels, for which the

number of disk accesses is the main factor that affects the system performance. Later,

this approach was adapted to distributed databases for which transportation cost is the

main cost that affects the system performance. Attribute affinities only reflect the

togetherness of attributes accessed by applications. Vertical fragmentation based on

affinities may reduce the number of disk accesses. However, there is no clear proof

that affinity-based vertical fragmentation can indeed improve data local availability

and thus improve system performance. The cost-driven approach performs vertical

fragmentation based on a cost model that measures the number of disk accesses. The

23

optimal solution chosen by this approach is the vertical fragmentation schema that

have the fewest number of disk accesses.

As to allocation, due to the complexity of the allocation problem that is closely related

to query optimization problem, it is infeasible to find optimal solutions. One has to

seek heuristic solutions. To do this, many assumptions have been made to reduce the

complexity of the problem. The assumption that fragmentation is completed properly

is not reasonable. Nor it is possible to solve the fragmentation problem independently

from the allocation problem because the optimal fragmentation can only be achieved

with respect to the optimal allocation of fragments [8]. However, there is no

fragmentation approach, for both horizontal and vertical fragmentation, taking data

locality into consideration [7].

In summary, due to the deficiencies of fragmentation and allocation techniques

existing in the literature, this research will study fragmentation and allocation in an

integrated manner. Based on locality of data, fragmentation and fragment allocation

are performed with the objective of minimizing data transmission costs and

maximizing locality of data.

24

Chapter 3

MCRUD Matrix based Fragmentation

Technique (MMF)

This chapter describes the details of our proposed fragmentation technique that can be

used for fragmentation of the relations of distributed relational database and allocation

of the fragments.

3.1 Initial Fragmentation
To achieve the benefits of distributed database, database designers are moving

towards fragmentation of database relations or classes for allocating to the sites of

distributed systems. Available techniques developed by the researchers so far to

support fragmentation cannot provide solution at the initial level of a distributed

system. They use frequency of queries executed in a system at runtime, affinity matrix

of minterm predicates constructed from combination of predicates or attribute affinity

matrix constructed based on the relationship between different attributes of a table and

runtime transactions those access the attributes as a basis of fragmentation of the

relations. To construct these matrices, sufficient experiential data are required those

are not available in most cases at initial stage of a distributed system. So using

currently available techniques for fragmentation, the database administrator has to put

whole database in a single site of the system and perform fragmentation and allocation

after a long period when sufficient empirical data will be available to him.

During this period facilities of distributed database cannot be enjoyed. After the

period the database can be fragmented correctly to some extent and allocated to the

sites with a high communication cost of transferring huge amount of data from central

node to all other nodes of the system. To solve the problem of taking proper

fragmentation decision at the initial stage of a distributed database, we have

developed a new fragmentation technique based on precedence of attributes to

increase data locality. Instead of using empirical data, we have developed Modified

25

Create, Read, Update and Delete (MCRUD) matrix to obtain fragmentation decisions.

The details of the technique are discussed in the following sections.

3.2 CRUD Matrix
A data-to-location Create, Read, Update and Delete (CRUD) matrix is a table in

which rows indicate attributes of the entities of a relation and columns indicate

locations of the applications [55]. It is used by the system analysts and designers in

the requirement analysis phase of system development life cycle for making decision

of data mapping to different locations [55], [56]. Example of a traditional CRUD

Matrix is shown in Table 3.1.

Table 3.1: Traditional CRUD Matrix

 Entity

Use Case

Order Chemicals Requestor Vendor
Catalog

Place Order C R R R
Change Order U, D R R
Manage Chemical
Inventory

 C, U, D

Report on Orders R R R

Edit Requesters C, U

3.3 MCRUD Matrix
We have modified the existing CRUD matrix according to our requirement of

horizontal fragmentation and named it Modified Create, Read, Update, and Delete

(MCRUD) matrix. It is a table constructed by placing predicates of attributes of a

relation in the row side and applications of the sites of a DDBMS in the column side.

We have used MCRUD matrix to generate attribute locality precedence (ALP) table

for each relation. Example of a MCRUD Matrix is shown in Table 3.2. In this

example the distributed system has three sites and one application is running in each

site. Entity set, attribute and predicate are denoted by E, a and p respectedly. If an

application of a site has chances to perform create or read or update or delete

operation to an attribute’s certain predicate then C or R or U or D will be written in

the intersecting cell of the matrix.

26

Table 3.2: An MCRUD Matrix for E Relation
Site.Application

Entityset . Attribute . Predicates
Site1/ Ap Site2/ Ap Site3 /Ap

E . a1 . p1 CRUD R R
E . a1 . p2 RU CRUD CRU
E . a2 . p1 R R CRUD
E . a2 . p2 R RU R
E . a3 . p1 CRUD R
E . a3 . p2 R R CRUD

3.4 Attribute Locality Precedence (ALP)
In our technique we fragment a relation according to precedence of attributes to

increase data locality. We have named it Attribute Locality Precedence (ALP). We

define ALP as the value of importance of an attribute with respect to the sites of a

distributed database. A relation in a database contains different types of attributes

those describe properties of the relation. But the important thing is that the attributes

of a relation do not have same importance with respect to data distribution in different

sites. For example in Table 3.2, there are three attributes a1, a2 and a3. Among them

one may be more significant than others to increase data locality and to reduce remote

access in the case of fragmentation. According to the above importance we can

calculate locality precedence of each attribute for each relation and construct ALP

table for the relations.

3.5 ALP Table
ALP values of different attributes of a relation are placed in a table called ALP table.

ALP table is constructed by database designer for each relation of a DDBMS at the

time of designing the database with the help of MCRUD matrix and cost functions

given in the following section 3.6. The algorithm that is used to calculate ALP and to

construct ALP table is given in Algorithm I. An example of ALP table for the

MCRUD matrix of Table 3.2 is shown in Table 3.3. Details of how the precedence

values of attributes of Table 3.3 are calculated can be found in section 3.6.

27

Algorithm I: ALP calculation
Input: MCRUD of a relation

Output: ALP table of the relation

for (i =1; i <= TotalAttributes; i++){
 for (j =1; j <= TotalPredicates[i]; j++){
 MAX[i][j] = 0;
 for (k =1; k <= TotalSites; k++){

for (r =1; r <= TotalApplications[k]; r++){ /* Calculating sum of all
applications’ cost of predicate j of attribute i at site k */

C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D;
 S[i][j][k] + = C[i][j][k][r];

 If S[i][j][k] > MAX[i][j] { /*Find out at which site cost of
MAX[i][j] = S[i][j][k]; predicate j is maximum*/

 POS[i][j] = k;
 SumOther = 0;
 Count =0;

 for (r =1; r <= A[i][j][k]; r++){
If (r!=k){

SumOther + = S[i][j][r];
If (S[i][j][r]>MAX[i][j]/2) /* selecting the sites where
 Replicate[Count]=r; replication of a fragment
 Count++; will be performed */

 ALPsingle[i][j] = MAX[i][j] – SumOther; /* actual cost for predicate j
of attribute i */

ALP[i] = 0;
for (j =1; j <= TotalPredicates[i]; j++) /*calculating total cost for attribute i

ALP[i] + = ALPsingle[i][j]; (locality precedence)*/

__

Table 3.3: An ALP Table

EntitySet. Attribute Name Precedence

E . a1 4

E . a2 8

E . a3 13

3.6 ALP Cost Functions
We treated cost as the effort of access and modification of a particular attribute of a

relation by an application from a particular site. For calculating precedence of an

attribute of a relation we take the MCRUD matrix of the relation as an input and use

the following cost functions:

28

MCRUD cell cost:
Ci, j, k, r = fCC + fRR + fUU + fDD --------

Here C, R, U, D denotes cost incurred for performing create, read, update and delete

operation in the system and fC, fR, fU, fD are the frequencies of create, read, update

and delete operation performed by an application of a site.

Ci, j, k, r = cost of predicate j on attribute i accessed by application r at site k

Site cost:

Si, j, k = ∑
=

k j iA

1r
rk,j,i,C

Si, j, k = sum of all applications’ cost of predicate j of attribute i at site k.

For all sites in the distributed system, cost incurred by the applications of a site is

summed.

Maximum-Site cost:

Si, j, m = Max (Si, j, k) ------------

Si, j, m = maximum cost among the sites for predicate j of attribute i.

For a particular predicate of an attribute, maximum cost among all sites is

calculated in Si, j, m

Predicate ALP Cost:

ALPi j = Si, j, m - ∑
≠

k j iA

mk
kj,i,S

ALPi j = ALP cost for predicate j of attribute i.

Predicate ALP cost can be found by deducting all costs incurred in the sites from

the site where cost of accessing the predicate is maximum.

Attribute ALP Cost:

ALPi = ∑
=

l

j 1
ji,ALP

ALPi = Total ALP cost of attribute i (locality precedence)

An attribute’s ALP cost is the summation of ALP costs of its predicates.

At the design time of a distributed database, the designer will not know the actual

frequencies of read, delete, create and update of a particular attribute from different

(1)

------------ (2)

(3)

--------- (4)

 ----------- (5)

29

applications of a site. So initially we have assumed that fC, fR, fU and fD=1. Typical

cost of update operation is more than create and delete operation in a database system

and reading from database always incurs least cost. So for simplicity we treated C=2,

R=1, U=3 and D=2; Cost incurred for performing create, read, update and delete

operations. Justifications of these assumptions can be found in [58].

Frequency Estimation for Cost Functions:

Using the information gathered as in Table 3.4, more accurate estimation of frequency

of create, read, update and delete operation by an application can be possible. This

form can be used at the requirement analysis phase of a DDBMS design.

Table 3.4: Information Need Analysis Form

Access Statistics

Users

Site k

Application r
attributei. predicatej

Create Read Update Delete
U1 x
U2 x x
U3 x x x x
U4 x
.
.
.

Un x x x

3.7 Fragmentation based on MCRUD Matrix
In this section we have described MMF technique in details. The main functionalities

of the technique are shown in Fig. 3.1. There are n number of relations in the database

named R1, R2,…, Rn. First n number of MCRUD matrices is constructed by the

system designer at design time. These n matrices will be the input of our technique.

Then using the cost functions of Section 3.6, n number of ALP tables ALP (R1), ALP

(R2), …, ALP (Rn) will be constructed. Then in the next step, n number of predicate

sets named P1, P2, …, Pn will be generated for attributes with highest ALP value for

each ALP table. Each predicate set Pi will contain m number of predicates. According

to the predicate sets, each of the n relations Ri is fragmented into m fragments and

allocate to m sites.

30

Fig. 3.1: Block Diagram of MMF Technique

Following algorithm, Algorithm II has been used to implement MMF technique.

Algorithm II: FragmentationAllocation
Input: Total number of sites: S = {S1, S2,… ,Sn}
 Relation to be fragmented: R
 Modified CRUD matrix: MCRUD[R]
Output: Fragments F = {F1, F2, F3,…, Fn}
Step 1: Construct ALP[R] from MCRUD[R] based on Cost functions
Step 2: For the significant highest valued attribute of ALP table

a. Generate predicate set P={ P1, P2, … ,Pm }

b. Fragment R using P as selection predicate)(Rpp σ∀
c. ALLOCATE F to S

Step 3: For non-significant-highest-value (Max-Highest<1.5*2nd-Highest) in ALP[R]

a. REPLICATE R to ∑
=

n

j
jS

1

if R is an entity set

b. Derive Horizontally Fragment R using its owner relation if R is a relationship set
__

Algorithm II takes a relation to be fragmented, MCRUD matrix of the relation and

number of allocation sites as input. It finally produces the fragments and allocates

them in the sites of DDBMS. Working procedure of the algorithm will be clear in the

following subsections.

Now we are presenting a real life example to explain the steps shown in Fig. 3.1. Let

we are designing a distributed banking database system (DBDS). One of the relations

of this database is Accounts shown in Table 3.5. Initially number of allocation sites of

MCRUD Matrix

MCRUD (R1)
MCRUD (R2)

:
MCRUD (Rn)

ALP (R1)
ALP (R2)

:
ALP (Rn)

P1= {P11, P12…P1m}
P2= {P21, P22…P2m}

:
Pn= {Pn1, Pn2…Pnm}

R11, R12…R1m
R21, R22…R2m

:
Rn1, Rn2…Rnm

S1

 :
Sm

R11, R21…..Rn1

R1m, R2m…Rnm

Relations of DDBMS

R1
R2
:

Rn

ALP Tables

Predicate Sets Fragmented Sub-relations
Allocation to Sites

31

the distributed system is three namely Dhaka, Chittagong and Khulna as shown in Fig.

3.2.

Table 3.5: Accounts Relation

AccountNo Type CustId OpenDate Balance BrName
01 Ind 001 20/1/09 12500 Dhk
02 Cor 002 23/1/09 35000 Dhk
03 Cor 003 28/2/09 5200 Ctg
04 Ind 004 25/3/09 15000 Khl
05 Cor 005 17/4/09 50000 Dhk

Fig. 3.2: Distributed Banking Database System

3.7.1 MCRUD Construction
The designer will construct the MCRUD matrix for the Accounts Database relation in

the requirement analysis phase. An example of MCRUD matrix is shown in Table 3.6.

It can be seen from the figure that predicates of the attributes of Accounts relation are

shown in row sides and applications of different sites are placed in column sides. Here

Ap1: Application deals with Customer information, Ap2: Application deals with

Accounts information, Ap3: Application deals with Loan information. Relationship

between predicates and applications are represented in their intersecting cells. For

example attribute Type has two predicates: Ind (Individual) and Cor (Corporate). Ap2

(Application 2) running in Site1 can performs read and update operation over Ind

predicate. So R U is placed in the intersecting cell. In this way the whole matrix is

filled up at requirement analysis phase.

Site 1:
Dhaka

Site 2:
Khulna

Site 3:
Chittagong

32

Table 3.6: MCRUD Matrix of Accounts Relation
Site.Application

Entity.Attribute.Predicates
Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Accounts .AccountNo<10000 C RU R

Accounts .AccountNo>=10000 R
Accounts.Type=Ind CRD RU RUD R
Accounts.Type=Cor RU R CRUD RU R

.

.

Accounts.Balance<50000 R R CRUD R
Accounts.Balance>=50000 CR
Accounts.BrName=Dhk CRUD RU CRUD R R
Accounts.BrName=Ctg R CRUD CRUD R R
Accounts.BrName=Khl CRUD RD CRU

3.7.2 ALP Calculation
The designer will calculate precedence of locality of each attribute from the MCRUD

matrix of Accounts relation according to the cost functions given in section 3.6.

Algorithm II represents the algorithm for ALP calculation. If a predicate of an

attribute is accessed by more than one site, its precedence is decreased and also

overall precedence of the attribute where the predicate belongs t, decreases in our cost

function because it reduces data locality. To calculate precedence of a predicate,

predicate access values of other sites are deducted from the site where value of

accessing that predicate is maximum.

Finding the ALP of the attribute BrName is shown in Table 3.7- 3.9.

Table 3.7: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk)
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Accounts .AccountNo<10000 C RU R
Accounts .AccountNo>=10000 R

Accounts.Type=Ind CRD RU RUD R
Accounts.Type=Cor RU R CRUD RU R

.

Accounts.Balance<50000 R R CRUD R
Accounts.Balance>=50000 CR

Accounts.BrName=Dhk CRUD RU CRUD R R
ccounts.BrName=Ctg R CRUD CRUD R R

Accounts.BrName=Khl CRUD RD CRU

33

Table 3.8: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk)
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Accounts .AccountNo<10000 C RU R
Accounts .AccountNo>=10000 R

Accounts.Type=Ind CRD RU RUD R
Accounts.Type=Cor RU R CRUD RU R

.
Accounts.Balance<50000 R R CRUD R
Accounts.Balance>=50000 CR
Accounts.BrName=Dhk CRUD RU CRUD R R
Accounts.BrName=Ctg R CRUD CRUD R R
Accounts.BrName=Khl CRUD RD CRU

Table 3.9: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk)

According to the cost functions, values of the predicates are as follows:

BrName=Dhk: [{(2+1+3+2) + (1+3) + (2+1+3+2)} - {1+1}] = 18, (Table 3.7)

BrName=Ctg is [{(2+1+3+2) + (2+1+3+2) + (1)} - {1+1}] = 15 (Table 3.8) and

BrName=Khl is [{(2+1+3+2) + (1+2) + (2+1+3)} - {0+0}] = 17. (Table 3.9)

So ALP of BrName = (18+15+1) = 50.

3.7.3 ALP Table Construction
ALP values of all the attributes of the Accounts relation are computed from its

MCRUD matrix according to the previous sections. Table 3.10 shows the ALP table

for Accounts relation. The attribute with highest precedence value is treated as most

important attribute for fragmentation.

Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3
Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Accounts .AccountNo<10000 C RU R
Accounts .AccountNo>=10000 R

Accounts.Type=Ind CRD RU RUD R
Accounts.Type=Cor RU R CRUD RU R

.
Accounts.Balance<50000 R R CRUD R
Accounts.Balance>=50000 CR
Accounts.BrName=Dhk CRUD RU CRUD R R
Accounts.BrName=Ctg R CRUD CRUD R R
Accounts.BrName=Khl CRUD RD CRU

34

Table 3.10: ALP Table of Accounts Relation

Attribute Name Precedence

AccountNo 6

Type 22

CustId 6

OpenDate 7

Balance 10

BrName 50

3.7.4 Predicate Set Generation
Given a relation R (A1, A2,…, An) where attribute Ai has domain Di, a predicate pj

defined on R has the form

pj: Ai Value Where and value .

Predicate set of an attribute is the set of predicates used by the applications to access

that attribute. In MMF technique, only the predicate set for the attribute with highest

ALP value of a relation will be generated. We can see from ALP table of Accounts

relation (Table 3.10) that BrName attribute has highest ALP value. So predicate set of

BrName attribute is generated which is found in MCRUD matrix of Accounts

relation.

P= {p1: BrName=Dhk, p2: BrName=Ctg, p3: BrName= Khl}

3.7.5 Fragmentation of Relation
A horizontal fragmentation consists of a subset of the tuples of a relation. It is defined

using Selection operation of relational algebra: σp(R). Here p is the predicate using

which records are selected from relation R those satisfied p. So for each p of predicate

set P, a set of records can be selected and treated as a fragment.

According to the predicates of predicate set P which was generated in the previous

subsection, the Account relation will be fragmented horizontally. As P consists of

three predicates so three horizontal fragments were created.

Allocation is the process of copying a fragment to a site of a system according to

certain cost function. Here three fragment generated earlier is allocated to three sites

shown in Table 3.11 – 3.13 according to predicate access in respected sites.

θ },,,,,{ ≥>≤≠<=∈θ Di∈

35

Table 3.11: Part of Accounts Relation Allocated to Site 1

AccountNo Type CustId OpenDate Balance BrName
01 Ind 001 20/1/09 12500 Dhk
02 Cor 002 23/1/09 35000 Dhk
05 Cor 005 17/4/09 50000 Dhk

Table 3.12: Part of Accounts Relation Allocated to Site 2

AccountNo Type CustId OpenDate Balance BrName
04 Ind 004 25/3/09 15000 Khl

Table 3.13: Part of Accounts Relation Allocated to Site 3

AccountNo Type CustId OpenDate Balance BrName
03 Cor 003 28/2/09 5200 Ctg

3.8 Analysis of MMF technique
The space complexity and time complexity of MCRUD Matrix based fragmentation

technique have been discussed in the following sections.

3.8.1 Memory Cost Analysis
To store the MCRUD matrices of different relations in the system for further

processing by Algorithm II, we have used four dimensional arrays. As discussed in

Section 3.5, for calculating ALP values we have to store four things: site number,

application number, attribute number and predicate number. These values will be

stored in 4D arrays and ALP tables are constructed using these arrays. Cost of each

cell of MCRUD matrix is computed by the cost function of equation 1.

Ci, j, k, r = fCC + fRR + fUU + fDD

Where Ci, j, k, r = cost of predicate j on attribute i accessed by application r at site k.

This is represented in the Algorithm I as follows:
C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D,

Where i: attribute number, j: predicate number, k: site number and r: application

number. In this thesis number of sites is denoted by S, number of applications is

denoted by N, number of Predicates is denoted by P and number of attributes is

denoted A. So space requirement to store an MCRUD matrix will be O(S*N*A*P) or

O (n4) if S≈ N≈ A ≈P ≈ n.

36

For example, if for a MCRUD matrix there are 12 attributes, 5 predicates for each

attribute, 10 sites and 3 applications running at each site that is A=12, P=5, S=10 and

N=3 and also to store a real number if it requires 4 bytes of memory then memory

requirement of this MCRUD matrix is: 12*5*10*3*4= 7200 Bytes or 7.2KB. If there

are 200 tables in the database then total memory requirement is 7.2*200=1440KB or

1.44MB.

ALP table for a relation constructed from 4D array is stored in 2D array where

attribute name and its ALP value is placed. For this example, A=12 and if maximum

length of an attribute name is 50 characters then ALP table consumes

12*50*4=2400Byte or 2.4 KB. So for 200 database tables, it takes 200*2.4=480 Kilo

Bytes or 0.48MB total memory to store all the ALP tables. So overall memory

requirement is 1.44+0.48=1.92MB, approximately 2MB. Un-doubtfully this is quite

less in comparison with huge memory requirement of several gigabytes in distributed

database.

3.8.2 Computational Cost Analysis
Creation of MCRUD matrix for every relation and calculation of ALP from each

matrix adds some additional cost in our system.

For calculating ALP, Algorithm I is used. We can find from Algorithm I that, its

maximum computational cost is dominated by the computation within four nested

loops. The code is as follows:
 for (i =1; I <= TotalAttributes; i++){
 for (j =1; j <= TotalPredicates[i]; j++){
 for (k =1; k <= TotalSites; k++){

for (r =1; r <= TotalApplications[k]; r++)
 C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D

 S[i][j][k] + = C[i][j][k][r]

So computational order of this algorithm is O (i*j*k*r). As imax =A, jmax=P, kmax=S

and rmax=N, so we can rewrite the order as O(A*P*S*N) or O (n4) if we treat S≈ N≈ A

≈P ≈ n.

Actual problem of horizontal fragmentation and allocation is O (
n

k 2
) where there

are n simple predicates and k sites because all the combinations have to be generated

to find a correct solution. This is impossible in practical large database systems [7].

37

We have reduced it to O (n4) by providing solution based on heuristic that use

MCRUD matrix.

If we consider the case of Section 3.8.1 that is A=12, P=5, S=10 and N=3 where i:

attribute number, j: predicate number, k: site number and r: application number then

to compute ALP cost of the cells 12*5*10*3 =1800 * 4 multiplication =7200

multiplication operation and 1800*3=5400 addition operation is required.

But this computational cost can be ignored because ALP calculation from MCRUD

matrix will be performed offline during the requirement analysis phase of distributed

database development. So this computation will not affect negatively on the

performance of the system.

3.9 Scalability of MMF Technique
We have investigated some cases to check whether our technique is restricted to some

particular predicate numbers, attribute number and site numbers or it is a scalable

enough that is not restricted to certain number of predicates, attributes or sites. In the

following subsections it can be seen that MMF technique is a generalized technique

which can be applied in any distributed system.

3.9.1 Relation between Number of Sites with Number of Predicates
In practice, there may be three cases: number of sites (S) less than number of

predicates (P), number of sites (S) equals to number of predicates(P) , number of sites

(S) greater than number of predicates(P). It can be recalled that according to the

number of predicates of the attribute with highest ALP value, a relation can be

fragmented into same number of sub-relations. From the following sub-sections it is

be clear that MMF is neither restricted to certain number of predicates nor fixed

number of sites.

Case 1: S < P
If S is less than P, in this case total fragments will be more than total sites. So

fragments will be assigned to corresponding sites where locality precedence of

predicates is highest respectively. It can be clearly understood that in this case some

sites will get more than one fragments. For example, in Table 3.14, P=3 namely

LnType=SME, LnType=HOME and LnType=CAR of the attribute LnType with

38

highest locality precedence. So three horizontal fragments are created taking above

predicates as selection predicates. But S=2 namely Site1 and Site2. So a fragment is

allocated to a site where precedence of the predicate use to make the fragment is

maximum. Here Site1 got two fragments and Site2 got one fragment.

Table 3.14: Decision Table when S<P

Case 2: S = P
This is a straight forward case. Here fragments are assigned to corresponding sites

where locality precedence of the site is maximum respectively. For example, in Table

3.15, S=3 and P=3, we can see there are three predicates namely LnType=SME,

LnType=HOME and LnType=CAR of the attribute LnType with highest locality

precedence. So three horizontal fragments will be created taking above predicates as

selection predicates. Number of allocation sites are also three namely Site1, Site2 and

Site3. So a fragment will be allocated to a site where precedence of the predicate use

to make the fragment is maximum.

Table 3.15: Decision Table when S=P

39

Case 3: S > P
In this case, fragments are assigned to corresponding sites where locality precedence

of the predicates by which fragments are created is maximum respectively and the

sites where no fragment is allocated initially, having replica of a fragment whose

predicate precedence value is maximum in the sites. Replication is for reducing

remote access cost of the queries. For example when S=3 and P=2, in Table 3.16

below we can see there are two predicates namely LnType=SME, and LnType=CAR

of the attribute LnType with highest locality precedence. So two horizontal fragments

are created taking above predicates as selection predicates. But number of allocation

sites are three namely Site1, Site2 and Site3. So two fragments will be allocated to Site2

and Site3 where precedence of the predicates use to make the fragments are maximum

respectively and the Site1 will have a replica of that fragment whose predicate

precedence is highest in Site1.

Table 3.16: Decision Table when S>P

3.9.2 Impact of Schema Change
In MMF, relations of a distributed system are fragmented based on their respected

MCRUD matrices. MCRUD matrix of a relation is constructed at system design time.

If schema of a relation changes during the design phase or later on e.g. by addition of

attributes then only the MCRUD matrix corresponding to the relation have to be

reconstructed and then the relation can be fragmented from its ALP table generated

from its reconstructed MCRUD matrix. So it can be understood that our technique is

not restricted to a particular DDBMS or relations with particular schema.

40

3.9.2.1 Normalization
 If a relation is split into two relations by the database designer after fragmentation

process for normalization issue then the ALP table of the whole relation has to split

into two ALP tables. If an attribute is present in one relation, its ALP value will be

placed in respected ALP table. So no new MCRUD matrix has to be constructed.

__

Algorithm III: Splitting of ALP Tables
Input: Set of attributes for each of the normalized relations, Previous ALP Table
Output: Fragments for each of the normalized relations
Steps:

1. Input set of attributes each of the normalized relations
2. Divide ALP table into two ALP tables according to set of attributes
3. For each new ALP table:

a. Generate Predicate Set for Highest precedence attribute
b. Fragment according to generated Predicate Set
c. Allocate fragments to Previous and new sites

__

3.9.2.2 De-Normalization
If two relations are merged into one relation by the database designer after

fragmentation process for de-normalization issue then both the ALP tables of the

relations can be merged into one ALP table. So no new MCRUD matrix has to be

constructed.

__

Algorithm IV: Combining ALP Tables
Input: ALP tables of two relations selected for De-Normalization
Output: Fragments for De-Normalized relations
Steps:

1. Input two ALP tables
2. Merge the rows of two tables into one table
3. For highest precedence attribute of merged ALP table:

a. Generate Predicate Set
b. Fragment according to generated Predicate Set
c. Allocate fragments to Previous and new sites

__

3.9.3 Impact of Number of Site Increase
As in MMF there is no restriction of total number of sites in a DDBMS, so our

technique can be applicable for a distributed system with any number of sites. Sites of

41

a DDBMS are placed in column side of a MCRUD matrix. If number of sites

increased, corresponding columns will be added to each MCRUD matrix for every

relation. This is analyzed in section 4.7.The steps of site increment is shown in

Algorithm V below:

__

Algorithm V: Site Increment
Input: MCRUD Matrix with additional site information
Output: Fragments for updated site information
Steps:

4. Input Modified MCRUD matrix with new sites
5. Calculate ALP table for Modified MCRUD matrix
6. Generate Predicate Set for Highest precedence attribute
7. Fragment according to generated Predicate Set
8. Allocate fragments to Previous and new sites

__

3.9.4 Rearranging based on Empirical Data
After certain duration of database execution in the sites of a distributed system when

enough empirical data of query execution, attribute access by transaction etc. are

available, the MCRUD matrix of the relations can be modified based on those data. It

will improve the hit rate (locality of access) of the system to certain extent at the price

of data transfer cost among the sites of the distributed system. The process is shown in

the following algorithm, Algorithm VI:

Algorithm VI: Re-Fragmentation
Input: Total number of sites: S = {S1, S2,… ,Sn}
 Relation to be fragmented: R
 Modified MCRUD matrix based on empirical data: MCRUD[R]
Output: Fragments F = {F1, F2, F3,…, Fn}
Step 1: Construct ALP[R] from MCRUD[R] based on Cost functions
Step 2: For the significant highest valued attribute of ALP table

a. Generate predicate set P={ P1, P2, … ,Pm }

b. Fragment R using P as selection predicate)(Rpp σ∀
c. ALLOCATE F to S

Step 3: For non-significant-highest-value (Max-Highest<1.5*2nd-Highest) in ALP[R]

a. REPLICATE R to ∑
=

n

j
jS

1
if R is an entity set

b. Derive Horizontally Fragment R using its owner relation if R is a relationship set
__

42

3.9.5 Implementation of other Fragmentation Types
In this thesis we have performed the fragmentation of the relations of distributed

database using horizontal fragmentation technique. This is because of improving

performance significantly of a distributed database, we have to maximize locality of

data or hit rate of the queries. That is query generating in one site access data of that

site only. This will reduce remote access cost and cost of data transfer among the

sites. Locality of data can be achieved more using horizontal fragmentation than

vertical fragmentation.

MMF technique is not limited to horizontal fragmentation only. If we slightly modify

the MCRUD matrix that is if we place attributes of a relation in the row side and

applications of the sites of a DDBMS in the column side and modifying the cost

functions we can produce vertical fragmentation using MMF technique. Modification

of MCRUD matrix for vertical fragmentation is shown in Table 3.17:

Table 3.17: MCRUD Matrix for Vertical Fragmentation
Site.Application

Entity.Attribute

Site1

Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Accounts .AccountNo C RU R
Accounts.Type CRD RU RUD R

.

.

Accounts.Balance R R CRUD R
Accounts.BrName CRUD RU CRUD R R

Like other Hybrid or Mixed fragmentation techniques, MF can be performed in our

MMF technique by applying vertical fragmentation followed by horizontal

fragmentation or vice versa. It is worth mentioning that MF is only applied in

distributed databases if the relations have too many attributes and huge number of

records in the relations.

3.10 Summary
In this chapter we have presented a model for our proposed MMF technique of

fragmentation of distributed database relations. Algorithms of ALP table construction

and fragmentation are also presented and analyzed in details. Scalability of our

technique has also analyzed from different perspectives.

43

Chapter 4

Results and Discussion

The objective of the experimental work is to verify the applicability and feasibility of

MMF, the proposed fragmentation technique based on MCRUD matrix. The

experimental evaluation has been performed with synthetic data and reasonable

number of queries.

4.1 Experimental Environment
To justify our technique we have implemented a distributed banking database system

in the post-graduate lab of BUET using DELL computers with Core-two Duo 2.80

processors and 2GB RAM. We have used Windows XP operating system and Oracle

10g for database creation. Entity Relationship Diagram of our implemented database

namely Distributed Banking Database System (DBDS) is shown in Fig. 4.1.

Fig 4.1: ER diagram of DBDS

44

The transformation of E-R schema of Figure 4.1 into relational schema is as follows:

Fig 4.2: Relation Schema of E-R Diagram of Fig. 4.1

Initially number of sites of the distributed system is three as shown in Fig. 4.2. In each

site, three applications were executed.

Application 1 deals with Customer related information.

Application 2 deals with Account related information.

Application 3 deals with Loan related information.

Fig 4.3: Distributed Banking Database System Network

4.2 Construction of MCRUD Matrix
We have constructed the MCRUD matrix for each of the eight relations in the

requirement analysis phase. An MCRUD matrix is constructed by placing predicates

of attributes of a relation in the row side and applications of the sites of a DDBMS in

the column side of a table in the requirement analysis phase of system development.

The matrices constructed for all the relations of Fig. 4.2 are shown in Table 4.1 - 4.8.

Customer-Schema = (Cid, Cname, Caddr, Cphn, BrNo)

Loans-Schema = (LnNo, LnType, Amount)

Accounts-Schema = (AccNo, AccType, AccBalance)

Branch-Schema = (BrNo, BrName, BrAddress)

LnCust-Schema = (LnNo, Cid)

AccCust-Schema = (AccNo, Cid)

AccofBranch-Schema = (AccNo, Opendate, Status, BrNo)

LnofBranch-Schema = (LnNo, Issuedate, Status, BrNo)

Site 2

Site 3

Corporate Loc1

Loc2

Site 1

45

Table 4.1: MCRUD Matrix of Branch relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Branch.BrNo=B01 R R R R

Branch.BrNo=B02 R R R

Branch.BrNo=B03 R R

Branch.BrName=Corporate R R

Branch.BrName=Loc1 R R R
Branch.BrName=Loc2 R R R R
Branch.BrAddress=? R

Table 4.2: MCRUD Matrix of Loan relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD

Loan.LnType=SME R RU RU R CRUD R RU

Loan.LnType=HOME RU RU CRUD R RU R RU

Loan.LnType=CAR R RU R RU RU CRUD

Loan.Amount<50000 R CRUD R CRUD R CRUD

Loan.Amount=50000:100000 R R CRUD R CRUD R CRUD

Loan.Amount>100000 R CRUD R CRUD R CRUD

Table 4.3: MCRUD Matrix of Customer relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Customer.Cid<10000 CRUD R R CRUD R R CRUD R R

Customer. Cid >=10000 CRUD R R CRUD R R CRUD R R

Customer.Cname=? CRUD R R CRUD R R CRUD R R

Customer.Cphn=? CRUD R R CRUD R R CRUD R R

Customer.Caddr=? CRUD R R CRUD R RU CRUD R R

Customer. BrNo=B01 CRUD R R RU R R RU

Customer. BrNo=B02 RU CRUD R R RU

Customer. BrNo=B03 RU RU CRUD R R

46

Table 4.4: MCRUD Matrix of Accounts relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Accounts .AccNo<10000 RU CRUD R RU CRUD RU R CRUD R

Accounts .AccNo>=10000 R CRUD R R CRUD RU R CRUD R

Accounts.AccType=Ind R RU R RU CRUD RU RU CRUD R

Accounts.AccType=Cor RU CRUD RU R RU R RU

Accounts.AccBalance<50000 CRUD R CRUD R CRUD R

Accounts.AccBalance=50000:100000 R CRUD R CRUD R CRUD R

Accounts.AccBalance>100000 CRUD R CRUD R CRUD R

Table 4.5: MCRUD Matrix of AccofBranch relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

AccofBranch.AccNo<10000 CRUD CRUD CRUD

AccofBranch.AccNo>=10000 CRUD CRUD CRUD

AccofBranch.OpenDate=? CRUD CRUD CRUD

AccofBranch.Status=A CRUD CRUD CRUD

AccofBranch.Status=I CRUD CRUD CRUD

AccofBranch. BrNo=B01 CRUD

AccofBranch. BrNo=B02 CRUD

AccofBranch. BrNo=B03 CRUD

Table 4.6: MCRUD Matrix of LnofBranch relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

LnofBranch.LnNo<10000 CRUD CRUD CRUD

LnofBranch.BrNo>=10000 CRUD CRUD CRUD

LnofBranch.IssueDate=? CRUD CRUD CRUD

LnofBranch.Status=R CRUD CRUD CRUD

LnofBranch.Status=D CRUD CRUD CRUD

LnofBranch. BrNo=B01 CRUD

LnofBranch. BrNo=B02 CRUD

LnofBranch. BrNo=B03 CRUD

47

Table 4.7: MCRUD Matrix of AccCust relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

AccCust.AccNo=? CRUD CRUD CRUD

AccCust.Cid=? CRUD CRUD CRUD

Table 4.8: MCRUD Matrix of LnCust relation
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

LnCust.AccNo=? R CRUD CRUD CRUD

LnCust.Cid=? CRUD CRUD CRUD

4.3 Calculation of ALP Values and Construction of
ALP Tables
We have calculated locality precedence of each attribute from the MCRUD matrix of

each relation using attribute locality precedence (ALP) calculation algorithm. Using

the ALP values we have constructed ALP table for each relation. ALP table is a 2D

array where attributes of a relation and its locality precedence is stored. For each

attribute, Create, Read, Update and Delete operation over its predicates from different

applications of different sites is calculated and sum up to have locality precedence of

that attribute. Details ALP calculation and ALP table construction can be found in

section 3.4.2 and 3.4.3. Attribute with highest precedence implies that taking

predicates of this attribute as selection predicate for horizontal fragmentation will

maximize the hit ratio. It is depicted in Table 4.9.

Table 4.9: Precedence Calculation for LnType Attribute of Loan Relation

Attribute
Name

Predicates Precedence
in Site 1

Precedence
in Site 2

Precedence
in Site 3

Precedence
of Predicate

ALP Decision

LnType

LnType = SME 5 13 5 13-5-5=3

3+6+2=11

Fragment
in Site 2

LnType =
HOME

16 5 5 16-5-5=6
Fragment
in Site 1

LnType = CAR 5 5 12 12-5-5=2
Fragment
in Site 3

48

ALP tables of for all the relations of Fig. 4.2 are shown in Table 4.10 – 4.17.

Table 4.10: ALP Table of Loan

Table 4.11: ALP Table of Branch

Attribute Name Precedence

BrNo 5

BrName 3

BrAddress 1

Table 4.12: ALP Table of Customer

Attribute Name Precedence

Cid -20

Cname -10

Cphn -7

Caddr -10

BrNo 6

Table 4.13: ALP Table of Accounts

Attribute Name Precedence

AccNo -14

AccType 3

AccBalance -26

Table 4.14: ALP Table of AccofBranch

Attribute Name Precedence

AccNo -8

Opendate -8

Status -8

BrNo 24

Table 4.15: ALP Table of LnofBranch

Attribute Name Precedence

LnNo -8

Issuedate -8

Status -8

BrNo 24

Table 4.16: ALP Table of AccCust

Attribute Name Precedence

AccNo -8

Cid -8

Table 4.17: ALP Table of LnCust

Attribute Name Precedence

LnNo -7

Cid -8

Attribute Name Precedence

LnNo -20

LnType 11

LnAmount -26

49

4.4 Generation of Predicate Set and Fragmentation of
the Relations
Predicate set was generated for the attributes with highest locality precedence of the

relations respectively. These predicate sets were used to fragment the relations.

PLoan ={LnType=SME, LnType=HOME , LnType=CAR }

PCustomer ={BrNo=B01, BrNo=B02, BrNo=B03}

PAccounts ={AccType=Ind, AccType=Cor}

PAccofBranch ={BrNo=B01, BrNo=B02, BrNo=B03}

PLnofBranch ={BrNo=B01, BrNo=B02, BrNo=B03}

As for AccCust and LnCust relations, no attribute has significant higher precedence

than other attributes, so predicate set was not generated for the relations. Instead these

relations are to be fragmented derived horizontally with the help of their mother

relation.

For Horizontal fragmentation of Customer relation, following queries are used:

QCustomer1 =Select * from Customer where BrNo=B01;

QCustomer2 =Select * from Customer where BrNo=B02;

QCustomer3 =Select * from Customer where BrNo=B03;

For Horizontal fragmentation of Loan relation, following queries are used:

QLoan1 =Select * from Loan where LnType=SME;

QLoan2 =Select * from Loan where LnType= HOME;

QLoan3 =Select * from Loan where LnType= CAR;

For Horizontal fragmentation of Accounts relation, following queries are used:

QAccounts1 =Select * from Accounts where AccType=Ind;

QAccounts2 =Select * from Accounts where AccType=Cor;

For Horizontal fragmentation of AccofBranch relation, following queries are used:

QAccofBranch1 =Select * from AccofBranch where BrNo=B01;

QAccofBranch2 =Select * from AccofBranch where BrNo=B02;

50

QAccofBranch3 =Select * from AccofBranch where BrNo=B03;

For Horizontal fragmentation of LnofBranch relation following queries are used:

QLnofBranch1 =Select * from LnofBranch where BrNo=B01;

QLnofBranch2 =Select * from LnofBranch where BrNo=B02;

QLnofBranch3 =Select * from LnofBranch where BrNo=B03;

For Horizontal fragmentation of AccCust relation, following queries are used:

QAccCust1 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =

 Customer.Cid and Customer.BrNo=B01;

QAccCust2 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =

 Customer.Cid and Customer.BrNo=B02;

QAccCust3 =Select AccNo, Cid from AccCust, Customer where AccCust.Cid =
 Customer.Cid and Customer.BrNo=B03;

For Horizontal fragmentation of LnCust relation, following queries are used:

QLnCust1 =Select LnNo, Cid from LnCust, Customer where LnCust.Cid =

 Customer.Cid and Customer.BrNo=B01;

QLnCust2 = Select LnNo, Cid from LnCust, Customer where LnCust.Cid =

 Customer.Cid and Customer.BrNo=B02;

QLnCust3 = Select LnNo, Cid from LnCust, Customer where LnCust.Cid =

 Customer.Cid and Customer.BrNo=B03;

Branch relation was not fragmented as it is a very small relation and most of access to

its records is by read operation. Instead Branch relation will be replicated to all the

sites of the DBDS.

In this way all the relations of the distributed banking system of Fig. 4.2 ware

fragmented using the above queries and allocated to the three computers (sites).

4.5 Queries for Performance Analysis of MMF
We have executed twenty queries in each site with a total of sixty selected queries in

the distributed system according to Pareto Principle often referred as 80/20 rule [59],

[60] to see the performance of MMF. The queries were selected from the following

query domain to accomplish enough variation of a real database system:

51

 Insertion e.g. Insert into RRR values (xxx, yyy, zzz);

 Selection (Point) e.g. Select A1, A2... An from RRR where xxx= P

 Selection (Range) e.g. Select A1, A2... An from RRR where xxx< BBB

 Selection (Join) e.g. Select A1, A2 ... An from R1, R2 where R1.Ai=R2.Aj

 AND R1.Ak=CCC

 Selection (Aggregation) e.g. Select Sum (AA) from RRR where P

 Update e.g. Update RRR set Ai = xxx where Aj = yyy

 Deletion e.g. Delete * from RRR where P

We define hit as a result of a query of any type accessed records of local fragment of

the site where the query was initiated and miss as a result of a query of any type

accessed records of one or more remote fragments of other sites. The results of our

experiment are shown in Table 4.18 – 4.25 and Fig. 4.4 – 4.11 below:

Table 4.18: Hit Miss Ratio for Loan

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 75% 25%

Site3 75% 25%

Average 83.33% 16.67%

100%

75% 75%
83.33%

0%

25% 25%
16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

H
it

/M
is

s

 Hit

Miss

Fig. 4.4: Hit Miss Ratio for Loan Relation

From Table 4.18 we can see that all the queries of Site1 accessed records from local

fragment of Loan relation. So hit ratio in Site1 is 100%. We also see that 75% queries

executed at Site2 and Site3 accessed records of local fragment and 25% queries

accessed records of fragment stored in other (remote) site rather than query generation

site. Average hit ratio for Loan relation is 83.33%.

52

Table 4.19: Hit Miss Ratio for
Customer

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 66.67% 33.33%

Site3 100% 0%

Average 88.89% 11.11%

100%

66.67%

100%
88.89%

0%

33.33%

0%
11.11%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

Hi
t/

M
is

s

Hit

 Miss

Fig. 4.5: Hit Miss Ratio for Customer

From Table 4.19 we can see that all the queries of Site1 and Site3 accessed records

from local fragment of Customer relation. 33.33% queries generated in Site2 accessed

data of remote fragments. Average hit ratio is 88.89% and miss ratio is 11.11%.

Table 4.20: Hit Miss Ratio for Accounts

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 66.67% 33.33%

Site3 100% 0%

Average 88.89% 11.11%

100%

66.67%

100%
88.89%

0%

33.33%

0%
11.11%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

Hi
t/

M
is

s

Hit

 Miss

Fig. 4.6: Hit Miss Ratio for Accounts

From Table 4.20 we can see that all the queries of Site1 and Site3 accessed records

from local fragments of Customer relation. So hit ratio is 100%. 33.33% queries

generated in Site2 accessed data of remote fragments. Average hit ratio is 88.89% and

miss ratio is 11.11%.

53

Table 4.21: Hit Miss Ratio for
AccofBranch

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 100% 0%

Site3 50% 50%

Average 83.33% 16.67%

100% 100%

50%

83.33%

0% 0%

50%

16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

P
er

ce
nt

ag
e

of
H

it
/M

is
s

 Hit

Miss

Fig. 4.7: Hit Miss Ratio for AccofBranch

From Table 4.21 we can see that all the queries of Site1 and Site2 accessed local

fragment of AccofBranch relation. So hit ratio in Site1 and Site2 are 100%. We also

see that 50% queries executed at Site3 accessed records of local fragment and.

Average hit ratio for AccofBranch relation is 83.33%.

Table 4.22: Hit Miss Ratio for
LnofBranch

Site Percentage
of Hit

Percentage
of Miss

Site1 50% 50%

Site2 66.67% 33.33%

Site3 100% 0%

Average 72.22% 27.78%

50%

66.67%

100%

72.22%

50%

0%

33.33%
27.78%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

Hi
t/

M
is

s

Hit

Miss

Fig. 4.8: Hit Miss Ratio for LnofBranch

From Table 4.22 we can see that 50%, 66.67%, 100% queries of Site1, Site2 and Site3

accessed local fragment of LnofBranch relation respectively, average hit ratio for the

relation is 72.22%.

54

Table 4.23: Hit Miss Ratio for AccCust

Site Percentage
of Hit

Percentage
of Miss

Site1 50 50

Site2 100% 0%

Site3 100% 0%

Average 83.33% 16.67%

50%

100% 100%

83.33%

50%

0% 0%

16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

H
it

/M
is

s

Hit
 Miss

Fig. 4.9: Hit Miss Ratio for AccCust relation

From Table 4.23 we can see that all the queries of Site2 and Site3 accessed records

from local fragment of AccCust relation. So hit ratio at these two sites are 100%. 50%

queries of Site1 accessed data of remote sites. Average hit ratio is 83.33% and miss

ratio is 16.67%.

Table 4.24: Hit Miss Ratio for LnCust

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 100% 0%

Site3 50% 50%

Average 83.33% 16.67%

100% 100%

50%

83.33%

0% 0%

50%

16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
of

Hi
t/

M
is

s

 Hit
Miss

Fig. 4.10: Hit Miss Ratio for LnCust

From Table 4.24 we can see that all the queries of Site1 and Site2 accessed records from

local fragment of AccCust relation. So hit ratio at these two sites are 100%. 50%

queries of Site3 accessed data of remote sites. Average hit and miss ratio are 83.33%

and 16.67% respectively.

55

Table 4.25: Hit Miss Ratio for Branch

Site Percentage
of Hit

Percentage
of Miss

Site1 100% 0%

Site2 100% 0%

Site3 100% 0%

Average 100% 0%

100% 100% 100% 100%

0% 0% 0% 0%
0%

20%

40%

60%

80%

100%

120%

Site 1 Site 2 Site 3 Average

Pe
rc

en
ta

ge
 o

f H
it

/ M
is

s

Hit
 Miss

 Fig. 4.11: Hit Miss Ratio for Branch

From Table 4.25 we can see that all the queries of Site1, Site2 and Site3 accessed

records from local fragment of LnCust relation. So hit ratio at all three sites as well as

average hit ratio is 100% and miss ratio is 0%.

Overall Performance:
Table 4.26 and Fig. 4.12 show the overall performance of the distributed system after

fragmenting the relations using MMF technique. We can see that after fragmentation

and allocation using MMF technique, 85% of the queries generated in any site accessed

records of only that site and remote access reduced to 15%. This is definitely a

significant achievement.

Table 4.26: Overall System Performances of MMF

Site
Name

Queries
executed

Accessed
fragment stored
in local site

Accessed
fragment stored
in remote site

Percentage
of Hit

Percentage
of Miss

Site1 20 18 2 90% 10%

Site2 20 16 4 80% 25%

Site3 20 17 3 85% 15%

DDBMS 60 51 9 85% 15%

56

80%
85% 85%90%

10%
20% 15% 15%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

P
er

ce
nt

ag
e

of
 H

it
/ M

is
s

Hit
Miss

Fig. 4.12: Hit Miss Ratio of MMF Technique for Three Sites

4.6 Comparison with other Techniques
We have named the techniques deals with fragmentation problem of distributed

database without addressing the initial stage problem as Techniques without Initial

Fragmentation (TWIF) as in [1] – [40], [42] - [49]. TWIF uses the following model in

general:

Fig. 4.13: Model of other Non-initial Fragmentation Techniques

TWIF first store the relations of a distributed database in a single site of the distributed

system as a centralized database. The other sites where database is not stored, access

the database with different type of queries using remote network connection of the

system. Information about attribute, predicate access pattern and frequencies of access

by different queries from different sites are gathered in tables called Attribute Usage

Bond energy / algorithm
to find affinity

Attribute / Predicate
usage statistics

Relation in
central database

AUM /
PUM etc.

AAM /
PAM etc.

Horizontal /
Vertical
fragmentation

Allocate to
Distributed
database

57

Matrix (AUM) or Predicate Usage Matrix (PUM) or similar tables. After a certain

period when sufficient statistical data are gathered for calculating the relationship

(known as affinity) of attribute or predicate with transaction of sites, Attribute Affinity

Matrix (AAM) or Predicate Affinity Matrix (PAM) are generated using Bond Energy

algorithm or similar algorithm. From AAM and PAM, vertical and horizontal

fragmentation decision is made respectively. Then produced fragments are to be stored

in the sites of the distributed database though almost all TWIF ignore allocation of the

fragments to reduce complexity.

We have implemented the above model in our lab and execute the same sixty queries

those were used to test our technique with the assumption that at the initial stage the

centralized database is stored at Site1. Table 4.27 shows the overall system performance

of TWIF before DDBMS is fragmented and allocated to sites. We can see from Table

4.27 that during a long period before reasonable amount of statistical record access

frequencies by transactions are available for constructing attribute affinity matrix or

predicate affinity matrix and to fragment and allocate the database among the three

sites, percentage of hit of the overall system is only 33.33% which is much less in

comparison with our achieved 85.71% hit rate. This is graphically represented in Fig.

4.14 below. The reason of poor performance of TWIF is that, all sites other than central

site have no data. So all queries that are generating in those sites requires remote data

access thus scores miss. Only site1 got 100% hit because the whole database is stored

there centrally before fragmentation is performed to the DDBMS.

Table 4.27: Overall System Performance of TWIF

Site
Name

Queries
executed

Access
fragment stored
in local site

Access
fragment stored
in remote site

Percentage
of Hit

Percentage
of Miss

Site1 20 20 0 100% 0%

Site2 20 0 20 0% 100%

Site3 20 0 20 0% 100%

DDBMS 60 20 40 33.33% 66.66%

58

100%

0% 0%0%

100% 100%

66.66%

33.33%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

P
er

ce
nt

ag
e

of
 H

it
/ M

is
s

 Hit
Miss

Fig. 4.14: Hit Miss Ratio of TWIF for Three Sites

Comparison of MMF and TWIF by their hit and miss ratio is represented in Fig. 4.15-

Fig. 4.16.

80%
85% 85%

100%

0% 0%

90%

33.33%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

Pe
rc

en
ta

ge
 o

f H
it

Hit (MMF)
 Hit (TWIF)

 Fig. 4.15: Comparison of Hit between MMF & TWIF for Three Sites

10%
20%

0%

100% 100%

66.66%

15%15%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

Pe
rc

en
ta

ge
 o

f M
is

s

Miss (MMF)

Miss (TWIF)

Fig. 4.16: Comparison of Miss between MMF & TWIF for Three Sites

59

After a long period when sufficient empirical data will be available for construction of

AAM or PAM, TWIF will fragment their relations and allocate the fragmented sub-

relations to the sites of the distributed system. Then the percentage of hit of the overall

system will increase. This is shown in Table 4.28. We have fragmented the Loan

relation of the distributed banking database by the techniques of [1], [18] and [25]. We

have used the statistics of the same queries executed to find out performance of MMF

to construct predicate affinity matrix for TWIF.

Table 4.28: Performance of TWIF for Loan Relation after Allocation

Site Name Percentage of Hit Percentage of Miss

Site1 75% 25%

Site2 100% 0%

Site3 100% 0%

DDBMS 91.66% 8.33%

We can see from Table 4.28 that after allocation of fragments of relation Loan into the

sites of the distributed system, hit ratio of TWIF increases from 33.33% to 91.66%. As

actual query statistics of the system is found and relations are fragmented based on that

statistics in TWIF, so hit rate significantly increased. For the same relation, MMF

achieves 83.33% hit ratio which is much closer to TWIF. This situation is depicted in

Fig. 4.17.

60

100%

75% 75%
83.33%

75%

100% 100%
91.66%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 DDBMS

For Loan Relation (After allocation)

P
er

ce
nt

ag
e

of
 H

it
Hit (MMF)
Hit (TWIF)

 Fig. 4.17: Hit Miss Ratio of TWIF for Loan Relation after Allocation

Cost of allocation of fragments for TWIF:

From Table 4.28 it can be seen that performance of TWIF increases significantly after

fragmentation based on empirical data and allocate the fragments to respective sites. An

important thing to note that as TWIF stores all the data of the distributed database into a

single site (Central node) before allocation, so transferring data to different sites will

incur high cost. Following graph of Fig. 4.18 shows amount of data transfer and time

required if fragmentation and allocation is performed after 1, 2, 3, 4, 5 and 6 months. A

simulation was done in MATLAB with following assumptions:

 Database used: Distributed Banking Database System (DBDS)

 Number of tables: 8

 Number of sites: 10

 Number of application running in each site: 3

 Frequency of data entry: 1 tuple in each table of each site every second

 Data transfer rate among the sites of distributed system: 256 KBPS

We can see from Fig. 4.18 that, for a very small database DBDS, about 110 GB data

have to be transferred and approximately 4 days are required for fragmentation and

allocation based on TWIF.

61

18.3; 0.5
36.7; 1.1

55.0; 1.6
73.3; 2.2

91.7; 2.7
110.0; 3.3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Amount of Data to be Transfered (GB)

Ti
m

e
R

eq
ui

re
d

(D
ay

s)

Fig. 4.18: Simulation Results for Data Transfer & Time Requirement (TWIF)

Fig. 4.19 shows a comparison among total data generation, amount of data transfer

required using MMF with updated MCRUD matrix based on empirical data and amount

of data transfer required using TWIF for fragments allocation. We can see that if we

fragment the relations based on MMF technique previously then total data transfer

requirement is much less comparing with TWIF.

0

20

40

60

80

100

120

140

1 2 3 4 5 6

Months

D
at

a
(G

B
)

Total Data (DBDS)

Amount of Transfer
(MMF)
Amount of Transfer
(TWIF)

 Fig. 4.19: Comparison of Amount of Data

Fig. 4.20 shows a comparison between data transfer time required using MMF with

updated MCRUD matrix based on empirical data and transfer time required using

TWIF for fragments allocation. We can see that if we fragment the relations based on

62

MMF technique previously then much less data transfer time required comparing with

TWIF.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6

Months

Tr
an

sf
er

 T
im

e
(D

ay
s)

Transfer Time (MMF)
Transfer Time(TWIF)

 Fig. 4.20: Comparison of Transfer Time for MMF and TWIF

Comparison with StatPart:

Existing technique that provided a solution of initial fragmentation is StatPart described

in [41]. To fragment a relation, it starts with a randomly generated matrix of attribute

vs. queries called reflexivity matrix. It then construct symmetry matrix from reflexivity

matrix using two equations. Symmetry matrix is inputted to transitivity module which

uses an algorithm to produce two set of attributes that are used to break the relation into

two binary vertical fragments.

Main drawbacks of StatPart [41] are:

 It can suggest only two binary vertical fragments independent of number of sites

of the distributed system. So this technique is not suitable for a distributed

system with more than two allocation sites.

 As it starts with a randomly generated matrix that represents the relationship

among attributes and queries, optimum fragmentation decision cannot be

provided using this algorithm. So it continuously shift attributes from one

fragment to another fragment trial and error basis to improve hit ratio. But this

policy is not feasible on trial because of high cost incurred by transferring large

amount of data among sites.

63

Table 4.29 shows the comparison between MMF and StatPart techniques. Both the

techniques address initial fragmentation problem.

Table 4.29: Comparison between StatPart and MMF Techniques

Criteria StatPart MMF

Address initial
fragmentation problem? Yes Yes

Number of Fragments Always two Any number

Allocation Trial and error basis Where ALP maximum

Replication Not supported Supported

Performance Random Good and steady

Fragmentation type Vertical Horizontal / Vertical

4.7 Impact of the Increase of Number of Sites
Now we want to experiment the generalization of MMF so that we can verify whether
our technique is applicable to any number of sites of distributed system.

4.7.1 Number of Allocation Site is Four
We have increased total number of sites to four at design time by adding a local branch

of DBDB named Loc3 at Site4. This situation is depicted in Fig. 4.21.

Fig. 4.21: DBDB with Four Sites

4.7.1.1 Implementation of MMF for Four Sites
We have constructed the MCRUD matrix of Loan relation for four sites with three

applications running in each site. It is shown in Table 4.30 below:

Loc1

Loc2

Site 2 Corporate Site 1
Loc3

Site 4

Site 3

64

Table 4.30: MCRUD Matrix of Loan Relation with Four Sites
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3 Site4

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD RU R CRUD

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD R RU CRUD

Loan.LnType=SME R RU RU R CRUD R RU RU CRUD

Loan.LnType=HOME RU RU CRUD R RU R RU R RU

Loan.LnType=CAR R RU R RU RU CRUD RU R CRUD

Loan.Amount<50000 R CRUD R CRUD R CRUD RU R CRUD

Loan.Amount=50000:100000 R R CRUD R CRUD R CRUD R R CRUD

Loan.Amount>100000 RU R CRUD R CRUD R CRUD R RU

From Table 4.30 we have calculated ALP table for Loan relation shown in Table 4.31.

The process of how fragmentation and replication decision is made in four sites can be

understood from Table 4.32.

Table 4.31: ALP Table of Loan Relation with Four Sites

Attribute Name Precedence

LnNo -46

LnType -17

LnAmount -42

Table 4.32 Precedence Calculation and Fragmentation Decision for Loan Relation

Attribute
Name

Predicates Precedence
in Site 1

Precedence
in Site 2

Precedence
in Site 3

Precedence
in Site 4

Decision

LnType

LnType =
SME 5 13 5 12

Fragment in Site 2
Replica in site 4

LnType =
HOME 16 5 5 5 Fragment in Site 1

LnType =
CAR 5 5 12 13

Fragment in Site 4
Replica in site 3

65

Predicate set is generated for the attribute LnType of Loan relation.

PLoan ={LnType=SME, LnType=HOME , LnType=CAR }

For Horizontal fragmentation of Loan relation, following queries were used:

QLoan1 =Select * from Loan where LnType=HOME;

QLoan2 =Select * from Loan where LnType= SME;

QLoan3 =Select * from Loan where LnType= CAR;

QLoan4.1=Select * from Loan where LnType=SME;

QLoan4.2 =Select * from Loan where LnType= CAR;

4.7.1.2 Performance Analysis of MMF for Four Sites
We have executed same queries as previous in four sites of DBDS to check the impact

of site addition on hit miss ratio. Result is shown in Table 4.33 and Fig 4.22. We can

see that average hit ratio is 81.25% that is very close to our previous result 83.33%

achieved for three sites.

Table 4.33: Performance of MMF for Loan Relation Distributed in Four Sites

Site Percentage of Hit Percentage of Miss

Site1 100% 0%

Site2 75% 25%

Site3 75% 25%

Site4 75% 25%

Average 81.25% 19.75%

100%

75% 75% 75%
81.25%

0%

25% 25% 25%
19.75%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Site 4 Average

Pe
rc

en
ta

ge
 o

f H
it

/ M
is

s

 Hit
 Miss

Fig. 4.22: Hit Miss Ratio of MMF for Loan Relation Distributed in Four Sites

66

4.7.2 Number of Allocation Site is Five
We have increased total number of sites to five at design time by adding a branch deals

with industrial matters named Industrial at Site 5. This situation is depicted in Fig. 4.23.

Fig. 4.23: DBDB with Five Sites

4.7.2.1 Implementation of MMF for Five Sites
We have constructed the MCRUD matrix of Loan relation for five sites with three

applications running in each site. It is shown in Table 4.34.

Table 4.34: MCRUD Matrix of Loan Relation with Five Sites
Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3 Site4 Site5

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD R R CRUD R R CRUD

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD R RU CRUD R RU CRUD

Loan.LnType=SME R RU RU R CRUD R RU RU CRUD R R

Loan.LnType=HOME RU RU CRUD R RU R RU R RU R R

Loan.LnType=CAR R RU R RU RU CRUD RU R CRUD R R R

Loan.LnType=INDSTRY R R R R R RU R R RU R CRUD

Loan.Amount<50000 R CRUD R CRUD R CRUD R CRUD R CRUD

Loan.Amount=50000:100000 R R CRUD R CRUD R CRUD R CRUD R CRUD

Loan.Amount>100000 R CRUD R CRUD R CRUD R CRUD R CRUD

From Table 4.34 we have calculated ALP table for Loan relation shown in Table 4.35.

The process of how fragmentation and replication decision is made in five sites can be

understood from Table 4.36.

Loc1

Site 2

Site 3

Corporate

Loc2

Site 1
Loc3

Site 4
Site 5 Industrial

67

Table 4.35: ALP Table of Loan relation with Five Sites

Attribute Name Precedence

LnNo -63

LnType -22

LnAmount -80

Table 4.36: Precedence Calculation and Fragmentation Decision for Loan Relation

Attribute
Name

Predicates Precedence
in Site 1

Precedence
in Site 2

Precedence
in Site 3

Precedence
in Site 4

Precedence
in Site 5

Decision

LnType

LnType = SME 5 13 5 12 2
Fragment in

Site 2
Replica in site 4

LnType = HOME 16 5 5 5 2
Fragment in

Site 1

LnType = CAR 5 5 12 13 3
Fragment in

Site 4
Replica in site 3

LnType=
INDUSTRY

2 2 4 2 13
Fragment in

Site 5

Predicate set is generated for the attribute LnType of Loan relation.

PLoan ={LnType=SME, LnType=HOME , LnType=CAR }

For Horizontal fragmentation of Loan relation, following queries were used:

QLoan1 =Select * from Loan where LnType=HOME;

QLoan2 =Select * from Loan where LnType= SME;

QLoan3 =Select * from Loan where LnType= CAR;

QLoan4.1=Select * from Loan where LnType=SME;

QLoan4.2 =Select * from Loan where LnType= CAR;

QLoan5 =Select * from Loan where LnType= INDUSTRY;

4.7.2.2 Performance Analysis of MMF for Five Sites
We have executed same queries as previous in five sites of DBDS to check the impact

of site addition on hit miss ratio. Result is shown in Table 4.37 and Fig. 4.20. We can

68

see that average hit ratio is 82% which is quite close to our previous result 83.33%

achieved for three sites and 81.25% achieved for four sites. Another thing is to mention

that from experimental result it can be concluded that MMF has no inverse relation of

performance with increase of number of sites. Rather, in a site if the queries that are

generating are identical to the MCRUD matrices, hit rate will better. Otherwise hit rate

will decrease.

Table 4.37: Performance of MMF for Loan Relation Distributed in Five Sites

Site Percentage of Hit Percentage of Miss

Site1 100% 0%

Site2 75% 25%

Site3 80% 20%

Site4 80% 20%

Site5 75% 25%

Average 82% 18%

100%

75%
80% 80%

75%

0%

82%

25%
20%20%25%

18%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Site 4 Site 5 Average

P
er

ce
nt

ag
e

of
 H

it
/ M

is
s

 Hit
Miss

Fig. 4.24 Hit Miss Ratio of MMF for Loan Relation Distributed in Five Sites

69

Table 4.38 shows the hit and miss ratio of TWIF for Loan relation when number of

sites of DBDB are five. It can be seen that average hit ratio of the system is 20% which

is very poor in comparison with MMF that achieves 82% hit.

Table 4.38: Performance of TWIF for Loan Relation when Sites are Five

Site Percentage of Percentage of

Site1 100% 100%

Site2 0% 0%

Site3 0% 0%

Site4 0% 0%

Site5 0% 0%

Average 20% 20%

100%

0% 0% 0% 0%

20%

0%

100% 100% 100% 100%

80%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Site 4 Site 5 Average

Pe
rc

en
ta

ge
 o

f H
it

/ M
is

s

 Hit

 Miss

Fig. 4.25: Hit Miss Ratio of TWIF for Loan Relation When Sites is Five

Fig. 4.26 shows the performance of MMF and TWIF with the increase of number of

sites in the distributed system. We can see that MMF shows much better and quite

steady performance as sites increases from three to ten. In the same time performance

of TWIF falls gradually as new sites are added to the system. This is because when

new sites increase, they are only generating queries but have no data to answer the

queries. So it contributes to increase the miss rate of overall system fragmented based

on TWIF. It can be expressed by the equation: Hit rate = 1/S , where S is the total

number of sites in the system.

70

Fig. 4.26: Comparison of Hit Ratio between MMF and TWIF with Increasing Number of Sites

4.8 Summary
From the above result we can see that our technique has clearly outperforms the

technique stated in [41]. Our fragmentation technique achieved a very good hit rate

which is approximately 84%. As other techniques described in [1] – [40], [42] - [49]

could not provide solutions for initial state of the distributed system. Using TWIF

initial performance (hit ratio) of the system is only 33.33%. After a long period when

sufficient data for fragmenting the centralize database were available, hit rate of

TWIF increased significantly as much as 91.66% but in the price of high transfer cost

incurred for transferring data among the sites of the distributed system using

communication network.

Another thing is to mention that MMF achieves a steady hit rate over 80% and

TWIF’s performance falls gradually from 33.33% to 10% with the increase of number

of sites of DBDS from three to ten.

71

Chapter 5

Conclusion and Future Research

Making proper fragmentation of the relations and allocation of the fragments is a

major research area in distributed systems. Many techniques have been proposed by

the researchers using empirical knowledge of data access by different queries and

frequencies of queries executed in different sites of a distributed system. But proper

fragmentation and allocation at the initial stage of a distributed database has not yet

been addressed.

In this thesis we have presented a fragmentation technique to partition relations of a

distributed database properly at the initial stage when no data access statistics and

query execution frequencies are available. Instead of using empirical data, we have

developed a matrix namely Modified Create, Read, Update and Delete (MCRUD) to

find out precedence of attributes which increase locality of data. We have named this

precedence as Attribute Locality Precedence (ALP) which is used for making

fragmentation decisions. Using our technique no additional complexity is added for

allocating the fragments to the sites of a distributed database as fragmentation is

synchronized with allocation. So performance of a DDBMS can be improved

significantly by avoiding frequent remote access and high data transfer among the

sites.

5.1 Contributions of the Thesis
 The main contribution of this research is to develop a fragmentation technique

that can fragment relations of distributed database without the help of runtime

empirical data.

 Relations are fragmented initially with the help of ALP tables those are

constructed from MCRUD matrices using our developed cost functions. This

overcomes initial fragmentation problem of distributed database that is not

properly addressed in other fragmentation techniques.

 A very good hit rate (Approximately 85%) is achieved using out technique for

various kinds of insertion, selection, join, deletion and other queries.

72

 MMF technique can be applicable for any number of sites of the system. Its

performance is quite stable with increasing number of sites.

 In our technique large amount of costly data transfer using communicational

network can be avoided as fragments are correctly allocated to different sites

at the initial stage of the system.

 Creation of MCRUD matrix for every relation and calculation of ALP from

each matrix adds some additional cost in our system but this can be ignored

because matrix construction and ALP calculation will be perform offline

during the requirement analysis phase of distributed database development.

5.2 Future Research
In this research we have focused mainly on horizontal fragmentation of relational

database using MCRUD matrix. Our research can be extended to several directions.

Firstly, technique for vertical fragmentation of relational database using MCRUD

matrix can be developed. Integrating horizontal and vertical fragmentation, a mixed or

hybrid fragmentation technique can also be developed in the next step.

As distributed object oriented databases and data warehouses are gaining popularities

now a day so our research can be extended to support fragmentation in distributed

object oriented databases and data warehouses as well.

Related Publications
 Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, “A New Technique for

Database Fragmentation in Distributed Systems”, International Journal of
Computer Applications (IJCA), Vol. 5 No. 9, August 2010, ISBN: 978-93-
80746-60-9 (print), ISSN 0975-8887(online), pp. 20-24.

 Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, “A Novel Technique for

Initial Fragmentation of Distributed Relational Database using CRUD
Matrix”, Accepted in Annual International Conference on Advances in
Distributed and Parallel Computing, ADPC 2010, 1 – 2 November 2010,
Singapore, www.dpcomputing.org.

73

Bibliography

[1] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems. Prentice-Hall, New

Jersey, 1999.
[2] S. Ceri and G. Pelagatti, Distributed Databases Principles and System. McGraw- Hill, New

York, 1984.
[3] S. Navathe, K. Karlapalem, and M. Ra, “A Mixed Fragmentation Methodology for Initial

Distributed Database Design,” Journal of Computer and Software Engineering, vol. 3, no. 4
pp. 395–426, 1995.

[4] F. Bai˜ ao, M. Mattoso, and G. Zaverucha, “A Distribution Design Methodology for Object
DBMS,” Distributed and Parallel Databases, vol. 16, no. 1, pp. 45–90, 2004.

[5] A. M. Tamhankar and S. Ram, “Database Fragmentation and Allocation: An Integrated
Methodology and Case Study,” IEEE Trans. Systems Management, vol. 28, no. 3, pp. 194–
207, 1998.

[6] R. Blankinship, A. R. Hevner, and S. B. Yao, “An Iterative Method for Distributed Database
Design,” Proc. 17th Int’l Conf. on Very Large Data Bases, pp. 389–400, 1991.

[7] H. Ma, Distribution Design for Complex Value Databases, Doctoral thesis, Department of
Information Systems, Massey University, 2007.

[8] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal Data Partitioning in Database Design,” Proc.
ACM SIGMOD Int’l Conf. on Management of Data, pp. 128–136, 1982.

[9] Y. Zhang, “On Horizontal Fragmentation of Distributed Database Design,” Advances in
Database Research, World Scientific Publishing, pp. 121–130, 1993.

[10] M. Ra, “Horizontal Partitioning for Distributed Database Design,” Advances in Database
Research, World Scientific Publishing, pp. 101–120, 1993.

[11] C.-H. Cheng, W.-K. Lee, and K.-F. Wong, “A Genetic Algorithm-Based Clustering Approach
for Database Partitioning,” IEEE Trans. Systems, Man, and Cybernetics, Part C, vol. 32, no.
3, pp. 215–230, 2002.

[12] H. Mahboubi and J. Darmont, “Enhancing XML Data Warehouse Query Performance by
Fragmentation,” Proc. ACM Symposium on Applied Computing (SAC09), pp.1555-1562, 2009.

[13] S.-K. Chang and W.-H. Cheng, “A Methodology for Structured Database Decomposition,”
IEEE Trans. Software Engineering (TSE), vol. 6, no. 2, pp. 205–218, 1980.

[14] D. G. Shin and K. B. Irani, “Partitioning a Relational Database Horizontally Using a
Knowledge-Based Approach,” ACM SIGMOD Record vol. 14, no. 4, pp. 95–105, 1985.

[15] D. G. Shin and K. B. Irani, “Fragmenting Relations Horizontally Using a Knowledge Based
Approach,” IEEE Trans. Software Engineering (TSE), vol. 17, no. 9, pp. 872–883, 1991.

[16] N. Khalil, D. Eid, and M. Khair, “Availability and Reliability Issues in Distributed Databases
Using Optimal Horizontal Fragmentation,” Springer Lecture Notes in Computer Science, vol.
1677, pp. 771–780, 1999.

[17] K. Karlapalem, S. B. Navathe, and M. M. A. Morsi, “Issues in Distribution Design of Object-
Oriented Databases,” Proc. Int’l Workshop Distributed Object Management (IWDOM), pp.
148–164, 1992.

[18] H. Ma, K.-D. Schewe, and Q. Wang, “A Heuristic Approach to Cost-Efficient Derived
Horizontal Fragmentation of Complex Value Databases,” Proc. 18th Australasian Database
Conf. (ADC), pp. 103 – 111, 2007.

[19] L. Bellatreche, K. Karlapalem, and G. Basak, “Horizontal Class Partitioning for Queries in
Object Oriented Databases,” HKUST-CS98-6 Tech. report, 1998.

[20] L. Bellatreche, K. Karlapalem, and A. Simonet, “Algorithms and Support for Horizontal Class
Partitioning in Object-Oriented Databases,” Distributed and Parallel Databases, vol. 8, no. 2,
pp. 155–179, 2000.

74

[21] C. I. Ezeife and K. Barker, “Horizontal Class Fragmentation in Distributed Object Based
Systems,” Proc. Second Biennial European Joint Conf. on Engineering Systems Design and
Analysis, pp. 225–235, 1994.

[22] C. I. Ezeife and K. A. Barker, “Comprehensive Approach to Horizontal Class Fragmentation
in a Distributed Object Based System,” Distributed and Parallel Databases, vol. 3, no. 3, pp.
247–272, 1995.

[23] C. I. Ezeife and J. Zheng, “Measuring the Performance of Database Object Horizontal
Fragmentation Schemes,” Proc. Int’l Database Engineering and Applications Symposium
(IDEAS), pp. 408–414, 1999.

[24] F. Bai˜ ao, M. Mattoso, and G. Zaverucha, “Horizontal Fragmentation in Object DBMS: New
Issues and Performance Evaluation,” Proc. 19th IEEE Int’l Performance, Computing and
Communications Conf., pp. 108–114, 2000.

[25] F.F. Marwa, I.E. Ali, and A. A. Hesham, “A Heuristic Approach for Horizontal Fragmentation
and Alllocation in DOODB,” Proc. INFOS2008, pp. 9-16, 2008.

[26] S. Ceri, S. B. Navathe, and G. Wiederhold, “Distribution Design of Logical Database
Schemas,” IEEE Trans. Software Engineering (TSE) vol. 9, no. 4, pp. 487–504, 1983.

[27] F. Bai˜ ao, and M. Mattoso, “A Mixed Fragmentation Algorithm for Distributed Object
Oriented Databases,” Proc. Int’l Conf. Computing and Information, pp. 141–148, 1998.

[28] J. A. Hoffer and D. G. Severance, “The Use of Cluster Analysis in Physical Database Design,”
Proc. First Int’l Conf. Very Large Data Bases (VLDB), pp. 69–86, 1975.

[29] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dour, “Vertical Partitioning Algorithms for
Database Design,” ACM Transactions on Database Systems (TODS), vol. 9, no. 4, pp. 680–
710, 1984.

[30] S. B. Navathe and M. Ra, “Vertical Partitioning for Database Design: A Graphical
Algorithm,” ACM SIGMOD Record, vol. 14, no. 4, pp. 440–450, 1989.

[31] X. Lin and Y. Zhang, “A New Graphical Method of Vertical Partitioning in Database Design,”
Proc. 4th Australian Database Conf. (ADC), pp. 131–144, 1993.

[32] H. Ma, K.-D. Schewe, and M. Kirchberg, “A Heuristic Approach to Vertical Fragmentation
Incorporating Query Information,” Proc. 7th Int’l Baltic Conf. on Databases and Information
Systems (DB&IS), pp. 69–76, 2006.

[33] M. AlFares, H. Abdalla, and F. Marir, “Vertical Partitioning for Database Design: A Grouping
Algorithm,” Proc. Int’l Conf. Software Engineering and Data Engineering (SEDE), pp. 218-
223, 2007.

[34] T. H. Ngo, “New Objective Function for Vertical Partitioning in Database System,” Proc.
Spring Young Researcher's Colloquium on Database and Information Systems, 2008.

[35] Runceanu A. “Fragmentation in Distributed Databases,” Innovations and Advanced
Techniques in Systems, Computing Sciences and Software Engineering, Springer, pp. 57–62,
2008.

[36] D. Cornell and P. Yu, “A Vertical Partitioning Algorithm for Relational Databases,” Proc.
Int’l Conf. on Data Engineering, pp. 30–35, 1987.

[37] D. W. Cornell and P. S. Yu, “An Effective Approach to Vertical Partitioning for Physical
Design of Relational Databases,” IEEE Trans. on Software Engineering, vol. 16, no. 2, pp.
248–258, 1990.

[38] P.-C. Chu, “A Transaction Oriented Approach to Attribute Partitioning,” Information Systems
vol. 17, no. 4, pp. 329–342, 1992.

[39] S. Chakravarthy, J. Muthuraj, R. Varadarajan, and S. B. Navathe, “An Objective Function for
Vertically Partitioning Relations in Distributed Databases and its Analysis,” Distributed and
Parallel Databases, vol. 2, no. 2, pp. 183–207, 1994.

[40] J. H. Son and M. H. Kim, “An Adaptable Vertical Partitioning Method in Distributed
Systems,” Journal of Systems and Software, vol. 73, no. 3, pp. 551–561, 2004.

75

[41] E. S. Abuelyaman, “An Optimized Scheme for Vertical Partitioning of a Distributed
Database,” Int’l Journal of Computer Science and Network Security, Vol.8, No.1, pp 310-316,
2008.

[42] C. I. Ezeife and K. Barker, “Vertical Fragmentation for Advanced Object Models in a
Distributed Object Based System,” Proc. 7th Int’l Conf. Computing and Information, pp. 613–
632, 1995.

[43] G. S. Chinchwadkar and A. Goh, “An Overview of Vertical Partitioning in Object Oriented
Databases,” The Computer Journal, vol. 42, no. 1, pp. 39–50, 1999.

[44] K. Karlapalem and Q. Li, “Partitioning Schemes for Object Oriented Databases,” Proc. 5th
IEEE Int’l Workshop on Research Issues in Data Engineering- Distributed Object
Management (RIDE-DOM), pp. 42–49, 1995.

[45] K. Karlapalem, Q. Li, and S. Vieweg, “Method Induced Partitioning Schemes for Object-
Oriented Databases,” Proc. Int’l Conf. Distributed Computing Systems, pp. 377–384, 1996.

[46] K. Karlapalem and Q. Li, “A Framework for Class Partitioning in Object-Oriented
Databases,” Distributed and Parallel Databases, vol. 8, no. 3, pp. 333–366, 2000.

[47] E. Malinowski and S. Chakravarthy, “Fragmentation Techniques for Distributing Object-
Oriented Databases,” Proc. Int’l Conf. Conceptual Modeling, pp. 347–360, 1997.

[48] C. I. Ezeife and K. Barker, “Distributed Object Based Design: Vertical Fragmentation of
Classes,” Distributed and Parallel Databases, vol. 6, no. 4, pp. 317–350, 1998.

[49] W. W. Chu, “Optimal File Allocation in a Multiple Computer System,” IEEE Trans.
Computers, vol. 18, no. 10, pp. 885–889, 1969.

[50] R. G. Casey, “Allocation of Copies of Files in an Information Network,” Proc. of AFIPS
SJCC, vol. 40, pp. 617–625, 1972.

[51] S. Mahmoud and J. S. Riordon, “Optimal Allocation of Resources in Distributed Information
Networks,” ACM Trans.Database Systems (TODS), vol. 1, no. 1, pp. 66–78, 1976.

[52] I. Ahmad, K. Karlapalem, Y.-K. Kwok, and S.-K. So, “Evolutionary Algorithms for
Allocating Data in Distributed Database Systems,” Distributed and Parallel Databases, vol.
11, no. 1, pp. 5–32, 2002.

[53] M.-S. Menon, “Allocating Fragments in Distributed Databases,” IEEE Trans. Parallel and
Distributed Systems, vol. 16, no. 7, pp. 577–585, 2005.

[54] Y.-F. Huang and J.-H. Chen, “Fragment Allocation in Distributed Database Design,”
Information Science and Engineering, vol. 17, pp. 491–506, 2001.

[55] P. Surmsuk, “The Integrated Strategic Information System Planning Methodology,” IEEE
Computer Society Press, pp. 467-475, 2007.

[56] J. L. Whitten and L. D. Bentley, Systems Analysis and Design Methods. McGraw-Hill, 2004.
[57] K. E. Wiegers, Software Requirements. Microsoft Publication, 2003.
[58] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database Systems Concepts. McGraw-

Hil l , 2001.
[59] C. S. Mullins, “Defining Database Performance,”

ht tp: / /www.craigsmull ins .com/cnr_db.htm, 2010.
[60] G. Fritchey and S. Dam, SQL Server 2008 Query Performance Tuning Distilled. Apress, 2009.

76

Table of Contents

Declaration ... i
Acknowledgement ... ii
Abstract ... iii
Table of Contents ... iv
List of Figures ... vi
List of Tables ... vii
Chapter 1: Introduction .. 1

1.1 Background .. 1
1.2 Problem Definition .. 2
1.3 Objectives of the Thesis .. 3
1.4 Overview of the Thesis .. 3
1.5 Organization of the Thesis ... 3

Chapter 2: Literature Survey ... 5
2.1 Design Techniques: Fragmentation and Allocation .. 5

2.1.1 Fragmentation ... 5
2.1.2 Allocation ... 6
2.1.3 Benefits of Database Fragmentation .. 6
2.1.4 Drawback of Database Fragmentation ... 7
2.1.5 Complexity of the Problem .. 7

2.2 Horizontal Fragmentation .. 7
2.2.1 Primary Horizontal Fragmentation for Relational Databases 8

2.2.1.1 Minterm Predicate Based Approaches .. 8
2.2.1.2 Affinity Based Approaches ... 9
2.2.1.3 Other Approaches .. 10

2.2.2 Primary Horizontal Fragmentation for Object Oriented Databases 11
2.2.3 Derived Horizontal Fragmentation for Relational Databases 13
2.2.4 Derived Horizontal Fragmentation for Object Oriented Databases 13

2.3 Vertical Fragmentation .. 14
2.3.1 Vertical Fragmentation for Relational Databases 15

2.3.1.1 Affinity Based Approaches ... 15
2.3.1.2 Cost Based Approaches ... 17
2.3.1.3 Initial Vertical Fragmentation ... 18

2.3.2 Vertical Fragmentation for Object Oriented Databases 19
2.4 Mixed Fragmentation .. 20
2.5 Allocation .. 21
2.6 Summary .. 22

Chapter 3: MCRUD Matrix based Fragmentation Technique (MMF) 24
3.1 Initial Fragmentation ... 24
3.2 CRUD Matrix .. 25
3.3 MCRUD Matrix ... 25
3.4 Attribute Locality Precedence (ALP) .. 26
3.5 ALP Table ... 26
3.6 ALP Cost Functions .. 27
3.7 Fragmentation based on MCRUD Matrix ... 29

3.7.1 MCRUD Construction .. 31
3.7.2 ALP Calculation ... 32

iv

77

3.7.3 ALP Table Construction ... 33
3.7.4 Predicate Set Generation .. 34
3.7.5 Fragmentation of Relation .. 34

3.8 Analysis of MMF technique .. 35
3.8.1 Memory Cost Analysis ... 35
3.8.2 Computational Cost Analysis ... 36

3.9 Scalability of MMF Technique ... 37
3.9.1 Relation between Number of Sites with Number of Predicates 37

Case 1: S < P .. 37
Case 2: S = P .. 38
Case 3: S > P .. 39

3.9.2 Impact of Schema Change .. 39
3.9.2.1 Normalization .. 40
3.9.2.2 De-Normalization .. 40
3.9.3 Impact of Number of Site Increase ... 40
3.9.4 Rearranging based on Empirical Data .. 41
3.9.5 Implementation of other Fragmentation Types .. 42

3.10 Summary .. 42
Chapter 4: Results and Discussion ... 43

4.1 Experimental Environment .. 43
4.2 Construction of MCRUD Matrix ... 44
4.3 Calculation of ALP Values and Construction of ALP Tables 47
4.4 Generation of Predicate Set and Fragmentation of the Relations 49
4.5 Queries for Performance Analysis of MMF .. 50

Overall Performance: ... 55
4.6 Comparison with other Techniques ... 56
4.7 Impact of the Increase of Number of Sites .. 63

4.7.1 Number of Allocation Site is Four ... 63
4.7.1.1 Implementation of MMF for Four Sites .. 63
4.7.1.2 Performance Analysis of MMF for Four Sites 65

4.7.2 Number of Allocation Site is Five .. 66
4.7.2.1 Implementation of MMF for Five Sites ... 66
4.7.2.2 Performance Analysis of MMF for Five Sites 67

4.8 Summary .. 70
Chapter 5: Conclusion and Future Research ... 71

5.1 Contributions of the Thesis ... 71
5.2 Future Research ... 72

Related Publications .. 72
Bibliography ... 73

v

78

List of Figures

Fig. 3.1: Block Diagram of MMF Technique ... 30
Fig. 3.2: Distributed Banking Database System ... 31
Fig 4.1: ER diagram of DBDS .. 43
Fig 4.2: Relation Schema of E-R Diagram of Fig. 4.1 .. 44
Fig 4.3: Distributed Banking Database System Network ... 44
Fig. 4.4: Hit Miss Ratio for Loan Relation ... 51
Fig. 4.5: Hit Miss Ratio for Customer .. 52
Fig. 4.6: Hit Miss Ratio for Accounts ... 52
Fig. 4.7: Hit Miss Ratio for AccofBranch ... 53
Fig. 4.8: Hit Miss Ratio for LnofBranch ... 53
Fig. 4.9: Hit Miss Ratio for AccCust relation ... 54
Fig. 4.10: Hit Miss Ratio for LnCust ... 54
Fig. 4.11: Hit Miss Ratio for Branch ... 55
Fig. 4.12: Hit Miss Ratio of MMF Technique for Three Sites 56
Fig. 4.13: Model of other Non-initial Fragmentation Techniques 56
Fig. 4.14: Hit Miss Ratio of TWIF for Three Sites ... 58
Fig. 4.15: Comparison of Hit between MMF & TWIF for Three Sites 58
Fig. 4.16: Comparison of Miss between MMF & TWIF for Three Sites 58
Fig. 4.17: Hit Miss Ratio of TWIF for Loan Relation after Allocation 60
Fig. 4.18: Simulation Results for Data Transfer & Time Requirement (TWIF) 61
Fig. 4.19: Comparison of Amount of Data .. 61
Fig. 4.20: Comparison of Transfer Time for MMF and TWIF 62
Fig. 4.21: DBDB with Four Sites .. 63
Fig. 4.22: Hit Miss Ratio of MMF for Loan Relation Distributed in Four Sites 65
Fig. 4.23: DBDB with Five Sites .. 66
Fig. 4.24 Hit Miss Ratio of MMF for Loan Relation Distributed in Five Sites 68
Fig. 4.25: Hit Miss Ratio of TWIF for Loan Relation When Sites is Five 69
Fig. 4.26: Comparison of Hit Ratio between MMF and TWIF with Increasing Number of Sites . 70

vi

79

List of Tables

Table 3.1: Traditional CRUD Matrix ... 25
Table 3.2: An MCRUD Matrix for E Relation ... 26
Table 3.3: An ALP Table ... 27
Table 3.4: Information Need Analysis Form .. 29
Table 3.5: Accounts Relation ... 31
Table 3.6: MCRUD Matrix of Accounts Relation ... 32
Table 3.7: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 32
Table 3.8: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 33
Table 3.9: MCRUD Matrix for ALP Calculation (predicate: BrName=Dhk) 33
Table 3.10: ALP Table of Accounts Relation .. 34
Table 3.11: Part of Accounts Relation Allocated to Site 1 ... 35
Table 3.12: Part of Accounts Relation Allocated to Site 2 ... 35
Table 3.13: Part of Accounts Relation Allocated to Site 3 ... 35
Table 3.14: Decision Table when S<P ... 38
Table 3.15: Decision Table when S=P ... 38
Table 3.16: Decision Table when S>P ... 39
Table 3.17: MCRUD Matrix for Vertical Fragmentation ... 42
Table 4.1: MCRUD Matrix of Branch relation .. 45
Table 4.2: MCRUD Matrix of Loan relation .. 45
Table 4.3: MCRUD Matrix of Customer relation .. 45
Table 4.4: MCRUD Matrix of Accounts relation ... 46
Table 4.5: MCRUD Matrix of AccofBranch relation ... 46
Table 4.6: MCRUD Matrix of LnofBranch relation ... 46
Table 4.7: MCRUD Matrix of AccCust relation .. 47
Table 4.8: MCRUD Matrix of LnCust relation .. 47
Table 4.9: Precedence Calculation for LnType Attribute of Loan Relation 47
Table 4.10: ALP Table of Loan .. 48
Table 4.11: ALP Table of Branch .. 48
Table 4.12: ALP Table of Customer .. 48
Table 4.13: ALP Table of Accounts ... 48
Table 4.14: ALP Table of AccofBranch .. 48
Table 4.15: ALP Table of LnofBranch ... 48
Table 4.16: ALP Table of AccCust .. 48
Table 4.17: ALP Table of LnCust .. 48
Table 4.18: Hit Miss Ratio for Loan ... 51
Table 4.19: Hit Miss Ratio for Customer .. 52
Table 4.20: Hit Miss Ratio for Accounts ... 52
Table 4.21: Hit Miss Ratio for AccofBranch ... 53
Table 4.22: Hit Miss Ratio for LnofBranch ... 53
Table 4.23: Hit Miss Ratio for AccCust ... 54
Table 4.24: Hit Miss Ratio for LnCust ... 54
Table 4.25: Hit Miss Ratio for Branch ... 55
Table 4.26: Overall System Performances of MMF ... 55
Table 4.27: Overall System Performance of TWIF .. 57
Table 4.28: Performance of TWIF for Loan Relation after Allocation 59

vii

80

Table 4.29: Comparison between StatPart and MMF Techniques 63
Table 4.30: MCRUD Matrix of Loan Relation with Four Sites 64
Table 4.31: ALP Table of Loan Relation with Four Sites .. 64
Table 4.32 Precedence Calculation and Fragmentation Decision for Loan Relation . 64
Table 4.33: Performance of MMF for Loan Relation Distributed in Four Sites 65
Table 4.34: MCRUD Matrix of Loan Relation with Five Sites 66
Table 4.35: ALP Table of Loan relation with Five Sites .. 67
Table 4.36: Precedence Calculation and Fragmentation Decision for Loan Relation 67
Table 4.37: Performance of MMF for Loan Relation Distributed in Five Sites 68
Table 4.38: Performance of TWIF for Loan Relation when Sites are Five 69

viii

	01 Cover page
	02 Thesis Abstract
	00000001

	03 MScThesis

