
M.Sc. Engg. Thesis

A Resource Reservation Scheme for Workflow-based
Applications in Grid

by
Md. Abu Sayeed Mondol

Submitted to

Department of Computer Science and Engineering
in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

April, 2011

The thesis titled ‘A Resource Reservation Scheme for Workflow-based Applications in Grid’, submit-
ted by Md. Abu Sayeed Mondol, Roll No. 040805040P, Session April 2008, to the Department of Computer
Science and Engineering, Bangladesh University of Engineering and Technology, has been accepted as sat-
isfactory in partial fulfilment of the requirements for the degree of Master of Science in Computer Science
and Engineering and approved as to its style and contents. Examination held on April 26, 2011.

Board of Examiners

1.
Dr. Md. Mostofa Akbar Chairman
Professor (Supervisor)
Department of Computer Science & Engineering
BUET, Dhaka 1000

2.
Dr. Md. Monirul Islam Member
Professor & Head (Ex-officio)
Department of Computer Science & Engineering
BUET, Dhaka 1000

3.
Dr. M. Kaykobad Member
Professor
Department of Computer Science & Engineering
BUET, Dhaka 1000

4.
Dr. Reaz Ahmed Member
Associate Professor
Department of Computer Science & Engineering
BUET, Dhaka 1000

5.
Dr. Mohammad Nurul Huda Member
Associate Professor (External)
Department of Computer Science & Engineering
United International University, Dhaka

i

Candidate’s Declaration

This is to certify that the work entitled ‘A Resource Reservation Scheme for Workflow-based
Applications in Grid’ is the outcome of the research carried out by me under the supervision of
Dr. Md. Mostofa Akbar in the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology, Dhaka-1000. It is also declared that this thesis or any
part of it has not been submitted elsewhere for the award of any degree or diploma.

Md. Abu Sayeed Mondol
Candidate

ii

Contents

Board of Examiners i

Candidate’s Declaration ii

Acknowledgements ix

Abstract x

1 Introduction 1

1.1 Grid Computing . 1

1.2 Benefits of Grid Computing . 3

1.2.1 Exploiting underutilized resources . 3

1.2.2 Parallel CPU capacity . 4

1.2.3 Virtual resources and virtual organizations for collaboration 4

1.2.4 Access to additional resources . 4

1.2.5 Resource balancing . 4

1.2.6 Reliability . 5

1.2.7 Economy . 5

1.2.8 Environment . 5

1.3 Grid by Examples . 5

1.3.1 Search for Extraterrestrial Intelligence . 6

1.3.2 Scientific Simulation . 6

1.3.3 Medical Images . 6

1.3.4 Big Science . 6

1.3.5 E-Learning . 7

1.4 Motivation for the Work . 7

1.4.1 The Need for Advance Reservation . 7

iii

CONTENTS iv

1.4.2 Why Workflow-based Applications? . 8

1.5 Challenges . 8

1.6 Scope of the Work . 9

1.7 Thesis Organization . 9

2 Preliminaries 11

2.1 Grid Resources . 11

2.1.1 Computation . 11

2.1.2 Storage . 12

2.1.3 Communication . 12

2.1.4 Software and licenses . 13

2.1.5 Other resources . 13

2.2 Resource usage policies . 13

2.3 Tasks and Applications . 14

2.3.1 Tasks . 14

2.3.2 Applications . 14

2.4 Workflow-based Application . 15

2.5 Critical Path Modeling . 17

2.6 Related Works on Resource Reservation in Grid 20

3 New Resource Reservation Scheme in Grid 24

3.1 Problem Statement . 24

3.2 Proposed Resource Reservation Scheme . 25

3.2.1 Components of the system . 25

3.2.2 Phases of resource reservation . 27

3.3 Major Data Structures . 29

3.3.1 Data structures for Resource Availability Status 29

3.3.2 Data structure for task to CN mapping . 30

3.4 Proposed Approach . 31

3.5 Major Algorithms and Their Descriptions . 34

3.5.1 Algorithms Related to Data Structure . 34

3.5.2 Algorithms Related to Resource Reservation Scheme 34

3.6 An Illustrative Example . 38

CONTENTS v

3.6.1 Details of First Iteration . 42

3.6.2 Details of Second Iteration . 45

3.7 Complexity Analysis . 48

4 Simulation Results 49

4.1 Grid Simulation Tools . 49

4.1.1 Simulation Tools for Grid . 49

4.1.2 GridSim Toolkit . 50

4.2 Experimental Setup . 51

4.3 Simulation data . 52

4.4 Measurement Metrics . 52

4.5 Outcome of the simulation . 53

4.6 Comparison of the result . 53

5 Conclusion 63

5.1 Major Contributions . 63

5.2 Directions of Further Research . 64

A Major Algorithms 69

A.1 Algorithms realted to data structures . 69

B Simulation Outputs 72

List of Figures

1.1 From Traditional Computing Infrastructure to Grid Computing Infrastructure . . . 2

1.2 Grid : a setup with independent computing resources 3

2.1 An application with dependencies between the tasks 16

2.2 Standard Task Graph (STG) format . 17

2.3 Structure of a task graph . 18

2.4 TG without edge weight . 19

2.5 Structur of a node of a TG to show Slack Time and Critical Path 19

2.6 Task Graph with EST and LST . 20

3.1 Architecture of our proposed system . 28

3.2 A node of the linked list to contain reservation information 29

3.3 Linked list to keep reservation information of a resource of a CN 30

3.4 Linked list to keep resource reservation information as shown in Table 3.2 30

3.5 (a) Application used as example in this section (b) Representation of the applica-

tion with earliest and latest start time . 39

3.6 (a) A linked list structure for reservation status (b) equivalent array structure of the

list (c) Symbols used in the array and their meanings 39

3.7 Initial reservation status of the CNs considered for the example 40

3.8 Status of the CNs after T0 and T2 are mapped in the First Iteration 42

3.9 Status of the CNs after T1 is mapped in the First Iteration 43

3.10 Status of the CNs after T3, T4 and T5 are mapped in the First Iteration 44

3.11 Status of the CNs after T0, T1 and T3 are mapped in the Second Iteration 45

3.12 Status of the CNs after T2 is mapped in the Second Iteration 46

3.13 Status of the CNs after T4 and T5 are mapped in the Second Iteration 47

vi

LIST OF FIGURES vii

4.1 Percentage of applications with 50 tasks with zero delay scheduling for different

number of CNs at average load . 54

4.2 Percentage of applications with 100 tasks with zero delay scheduling for different

number of CNs at average load . 54

4.3 Percentage of applications with 300 tasks with zero delay scheduling for different

number of CNs at average load . 55

4.4 Average delay for an application with 50 tasks for different number of CNs at

average load . 55

4.5 Average delay for an application with 100 tasks for different number of CNs at

average load . 56

4.6 Average delay for an application with 300 tasks for different number of CNs at

average load . 56

4.7 Percentage of zero delayed applications for applications with 50 tasks at average

load for 20 CNs . 57

4.8 Percentage of zero delayed applications for applications with 100 tasks at average

load for 20 CNs . 57

4.9 Percentage of zero delayed applications for applications with 300 tasks at average

load for 20 CNs . 58

4.10 Average delay for applications with 50 tasks at average load for 20 CNs 59

4.11 Average delay for applications with 100 tasks at average load for 20 CNs 59

4.12 Average delay for applications with 300 tasks at average load for 20 CNs 60

4.13 The average time required to schedule an application with 50 tasks at average load 61

4.14 The average time required to schedule an application with 100 tasks at average load 61

4.15 The average time required to schedule an application fwith 300 tasks at average

load . 62

List of Tables

3.1 Example of reserved time space of a CN . 30

3.2 Start and end time relative to reference time . 31

3.3 An Example of storing mapping information for an application 31

3.4 Details of the attributes used . 35

3.5 The initial status of the tasks . 41

3.6 Status of the tasks after T0 and T2 are mapped in the first iteration 42

3.7 Status of the tasks after T1 is mapped in the First Iteration 43

3.8 Status of the tasks after T3, T4 and T5 are mapped in the First Iteration 44

3.9 Status of the tasks after T0, T1 and T3 are mapped in the Second Iteration 45

3.10 Status of the tasks after T2 is mapped in the Second Iteration 46

3.11 Status of the tasks after T4 and T5 are mapped in the Second Iteration 47

B.1 Output for the applications with 50 tasks . 73

B.2 Output for the applications with 100 tasks . 74

B.3 Output for the applications with 300 tasks . 75

viii

Acknowledgments

All praises due to Allah, the most benevolent and merciful.

I express my heart-felt gratitude to my supervisor, Dr. Md. Mostofa Akbar for his constant supervision of

this work. He helped me a lot in every aspect of this work and guided me with proper directions whenever

I sought one. His patient hearing of my ideas, critical analysis of my observations and detecting flaws (and

amending thereby) in my thinking and writing have made this thesis a success.

I also want to thank the other members of my thesis committee: Dr. Md. Monirul Islam, Dr. M.

Kaykobad, Dr. Reaz Ahmed and Dr. Mohammad Nurul Huda for their valuable suggestions.

I would like to express my ever gratefulness to my parents, sisters and brothers for their continuous

support. Finally, I cannot forget some of my colleagues (Rifat Shahriar, Rajkumar Das, Anindya Tahsin

Prodhan and Shahriar Iqbal) for their supports. May Allah reward them all in here and hereafter.

ix

Abstract

Grid computing, a parallel and distributed computing infrastructure via wide-area sharing of

computational resources, has evolved to be a mainstream technology enabling large-scale virtual

organizations. Since the main objective of grid computing is to support resource sharing within

a networked infrastructure, managing resources properly in grid environment is very important.

In most grid systems where submitted tasks are initially placed into a queue due to unavailablity

of required resources, there is no guarantee as to when these tasks will be executed. This policy

may cause problems for time-critical applications. This policy is also problematic for workflow-

based applications where tasks have inter-dependencies. Using Advance Reservation (AR) in grid

systems allows users to secure or guarantee resources prior to executing their jobs. The resource

reservation is a scheduling process that maps tasks on the distributed resources. One of the major

challenges of resource reservation for a workflow-based application is to minimize the delay of ex-

ecution of the overall application. In general, the problem of mapping a set of interdependent tasks

on distributed services belongs to a class of problems known as NP-Complete problems. Thus, in

practice, heuristics are most often used to schedule workflow-based applications in grid environ-

ments. In this thesis some properties like slack time of tasks, critical paths etc. of a workflow-based

application have been exploited to provide a resource reservation scheme that gives better results

and supports advance reservation. We demonstrate our claims by conducting a detailed perfor-

mance evaluation and comparing with existing system for grid computing.

x

Chapter 1

Introduction

1.1 Grid Computing

Grid computing is often presented as an analogy to power grids where users or electrical appliances

get access to electricity through wall sockets with no care or consideration for where or how the

electricity is actually generated. In this view of grid computing, computing becomes pervasive

and individual users or client applications gain access to computing resources, such as processors,

storage, data, applications etc., as needed with little or no knowledge of where those resources are

located or what the underlying technologies, hardware, operating system, and so on are.

Grid is a parallel and distributed system that enables sharing, selection and aggregation of ge-

ographically distributed computing resources, owned and controlled by multiple organizations or

individuals. Grid computing may be described as the virtualization and pooling of computational

resources into a single set of shared services [17]. The main objective of grid computing is to

utilize the unused computational resources of multiple organizations or individuals to provide cost

effective computational facilities. Since the resources of the grid environment is owned and con-

trolled by multiple organizations and individuals, there needs a centralized system to manage and

coordinate the resources for the processing of the applications efficiently. Figure 1.1 compares the

difference in infrastructures between traditional computing and grid computing.

Grid computing operates on three basic technology principles:

• Standardize hardware and software components to reduce incompatibility and simplify con-

figuration and deployment

• Virtualize computing resources by pooling hardware and software into shared resources

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: From Traditional Computing Infrastructure to Grid Computing Infrastructure

• Automate systems management, including resource provisioning and monitoring

Virtualizing computing resources means that applications are not tied to specific server, storage,

network components or any other computing resources and can use any virtualized computing

resource. Virtualization occurs through a sophisticated software layer that hides the underlying

complexity of resources and presents a simplified, coherent interface used by applications and

other computing resources.

Grid can be regarded as a technology with no boundaries. Due to the integration of a large num-

ber of computing resources, no matter what they are, in a single virtual computing environment,

grid makes possible:

• The effective use of computing resources that otherwise would remain idle for most of the

time

• To perform complex and computing-demanding tasks that would normally require large

scale computing resources

Like Web Technology that has brought revolution in the world of information sharing, Grid

Computing is going to be the next technological revolution by integrating and making available

not only information, but also computing resources such as computing power and data-storage

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Grid : a setup with independent computing resources

capacity [21]. Figure 1.2 illustrates a way that a grid can be built by means of computing resources

that are somehow interconnected by the Internet but there is no other relationship among them.

1.2 Benefits of Grid Computing

1.2.1 Exploiting underutilized resources

Grid computing is used to run applications on machines which are idle or underutilized. In most

organizations as well as individual usage, there are large amounts of underutilized computing

resources. Most desktop machines are busy less than 5 percent of the time over a business day [20].

Even server machines can often be relatively idle. Similarly other resources, like storage capacity,

network bandwith and so on, remain underutilized. Grid computing provides a framework for

exploiting these underutilized resources and thus has the possibility of substantially increasing the

efficiency of resource usage.

CHAPTER 1. INTRODUCTION 4

1.2.2 Parallel CPU capacity

The potential for massive parallel CPU capacity is one of the most common visions and attractive

features of a grid. The application to run is partitioned into independently running parts that are

executed in parallel on different machines in the grid. A perfectly scalable application will, for

example, finish in one tenth of the time if it uses ten times the number of processors. Barriers often

exist to scalability since applications may not be transformed to run in parallel on a grid.

1.2.3 Virtual resources and virtual organizations for collaboration

Grid computing provides environment and standards that enable heterogeneous systems to work

together to form the image of a large virtual computing system offering a variety of resources. The

users of the grid can be organized dynamically into a number of virtual organizations, each with

different policy requirements. These virtual organizations can share their resources collectively as

a larger grid.

1.2.4 Access to additional resources

As already stated, in addition to processing and storage resources, a grid can provide access to

other resources as well. The additional resources can be provided in additional numbers and/or

capacity. For example, some machines may have expensive licensed software installed that users

require. Users’ jobs can be sent to such machines, more fully exploiting the software licenses. All

of these will make the grid look like a large system with a collection of resources beyond what

would be available on just one conventional machine or within an organization.

1.2.5 Resource balancing

A grid incorporates a large number of resources contributed by individual machines into a large

virtual single-system. For applications that are grid-enabled, the grid can offer a resource balancing

effect by scheduling grid jobs on machines with low utilization. During peak load of a system, extra

load can be routed to other idle resources of the grid infrastructure. As a result, the scalability of

the system increases to a great extent although the computing infrastructure of the system itself

remains same.

CHAPTER 1. INTRODUCTION 5

1.2.6 Reliability

In the conventional computing infrastructure, reliability is increased through the use of expensive

hardware, often in a redundant way. Grid provides a complementary approach to reliability which

is cost effective. For example, in critical and real-time situations, multiple copies of important jobs

can be run on different machines throughout the grid. So grid can provide cost effective reliability

that conventional computing infrastructure may not provide or may provide with the result of larger

cost.

1.2.7 Economy

Generally idle resources are used to provide computing facilities in grid. So the cost of services

in grid environment is very low and in many cases it is free. Grid computing can provide more

scalable and reliable system with relatively very low cost. Sharing of costly software license and

other resources also reduces the cost of operations of the users. Since the concept of grid is based

on resource sharing, a user not only consumes services from grid but also can provide his resources

as service to others. Thus grid brings economic benefit to its users.

1.2.8 Environment

Nowadays, the use of electric and electronic devices is increasing at a pace that has generated a

lot of electronic waste. Though a little portion of the waste is being recycled, a major portion of

the waste is being remained unhandled. As a result, it causes a great threat for the environment

and thus for the living creatures on the earth. Since existing resources are used in grid, it will

help to reduce the overall production of electronic devices that will result less pollution due to less

electronic waste and less production.

1.3 Grid by Examples

In the following subsections we provide some real life examples of grid computing implementa-

tions in different areas.

CHAPTER 1. INTRODUCTION 6

1.3.1 Search for Extraterrestrial Intelligence

SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelli-

gent life outside earth. One approach, known as Radio SETI, uses radio telescopes to listen for

narrow-bandwidth radio signals from space. Radio SETI project analyze the data digitally. More

computing power enables searches to cover greater frequency ranges with more sensitivity. Radio

SETI, therefore, has an insatiable appetite for computing power. A project named the SETI@home

[27] at University of California at Berkley uses a virtual supercomputer composed of large numbers

of internet connected computers in form of grid.

1.3.2 Scientific Simulation

It is a grid implementation to provide the execution of complex system simulations in different

areas of science. The implementation tackles the problem of intensive calculations, which demands

high performance computing and typically requires large computational infrastructures such as

clusters. This type of solution has already been set in place in a number of research institutions

around the world including National Institute of Advanced Industrial Science and Technology of

Japan [25].

1.3.3 Medical Images

It is a data and computational grid in medical image storage and processing framework. This

grid tackles the problem of storing and processing large images, which typically requires large

computational infrastructures such as distributed databases and clusters. This type of solution

has already been set in place in the eDiaMoND project [14]. It is a research project which has the

ambitious aim of proving the benefits of grid technology to eHealth, in this case for Breast Imaging

in the UK. .

1.3.4 Big Science

It is an implementation of a data and computational grid to accomplish the problem of storing huge

quantities of data for a system which demands high storage capacity and typically requires large

and parallel computational infrastructures. This type of solution has already been set in place in

DEISA [15], a consortium of leading national supercomputing centers in Europe aiming to jointly

CHAPTER 1. INTRODUCTION 7

build and operate a distributed terascale super computing facility.

1.3.5 E-Learning

It is a grid environment to support many of the educational and research requirements for ex-

changing information. The e-learning infrastructure is based on the Access Grid [3], which is an

ensemble of resources including large-format displays, presentations etc.

1.4 Motivation for the Work

1.4.1 The Need for Advance Reservation

In most Grid systems, submitted jobs are initially placed into a queue if there are no available

resources. Therefore there is no guarantee as to when these jobs will be executed. To address these

issues and to ensure that the specified resources are available for applications when required, sev-

eral researchers have proposed the need for advance reservation [23][26][29]. Common resources

that can be reserved or requested are processing power, storage elements, network bandwidth or

a combination of any of those. In general, reservation of the aforementioned resources can be

categorized into two: immediate and advance. However, the main difference between these two

reservations is the starting time. Immediate reservation acquires the resources to be utilized straight

away, whereas advance reservation defers their usage later in the future. Advance reservation can

be useful for several applications, as described below:

• Parallel applications, where tasks require multiple computing nodes simultaneously for exe-

cution.

• Workflow-based applications, where each task may depend on the execution of other tasks

in the application. Hence, it needs to wait for all of the dependencies to be satisfied before it

can be executed.

• Multimedia or soft real-time applications, such as video conferencing and player, where they

need to have a certain amount of bandwidth to ensure a smooth broadcast of video and audio

over the network. Therefore, any dropouts in a network transfer are not tolerable.

CHAPTER 1. INTRODUCTION 8

1.4.2 Why Workflow-based Applications?

Applications can be divided into two major categories: single task applications and multi task ap-

plications. In a single task application, the task itself is considered to be the application. On the

other hand, a multi task application consists of more than one task. The multitask applications can

be of two types namely Bag-of-Tasks (BoT) applications and Workflow-Based applications. BoT

applications are those applications whose tasks are independent of each other and so they can run

parallel. In workflow-based applications, there are dependencies between the tasks of the applica-

tion. So, scheduling and managing resources for workflow-based applications in grid is relatively

complex and challenging. Resource reservation system for single task or BoT applications cannot

deal with workflow-based applications but those for workflow-based applications can deal with the

others since they are considered to be a subset of workflow-based applications. So a system for

workflow-based application is a generalized one which can deal with all type of applications.

Many of the real world problems can be best represented by a set of interdependent tasks rather

than a single task or a set of independent tasks. Decomposing an application into different smaller

tasks result faster execution of the application in grid. The more independent the tasks are of each

other, the faster it will be, considering availability of resources. But in many cases it may not be

possible to effectively decompose an application into a set of independent tasks. Decomposing

such an application into sets of interdependent tasks i.e. into a workflow-based application makes

it possible to run multiple tasks parallelly in grid.

1.5 Challenges

There are challenges in adopting advance reservation for workflow-based applications into Grids.

The major challenges are briefly described below.

- Workflow-based application is represented by Directed Acyclic Graph (DAG). Scheduling

DAGs with different node and edge weights into different resources is generally an NP-

complete problem [12]. So it is computationally infeasible to derive an optimal scheduling

solution for such applications. Rather heuristics are most often used to compute optimized

(but not optimal) schedules. So, it is challenging to derive an algorithm for scheduling

workflow-based applications in gird resources which is computationally feasible and pro-

duces better result.

CHAPTER 1. INTRODUCTION 9

- One of the major goals of the scheduling algorithms is to minimize the overall time required

to complete an application. Since resources are shared and generally idle resources are used

in grid, it may not be possible to schedule the applications with minimum delay. So the

challenge is to reduce the total time required to complete an application.

This thesis addresses the above challenges by modeling a resource reservation scheme that

exploits features like slack time of tasks and critical paths of an application.

1.6 Scope of the Work

The main focus of this thesis work is to design a resource reservation system for grid computing

with the following characteristics:

- It works in a distributed manner for grid architecture which is complex and depicts the real

scenario.

- It provides support for both immediate and future resource reservation for any application.

- It reduces average delay to complete an application and increases the number of zero delayed

applications.

- It is relatively a faster algorithm.

- It optimizes the overall performance using heuristics, effective algorithms and data struc-

tures.

The main outcome of this thesis work is a resource reservation system for workflow-based

applications in grid environment with the support of immediate/future reservation, and reduced

completion time with improved Quality of Service (QoS). We performed the detailed perfor-

mance evaluation of our prototype and compared with an existing system. Our proposed claims

are justified by the comparative analysis presented on the experimental results.

1.7 Thesis Organization

The rest of the chapters are organized as follows. Chapter 2 gives a preliminary description of

some terminologies and concepts related to grid computing and workflow-based applications that

CHAPTER 1. INTRODUCTION 10

might be helpful to understand the context of this thesis. The detailed description of grid re-

sources, representation and features of workflow-based applications are presented in this chapter.

The related works on resource reservation and management for grid computing is also presented

in this chapter. Chapter 3, the main chapter of this dissertation, illustrates our proposed resource

reservation scheme and the data structures used by this scheme. The algorithms related to the pro-

posed resource reservation scheme with their complexity are also given in this chapter. Chapter 4

contains the simulation results of our scheme and a comparative study against existing system in

several performance issues. The details of the simulator and simulation results are presented here.

Chapter 5 draws the conclusion describing the key contributions of this thesis followed by some

future research directions related to this topic.

Chapter 2

Preliminaries

2.1 Grid Resources

Grids aggregate various networked resources for solving large-scale data-intensive or compute-

intensive applications [17]. Various types of resources are used to provide services in a grid in-

frastructure. Some resources may be used by all users of the grid, while others may have specific

restrictions. This section describes the resources generally used in grid.

2.1.1 Computation

Computing cycles, provided by the processors of the machines on the grid, are the most common

type resource. The processors can vary in speed, architecture, software platform, and other asso-

ciated factors, such as memory, storage and connectivity. The computing resources may be used

in many ways. The simplest way is to use it to run an existing application on an available machine

on the grid rather than locally. Another approach to exploit the computing resources is to use an

application designed to split its work in such a way that the separate parts can execute in parallel

on different processors. If an application needs to be executed many times, the many different

machines in the grid can be used to run the application. Scalability is a measure of how efficiently

the multiple processors on a grid are used. If twice as many processors makes an application com-

plete in one half the time, then it is said to be perfectly scalable. However, there may be limits to

scalability when applications can only be split into a limited number of separately running parts or

if those parts experience some other interdependencies such as contention for resources of some

kind.

11

CHAPTER 2. PRELIMINARIES 12

2.1.2 Storage

The second most common resource used in a grid is data storage. A grid providing an integrated

view of data storage is sometimes called a data grid. Each machine on the grid usually provides

some quantity of storage for grid use, even if temporary. Storage can be memory attached to the

processor or it can be secondary storage, using hard disk drives or other permanent storage media.

Memory attached to a processor usually has very fast access but is volatile. It would best be used

to cache data or to serve as temporary storage for running applications. Secondary storage in a

grid can be used in interesting ways to increase capacity, performance, sharing, and reliability of

data. Capacity can be increased by using the storage on multiple machines with a unifying file

system. Any individual file or database can span several storage devices and machines, eliminat-

ing maximum size restrictions often imposed by file systems shipped with operating systems. A

unifying file system can also provide a single uniform name space for grid storage. This makes

it easier for users to reference data residing in the grid, without regard for its exact location. In a

similar way, special database software can federate an assortment of individual databases and files

to form a larger, more comprehensive database, accessible using database query functions. More

advanced file systems on a grid can automatically duplicate sets of data, to provide redundancy

for increased reliability and increased performance. An intelligent grid scheduler can help select

the appropriate storage devices to hold data, based on usage patterns. Then jobs can be scheduled

closer to the data, preferably on the machines directly connected to the storage devices holding the

required data.

2.1.3 Communication

Communication technology is becoming more sophisticated and high performance communica-

tion infrastructure with more capacity is ubiquitous. Therefore, data communication capacity is

emerging as an important resource to be used in grid. This includes communications within the

grid and external to the grid. Communications within the grid are important for sending jobs and

their required data to points within the grid. Some jobs require a large amount of data to be pro-

cessed, and it may not always reside on the machine running the job. The bandwidth available for

such communications can often be a critical resource that can limit utilization of the grid. External

communication access to the Internet, for example, can be valuable when building search engines.

Machines on the grid may have connections to the external internet in addition to the connectivity

CHAPTER 2. PRELIMINARIES 13

among the grid machines. When these connections do not share the same communication path,

they add to the total available bandwidth for accessing the internet.

2.1.4 Software and licenses

The grid may have software installed that may be too expensive to install on every grid machine.

Using a grid, the jobs requiring this software are sent to the particular machines on which this

software happens to be installed. When the licensing fees are significant, this approach can save

significant expenses for an organization. Some software licensing arrangements permit the soft-

ware to be installed on all of the machines of a grid but may limit the number of installations that

can be simultaneously used at any given instant. License management software keeps track of how

many concurrent copies of the software are being used and prevents more than that number from

executing at any given time. The grid job schedulers can be configured to take software licenses

into account, optionally balancing them against other priorities or policies.

2.1.5 Other resources

Platforms on the grid will often have different architectures, operating systems, devices, capacities,

and equipments. Each of these items represents a different kind of resource that the grid can use as

criteria for assigning jobs to machines. There may be some software and applications that will run

on certain type of machines or devices. Such attributes must be considered when assigning jobs

to resources in the grid. Even sensors, surveillance cameras etc. can be used in grid as resource

to perform some specific jobs. So, the number of resources in grid is not limited to some few

although some resources are more frequently used than others.

2.2 Resource usage policies

In the early days of grid, not enough attention was paid to issues surrounding the description and

enforcement of policies for the control and management of a grid. Due to tremendous development

and use of grid computing, resource usage policy for grid is becoming more important. These

policies define the permitted or desired usage scenarios allowed by resource providers, virtual

organizations, or even the governing body for the entire Grid.

In some cases, the administrator of a grid may create a new artificial resource type that is used

CHAPTER 2. PRELIMINARIES 14

by schedulers to assign work according to policy rules or other constraints. For example, some

machines may be designated to only be used for medical research. These would be identified as

having a medical research attribute and the scheduler could be configured to only assign jobs that

require machines of the medical research resource. Others may participate in the grid only if they

are not used for military purposes. In this situation, jobs requiring a military resource would not

be assigned to such machines.

Policies may be imposed for usage rate or time. Some resource provider may impose policy

to use some or all of its resources up to some percentage or threshold of its capacity. This rate

may vary for different time of the day, week, month or year. For example, the resources may be

used upto 80% of its capacity during the weekend holidays, 60% during daily night and so on. The

policies may be applicable for individual or some or all users, resources or applications of the grid.

2.3 Tasks and Applications

Although various kinds of resources on the grid may be shared and used, they are usually accessed

via an executing application or task.

2.3.1 Tasks

Tasks are programs that are executed at an appropriate point on the grid. They may compute

something, execute one or more system commands, move or collect data, or operate machinery.

The instructions of a task are generally executed in a single machine sequentially. The grid industry

uses other terms, such as transaction, work unit, job or submission, to mean the same thing as a

task.

2.3.2 Applications

Usually we use the term application as the highest level of a piece of work on the grid. An appli-

cation is the entity that means to be executed on the grid. Depending upon the number of tasks,

applications can be divided into two major categories: single task application and multitask appli-

cation.

CHAPTER 2. PRELIMINARIES 15

Single task application

If the entire application is not divided into more than one task then the application is called to be

a single task application. The task itself is considered to be the application. Sometimes the terms

task and application are used equivalently.

Multi task application

A multi task application consists of more than one task. Applications are broken down into multiple

tasks so that tasks can be executed parallel on different machines in the grid. But interdependency

between the tasks may limit the degree of parallelism. The multitask applications can be of two

types namely Bag-of-Tasks (BoT) application and Workflow-based (WBA) application.

Bag-of-Tasks Applications are those parallel applications whose tasks are independent of each

other. Despite their simplicity, BoT applications are used in a variety of scenarios, including data

mining, massive searches (such as key breaking), parameter sweeps, simulations, fractal calcula-

tions, computational biology, computer imaging and so on. Due to independence of the tasks, BoT

applications can be successfully executed over widely distributed computational grids, as has been

demonstrated in [4].

Workflow-based Applications are those in which there are dependencies between the tasks of

the application. Although BoT applications are more suitable for computational grid, there are

many applications that cannot be broken down into a set of independent tasks. For example,

in astronomy, workflows with thousands of tasks are needed to identify galaxy clusters within

the Sloan Digital Sky Survey [5]. Figure 2.1 shows an application with dependencies between

the tasks. Each node in the graph represents a task whereas dependencies among the tasks are

represented by the directed edges. Workflow-based application has been described in details in the

following section.

2.4 Workflow-based Application

A Workflow-based Application (WBA) is a model of a parallel program that consists of many

interdependent tasks. The dependency between the tasks limits the degree of parallelism that can

be achieved by executing multiple tasks simultaneously on different Compute Nodes (CN) or

CHAPTER 2. PRELIMINARIES 16

Figure 2.1: An application with dependencies between the tasks

Processing Elements (PE). Subtasks exchange data via an interconnection network. The depen-

dencies between tasks are described by means of a Directed Acyclic Graph (DAG) called a Task

Graph (TG). Executing a WBA is determined by two factors: a node weight that denotes the

computation time of each subtask, and an edge weight that corresponds to the communication time

between dependent subtasks [18]. Thus, to run a WBA, we need a target system that is tightly

coupled by fast interconnection networks. Typically, systems such as grid computing provide an

appropriate infrastructure for running parallel programs.

A Task Graph (TG) is a graph in which each node represents a task to be performed and a

directed arc from a task to another indicates that the former task must be completed before the

latter task begins. Each TG can be represented in a Standard Task Graph (STG) format [22], as

illustrated in Figure 2.2. There is a number in the first row of the STG representing the total sub-

tasks of the application. In this figure, a TG consists of 9 subtasks (T0−T8). Then, a specification

of individual subtask is described in a new row. Each row consists of three integers, denoting the

subtask index or id, its node weight and number of parents. If the subtask has dependencies or

parents, each of the following rows contains two numbers for a parent, specifying its parent id and

the edge weight. For example, a subtask with index number 4 or T4 has two parents. Then, the

next lines mention parents of T4, i.e. T1 and T2, and their edge weights of 1 and 2 time units

respectively. Finally, # denotes a single line comment in the STG format. Figure 2.3 shows the

structure of the TG, by using the example illustrated in Figure 2.2. In this figure, an edge weight

is represented by a number next to the arrow line.

Scheduling the TG in a non-dedicated environment is a challenging job because each subtask

CHAPTER 2. PRELIMINARIES 17

Figure 2.2: Standard Task Graph (STG) format

needs to wait for its parent subtasks to finish executing in order to satisfy the required depen-

dencies, as depicted in Figure 2.3. Therefore, Advance Reservation (AR) is needed to secure or

guarantee resources prior to the execution of the subtasks.

2.5 Critical Path Modeling

The Critical Path(CP) is the longest-duration path in a TG. The significance of the critical path is

that the activities that lie on it cannot be delayed without delaying the overall completion time of

the application.

The critical path can be identified by determining the following parameters for each task or

activity:

• Earliest Start Time (EST): The earliest time at which the task can start given that its precedent

tasks must be completed first.

• Latest Start Time(LST): The latest time at which the task can be started without delaying the

overall completion time of the application.

• Earliest Finish Time(EFT): The earliest start time for the task plus the time required to com-

plete the task.

CHAPTER 2. PRELIMINARIES 18

Figure 2.3: Structure of a task graph

• Latest Finish Time(LFT): The latest time at which the task can be completed without delaying

the overall completion time of the application.

Slack Time (SLT) of a task is the amount of time that the task can be delayed past its earliest

start or earliest finish without delaying the application. The slack time for an activity is the time

between its EST and LST , or between its EFT and LFT . So, SLT = LST − EST = LFT −

EFT

For a TG, the critical path is the path through the TG in which all the tasks have zero slack

time, that is, the path for which EST = LST and EFT = LFT for all tasks in the path. A delay

in the critical path delays the application.

Since the network bandwidth available now a days is higher and we are focusing on computing

intensive tasks, we can consider that the time required to send the output from a task to its depen-

dent tasks is relatively very low compared to the average computation time of a task though the

tasks are being executed on different machines in the grid. So, we can ignore the data transmission

time from a task to another, that is the edges of the task graph can be considered to be of zero

weight. But to provide more accuracy with preserving simplicity, the output transfer time from a

task to another i.e. the output transfer time from any machine to another in grid can be considered

to be same for all. So, all the edges of the task graph can be considered of same weight. If all the

edges of a task graph are of same weight, we can simplify the graph by adding the edge weight

CHAPTER 2. PRELIMINARIES 19

Figure 2.4: TG without edge weight

Figure 2.5: Structur of a node of a TG to show Slack Time and Critical Path

to each task’s processing time except for the tasks which have no outgoing edge i.e. no dependent

task. Thus we are to deal with a TG without edge weight which will provide simplicity with rea-

sonable accuracy. If we consider the weight of the edges of the task graph of Figure 2.3 to be of 2,

then the task graph can be represented by the Figure 2.4.

To compute the slack time of the tasks and critical paths in the TG, we represent each node of

TG as shown in Figure 2.5. The details of the abbreviations are as follows:

TN - Task Number

D - Duration

EST - Earliest Start Time

LST - Latest Start Time

CHAPTER 2. PRELIMINARIES 20

Figure 2.6: Task Graph with EST and LST

The TG of Figure 2.4 is represented in Figure 2.6 with new node structure. Two dummy nodes

with zero computation time namely TS and TE have been added. There are edges from TS to the

nodes which have no parent node and edges to TE from the nodes which have no child node.

From the TG as represented in the 2.6, we see that there are some nodes whose EST and LST

are same. So, the slack time of those tasks are zero. Other tasks whose LST is greater than EST ,

have nonzero slack time. The paths from TS to TE on which all tasks have zero slack time, are

the critical paths. There must be at least one critical path in a TG. In the TG shown in Figure

2.6, there is only one critical path which is marked with relatively thick edges. The critical path is

TS → T0→ T3→ T5→ T6→ T7→ T8→ TE.

2.6 Related Works on Resource Reservation in Grid

This section provides an overview of the related works in this topic.

Chen [10] addresses the problem of resource allocation in the GATES (Grid-based Adaptive

Execution on Streams) system. They present a resource allocation algorithm that is based on

minimal spanning trees. Their target applications are those involving high-volume data streams

CHAPTER 2. PRELIMINARIES 21

and requiring distributed processing of data arising from a distributed set of sources. They focused

on pipelined processing and real-time constraint required by distributed streaming applications.

They also evaluate the algorithm experimentally and demonstrate that the results are very close to

optimal, and significantly better than most of the other possible configurations. The problem of

this system is that it mainly works on multimedia grid based streaming applications and fails to

provide any real and generalized architecture for conventional grid computing.

Kun [34] addresses the challenge of providing efficient resource on demand for grid computing

from the perspective of network, the living platform of grid, by providing effective Quality of

Service (QoS) mechanisms inside the Grid networking environment. Specifically, the efficiency of

this QoS mechanism is maximized by policy-based management taking care of the flexible control

of QoS parameters/components and active networks technology looking after the fast delivery of

various QoS configurations. It provides solution for on demand resource request but there is no

provision for resource reservation for future use.

Xing [33] introduces a flexible advance reservation for grid applications. Since requests of

advance reservation with fixed parameters, i.e. start time, end time and resource capability, may be

rejected due to instantaneous peaks of resource utilization, the call acceptance rate of reservation

would decrease dramatically, and the performance of resource may be reduced. In fact, many

resource reservations for grid applications do not need fixed parameters. Its parameters can be

modified according to resource status in order to fill the gaps of resource. Admission control

algorithm for this new type of reservation is provided too. They have shown that their approach

can improve performance of resource reservation in terms of both call acceptance rate and resource

utilization. It mainly focuses on grid of network resource only by using time slots like TDMA.

Though call acceptance rate and resource utilization is increased, the QoS parameters like delay

have not been considered here.

Sulistio [31] presents new approaches to advance reservation in order to deal with the limita-

tions of the existing data structures, such as Calendar Queue in similar problems. They presented

modified versions of Linked List and Segment Tree data structures to support add, delete, and

search, as well as the interval search operation to deal with advance reservations in computational

grids. For this, they had to developed an algorithm for finding closest interval to a requested reser-

vation for Segment Tree they introduced and adapted Calendar Queue data structure for managing

reservations as well. They also propose a new data structure that is tailored to handle the opera-

tions for future reservations efficiently. The new data structure is called Grid advanced reservation

CHAPTER 2. PRELIMINARIES 22

Queue (GarQ), which is a combination of Calendar Queue and Segment Tree, for administering

reservations efficiently for the above required operations. They demonstrate this by doing a com-

prehensive performance evaluation using several real-world workload traces. Their results show

that GarQ has a better performance time on average when dealing with reservation operations com-

pared to other data structures. The data structure they proposes improves some weaknesses of the

aforementioned data structures but highly depends on parameters such as size of interval. More-

over they consider only single task applications thus making the system very simple one with no

provision for resource utilization.

Yin [26] presents a predictive admission control algorithm to decide whether new advance

reservation requests can be accepted according to their QoS requirements and prediction of future

resource utilization. It is assumed that once an advance reservation request is accepted, it will

definitely be fulfilled. But in practice, it is not always the case. In equipment grid certain special

reasons may prevent a confirmed advance reservation from being fulfilled. Examples include re-

source malfunctions and preemption by more urgent tasks from local schedulers, which are often

associated with economic benefits. When confirmed contracts cannot be fulfilled, the reputation

of the providers of reserved resources will be ruined and the claimed benefits will be affected. The

unfulfillment of accepted advance reservations will cause damages both to the clients and to the

equipment grid. They propose a predictive admission control algorithm to avoid such situation

by refusing some advance reservation requests which may not be fulfilled according to QoS re-

quirements and historical information. This research mainly focuses on equipment grids which is

quite simple in architecture than the conventional grid computing. Another drawback is that their

algorithm does not work for multiple resources.

Cirne [11] discussed about how to run Bag-of-Tasks applications on computational grids. Bag-

of-Tasks applications are both relevant and amendable for execution on grids. They investigated the

reason for why few users execute their Bag-of-Tasks applications on grids and introduced MyGrid,

a system designed to overcome the identified difficulties. MyGrid provides a simple, complete and

secure way for a user to run Bag-of-Tasks applications on all resources. MyGrid embeds two

important research contributions to grid computing. First, they introduced some simple working

environment abstractions that hide machine configuration heterogeneity from the user. Second,

they introduced a scheduling heuristics that attains good performance without relying on informa-

tion about the grid or the application, although consuming a few more cycles. Non dependancy

on information makes the scheme much easier to deploy in practice. However, their proposed sys-

CHAPTER 2. PRELIMINARIES 23

tem does not work for workflow-based applications which are more complex to schedule in a grid

environment.

Blythe [7] has presented a resource reservation approach for workflow-based applications in

grid. The algorithm is an iterative one where in each iteration, an initial allocation is constructed in

a greedy approach. In principle a number of local modifications might be considered by swapping

pairs of tasks, but this is not implemented in the system. The initial allocation algorithm computes

the tasks whose parents have already been scheduled on each pass, and considers every possible

resource for each such task. For each (task, resource) pair, the algorithm computes the increase

to the current makespan of the workflow if the task is allocated to this resource. If I-min be the

lowest increase found and I-max be the largest, the algorithm picks one pair at random from those

whose increase I is less than I-min + α(I-max, I-min) for some width parameter α, 0 ≤ α ≤ 1,

and continues until all tasks are allocated. The width parameter α determines how much variation

is allowed each time a candidate workflow allocation is constructed. When α = 0, each iteration of

the algorithm behaves like task-based min-min solution [9]. When α = 1, each iteration is random.

In some domains, a non-zero α is essential to find globally optimal allocations, while in others the

variation due to several component allocations having equally good heuristic scores is enough to

find the optimal. They didn’t consider some important properties of a workflow-based application

like slack time of the tasks, critical paths of the application etc.

Viera [32] presents an authentication architecture to access grid resources from mobile devices,

utilizing a lightweight user-centric authentication approach. As is the case for most access to grid

resources, the use of mobile devices requires user authentication. Given the limited amount of

power available for mobile devices, the applications on these devices, including the authentication

services used to access grid resources, need to be designed to conserve power. They propposed

an approach to overcome the limitations of mobile devices, such as limited battery power. The

approach applies to user authentication with any grid resource or service such that mobile users

can utilize grid environments in a transparent and secure way. This system mainly works for

access of mobile devices to grid, but fails to provide any generalized approach for conventional

grid computing.

Chapter 3

New Resource Reservation Scheme in Grid

We proposed a new resource reservation scheme for workflow-based applications in grid comput-

ing environment. In this chapter a detailed description of the system architecture of our resource

reservation scheme is presented with an illustrative example. The proposed data structure is also

described with necessary examples.

3.1 Problem Statement

The problem of scheduling the tasks of a task graph on distributed services belongs to a class

of problems known as NP-complete problems. For such problems, no known algorithm is able

to generate the optimal solution within polynomial time. Even though the scheduling problem

can be solved by exhaustive search, the complexity of the methods for solving it is very high.

In grid environments, scheduling decisions must be made with in a time limit, because there are

many users competing for resources. Thus, in practice, heuristics are most often used to schedule

workflow applications in distributed system environments like grid.

An application may not start execution at the time when it is expected to be due to unavail-

ablity of resources at that time. The application starts execution when resources are available.

So, the scheduled start time may be delayed from the expected start time. Let, a workflow-based

application(WBA) is represented by (ExST,G) where ExST is the expected start time of execu-

tion of the WBA, G is the directed acyclic graph (DAG) that represents the WBA and G = (T ,

E). Here, T = { T1, T2, T3, · · · , Tn } is the set of nodes of DAG and represents the tasks of the

WBA . E = { e1, e2, · · · , en } is the set of edges and ei = (Ta, Tb) represents that task Ta must be

completed before task Tb starts. Now consider there are n Computing Nodes (CN) available in the

24

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 25

grid and they are CN1, CN2, · · · , CNn. t(Ti) denotes the time task Ti takes to execute on a CN .

Scheduled Duration (SD) is the duration from expected start time of execution of the WBA

to the time when execution of all tasks of the WBA is completed. Let, te(WBA) denotes the time

when all tasks in the workflow is completed. So, scheduled duration is defined as

SD = te(WBA)− ExST (3.1)

The Minimum Duration (MD) is the minimum time required to complete the application. So,

minimum duartion of a WBA is the length of the critical path. Considering a WBA without edge

weight, the length of a critical path is the summation of duration of all individual tasks in the path.

Let, CP is the set of all tasks of a critical path of the WBA. So, minimum duration is defined as

MD =
∑
∀T∈CP

t(T) (3.2)

Now, the delay that aWBA is to experience to complete its execution is the difference between

SD and MD. Let, DELAYWBA denotes the delay.

DELAYWBA = SD −MD (3.3)

The objective is to schedule the tasks of the WBA to the CNs with an aim to minimize the

DELAYWBA.

3.2 Proposed Resource Reservation Scheme

The overall system architecture of our proposed resource reservation scheme is shown in Figure

3.1. The components of the system, messages and their sequences in the system have been de-

scribed by the caption of the blocks in the figure. Scheduling an application in grid means to map

the tasks of the application to the CNs of the grid. So, the terms Schedule and Map have been

used interchangeably in this literature.

3.2.1 Components of the system

There will be four major components of the system namely User, Resource Provider (RP),

Computing Node(CN) and Broker.

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 26

User

A User is the entity that needs its applications to be executed. A User must register with the

Broker before using the grid. User has to agree with the policies and conditions as provided by

theBroker before registration is completed and a registered User can quit from the grid following

the policies and conditions. Each User has a unique Identification Number(ID) in the system.

Computing Node

A Computing Node (CN) is the unit on which a task will be executed. Resources in grid may

be of heterogeneous capacity. Scheduling interdependent tasks in heterogeneous grid is relatively

complex. Another problem is that such systems are less fault tolerant since failure of any resource

requires another free resource with equal or more capacity to accomodate the tasks that the failed

resource was to execute. Specially if a powerful resource is failed at any time, the possibility to

get an equal or more powerful free resource at that time is very low. If such free resource is not

available, then many tasks may need to be rescheduled. So, the performance of the system and

benefits of advance reservation degrade. In our system the resources may be of heterogeneous

capacity, but homogenous capacity from each resource is used. This homogeneous capacity is

called a CN . Since homogeneous capacity is used, in case of failure of any computing node the

possibility to get another free one is very high. This makes our system more fault tolerant. In

grid, resources with about similar capacity may be grouped together to schedule an application.

Since now a days almost all computers support multitasking, a resource with more capacity can

be considered to be of multiple CNs. The CNs in grid are not dedicated for use in the grid only.

Generally the idle time or unused capacity of a CN is used to process tasks of the grid. So, the

regular and intended uses of the CNs of a grid are not disturbed. Each CN has a unique ID in the

system.

Resource Provider

A Resource Provider (RP) is a collection of CNs. An RP works as an interface to the grid and is

responsible for coordination and managing its CNs for use in the grid. So, a Broker deals with

the RP instead of dealing with the individual CNs. Generally an RP consists of the CNs of an

organization, laboratory, home, office and so on. Even a single CN itself can work as an RP . A

CN can be associated with only one RP . An RP must register with the Broker before being

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 27

used in the grid. The RP has to agree with the policies and conditions as provided by the Broker

before registration is completed and a registered RP can quit from the grid following the policies

and conditions. All the CNs of an RP are connected logically. Each RP has a unique ID and an

RP provides and maintains the ID of its CNs.

Broker

The Broker coordinates and works as an interface between the Users and the RP s. Both Users

and RP s register with the Broker in order to participate in the Grid. The resource reservation will

be implemented by the Broker. All the Users and the RP s are connected to the Broker and deal

with it for their activities in grid. During registration Broker provides each of the Users and RP s

their IDs which will latter be used for further activities in the grid.

3.2.2 Phases of resource reservation

The phases in our proposed system are similar to that of [28] to some extent. Details of the phases

of our proposed system are described bellow:

Request Phase

Whenever a User has an application to reserve resources for it, the application along with QoS

requirements are sent to the Broker mentioning the expected start time of the application and

other necessary information. If the Broker is busy, the application is queued otherwise it is han-

dled immediately. Upon taking an application in hand, the Broker sends request to all the listed

RP s asking for availability of their CNs mentioning the expected start time and other necessary

information required.

Response Phase

Upon receiving the request from theBroker, anRP checks the availability itsCNs from expected

start time. The CNs that are available to provide resources for the application are listed along with

their availability status and other necessary information. Then the list is sent to the Broker.

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 28

Figure 3.1: Architecture of our proposed system

Search Phase

When the Broker receives the status of the CNs from the RP s, it searches for the available time

slots to allocate the tasks of the applications. Scheduling the tasks of the application to the CNs is

the main challenge. Because any algorithm that produces optimal solution is NP-complete. So, a

heuristic is used here. The heuristic is used to compute a scheduling that will result optimized (but

not optimal) duration.

Reply Phase

After the search is completed, if the requirements of the user is satisfied, the Broker sends a

reply message to the User indicating the total time required to complete the application and the

scheduling information to the corresponding RP s so that the RP s can reserve their CNs for the

tasks. Otherwise, a message is sent to both the User and the corresponding RP s indicating the

failure.

Reservation Phase

When an RP receives the reservation information, it reserves its CNs for the time period as spec-

ified to schedule tasks. It also saves the schedule so that the result produces after completion of a

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 29

Figure 3.2: A node of the linked list to contain reservation information

task can be sent to the CNs as specified by the dependency of the tasks.

3.3 Major Data Structures

The major data structures used in the system are for the application, the resource reservation infor-

mation of theCNs and information for task toCN mapping. The data structures for the application

have already been described in the previous chapter. Others have been described in the following

subsections.

3.3.1 Data structures for Resource Availability Status

For each of the CN , there must be an appropriate data structure to hold the information of avail-

ability of its resources. A link list is used here and each node of the list represents a time slot for

which the resources of the CN is reserved. Each node contains information about the start time

and end time of the slot. So, resources are available for the application when they are not reserved.

The nodes are sorted in order of start time. The structure of a node is shown in Figure 3.2. RP s

use this data sructure to maintain the status of resource reservation of their CNs.

A special node used as head which contains the ID of the CN , the resource type and the

reference time from which other time will be counted. A dummy node whose start and end time

both are zero marks the end of the linked list. Figure 3.3 shows the structure of the linked list

used for reservation status of a single resource or a collection of resources that are required by the

application. STi and ETi represent the start time and end time of the ith slot. Type in the head

means the resource type for which reservation information is kept in the list.The resources of the

CN is free for the time between ETi and STi+1.

Suppose the time unit is minute and the processor of a CN is reserved as per Table 3.1. If the

reference or base time is considered to be 00:00 at 20-04-2011, then the relative start and end time

would be as per Table 3.2. Figure 3.4 shows the linked list containing the reservation information

of Table 3.2. Here, CN1 represents the ID of the CN and Proc means that the resource type is

processor.

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 30

Figure 3.3: Linked list to keep reservation information of a resource of a CN

Table 3.1: Example of reserved time space of a CN

Date Start Time End Time

20-04-2011 8:00 8:15

20-04-2011 14:30 16:12

21-04-2011 5:25 17:46

3.3.2 Data structure for task to CN mapping

When the tasks of an application are scheduled or mapped to the CNs, a data structure is needed

to keep this mapping information. For each application User ID(UID) , Application ID(AppID)

and Scheduled Start Time (SST) of the application is stored. A table is used to store the allocation

information for each of the tasks. The entries of the table are Task No., Duration, Dependency,

RP ID, CN ID, Start T ime. For example, let there are nine tasks in the application named

T0, T1, T2, T4, T5, T6, T7 and T8 and two RP s in the system, RP1 and RP2. RP1 has two

CNs and RP2 has one CN . The CNs of RP1 are CN11 and CN12 and of RP is CN21. The

scheduled start time of the application is at 5:00 on 20-04-2011. Table 3.3 shows an example of

storing mapping information of the tasks of an application to the CN .

Figure 3.4: Linked list to keep resource reservation information as shown in Table 3.2

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 31

Table 3.2: Start and end time relative to reference time

Node No. Start Time End Time

1 8:00 8:15

2 14:30 16:12

3 29:25 41:46

Table 3.3: An Example of storing mapping information for an application

Task Duration Dependencies RP ID CN ID Scheduled Start Time

T0 7 - RP1 CN11 5:00

T1 9 - RP1 CN12 5:05

T2 7 T0 RP2 CN21 5:15

T3 11 T0 RP1 CN12 5:18

T4 8 T1, T2 RP2 CN21 5:25

T5 9 T3 RP2 CN11 5:33

T6 7 T4, T5 RP1 CN11 5:50

T7 10 T4, T6 RP1 CN12 5:58

T8 6 T1, T7 RP2 CN11 6:10

3.4 Proposed Approach

The algorithm presented here for scheduling the tasks of an application to the CNs is an iterative

one. It runs multiple iterations where each iteration produces a mapping of the tasks of the applica-

tion to the CNs. The less the duration of a mapping, the better it is. If an iteration produces better

result than the best result of the previous iterations, the latter result is stored as the best replacing

the previous one. If a mapping with zero delay is produced, further iterations are not executed,

because no better result is possible. So, the greater the number of iterations, the better the result

is expected. The maximum number of iterations is not fixed rather it is set by the system based

on factors like processing speed of the system i.e. how fast it can run the algorithm, number of

waiting applications in the queue, the delay allowed etc. System may set the number of iterations

based on statistics of previous mapping. Thus, this approach will provide more flexibility to deal

with different scenarios and QoS requirements.

Due to dependency of the tasks of a WBA, at any time, only the tasks whose all parents

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 32

have been scheduled are considered for scheduling at that time. These are the ready tasks for

scheduling. The main challenge is to map the tasks to CNs that will result less scheduled duration

of the whole application. We have used the slack time of the tasks to select a task from the list of

ready tasks. Since delay of any task with zero slack time i.e. any task on the critical paths will

result a delay of the whole application, these tasks will be given the highest priority. In other word,

the more the slack time of a task, the less the priority would be given to the task and vice versa.

But, if tasks with less slack time is always selected for scheduling, some better result may always

be left. So, we have used a probability to select a candidate task at any time. From all the task,

we select a task randomly where task with higher slack time has less possibility to be selected and

vice versa.

To calculate probability for the tasks, each of the ready task is assigned a value. This value is

calculated by dividing the sum of the slack time of all tasks by the slack time of the task. Since

there are some tasks with zero slack time, one is added with the slack time of a task for this

division operation. This results the greater value for task with less slack time and vice versa. The

probability of any task to be selected is its value divided by the sum of value of all the ready tasks.

Since task with less slack time has greater value, the task has higher probability to be selected.

Let, at any time n ready task to be scheduled are T1, T2, · · ·Tn. Si and V aluei denote the slack

time and value of task Ti respectively.

The sum of slack time of all tasks is,

S =
n∑

i=1

(Si + 1) (3.4)

Value of task Ti is,

V aluei =
S

Si + 1
(3.5)

So, the probality of Ti to be selected is,

Pr(Ti) =
V aluei∑n
j=1 V aluej

(3.6)

During implemention of the algorithm, each task Ti is assigned a range defined by two numbers,

rangeMini and rangeMaxi that indicate the marking for selection of the task and their difference

is equal to V aluei.

V aluei = rangeMaxi − rangeMini (3.7)

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 33

The ranges of the tasks are contiguous and rangeMin1 = 0. For i ≥ 2, rangeMini is defined

as,

rangeMini = rangeMini−1 + V aluei−1 (3.8)

A random number is generated with uniform distribution in the range [0, rangeMaxn). Con-

sider the generated random number is randomNum. Now the scheduled task will be Tselected if

the following condition holds

rangeMinselected ≤ randomNum < rangeMaxselected (3.9)

From the set of ready tasks, Tselected is selected for scheduling.

When a task is selected from the candidate lists, all the CNs are searched for available re-

sources to reserve for the task. The CN which results minimum delay is selected. If more than

one CN is available with minimum delay, one of them is selected randomly. The task is mapped

to the selected CN . If the minimum delay is non zero, earliest start time of the task is increased

by the minimum delay. If the adjusted earliest start time plus the duration of the selected task is

greater than the earliest start time of its child tasks, the earliest start time and slack time of those

child tasks are adjusted. The same procedure is applied for the child tasks and all its descendents.

During adjusting the child tasks, slack time of some tasks may be negative. For example,

consider an application as shown in Figure 3.5. Let T0 has been scheduled at its start time at zero.

Due to unavailability of resources, T2 can not be scheduled at its start time at 4. Resources are

available at time 15 to schedule T2. So, the adjusted start time of T2 is set to 15 and the delay is

15 − 4 = 11 time unit. Now, T4 has slack time of 8 time unit and it has been delayed by 11 time

unit. So, the adjusted start time of T4 is 7 + 11 = 18 and the slack time is 8 − 11 = −3. Now,

T4 will be finished by 18 + 2 = 20. So, the adjusted start time of T5 is set to 20 and it is delayed

by 20− 17 = 3 time units. T5 has zero slack time and so its slack time is set to 0− 3 = −3 time

unit. Now, T1 and T2 has slack time of zero and that of T4 and T5 is -3. So, relatively T1 and

T2 has 3 unit more slack time than the others. Here the generated minimum slack time is negative.

To adjust the minimum slack time to zero, we reduce the slack time of all unmapped task by the

generated minimum slack time. As a result, the slack time of T4 and T5 is further adjusted to zero

and that of T1 and T2 to 3.

After scheduling a task to a CN and adjusting other unmapped tasks, same procedure is ap-

plied to schedule next task. All tasks of the application are mapped in this way and a mapping is

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 34

produced. Multiple iterations are executed and a new mapping is generated in each of the itera-

tions. Among the mappings generated, the best mapping i.e. mapping with the minimum duration

is selected to schedule the application. This strategy to select the best one from multiple mapping

has been adapted from Blythe [7], with which we have compared our algorithm. The number of

iterations to execute would be determined based on various factors like time available to run the

scheduling program, QoS requirements of the application, user priority etc.

3.5 Major Algorithms and Their Descriptions

3.5.1 Algorithms Related to Data Structure

The list of major algorithms related to data structures used in our system are given below with the

operations they perform. For details please refer to appendix A.

1. CreateNode(int startTime, int duration) - Creates a single node of reservation status list for

the duration from the startT ime.

2. InsertNode(Node n, ComputingNode cn) - Inserts a single node n in the reservation status

list of the cn

3. SearchTime(int startTime, int duration, ComputingNode cn) - Finds the earliest available

time slot for the duration from the startT ime in the reservation status list of the cn.

3.5.2 Algorithms Related to Resource Reservation Scheme

The details of the attributes used for different objects in the following algorithms have been given

below.

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 35

Table 3.4: Details of the attributes used

Object Attribute Details
Mapping duration The total duration that is required to complete the execution

of an application if the tasks of the application are scheduled

according to Mapping

Task value The value of Task that is used to find out the probability of

selection of the task

Task rangeMin Minimum of the range of value of Task

Task rangeMax Maximum of the range of value of Task

Task startTime The time when Task will start its execution

Task slackTime The slack time of Task

Task duration The time Task requires to complete execution

Algorithm 1: SceduleApplication(Application app, int maxIterations, List<CN> cnList)
Output: Map app to the CNs of cnList and return best mapping information

minDelay←∞1

minDuration← length of a critical path of app2

mapping← null3

iterationNo← 14

originalApp← app // Used to restore original app5

originalCNList← cnList // Used to restore original cnList6

while iterationNo ≤maxIterations AND minDelay 6= 0 do7

mapping← CreateMapping(app, cnList) // Maps tasks of app8

// to the CNs of cnList

delay←mapping.duration - minDuration9

if delay < minDelay then10

bestMapping←mapping11

minDelay← delay12

endif13

iterationNo← iterationNo + 114

app← originalApp // Restore original app15

cnList← originalCNList // Restore original cnList16

endw17

return bestMapping18

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 36

Algorithm 2: CreateMapping (Application app, List <CN>cnList)
Output: Map the tasks of app to the CNs of cnList and return mapping information

mapping← null1

while all tasks in app are not mapped do2

availTasks← all unmapped tasks with every parent mapped3

selectedTask← SelectTask (availTasks) // Select a task for mapping4

selectedCN ← SelectCN (selectedTask, cnList, app) // Select a CN5

// for selectedTask

add (selectedTask, selectedCN) to mapping6

endw7

return mapping8

Algorithm 3: SelectTask(List<Task> availTasks)
Output: Select a task from availTasks

lastRangeMax← 0 // Used as minRange for next task1

total← ∑
∀t∈availTasks(slackT ime of t+ 1)2

forall the task t in availTasks do3

t.rangeMin← lastRangeMax4

t.value← total
t.slackT isme + 1

5

t.rangeMax← t.rangeMin + t.value6

lastRangeMax← t.rangeMax7

endfall8

randomNum← A random number uniformly distributed in [0, lastRangeMax)9

selectedTask← task t such that randomNum ∈ [t.rangeMin, t.rangeMax)10

return selectedTask11

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 37

Algorithm 4: SelectCN(Task task, List<CN> cNList, Application app)
Output: Select a CN from cnList to map task with minimum delay

startT ime←∞1

selectedCN ← null2

tempCNList← cnList3

while tempCNList is not empty AND startT ime > task.startT ime do4

cN ← randomly remove a CN from tempCNList5

stT ime← searchT ime(task.startT ime, task.duration, cN) // Searches6

// availability of cN for task

if stT ime ≤ startT ime then7

startT ime← stT ime8

selectedCN ← cN9

endif10

endw11

delay← startT ime − task.startT ime12

if delay > 0 then13

AdjustT ime(task, app) // Adjust the start time and14

// slack time of task and its descendents

endif15

node← CreateNode(task.startT ime, task.duration) // Creates a node16

// of reservation list

InsertNode(node, selectedCN) // Insert node into the17

// reservation list of selectedCN

return selectedCN18

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 38

Algorithm 5: AdjustTime(Task task, Application app)
Output: adjust the slack time and earliest start time of the unmapped tasks

task.startT ime← task.startT ime+ delay1

AdjustChildT ime(task) // Adjust the start time and2

// slack time of the descendents of task

minSlackT ime←minimum slackT ime among all unmapped tasks of app3

// Minimum slack time of all tasks are adjusted to zero.

if minSlackT ime < 0 then4

unmappedTasks← all unmapped tasks of app5

forall the task t in unmappedTasks do6

t.slackT ime = t.slackT ime −minSlackT ime7

endfall8

endif9

Algorithm 6: AdjustChildTime(Task task)
Output: adjust the slack time and earliest start time of the children of task

forall the child t of task do1

delay = task.startT ime + task.duration − t.startT ime2

if delay > 0 then3

t.startT ime = t.startT ime + delay // Increase start time of t4

t.slackT ime = t.slackT ime − delay // Decrease slack time of t5

AdjustChildT ime(t)6

endif7

endfall8

3.6 An Illustrative Example

In this section we illustrate the approach and its important features through an example. Consider

a User has sent an application to the Broker. The application has six tasks namely T0, T1, T2,

T3, T4 and T5. The application is as shown in Figure 3.5(a) and with earliest start time and latest

start time for each of the tasks in Figure 3.5(b).

Now consider a grid environment where two RP s named RP1 and RP2 are available. Each of

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 39

Figure 3.5: (a) Application used as example in this section (b) Representation of the application

with earliest and latest start time

the RP s provides one CN each, named CN1 and CN2 respectively. To make the understanding

easy, we use an array which is equivalent to the linked list for status of a CN . An example of

a linked list and its equivalent array structure is shown in Figures 3.6(a) and 3.6(b) respectively.

The symbols used and their meanings has been shown in Figure 3.6(c). Each slot of the array

represents a time unit and the time sequence has been numbered. In this example, we consider the

initial reservation status of the CNs as shown in Figure 3.7

Figure 3.6: (a) A linked list structure for reservation status (b) equivalent array structure of the list

(c) Symbols used in the array and their meanings

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 40

Figure 3.7: Initial reservation status of the CNs considered for the example

Let us consider the execution of the application is expected to start at 5. The tasks of the

application, their expected start time, scheduled start time, slack time, dependencies and status are

shown in Table 3.5. Since the expected start time of the application is 5, the expected start time

of all the tasks have been increased by 5. When the start time of a task is delayed, it is adjusted

and represented by Adjusted Start Time. Initially the expected start time and adjusted start time of

a task are same. Scheduled start time of a task is determined when the task is mapped. The tasks

with zero slack time composes the critical paths. The details of the status used here are as follows:

Dummy - The task is a dummy node and is not mapped. They are helpful for different

calculations.

Mapped - The task has been mapped.

Ready - All the parent tasks of this task has been mapped and the task is ready for mapping.

Fresh - The task is not still ready for mapping.

In this example the maximum number of iterations has been set to 2. Each of the following

subsection illustrates an iteration of the proposed algorithm. Each of the iterations starts with the

initial status of the tasks, application and CNs. In case where more than one CN is available to

map a task at the same earliest start time, one of the CNs is selected randomly to map that task.

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 41

Table 3.5: The initial status of the tasks

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 - 0 0 - Dummy

T0 5 5 - 4 0 TS Ready

T1 9 9 - 6 0 T0 Fresh

T2 9 9 - 3 8 T0 Fresh

T3 15 15 - 7 0 T1 Fresh

T4 12 12 - 2 8 T2 Fresh

T5 22 22 - 3 0 T3, T4 Fresh

TE 25 25 - 0 0 T5 Dummy

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 42

3.6.1 Details of First Iteration

As per dependancy graph and random selection method, let us assume the sequence of tasks to be

mapped is T0, T2, T1, T3, T4, T5.

Mapping T0 and T2

Table 3.6: Status of the tasks after T0 and T2 are mapped in the first iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 9 - 6 0 T0 Ready

T2 9 9 9 3 8 T0 Mapped to CN2

T3 15 15 - 7 0 T1 Fresh

T4 12 12 - 2 8 T2 Ready

T5 22 22 - 3 0 T3, T4 Fresh

TE 25 25 - 0 0 T5 Dummy

Figure 3.8: Status of the CNs after T0 and T2 are mapped in the First Iteration

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 43

Mapping T1

None of the CNs has available time to schedule T1 at its earliest start time. The next earliest

available time for T1 is 14 at CN1 and so T1 is mapped with CN1. Here, the difference between

the scheduled start time and earliest start time of T1 is 5. So, the start times of T3 and T5 are

adjusted and increased by 5. The Slack Time T4 have also been increased by 5.

Table 3.7: Status of the tasks after T1 is mapped in the First Iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 14 14 6 0 T0 Mapped to CN1

T2 9 9 9 3 8 T0 Mapped to CN2

T3 15 20 - 7 0 T1 Ready

T4 12 12 - 2 13 T2 Ready

T5 22 27 - 3 0 T3, T4 Fresh

TE 25 30 - 0 0 T5 Dummy

Figure 3.9: Status of the CNs after T1 is mapped in the First Iteration

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 44

Mapping T3, T4 and T5

Table 3.8: Status of the tasks after T3, T4 and T5 are mapped in the First Iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 14 14 6 0 T0 Mapped to CN1

T2 9 9 9 3 8 T0 Mapped to CN2

T3 15 20 20 7 0 T1 Mapped to CN1

T4 12 12 12 2 13 T2 Mapped to CN2

T5 22 27 27 3 0 T3, T4 Mapped to CN2

TE 15 30 30 0 0 T5 Dummy

Figure 3.10: Status of the CNs after T3, T4 and T5 are mapped in the First Iteration

Result of First Iteration

From the mapping information as shown in Table 3.8, we see that expected start time of TE is 25

but its scheduled start time is 30. TE is a dummy task and its duration is zero. The difference

between its scheduled start time and expected start time is the delay of the application. So, after

the First Iteration, a mapping has been generated that results a total delay of 5 to complete the

execution of the application in the Grid. Here,

Expected start time of TE = 25

Scheduled start time of TE =30

Total delay= 30 − 25 = 5

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 45

3.6.2 Details of Second Iteration

In this iteration let us assume the sequence of tasks to be mapped is T0, T1, T3, T2, T4, T5.

Mapping T0, T1 and T3

Table 3.9: Status of the tasks after T0, T1 and T3 are mapped in the Second Iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 9 9 6 0 T0 Mapped to CN2

T2 9 9 - 3 8 T0 Ready

T3 15 15 15 7 0 T1 Mapped to CN1

T4 12 12 - 2 8 T2 Fresh

T5 22 22 - 3 0 T3, T4 Fresh

TE 25 25 - 0 0 T5 Dummy

Figure 3.11: Status of the CNs after T0, T1 and T3 are mapped in the Second Iteration

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 46

Mapping T2

None of the CNs has available time to schedule T2 at its earliest start time. So, the next earliest

available time for T2 is 18 at CN2. So, T2 is mapped with CN2. Here, the difference between the

scheduled start time and earliest start time of T2 is 9. So, the start times of T4 and T5 are adjusted

and increased by 9 and 1 time unit respectively. The slack times of the these tasks have been set to

zero.

Table 3.10: Status of the tasks after T2 is mapped in the Second Iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 9 9 6 0 T0 Mapped to CN2

T2 9 18 18 3 0 T0 Mapped to CN2

T3 15 15 15 7 0 T1 Mapped to CN1

T4 12 21 - 2 0 T2 Ready

T5 22 23 - 3 0 T3, T4 Fresh

TE 25 26 - 0 0 T5 Dummy

Figure 3.12: Status of the CNs after T2 is mapped in the Second Iteration

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 47

Mapping T4 and T5

Table 3.11: Status of the tasks after T4 and T5 are mapped in the Second Iteration

Task Expected Adjusted Scheduled Dura- Slack Depend- Status

Start Time Start Time Start Time tion Time encies

TS 5 5 5 0 0 - Dummy

T0 5 5 5 4 0 TS Mapped to CN1

T1 9 9 9 6 0 T0 Mapped to CN2

T2 9 9 18 3 0 T0 Mapped to CN2

T3 15 15 15 7 0 T1 Mapped to CN1

T4 12 21 21 2 0 T2 Mapped to CN2

T5 22 23 23 3 0 T3, T4 Mapped to CN1

TE 25 26 26 0 0 T5 Dummy

Figure 3.13: Status of the CNs after T4 and T5 are mapped in the Second Iteration

Result of Second Iteration

From the mapping information as shown in Table 3.11, we see that expected start time of TE is 25

but scheduled start time is 26. So, after the Second Iteration, a mapping has been generated that

results a total delay of 1 to complete the application execution in the Grid.

Here,

Expected start time of TE = 25

Scheduled start time of TE = 26

Total delay = 26 − 25 = 1

CHAPTER 3. NEW RESOURCE RESERVATION SCHEME IN GRID 48

Since the mapping generated in the Second Initeration is better than the previous best, so it will

be selected as the new best mapping. The maximum iterations for this example has been set to 2

and so resources will be reserved according to this mapping which results a schedule with 1 time

unit delay. If furhter iterations are allowed then the algoritm will run until zero delay mapping is

generated or the number of iterations reached to the maximum allowed.

3.7 Complexity Analysis

Let, M , N , R and L denotes maximum iterations, number of tasks in an application, number of

CNs available and average lenght of a resource reservation list respectively. In our algorithm,

the CreateMapping procedure runs for each iteration. In each iteration all the tasks are mapped.

So, each of SelectTask and SelectCN procedures run a total of N times in CreateMapping.

The maximum number of unmapped task at any time is N . So, in CreateMapping the total time

required for SelectTask is O(N2).

Now, in SelectCN each of the CNs are searched for finding time slot for a task. SearchT ime

requires O(L) time. So, the total time to find a CN for the task is O(RL). Since the maximum

number of child nodes that can be adjusted are N -1, run time of AdjustChildT ime is O(N). As

stated previously, the maximum number of unmapped task is N and so run time of AdjustChild

is O(N) + O(N) = O(N). So, each run of SelectCN requires time of O(RL) + O(N) =

O(N + RL). Since, SelectCN is called N times from CreateMapping, the total time required

for this procedure during each iteration of the algorithm is O(N2 +NRL).

The add operation in CreateMapping procedure takes O(1) time and it also runs total N

times, resulting O(N) time for each of the iterations of the algorithm. So, the time complexity of

CreateMapping function is O(N2) +O(N2 +NRL) +O(N) = O(N2 +NRL).

Statements other than CreateMapping procedure take O(1) time in each iteraion of the al-

gorithm. So, time required for each iteration is O(N2 + NRL). Hence time complexity of our

algorithm is O(MN2 +MNRL). On the other hand, the time complexity of Blythe’s algorithm

is O(MN2RL). This shows superiority of our algorithm in terms of time complexity.

Chapter 4

Simulation Results

In this chapter we present the simulation results of our proposed system. Through simulation

we study the behavior of our approach and evaluate its performance based on some performance

metrics. We also compare the performance of our approach to an existing system. We have used

a simulator for Grid environment named GridSim to perform simualtion. The simulation is run

using a computer having Intel Core 2 Duo processor, 1.80GHz, 2 GB of memory and Windows

Vista operating system.

4.1 Grid Simulation Tools

Simulation is extensively used for modeling and evaluation of real world systems. Consequently,

many standard and application-specific tools and technologies have been built for simulation and

modeling. They include simulation languages (e.g. Simscript [2]), simulation libraries (e.g. Sim-

Java2 [1][19]), and application specific simulators (e.g. NS-2 network simulator [24]). While

there exists a large number of tools, very few well-maintained tools are available for application

scheduling simulation in grid computing environments.

4.1.1 Simulation Tools for Grid

OptorSim [6] is developed as part of the EU DataGrid project. It aims to mimic the structure

of an EU DataGrid Project and study the effectiveness of several grid replication strategies. It is

quite a complete package as it incorporates few auction protocols and economic models for replica

optimization. However, it mainly focuses more on the issue of data replication and optimization.

49

CHAPTER 4. SIMULATION RESULTS 50

The SimGrid toolkit[8], developed at the University of California at San Diego (UCSD), is a

C language based toolkit for the simulation of application scheduling. It supports modeling of

resources that are time-shared and the load can be injected as constants or from real traces. It is a

powerful system that allows creation of tasks in terms of their execution time and resources, with

respect to a standard machine capability.

The MicroGrid emulator[30] , undertaken at the UCSD, is modeled after Globus[16], a soft-

ware toolkit used for building Grid systems. It allows execution of applications constructed using

the Globus toolkit in a controlled virtual Grid resource environment. MicroGrid is actually an

emulator meaning that actual application code is executed on the virtual Grid. Thus, the results

produced by MicroGrid are much closer to the real world as it is a real implementation. However,

using MicroGrid requires knowledge of Globus and implementation of a real system/application

to study.

GangSim [13], developed at the University of Chicago, is targeted towards a study of usage and

scheduling policies in a multi-site and multi-VO (Virtual Organization) environment. It is able to

combine discrete simulation techniques and modeling of real Grid components in order to achieve

scalability to Grids of substantial size.

Finally, GridSim [6], development led by the University of Melbourne, supports simulation of

various types of Grids and application models scheduling. The following sections explain some

major features and capabilities of GridSim.

4.1.2 GridSim Toolkit

GridSim is an open-source software platform, written in Java, that allows modeling and simu-

lation of entities in parallel and distributed computing. for design and evaluation of scheduling

algorithms. It provides a comprehensive facility for creating different classes of heterogeneous

resources that can be aggregated using resource brokers for solving compute and data intensive

applications. GridSim is based on SimJava2, a general purpose discrete-event simulation package

implemented in Java. All components in GridSim communicate with each other through message

passing operations defined by SimJava2.

Some of the features of GridSim are outlined below:

- It incorporates failures of Grid resources during runtime

- New allocation policy can be made and integrated into the GridSim Toolkit

CHAPTER 4. SIMULATION RESULTS 51

- It has framework to support advance reservation in a grid system

- An auction model is incorporated into GridSim

- Datagrid extension is included into GridSim

- Network extension is incorporated in GridSim so that resources and other entities can be

linked in a network topology

- Background network traffic functionality based on a probabilistic distribution is available.

This is useful for simulating over a public network where the network is congested

- It incorporates multiple regional GridInformationService (GIS) entities connected in a net-

work topology. Hence, it is possible to simulate an experiment with multiple Virtual Orga-

nizations (V Os)

4.2 Experimental Setup

In SimJava2, each simulated component that interacts with others, is referred to as an entity. Grid-

Sim provides both built-in and facilities for user defined entities, algorithms and data structures.

We have designed the experiment in GridSim to simulate the system as shown in Figure 3.1. We

defined several entities in the experiment. Important entities are described below.

• User- This is the entity that sends an application to the Broker for reserving resources for the

application. The expected start time of the application is also specified with the application.

• Broker - Broker is the most important entity that searches for optimal scheduling of an ap-

plication to the computing nodes.

• Application - An application is generally a task graph which consists of several tasks.

• Task - Task is the smallest entity that should be executed in a computer without any break.

• ApplicationGenerator - An application generator generates applications from the Standard

Task Graph Archives.

• ResourceProvider - A resource provider consists of several ComputingNode and it is respon-

sible for the management of its resources and communication with the Broker.

CHAPTER 4. SIMULATION RESULTS 52

• ComputingNode - A Computing Node is the entity that executes the tasks. So, resources of

computing nodes are reserved for the tasks for future execution

• RPGenerator - RPGenerator generates a set of Resource Providers which are used in the

grid.

4.3 Simulation data

To evaluate the performance of the proposed scheme we run the simulation on data from stan-

dard Task Graph Archive which is available at [22]. Both task graphs with communication cost

and without communication cost are available in the archive. For our simulation we selected task

graphs without communication cost. The simulation has been run for three sets of applications.

Applications of the first, second and third set consist of 50 tasks, 100 tasks and 300 tasks respec-

tively. The simulation has been performed on different loads of the computing nodes. The system

was loaded with some of the applications of the task graph archive before the test application is run.

The different loads for which the test application has been run are 0%(Completely free), 25%(Light

load), 50% (Average load) and 75% (High load). Different numbers of computing nodes were also

used in the simulation. The numbers of nodes for different runs were 10, 15, 20, 25, 30, 35, 40,

45, 50. So, there are 3 different task sets, 4 different loads and 9 different size of computing node

sets, which result a total of 3 × 4 × 9 = 108 runs. For each run, we have taken 100 applications

randomly from a set and scheduled each of them separately to the computing nodes. The expected

start time of the applications were generated randomly.

We have run the simulation both with our proposed algorithm and with the algorithm presented

by Blythe et al. [7]. For each run, we have set the number of maximum iterations to 50.

4.4 Measurement Metrics

The metrics considered for evaluation are ZeroDelayedApp, AverageDelay and RunTime.

- ZeroDelayedApp: The percentage of the applications which can be scheduled without delay

- AverageDelay: The average scheduling delay of an application

- RunTime: The average time required to schedule an application

CHAPTER 4. SIMULATION RESULTS 53

4.5 Outcome of the simulation

We compare our system with an existing system for resource management in grid computing.

The work done by Blythe et al. [7] is the most appropriate to compare. This work provides

a iterative approach for scheduling applications using Estimated Completion Time (ECT). In

Blythe’s system there is no consideration of the slack time of the tasks and the critical paths of the

applications. We have implemented both our system and Blythe’s System in the GridSim simulator.

Major outcomes of our experiment have been given in tabular form in Appendix B.

4.6 Comparison of the result

From the detailed outputs as shown in Appendix B, we see that our algorithm performs better than

Blythe’s algorithm. We have presented here some graphical analysis of the result for the different

set of applications at average load (50%) of the computing nodes. Figures 4.1, 4.2 and 4.3 shows

the percentage of applications that are scheduled without any delay for different application sets.

Here the result has been shown agianst the number of CNs. As the number of CNs increases, the

percentage of such applications increases both in our system and Blythe’s system, as expected. But

the percentage in our system is higher in most of the cases than that of the Blythe’s system. So,

our system schedules more applications without delay.

Figures 4.4, 4.5 and 4.6 show the average delay that is required to schedule the tasks of an

application for different application sets. Similar to the previous result, it has been shown against

number ofCNs. Here average delay decreases as the number ofCNs increases, both in our system

and Blythe’s system. Figures show that, the average delay in our system is less than that of the

Blythe’s system in most of the cases.

The more the number of iterations in each run, the better the obtained result is. Figures 4.7, 4.8

and 4.9 show the percentage of applications for which zero delay scheduling is generated as the

number of iterations increases at average (50%) load. Here the result has been shown for 20 CNs

as sample. From the figures we see that in most of the cases our system produces better result for

the same number of iterations used in the algorithms.

Figures 4.10, 4.11 and 4.12 show the average delay of an application as the number of iterations

increases at average load. The figures show that our system produces better result for the same

number of iterations used in the algorithms. In other words, our system produces same result with

CHAPTER 4. SIMULATION RESULTS 54

Figure 4.1: Percentage of applications with 50 tasks with zero delay scheduling for different num-

ber of CNs at average load

Figure 4.2: Percentage of applications with 100 tasks with zero delay scheduling for different

number of CNs at average load

CHAPTER 4. SIMULATION RESULTS 55

Figure 4.3: Percentage of applications with 300 tasks with zero delay scheduling for different

number of CNs at average load

Figure 4.4: Average delay for an application with 50 tasks for different number of CNs at average

load

CHAPTER 4. SIMULATION RESULTS 56

Figure 4.5: Average delay for an application with 100 tasks for different number ofCNs at average

load

Figure 4.6: Average delay for an application with 300 tasks for different number ofCNs at average

load

CHAPTER 4. SIMULATION RESULTS 57

Figure 4.7: Percentage of zero delayed applications for applications with 50 tasks at average load

for 20 CNs

Figure 4.8: Percentage of zero delayed applications for applications with 100 tasks at average load

for 20 CNs

CHAPTER 4. SIMULATION RESULTS 58

Figure 4.9: Percentage of zero delayed applications for applications with 300 tasks at average load

for 20 CNs

less number of iterations than Blythe’s algorithm does. As stated earlier, delay of any task in a

critical path results delay of the whole application. So giving more priority to tasks with less slack

time for scheduling is expected to produce better result. Our algorithm takes this approach and

simulation results show betterness of our algorithm.

We have set the number of iterations to 50 which is justified by the results shown in Figures

4.7- 4.12. The more the number of iterations the better the result is, but more time is required.

So, the number of iterations should be fixed based upon the time available for computing the

scheduling algorithm, the number of applications in the queue waiting for reservation, expected

delay to complete execution of the application etc.

The average time required to run the scheduling algorithms for an application for different

number of CNs at average load has been shown in Figures 4.13, 4.14 and 4.15 for different ap-

plication sets respectively. Here the figures show that our algorihm takes less time to schedule

an application than that of Blythe’s algorithm. In Blythe’s algorithm, all the CNs are searched

against all the ready tasks to find out Estimated Completion Time (ECT) of each of the tasks.

Then a small pool of tasks with smaller ECT is created and a task is randomly selected from the

pool. But in our algorithm, CNs are not considered during selection of a task. A task is selected

CHAPTER 4. SIMULATION RESULTS 59

Figure 4.10: Average delay for applications with 50 tasks at average load for 20 CNs

Figure 4.11: Average delay for applications with 100 tasks at average load for 20 CNs

CHAPTER 4. SIMULATION RESULTS 60

Figure 4.12: Average delay for applications with 300 tasks at average load for 20 CNs

based on the slack time of the ready tasks only. After selecting the task, our algorithm searches for

the CNs to schelue the task at its earliest possible. Also, another reason is that our algorithm takes

less iterations to produce a zero delayed application schedule. Zero delayed application scheduing

is best and so no more iterations is required when a zero delayed scheduling is obtained. As a result

our algorithm takes less time on average to scheule an application than that of Blythe’s algorithm.

Also from the complexity analysis, as shown in previous chapter, it is obvious that our algorithm

is faster than Blythe’s algorithm.

The results also show that our algorithm takes less time as the number of CNs increases. This

is due to the fact that in our algorithm selection of a task does not depend on the CNs, but more

CNs result more zero delayed applications in less number of iterations. So, average time required

to schedule an application is reduced. Though more CNs result more zero delayed applications

in less number of iterations for Blythe’s algorithm also, the time is not reduced as like in our

algorithm. The reason is that in Blythe’s algorithm selection of each task for scheduling depends

on theCNs. So if the number ofCNs increases, the time required by Blythe’s algorithm increases.

But the time required for 15 CNs is less than 10 CNs. This is due to the fact that the number of

zero delayed applications for 10 CNs is much less than 15 CNs. As stated earlier, less number

of zero delayed applications indicates more applications require all the iterations. So, the average

CHAPTER 4. SIMULATION RESULTS 61

Figure 4.13: The average time required to schedule an application with 50 tasks at average load

Figure 4.14: The average time required to schedule an application with 100 tasks at average load

CHAPTER 4. SIMULATION RESULTS 62

Figure 4.15: The average time required to schedule an application fwith 300 tasks at average load

time required for 10 CNs is more than 15 CNs. Also we see that the average run time for our

algorithm does not decreases steadily. This is same for Blythe’s algorithm. For Blythe’s algorithm

increment of time is not steady too. We can see from Figures 4.1, 4.2 and 4.3 that the number

of zero delayed applications does not change significantly as the number of CNs increases. For

the cases, where applications take more iterations to produce zero delayed schedule, more average

time is required.

We performed a paired t-test on the average delay generated by our algorithm and Blythe

et el. As a sample, the test was performed on average delay of applications with 100 tasks for

average load and 20 CNs. The two-tailed P value for the average delays after iteration 1, 25

and 50 are 0.0187, 0.0105 and 0.0483 respectively. The result shows that the differences are

statistically significant. The mean of our algorithm minus Blythe’s equals 1.54 after first iteration.

95% confidence interval of this difference is: From 0.26 to 2.82. After iteration 25, the difference

is 0.49. 95% confidence interval of this difference is: From 0.12 to 0.86. The difference is 0.3

after iteration 50. 95% confidence interval of this difference is: From 0.01 to 0.61. From this test

we can confidently claim that our algorithm is consistent relative to Blythe’s algorithm.

Chapter 5

Conclusion

In this last chapter, we draw the conclusion of our thesis by describing the major contributions

made by the research works associated with the thesis followed by some directions for future

research over the issue.

5.1 Major Contributions

The major contributions that have been made in this thesis can be enumerated as follows:

• The main contribution of this thesis work is to design a resource reservation system for

grid computing that reserves resources for applications with less average delay and less

compution time compared to others. Also the number of applications that are scheduled

with zero delay is more in our system than the system we compared with.

• The system is able to work in real world complex grid architecture. It works in a distributed

manner and uses appropriate and efficient data structures to represent the grid architecture.

It has support for both instant request acceptation/rejection and future resource reservation

for any application.

• The number of iterations is flexible. System will set the number of iterations required based

on time available to compute the schedule, the performance required, the number of appli-

cations in the queue for reservation etc. So,the system will produce scheduling as required

based on the factors mentioned earlier.

• We performed the detailed performance evaluation of our resource reservation system and

compared with an existing system using applications provided by Standard Task Graph

63

CHAPTER 5. CONCLUSION 64

Archive. The performance of our system in terms of total number of zero delayed appli-

cations and average delay are analyzed and then compared with the existing one.

• After a rigorous simulation based study of various performance issues, we found that our

system outperforms the existing system in most of the cases including total number of zero

delayed applications, average delay and iterations required.

5.2 Directions of Further Research

Any research on any topic always makes a way to further research. Ours is not an exception.

Resource reservation is one of the core parts of grid computing. It is not a new research area for

grid computing but still there are lot of challenges and unsolved problems. Some of future research

areas of resource reservation in grid are given below

• Reserving multiple resources like processor time, memory, banwidth for applications. The

resources may be homogenious or heterogenious.

• Reserving resources for data intensive applications and thus design the system considering

the data transfer delay for a task from a resource provider to other resource for its child tasks.

• Rearrange the reservation for tasks to accomodate a new application with reduced delay.

In such case the arrangment of the tasks will maintain the dependency and also should not

increase the delay of any application for which resources have been reserved.

Bibliography

[1] SimJava: a discrete event and process oriented simulation package. http://www.icsa.

inf.ed.ac.uk/research/groups/hase/simjava/.

[2] Simscript: a simulation language for building large-scale complex simulation models.

http://www.simscript.org.

[3] AccessGrid. http://www.accessgrid.org/.

[4] D. Anderson, J. Cobb, and E. Korpela. Seti@home: An experiment in public-resource com-

puting. Communication of the ACM, 45(11):56–61, November 2002.

[5] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster. Applying chimera virtual data

concepts to cluster finding in the sloan sky survey. In Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, Baltimore, MD, U.S.A., November 2002. IEEE Computer

Society Press.

[6] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Milar, K. Stokinger, and F. Zini. Simulation

of dynamic grid replication strategies in optorsim. In Proceedings of the 3rd International

Workshop on Grid Computing (Grid’02), Baltimore, USA, November 2002.

[7] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task scheduling

strategies for workflow-based applications in grids. In Proceedings of the IEEE International

Symposium on Cluster Computing and the Grid (CCGrid 2005), volume 2, 2005.

[8] H. Casanova, A. Legrand, and M. Quinson. Simgrid: a generic framework for large-scale dis-

tributed experimentations. In Proceedings of the 10th International Conference on Computer

Modeling and Simulation (UKSim’08), Cambridge, UK, April 2008.

65

BIBLIOGRAPHY 66

[9] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for scheduling param-

eter sweep applications in grid environments. In 9th Heterogeneous Computing Workshop,

Cancun, Mexico, May 2001.

[10] L. Chen and G. Agrawal. A static resource allocation framework for grid-based streaming

applications: Research articles. Concurrency and Computation: Practice & Experience,

18(6):653–666, 2006.

[11] W. Cirne, D. Paranhos, L. Costa, E. S. Neto, F. Braseleiro, and J. Sauve. Running bag-of-tasks

applications on computational grids: The mygrid approach. In International Conference on

Parallel Processing (ICPP’03), Kaohsiung, Taiwan, October 2003.

[12] E. G. Coffman and J. L. Bruno. Computer and job-shop scheduling theory. John Wiley and

Sons Inc, USA, 1976.

[13] C. L. Dumitrescu and I. Foster. Gangsim: A simulator for grid scheduling studies. In Proceed-

ings of the 5th International Symposium on Cluster Computing and the Grid (CCGrid’05),

Cardiff, UK, May 2005.

[14] eDiaMoND Grid Computing Project. http://www.ediamond.ox.ac.uk/.

[15] Distributed European Infrastructure for Supercomputing Applications. http://http://

www.deisa.org/.

[16] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Supercomputer

Applications, 11(2), 1997.

[17] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Mor-

gan Kaufmann Publishers, San Francisco, CA, 1998.

[18] U. Hoenig and W. Schiffmann. A comprehensive test bench for the evaluation of scheduling

heuristics. In Proceedings of the 16th International Conference on Parallel and Distributed

Computing and Systems (PDCS’04), Cambridge, USA, November 2004.

[19] F. Howell and R. McNab. simjava: a discrete event simulation package for java with applica-

tions in computer systems modelling. In Proceedings of the First International Conference

on Web-based Modelling and Simulation, San Diego, CA, USA, January 1998. Society for

Computer Simulation.

BIBLIOGRAPHY 67

[20] B. Jacob, M. Brown, K. Fukui, and N. Trivedi. Introduction to Grid Computing. IBM

Corporation, North Castle Drive Armonk, NY, U.S.A., 2005.

[21] J. Joseph, M. Ernest, and C. Fellenstein. Evolution of grid computing architecture and grid

adoption models. IBM Systems Journal, 43(4):624–645, 2004.

[22] Kasahara Laboratory. http://www.kasahara.elec.waseda.ac.jp/

schedule/.

[23] J. MacLaren. Advance reservations: State of the art (draft). GWD-I, Global Grid Forum

(GGF), June 2003.

[24] Ns-2 network simulator. http://www.isi.edu/nsnam/ns.

[25] National Institute of Advanced Industrial Science and Technology(AIST). http://www.

aist.go.jp/index_en.html.

[26] A. Schill, F. Breiter, and S. Kuhn. Design and evaluation of an advance reservation protocol

on top of rsvp. In Proceedings of the IFIP TC6/WG6.2 4th International Conference on

Broadband Communications (BC’98), Stuttgart, Germany, April 1998.

[27] SETI@home. http://setiathome.berkeley.edu/sah_about.php.

[28] R. Shahriyar. A distributed optimized resource reservation scheme for grid computing. In

M.Sc.Engg. Thesis. Department of Computer Science and Engineering, Bangladesh Univer-

sity of Engineering and Technology, Dhaka, Bangladesh, December 2009.

[29] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In Proceed-

ings of the International Parallel and Distributed Processing Symposium (IPDPS’00), Can-

cun,Mexico, May 2000.

[30] H. J. Song, X. Liu, D. Jackobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. The

microgrid: A scienti

c tool for modeling computational grids. Scientific Programming, 8(3), 2000.

[31] A. Sulistio, U. Cibej, S. K. Prasad, and R. Buyya. Garq: An efficient scheduling data structure

for advance reservations of grid resources. International Journal of Parallel, Emergent and

Distributed Systems, 24(1):1–19, 2009.

BIBLIOGRAPHY 68

[32] M. Viera, C. Rocha, M. Capretz, M. Bauer, and M. Dantas. A user-centric authentication for

advanced resource reservation in mobile grid environments. In International Conference on

Grid Computing and Applications (GCA’10), Las Vegas, USA, July 2010.

[33] J. Xing, C. Wu, M. Tao, L. Wu, and H. Zhang. Flexible advance reservation for grid comput-

ing. In Grid and Cooperative Computing(GCC), pages 241–248, 2004.

[34] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu. Towards efficient resource on-demand in

grid computing. ACM SIGOPS Operating Systems Review, 37(2):37–43, 2003.

Appendix A

Major Algorithms

A.1 Algorithms realted to data structures

Algorithm 7: CreateNode(int start, int duration)
Output: Creates and returns a single node for reservation status list

n← new node for reservation status list1

n.startT ime← start2

n.duration← duration3

n.next← null4

return n5

69

APPENDIX A. MAJOR ALGORITHMS 70

Algorithm 8: InsertNode(Node n, ComputingNode CN)
Output: Insert a single node n in the reservation status list of CN

if CN.reservationList is null then1

add n to CN.reservationList2

return3

endif4

nd← first node of CN.reservationList;5

if n.startT ime < nd.startT ime then6

n.next← nd7

add n to CN.reservationList8

return9

endif10

while nd.next 6= null AND nd.next.startT ime < n.startT ime do11

nd← nd.next12

endw13

n.next← nd.next14

nd.next← n15

APPENDIX A. MAJOR ALGORITHMS 71

Algorithm 9: SearchTime(Node n, ComputingNode CN)
Output: Returns the earliest possible time in the reservation status list of CN for node n

nd← first node of CN.reservationList1

if CN.reservationList is null OR n.startT ime + n.duration ≤ nd.startT ime then2

return n.startT ime3

endif4

lastNd← last node of CN.reservationList5

if n.startT ime ≥ lastNd.startT ime + lastNd.duration then6

return n.startT ime7

endif8

while nd.next 6= null do9

if nd.next.startT ime - (nd.startT ime + nd.duration) ≥ n.duration AND10

nd.next.startT ime − n.startT ime ≥ n.duration then

if n.startT ime ≥ nd.startT ime + nd.duration then11

return n.startT ime12

endif13

else14

return nd.startT ime + nd.duration15

endif16

endif17

nd← nd.next18

endw19

return nd.startT ime + nd.duration20

Appendix B

Simulation Outputs

The simulation has been performed on different loads of the computing nodes. The different loads

for which the test applications have been run are 0%(Completely free), 25%(lightly loaded), 50%

(Average Loaded) and 75% (Higly loaded). Different numbers of computing nodes were also used

in the simulation. The numbers of nodes for different runs were 10, 15, 20, 25, 30, 35, 40, 45,

50. So, there are 3 different task sets, 4 different load and 9 different size of computing node set

which results a total of 3× 4× 9 = 108 runs. We have run the simulation both with our proposed

algorithm and with the algorithm presented by Blythe et al. [7]. The details output of simulation

is presented in Table B.1, B.2 and B.3 for applications with 50 tasks, 100 tasks and 300 tasks

respectively.

72

APPENDIX B. SIMULATION OUTPUTS 73

Table B.1: Output for the applications with 50 tasks

Number of Load Application Delayed(%) Average Delay
Compiuting Nodes Ours Blythe’s Ours Blythe’s

10 0 15 18 0.56 1.15

10 25 34 39 6.21 6.94

10 50 39 41 16.22 16.53

10 75 59 65 34.75 36.18

15 0 0 1 0 0.03

15 25 4 6 0.34 0.41

15 50 16 17 1.51 1.73

15 75 23 23 5.58 5.83

20 0 0 0 0 0

20 25 0 0 0 0

20 50 12 12 0.84 0.87

20 75 12 12 4.28 4.29

25 0 0 0 0 0

25 25 0 0 0 0

25 50 4 4 0.42 0.42

25 75 10 11 1.86 2.12

30 0 0 0 0 0

30 25 0 0 0 0

30 50 0 0 0 0

30 75 2 2 0.07 0.07

35 0 0 0 0 0

35 25 0 0 0 0

35 50 1 1 0.02 0.02

35 75 2 2 0.53 0.53

40 0 0 0 0 0

40 25 0 0 0 0

40 50 0 0 0 0

40 75 0 0 0 0

45 0 0 0 0 0

45 25 1 1 0.03 0.03

45 50 0 0 0 0

45 75 1 1 0.06 0.06

50 0 0 0 0 0

50 25 0 0 0 0

50 50 0 0 0 0

50 75 0 0 0 0

APPENDIX B. SIMULATION OUTPUTS 74

Table B.2: Output for the applications with 100 tasks

Number of Load Application Delayed(%) Average Delay
Compiuting Nodes Ours Blythe’s Ours Blythe’s

10 0 20 32 2.14 3.18

10 25 40 45 19.08 20.31

10 50 63 67 72.47 76.05

10 75 77 78 141.57 143.23

15 0 5 7 0.63 1.01

15 25 26 27 8.94 9.38

15 50 38 42 22.31 23.28

15 75 56 56 64.22 65.96

20 0 2 3 0.06 0.36

20 25 3 3 0.77 0.77

20 50 16 17 6.4 6.7

20 75 27 29 10.67 12.87

25 0 0 1 0 0.07

25 25 4 7 0.31 0.54

25 50 8 10 1.4 1.73

25 75 7 12 2.43 2.52

30 0 0 0 0 0

30 25 0 1 0 0.02

30 50 2 3 0.2 0.28

30 75 15 16 3.9 4.1

35 0 0 0 0 0

35 25 0 0 0 0

35 50 3 3 0.71 0.67

35 75 6 8 1.77 1.82

40 0 0 0 0 0

40 25 0 0 0 0

40 50 3 3 0.35 0.37

40 75 0 0 0 0

45 0 0 0 0 0

45 25 0 0 0 0

45 50 0 0 0 0

45 75 1 1 0.08 0.08

50 0 0 0 0 0

50 25 0 0 0 0

50 50 0 0 0 0

50 75 1 1 0.14 0.14

APPENDIX B. SIMULATION OUTPUTS 75

Table B.3: Output for the applications with 300 tasks

Number of Load Application Delayed(%) Average Delay
Compiuting Nodes Ours Blythe’s Ours Blythe’s

10 0 53 61 32.81 37.26

10 25 78 84 96.9 103.14

10 50 94 96 327.85 338.66

10 75 94 95 684.31 697.75

15 0 12 16 3.37 4.39

15 25 38 43 64.68 66.44

15 50 62 64 162.04 165.98

15 75 78 81 305.08 308.5

20 0 6 7 2.48 2.99

20 25 29 29 25.57 26.85

20 50 44 48 45.65 47.49

20 75 65 67 88.37 93.24

25 0 11 15 3.3 4.67

25 25 15 20 6.3 7.77

25 50 37 38 27.68 30.32

25 75 42 45 35.15 36.83

30 0 8 8 1.48 2.2

30 25 20 20 7.19 8.05

30 50 25 26 21.04 21.74

30 75 31 33 35.57 36.32

35 0 4 6 0.34 0.79

35 25 9 11 2.15 2.56

35 50 14 15 5.39 6.12

35 75 22 23 12.03 14.25

40 0 4 5 0.67 1.24

40 25 6 9 1.66 2.07

40 50 7 8 4.52 4.86

40 75 14 14 5.91 6.45

45 0 1 3 0.06 0.22

45 25 5 6 1.5 1.8

45 50 6 8 3.47 3.87

45 75 10 12 5.93 6.15

50 0 1 3 0.05 0.36

50 25 2 3 0.2 0.49

50 50 4 9 0.51 0.99

50 75 6 7 1.34 1.6

