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Abstract

A layered drawing of a planar graph G is a planar straight-line drawing of

G, where the vertices are placed on a set of horizontal lines, called layers. A

minimum-layer drawing of G is a layered drawing of G with the minimum num-

ber of layers among all the layered drawings of G. To the best of our knowledge,

no polynomial-time algorithm is known till now to construct a minimum-layer

drawing of a general planar graph. Even for a restricted class of layered draw-

ings, where the edges are between vertices on adjacent layers, the problem of

recognizing graphs to admit such a drawing is in NP-complete. Therefore, lay-

ered drawings of graphs are often studied for special classes of planar graphs.

In this thesis we address the problem of minimum-layer drawing of trees.

For a tree T with pathwidth h, a linear-time algorithm is already known and it

produces a drawing of T on ⌈3h/2⌉ layers. However, the drawing obtained by

this algorithm is not necessarily a minimum-layer drawing of T . A necessary

condition for a tree to admit a k-layer drawing is also known and this condition

is also sufficient for k ≤ 2. However for k > 2, there is no such necessary and

sufficient characterization. The problem of finding a minimum-layer drawing

of a tree is known to be in NP-hard with some constraints for the placement

of vertices. There are also some polynomial-time algorithms for obtaining a

minimum-layer drawing of T with some other constraints on the placement of

vertices. However for the general version of the problem, there is neither any

polynomial-time algorithm or any hardness result known so far. In this paper

we give a linear-time algorithm for obtaining a minimum-layer drawing of a

tree. We first give a linear-time algorithm to obtain a minimum-layer drawing

of a rooted tree with the additional constraint that the root of the tree is visible

from outside the bounding box of the drawing. Using this algorithm, we then

give an algorithm to find a minimum-layer drawing of a tree in linear time.

viii



Chapter 1

Introduction

A graph is a mathematical tool that consists of a set of vertices and a set of

edges, where each edge joins a pair of vertices. In computer science a graph

is often used to model a relational structure; a configuration that consists of

a collection of entities and the pairwise relations between these entities. We

model each entity of the problem at hand with a vertex and the relationship

among a pair of entities with an edge between them. Thus a graph can repre-

sent any information that can be modeled as objects and relationships between

pairs of them. Such a relational structure is omnipresent not only in the field

of computer science but also in various problems arising from many diverse

application areas. Thus graphs have become powerful mathematical tools in

a wide variety of areas in computer science, electrical, architectural and other

field of engineering, genetics, bioinformatics, molecular biology, chemistry, VLSI

technology, even in geology and social sciences. For almost each of these ap-

plications areas, it is often required that the information represented by the

graph model is conveniently visualized. This yields to the advent of the field of

“Graph Drawing”.

Graph Drawing is a relatively new area in Computer Science. The draw-

ing of a graph constructs a geometric representation of an embedding of the

graph in the plane so that the graph and its contents (i.e., the entities and

their relationships) are easily traceable. Thus the field of graph drawing is

motivated by its abundant applications for information visualization and also

for VLSI circuit design, social network analysis, cartography, and bioinformat-

ics, many of which make use of information visualization. Apart from these,
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graph drawing, particularly automated generation of the drawings of graphs,

nowadays finds inducive applications in software engineering (data-flow dia-

grams, subroutine-call graphs, object-oriented class hierarchies etc.), databases

(ER-diagrams), information systems (organizational charts), real-time systems

(Petri-nets, state-transition diagrams), Decision support systems (PERT net-

works, activity trees), electrical and VLSI circuit design (layout design and

circuit schematics), artificial intelligence (knowledge-representation diagrams),

logic programming (SLD-trees), biology and phylogenetics (evolutionary trees),

medical sciences (concept lattices), chemistry (molecular drawings), civil engi-

neering (architectural floorplan) and cartography (map schematics) [3, 21]. For

example, [21] shows how a graph drawing technology can be used to generate a

VLSI layout satisfying different optimization requirements.

In most of the cases, the geometric representations of graphs generated by

graph drawing algorithms are constrained by some predefined geometric or aes-

thetic properties. A “good” diagram helps in convenient understanding of the

underlying system, but a “poor” diagram can be ambiguous, confusing and

misleading. The “goodness” of a diagram depends on the application at hand.

Different applications requires different desirable geometric or aesthetic proper-

ties and hence they impose different constrains on the drawing of a graph. These

results in a number of different drawing styles and conventions for drawings of

graphs.

A layered drawing [27, 29] of a graph G is a drawing of G where the vertices

of G are placed on a set of horizontal lines called layers, and the edges of G are

drawn as straight-line segments. Layered Drawings of graphs finds its applica-

tion in several areas like VLSI layouts [17], DNA-mapping [30] and information

visualization [3, 15]. In some of the application areas, it is often desired to ob-

tain a layered drawing of a graph that occupies the minimum number of layers.

In this thesis, we address this problem for a class of graphs called trees. We

give a linear-time algorithm to obtain a layered drawing of a given tree on the

minimum number of layers.

We first address the problem of minimizing the number of layers in a “root-

visible drawing” of a rooted tree. Let T be a rooted tree with the root vertex r.

A root-visible drawing of T is a layered drawing Γ of T where there is a point p

below all the layers in Γ such that a straight-line from p to r does not create any

2



edge crossing with Γ. We give an algorithm to obtain a root-visible drawing of a

rooted tree on the minimum number of layers. We use this algorithm to obtain

a minimum-layer drawing of a tree as follows. Given a tree T , we find a suitable

root r of T such that a minimum-layer root-visible drawing of T with the root r

is also a minimum-layer drawing of T . We will detail the concepts of the above

mentioned algorithms in the later chapters of this thesis. In this introductory

chapter, we only focus on some preliminary concepts of layered drawings of

graphs and also the application of layered graph drawings in various fields. The

rest of this chapter is organized as follows. In Section 1.1, we define layered

drawings of graph, which is the central topic of the whole thesis. Section 1.2

depicts some interesting applications of layered graph drawings. Section 1.3

presents the scope of this thesis with a brief overview of the previous results

related to the scope and the new results described in this thesis.

1.1 Layered Drawings of Planar Graphs

In this section, we give the definition of “layered drawings” of a planar graph.

We also define some restricted classes of layered drawings of a planar graph.

A layered drawing of a planar graph G is a drawing of G where the vertices

of G are placed on a set horizontal lines called layers, and each edge of G is

drawn as a straight-line segments between its end-vertices without creating any

crossing with the other edges. Let Γ be a layered drawing of a planar graph G.

Γ is called a short drawing of G if the end-vertices of each edge of G is placed

on the same or adjacent layers in Γ. Γ is called a proper drawing of G if the

end-vertices of each edge of G lie on adjacent layers in Γ. Γ is called an upright

drawing of G if the end-vertices of each edge of G are placed at different layers

in Γ.

Figure 1.1 illustrates different variants of layered drawings by three drawings

of the same graph. The drawing in Figure 1.1(a) is proper while those in Figure

1.1(b) and (c) are not. The drawings in Figure 1.1(a) and (c) are upright but

that in Figure 1.1(b) is not. The drawings in Figure 1.1(a) and (c) are two short

drawings but that in Figure 1.1 is not a short drawing. Finally, the drawings

in Figure 1.1(a) and (c) are 4-layer planar drawings and that in Figure 1.1(b)

occupies three layers.
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(c)(b)(a)

Figure 1.1: Different variants of layered drawings on the same graph.

1.2 Applications of Layered Drawings

Layered drawings have found important applications in several areas like VLSI

layouts [17], DNA-mapping [30] and information visualization [3, 15]. We

present a few applications of layered drawings in the remainder of this section.

1.2.1 VLSI Layout

In the standard cell technology employed during the VLSI layout design process,

the VLSI modules are placed on some constant number of previously fixed rows

so that they can be lined up in rows on the integrated circuit. A layered drawing

of a graph can be used to obtain a layout of an interconnection network on a

standard cell. For example, Figure 1.2(a) represents an interconnection network

C. We first obtain a graph G from C in Figure 1.2(b), where each vertex of

G represents a module in C and each edge of G represents an interconnection

between a pair of modules in C. From a layered drawing Γ of G as illustrated in

Figure 1.2(c), we can easily obtain a layout of C in a standard cell as illustrated

in Figure 1.2(d), where the number of rows in the layout is equal to the number

of layers in Γ.

1.2.2 Flowchart Diagrams

A flowchart is a diagram, that represents an algorithm or process, showing

the steps as boxes of various kinds, and their order by connecting these with

arrows. This diagrammatic representation can give a step-by-step solution to a

given problem. Data is represented in these boxes, and the arrows connecting

them represent the flow or the direction of the flow of data. Flowcharts are

used in analyzing, designing, documenting or managing a process or program
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Figure 1.2: (a) An interconnection network C, (b) a graph G obtained from C,

(c) a layered drawing Γ of G, and (d) a layout of C in a standard cell.

in various fields. Figure 1.3 represents a flowchart of a simple algorithms to

find the factorial of a number. Knuth first presented a graph drawing algorithm

for automated generation of flowcharts [16]. Today there are many automated

algorithms for flowchart design that make use of graph drawing techniques [4,

32].

1.2.3 Working Principles of Protocols

Layered Graph drawing also aids in understanding the working principles of

different protocols and security models in computer systems and networks. For

example, the Bell-La Padula multilevel security model imposes that a process

running at security level k can read from objects at its own level or lower and

can write to objects at its own level or higher [13]. Viewed as a layered graph

drawing problem, we simply need that no edge is drawn vertically downward.

The model can be understood from its drawing in Figure 1.4. Note that, this

model uses layered drawings of directed graphs.

There are also numerous applications of layered drawings in various fields

other than the above mentioned ones. Layered graph drawing algorithms have

important applications to key computer technologies such as computer net-

works (depicting the structure of the physical network), software engineering

5



Figure 1.3: A flowchart for computing the factorial of a number.

2

3 C 4 D

5 6E

B

1 A

Security Level

1

2

3

4

Legend

ProcessObject

Write

Read

Figure 1.4: The Bell-La Padula multilevel security model, [13].
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(data flow diagrams, subroutine-call graphs, program nesting trees), databases

(entity-relationship diagrams), information systems (organization charts), real-

time systems (state transition diagrams), artificial intelligence (knowledge rep-

resentation diagrams) etc. Further applications can be found in other science

and engineering disciplines, such as medical science (concept lattices), chem-

istry (molecular drawings), civil engineering (floorplan maps) and cartography

(map schematics) [23].

1.3 Scope of This Thesis

In this section, we describe the scope of this thesis. We first define “minimum-

layer drawings of trees”, which is the central topic of this thesis. We also mention

the previous results on this topic and the results obtained in this thesis.

A minimum-layer drawing of a tree T is a layered drawing Γ of T , where the

number of layers in Γ is the minimum among all the possible layered drawings of

T . Figure 1.5(a) illustrates a tree T , Figure 1.5(b) and (c) depict two different

layered drawings of T occupying four layers and two layers, respectively. One

can observe that at least two layers are required for any layered drawing of T ,

and hence the drawing in Figure 1.5(c) is a minimum-layer drawing of T . The

problem of obtaining a minimum-layer drawing of a tree finds its motivation

in many application areas of layered drawings [3, 15, 17, 30]. For example a

minimum-layer drawing of a tree can be employed to minimize the number of

rows in the design of a standard cell layout for a circuit.

(c)

ijabc

df e
m

g h k n l

c

g
m

h

e

f d

(a)

b

j

l

k
i

a
n

T

b

(b)
l n a g

h
ijec

mk

f d

Figure 1.5: (a) A tree T , (b) a layered drawing of T , and (c) a minimum-layer

drawing of T .
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1.3.1 Previous Results

In 1988 de Fraysseix proposed the k -lines drawability problem which asks whether

all planar graphs can be drawn on k parallel lines lying on the surface of a

cylinder [10]. Felsner et al. [10] gave a necessary condition for a tree to admit a

layered drawing on k layers for any fixed k. Linear-time algorithms are known

[6, 10] for recognizing trees that admit layered drawings on at most three layers.

Suderman gave an algorithm for drawing a tree T on ⌈3h/2⌉ layers, where h is

the pathwidth of T [26].

There had also been some results on minimizing layers for special variants

of layered drawings of trees. Dujmovic et al. [8] presented an algorithm to

test whether a tree admits a proper drawing for a given value of k. By a

slight modification of the algorithm, one can also test whether a tree admits

an upright drawings on k layers on k layers or not. Using this algorithm, one

can obtain polynomial-time algorithms for minimizing the number of layers in

a proper or an upright drawing of a tree. Figure 1.6(b) illustrates a proper

drawing of the tree of Figure 1.6(a) on the minimum number of layers. Figure

1.6(b) illustrates an upright drawing of the tree in Figure 1.6(a) on the minimum

number of layers. There had also been some other works on proper, upright and

short drawings of trees [1, 11, 26, 27].

T

(a) (b) (c)

Figure 1.6: (a) A tree T , (b) a proper drawing of T on the minimum number

of layers, and (c) an upright drawing of T on the minimum number of layers.

Recently, a linear-time algorithm has been given by Alam et al. [2] to obtain

an “upward drawing” of a rooted tree T on the minimum number of layers. An

upward drawing of a rooted tree T is a layered drawing of T where no vertex is

placed on a layer above its parent. Figure 1.7(b) illustrates an upward drawing

of the rooted tree in Figure 1.7(a) on the minimum number of layers. For an

unrooted tree T , the algorithm in [2] can also choose a vertex w efficiently

8



as illustrated in Figure 1.7(c) such that an upward drawing of T rooted at w

occupies the minimum number of layers among all the upward drawings of T

rooted at any vertex of T . Figure 1.7(d) illustrates an upward drawing of T

rooted at w that occupies the minimum number of layers among all the upward

drawings of T rooted at any vertex of T .

(a) (b) (c) (d)

r

w

T

r

w

Tr

Figure 1.7: (a) A rooted tree Tr, (b) an upward drawing of Tr on the minimum

number of layers, (c) an unrooted tree T , and (d) an upward drawing of T that

occupies the minimum number of layers among all the upward drawings of T .

On the other hand, some other variants of finding a minimum-layer drawing

of a tree are shown to be NP-hard [14, 18] where the drawing needs to satisfy

some constraints on the placement of the vertices. However, for the general

version of the problem, there is neither any polynomial-time algorithm nor any

hardness result known so far.

1.3.2 Results in this Thesis

In this thesis, we first give a linear-time algorithm to obtain a “root-visible

drawing” of a rooted tree on the minimum number of layers. Using this algo-

rithm we then give a linear-time algorithm to obtain a minimum-layer drawing

of a tree. For a brief summary, we now list the results presented in this thesis

as follows.

• We give a linear-time algorithm for minimizing the number of layers in a

“root-visible drawing” of a rooted tree. Let T be a rooted tree with the

root vertex r. A root-visible drawing of T is a layered drawing Γ of T

where there is a point p below all the layers in Γ such that a straight-line

from p to r does not create any edge crossing with Γ.

9



• We give an algorithm that finds a suitable root vertex r of a tree T in

linear time such that a “root-visible drawing” of T with the root r is also

a minimum-layer drawing of T . We then use the algorithm for root-visible

drawing to obtain a minimum-layer drawing of T .

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some

basic terminology of graph theory and algorithmic theory. Chapter 3 presents

a linear-time algorithm to obtain a minimum-layer root-visible drawing of a

rooted tree. In Chapter 4, we prove that the root-visible drawing obtained by

the algorithm in Chapter 3 is a minimum-layer root-visible drawing of the given

rooted tree. We also give a linear-time algorithm for minimum-layer drawing of

a tree in this chapter. Finally, Chapter 5 concludes the thesis with a summary

of the results and the mention of some future works.

10



Chapter 2

Preliminaries

In this chapter we define some basic terminology of graph theory, graph draw-

ing and algorithm theory, that we will use throughout the rest of this thesis.

Definitions which are not included in this chapter will be introduced as they are

needed. We cover, in Section 2.1, some definitions of standard graph-theoretical

terms. We devote Section 2.2 to define terms related to planar graphs. Sec-

tion 2.3 defines some drawing convention that are used in the algorithms dis-

cussed in this thesis. Finally, we introduce the notion of time complexity of

algorithms in Section 2.4.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis. For readers interested in more details of graph theory

we refer to [20, 21, 31].

2.1.1 Graphs

A graph G is a tuple (V, E) which consists of a finite set V of vertices and a finite

set E of edges; each edge being an unordered pair of vertices. Figure 2.1 depicts

a graph G = (V, E) where each vertex in V = {v1, v2, . . . , v6} is drawn as a

small circle and each edge in E = {e1, e2, . . . , e8} is drawn by a line segment.

We denote an edge joining two vertices u and v of the graph G = (V, E) by

(u, v) or simply by uv. If uv ∈ E then the two vertices u and v of the graph G

are said to be adjacent; the edge uv is then said to be incident to the vertices

11
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Figure 2.1: A graph with six vertices and eight edges.

u and v; also the vertex u is said to be a neighbor of the vertex v (and vice

versa). The degree of a vertex v in G, denoted by d(v) or deg(v), is the number

of edges incident to v in G. In the graph shown in Figure 2.1 vertices v1 and v2

are adjacent, and d(v6) = 4, since four of the edges, namely e5, e6, e7 and e8 are

incident to v6.

2.1.2 Simple Graphs and Multigraphs

If a graph G has no “multiple edges” or “loops”, then G is said to be a simple

graph. Multiple edges join the same pair of vertices, while a loop joins a vertex

with itself. The graph in Figure 2.1 is a simple graph.

A graph in which loops and multiple edges are allowed is called a multi-

graph. Multigraphs can arise from various applications. One example is the

“call graph” that represents the telephone call history of a network. The graph

in Figure 2.2(a) is a call graph that represents the call history among six sub-

scribers. Note that there is no loop in this graph. Figure 2.2(b) illustrates

another multigraph with multiple edges and loops.

Often it is clear from the context that the graph is simple. In such cases,

a simple graph is called a graph. In the remainder of thesis we will only be

concerned about simple graphs.
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(b)(a)

Figure 2.2: Multigraphs.

2.1.3 Directed and Undirected Graphs

In a directed graph, the edges do have a direction but in an undirected graph, the

edges are undirected. Strictly speaking, each edge in a directed graph should be

represented by a 2-tuple while for an undirected graph it should be represented

by a 2-member subset of the vertex set. In Figure 2.3(a) and (b), we show an

undirected and a directed graphs respectively. In this thesis, we will mean an

undirected graph when we say “a graph” unless mentioned otherwise.

(a)
(b)

Figure 2.3: Undirected and directed graphs.

2.1.4 Subgraphs

A subgraph of a graph G = (V, E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V

and E ′ ⊆ E. If G′ contains all the edges of G that join two vertices in V ′, then

13



G′ is said to be the subgraph induced by V ′. Figure 2.4 depicts a subgraph of G

in Figure 2.1.
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Figure 2.4: A subgraph of the graph in Figure 2.1.

We often construct new graphs from old ones by deleting some vertices or

edges. If v is a vertex of a given graph G = (V, E), then G− v is the subgraph

of G obtained by deleting the vertex v and all the edges incident to v. More

generally, if V ′ is a subset of V , then G − V ′ is the subgraph of G obtained by

deleting the vertices in V ′ and all the edges incident to them. Then G−V ′ is a

subgraph of G induced by V −V ′. Similarly, if e is an edge of a G, then G−e is

the subgraph of G obtained by deleting the edge e. More generally, if E ′ ⊆ E,

then G − E ′ is the subgraph of G obtained by deleting the edges in E ′.

2.1.5 Paths and Cycles

A walk, w = v0, e1, v1, . . . , vl−1, el, vl, in a graph G is an alternating sequence

of vertices and edges of G, beginning and ending with a vertex, in which each

edge is incident to the two vertices immediately preceding and following it. The

vertices v0 and vl are said to be the end-vertices of the walk w.

If the vertices v0, v1, . . . , vl are distinct (except possibly v0 and vl), then the

walk is called a path and usually denoted either by the sequence of vertices

v0, v1, . . . , vl or by the sequence of edges e1, e2, . . . , el. The length of the path is

l, one less than the number of vertices on the path. For any two vertices u and

v of G, a u, v-path in G is a path whose end-vertices are u and v.

14



A walk or path w is closed if the end-vertices of w are the same. A closed

path containing at least one edge is called a cycle.

2.1.6 Connectivity

A graph G is connected if for any two distinct vertices u and v of G, there is a

path between u and v. A graph which is not connected is called a disconnected

graph. A (connected) component of a graph is a maximal connected subgraph.

The graph in Figure 2.5(a) is a connected graph since there is a path between

every pair of distinct vertices of the graph. On the other hand, the graph in

Figure 2.5(b) is a disconnected graph since there is no path between, say, v1

and v5. The graph in Figure 2.5(b) has two connected components as indicated

by the dotted lines. Note that every connected graph has only one component;

the graph itself.
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(a) (b)

Figure 2.5: (a) A connected graph (b) a disconnected graph with two connected

components.

The connectivity κ(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex graph K1. We say

that G is k-connected if κ(G) ≥ k. 2-connected and 3- connected graphs are also

called biconnected and triconnected graphs, respectively. A block is a maximal

biconnected subgraph of G. We call a set of vertices in a connected graph G

a separator or a vertex cut if the removal of the vertices in the set results in a

disconnected or single-vertex graph. If a vertex-cut contains exactly one vertex

then we call the vertex a cut vertex.
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A tree T is a connected graph which contains no cycle. A vertex u of T

having degree one in T is called a leaf of T . A vertex u of T having degree

greater than one in T is called an internal vertex of T . A tree T is called a

rooted tree if one of the vertices r of T is considered as the root of T . In the

following, we use the notation Tr to denote a rooted tree with the root vertex

r. The parent of a vertex v in Tr is the vertex that precedes v in the r, v-path

in Tr. All the neighbors of v in Tr other than its parent are called the children

of v in Tr. An ancestor of a vertex v in Tr is such a vertex u of Tr that u is

on the r, v-path in Tr. A descendant of v in Tr is such a vertex u of Tr that

the r, u-path in Tr contains v. A subtree of Tr rooted at a vertex v of Tr is the

subgraph of Tr induced by the descendants of v in Tr.

2.2 Planar Graphs

In this section we give some definitions related to planar graphs used in the

remainder of the thesis. For readers interested in planar graphs we refer to [20].

2.2.1 Planar Graphs and Plane Graphs

A planar drawing of a graph G is a two-dimensional drawing of G in which

no pair of edges intersect with each other except at their common end-vertex.

A planar graph is a graph that has at least one planar drawing. A planar

embedding of a graph G is a data structure that defines a clockwise (or counter

clockwise) ordering of the neighbors of each vertex of G that corresponds to a

planar drawing of the graph. Note that a planar graph may have an exponential

number of embedding. Figure 2.6 shows two planar embeddings of the same

planar graph.

A plane graph is a planar graph with a fixed planar embedding. A plane

graph divides the plane into connected regions called faces . A finite plane graph

G has one unbounded face and it is called the outer face of G.

2.2.2 Dual Graphs

For a plane graph G, we often construct another graph G∗ called the (geometric)

dual of G as follows. A vertex v∗

i is placed in each face Fi of G; these are the
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Figure 2.6: Two planar embeddings of the same planar graph.

vertices of G∗. Corresponding to each edge e of G we draw an edge e∗ which

crosses e (but no other edge of G) and joins the vertices v∗

i which lie in the

faces Fi adjoining e; these are the edges of G∗. The construction is illustrated

in Figure 2.7; the vertices v∗

i are represented by small white circles, and the

Figure 2.7: A plane graph G and its dual graph G∗.

edges e∗ of G∗ by dotted lines. G∗ is not necessarily a simple graph even if G

is simple. Clearly the dual G∗ of a plane graph G is also plane. One can easily

observe the following lemma.

Lemma 2.2.1 Let G be a connected plane graph with n vertices, m edges and f

faces, and let the dual G∗ have n∗ vertices, m∗ edges and f ∗ faces; then n∗ = f ,

m∗ = m, and f ∗ = n.
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Clearly the dual of the dual of the plane graph G is the original graph G.

However a planar graph may give rise to two or more geometric duals since the

plane embedding is not necessarily unique.

2.3 Drawing Conventions

In this section we introduce some conventional drawing styles, which are found

suitable in different application domain. The different drawing styles vary owing

to different representations of vertices and edges. Depending on the purpose and

objective, the vertices are typically represented with points or boxes and edges

are represented with simple Jordan curves [21]. A few of the most important

drawing styles are introduced below.

2.3.1 Planar Drawings

A drawing Γ of a graph G is planar if no two edges intersect with each other

except at their common end-vertices. In Figure 2.8(a) and (b), we show a planar

and a non-planar drawing of the same graph.

(a) (b) (c)
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Figure 2.8: (a) A planar drawing, (b) a non-planar drawing of the graph drawn

in (a), and (c) a graph which does not have a planar drawing.

Planar drawings of graphs are more convenient than non-planar drawings

because, as shown empirically in [22], the presence of edge-crossings in a drawing

of a graph make it more difficult for a person to understand the information

being modeled. Unfortunately, not all graphs have a planar drawing. Figure

2.8(c) is an example of one such graph.

18



2.3.2 Straight-line Drawings

A straight-line drawing of a graph G is a drawing of G in which each edge is

drawn as a straight line segment, as illustrated in Figure 2.9. Wagner [28], Fary

Figure 2.9: A straight line drawing.

[9] and Stein [25] independently proved that every planar graph has a straight

line drawing.

2.3.3 Layered Drawings

A layered drawing of a planar graph G is a drawing of G where the vertices

of G are placed on a set horizontal lines called layers, and each edge of G is

drawn as a straight-line segments between its end-vertices without creating any

crossing with the other edges. Let Γ be a layered drawing of a planar graph G.

Γ is called a short drawing of G if the end-vertices of each edge of G is placed

on the same or adjacent layers in Γ. Γ is called a proper drawing of G if the

end-vertices of each edge of G lie on adjacent layers in Γ. Γ is called an upright

drawing of G if the end-vertices of each edge of G are placed at different layers

in Γ.

2.3.4 Grid Drawings

A drawing of a graph is called a grid drawing if the vertices are all located

at grid points of an integer grid as illustrated in Figure 2.10. Note that this

a special class of layered drawings where not only the vertical but also the

vertical position of the vertices are at integer distance from each other. This

drawing approach also overcomes the following problems in graph drawing with

real number arithmetic [21].
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Figure 2.10: A grid drawing.

(i) When the embedding has to be drawn on a raster device, real vertex

coordinates have to be mapped to integer grid points, and there is no

guarantee that a correct embedding will be obtained after rounding.

(ii) Many vertices may be concentrated in a small region of the drawing. Thus

the embedding may be messy, and line intersections may not be detected.

(iii) One cannot compare area requirement for two or more different drawings

using real number arithmetic, since any drawing can be fitted in any small

area using magnification.

The size of an integer grid required for a grid drawing is measured by the size

of the smallest rectangle on the grid which encloses the drawing. The width W

of the grid is the width of the rectangle and the height H of the grid is the

height of the rectangle. The grid size is usually described as W × H .

It is a very challenging problem to draw a plane graph on a grid of the

minimum size. In recent years, several works are devoted to this field [5, 7, 24];

for example, every plane graph of n vertices has a straight line grid drawing on

a grid size W × H ≤ (n − 1) × (n − 1).

2.4 Complexity of Algorithms

In this section we briefly introduce some terminologies related to complexity of

algorithms. For interested readers, we refer the book of Garey and Johnson
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[12].

The most widely accepted complexity measure for an algorithm is the run-

ning time, which is expressed by the number of operations it performs before

producing the final answer. The number of operations required by an algorithm

is not the same for all problem instances. Thus, we consider all inputs of a given

size together, and we define the complexity of the algorithm for that input size

to be the worst case behavior of the algorithm on any of these inputs. Then

the running time is a function of size n of the input.

2.4.1 The Notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

“asymptotic behavior”, that is, the behavior of the algorithm when applied to

very large inputs. To deal with such a property of functions we shall use the

following notations for asymptotic running time. Let f(n) and g(n) are the

functions from the positive integers to the positive reals, then we write f(n) =

O(g(n)) if there exists positive constants c1 and c2 such that f(n) ≤ c1g(n)+ c2

for all n. Thus the running time of an algorithm may be bounded from above

by phrasing like “takes time O(n2)”.

2.4.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its

complexity is bounded by a polynomial of the size of a problem instance. Ex-

amples of such complexities are O(n), O(nlogn), O(n100), etc. The remaining

algorithms are usually referred as exponential or non-polynomial. Examples of

such complexity are O(2n), O(n!), etc. When the running time of an algo-

rithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.4.3 NP-complete Problems

There are a number of interesting computational problems for which it has not

been proved whether there is a polynomial time algorithm or not. Most of them

are “NP-complete”, which we will briefly explain in this section.
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The state of algorithms consists of the current values of all the variables

and the location of the current instruction to be executed. A deterministic

algorithm is one for which each state, upon execution of the instruction, uniquely

determines at most one of the following state (next state). All computers,

which exist now, run deterministically. A problem Q is in the class P if there

exists a deterministic polynomial-time algorithm which solves Q. In contrast, a

non-deterministic algorithm is one for which a state may determine many next

states simultaneously. We may regard a non-deterministic algorithm as having

the capability of branching off into many copies of itself, one for the each next

state. Thus, while a deterministic algorithm must explore a set of alternatives

one at a time, a non-deterministic algorithm examines all alternatives at the

same time. A problem Q is in the class NP if there exists a non-deterministic

polynomial-time algorithm which solves Q. Clearly, P ⊆ NP .

Among the problems in NP are those that are hardest in the sense that if

one can be solved in polynomial-time then so can every problem in NP. These

are called NP-complete problems. The class of NP -complete problems has the

following interesting properties.

(a) No NP -complete problem can be solved by any known polynomial algo-

rithm.

(b) If there is a polynomial algorithm for any NP -complete problem, then

there are polynomial algorithms for all NP -complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial

time, all problems in NP are so, but we are unable to argue that Q ∈ NP . So

Q does not qualify to be called NP -complete. Yet, undoubtedly Q is as hard as

any problem in NP. Such a problem Q is called NP-hard.
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Chapter 3

Root-Visible Drawings

3.1 Introduction

A root-visible drawing of a rooted tree T is a layered drawing Γ of T where there

is a point p below all the layers in Γ such that a straight-line from p to the root

of T does not create any edge crossing with Γ. A root-visible drawing of T that

occupies the minimum number of layers among all the root-visible drawings of

T is called a minimum-layer root-visible drawing of T . Figure 3.1(a) illustrates

a rooted tree T where the vertex 1 is the root of T . Fig. 3.1(b) and (c) depict

two different root-visible drawings of T occupying three layers and two layers,

respectively. One can observe that at least two layers are required for any root-

visible drawing of T , and hence the drawing in Fig. 3.1(c) is a minimum-layer

root-visible drawing of T . In this chapter we give a linear-time algorithm to

obtain a root-visible drawing of a rooted tree T . In the next chapter, we will

prove that the drawing obtained by this algorithm is a minimum-layer root-

visible drawing of T .

Our algorithm is roughly outlined as follows. Let T be a rooted tree with

the root vertex r. To obtain a root-visible drawing of T we first partition T

into several smaller rooted trees through a bottom-up computation. We then

compute a minimum-layer root-visible drawing Γ of T such that the drawing

of the partitions of T in Γ are minimum-layer root-visible drawings of the cor-

responding partitions. If T consists of only one vertex then the vertex itself is

the only partition of T . Otherwise, we compute the partitions of T from the

partitions of the subtrees of T . Similarly, we obtain the drawing of T using the
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Figure 3.1: (a) A rooted tree T with the root l, (b) a root-visible drawing of T ,

and (c) a minimum-layer root-visible drawing of T .

drawings of the subtrees of T . We thus construct a minimum-layer root-visible

drawing of T . Figure 3.2(a) depicts a rooted tree T and Figure 3.2(b) illustrates

the partitions of T and a root-visible drawing of T .
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Figure 3.2: (a) A rooted tree T , and (b) a root-visible drawing of T and the

partitions of T .

The rest of this chapter is organized as follows. Section 2 describes some

definitions and presents preliminary results. Section 3 gives an algorithm for

obtaining a root-visible drawing of a rooted tree T . Section 4 proves the time

complexity of the drawing algorithm described in Section 3. Finally, Section 6
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concludes the chapter.

3.2 Preliminaries

In this section, we define some basic terminologies that will be used throughout

the chapter. For the graph theoretic terminologies not illustrated here, see [21].

Let G = (V, E) be a simple graph with the vertex set V and the edge set E.

A vertex u ∈ V is adjacent to a vertex v ∈ V if there is an edge (u, v) ∈ E. The

degree of a vertex v is the number of vertices adjacent to v in G. We denote by

deg(v) the degree of v in G. For V ′ ⊆ V , G − V ′ denotes the graph obtained

from G by deleting all vertices in V ′ together with all edges incident to them.

For a subgraph G′ of G, we denote by G − G′ the graph obtained from G by

deleting all vertices in G′ together with all edges incident to them. A graph G is

connected if for any two distinct vertices u and v there is a path between u and

v in G. The maximal connected subgraphs of a graph G is called components

of G.

A tree is a connected graph without any cycle. A rooted tree T is a tree in

which one of the vertices is distinguished from the others. The distinguished

vertex is called the root of the tree T and every edge of T is directed away from

the root. If v is a vertex in T other than the root, the parent of v is the vertex

u such that there is a directed edge from u to v. When u is the parent of v, v

is called the child of u. A vertex v of T is called a leaf if it has no children;

otherwise v is an internal vertex. A descendant of u is a vertex v other than u

such that there is a directed path from u to v. Let i be any vertex of T . Then

we define a subtree T (i) rooted at i as a subgraph of T induced by vertex i and

all the descendants of i.

Let Γ be a layered drawing of T and k be the number of layers in Γ. We

denote by li, 1 ≤ i ≤ k, the i-th layer of Γ starting from the topmost layer.

For a subgraph T ′ of T , Γ(T ′) denotes the drawing of T ′ contained in Γ. The

bounding box of Γ is the smallest rectangle enclosing Γ with one side parallel

to the layers of Γ. Let v be a vertex in T . Then v has left-visibility in Γ if

there is a point p to the left of v on the same layer as v outside the bounding

box of Γ such that the straight-line between v and p does not create any edge

crossing with Γ. Similarly, we define the right-visibility of v in Γ. The vertex v
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has side-visibility in Γ if v has either left-visibility or right-visibility. Again, the

vertex v has top-visibility in Γ if there is a point p above the bounding box of

Γ such that the straight-line between v and p does not create any edge crossing

with Γ. Similarly, we define the bottom-visibility of v in Γ. For example, in

the drawing of Fig. 3.1(b), the vertices k, h, i and a have left-visibility, right-

visibility, top-visibility and bottom-visibility, respectively. The vertices k, h

and i have side-visibility, but the vertex a does not have side-visibility. We now

have the following fact.

Fact 3.2.1 Let Γ be a layered drawing of a tree T on k layers such that a

vertex x of T has top-visibility in Γ. Then T admits a layered drawing Γ′ on

k layers where x has bottom-visibility in Γ′. Moreover, if a vertex y of T has

side-visibility in Γ, then y has top-visibility and bottom-visibility in Γ.

We also have the following lemma that gives a visibility property of a layered

drawing of a tree.

Lemma 3.2.2 Let x and y be any two vertices of a tree T and let Γ be a layered

drawing of T on k layers such that for each component C of T −P , the vertex of

C adjacent to a vertex of P has top-visibility in Γ(C). Then there is a layered

drawing Γ′ of T on at most k + 1 layers where x has top-visibility and y has

side-visibility in Γ′.

Proof. Let P = 〈v0(= x), e1, v1, . . ., el, vl(= y)〉 be the unique path from x

to y in T . Then each component of T − P has a vertex adjacent to a vertex vi,

0 ≤ i ≤ l, of P . We now construct a layered drawing Γ′ of T on k + 1 layers

where x has top-visibility and y has side-visibility as follows. We denote by li,

1 < i ≤ k + 1, the i-th layer of Γ′ starting from the topmost layer. We first put

the vertices vi, 0 ≤ i ≤ l, on layer l1 such that the vertex vi is placed to the

left of vi+1, 1 ≤ i < l. We next place the drawings Γ(C) of each component

C of T − P on l2 to lk+1 layers and draw the edge that connects C with the

corresponding vertex on P . It is easy to observe that the order of placement of

the vertices of P gives an order of the placement of the components of T − P

such that the drawing can be completed without any edge crossing. Q.E .D.

Figure 3.3(a) illustrates a layered drawing Γ of a tree T on 7 layers where

the vertex x has top-visibility and the vertex y does not have side-visibility.
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Figure 3.3(b) illustrates the layered drawing Γ′ of T on 8 layers where x still

has top-visibility and y has side-visibility.
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Figure 3.3: Illustration for the proof of Lemma 3.2.2.

Let T be a rooted tree with the root vertex r. A root-visible drawing of T

is a layered drawing Γ of T where r has bottom-visibility in Γ. A root-visible

drawing of T is called a minimum-layer root-visible drawing of T if the number

of layers used in the drawing is the minimum among all the possible root-visible

drawings of T .

Let L = 〈x1, x2, . . ., xk〉 be a list of k integers. Then k is the cardinality of L

which is denoted by |L|. L is called a decreasing list of integers if x1 > x2 > . . .

> xk. Let L be a decreasing list of integers. Then x1 is the largest integer in L

and is denoted by L1. Similarly xk is the smallest integer in L and is denoted

by Lf . We now define the notion of “inserting an integer” n into L. Let l be the

smallest integer greater than or equal to zero such that n+l /∈ L. Then inserting

n into L yields a decreasing list L′ of integers where L′ = 〈x1, . . ., xi−1(> n+ l),

n + l〉. The index of insertion is the cardinality of L′. For example, inserting

4 into the decreasing list of integers L = 〈9, 8, 5, 4, 3, 1〉 would yield the new

decreasing list of integers L′ = 〈9, 8, 6〉. Here the index of insertion is 3.

Let T be a rooted tree with the root vertex r. We denote by V (T ) the vertex

set of T . Let P (T ) = 〈 T1, T2, . . ., Tk 〉 be a list of rooted trees where V (Ti)

induces a connected subgraph of T for 1 ≤ i ≤ k and none of the trees is empty

except for Tk. We call P (T ) a linear partition of T if the following conditions

hold.

(i) abc
⋃k

i=1 V (Ti) = V (T ) and V (Ti) is disjoint with V (Tj) for 1 ≤ i 6= j ≤ k.

(ii) r is the root of Tk if Tk is not empty; otherwise r is the root of Tk−1.

(iii) The parent of any vertex v in Ti, 1 ≤ i ≤ k, is also the parent of v in T .
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(iv) For 2 ≤ i ≤ k − 1, there is a vertex vi of Ti, which is the parent of the

root ui−1 of Ti−1 in T . We call vi the leg of Ti. If Tk is not empty, then

the parent vk of the root uk−1 in T is also in Tk and is called the leg of Tk.

Note that T1 does not have a leg.

Let P (T ) = 〈 T1, T2, . . ., Tk 〉 be a linear partition of a rooted tree T . We

denote by ui, 1 ≤ i ≤ k, the root of Ti and by vi, 2 ≤ i ≤ k, the leg of Ti.

3.3 Root-Visible Drawings of Trees

In this section we give an algorithm for obtaining a root-visible drawing of a

rooted tree T .

We define a “label” of T to be a decreasing list of integers and denote it by

L(T ). Let us assume that L(T ) = 〈x1, x2, . . . , xk〉. In Theorem 3.3.1, we find a

linear partition P (T ) = 〈 T1, T2, . . ., Tk 〉 of T such that k = |L(T )|. We also

construct a root-visible drawing Γ of T where for each partition Ti, 1 ≤ i ≤ k,

Γ(Ti) is a root-visible drawing of Ti on xi layers.

Theorem 3.3.1 Let T be a rooted tree with the root r. Then one can define

a label L(T ) =〈x1, x2, . . ., xk〉 and a linear partition P (T ) =〈 T1, T2, . . ., Tk〉

of T such that T admits a layered drawing Γ on x1 layers satisfying conditions

(a)–(d).

(a) For 1 ≤ i ≤ k, Γ(Ti) occupies xi layers.

(b) For 2 ≤ i ≤ k, vi is on the l1 layer in Γ(Ti).

(c) For 1 ≤ i ≤ k, ui has bottom-visibility and is either on l1 or lxi
layer in

Γ(Ti).

(d) If Tk is not empty, then r has side-visibility in Γ(Tk); otherwise there is a

point on the l2 layer in Γ(Tk−1) that has both bottom-visibility and visibility

from r.

Proof. Let n be the number of vertices in T . If n = 1, r is the only vertex in T

and we define L(T ) = 〈1〉. It is easy to see that the linear partition P (T ) =〈T 〉

satisfies the claim. We thus assume that n > 1 and for any rooted tree T ′ with

less than n vertices, one can find a linear partition satisfying (a)–(d).
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Let c1, c2, . . ., cp be the children of r in T and let L(Tc1), L(Tc2), . . ., L(Tcp
)

be the labels of the subtrees Tc1 , Tc2, . . ., Tcp
of T rooted at the vertices c1, c2,

. . ., cp, respectively. We assume that L(Tc1) = 〈x1, . . . , xk〉. Thus by induction

hypothesis, there is a layered drawing Γ1 of Tc1 on x1 layers and a linear partition

P (Tc1) = 〈T1, . . ., Tk〉 of Tc1 satisfying the conditions (a)–(d). For notational

convenience we denote by zi the value of L(Tci
)1, 1 ≤ i ≤ p. Without loss of

generality, we also assume that z1 ≥ z2 ≥ . . . ≥ zp and if zi = zi+1 for some

1 ≤ i ≤ p − 1, then |L(Ti)| ≥ |L(Ti+1)|. We now have the following cases to

consider.

Case 1. z2 < xk. Since xk > z1 ≥ z2 ≥ . . . ≥ zp, by induction hypothesis and

by Fact 3.2.1 each of the trees Tci
, 2 ≤ i ≤ p, admits a layered drawing Γi on

less than xk layers with the top-visibility of the root. We now define a linear

partition P (T ) of T as P (T ) = 〈T1, . . . , Tk−1, T
′

k = Tk ∪ (T − Tc1) ∪{(r, uk)}〉.

Note that the root and leg of all the partitions in P (T ) are the same as the

corresponding partitions in P (Tc1) other than the roots of Tk and T ′

k where the

root of T ′

k is r. We now obtain a layered drawing Γ of T from Γ1 satisfying the

conditions (a)–(d) as follows. Without loss of generality, we assume that uk is

placed on the l1 layer and has right-visibility in Γ1(Tk). We place r on the l1

layer of Γ1(Tk) to the right of uk and add the edge (r, uk) using a straight-line

segment without edge crossings. Finally we place the drawings Γi for 2 ≤ i ≤ p

on l2 to lxk layers in Γ1(Tk) and add the edges (r, ci) for 2 ≤ i ≤ p to complete

the drawing. It is easy to see that P (T ) and Γ satisfy the conditions (a)–(d).

An example for this case is illustrated in Fig. 3.4.
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2 3
4

j
T*

r

T
j

r
(a) (b)

Figure 3.4: Illustration for Case 1.

Case 2. z2 ∈ L(Tc1). We first assume that z2 = xk. If z2 > z3 and |L(Tc2)| = 1,

then we define L(T ) = 〈x1, . . . , xk, 0〉. We now define a linear partition P (T )

of T as follows. P (T ) = 〈T1, . . . , Tk−1, T
′

k = Tk ∪ (T −Tc1) ∪{(r, uk)}, T
0〉. Here

T 0 represents an empty tree. We now obtain a layered drawing Γ of T from
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Γ1 satisfying the conditions (a)–(d) as follows. Without loss of generality, we

assume that uk is placed on the l1 layer and has right-visibility in Γ1(Tk). We

place r on the l1 layer of Γ1(Tk) to the right of uk and add the edge (r, uk) using

a straight-line segment without edge crossings. Since L(Tc2) = 〈xk〉, Tc2 admits

a layered drawing Γ2 on xk layers keeping the side-visibility of c2. We thus

place Γ2 on the xk layers of Γ1(Tk) to the right of r, possibly after mirroring

with respect to y-axis and add the edge (r, c2) using a straight-line segment

without edge crossings. Again since xk = z2 > z3 ≥ . . . ≥ zp, by induction

hypothesis and by Fact 3.2.1, each of the trees Tci
, 3 ≤ i ≤ p, admits a layered

drawing Γi on less than xk layers with the top-visibility of the root. We thus

finally place the drawings Γi for 3 ≤ i ≤ p in Γ1(Tk) on the l2 to lxk
layers and

add the edges (r, ci) for 3 ≤ i ≤ p to complete the drawing. It is easy to see

that P (T ) and Γ satisfies the conditions (a)–(d). An example for this case is

illustrated in Fig. 3.5.
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Figure 3.5: Illustration for Case 2 when z2 = xk, z2 > z3 and |L(Tc2)| = 1.

On the other hand, if z2 > xk or if z2 = z3 or |L(Tc2)| > 1, then L(T ) is

obtained by inserting z2 + 1 into L(Tc1). Let j be the index of insertion. We

now define a linear partition P (T ) of T as follows. P (Tr) = 〈T1, . . . , Tj−1, T
′

j =

(T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)}〉. We now obtain a layered drawing Γ of T from

Γ1 satisfying the conditions (a)–(d) as follows. We first define a label L′ =

〈x1, . . . , xj−1, xj + 1〉 and a linear partition P ′ = 〈T1, . . . , Tj−1, T
∗

j = Tc1 −
⋃j−1

i=1 Ti)〉 of Tc1. By Lemma 3.2.2, T ∗

j admits a layered drawing on xj + 1 layers

where the leg vertex of Tj (if any) has top-visibility and c1 has side-visibility.

Thus Tc1 admits a layered drawing that satisfies conditions (a)–(d) for L′ and

P ′. We then obtain a desired layered drawing of T in a similar way as in Case

1. An example for this case is illustrated in Fig. 3.6.

Case 3. z2 /∈ L(Tc1) and L(Tc2)1 > xk. We have the following subcases.

Subcase 3A. |L(Tc2)| > 1. In this case L(T ) is obtained by inserting z2 + 1 into
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Figure 3.6: Illustration for Case 2 when z2 = z3 or |L(Tc2)| > 1.

L(Tc1). Let j be the index of insertion. We now define a linear partition P (T )

of T as follows. P (Tr) = 〈T1, . . . , Tj−1, T
′

j = (T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)}〉. We

now obtain a layered drawing Γ of T from Γ1 satisfying the conditions (a)–(d)

as follows. We first define a label L′ = 〈x1, . . . , xj−1, z2〉 and a linear partition

P ′ = 〈T1, . . . , Tj−1, T ∗

j = Tc1 −
⋃j−1

i=1 Ti)〉 of Tc1. By Lemma 3.2.2, T ∗

j admits

a layered drawing on at most z2 layers where the leg vertex of Tj (if any) has

top-visibility and c1 has side-visibility. Thus Tc1 admits a layered drawing Γ′

1

that satisfies conditions (a)–(d) for L′ and P ′. We next place r on the l1 layer

of Γ′

1(T
∗

j ). By induction hypothesis and by Fact 3.2.1, each of the trees Tci
,

2 ≤ i ≤ p, admits a layered drawing Γi on at most z2 layers with the top-

visibility of the root. We thus finally place the drawings Γi for 2 ≤ i ≤ p on the

l2 to lz2+1 layers of Γ′

1(T
∗

j ) and add the edges (r, ci) for 2 ≤ i ≤ p to complete

the drawing. It is easy to see that P (T ) and Γ satisfies the conditions (a)–(d).

An example for this subcase is illustrated in Fig. 3.7.
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Figure 3.7: Illustration for Subcase 3A.

Subcase 3B. |L(Tc2)| = 1 and z2 = z3 = z4. In this case L(T ) is obtained by

inserting z2+1 into L(Tc1). We can obtain P (T ) and Γ satisfying the conditions

(a)–(d) in a similar way as described in Case 3A. We then place these drawings

to the right of the drawing of (Tc2), between the two drawings Γ1(Tj−1) and

Γ1(Tj) on l2 to lz2
layers of Γ1(Tj−1). We finally add the edges (r, ci), 3 ≤ i ≤ p
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with straight-line segments without edge crossings to complete the drawing. An

example for this subcase is illustrated in Fig. 3.8.
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Figure 3.8: Illustration for Subcase 3B.

Subcase 3C. |L(Tc2)| = 1 and z2 6= z3. In this case L(T ) is obtained by inserting

z2 into L(Tc1). Let j be the index of insertion. We now define a linear partition

P (T ) of T as P (Tr) = 〈T1, . . . , Tj−1, T
′

j = (T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)}〉. We now

obtain a layered drawing Γ of T from Γ1 satisfying the conditions (a)–(d) as

follows. We first place r on the lz2+1 layer of Γ1(Tj−1) and add the edge (r, uk)

with a straight-line segment without edge crossings. By induction hypothesis,

Tc2 admits a layered drawing on z2 layers with the side-visibility of c2. We

next place this drawing (possibly after mirroring with respect to x and y axis)

between the two drawings Γ1(Tj−1) and Γ1(Tj) so that c2 has right-visibility. We

then add the edge (r, c2) with a straight-line segment without edge crossings.

Again since z2 > z3 ≥ . . . ≥ zp, by induction hypothesis, Tci
, 3 ≤ i ≤ p admits

a layered drawing on at most z2 − 1 layers with the bottom-visibility of ci. We

then place these drawings to the right of the drawing of (Tc2), between the two

drawings Γ1(Tj−1) and Γ1(Tj) on l2 to lz2
layers of Γ1(Tj−1). We finally add the

edges (r, ci), 3 ≤ i ≤ p with straight-line segments without edge crossings to

complete the drawing. It is easy to see that P (T ) and Γ satisfies the conditions

(a)–(d). An example for this subcase is illustrated in Fig. 3.9.
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Figure 3.9: Illustration for Subcase 3C.

Subcase 3D. |L(Tc2)| = 1 and z2 = z3 6= z4 and z2 − 1 ∈ L(Tc1). In this case
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L(T ) is obtained by first inserting z2 and then inserting z2−1 into L(Tc1). Let j

be the index of insertion for the first insertion. We now define a linear partition

P (T ) of T as P (Tr) = 〈T1, . . . , Tj−1, T
′

j = (T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)}, T 0〉,

where T 0 represents an empty tree. We obtain a layered drawing of T from Γ1

satisfying (a)–(d) as follows. We first obtain a drawing Γ′ of T −Tc3 in the same

way as in Subcase 3C. By induction hypothesis, Tc3 admits a layered drawing

on z2 = z3 layers with the side-visibility of c3. We place this drawing (possibly

after mirroring with respect to y-axis) on l2 to lz2+1 layers of Γ′(Tj−1) so that the

edge (r, c3) can be drawn with a straight-line segment without edge-crossings.

An example for this subcase is illustrated in Fig. 3.10.
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Figure 3.10: Illustration for Subcase 3D.

Subcase 3E. |L(Tc2)| = 1 and z2 = z3 6= z4 and z2 − 1 /∈ L(Tc1). In this case

L(T ) is obtained by first inserting z2 and then inserting z2 − 1 into L(Tc1).

Let j be the index of insertion for the first insertion. We now define a linear

partition P (T ) of T as P (Tr) = 〈T1, . . . , Tj−1, T
′

j = (T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)},

T 0〉, where T 0 represents an empty tree. We now obtain a layered drawing

Γ of T from Γ1 satisfying the conditions (a)–(d) as follows. We first define

a label L′ = 〈x1, . . . , xj−1, z2 − 1〉 and a linear partition P ′ = 〈T1, . . . , Tj−1,

T ∗

j = Tc1 −
⋃j−1

i=1 Ti)〉 of Tc1 . By Lemma 3.2.2, T ∗

j admits a layered drawing

on at most z2 − 1 layers where the leg vertex of Tj (if any) has top-visibility

and c1 has side-visibility. Thus Tc1 admits a layered drawing Γ′

1 that satisfies

conditions (a)–(d) for L′ and P ′. We now place r on the l1 layer of Γ′

1(T
∗

j )

and add the edge (r, uk) with a straight-line segment without edge crossings.

By induction hypothesis, Tc2 and Tc3 admit a layered drawings on z2 layers

with the side-visibility of c2 and c3, respectively. We next place the drawing

of Tc2 (possibly after mirroring with respect to x and y axis) between the two

drawings Γ′

1(Tj−1) and Γ′

1(T
∗

j ) so that c2 has right-visibility and is placed on

the lz2+1 layer of Γ′

1(Tj−1). We then place the drawing of Tc3 (possibly after
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mirroring with respect to y-axis) on the l2 to lz2+1 layers of Γ′

1(Tj−1) with the

left-visibility of c3. We next add the edges (r, c2) and (r, c2) with straight-line

segments without edge crossings. Again since z2 = z3 > z4 ≥ . . . ≥ zp, by

induction hypothesis and by Fact 3.2.1, Tci
, 4 ≤ i ≤ p admits a layered drawing

on at most z2 − 1 layers with the top-visibility of ci. We place these drawings

between the drawing of Tc3 and the drawing of the edge (r, c2), on l3 to lz2+1

layers of Γ′

1(Tj−1). Finally we add the edges (r, ci), 4 ≤ i ≤ p with straight-line

segments without edge crossings. An example for this subcase is illustrated in

Fig. 3.11. Q.E .D.
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Figure 3.11: Illustration for Subcase 3E.

The proof of Theorem 3.3.1 leads to an algorithm to obtain a layered drawing

of a rooted tree T on L(T )1 layers keeping the top-visibility of r. We call this

Algorithm Draw Visible. The algorithm also gives a linear partition P (T ) of

T that satisfies the conditions (a)–(d) of Theorem 3.3.1. We call this layered

drawing a valid drawing and this linear partition a valid partition of T . Let Γ

be the valid drawing and P (T ) = 〈 T1, T2, . . ., Tk 〉 be the valid partition of T .

A partition Ti is a bad partition if ui is on the bottommost layer in Γ(Ti) for

1 ≤ i ≤ k− 1. Ti is a weak partition if Ti−1 is a bad partition for 2 ≤ i ≤ k. We

now have the following corollary whose proof follows from the construction of

the valid partition of a rooted tree as described in the proof of Theorem 3.3.1.

Corollary 3.3.2 Let T be a rooted tree with the root r and let L(T ) =〈x1, x2, . . .,

xk〉 and P (T ) =〈 T1, T2, . . ., Tk 〉 be the label and the valid partition of T , re-

spectively. Then there exist two subtrees t1 and t2 of Ti, 1 ≤ i ≤ k − 1, rooted

at children of ui such that the labels of t1 and t2 contain xi unless Ti is a weak

partition.

Summarizing the definition of the label of a rooted tree for various cases in

the proof of Theorem 3.3.1, we now give the precise definition of the label of a
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rooted tree T with the root vertex r as follows.

(a) If r is the only vertex in T , then L(T ) = 〈1〉.

(b) If c1, c2, . . . , cp are the children of r in T and Tc1, Tc2, . . . , Tcp
are the subtrees

of T rooted at the vertices c1, c2, . . . , cp, respectively, then L(T ) is defined

as follows. (Without loss of generality, we assume that L(Tc1)1 ≥ L(Tc2)1 ≥

. . . ≥ L(Tcp
)1 and if L(Tci

)1 = L(Tci+1
)1 for some 1 ≤ i ≤ p − 1, then

|L(Tci
)| ≥ |L(Tci+1

)|).

(i) If L(Tc2)1 < L(Tc1)f , then L(T ) = L(Tc1).

(ii) If L(Tc2)1 = L(Tc1)f , then L(T ) is defined as follows.

A. If |L(Tc2)| = 1 and L(Tc2)1 > L(Tc3)1, then L(T ) is obtained by

inserting 0 into L(Tc1).

B. Otherwise L(T ) is obtained by inserting L(Tc2)1 + 1 into L(Tc1).

(iii) If L(Tc2)1 > L(Tc1)f and L(Tc2)1 ∈ L(Tc1), then L(T ) is obtained by

inserting L(Tc2)1 + 1 into L(Tc1).

(iv) If L(Tc2)1 > L(Tc1)f and L(Tc2)1 /∈ L(Tc1), then L(T ) is defined as

follows.

A. If |L(Tc2)| > 1, then insert L(Tc2)1 + 1 into L(Tc1) to obtain L(T ).

B. If |L(Tc2)| = 1 and L(Tc2)1 = L(Tc3)1 = L(Tc4)1, then insert

L(Tc2)1 + 1 into L(Tc1) to obtain L(T ).

C. If |L(Tc2)| = 1 and L(Tc2)1 6= L(Tc3)1, then insert L(Tc2)1 into

L(Tc1) to obtain L(T ).

D. If none of the above condition holds, then insert L(Tc2)1 into L(Tc1)

to obtain a new decreasing list L′ of integers. Finally, L(T ) is

obtained by inserting 0 into L′ if L(Tc2)1 − 1 /∈ L(Tc1); otherwise

L(T ) is obtained by inserting L(Tc2)1 − 1 into L′.

3.4 Time-complexity of Algorithm Draw Visible

In this section, we prove that Algorithm Draw Visible runs in linear time. We

first have the following lemma.
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Lemma 3.4.1 The label of a rooted tree T can be computed in linear time.

Furthermore a valid partitioning of T can also be computed in linear time.

Proof. We compute the label of T by a bottom-up traversal of T according

to the definition. For each vertex v in T , while we traverse v we compute the

label of T r
v as follows. We first find at most four children w1, w2, w3 and w4 of

v in T such that the following conditions hold.

• For 1 ≤ i ≤ 3, either L(T r
wi

)1 > L(T r
wi+1

)1 or L(T r
wi

)1 = L(T r
wi+1

)1 and

|L(T r
wi

)| ≥ |L(T r
wi+1

)|.

• For any child w of v in T other than w1, w2, w3 and w4, either L(T r
w4

)1 >

L(T r
w)1 or L(T r

w4
)1 = L(T r

w)1 and |L(T r
w4

)| ≥ |L(T r
w)|.

Clearly this can be done in O(deg(v)) time. We then compute the label of T r
w

by inserting zero, one or two integers into L(T r
w1

) according to the definition.

To do this insertion in constant time we store L(T r
w1

) as an array of size L(T )1

The array contains only zeros and ones where a 1 (0) in the i-th position of the

array represents the presence (absence) of i in L(T r
w1

) for 1 ≤ i ≤ L(T r
w1

)1. For

each position i of the array, we also keep a pointer to the j-the position of the

array, 1 ≤ i ≤ j ≤ L(T r
w1

)1, where j is the minimum integer greater than or

equal to i such that the j-the position of the array contains a one. Then it is

trivial to see that the insertion of an integer into the label of a vertex can be

done in constant time.

The overall time-complexity for the computation of the label of T is thus

O(
∑

v∈V (T )(deg(v) + 1)) = O(n).

For computing a valid partitioning of T during this bottom-up traversal, we

can store the pointer to the root vertex for each partition. As we compute the

label of the subtrees, we can easily update these pointers in constant time. We

then compute these partitions by a depth-first traversal of T at the end of the

traversal. Thus computing the valid partition also takes linear time. Q.E .D.

We now have the following theorem.

Theorem 3.4.2 Algorithm Draw Visible runs in O(n) time on a rooted tree

T with n vertices.
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Proof. Lemma 3.4.1 implies that the computation of label and valid partition

of T takes linear time. Thus it is sufficient to prove that the drawing of T

also takes linear time. Let us first ignore the time required for the step of the

algorithm when we modify of the drawing of a subtree of T according to Lemma

3.2.2 such that a vertex a has side-visibility in the new drawing while keeping the

top-visibility of another vertex b. Then from the description of the algorithm,

one can observe that the operations performed at each vertex are translation

and mirroring of the drawing of the subtrees. To perform these operations,

one can associate a translation offset and a scaling factor with each vertex v

so that a final top-down traversal of T gives the exact x and y coordinates for

each vertex in a similar way as in [9]. The computation of the translation offset

and the scaling factor for all the children of each vertex v requires O(deg(v))

time in total. On the other hand, the algorithm described in the proof of

Lemma 3.2.2 for the above modification of the drawings of the subtrees takes

O(
∑

v∈P (deg(v))) time where P is the path from a to b. It is interesting to note

that a and b represents the leg of a partition Ti and the root of another partition

Tj of the subtree in this case and all the partitions Tl, i ≤ l ≤ j are merged to

a single partition. Thus any vertex v in P is considered for this operation at

most once. Hence Algorithm Draw Visible takes O(
∑

v∈V (T )(deg(v))) = O(n)

time. Q.E .D.

3.5 Conclusion

In this chapter, we gave a linear-time algorithm to obtain a root-visible drawing

of a rooted tree T . In the next chapter we will prove that the drawing obtained

by this algorithm is a minimum-layer root-visible drawing of T . Using this

algorithm, we will also give an algorithm for minimum-layer drawing of a tree

in the next chapter.

37



Chapter 4

Minimum-Layer Drawings of

Trees

A layered drawing of a tree T is a planar straight-line drawing of T where the

vertices of T are placed on a set of horizontal lines, called layers. We call a

layered drawing of T a minimum-layer drawing of T , when the number of layers

used in the drawing is the minimum among all the possible layered drawings of

T . Figure 4.1(a) illustrates a tree T , Fig. 4.1(b) and (c) depict two different

layered drawings of T occupying four layers and two layers, respectively. One

can observe that at least two layers are required for any layered drawing of T ,

and hence the drawing in Fig. 4.1(c) is a minimum-layer drawing of T .

(c)

ijabc

df e
m

g h k n l

c

g
m

h

e

f d

(a)

b

j

l

k
i

a
n

T

b

(b)
l n a g

h
ijec

mk

f d

Figure 4.1: (a) A tree T , (b) a layered drawing of T , and (c) a minimum-layer

drawing of T .

In 1988 de Fraysseix proposed the k -lines drawability problem which asks

whether all planar graphs can be drawn on k parallel lines lying on the surface
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of a cylinder [10]. There are some variants of layered drawings of trees which

have been shown to be NP-hard [14, 18]. On the other hand, for some variants

of layered drawings of trees, minimum-layer drawings have been achieved [2, 8].

However, for the general version of the problem, there is neither any polynomial-

time algorithm nor any hardness result known so far. In this chapter we address

the problem of minimum-layer drawing of a tree. We first prove that for a rooted

tree T , the drawing obtained by Algorithm Draw Visible is a minimum-layer

root-visible drawing of T . We then use this algorithm to find a minimum-layer

drawing of a tree in linear time. Let T be a tree. We first find in linear time, a

suitable vertex r of T such that a minimum-layer root-visible drawing of T with

the root r is also a minimum-layer drawing of T . We then obtain a minimum-

layer drawing of T by computing a minimum-layer root-visible drawing of a T

rooted at r using Algorithm Draw Visible. Figure 4.2(a) illustrates a tree T .

Figure 4.2(b) depicts a rooted tree T ′ obtained from T such that a minimum-

layer root-visible drawing of T ′ is also a minimum layer drawing of T . Figure

4.2(c) illustrates a minimum-layer drawing of T .
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Figure 4.2: (a) A tree T , (b) a rooted tree T ′ formed by taking the vertex 1 of

T as the root of T ′, and (c) a minimum-layer drawing of T and the partitions

of T .

The rest of this chapter is organized as follows. Section 2 proves that the

drawing of a rooted tree T obtained by Algorithm Draw Visible is a minimum-

layer root-visible drawing of T . Section 3 presents a linear-time algorithm to

obtain a minimum-layer drawing of an unrooted tree. Finally, Section 6 con-
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cludes the chapter.

4.1 Minimum-Layer Root-Visible Drawings

In the previous chapter we gave an algorithm to obtain a root-visible drawing of

a rooted tree T on L(T )1 layers. In this section we prove that any root-visible

drawing of T requires at least L(T )1 layers. We actually prove a stronger result

in this section where we consider a “poly-line drawing” of T and prove that

even for a poly-line drawing scenerio, at least L(T )1 layers are required for any

root-visible drawing of T .

A poly-line layered drawing of a tree T is a poly-line drawing of T where the

vertices of T as well as the bends on the edges of T are placed on a set of layers.

Let Γ be a poly-line layered drawing of T and let v be a vertex in T . Then v

has poly-line top-visibility in Γ if there is a point p above the bounding box of

Γ such that a poly-line between v and p does not create any edge crossing with

Γ with all its bend placed on the layers of Γ. Similarly, we define the poly-line

bottom-visibility of v in Γ. A poly-line layered drawing Γ of a rooted tree T is

called a poly-line root-visible drawing of T if the root vertex of T has poly-line

bottom-visibility in Γ. We now have the following theorem.

Theorem 4.1.1 Let T be a rooted tree with the root vertex r and let L(T ) =

〈x1, x2, . . ., xk〉 and P (T ) = 〈 T1, T2, . . ., Tk 〉 be the label of T and the valid

partition of T , respectively. Denote by Gi, 1 ≤ i ≤ k, the rooted tree T −

(
⋃i−1

j=1 Tj). Then for 1 ≤ i ≤ k, at least xi layers are required for any poly-line

root-visible drawing of Gi unless Ti is a weak partition.

Before we prove Theorem 4.1.1, we need the following two lemmas.

Lemma 4.1.2 [2, 26] Let T be a rooted tree such that at least three subtrees of

T require at least k layers in any poly-line layered drawing. Then any poly-line

layered drawing of T requires at least k + 1 layers.

Lemma 4.1.3 Let T be a tree and let P = (u1, u2, . . . , ul) be a path in T . Let

Ci, 1 ≤ i ≤ l be the set of components of T − P such that each component of

Ci has a vertex adjacent to ui. Let um, un and up be three vertices of P where

m < n < p. Assume that there exist two components in Cm and two components
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in Cp, each requiring at least k − 1 layers in any poly-line layered drawing with

the poly-line bottom-visibility of the vertex adjacent to a vertex of P and there

exist two components in Cn each requiring at least k layers in any poly-line

layered drawing with the poly-line bottom-visibility of the vertex adjacent to a

vertex of P . Then T requires at least k+1 layers in any poly-line layered drawing

with the poly-line top-visibility of up and the poly-line bottom-visibility of um.

Proof. Assume for a contradiction that T admits a layered drawing Γ

on k layers, with the poly-line top-visibility of up and the poly-line bottom-

visibility of um. Since each of the components of Cn requires at least k layers,

we need to place the vertex un in between the two components of Cn in Γ. One

can observe that to ensure the poly-line top-visibility of up and the poly-line

bottom-visibility of um we need to place the components of Cp on the k−1 layers

above the incident edges of un and the components of Cm on the k − 1 layers

below the incident edges of un., as illustrated in Figure 4.3. In this situation,

either up or um looses poly-line visibility from un; and hence the edges (um, un)

and (un, up) cannot be drawn simultaneously avoiding edge crossing. Q.E .D.

u
m

u
n

u
p

Figure 4.3: Illustration for the Proof of Lemma 4.1.3.

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let n be the number of vertices in T . The case for

n = 1 is trivial and hence we assume that n > 1 and for any rooted tree T ′ with

less than n vertices, the claim is true. Let c1, c2, . . ., cp be the children of r in T

and L(Tc1), L(Tc2), . . ., L(Tcp
) are the labels of the subtrees Tc1 , Tc2 , . . ., Tcp

of T

rooted at the vertices c1, c2, . . ., cp, respectively. We assume that L(Tc1) = 〈y1,

. . . , yk〉 and P (Tc1) = 〈t1, . . . , tk〉. We also assume that Hi = Tc1 − (
⋃i−1

j=1 tj),

1 ≤ i ≤ k. Thus by induction hypothesis, at least xi layers are required for any

poly-line root-visible drawing of Hi, 1 ≤ i ≤ k. For notational convenience we

denote by zi the value of L(Tci
)1, 1 ≤ i ≤ p. Without loss of generality, we also
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assume that z1 ≥ z2 ≥ . . . ≥ zp and if zi = zi+1 for some 1 ≤ i ≤ p − 1, then

|L(Ti)| ≥ |L(Ti+1)|. We now have the following cases to consider.

Case 1. z2 < xk. In this case, L(T ) = 〈x1 = y1, . . ., xk = yk and P (T ) = 〈T1 =

t1, . . ., Tk−1 = tk−1, Tk = tk ∪ (T − Tc1) ∪{(r, uk)}〉. Since Hi is a subgraph of

Gi for 1 ≤ i ≤ k, by induction hypothesis any poly-line root-visible drawing of

Gi requires at least xi layers.

Case 2. z2 ∈ L(Tc1). We first assume that z2 = yk > z3 and |L(Tc2)| = 1. Then

L(T ) = 〈x1, . . . , xk, 0〉 and P (T ) = 〈T1 = t1, . . . , Tk−1 = tk−1, Tk = tk∪(T −Tc1)

∪{(r, uk)}, Tk+1 = T 0〉, where T 0 represents an empty tree. It is again trivial

to see that any poly-line root-visible drawing of Gi requires at least xi layers

for 1 ≤ i ≤ k since Hi is a subgraph of Gi.

On the other hand, if z2 > yk or if z2 = z3 or |L(Tc2)| > 1, then L(T )

is obtained by inserting z2 + 1 into L(Tc1). Let j be the index of insertion.

Then P (Tr) = 〈T1 = t1, . . . , Tj−1 = tj−1, Tj = (T −
⋃j−1

i=1 ti) ∪{(uj−1, vj)}〉. For

1 ≤ i < j, Gi contains Hi as a subgraph and thus any poly-line root-visible

drawing of Gi requires at least xi layers. We now show that at least xj = yj +1

layers are required for any poly-line root-visible drawing of Gj.

For a contradiction, let us assume that Gj = Hj∪(T −Tc1)∪{(uk, r)} admits

a poly-line root-visible drawing on less than xj layers. Since z2 ∈ L(Tc1), there is

a partition, say tl ∈ P (Tc1), j ≤ l ≤ k such that yl = z2. Let j∗ be the maximum

index, j < j∗ ≤ l, such that tj∗ is not a weak partition and Hj∗ ∪ (T − Tc1)

∪{(uk, r)} admits a poly-line root-visible drawing on less than xj∗ layers. We

first assume z2 = yk, that is l = k. Then either z2 = z3 = yk or |L(Tc2)| > 1.

Suppose z2 = z3 = yk. Then Hk∪(T −Tc1) ∪{(uk, r)} has at least three subtrees

each of which requires at least z2 layers. Then by Lemma 4.1.2 Hk ∪ (T −Tc1)∪

{(uk, r)} requires at least z2 + 1 layers for any poly-line root-visible drawing.

Again one can prove in a similar way that if |L(Tc2)| > 1, then Hk ∪ (T − Tc1)

∪{(uk, r)} requires at least z2 + 1 layers for any poly-line root-visible drawing.

Thus j∗ > l. Since tj∗ is not a weak partition, by Corollary 3.3.2 and by

induction hypothesis, tj∗ has at least two subtrees rooted at the children of

uj∗ that requires at least yj∗ layers for any poly-line root-visible drawing. If

tj∗ is not a bad partition, then tj∗+1 is not a weak partition and thus Hj∗+1

∪(T − Tc1) ∪{(uk, r)} requires at least yj∗+1 + 1 = yj∗ layers for any poly-line

root-visible drawing. Then by Lemma 4.1.2, Hj∗ ∪(T −Tc1) ∪{(uk, r)} requires
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at least xj∗ = yj∗ + 1 layers for any poly-line root-visible drawing, which is

a contradiction. On the other hand if tj∗ is a bad partition, then from the

construction of the valid partition and by induction hypothesis uj∗ has two

children a and b such that each of the subtrees rooted at a and b requires at

least yj∗ layers for any poly-line root-visible drawing. Furthermore, a child uj∗−1

of uj∗ other than a and b has two children c and d such that each of the subtrees

rooted at c and d requires at least yj∗ − 1 layers for any poly-line root-visible

drawing. Again since yj∗+1 = yj∗ − 1, yj∗+1 = yj∗ − 1 and tj∗+2 is not a weak

partition, uj∗+1 has a child such that a the subtree rooted at the child requires

at least yj∗ − 1 layers and Hj∗+2 requires at least yj∗ − 1 layers for any poly-line

root-visible drawings. Then By Lemma 4.1.3, Hj∗ requires at least yj∗ +1 = xj∗

layers for any poly-line layered drawing keeping the bottom-visibility of r and

the top-visibility of uj∗+1, which is a contradiction. Thus Gj requires at least

xj layers for any poly-line root-visible drawing.

Again if z2 > yk, we can show that Gi requires at least xi layers by a similar

reasoning as in the previous paragraph.

Case 3. z2 /∈ L(Tc1) and L(Tc2)1 > xk. If |L(Tc2)| > 1 or z2 = z3 = z4, then

we can prove the claim by the same reasoning as in the previous paragraph.

Again if |L(Tc2)| = 1 and z2 6= z3. We thus assume that |L(Tc2)| = 1 and

z2 = z3 6= z4. Then L(T ) is obtained by first inserting z2 and then inserting

z2 − 1 into L(Tc1) if z2 − 1 ∈ L(Tc1). On the other hand, L(T ) is obtained by

first inserting z2 and then inserting 0 into L(Tc1) if z2−1 /∈ L(Tc1). Let j be the

index of insertion for the first insertion in both the cases. Then P (Tr) = 〈T1,

. . . , Tj−1, T ′

j = (T −
⋃j−1

i=1 Ti) ∪{(uj−1, vj)}, T 0〉, where T 0 represents an empty

tree. If z2 − 1 /∈ L(Tc1), then the claim is trivial to prove since Hi is a subgraph

of Gi for 1 ≤ i ≤ j and xj+1 = 0. On the other hand if z2 − 1 ∈ L(Tc1), then it

is also trivial to prove the claim since Hi is a subgraph of Gi for 1 ≤ i ≤ j and

Tj+1 is a weak partition. Q.E .D.

Theorem 4.1.1 implies that any poly-line root-visible drawing of arooted tree

T requires at least L(T )1 layers. This result is a bit surprising. The flexibility of

using bends in “polyline drawings” of trees gives an impression that a polyline

drawing of a tree T may require less number of layers than that of a straight-

line drawing of T . However Algorithm Draw Visible, described in the previous

section, gives a (straight-line) root-visible drawing of a rooted tree T on L(T )1

43



layers. Thus L(T )1 represents the minimum number of layers required in a root-

visible drawing of T both for the poly-line and for the straight-line scenerio.

4.2 Minimum-Layer Drawings of Trees

In this section we address the problem of minimum-layer drawing of a tree. We

have the following theorem.

Theorem 4.2.1 Let T be a tree. Then one can find a vertex w of T in linear

time such that there is a minimum-layer drawing Γ of T where w has bottom-

visibility.

Proof. We first take an arbitrary vertex r as the root of T to obtain a

rooted tree T and compute the label L(T ) of T . By Theorems 3.3.1 and 4.1.1,

L(T )1 represents the minimum number of layers for any layered drawing of T

with the bottom-visibility of r. Let c1, c2, . . ., cp be the children of r in T and

L(Tc1), L(Tc2), . . ., L(Tcp
) are the labels of the subtrees Tc1 , Tc2, . . ., Tcp

of T

rooted at the vertices c1, c2, . . ., cp, respectively. For notational convenience we

denote by zi the value of L(Tci
)1, 1 ≤ i ≤ p. Without loss of generality, we also

assume that z1 ≥ z2 ≥ . . . ≥ zp and if zi = zi+1 for some 1 ≤ i ≤ p − 1, then

|L(Ti)| > |L(Ti+1)|. We now have the following cases to consider.

Case 1: z1 = z2 = z4. In this case L(T ) = 〈z1 + 1〉. By Lemma 4.1.2, z1 + 1

layers are required for any layered drawing of T . Furthermore by Theorem 3.3.1,

there is a layered drawing of T on z1 + 1 layers with the bottom-visibility of r.

Therefore we choose r as the desired vertex w.

Case 2: z1 = z2 > z3. If |L(Tc1)| > 1, then L(T )1 = z1 +1. By Lemma 4.1.2,

z1 +1 layers are required for any layered drawing of T . Since by Theorem 3.3.1,

T admits a layered drawing on z1 + 1 layers with the bottom-visibility of r, we

can choose r as the desired vertex w. If |L(Tc1)| = 1, then L(T ) = 〈z1, 0〉. At

least z1 layers are required for any layered drawing of T and by Theorem 3.3.1,

there is also a layered drawing of T on z1 layers with the bottom-visibility of r.

We can thus take r as the desired vertex w.

Case 3: z1 > z2. If |L(Tc1)| = 1, then L(T ) = 〈z1〉 and r can be taken as

the desired root w since at least z1 layers are required for any layered drawing

of T and by Theorem 3.3.1, there is also a layered drawing of T on z1 layers
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with the bottom-visibility of r. We thus assume that |L(Tc1)| > 1. Let P (T ) =

〈T1, T2, . . .〉 be the valid partition of T . Then we choose the root of T1 as the

desired vertex w. We now show that there is a minimum layer drawing of T

with the bottom-visibility of w. By Corollary 3.3.2, T1 has at least two subtrees

t1 and t2 such that the label of t1 and t2 contains z1. Thus by Theorems 3.3.1

and 4.1.1, minimum-layer root-visible drawings of t1 and t2 occupies z1 layers.

Denote T ′ = T − T1 and take the leg vertex v2 of T2 as the root of T ′. One can

obtain a layered drawing of T ′ on z1 layers as follows. Let Γ be the drawing of

Tc1 obtained by Algorithm Draw Visible. Then mirroring Γ(Tc1 − T1) gives a

layered drawing Γ∗ of Tc1 − T1 on at most z1 − 1 layers with the top-visibility

of v2. Again since z1 > z2 ≥ z3 ≥ . . ., by Theorem 3.3.1 and by Fact 3.2.1,

each subtree Tci
of T other than Tc1 admits a layered drawing Γi on at most

z1 − 1 layers. Thus a layered drawing of T ′ with the bottom-visibility of v2 can

be obtained by placing the drawings Γi and the drawing Γ∗ on the bottommost

z1 − 1 layers, placing r on the topmost layers and adding the necessary edges.

Therefore by Theorem 4.1.1, the label of T ′ is at most z1. If the label of T ′

is less than z1, then L(Tw) = 〈z1, 0〉 and by Theorem 3.3.1 there is a layered

drawing of T on z1 layers with the bottom-visibility of w. If the label of T ′ is

z1, then L(Tw) = 〈z1 +1〉 and by Theorem 3.3.1 T admits a layered drawing on

z1 + 1 layers with the bottom-visibility of w. By Lemma 4.1.2, z2 + 1 layers are

also necessary for any layered drawing of T . Q.E .D.

4.3 Conclusion

In this chapter, we first proved that the drawing of a rooted tree T obtained by

Algorithm Draw Visible is a minimum-layer root-visible drawing of T . Using

this algorithm we then gave an algorithm for minimum-layer drawing of a tree.
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Chapter 5

Conclusion

In this thesis, we addressed the problem of minimum-layer drawing of a tree.

We first gave an algorithm to obtain a minimum-layer root-visible drawing of

a rooted tree. We then gave another algorithm to find a suitable vertex r of a

tree T such that a minimum-layer root visible drawing of T rooted at r gives

a minimum-layer drawing of T . The drawing obtained by our algorithm also

represents a minimum-layer poly-line layered drawing of a tree.

The problem of minimizing the number of layers in a drawing of a tree is

motivated by both theoretical interest and practical applications. Although the

problem of minimum-layer drawings of trees has attracted much interest of the

researchers for the past few years, there had neither been any polynomial-time

algorithm nor any hardness result known to date for the general version of the

problem. In this respect this thesis addressed a long-standing optimization prob-

lem on tree drawings. The practical applications of minimum-layer drawings of

trees arise from the requirement in various fields, especially for the information

visualization and VLSI circuit design. Visualization of heirarchical structures

like organizational charts, software class hierarchies, phylogenetic evolutions etc

involves layered drawings of trees. However one expects a visualizing drawing of

a hierarchical structure like trees to exhibit the hierarchical property blatantly.

Unfortunately, the drawing produced by our algorithm fails to show the inher-

ent hirerchical structure present in the structure of a tree. Again the problem

of minimum-layer tree drawing finds its application for the design of a standard

cell on the minimum number of rows as illustrated in Section 1.2. However,

this algorithm is applicable for this application only for a small class of circuits,

46



particularly it is applicable only when the graph obtained from the circuit to

be placed in the standard cell is a tree. Thus the result in this thesis is more

interesting and eye-catching for theoretical motivation rather than its practical

applications.

The following is a brief list of future works related to our results presented

in this thesis.

1. In this thesis we solved the problem of minimizing the number of layers in a

layered drawing of a tree. However the drawing produced by our algorithm

does not necessarily preserve a given circular ordering of the neighbors of

each vertex of the tree. The problem of minimum-layer drawing of an

ordered tree is still open and remains as a future work.

2. It is also a future work to obtain minimum-layer drawings of some classes

of planar graphs richer than trees either for the unrestricted or for some re-

stricted variation of layered drawing. In this context it may be mentioned

that recently Mondal et al. have given a polynomial-time algorithm for

minimum-layer drawings of a class of planar graphs called “plane 3-trees”

[19]. A plane 3-tree Gn with n ≥ 3 vertices is a plane graph for which

the following conditions (a) and (b) hold: (a) Gn is a triangulated plane

graph; (b) if n > 3, then Gn has a vertex whose deletion gives a plane

3-tree Gn−1. However the problem is still open for other classes of planar

graphs.
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proper, 3, 16

short, 3, 16

upright, 3, 16

layers, 2, 3, 16

leaf, 12

linear-time, 18

loop, 9

multigraph, 9

non-deterministic algorithm, 18
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non-polynomial, 18

NP-complete, 18, 19

NP-hard, 19

outer face, 14

parent, 12

path, 11

planar drawing, 13, 15

planar embedding, 13

plane graph, 13

polynomial, 18

polynomially bounded, 18

root, 12

root-visible drawing, 2, 7, 20

rooted tree, 12

running time, 17

separator, 12

simple graph, 9

size, 17

standard cell, 4

straight-line drawing, 15

subgraph, 10

subtree, 13

tree, 12

undirected graph, 10

vertex cut, 12

vertices, 1, 8

VLSI layouts, 2

walk, 11

width, 17
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