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Abstract

Imbalanced data sets contain an unequal distribution of data samples among the classes

and pose a challenge to the learning algorithms as it becomes hard to learn the minority

class concepts. Synthetic oversampling techniques address this problem by generating

synthetic minority samples to balance the distribution between the samples of the ma-

jority and minority classes. This thesis identifies that most of the existing synthetic

oversampling techniques may generate wrong synthetic samples in some scenarios and

make the learning task harder. To this end, the thesis presents a new synthetic oversam-

pling method, called Majority Weighted Minority Oversampling Technique (MWMOTE),

for handling imbalanced data sets efficiently. The term ’majority weighted minority over-

sampling’ here means important minority samples for oversampling will be identified and

weighted by the nearest majority samples and then will be used for oversampling. To do

this, MWMOTE uses information from both the minority and majority samples in the

data set. First, it identifies hard-to-learn informative minority samples and assigns them

weights according to their importance using distance information from the nearest ma-

jority samples. MWMOTE then identifies the clusters in the minority data set and uses

weighted informative minority samples to generate synthetic samples inside the clusters.

This is done in order to ensure that generated samples always lie inside some minority

cluster and do not overlap with majority regions.

The thesis finally presents a new stand-alone ensemble algorithm, called, MWMOTE-

Boost, by integrating MWMOTE inside the famous AdaBoost.M2 boosting procedure.

MWMOTE-Boost algorithm is obtained from MWMOTE oversampling algorithm by in-

serting it into the boosting iteration of classic AdaBoost.M2 ensemble algorithm. The

manner in which MWMOTE and AdaBoost.M2 are integrated is similar to the recent

state-of-the-art RAMOBoost algorithm except that in place of RAMOBoost’s RAMO

xiv
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oversampling procedure, MWMOTE oversampling procedure is used. The proposed meth-

ods, i.e., MWMOTE and MWMOTE-Boost have been evaluated extensively on four arti-

ficial and seventeen real-world data sets and using several classifier models such as neural

network, decision tree, k-nearest neighbor and ensemble classifier. The simulation results

show that our new methods MWMOTE and MWMOTE-Boost are better or comparable

than some other existing methods in terms of various assessment metrics, such as pre-

cision, recall, F-measure, G-mean, and area under the receiver operating curve (ROC),

usually known as area under curve (AUC).



Chapter 1

Introduction

The task of machine learning is to generate a model, also called a hypothesis, which

best approximates an objective function. In classification problems, the output of the

objective function is discrete in which the goal is to classify an example to one of a set

of output classes. Each machine learning task is given a training data set consisting of a

set of known examples and their corresponding target function outputs, for its learning.

Training data is supposed to provide adequate information for the underlying function to

be learned. However, in many practical learning problems, training datsets are imbalanced

where most of the training examples belong to one class and rest of the examples belongs

to other classes [1]. These datasets are known as imbalanced datasets. When the dataset

involves only two classes, the class having most of the data samples is called the majority

class, and the other, minority class. The ratio of the number of minority and majority

class instances is defined as the degree of imbalance or imbalance ratio for the data set [1].

Imbalance data sets are of utmost importance to the research community as it is present

in many vital real world classification problems such as medical diagnosis [2], information

retrieval systems [3], detection of fraudulent telephone calls [4], detection of oil spills in

radar images [5], data mining from direct marketing [6], helicopter fault monitoring [7]

etc. Imbalance ratio has been found to be as high as 1:100 in fraud detection problems

[4] to 1:100000 in high energy physics event classification [8].

1
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The class imbalance can be categories in different ways. One categorization is between-

class imbalance and within-class imbalance [1]. A between-class imbalance is the imbal-

ance existing between classes of the data set. A within-class imbalance is an imbalance

existing within the same class. This occurs due to unequal distribution of samples among

the various sub-concepts presents in the same class. Another categorization is relative

imbalance and absolute imbalance [1]. To illustrate the difference between relative and

absolute imbalance, consider a training dataset that contains 260 minority and 10923

majority class samples, a total of 11183 samples. Assume that, we will double the data

set size, by taking 11183 more data samples. Now, in the new data set, if we get ap-

proximately double number of minority samples, then we say that this type of imbalance

is relative. Because, increasing the data set size also increases the number of minority

samples, however, keeping the ratio of imbalance approximately constant. This says the

minority classes are not rare in its own, but relatively outnumbered by majority due to

the far greater existence of the majority samples in nature. Absolute imbalance occurs

for rare cases, in which minority classes are very rare. Therefore, increasing data set size

does not necessarily increase the number of minority samples.

Class imbalance pose a challenge to the learning algorithms as it becomes very hard to

learn the minority class concepts [9]–[11]. Classifiers usually aim to reduce the global clas-

sification error and therefore any classifier, learned form an imbalanced dataset, tends to

favor the majority class. The decision output of the classifier is always biased toward the

majority class as it expects that the distribution of examples in the nature is imbalanced

and dominated by majority. As a result, the classifiers show greater classification errors

over the examples of minority class. They show very high accuracy on majority class

samples, however, poor accuracy on minority class samples. This becomes very costly in

problems where the identification of the minority is of utmost importance [2]–[8]. There-

fore, it is very important that, the learned classifiers from an imbalanced data set perform

well on the minority class samples as it performs on the majority.

The actual cause of the worse performance of conventional classifiers on minority class

data is not necessarily related to only between-class imbalance problems. Classifiers’ per-
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formance have been found to be depreciated in the presence of within-class imbalance,

and small disjuncts problem [12]–[14]. Due to within-class imbalance one or more sub-

concepts become difficult to learn compared to other sub-concepts that are sufficiently

represented. The main problem relates to the representation of the concepts. If a mi-

nority class concept is well represented, then the between class imbalance usually poses

no problem. But, if the class concept is not represented well by the given samples, then

imbalance creates problems.

Besides the class imbalance, complexity of data samples is another factor for poor

performance [1]. If a classification problem is such that, it has a between-class imbalance

of 1:100, however, the minority class is well represented and the data set is linearly

separable, then the imbalance will not create any problem to learn the concepts. However,

if, on the other hand, data samples are such that, the majority and minority have more

than one sub-concepts, some sub-concepts are rare than others, and regions of some sub-

concepts between majority and minority class overlaps, then, the imbalance becomes a

severe problem [12, 14] and it becomes really hard for the classification algorithms to learn

the concepts.

1.1 Our Contribution

Extensive research works exist in literature that deals with imbalanced learning prob-

lem of which synthetic oversampling methods are among the most popular and effective

techniques [15]–[18]. These techniques handle the imbalance problem by generating new

synthetic samples for the minority class in order to balance the data set before presenting

it to the final classifier [15]. In this thesis, we illustrate that in some scenarios, most

of these methods may become inappropriate and fail to generate useful synthetic mi-

nority samples. We also show scenarios where these methods may generate wrong and

unnecessary synthetic samples, making the learning task difficult. In this respect, we pro-

pose a novel synthetic oversampling method, Majority Weighted Minority Oversampling

TEchnique (MWMOTE), whose goal is to alleviate the problems of existing methods and
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generate useful synthetic minority samples beneficial for learning. The essence of the

proposed method is (i) selection of an appropriate subset of the original minority, (ii)

assigning weights to the selected samples according to their importance in the data set,

and (iii) using an unsupervised clustering approach for generating useful synthetic minor-

ity samples. Finally, We present an ensemble algorithm MWMOTE-Boost by integrating

MWMOTE and classic AdaBoost.M2 boosting ensemble in order to obtain a stand-alone

learning model for imbalanced learning problems.

1.2 Outline of the Thesis

The remainder of this thesis is divided into seven chapters. In Chapter 2, we provide a

brief overview of existing works in imbalanced problem domain and present the problems

of existing approaches. Chapter 3 describes the MWMOTE algorithm and its various

components in detail. In Chapter 4, we present the experimental study and simulation

results of MWMOTE. Chapter 5 presents the MWMOTE-Boost algorithm and its asso-

ciated experimental results. Finally, in Chapter 6, we provide some future aspects of this

research and conclude the thesis.



Chapter 2

Related Works

Significant works have been conducted to deal with the imbalanced learning problem.

Most of these works fall into one of the four different categories: sampling based ap-

proaches, cost based approaches, kernel based approaches, and active learning based ap-

proaches [1]. In this chapter, we provide a brief overview of sampling based approaches

and cost based approaches. Details of works performed in other categories can be found

in [1].

2.1 Sampling Methods for Imbalanced Learning

In imbalanced learning sampling methods are used to modify an imbalanced data set to

create a balanced distribution. Classifiers learn well from the balanced data set than

from the imbalanced one [19]–[21]. This doesn’t mean that classifiers can’t learn from

imbalanced datasets. In fact some studies show that the performance of classifiers induced

from certain imbalanced data sets are almost same as classifiers induced from the same

data set balanced by sampling techniques. But in most of the cases for imbalanced dataset

the application of sampling techniques does improve classifier accuracy. There are two

differnt types of sampling methods: undersampling and oversampling.

5
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2.2 Undersampling Methods

Undersampling methods work by reducing the number of instances of the majority class

to balance the class distribution. The reduction can be done randomly in which case it

is called random undersampling or it can be done by using some statistical knowledge in

which case it is called informed undersampling. Both techniques show improvements in

classifier performance over the imbalanced data sets [22]–[24].

2.2.1 Random Undersampling

Random Undersampling first selects a set of samples E, at random from the original

majority data set, Smaj. The size of the set E determines the degree of balance required.

The samples of set E are then deleted from the original training set, S = Smin ∪ Smaj.

The new training set S ′ becomes:

S ′ = Smin ∪ (Smaj − E) (2.1)

Thus random undersampling randomly removes a set of samples from Smaj before pro-

viding it to the classifier. Random undersampling has been shown to give improvements

in performance compared to purely imbalanced data [22]–[24]. However, a basic disadvan-

tage of this method is that, it removes examples without any consideration. Therefore,

important majority examples containing necessary information may be removed and those

regions becomes hard to learn for the classifier.

2.2.2 Informed Undersampling

Informed undersampling removes samples from the original majority data set using some

statistical information. Two different undersampling algorithms, EasyEnsemble and Bal-

ancedCascade, were shown to provide good results in informed undersampling [25]. These

algorithms can overcome the deficiency of information loss introduced in the traditional

random undersampling methods. The EasyEnsemble method develops an ensemble learn-
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ing system by independently sampling several subsets from the majority class and devel-

oping multiple classifiers based on the combination of each subset with the minority class

data. So we can consider EasyEnsemble as an unsupervised learning algorithm that ex-

plores the majority class data by using independent random sampling with replacement.

On the contrary, BalancedCascade algorithm follows supervised learning approach. This

method develops an ensemble of classifiers. These classifiers can systematically select the

majority class examples to undersample.

Informed undersampling can also be done by the help of k-nearest neighbor (k-NN)

classifier. Four k-NN undersampling methods were proposed in [22] which uses the charac-

teristics of the training data distribution. They are NearMiss-1, NearMiss-2, NearMiss-3,

and the ”most distant” method. These methods calculate distances between majority and

minority samples in different ways. NearMiss-1 method removes those majority examples

from the data set whose average distance to the three closest minority class examples is

smallest. NearMiss-2 method removes those majority class examples whose average dis-

tance to the three farthest minority class examples is smallest. NearMiss-3 method selects

a given number of the closest majority examples for each minority example to guarantee

that every minority example is surrounded by some majority examples. Lastly, the ”most

distance” method selects the majority class examples whose average distance to the three

closest minority class examples is largest. Among all these methods, NearMiss-2 method

was shown to provide competitive results [22].

2.2.3 Undersampling with Data Cleaning Techniques

Some undersampling methods apply data cleaning techniques to further refine the major-

ity data set. One such method was one-sided selection (OSS) [24]. In OSS, those examples

from the majority set are removed that are redundant, noisy and borderline. According

to OSS, borderline samples are unreliable and create overlapping regions. This creates

difficulty for the classifier. So, borderline and noisy samples are removed. They are iden-

tified using a procedure called tomek-link method [26]. To understand what tomek-link is,
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let x and y are two examples belonging to majority and minority class respectively. The

pair (x, y) is called a tomek-link, if no other example z exists such that d(x, z) < d(x, y)

or d(y, z) < d(x, y). Examples belonging to tomek-links are said to be either noisy or

borderline. All majority examples that forms a tomek-link with a minority are therefore

removed from the original data set. Besides this, another set of examples are removed

from the majority class that are redundant. The redundant samples are identified using

a concept of consistent subset C ⊂ S. A subset C of S is called consistent, if using 1-NN

rule, examples in C are able to correctly classify all examples in S. The consistent subset

is found by first selecting a subset, C of S consisting of all minority examples and only

one positive example. 1-NN rule is then used to classify examples in S using examples in

C. Those examples in S that will be misclassified are put in C. The process has been

shown to improve the accuracy on both minority and majority class in some real-world

data sets [24].

In [12] various undersampling methods were compared like condensed nearest neighbor

rule (CNN), addition of tomek links with condensed nearest neighbor rule (CNN+Tomek-

link), tomek only method (Tomek), and neighborhood clearning rule (NCL) method.

CNN rule is similar to finding a consistent subet C of S, that can correctly classify all

examples of S using 1-NN rule. In CNN+Tomek, tomek-links are idenfied and removed

after applying CNN. In NCL, a modified version of Wilson’s edited nearest neighbor

rule [27] is used to enforce the cleaning: For each example x of S, its three nearest

neighbors are identified. If x is a majority example and classification assigned by its three

nearest neighbors differs, then x is removed from S. On the other hand, if x is a minority

example, and classification by its three nearest neighbors differ, then majority examples

belonging to three nearest neighbors are removed. In this way, only majority examples

are removed from the training data set.
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2.3 Oversampling Methods

Oversampling methods add minority samples to the data set to balance the distribution of

samples between majority and minority classes. Similar to undersampling methods, over-

sampling methods also fall in two broad categories: random oversampling and synthetic

oversampling methods.

2.3.1 Random Oversampling

Random Oversampling is a very simple mechanism by which instances are added to the

original minority data set Smin by random resampling. First, a set of samples, E is

selected from the original minority samples Smin. Then samples in E are added with Smin

to form the new minority data set S ′
min (S ′

min = Smin ∪ E). In this way, the minority

set is augmented to balance with the majority set. The size of the set E determines the

degree of balance required. Due to resampling, some examples of the minority data set

are duplicated. The new training set, S ′ becomes:

S ′ = Smaj ∪ S ′
min (2.2)

Random oversampling adds data to the original minority set, thereby adding new

information in the dataset. However, due to duplication, the additional information is

overlapped or replicated. This may create small disjuncts in the minority data set and

lead to overfitting. In rule-based learning, this type of small disjuncts creates very specific

rules for some regions, which is good for fitting training data. However, the performance

of such specific rules sometimes shows bad performance over unseen examples due to poor

generalization [10].

Cluster Based Random Oversampling

A cluster-based random oversampling (CBO) technique was proposed in [28]. It focuses

not only on between-class imbalance but also on within-class imbalance. The objective
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is to remove both within-class imbalance and between-class imbalance problems. The

technique randomly oversamples the minority and majority class in such a fashion that all

clusters become of same size. The method starts with clustering majority and minority set

using k-means algorithm. In k-means algorithm, initially k random examples are selected

from the original set. Each of these k samples represents one of the k clusters. For each

of the other examples in the set, the nearest of the k initial examples are identified and

the sample is assigned to the cluster represented by the nearest example. In this way, all

examples are assigned to one of k clusters. Then, k new cluster centers are calculated

by taking average of all members of each cluster. Examples of all the clusters are then

re-assigned to one of k clusters depending on its nearest cluster center. After clustering

is done, CBO algorithm randomly oversamples each majority cluster except the largest

one so that its size become equal to the size of the largest cluster in the majority set. In

this way, original majority set Smaj is augmented to new majority S ′
maj. The minority

clusters are then oversampled such that each minority cluster has size equal to |S ′
maj|/k.

2.3.2 Synthetic Oversampling

Synthetic oversampling, like random oversampling adds data to the minority data set.

However, unlike random oversampling, the samples that will be added are not selected

from the original minority data set Smin. Instead of duplicating existing minority samples,

synthetic oversampling methods generate new minority examples. The generated exam-

ples provide new information to the original data set and can lead to good classifier per-

formance. Depending on the technique of how synthetic samples will be generated there

are many variants existing in literature such as SMOTE [15], Borderline-SMOTE [16],

ADASYN [17].

SMOTE

SMOTE (Synthetic minority oversampling technique) [15] works by generating synthetic

samples and adding those samples to the original minority data set Smin. The synthetic
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samples are generated by combining pairs of samples from Smin in a linear combination.

For each sample x ∈ Smin, its k nearest minority examples are identified. The value k is

a parameter which determines the local neighborhood information used. The k nearest

neighbors are found according to a distance metric such as Euclidean distance. After

that, an example y is selected at random from these k nearest neighbors. One synthetic

sample g is then generated from x and y as:

g = x+ (y − x)× δ (2.3)

where δ is a random number in the range [0, 1]. The generated synthetic sample will

always lie on the line segment between x and y. Depending on the amount of oversampling

required, one or more examples from the k neareset neighbors are selected. For example,

if we require a 300% oversampling-rate, then three are selected at random from the k

nearest neighbors of x and three new synthetic samples are generated by using (2.3).

The SMOTE technique leads to larger and more generalized regions in the feature space.

Unlike random oversampling, which leads to smaller and specific decision region, SMOTE

creates larger and less specific regions.

Borderline-SMOTE

In classifier learning, it appears that, some decision regions are very well represented which

can be learned easily, some regions are poorly represented which are harder to learn and

some regions are overlapped which creates difficulty in learning. Regions that are near

the decision boundary are usually overlapped between classes. Therefore, samples along

the decision boundary are in the regions that are harder to learn for the classifier. So,

it would be better, if more synthetic samples are generated for harder decision regions

to make it more precise and represented and few synthetic samples are generated for the

easier regions (that are far from the boundary and can be learned without any ambiguity).

Borderline-SMOTE [16] tries to achieve this. In Borderline-SMOTE, synthetic samples

are generated using (2.3). However, unlike SMOTE, which create synthetic samples from

all minority examples without any consideration of their importance, Borderline-SMOTE
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creates synthetic samples from borderline minority examples only. The technique first

identifies all minority examples that are borderline. The borderline samples form a set,

DANGER and synthetic samples are generated from only members of the DANGER set.

According to [16], a sample falls in the DANGER set, if at least half of its k nearest

neighbors are majority examples. So, to find borderline minority samples, Borderline-

SMOTE first finds, for each minority sample x, it’s k nearest neighbors (considering all

minority and majority). Then, the teqnique finds the number of majority samples in these

k-neighbors and say, the number is m. Then sample x will be called a borderline sample

if following equation holds:

k

2
≤ m < k. (2.4)

Equation (2.4) states that m must by greater than or equal to k
2
and strictly less that k.

This says that, at least half of the k-neighobrs must be majority to call x a borderline

sample. However, the value of m must be less than k. In case, m = k, the minority sample

x is not called borderline and no-synthetic samples are generated from this. Rather it is

identified as a potential noise sample and removed from the data set.

ADASYN

Borderline-SMOTE [16] is too aggressive in the sense that, it generates all synthetic

samples from only DANGER set and no synthetic samples are generated from any other

minority examples. Therefore, region near the decision boundary become too dense, while

rest of the regions become sparse. ADASYN (adaptive synthetic sampling) [17] works in

an adaptive fashion and tries to balance the distribution of synthetic among the minority

regions depending on its importance. It finds the number of synthetic samples to be

generated from each minority according to its importance in the learning. The importance

of a minority sample in the learning phase is determined by number of majority neighbors

it has in the neighborhood. ADASYN first calculates the total number of synthetic

samples to be generated, G from the original minority data set, Smin:

G = (|Smaj| − |Smin|)× β (2.5)
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Where, β is a balance parameter. The value of β determines the degree of balance

required. Next, for each sample xi, k nearest neighbors (considering both majority and

minority) are identified using Euclidean distance as the distance measure. Then, a ratio

ri is calculated for each xi as follows:

ri =
δi
K

(2.6)

where, δi is the number of majority examples in the k nearest neighbors. The value ri is

then normalized according to the following equation:

r̂i =
ri∑
i ri

(2.7)

The normalized ri value is the probability of importance and is used to find the number

of synthetic samples to be generated, gi from each xi as:

gi = r̂i ×G (2.8)

After that, gi samples are generated from each xi, using (2.3) similar to SMOTE and

Borderline-SMOTE. The objective of ADASYN is to balance the distribution of synthetic

samples among the regions depending on its difficulty for the classifier. Unlike, SMOTE,

where number of synthetic samples that will be generated from each minority is prefixed,

ADASYN finds it adaptively for each sample. The resulting data distribution is far focused

on the harder regions and therefore expected to provide a better minority data set to the

classifier.

2.4 Integration of Sampling and Boosting

Boosting is expected to improve the classifier performance by iteratively focusing on

hard-to-learn examples in the training data set. The application of boosting [29, 30]

can be integrated with sampling to provide a better classifier structure for imbalanced

learning. Works in this category were proposed by SMOTE-Boost [31], DataBoost-IM [32],

RAMOBoost [18], etc.
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SMOTE-Boost

SMOTE-boost [31] integrates Adaboost.M2 [29] procedure with the SMOTE [15] over-

sampling technique to improve the prediction accuracy of the minority class as well as

the majority class. In each iteration of standard AdaBoost.M2 boosting procedure, the

weight distribution of the minority data set is updated by creating N synthetic samples

using SMOTE. While SMOTE focuses on the predictive accuracy of the minority class,

boosting focuses on the majority class so that total accuracy is not sacrificed for improving

minority performance.

RAMOBoost

RAMOBoost [18] is obtained by modifying the ADASYN [17] algorithm and integrating

the standard Adaboost.M2 boosting procedure. Similar to SMOTE-boost [31], RAMO-

Boost’s objective is to improve accuracy on both minority and majority class by applying

boosting and oversampling simultaneously. RAMOBoost’s oversampling procedure is a

slight modification of ADASYN which is describe below:

Similar to ADASYN, RAMOBoost finds a value, δi for each minority sample xi. Unlike

ADASYN, RAMOBoost then finds ri as follows:

ri =
1

1 + exp−α×δi
(2.9)

The value of ri is then normalized to form a probability distribution r̂i:

r̂i =
ri∑
i ri

(2.10)

An informative minority example set, S ′
min is selected from Smin according to the

probability distribution of r̂i. Synthetic samples are then generated from all members of

S ′
min according to the similar procedure of SMOTE. The difference between ADASYN and

RAMOBoost is in two-folds. First, ADASYN aggressively finds the number of synthetic

samples to be generated for each xi according to δi. But, RAMOBoost converts the

δi value to a probability distribution r̂i. The r̂i value in RAMOBoost determines the
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Figure 2.1: Cost of misclassifications.

probability of selection of a minority example for synthetic sample generation. Another

difference is that, ADASYN generates no synthetic samples from minorities that have no

majority in its k nearest neighborhood. However, in RAMOBoost, those samples may

contribute to generation of synthtetic samples although they will have the smallest r̂i

value, the probability that it will be selecting for synthetic sample generation.

2.5 Cost-sensitive Learning for Imbalance Data

Cost sensitive learning approaches assigns higher misclassification costs for the minority

examples to bias the classifier to the minority class [1]. A cost matrix formally defines the

costs of each misclassification. In Fig. 2.1, we show an example of a cost matrix for two

classes. The term ’cost’ can also be interpreted as a ’penalty’ term given to the classifier

for a misclassification. The cost W (maj,min) determines the cost of misclassifying a

majority object. Similarly, W (min,maj) is the cost of misclassifying a minority object

as a majority object. The other two costs W (maj,maj) and W (min,min) are usually

given zero value to emphasize the fact that no cost is imposed when a correct classification

occurs. For imbalanced learning problem W (min,maj) is assigned a higher value than

W (maj,min). The classifiers are expected to minimize the overall cost of the classifica-

tion. In Bayesian learning techniques, this term is also referred as risk minimization.

There are different ways on how to impose the cost to the learning algorithm. The first

way, is to weight the individual data samples. This is usually referred to as data-space
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weighting [1]. Classification algorithms are integrated with some form of ensemble learning

methods, the most common and successful ensemble technique of which is boosting. In

each iteration of ensemble methods, a new training set is chosen from the available data

samples according to the weight of the samples. The costs are imposed on weight of

each sample to increase its selection in training sets of ensemble algorithms. In this

way, costly data samples are selected many times and classifier performance on those

improves. The second way of applying cost sensitive learning is incorporate the cost into

the objective function to be minimized. Minimizing the cost-sensitive objective function

therefore introduces additional bias toward the minority class since their cost is high.

The third way of cost-sensitive algorithms is to incorporate cost factors inside leaning

algorithms in such a way that they are biased toward minority class.

2.5.1 Cost Sensitive Boosting

Various cost sensitive boosting algorithms based on famous Adaboost algorithm were

developed in research community. In [33], Adaboost is modified to incorporate cost factors

inside the algorithm. The classic Adaboost algorithm [29] employs a distribution function

D(t) in each iteration which is updated according to the classifier learned. For each

training instance xi, The distribution update function is stated as follows:

D(t+ 1) = D(t) ∗ e−αt∗ht(xi)∗yi/Zt (2.11)

where αt =
1
2
ln 1−ǫt

ǫt
is the weight update parameter, ht(xi) is the hypothesis output on the

training example xi, yi is the true output of xi, and Zt is a normalization constant so that

D(t + 1) becomes a distribution. Equation 2.11 increases the weight of the sample xi, if

it is misclassified by the current classifier. Therefore, misclassified samples achieve higher

weight in the next iteration of boosting. In [33], three new cost-sensitive algorithms were

proposed by modifying the update equation (Eqn. 2.11) in three ways (Eqns. 2.12-2.14)

to incorporate the cost factor:

D(t+ 1) = D(t) ∗ e−Ci∗αt∗ht(xi)∗yi/Zt (2.12)
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D(t+ 1) = Ci ∗D(t) ∗ e−αt∗ht(xi)∗yi/Zt (2.13)

D(t+ 1) = Ci ∗D(t) ∗ e−Ci∗αt∗ht(xi)∗yi/Zt (2.14)

In (2.12), cost is imposed inside the exponential, in (2.13), outside the exponential and

in (2.14), both inside and outside exponential. In all equations Ci is the misclassification

cost associated with example xi. Classifiers corresponding to (2.12), (2.13), and (2.14)

are called AdaC1, AdaC2, and AdaC3 respectively. The objective was to find the best

cost-sensitive model. Various experiments were performed on UCI data and results were

reported in [33]. The reported results says the AdaC2 and AdaC3 obtains a significantly

improved performance than AdaC1 and other conventional boosting procedures.

Another cost-sensitive boosting technique was proposed in [34] and is called AdaCost.

AdaCost employs a similar technique of adaC1 [33] by applying cost factors inside ex-

ponential. However, the cost factor is not applied directly. Rather a cost-adjustment

function is used as follows:

D(t+ 1) = D(t) ∗ e−αt∗ht(xi)∗yi∗βi/Zt (2.15)

where, βi is a cost-adjustment function which aggressively increases the weights of misclas-

sified examples that are costly and conservatively decreases the weight of costly examples

that are correctly classified. The cost-adjustment function can take the following form:

βi = β(sign(h(x), y), Ci) (2.16)

The function sign(h(x), y) gives positive for correct classification and negative for incor-

rect classification. The β function can also be stated separately as β(+) and β(−). β(+)

adjusts weight of correctly classified examples and β(−) adjusts for misclassified samples.

One suggestion on how β(+) and β(−) can be selected is given in [34] as:

β(+) = −0.5 ∗ Ci + 0.5, β(−) = 0.5 ∗ Ci + 0.5 (2.17)

Using β(+) and β(−) as in (2.17) was shown to give good results in most applications.

The advantage of such a cost-adjustment function is that, cost can be adjusted according

to specific need of the problem at hand.
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2.6 Comparison between Undersampling and Over-

sampling

Sampling algorithms and boosting algorithms integrated with sampling dominate among

all the works performed in imbalanced learning. Although both types of sampling, i.e.,

undersampling and oversampling, have been shown to improve classifer performance over

imbalanced data sets, in [13], it was shown that, oversampling is lot more useful than

undersampling. The performance of oversampling algorithms was shown to improve dra-

matically even for complex data sets [13]. The reason is that, undersampling methods

may remove important information from the data sets during their undersampling pro-

cedure which may cause the classifier to miss important sub-concepts of the majority

class. Therefore, most of the recent works are based on synthetic oversampling algo-

rithms [17, 18].

2.7 Problems of Existing Methods

Existing Synthetic oversampling techniques have been shown to be very successful in

dealing with imbalance data sets [15]–[18]. However, our study finds some insufficiencies

and inappropriatenesses of some of these existing techniques that may occur in many

different scenarios of the data samples. In this section, we describe those inefficiencies

observed by existing techniques in detail.

2.7.1 Problems in Minority Selection and Minority Weighting

Mechanism

The main objective of some synthetic oversampling methods, e.g. Borderline-SMOTE [16],

is to identify borderline minority samples (also called seed samples). These samples are

then used for generation of synthetic samples. The intuition is that, borderline samples
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are most likely to be misclassified and therefore synthetic samples should be generated

from them in the neighborhood of the borders. According to [16], a minority sample is

called borderline, if the number of majorities, m, among its k nearest neighbors satisfies

the criterion (2.4). However, the criterion (2.4) may fail to identify borderline samples in

some scenarios. Figure 2.2(a) shows such a scenario where stars and circles represent the

samples of majority and minority classes, respectively. Minority samples A and B in this

figure have no majority samples in their k-nearest neighborhood assuming the value of k is

5. In fig 2.2(a), 5 nearest neighbors of A are shown by arrow that are all minority samples.

Hence, the value of m for these minority samples is 0. According to (2.4), these values

(m = 0 and k = 5) imply that A and B will not be identified as borderline samples,

though they are the closest samples to the decision boundary (apparently borderline).

The outcome is the prohibition of synthetic sample generation from A and B later in the

sample generation phase. This situation will make the learning task harder, because a

classifer will get less information about minority samples near the decision boundary.

Some synthetic oversampling techniques such as ADASYN [17] and RAMOBoost [18]

try to find the relative importance of different minority samples in the data set using

weighting mechanisms. A higher weight for a minority sample results in higher number of

synthetic samples to be created from that sample in ADASYN [17] or a higher chance for

that sample to be selected for synthetic data generation in RAMOBoost [18]. To weight

the minority samples, both ADASYN and RAMOBoost find a value δ, where δ is the

number of majorities among the k nearest neighbors of a sample. In both techniques, a

higher value of δ for a minority sample results in a higher weight for that sample. However,

using the δ, number of majorities, to weight individual minority samples, may encounter

follwoing problems.

1. δ-value may be insufficient for assigning weights to minority samples located near

the decision boundary. This can be understood from Fig. 2.2(a) in which minority

samples A and B have no majority samples in their k-nearest neighborhood (as-

suming k = 5). Under this condition, the value of δ for these samples will be 0. It
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(a) (b)

Figure 2.2: Problems of existing approaches: (a) k nearest neighbors of A and D are

shown by arrow (for k = 5). All neighbors for A are minority which will result in lowest

weight. On the contrary, for the noisy sample D, all neighbors are majority, which will

result in largest weight. (b) Some minority clusters where generated synthetic samples

are shown by square.

means A and B will be given the lowest weight, although seemingly they are the

most important samples due to their position near the decision boundary.

2. δ-value may be insufficient to discover the difference of minority samples w.r.t their

importance in learning. It can be seen from Fig. 2.2(a) that the minority sample

A is closer to the decision boundary while C is quite further. It is, therefore,

reasonable that A should be given higher weight (importance) than C. However, if

we compute the δ-value with k = 5 for samples A and C, then it is evident from

the figure that the δ-value is 0 for both samples (due to no majority samples in

their neighborhood). This example illustrates that the δ-value cannot differentiate

minority samples according to their importance in learning.

3. δ-value may favor noisy samples. Now, consider the minority sample D shown

in Fig. 2.2(a). This sample falls in the majority region and is likely to be noisy.

Assuming k = 5, the δ-value for D is 5, since all the 5 nearest neighbors of D are

majority samples (shown by arrow in the figure). This is the highest among the δ

values of all minority samples. At this point, we can say that D is unexpectedly

getting the highest weight and consequently, later in the sample generation phase,
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more noisy synthetic samples will be generated from D. This will eventually make

the learning task harder due to introduction of more noise in the data set.

2.7.2 Problems in Synthetic Sample Generation Mechanism

In the sample generation phase, existing synthetic oversampling methods (e.g. [15]–[18])

employ a k-nearest neighbor (also called k-NN) based approach. To generate a synthetic

sample from an existing minority sample, say x, the k-NN based approach randomly

selects another minority sample, say y, from the k nearest neighbors of x. Here k is a

user specified parameter. A synthetic sample, g, is then generated by linear interpolation

of x and y using (2.3).

Equation 2.3 says that g will lie in the line segment between x and y. However, in many

cases, the k-NN based approach may generate wrong minority samples. To show why,

again consider Fig. 2.2(b). Assume we are going to generate a synthetic sample from the

minority sample A and the value of k is 5. The k-NN based approach will randomly select

another minority sample from the 5 nearest minority neighbors of A, say B is selected.

According to (2.3), linear interpolation of A and B may generate a synthetic sample like

P , shown by a square in Fig. 2.2(b). We see that P is clearly a wrong minority sample

because it overlaps with a majority sample (Fig. 2.2(b)).

The above problem is magnified when small sized clusters are present in the minority

class concept due to rare or exceptional cases in the training data set such as clusters L1

and L2 of Fig. 2.2(b). If synthetic samples are generated from any member x of any of

these clusters (say, L2), the k-NN based approach will likely select y of (2.3) from the

other cluster (i.e., L1). This causes the generation of a synthetic sample in the majority

region situated between L1 and L2 (e.g. R shown in Fig. 2.2(b)). The generated samples

clearly produces overlapping minority and majority regions, which will make the learning

task harder. The above problem is even worse when synthetic samples are generated from

a noisy sample such as D of Fig. 2.2(b). In this scenario, a synthetic sample Q may be

generated that falls inside majority regions (Fig. 2.2(b)).
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Now, think what happens, when synthetic samples are generated from the members of

a dense minority cluster, for example L3 of Fig. 2.2(b). For k = 5, generated samples will

nearly be duplications of existing samples within the same cluster. This is due to the fact

that all of the k nearest neighbors are very close to each other. Generation of dupicated

samples is useless because they will not add any new information to the data set.

The above analyses show that k-NN based sample generation approach used may be

inappropriate in some cases. This approach may generate unnecessary, nearly duplicated

synthetic minority samples from members of dense clusters and wrong synthetic minority

samples from members of small-sized clusters. It is important to note that when synthetic

samples are generated from noisy samples, generated samples will also be noisy in most

cases. All these problems occur due to the fact that the k-NN based sample generation

approach uses all k nearest neighbors blindly without considering the position and distance

of the neighbors from the minority sample under consideration. Moreover, the appropriate

value of k cannot be determined, beforehand.

2.8 Summary

In summary, most of the existing approaches fail to identify required minority samples

for synthetic sample generation. Some approaches use weights for the minority samples

according to its importance, however the mechanisms used in these approaches are insuf-

ficient and can not appropriately weight the necessary samples. Besides, the k-NN based

data generation approach used by these techniques may generate wrong synthetic samples

making the learning task harder.



Chapter 3

The Proposed MWMOTE Technique

Motivated by the problems stated in previous chapter, we have devised a novel minority

oversampling technique, Majority Weighted Minority Oversampling Technique, i.e., MW-

MOTE. In this chapter, we describe the details of MWMOTE algorithm. The objective of

MWMOTE is twofold, to improve the minority selection and weighting mechanism, and

to improve the data generation mechanism. MWMOTE technique employs a minority

selection mechanism by which important minority samples in the learning are identified

first. The selected minority samples are then given a weight distribution depending on

the importance of the respective minority samples. MWMOTE then generate synthetic

samples from these minorities using their weight distribution. MWMOTE uses a different

data generation mechanism than existing techniques based on unsupervised clustering for

avoiding wrong and noisy synthetic sample generation.

3.1 MWMOTE Technique

MWMOTE technique works in three key phases. In the first phase, MWMOTE identifies

the most important and hard-to-learn minorities samples and combine them to form a

set, Simin. In the second phase, members of Simin are assigned a selection weight, Sw, ac-

cording to its importance in the data set. In the third phase of the algorithm, MWMOTE

23
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creates synthetic minority samples from members of Simin using the weight distribution

found in the second phase. The complete MWMOTE algorithm is presented in [Algorithm

1]. Steps 1 to 3 comprises the first phase of MWMOTE where Simin is constructed. Step

4 weights the members of Simin to implement the second phase. Steps 5 to 9 completes

the third phase of MWMOTE where synthetic samples are generated using samples from

Simin and weight distribution found in the second phase. The generated samples are

added to the original minority set, Smin to form the output set, Somin. The algorithm

returns the final oversampled minority set, Somin. The key components of this algorithm

are described below.

Algorithm 1: MWMOTE(Smin, Smaj, N, k1, k2, k3)

Input:

1. Smaj: Set of majority samples

2. Smin: Set of minority samples

3. N : Number of synthetic samples to be generated

4. k1: Number of neighbors to consider for predicting noisy minority samples

5. k2: Number of majority neighbors to consider for constructing informative minority

set

6. k3: Number of minority neighbors to consider for constructing informative minority

set

Procedure Begin

1. Compute filtered minority set, Sminf as

Sminf = Smin − {x ∈ Smin : k1-nearest neighbors

of x contains no minority}
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2. Find the borderline majority set, Sbmaj as

Sbmaj = {y ∈ Smaj : y is in k2-nearest majorities

of some x ∈ Sminf }

3. Find the informative minority set, Simin as

Simin = {y ∈ Sminf : y is in k3-nearest minorities of some x ∈ Sbmaj }

4. Compute selection weight Sw(p) for each member p of Simin.

5. Convert Sw(p) into selection probability Sp(p) according to:

Sp(p) = Sw(p)/
∑

p∈Simin
Sw(p)

6. Find the clusters of Smin.

7. Initialize set, Somin = Smin.

8. Do for j = 1 . . . N .

(a) Select a minority sample x from Simin according to probability distribution

{Sp(p)}.

(b) Select another minority sample y, at random, from the members of x’s cluster

as found in step 6.

(c) Generate one synthetic data, s according to

s = x+ α× (y − x), where α is a random number in the range [0, 1].

(d) Add synthetic sample, s to the set, Somin.

9. End Loop

End

Output: The oversampled minority set, Somin.

3.1.1 Construction of the Set Simin

It is natural that synthetic samples need not to be generated from all minority samples

in a data set. There are some samples that are usually situated far from the decision
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boundary and therefore synthetic samples generated from them will not add any new

useful information. So, it is necessary to identify a subset of the minority samples which

are important for synthetic sample generation. These samples are usually those that are

located near the decision boundary and belong to small-sized clusters of the minority

concept. However, most of the existing oversampling methods (e.g., [15, 17, 18]) do not

explicitly construct such a subset of minority samples. Although, Borderline-SMOTE [16]

method tries to find such a subset consisting of borderline minority samples, we have

shown that the method fails to identify all border line samples correctly (chapter 2). In

MWMOTE, we, therefore adopt a new approach for identifying these minority samples

and use them to form a set, Simin. The whole process of constructing Simin (Steps 1–3 of

[Algorithm 1]) can be described as follows.

1. Our method first filters the original minority set Smin to find a filtered minority set

Sminf . This is done by removing those minority samples from Smin whose k1 nearest

neighbors include no minority sample (Step 1 of [Algorithm 1]). These minority

samples are expected to be noisy and removed to avoid synthetic sample generation

from them in the later stage. Figure 3.1(a) shows this step where k1 = 5. It is

clear from this figure that all 5 nearest neighbors of the minority sample A (shown

by arrow) are majority samples. Hence, sample A is removed from Smin. Similarly,

sample B is also removed and rest of the samples form the set, Sminf .

2. For all members of Sminf , MWMOTE finds their k2 nearest majority neighbors.

These majorities are border-line majorities because they are expected to be located

near the decision boundary when the value of k2 is small. The set of these majorities

will be called border-line majority set, Sbmaj (Step 2 of [Algorithm 1]). The value of

k2 does not need to be large in MWMOTE. In Fig. 3.1(b), we show the construction

of Sbmaj for k2 = 3. In the figure, k2 (=3) nearest majority samples for some

minorities are explicitly shown by arrow.

3. For all members of Sbmaj, MWMOTE finds their k3 nearest minority neighbors.

These minority neighbors form the informative minority set, Simin (Step 3 of [Algo-
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rithm 1]). The value of k3 needs to be large enough to include all necessary minority

samples required for synthetic sample generation. A large value of k3 ensures a suf-

ficient number of minority samples that may add important information to the data

set. Figure 3.1(c) shows this step for k3 = 3. In the figure, k3 (=3) nearest minority

neighbors of some majority samples are explicitly shown by arrow.

(a) (b) (c)

Figure 3.1: Construction of the set Simin: (a) Sminf is found after removing noisy minori-

ties such as samples A and B. (b) Set of borderline majority samples, Sbmaj is found. (c)

Informative minority set, Simin is found.

3.1.2 Finding Weights for Members of Simin

In previous section, we showed how MWMOTE constructs a subset of minority samples,

Simin, that will be used for synthetic sample generation. However, all samples of this

subset may not be equally important. Some samples may result in more useful information

in the data set than other samples. So, it is necessary that minority samples are weighted

according to their importance. A higher weight implies that the sample requires higher

number of synthetic samples to be generated nearby due to its insufficiency of information

in the minority concept.

Some of the existing oversampling methods (e.g., [17, 18]) use different approaches

to achieve minority weighting. However, it is clear from chapter 2 that the weighting

mechanism used by these methods are inappropriate and insufficient in many scenarios.
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So, our MWMOTE uses a new mechanism for properly determining such weights. In step

4 of [Algorithm 1], the weight is calculated for each minority sample p ∈ Simin, and it is

called selection weight, Sw(p). MWMOTE computes this weight based on the following

three important observations.

(a) (b) (c)

Figure 3.2: Three observations for assessing the importance of a minority sample in

learning: (a) Samples closer the decision boundary, e.g., A, are more important than

samples that are far from the boundary, e.g., D. (b) Samples that reside in sparse cluster,

e.g., A, are more important than samples that reside in dense cluster, e.g., B. (c) Samples

that have many majority neighbors nearby, e.g., A, are more important than samples that

have few, e.g., B.

Figure 3.3: Computation of density factor: (a) Minority sample Q is in a sparse cluster.

(b) Minority sample B is in a dense cluster.

Observation 1: Samples close to the decision boundary contain more infor-

mation than those far from the boundary. This observation indicates that closer

samples should be given higher weight than further samples. Consider Fig. 3.2(a) in
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which samples A and B are closer to decision boundary compared to samples C and D.

Therefore, A and B are more informative than C and D. Similarly, C is more informative

than D. This signifies that A and B should be given higher selection weight than C and

D. At the same time, C should be given higher selection weight than D.

Observation 2: Minority samples in sparse clusters are more important

than those in dense clusters. From the perspective of synthetic sample generation,

members of sparse clusters are more important than those of dense clusters. This is

due to the fact that a dense cluster is already represented and does not need any new

information. However, sparse clusters may require new synthetic sample to increase its

size and to reduce within-class imbalance. This is why members of sparse clusters need to

be given higher selection weight than those of dense clusters. Consider Fig. 3.2(b), where

the sample A is more important than B and C though all of them are equally distant

from the decision boundary. This is natural because A is a member of a sparse cluster,

while B and C are members of a dense cluster.

Observation 3: Minority samples near dense majority clusters are more

important than those near sparse majority clusters. Compare samples A and

B shown in Fig. 3.2(c)). Both of these samples are equally distant from the decision

boundary and are members of equal-sized clusters. However, the density of majority

neighbors near to A is higher than that to B. This relative imbalance will make difficulty

for a classifier to learn A correctly. Because of this A is more important for synthetic

sample generation than B, and the selection weight of A needs to be given higher.

Considering all these, the selection weight Sw needs to be computed in such a way

that it facilitates the aforementioned three observations. MWMOTE computes Sw using

the majority set Sbmaj as follows.

1. Each majority sample x ∈ Sbmaj gives a weight to each minority sample p ∈ Simin.

This weight is called information weight, Iw(x, p).

2. For a minority sample p, all information weights, Iw(x, p) are summed up to find its
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selection weight, Sw(p):

Sw(p) =
∑

x∈Sbmaj

Iw(x, p) (3.1)

In MWMOTE, Iw(x, p) is computed as the product of two factors: closeness factor,

Cf (x, p) and density factor, Df (x, p):

Iw(x, p) = Cf (x, p)×Df (x, p). (3.2)

The closeness factor facilitates our observation 1, giving higher weight to closer samples

than further samples. The density factor facilitates observation 2, giving higher weight

to members of sparse clusters than members of dense clusters. Finally, the summing up

in (3.1) facilitates our observation 3, that is, minority sample having higher number of

majority neighbors will get higher selection weight. Below, we describe how MWMOTE

computes the two factors.

Closeness factor, Cf (x, p): The computation of closeness factor is very straight for-

ward. If p is not any of the k3 nearest neighbors of x, then Cf (x, p) is 0, otherwise Cf (x, p)

is computed as follows.

1. Find the Euclidean distance from the majority sample x to the minority sample

p and divide the Euclidean distance by the dimension of the feature space, call it

dn(x, p).

2. Find Cf (x, p) according to the following equation.

Cf (x, p) =
f( 1

dn(x,p)
)

Cf (th)
∗ Cf (max) (3.3)

Where, Cf (th) and Cf (max) are user defined parameters and f is a cut-off function.

In (3.3), 1/dn(x, p) is first applied to f . The application of f is for ignoring values that are

too high and slicing them to the highest value Cf (th). The value thus found is rescaled

to a range [0, Cf (max)]. We define f in the following way

f(x) =





x if x ≤ Cf (th),

Cf (th) otherwise.
(3.4)
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Density factor, Df (x, p): The density factor facilitates observation 2. It should be

higher for members of sparse clusters and lower for members of dense clusters, given that

they are equally distant from the decision boundary. However, at the same time, it should

not violate observation 1. Our MWMOTE computes Df (x, p) by normalizing Cf (x, p).

This can be expressed as

Df (x, p) =
Cf (x, p)∑

j∈Simin
Cf (x, j)

(3.5)

To show why (3.5) gives higher weights to members of sparse clusters, consider Fig. 3.3.

Assume that, minority samples B and Q are equally distant from majority samples A and

P respectively (Figs. 3.3(a) and 3.3(b)). Hence, their Euclidean distances are equal and

closeness factors will also be equal, i.e., Cf (A,B) = Cf (P,Q). However, from the figures,

it is visually apparent that, Cf (A,C) = Cf (A,D) > Cf (P,R) = Cf (P, S). Hence, if we

compute Df (A,B) and Df (P,Q) from these two scenarios, the denominator of (3.5) will

be larger for Df (A,B) than for Df (P,Q). So, Df (P,Q) will be greater than Df (A,B).

This means that, even though closeness factors for both of B and Q are same, Q gets

larger density factor than B due to its relative position in a sparse cluster.

3.1.3 Synthetic Data Generation

In chapter 2, we discussed the problems of the k-NN based sample generation approach

used by most of the existing oversampling methods. To alleviate those problems, MW-

MOTE adopts a different sample generation mechanism based on unsupervised clustering

(Steps 6–8 of [Algorithm 1]). First, in Step 6, MWMOTE finds the clusters of minority

data set, Smin using an unsupervised clustering algorithm (discussed later). Then, in

Step 7, oversampled minority data set, Somin is initialized with input minority set, Smin.

Finally, in Step 8, synthetic minority samples are generated and added to Somin using the

same linear interpolation technique (2.3) used by existing techniques. However, in Step

8(b), MWMOTE differs with the k-NN based approach in the way how y of (2.3) is chosen

for each sample, x. Rather than choosing y at random from the k nearest neighbors of

x (as used in the k-NN based approach), MWMOTE selects y as one from the members
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of x’s cluster (as found in Step 6 of [Algorithm 1]). The intuition is that if y is selected

from the cluster of x, then synthetic samples that will be generated from x and y, accord-

ing to (2.3), will also lie inside the same cluster whose member is x. So, the generated

samples will rarely fall in majority regions (the k-NN based approach suffers from this

problem). Another advantage of cluster-based approach is where synthetic samples are

generated from noisy minority samples. If x is a noisy sample, then it is likely that, x

will form an isolated cluster consisting of only one member (itself) during the clustering

process. In this scenario, y to be selected (2.3) by our cluster-based approach will be

the same as x and Eqn. 2.3 will then generate a duplicate sample (of x). This is much

better than the k-NN based approach, which may create more noisy minority samples and

broaden minority regions. An erroneously broadened minority region is likely to overlap

with majority regions creating difficulty for a classifier.

(a) (b)

Figure 3.4: Difference of k-NN and proposed cluster based data generation from a minority

sample: (a) Using k-nearest neighbor based approach (for k = 5) generates a synthetic

sample (shown by square) which falls in the majority region. (b) MWMOTE’s cluster

based approach generates a sample which remains inside a minority cluster.

Consider Figs. 3.4-3.6 to show why our cluster based sample generation is better than

the k-NN based sample generation. To generate a synthetic sample from the minority

sampleA, the k-NN based approach randomly selects a sample, say D, from A’s 5-nearest

neighbors, assuming k = 5 (Fig. 3.4(a)). The selection of D may lead to generate a

synthetic sample (shown by square in Fig. 3.4(a)), that lies inside the majority regions.

However, our cluster-based approach selects one from the members of the cluster of A.

It ensures that D will not be selected, since it will not likely be a member of A’s cluster
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Figure 3.5: Difference of k-NN and proposed cluster based data generation from mem-

bers of dense minority cluster e.g. A: (a) k-nearest neighbor based approach generates

nearly duplicated samples from A. (b) Cluster based approach generates more informative

samples from A.

(a) (b)

Figure 3.6: Difference of k-NN and proposed cluster based data generation from a noisy

sample A. (a) k-NN based approach generates more wrong samples (shown by square)

from A. (b) Cluster based approach generates a duplication of A.
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(Fig. 3.4(b)). Our approach will select either B or C (considering that B and C forms

cluster with A). In this condition, the generated synthetic sample will definitely lie inside

A’s cluster (Fig. 3.4(b)). It can be seen that synthetic samples generated from A via

k-NN (assuming k = 3) approach are nearly duplicated samples (Fig. 3.5(a)), while they

are more informative when generated via our cluster-based approach (Fig. 3.5(b)).

Consider Fig. 3.6 to see what happens when synthetic sample are generated from

a noisy sample, say A. There is every possibility that the k-NN based approach may

generate a noisy sample (shown by square) from A (Fig. 3.6(a)). However, in our cluster-

based approach, A will form an individual cluster consisting of only one member (i.e.,

itself), and the generated sample will be just a duplication of A (Fig. 3.6(b)). This

is much better than the k-NN approach because, for noisy samples, our cluster-based

approach does not generate any new noisy sample, while the k-NN based approach does

it, thus, broadening minority regions erroneously.

3.1.4 Clustering Smin

The success of MWMOTE will largely depend on how we cluster the set, Smin in Step

6 of [Algorithm 1]. For this purpose, MWMOTE uses average-linkage agglomerative

clustering, a hierarchical clustering algorithm [40, 41]. Agglomerative clustering does not

require the number of clusters beforehand. The algorithm generates clusters in a bottom-

up fashion. The key steps of this algorithm are given below (assume, M data samples are

given as input):

1. Initially, each data sample is assigned to a separate cluster. So, initially there are

M clusters, each of size one.

2. Find the two closest clusters cluster L1 and cluster L2.

3. Merge cluster L1 and cluster L2 into a single cluster, cluster L3. This merging

reduces number of clusters by one.
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4. Update distance measures between the newly computed cluster and all previous

clusters.

5. Repeat step 2-4 until all data samples are merged into a single cluster of size M .

The basic algorithm described above produces one cluster of size M , which is, defi-

nitely, not our goal. We can find more than one cluster, if we stop the merging process

in Step 3 early. For this purpose, MWMOTE uses a threshold, Th and stops the merging

process when the distance between closest pair exceeds this threshold. The output will

be the set of clusters remaining at that point of the algorithm. The modified algorithm

is as follows:

1. Initially, each item is assigned to a cluster. So, initially there are M clusters, each

of size one.

2. Find the two closest clusters, cluster L1 and cluster L2.

3. If distance measure between cluster L1 and cluster L2 exceeds Th, stop clustering.

4. Merge cluster L1 and cluster L2 into a single cluster, cluster L3. This merging

reduces number of clusters by one.

5. Update distance measures between the new computed cluster, cluster L3 and all

other clusters.

6. Repeat step 2 to 5 until there is one cluster of size M , remaining.

What should be value of Th? Clearly, this value should not be constant, because,

the distance measure varies with dimension of the feature space. So, the same algorithm

will produce different number of clusters for the same types of data sets, where the only

difference is in feature space dimension. The second problem of using a constant value for

Th lies in the fact that in some data sets samples are relatively sparse (average distance

between samples is high), whereas in some other data sets, samples are relatively dense
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(average distance between samples is low). So, using a constant Th, will produce, fewer

number of clusters for data sets where average distance between samples is low and larger

number of clusters for data sets where average distance between samples is high. So, the

intuition is that, the value of Th should be data set dependent. It should be calculated

using some heuristics of the distance measures between samples of the data set. For this

purpose, we first find a value davg as follows:

davg =
1

|Sminf |
∑

x∈Sminf

min
y 6=x,y∈Sminf

{dist(x, y)} (3.6)

We then compute Th by multiplying davg with a constant parameter, Cp:

Th = davg × Cp (3.7)

For each member of Sminf (rather than Smin to avoid the affect of noisy minority

samples), we find the minimum Euclidean distance to any other member in the same set.

We then compute the average of all these minimum distances to find davg. The parameter

Cp is used to tune the output of the clustering algorithm. Increasing the value of Cp,

increases the sizes of clusters, thus reducing the number of clusters. On the other hand,

decreasing the value of Cp, decreases the sizes of clusters, thus increasing the number of

clusters.

3.2 Summary

In this chapter, we describe our proposed oversampling technique MWMOTE. We il-

lustrate the different components of MWMOTE and explain theoretically, with suitable

example scenarios, how MWMOTE solve problems faced by existing oversampling tech-

niques. These analyses are justified with the experimental results in the next chapter.



Chapter 4

Experimental Studies

In this chapter, we evaluate the effectiveness of our proposed oversampling technique MW-

MOTE and compare its performance with different methods existing in literature. We

have selected three other competitive oversampling algorithms SMOTE [15], ADASYN [17],

and RAMO [18]. The RAMO technique is found from RAMOBoost excluding the boost-

ing portion and keeping only the oversampling portion [18]. We evaluate the performance

of these four data generation algorithms in two different categories of datasets. Firstly,

we use some artificially generated data sets to assess their performance. Secondly, we

evaluate the performance on some real world data sets collected from UCI machine learn-

ing repository having different degrees of imbalance. Three different sets of experiments

are performed in each category which are: evaluation using a single classifier, evaluation

using an ensemble technique and evaluation using other types of classifiers than the one

chosen in the first and second set of experiments.

4.1 Assessment Metrics

The performance of a machine learning model is usually evaluated by the correctness of

the model. This measure is called overall accuracy or accuracy. For classification learning

tasks, the accuracy is the percent of correct classifications made by the classifier over the

37
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test set examples. In case of two-class classification problem, one class is the positive

class and the other class is the negative class. Let, p, and n denote the number of positive

and negative examples in a testing data set and P , and N be the number of positive and

negative outputs made by a classifier over this test set. Then, the classification results of

the classifier can be shown as Table 4.1.

Table 4.1: Confusion matrix.

True class

Pos Neg Row sum

Classifier output
Pos TP FP P

Column sum p n

In table 4.1, the cell, denoted by TP (true positive), is the number of positive examples

that are correctly classified (classifier output is positive). FP counts those examples whose

actual classes were negative; however, the classifier predicted them as positive. This is

called false positive count. Similarly, FN is false negative, number of positive examples

that are predicted as negative, and TN (true negative ) is the number of negative examples

that are correctly classified (labeled as N , by the classifier). Structure similar to Table 4.1

is generally known as a confusion matrix.

The cells of the confusion matrix is filled up after evaluation the classifier with the

testing set. For example, consider a medical diagnosis problem, where, a classifier, have

to identify the cancerous and non-cancerous patients. The cancerous patients belong to

the positive class and non-cancerous belongs to the negative class. Suppose, a testing

data set contains 100 cancerous (positive) patients and 100 non-cancerous (negative)

cases. Assume that, of the 100 positive examples, a learned classifier correctly classifies

90 examples, while incorrectly classifies 10 of them as non-cancerous patients (negative).

Similarly, of the 100 non-cancerous patients, the classifier classifies 85 correctly, while rest

15 incorrectly. The confusion matrix can then be formed which is shown in Table 4.2.

Using the confusion matrix (Table 4.1), several performance measures can be derived.
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Table 4.2: Confusion matrix for the cancer diagnosis problem.

True class

Pos Neg Row sum

Classifier output
Pos 90 15 P = 105

Neg 10 85 N = 95

Column sum p = 100 n = 100

The first one, most common in evaluating any classifier, is the overall accuracy, which can

be defined based as follows:

accuracy =
TP + TN

p+ n
(4.1)

Sometimes, error rate or overall error rate is used, which is simply found as:

errorrate = 1− accuracy (4.2)

Accuracy is very well known and popular performance measure in research community.

However, the main problem of using accuracy as the performance measure is that, the

term depends on the distribution of positive and negative examples in the test data set.

To see why, let us first measure the accuracy of the classifier using the information from

Table 4.2:

accuracy =
90 + 85

100 + 100
=

175

200
= 0.875

Now, consider the case, when the above testing data set contained no negative exam-

ples at all (n = 0 and p = 100). In that case, Table 4.2 would be represented as Table 4.3:

Now, again, if we calculate accuracy from Table 4.3, we find:

accuracy =
90 + 0

100 + 0
= 0.90

We see from above calculations that, accuracy varies when distribution of the positive

and negative examples vary in the testing data set, although classifier remains unchanged.

For the same classifier, we find that, accuracy changed from 87.5% to 90%, when it is tested

on a different data set. This implies that accuracy cannot measure the actual performance
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Table 4.3: Confusion matrix when data set has no negative examples.

True class

Pos Neg Row sum

Classifier output
Pos 90 0 P = 90

Neg 10 0 N = 10

Column sum p = 100 n = 0

of a classifier. In fact, any performance measure which uses information from both columns

of the confusion matrix (Table 4.1 will be sensitive to class distribution in testing set.

Since, an imbalanced data set has a skewed distribution of data samples among the classes,

accuracy cannot be used to evaluate a classifier’s effectiveness in imbalanced data sets.

To make it clear, consider the case when the medical diagnosis data set explained before

is imbalanced. Suppose, non-cancerous patients are rare in the world and testing data set

contains 190 cancerous and only 10 non-cancerous cases. Now, if a blind classifier, which

classifies all examples as non-cancerous (hence, all non-cancerous patients in the testing

set will be classified correctly and all cancerous patients will be classified incorrectly), is

evaluated on this testing set, the confusion matrix would be formed as Table 4.4:

Table 4.4: Confusion matrix for a classifier which classifies all examples as positive.

True class

Pos Neg Row sum

Classifier output
Pos 190 10 P = 200

Neg 0 0 N = 0

Column sum p = 190 n = 10

From Table 4.4, we observe that, all positive examples are correctly classified (true

positive is 190). This is obvious, since, the classifier, blindly says all examples positive.

Due to similar reason, none of the 10 negative examples are correctly classified (TN is 0).

In fact, the classifier cannot classify any negative example correctly. However, the overall
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accuracy of the classifier is 190+0
190+10

= 0.95, which is 95%! A very high accuracy indeed!

This is the reason for which accuracy is not usually used in research community as the

performance measure in the imbalanced learning problems.

Some other performance measures which can be derived from the same confusion

matrix (Table 4.1) and are suitable for imbalanced learning, are precision and recall.

These two terms are formally defined as:

precision =
TP

P
(4.3)

recall =
TP

p
(4.4)

Precision is the number of true positives, divided by the number of positive outputs given

by the classifier. Precision measures the correctness of the classifier’s positive output,

that is, what fraction of the positive outputs of the classifier, are actually positive. A

precision of 1.0 means that, every result, given as positive, by the classifier, is correct.

Recall is the number of true positives, divided by the total number of positive examples

in the testing data set. This measures the performance of the classifier over the positive

examples only. A recall of 1.0 means that, all positive examples are correctly classified.

Precision is the probability that, a predicted positive output is correct while Recall is the

probability that, a positive example is predicted correctly.

Using, either precision or recall, as a single classification measure, poses similar prob-

lems described with accuracy. Precision measures the correctness of the classifier’s positive

output. However, precision does not say anything about the correctness of the classifier’s

negative output. Similarly, recall finds the performance of the classifier over the posi-

tive examples, however, it does not say, anything about the classifier’s performance over

negative examples. Therefore, two other measures combining the precision and recall are

used in research community which can give a thorough insight of the classifier’s overall

performance. These two metrics are known as F-measure and G-mean and are defined

as:
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F −measure =
(1 + β2) ∗ (precision ∗ recall)

β2 ∗ precision+ recall
(4.5)

G−mean =
√
positive accuracy× negative accuracy

=
√

TP
p

× TN
n

(4.6)

F-measure combines precision and recall and β determines the relative importance of

the two. If β is 1, then precision and recall are given equal importance and F-measure

becomes the harmonic mean of precision and recall. G-mean is the geometric mean of

positive accuracy and negative accuracy.

Although, F-measure and G-mean are well enough for analyzing a classifier’s per-

formance, still they are sensitive to class distributions and therefore are unsuitable for

comparing several classifiers. In this respect, the most and accepted measure for assess-

ing classifiers performance and comparing various classifier models is Receiver Operating

Characteristics (ROC) Curve which is described below.

4.1.1 Receiver Operating Characteristics Curve

A receiver operating characteristics curve (ROC) curve is used to visualize and compare

classifiers based on their performance [35, 36]. A ROC graph (Fig. 4.1 is obtained by

plotting false positive rate (FPR) on the X-axis, and true positive rate (TPR) on the

Y-axis where FPR and TPR are defined as:

TPR =
TP

p
(4.7)

FPR =
FP

n
(4.8)

Classifiers that output only class labels (discrete classifiers), then its output on the

testing data set can be used to calculate the FPR and TPR values. This will correspond

to a point in ROC graph. There are several points that are worthy of noting here.
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The upper left corner point (0,1), shown in Fig. 4.1 by D, corresponds to FPR = 0

and TPR = 1. This correspond to a perfect classifier. The lower right corner (1,0)

corresponds to a FPR of 1 and TPR of 0, which is the worst classifier. If a point on the

ROC graph is northwest than another point, then corresponding first classifier is better

than the second classifier. Hence, ROC point B is a better classifier than the ROC point

C. Any point on the ROC graph that lies on the diagonal line segment y = x, corresponds

to a classifier equivalent to random guess, such as point F . This is because, a random

guess classifier, which guesses the positive class half the time, is expected to classify

50% positive examples correctly (having 0.5 TPR) and 50% negative examples correctly

(having 0.5 FPR). Therefore, its ROC point is (0.5,0.5) which lies on the diagonal line.

Similarly, a random classifier, guessing positive class 90% cases, will correctly classifier

90% positives (0.9 TPR), however, at the same time, will misclassify 90% negatives (0.9

FPR), leading to the point (0.9,0.9) on the diagonal line of the ROC graph. Any point

below the diagonal line such as point E corresponds to a classifier, whose performance

is worse than a random guess classifier. However, such a classifier can be made a good

classifier by inverting all of its classification decisions. In figure, point E corresponds to

a bad classifier and its reflected point A corresponds to the good classifier found after

inverting all decisions made by classifier E.

Some classifiers (e.g. neural network) produce continuous values such as probability

estimates as its output. These continuous outputs can be converted to discrete classifica-

tion decisions by selecting an appropriate threshold and labeling outputs above threshold

as positive, while output below threshold as negative. An ROC point can then be calcu-

lated and plotted on the ROC graph. By varying the threshold from 0 to ∞, many such

points can be calculated and plotted on the ROC graph. These points constitute a ROC

curve such as curve A, and curve B in Fig. 4.1. The ROC curve is, therefore composed

of a series of ROC points, found by selecting different thresholds in the range [0,∞].

One important characteristic of ROC graph is that, they are insensitive to class skew.

Both of TPR and FPR do not depend on class distributions and remain unchanged when

class distribution changes, because both of them uses information from a single column of
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Figure 4.1: Different points on the ROC graph, e.g., B, C, and E, are shown representing

different discrete output classifiers. Two ROC curves, e.g., ROC curve A, and ROC curve

B, are shown representing two continuous-output classifiers.

the confusion matrix (Table 4.1). Therefore, the ROC point does not change. However,

ROC graph is a two-dimensional plot and difference of classifiers performance can only be

visualized from the ROC graph. To compare classifiers, as a singular assessment metric,

area under the ROC curve, usually known as AUC is used. The AUC of a classifier is the

expected performance of that classifier. In Fig. 4.1, ROC curve B has higher AUC then

ROC curve A. However, it does not necessarily mean that, curve B is everywhere better

than curve A. It is possible that, a curve, having higher AUC, can perform worse in some

regions of the graph, than another, which have lower AUC.

4.1.2 Test of significance

Although values of AUC and other metrics can be used to compare several classifiers, a

test of significance is usually required to determine whether the observed performance dif-

ference between two learning models is really significant to be accepted. The significance

test will evaluate whether the difference in performance of two methods is statistically
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significant. There are many significance tests available such as t-tests [37] and Wilcoxon-

signed-rank test [38]. In this research work, we use the Wilcoxon signed-rank test. The

advantage of Wilcoxon signed-rank test is that it does not assume any prior distribution

of the data samples. So, it can be applied where original distribution of data samples is

unknown. Moreover, outliers can be handled better by this test than t-tests [37].

Wilcoxon signed-rank test is performed as follows. Suppose, n pair of results are

obtained which are being tested. At first, differences are computed for each pair. Let,

the differences be di for pair i = 1..n. These differences are then sorted from smallest

to largest according to their absolute value. A rank is then assigned to each difference

starting from rank 1 for the smallest and ending at rank n for the largest. In case, more

than one differences are equal, each difference is given an average rank. The ranks are

then converted to signed-ranks by giving it the sign of the difference. All the positive

ranks are then summed and called R+. Similarly, all the negative ranks are summed to

form R−. The minimum of R+, and R− are found. This value is called T . The value of T

is then compared against a critical value found from a table [39] at a specific significance

level (usually 0.05 significance level is widely used). If the T value is less then or equal to

the critical value, then we say that, the difference is statistically significant.

4.2 Selection of Classifiers and Parameter Settings

We use single neural network and ensemble of neural networks as classifiers in our first and

second set of experiments, respectively. The AdaBoost.M2 is chosen for ensemble because

of its better performance for dealing with imbalance data sets [18, 31, 32]. For the third

set of experiments, we use k-nearest neighbor and decision tree classifier to evaluate the

effectiveness of MWMTOE using classifiers other than the neural network chosen for first

and second set of experiments.

For the neural network classifier used in first and second set of experiments, the well

known back propagation learning algorithm is used for training. The number of hidden
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neurons is randomly set to 5, the number of input neurons is set to be equal to the

number of features in the data set and the number of output neurons is set to 2. We use

sigmoid function as an activation function. The number of training epochs is randomly

set to 300 and learning constant having a learning rate of 0.1. For MWMOTE, the values

for different parameters are: k1 = 5, k2 = 3, k3 = |Smin|/2, Cp = 3, Cf (th) = 5, and

Cf (max) = 2. All these values are chosen after some preliminary experiments and they

are not meant to be optimal. For SMOTE and ADASYN the value of nearest neighbors,

K, is set to 5 [15, 17]. For RAMO method, values of nearest neighbors are: k1 = 5 and

k2 = 10 [18]. The scaling coefficient, α for RAMO is set to 0.3 [18]. The number of

synthetic samples generated was set to 200% of the original minority samples for all the

simulation runs [42]. F -measure is computed with β = 1. To compute the average ROC

graph from the ROC graphs of multiple simulation runs, we use the vertical averaging

approach [35]. Average AUC is computed by averaging the AUC values of all ROC graphs

obtained from multiple simulation runs.

4.3 Simulation on Artificial Problem Domain

We have generated an artificial two-dimensional two-class problem domain motivated

from [13]. The data generation process is as follows. First, we take a unit square in a

two-dimensional feature plane. We then equally divide the unit square into S×S smaller

squares to form a S × S squared grid, where the value of S indicates the complexity of

the domain. The larger the value of S the higher the complexity of the domain. The size

of each grid-cell is 1
S
× 1

S
. Each of the S×S grid-cells is assigned to a different class (i.e.,

minority or majority), except one at the middle of the grid, which is kept blank to equally

distribute both classes to the grid-cells. Thus, each grid-cell denotes either a minority or

a majority region. Classes are assigned in such a way that no two adjacent cells belong to

the same class. After assigning classes to grid-cells, points are sampled from each cell at

random. These points form the training data set and testing data set. It is to be noted

that data points in the training and testing sets are different.
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We use two different complexity levels, which are S = 3, and S = 5. Figures 4.2 and 4.3

show problem domain structure and class regions for these two complexity levels. Besides

two different complexity levels, we also use two different imbalance ratios to understand

its effect on classifiers’ performance. For each complexity level, we use imbalance ratio

1:3 (moderate) and 1:10 (high).

Figure 4.2: Artificial problem domain for complexity level, 3× 3

Figure 4.3: Artificial problem domain for complexity level, 5× 5

4.3.1 Simulation 1

In this simulation, we perform the first and second set of experiments on real world data

sets. We run single neural network classifier and AdaBoost.M2 ensemble technique with

neural network as base classifier on four different artificial data sets. For AdaBoost.M2

ensemble, each dataset is first oversampled using the oversampling algorithms. Then, Ad-

aBoost.M2 is run on this oversampled dataset with 20 boosting iterations [43]. Tables 4.5

and 4.6 summarize the results of applying SMOTE, ADASYN, RAMO, and MWMOTE

on artificial data sets. Each result is the average of 20 simulation runs. The best results

are highlighted in bold-face type. Figure 4.4 and 4.5 show the ROC graphs.
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For single neural network classifier, Table 4.5 shows that, MWMOTE outperforms

SMOTE, ADASYN, and RAMO for all problem sizes, and imbalance ratios in terms of

accuracy, precision, F-measure, G-mean, and AUC. However, MWMOTE cannot out-

perform other methods in terms of recall. This is because, as described in chapter 2,

SMOTE, ADASYN and RAMO techniques erroneously generates synthetic minority sam-

ples, which enlarges the minority region erroneously, falling inside the majority region.

Therefore, neural network classifier shift the decision boundary more toward majority,

which increases the number of positive outcomes from the classifier. Therefore, recall per-

formance is increased. At the same time, due to erroneous over-generalization of minority

region, SMOTE, ADASYN, and RAMO methods misclassify many majority samples as

minority, decreasing the precision of the classifier. Therefore, in spite of improvement

in recall, overall measures such as accuracy, F-measure, G-mean, and AUC of SMOTE,

ADASYN, and RAMO methods are reduced as is evident from Table 4.5.

From Table 4.5, we see that, the recall performance of all four oversampling methods is

better when imbalance ratio is 1:3 and recall reduces when imbalance ratio becomes high

(1:10). This is natural, because, it becomes much harder to classify minority samples,

when imbalance ratio increases. At the same time, we see that, the precision performance

of all four oversampling methods increases as imbalance ratio increases. The reason be-

hind this is that, when imbalance ratio increases, number of majority instances also in-

crease. Therefore, decision boundary is shifted more toward the minority region resulting

in decreased positive outcomes from the classifiers, which increases the precision of the

classifier. Similar to precision, other performance measures such as accuracy, precision,

AUC does not decrease as imbalance ratio increases. So increase in imbalance ratio may

make it harder to classify minority samples, but it may not necessarily degrade overall

performance of the classifier such as F-measure, G-mean, and AUC. On the other hand,

as complexity level increases from 3× 3 to 5× 5, we see that the performance of all four

oversampling methods degrades (Table 4.5).

From the ROC graphs (Fig. 4.4), we can visually determine the dominance of MW-

MOTE over other three methods. For all the four data sets, we see that, ROC graph of
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MWMOTE is above the ROC graphs of other three methods. This is even justified by

the better AUC values of MWMOTE in table 4.5, where AUC values are the average area

of the respective ROC graphs.

In case of Adaboost.M2 ensemble classifier, the results in Table 4.6 show that, MW-

MOTE shows better performance than each of SMOTE, ADASYN, and RAMO techniques

in terms of performance measures: accuracy, precision, recall, F-measure, G-mean, and

AUC. Comparing the performance values of single neural network classifier and boosting

ensemble from Table 4.6, we see that, boosting significantly improves performance of all

four oversampling methods. The improvement is somewhat better for MWMOTE than

other three methods. Interestingly, boosting has improved the recall performance of MW-

MOTE to beat other three techniques in three of the four problem domains. Even for

the most complex problem domain considered in this experiment, which has a complexity

level 5 × 5, with high imbalance ratio of 1:10, boosting shows improvement at a greater

level. These improved results indicate that, boosting can be used as a handy tool for

dealing with imbalanced data sets, even with complex sub-concepts. ROC graphs for this

simulation run are shown in Fig. 4.5. From the ROC graphs, we see that, ROC graph of

MWMOTE is above the ROC graphs of other three methods in most of the portion of

the graph and justifies MWMOTE’s superiority over other three methods.

4.3.2 Simulation 2

In this simulation we study whether performance of MWMOTE remain better when

classifier is not neural network. For this purpose, we select k-nearest neighbor classifier

(with k = 5) and C4.5 decision tree classifier [44] without pruning. We run simulation

experiments SMOTE, ADASYN, RAMO, and MWMOTE using these classifiers on the

same artificial data sets. The results are shown in Table 4.7 and 4.8.

Results in Tables 4.7 and 4.8 show that, MWMOTE can really outperform SMOTE,

ADASYN, and RAMO techniques even if we change classifiers. For both of k-nearest

neighbor and decision tree classifiers, MWMOTE shows better performance in terms of



CHAPTER 4. EXPERIMENTAL STUDIES 50

Table 4.5: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE on

four artificial data sets using single neural network classifier.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Complexity 3× 3,

Imbalance ratio 1 : 3

SMOTE 0.75625 0.51958 0.7 0.58768 0.72963 0.78119

ADASYN 0.74167 0.51612 0.6875 0.58102 0.71935 0.77609

RAMO 0.75521 0.52506 0.68333 0.58129 0.71997 0.76172

MWMOTE 0.80937 0.64072 0.6875 0.64897 0.75855 0.8059

Complexity 3× 3,

Imbalance ratio 1 : 10

SMOTE 0.88756 0.41696 0.19737 0.24839 0.40701 0.69153

ADASYN 0.89941 0.4392 0.24537 0.30451 0.45165 0.72365

RAMO 0.89015 0.49592 0.21875 0.27025 0.44211 0.70416

MWMOTE 0.91667 0.71592 0.26563 0.36861 0.50272 0.74614

Complexity 5× 5,

Imbalance ratio 1 : 3

SMOTE 0.55174 0.2758 0.48333 0.34862 0.52101 0.51085

ADASYN 0.5375 0.26886 0.49306 0.34312 0.50921 0.51455

RAMO 0.52882 0.26615 0.49583 0.3408 0.501 0.50611

MWMOTE 0.56424 0.28124 0.475 0.34979 0.52347 0.52903

Complexity 5× 5,

Imbalance ratio 1 : 10

SMOTE 0.75539 0.58453 0.24116 0.13228 0.30405 0.5151

ADASYN 0.79944 0.44931 0.18275 0.117 0.29767 0.50879

RAMO 0.79441 0.43086 0.18301 0.1254 0.32022 0.50148

MWMOTE 0.87926 0.62519 0.10764 0.13675 0.29926 0.5253

Table 4.6: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE on

four artificial data sets using AdaBoost.M2 ensemble of neural network classifiers.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Complexity 3× 3,

Imbalance ratio 1 : 3

SMOTE 0.79167 0.55556 0.83333 0.66667 0.80508 0.89289

ADASYN 0.77083 0.52381 0.91667 0.66667 0.81366 0.87723

RAMO 0.70833 0.45833 0.91667 0.61111 0.76528 0.90082

MWMOTE 0.89583 0.73333 0.91667 0.81481 0.90267 0.95104

Complexity 3× 3,

Imbalance ratio 1 : 10

SMOTE 0.90909 0.5 0.66667 0.57143 0.78881 0.8256

ADASYN 0.90152 0.46154 0.5 0.48 0.68617 0.72245

RAMO 0.93939 0.7 0.58333 0.63636 0.75416 0.83321

MWMOTE 0.95455 1 0.5 0.66667 0.70711 0.858

Complexity 5× 5,

Imbalance ratio 1 : 3

SMOTE 0.63889 0.36667 0.61111 0.45833 0.62936 0.68578

ADASYN 0.66667 0.375 0.5 0.42857 0.60093 0.67677

RAMO 0.625 0.35 0.58333 0.4375 0.61048 0.64075

MWMOTE 0.68056 0.40741 0.61111 0.48889 0.65578 0.69332

Complexity 5× 5,

Imbalance ratio 1 : 10

SMOTE 0.85101 0.12903 0.11111 0.1194 0.32059 0.62673

ADASYN 0.90404 0.33333 0.055556 0.095238 0.23439 0.64314

RAMO 0.90404 0.33333 0.055556 0.095238 0.23439 0.60508

MWMOTE 0.91667 0.61538 0.22222 0.32653 0.46812 0.71013
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Figure 4.4: Averaged ROC curves of SMOTE [15], ADASYN [17], RAMO [18], and

MWMOTE for single neural network classifier on four artificial data sets: (a) Complexity

Level of 3 × 3 and imbalance ratio 1 : 3. (b) Complexity level of 3 × 3 and imbalance

ratio 1 : 10. (c) Complexity level of 5× 5 and imbalance ratio 1 : 3. (d) Complexity level

of 5× 5 and imbalance ratio 1 : 10.



CHAPTER 4. EXPERIMENTAL STUDIES 52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate

tp
 ra

te

MWMOTE

SMOTE

ADASYN

RAMO

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate

tp
 ra

te

 

 

MWMOTE

SMOTE

ADASYN

RAMO

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate

tp
 ra

te

MWMOTE

ADASYN

SMOTE

RAMO

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate

tp
 ra

te

MWMOTE

SMOTE

RAMO

ADASYN

(d)

Figure 4.5: Averaged ROC curves of SMOTE [15], ADASYN [17], RAMO [18], and

MWMOTE for Adaboost.M2 ensemble of neural network classifiers on artificial data sets:

(a) Complexity Level of 3 × 3 and imbalance ratio 1 : 3. (b) Complexity level of 3 × 3

and imbalance ratio 1 : 10. (c) Complexity level of 5 × 5 and imbalance ratio 1 : 3. (d)

Complexity level of 5× 5 and imbalance ratio 1 : 10.
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Table 4.7: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE on

four artificial data sets using k-NN classifier (with k = 5).

Dataset Methods Accuracy Precision Recall F-measure G-mean

Complexity 3× 3,

Imbalance ratio 1 : 3

SMOTE 0.78021 0.53694 0.9375 0.68141 0.82484

ADASYN 0.77292 0.52757 0.94583 0.67619 0.8215

RAMO 0.77187 0.52983 0.93333 0.67361 0.81697

MWMOTE 0.81458 0.58023 0.9625 0.72226 0.85705

Complexity

3× 3,

Imbalance

ratio 1 : 10

SMOTE 0.92045 0.5955 0.39167 0.46922 0.61217

ADASYN 0.92614 0.65937 0.40417 0.49809 0.62524

RAMO 0.92765 0.66714 0.41667 0.5088 0.63438

MWMOTE 0.93712 0.7625 0.44167 0.55654 0.65608

Complexity

5× 5,

Imbalance

ratio 1 : 3

SMOTE 0.76563 0.52394 0.71389 0.60383 0.74725

ADASYN 0.76319 0.51994 0.72222 0.60401 0.74859

RAMO 0.77083 0.53216 0.71944 0.61127 0.75265

MWMOTE 0.79306 0.56732 0.72778 0.6372 0.76971

Complexity

5× 5,

Imbalance

ratio 1 : 10

SMOTE 0.94697 0.75485 0.62778 0.68256 0.78308

ADASYN 0.94785 0.75038 0.64444 0.69119 0.793

RAMO 0.94571 0.7413 0.62778 0.67812 0.78258

MWMOTE 0.95518 0.79581 0.68333 0.73482 0.81905

Table 4.8: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE on

four artificial data sets using decision tree classifier.

Dataset Methods Accuracy Precision Recall F-measure G-mean

Complexity 3× 3,

Imbalance ratio 1 : 3

SMOTE 0.77292 0.53748 0.825 0.64576 0.78548

ADASYN 0.74896 0.50377 0.78333 0.60753 0.75389

RAMO 0.77396 0.55281 0.7875 0.64041 0.7734

MWMOTE 0.88646 0.82354 0.70417 0.74831 0.81072

Complexity 3× 3,

Imbalance ratio 1 : 10

SMOTE 0.89924 0.48443 0.64583 0.54382 0.76611

ADASYN 0.91742 0.55534 0.6625 0.59768 0.78587

RAMO 0.91894 0.55049 0.75833 0.6337 0.84

MWMOTE 0.9572 1 0.52917 0.68281 0.72137

Complexity 5× 5,

Imbalance ratio 1 : 3

SMOTE 0.68576 0.41885 0.62083 0.49893 0.66119

ADASYN 0.69826 0.4363 0.63472 0.51508 0.67413

RAMO 0.68889 0.42279 0.62778 0.50421 0.66597

MWMOTE 0.76042 0.52185 0.56389 0.54039 0.68036

Complexity 5× 5,

Imbalance ratio 1 : 10

SMOTE 0.88977 0.43136 0.63472 0.5127 0.76058

ADASYN 0.88977 0.43053 0.62639 0.50839 0.75589

RAMO 0.88838 0.42899 0.61389 0.5033 0.7486

MWMOTE 0.93283 0.64085 0.61806 0.62727 0.77129
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accuracy, precision, F-measure, and G-mean. As explained before, erroneous data samples

generated by SMOTE, ADASYN, and RAMO techniques enlarges minority region, leading

to better recall values than MWMOTE. This is justified from the recall values of single

neural network classifier (Table 4.5), AdaBoost.M2 ensemble classifier (Table 4.6) and

decision tree classifier (Table 4.8). However, recall values of k-nearest neighbor classifier

(Table 4.7) show that, the same thing does not happen for k-nearest neighbor classifier,

in case of which, MWMOTE beats other three in terms of recall also. The reason is

that, k-nearest neighbor is an instance based classifier, and it does not construct any

explicit decision boundary. Therefore, effect of erroneous synthetic data samples does not

necessarily enlarge decision region of minority class.

4.4 Simulation on Real Problem Domain

In this subsection, we evaluate the performance of MWMOTE on real world datasets.

For this purpose, we use 17 datasets collected from UCI machine learning repository [45].

The data sets were chosen in such a way that, they contained a varied level of imbalanced

distribution of instances. Some of these original data sets were multi-class data. Since, we

are only interested in two-class classification problem, these data sets were transformed

to form two-class data sets. Table 4.9 shows the majority and minority class found after

these modifications. Table 4.10 shows the detailed characteristics of these data sets.

4.4.1 Simulation 1

In this simulation, we perform the first and second set of experiments on real world data

sets. We run the single neural network classifier and AdaBoost.M2 ensemble of neural

network classifiers on the seventeen datasets shown in Table 4.10. For AdaBoost.M2

ensemble, 20 boosting iterations are performed on the oversampled data sets. The results

of the four oversampling techniques are summarized in Tables 4.11-4.14. Results are found

after a 10-fold cross-validation on each dataset. Best results are highlighted in bold-face
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Table 4.9: Characteristics of Real World Datasets. All the datasets were obtained from

UCI machine learning repository [45].

SL. Dataset Features Instances Minority Majority %Minority Imbalance Ratio

1 Abalone 7 731 42 689 6% 0.06:0.94

2 Libra 90 360 72 288 20% 0.2:0.8

3 Yeast 8 1484 304 1180 21% 0.2:0.8

4 Robot 24 5456 1154 4302 22% 0.21:0.79

5 Ecoli 7 336 77 259 23% 0.23:0.77

6 Glass 9 214 51 163 24% 0.24:0.76

7 Vehicle 18 940 219 721 24% 0.23:0.77

8 Wine 13 178 48 130 27% 0.27:0.73

9 Texture 40 5477 1500 3977 28% 0.27:0.73

10 Phoneme 5 5227 1520 3707 30% 0.29:0.71

11 Satimage 36 6435 2036 4399 32% 0.32:0.68

12 Breast-tissue 9 106 36 70 34% 0.34:0.66

13 Breast-cancer-original 9 683 239 444 35% 0.35:0.65

14 Pima 8 768 268 500 35% 0.35:0.65

15 Ionosphere 34 351 126 225 36% 0.36:0.64

16 Breast-cancer-

diagnostic

30 569 212 357 38% 0.37:0.63

17 Spambase 57 4601 1813 2788 40% 0.39:0.61
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Table 4.10: Description of Minority and Majority class in datasets.

Dataset Minority Class Majority Class

Abalone Class of 18 Class of 9

Libra Class of ’1’, ’2’, ’3’ All other classes

Yeast Class of ME3’, ’ME2’,’EXC’,’VAC’,’POX’,’ERL’ All other classes

Robot Class of ’slight-left-trun’,’slight-right-turn’ All other classes

Ecoli Class of ’im’ All other classes

Glass Class of ’5’,’6’,’7’ All other classes

Vehicle Class of ’1’ All other classes

Wine Class of ’3’ All other classes

Texture Class of ’2’,’3’,’4’ All other classes

Phoneme Class of ’1’ All other classes

Satimage Class of ’2’,’4’,’5’ All other classes

Breast-tissue Class of ’CAR’, ’FAD’ All other classes

Breast-cancer-original Class of ’Malignant’ Class of ’Benign’

Pima Class of ’1’ Class of ’0’

Ionosphere Class of ’Bad’ Class of ’Good’

Breast-cancer-diagnostic Class of ’Malignant’ Class of ’Benign’

Spambase Class of ’spam’ Class of ’Not spam’

type.

For single neural network classifier, from Tables 4.11 and 4.12, we find that, similar to

artificial data sets, MWMOTE shows comparatively better performance than SMOTE,

ADASYN, and RAMO techniques in terms of accuracy, precision, F-measure, G-mean,

and AUC. Due to reasons explained before, MWMOTE fails to perform better in terms of

recall values. Some representative ROC graphs are shown in Fig. 4.6 for this simulation

run. The graphs clearly show that, ROC graph of MWMOTE is better (above) than the

ROC graphs of other three methods.

To test whether MWMOTE can statistically outperform other three techniques, we

apply the Wilcoxon signed-rank test to compare the AUC values of Tables 4.11 and 4.12.

Averaged AUC performance values are used for the significance test following the sug-

gestions in [46]. AUC values of MWMOTE is compared in a pairwise manner against

each of SMOTE, ADASYN, and RAMO techniques. The test results are summarized in

Tables 4.15, 4.16, and 4.17. For MWMOTE vs SMOTE, we see that, in 5 datasets, the
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Table 4.11: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using single neural network classifier on real world data sets: Abalone, Breast-cancer-

diagnostic, Breast-cancer-original, Breast-tissue, Ecoli, Glass, Ionosphere, and Libra.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Abalone

SMOTE 0.9398 0.53786 0.42 0.44167 0.62356 0.87288

ADASYN 0.93177 0.35926 0.26667 0.29806 0.44381 0.85144

RAMO 0.94233 0.6119 0.41111 0.43962 0.58385 0.89149

MWMOTE 0.94082 0.53095 0.36111 0.39497 0.51451 0.87745

Breast-cancer-diagnostic

SMOTE 0.97014 0.96026 0.96277 0.96031 0.96835 0.98022

ADASYN 0.96491 0.943 0.96753 0.95399 0.96519 0.98002

RAMO 0.9263 0.86004 0.96277 0.90743 0.93294 0.97546

MWMOTE 0.97713 0.96795 0.97186 0.96919 0.97584 0.98086

Breast-cancer-original

SMOTE 0.97069 0.93375 0.9875 0.95949 0.97438 0.97692

ADASYN 0.97216 0.94082 0.98315 0.96119 0.97454 0.97499

RAMO 0.9692 0.92316 0.99583 0.95787 0.97509 0.97532

MWMOTE 0.97067 0.93359 0.98732 0.9594 0.97432 0.97629

Breast-tissue

SMOTE 0.69091 0.53611 0.94167 0.67953 0.7156 0.84299

ADASYN 0.70909 0.55944 0.95 0.6972 0.73618 0.8561

RAMO 0.68818 0.53623 0.96667 0.68376 0.71236 0.79948

MWMOTE 0.74727 0.58706 1 0.73604 0.77634 0.84189

Ecoli

SMOTE 0.87834 0.69084 0.86964 0.76277 0.87041 0.94622

ADASYN 0.86638 0.66685 0.89643 0.75505 0.87213 0.94222

RAMO 0.85416 0.63947 0.89643 0.7384 0.86449 0.93304

MWMOTE 0.8605 0.65582 0.87143 0.73988 0.85931 0.93705

Glass

SMOTE 0.92466 0.85405 0.82 0.82579 0.87774 0.93227

ADASYN 0.93459 0.85893 0.92 0.87148 0.92462 0.95363

RAMO 0.90624 0.75952 0.92 0.82138 0.90413 0.94235

MWMOTE 0.93894 0.84167 0.94 0.87968 0.93611 0.95831

Ionosphere

SMOTE 0.86007 0.8061 0.81026 0.80542 0.8469 0.90296

ADASYN 0.87722 0.8195 0.84808 0.83205 0.8696 0.92885

RAMO 0.86015 0.80753 0.80962 0.80597 0.84696 0.88042

MWMOTE 0.88866 0.86549 0.82564 0.83823 0.87052 0.91353

Libra

SMOTE 0.9442 0.88631 0.81786 0.84458 0.88706 0.91719

ADASYN 0.95539 0.91548 0.85893 0.87407 0.91104 0.89716

RAMO 0.953 0.94643 0.80536 0.86324 0.88728 0.91022

MWMOTE 0.9638 0.91006 0.93214 0.91568 0.95059 0.96955
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Table 4.12: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using single neural network classifier on real world datasets: Phoneme, Pima, Robot,

Satimage, Vehicle, Wine, Yeast, Spambase, and texture.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Phoneme

SMOTE 0.72221 0.51453 0.875 0.64755 0.75935 0.82397

ADASYN 0.70422 0.49617 0.86316 0.62964 0.74213 0.81273

RAMO 0.67973 0.47512 0.92434 0.62717 0.73113 0.82494

MWMOTE 0.73294 0.52747 0.86974 0.65563 0.76618 0.82019

Pima

SMOTE 0.711 0.55863 0.83618 0.66811 0.73159 0.81443

ADASYN 0.71873 0.56578 0.86567 0.68335 0.74335 0.82319

RAMO 0.67973 0.5282 0.88832 0.66074 0.70707 0.82157

MWMOTE 0.72271 0.57508 0.83989 0.67917 0.74088 0.83026

Robot

SMOTE 0.80187 0.52214 0.81271 0.63498 0.80532 0.86939

ADASYN 0.78793 0.50103 0.80676 0.61757 0.79437 0.85526

RAMO 0.71992 0.41884 0.77982 0.54393 0.73985 0.80044

MWMOTE 0.80882 0.53573 0.79097 0.63647 0.80073 0.86586

Satimage

SMOTE 0.80948 0.66244 0.8168 0.73049 0.81077 0.89643

ADASYN 0.79487 0.64123 0.80203 0.71189 0.79614 0.88869

RAMO 0.66542 0.48767 0.94647 0.64285 0.7104 0.88335

MWMOTE 0.81508 0.66938 0.82815 0.73935 0.818 0.90156

Vehicle

SMOTE 0.95845 0.87097 0.97251 0.91769 0.96321 0.97428

ADASYN 0.91381 0.76882 0.99069 0.85784 0.937 0.94907

RAMO 0.95743 0.85777 0.98615 0.91613 0.96702 0.97826

MWMOTE 0.96061 0.87218 0.97706 0.92081 0.9661 0.97949

Wine

SMOTE 0.97745 0.95 0.975 0.95844 0.97483 0.98182

ADASYN 0.98856 0.96333 1 0.9798 0.99215 0.9816

RAMO 0.98268 0.98333 0.95 0.96234 0.96928 0.97429

MWMOTE 0.98889 0.96667 1 0.98182 0.99215 0.98276

Yeast

SMOTE 0.85176 0.61218 0.78581 0.68509 0.82486 0.88801

ADASYN 0.84905 0.60127 0.8057 0.68609 0.83142 0.88972

RAMO 0.84433 0.5857 0.8386 0.68774 0.84089 0.88935

MWMOTE 0.85312 0.60962 0.79903 0.68953 0.83093 0.89101

Spambase

SMOTE 0.8668 0.78499 0.92117 0.84658 0.87463 0.92774

ADASYN 0.87894 0.79702 0.93272 0.85911 0.88703 0.93818

RAMO 0.78875 0.65745 0.97187 0.78408 0.80646 0.94503

MWMOTE 0.8998 0.83544 0.92996 0.87988 0.90461 0.94644

Texture

SMOTE 0.91912 0.79784 0.96067 0.8696 0.93126 0.96672

ADASYN 0.90521 0.77243 0.96 0.85257 0.92088 0.95273

RAMO 0.885 0.7215 0.978 0.82752 0.91116 0.94989

MWMOTE 0.92497 0.81064 0.972 0.88108 0.93872 0.96809
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Figure 4.6: Averaged ROC curves of SMOTE [15], ADASYN [17], RAMO [18], and

MWMOTE oversampling techniques using single neural network classifier on real world

data sets: (a) Glass. (b) Libra. (c) Pima. (d) Satimage.
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Table 4.13: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using Adaboost.M2 ensemble of neural network classifiers on real world datasets: Abalone,

Breast-cancer-diagnostic, Breast-cancer-original, Breast-tissue, Ecoli, Glass, Ionosphere,

and Libra.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Abalone

SMOTE 0.93979 0.4869 0.61905 0.54435 0.77019 0.89285

ADASYN 0.93569 0.45273 0.5 0.47472 0.69207 0.8899

RAMO 0.9398 0.48958 0.64286 0.55304 0.7845 0.90447

MWMOTE 0.94528 0.5219 0.57143 0.54451 0.74307 0.90024

Breast-cancer-diagnostic

SMOTE 0.9666 0.94925 0.96212 0.95523 0.96543 0.98105

ADASYN 0.96134 0.94208 0.95736 0.9486 0.95999 0.9818

RAMO 0.96845 0.95638 0.96212 0.95815 0.96668 0.98328

MWMOTE 0.97541 0.97593 0.95758 0.96632 0.97149 0.98189

Breast-cancer-original

SMOTE 0.96195 0.93385 0.96196 0.94629 0.96142 0.97749

ADASYN 0.95912 0.92544 0.9625 0.94307 0.95977 0.97516

RAMO 0.96496 0.93063 0.97482 0.95147 0.967 0.97601

MWMOTE 0.97078 0.9553 0.96232 0.95839 0.96867 0.97969

Breast-tissue

SMOTE 0.73545 0.61333 0.71667 0.64841 0.71844 0.81589

ADASYN 0.81091 0.73333 0.8 0.74381 0.79645 0.81829

RAMO 0.77455 0.64167 0.83333 0.71468 0.78076 0.85525

MWMOTE 0.83182 0.77167 0.775 0.76238 0.81106 0.86185

Ecoli

SMOTE 0.88968 0.76409 0.79251 0.77142 0.85253 0.92811

ADASYN 0.87774 0.72504 0.79217 0.75272 0.84561 0.91267

RAMO 0.87774 0.71892 0.83165 0.76273 0.85973 0.92565

MWMOTE 0.88077 0.72162 0.81849 0.76215 0.85731 0.93045

Glass

SMOTE 0.93977 0.88976 0.86667 0.86864 0.90903 0.94797

ADASYN 0.93997 0.89167 0.86667 0.86995 0.90926 0.96893

RAMO 0.93564 0.88 0.86667 0.8651 0.90787 0.95717

MWMOTE 0.94412 0.93 0.84667 0.87162 0.90347 0.95524

Ionosphere

SMOTE 0.89396 0.87629 0.825 0.84635 0.87549 0.92728

ADASYN 0.90548 0.88623 0.84936 0.86325 0.89006 0.93009

RAMO 0.90311 0.9091 0.81795 0.85524 0.87911 0.92134

MWMOTE 0.91136 0.92121 0.82564 0.86702 0.88809 0.9278

Libra

SMOTE 0.98348 0.98889 0.93036 0.9554 0.96148 0.97544

ADASYN 0.98071 0.9875 0.91786 0.947 0.95454 0.97214

RAMO 0.98348 0.9875 0.93214 0.95469 0.96196 0.97214

MWMOTE 0.98626 1 0.93214 0.96136 0.9637 0.97638
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Table 4.14: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE us-

ing Adaboost.M2 ensemble of neural network classifiers on real world datasets: Phoneme,

Pima, Robot, Satimage, Vehicle, Wine, Yeast, Spambase, and texture.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Phoneme

SMOTE 0.77693 0.57816 0.86053 0.6916 0.79936 0.86299

ADASYN 0.77291 0.57208 0.87566 0.69181 0.79981 0.85982

RAMO 0.75435 0.54752 0.90066 0.68074 0.79053 0.86066

MWMOTE 0.78726 0.5913 0.87566 0.70557 0.81074 0.87389

Pima

SMOTE 0.70969 0.55953 0.81353 0.66121 0.72695 0.78641

ADASYN 0.71487 0.56438 0.82821 0.66959 0.73393 0.79871

RAMO 0.70441 0.55528 0.84687 0.66823 0.72662 0.7849

MWMOTE 0.73566 0.58916 0.83575 0.68906 0.75308 0.81326

Robot

SMOTE 0.87243 0.67224 0.7747 0.71974 0.83432 0.9146

ADASYN 0.87775 0.66918 0.83709 0.7434 0.86236 0.92285

RAMO 0.86675 0.64844 0.81542 0.72177 0.84722 0.91841

MWMOTE 0.88453 0.69669 0.80849 0.74775 0.85517 0.9275

Satimage

SMOTE 0.84429 0.71004 0.85904 0.77739 0.84816 0.92695

ADASYN 0.84771 0.71206 0.87083 0.78348 0.85375 0.92669

RAMO 0.81103 0.6394 0.92485 0.75601 0.83745 0.92573

MWMOTE 0.84646 0.71163 0.86542 0.78103 0.85144 0.92679

Vehicle

SMOTE 0.97665 0.94047 0.96364 0.95072 0.97179 0.98157

ADASYN 0.97976 0.94809 0.96753 0.95674 0.97509 0.98238

RAMO 0.9734 0.93186 0.95844 0.94378 0.96772 0.98091

MWMOTE 0.98086 0.9484 0.97251 0.95965 0.97776 0.98316

Wine

SMOTE 0.98856 0.96333 1 0.9798 0.99215 0.98218

ADASYN 0.98268 0.94333 1 0.96869 0.98823 0.98151

RAMO 0.97712 0.94333 0.98 0.95758 0.97767 0.98157

MWMOTE 0.99412 0.98 1 0.98889 0.99608 0.98162

Yeast

SMOTE 0.86731 0.64046 0.80968 0.71457 0.84453 0.89058

ADASYN 0.85779 0.61978 0.81871 0.70341 0.84214 0.88823

RAMO 0.83155 0.56446 0.82194 0.66724 0.82671 0.88644

MWMOTE 0.87871 0.66907 0.8257 0.73647 0.8573 0.90218

Spambase

SMOTE 0.90503 0.84607 0.92994 0.88554 0.90896 0.95377

ADASYN 0.90067 0.83865 0.92827 0.88069 0.90499 0.95374

RAMO 0.84721 0.73367 0.96359 0.83278 0.86203 0.94719

MWMOTE 0.90893 0.86334 0.91505 0.88799 0.9098 0.95412

Texture

SMOTE 0.99525 0.99007 0.99267 0.99135 0.99445 0.98702

ADASYN 0.99452 0.98807 0.992 0.99002 0.99373 0.98682

RAMO 0.99635 0.99137 0.99533 0.99335 0.99603 0.98658

MWMOTE 0.99489 0.98871 0.99267 0.99068 0.99419 0.98689
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Figure 4.7: Averaged ROC curves of SMOTE [15], ADASYN [17], RAMO [18], and MW-

MOTE oversampling techniques using AdaBoost.M2 ensemble of neural network classifiers

on real world data sets: (a) Breast Cancer. (b) Breast Tissue. (c) Pima. (d) Vehicle.
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Table 4.15: Simulation 1 on real world datasets using single neural network classifier:

Significance test of averaged AUC between MWMOTE, and SMOTE [15].

Dataset MWMOTE SMOTE Difference Rank

Abalone 0.87745 0.87288 0.00457 +8

Breast-cancer-diagnostic 0.98086 0.87288 0.10798 +17

Breast-cancer-original 0.97629 0.97692 -0.00063 -1

Breast-tissue 0.84189 0.84299 -0.0011 -3

Ecoli 0.93705 0.94622 -0.00917 -11

Glass 0.95831 0.93227 0.02604 +15

Ionosphere 0.91353 0.90296 0.01057 +12

Libra 0.96955 0.91719 0.05236 +16

Phoneme 0.82019 0.82397 -0.00378 -7

Pima 0.83026 0.81443 0.01583 +13

Robot 0.86586 0.86939 -0.00353 -6

Satimage 0.90156 0.89643 0.00513 +9

Vehicle 0.97949 0.97428 0.00521 +10

Wine 0.98276 0.98182 0.00094 +2

Yeast 0.89101 0.88801 0.003 +5

Spambase 0.94644 0.92774 0.0187 +14

Texture 0.96809 0.96672 0.00137 +4

T = min{R+, R−} = min{125, 28} = 28
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Table 4.16: Simulation 1 on real world datasets using single neural network classifier:

Significance test of averaged AUC between MWMOTE, and ADASYN [17].

Dataset MWMOTE ADASYN Difference Rank

Abalone 0.87745 0.85144 0.02601 +15

Breast-cancer-diagnostic 0.98086 0.98002 0.00084 +1

Breast-cancer-original 0.97629 0.97499 0.0013 +4

Breast-tissue 0.84189 0.8561 -0.01421 -12

Ecoli 0.93705 0.94222 -0.00517 -6

Glass 0.95831 0.95363 0.00468 +5

Ionosphere 0.91353 0.92885 -0.01532 -13

Libra 0.96955 0.89716 0.07239 +17

Phoneme 0.82019 0.81273 0.00746 +8

Pima 0.83026 0.82319 0.00707 +7

Robot 0.86586 0.85526 0.0106 +10

Satimage 0.90156 0.88869 0.01287 +11

Vehicle 0.97949 0.94907 0.03042 +16

Wine 0.98276 0.9816 0.00116 +2

Yeast 0.89101 0.88972 0.00129 +3

Spambase 0.94644 0.93818 0.00826 +9

Texture 0.96809 0.95273 0.01536 +14

T = min{R+, R−} = min{122, 31} = 31
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Table 4.17: Simulation 1 on real world datasets using single neural network classifier:

Significance test of averaged AUC between MWMOTE, and RAMO [18].

Dataset MWMOTE RAMO Difference Rank

Abalone 0.87745 0.89149 -0.01404 -10

Breast-cancer-diagnostic 0.98086 0.97546 0.0054 +7

Breast-cancer-original 0.97629 0.97532 0.00097 +1

Breast-tissue 0.84189 0.79948 0.04241 +15

Ecoli 0.93705 0.93304 0.00401 +5

Glass 0.95831 0.94235 0.01596 +11

Ionosphere 0.91353 0.88042 0.03311 +14

Libra 0.96955 0.91022 0.05933 +16

Phoneme 0.82019 0.82494 -0.00475 -6

Pima 0.83026 0.82157 0.00869 +9

Robot 0.86586 0.80044 0.06542 +17

Satimage 0.90156 0.88335 0.01821 +13

Vehicle 0.97949 0.97826 0.00123 +2

Wine 0.98276 0.97429 0.00847 +8

Yeast 0.89101 0.88935 0.00166 +4

Spambase 0.94644 0.94503 0.00141 +3

Texture 0.96809 0.94989 0.0182 +12

T = min{R+, R−} = min{137, 16} = 16
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Table 4.18: Simulation 1 on real world datasets using AdaBoost.M2 ensemble of neu-

ral network classifiers: Significance test of averaged AUC between MWMOTE, and

SMOTE [15].

Dataset MWMOTE SMOTE Difference Rank

Abalone 0.90024 0.89285 0.00739 +12

Breast-cancer-diagnostic 0.98189 0.98105 0.00084 +6

Breast-cancer-original 0.97969 0.97749 0.0022 +9

Breast-tissue 0.86185 0.81589 0.04596 +17

Ecoli 0.93045 0.92811 0.00234 +10

Glass 0.95524 0.94797 0.00727 +11

Ionosphere 0.9278 0.92728 0.00052 +4

Libra 0.97638 0.97544 0.00094 +7

Phoneme 0.87389 0.86299 0.0109 +13

Pima 0.81326 0.78641 0.02685 +16

Robot 0.9275 0.9146 0.0129 +15

Satimage 0.92679 0.92695 -0.00016 -2

Vehicle 0.98316 0.98157 0.00159 +8

Wine 0.98162 0.98218 -0.00056 -5

Yeast 0.90218 0.89058 0.0116 +14

Spambase 0.95412 0.95377 0.00035 +3

Texture 0.98689 0.98702 -0.00013 -1

T = min{R+, R−} = min{145, 8} = 8
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Table 4.19: Simulation 1 on real world datasets using AdaBoost.M2 ensemble of neu-

ral network classifiers: Significance test of averaged AUC between MWMOTE, and

ADASYN [17].

Dataset MWMOTE ADASYN Difference Rank

Abalone 0.90024 0.8899 0.01034 +11

Breast-cancer-diagnostic 0.98189 0.9818 0.00009 +2

Breast-cancer-original 0.97969 0.97516 0.00453 +9

Breast-tissue 0.86185 0.81829 0.04356 +17

Ecoli 0.93045 0.91267 0.01778 +16

Glass 0.95524 0.96893 -0.01369 -12

Ionosphere 0.9278 0.93009 -0.00229 -7

Libra 0.97638 0.97214 0.00424 +8

Phoneme 0.87389 0.85982 0.01407 +14

Pima 0.81326 0.79871 0.01455 +15

Robot 0.9275 0.92285 0.00465 +10

Satimage 0.92679 0.92669 0.0001 +3

Vehicle 0.98316 0.98238 0.00078 +6

Wine 0.98162 0.98151 0.00011 +4

Yeast 0.90218 0.88823 0.01395 +13

Spambase 0.95412 0.95374 0.00038 +5

texture 0.98689 0.98682 0.00007 +1

T = min{R+, R−} = min{134, 19} = 19
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Table 4.20: Simulation 1 on real world datasets using AdaBoost.M2 ensemble of neu-

ral network classifiers: Significance test of averaged AUC between MWMOTE, and

RAMO [18].

Dataset MWMOTE RAMO Difference Rank

Abalone 0.90024 0.90447 -0.00423 -8

Breast-cancer-diagnostic 0.98189 0.98328 -0.00139 -4

Breast-cancer-original 0.97969 0.97601 0.00368 +7

Breast-tissue 0.86185 0.85525 0.0066 +12

Ecoli 0.93045 0.92565 0.0048 +10

Glass 0.95524 0.95717 -0.00193 -5

Ionosphere 0.9278 0.92134 0.00646 +11

Libra 0.97638 0.97214 0.00424 +9

Phoneme 0.87389 0.86066 0.01323 +15

Pima 0.81326 0.7849 0.02836 +16

Robot 0.9275 0.91841 0.00909 +14

Satimage 0.92679 0.92573 0.00106 +3

Vehicle 0.98316 0.98091 0.00225 +6

Wine 0.98162 0.98157 0.00005 +1

Yeast 0.90218 0.88644 0.01574 +16

Spambase 0.95412 0.94719 0.00693 +13

Texture 0.98689 0.98658 0.00031 +2

T = min{R+, R−} = min{136, 17} = 17
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difference is negative (SMOTE is better) and in rest 14 datasets, difference is positive

(MWMOTE is better). We sum all the positive ranks under the rank column, to find

R+, which is 128. Similarly, we sum all the negative ranks to find, R−, which is 28.

The minimum of R+, and R−, is the value of T , which is min{128, 28} = 28. Since

there are 17 datasets, the T value should be less than or equal to 35 at a significance

level of 0.05 to reject the null hypothesis that, the difference is not significant [38]. So, in

this case of MWMOTE vs SMOTE, T value (28) is less than 35, which means that, the

difference is statistically significant. Similarly, for the other comparisons between MW-

MOTE vs ADASYN, and MWMTOE vs RAMO, we find that, the computed T values

are 31, and 16 respectively, both of which are less than critical value, 35. These re-

sults show that, MWMOTE can really statistically outperform SMOTE, ADASYN, and

RAMO techniques.

In case of AdaBoost.M2 ensemble classifier, results in Tables 4.13 and 4.14 show

that, MWMOTE still outperforms other three oversampling techniques except the recall

parameter as expected from discussions before. Comparing performance measures of single

neural network classifier and boosting ensemble of neural network, we find that, boosting

improves performance of all four oversampling techniques significantly. In particular, we

observe that, recall performances are nearly same, while precision performance is much

better for the boosting ensemble than single classifier. The reason is that, in case of single

classifier, improvement of minority prediction accuracy (due to oversampling) is sacrificed

by reduction in majority prediction accuracy (justified by low precision performance).

However, boosting ensures that this majority prediction accuracy is not sacrificed (justified

by better precision values), while keeping the minority prediction accuracy at the same

level. So, boosting and oversampling together can be able to improve both minority and

majority classification accuracy, which is justified by overall performance measures of

boosting ensemble: F-measure, G-mean, and AUC values of Tables 4.13 and 4.14. Some

representative ROC graphs are shown in Fig. 4.7 for this simulation run. From these

graphs, we can visually inspect the better performance of MWMOTE compared to other

three methods, since ROC graph of MWMOTE is above the ROC graphs of other three
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methods in most of the portion of the ROC space.

The wilcoxon signed rank test is performed on AUC values of Tables 4.13 and 4.14 for

comparing MWMOTE against each of the other three techniques. The test results are

shown in Tables 4.18, 4.19, and 4.20,. The T values found for MWMOTE vs SMOTE,

ADASYN, and RAMO techniques are 8, 19, and 17 respectively. At the significance level

of 0.05, all these values are less than 35 (critical value), which says that the differences are

statistically significant. Therefore, in case of boosting also, MWMOTE can statistically

outporfoms each of SMOTE, ADASYN, and RAMO techniques.

4.4.2 Simualtion 2

In this simulation, we test the performance of MWMOTE on real world datasets when

the single classifier is not neural network. Similar to the experiments performed for arti-

ficial data sets, we run k-nearest neighbor (with k = 5) and C4.5 decision tree classifier

without pruning on the 17 real world datasets. We summarize the results of these two

classifiers with the four oversampling techniques SMOTE, ADASYN, RAMO, and MW-

MOTE in Tables 4.21-4.24 . The results are found after a 10-fold cross validation on the

datasets. From these results, we see that, even for both of k-nearest neighbor and decision

tree classifiers, MWMOTE shows comparatively better performance in terms of accuracy,

precision, F-measure, G-mean except the recall parameter.

4.5 Summary

In this chapter, we performed extensive experiments to evaluate the effectiveness of pro-

pose oversample technique MWMOTE. We generated some artificial data sets of different

complexities and imbalances. We evaluated MWMOTE and three other existing over-

sampling techniques SMOTE, ADASYN, and RAMO using neural network classifier, Ad-

aboost.M2 ensemble of neural network classifier, k-nearest neighbor classifier and decision

tree classifier. Experimental results show that MWMOTE dominates all the other three



CHAPTER 4. EXPERIMENTAL STUDIES 71

Table 4.21: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using k-NN as a base classifier (with k = 5) on Real World Datasets: Abalone, Breast-

cancer-diagnostic, Breast-cancer-original, Breast-tissue, Ecoli, Glass, Ionosphere, and Li-

bra.

Dataset Methods Accuracy Precision Recall F-measure G-mean

Abalone

SMOTE 0.94235 0.51481 0.5 0.50188 0.64738

ADASYN 0.93017 0.41481 0.5 0.44095 0.67309

RAMO 0.94228 0.54471 0.47222 0.47735 0.66253

MWMOTE 0.94078 0.47222 0.44444 0.44782 0.60836

Breast cancer diagonostic

SMOTE 0.94914 0.91588 0.95758 0.93414 0.95015

ADASYN 0.93502 0.88086 0.95758 0.91652 0.939

RAMO 0.93505 0.86624 0.98139 0.91945 0.94356

MWMOTE 0.95269 0.91441 0.9671 0.93901 0.95529

Breast-cancer-original

SMOTE 0.96927 0.92838 0.99167 0.95833 0.97413

ADASYN 0.96927 0.92838 0.99167 0.95833 0.97413

RAMO 0.96635 0.91817 0.99583 0.95479 0.97276

MWMOTE 0.97511 0.94221 0.99167 0.96586 0.97874

Breast-tissue

SMOTE 0.77455 0.63048 0.875 0.72328 0.77943

ADASYN 0.76545 0.63 0.85 0.71402 0.7678

RAMO 0.76545 0.63778 0.9 0.72987 0.76471

MWMOTE 0.75545 0.61333 0.86667 0.70603 0.75379

Ecoli

SMOTE 0.88366 0.70838 0.88214 0.78133 0.88149

ADASYN 0.89543 0.7301 0.89643 0.8004 0.89475

RAMO 0.87521 0.69308 0.88393 0.77286 0.87766

MWMOTE 0.90784 0.76389 0.86964 0.81196 0.89302

Glass

SMOTE 0.94349 0.86714 0.92 0.88817 0.93314

ADASYN 0.93873 0.85048 0.92 0.87908 0.92996

RAMO 0.93873 0.84333 0.94 0.88211 0.93655

MWMOTE 0.95777 0.88714 0.96 0.91928 0.95784

Ionosphere

SMOTE 0.91169 0.91378 0.83462 0.86972 0.89153

ADASYN 0.90549 0.9164 0.81667 0.85701 0.88031

RAMO 0.91136 0.90772 0.84167 0.87076 0.8934

MWMOTE 0.91464 0.95758 0.80256 0.86976 0.88452

Libra

SMOTE 0.99437 1 0.97143 0.98462 0.98516

ADASYN 0.99437 1 0.97143 0.98462 0.98516

RAMO 0.99159 0.9875 0.97143 0.97795 0.98342

MWMOTE 0.99437 1 0.97143 0.98462 0.98516
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Table 4.22: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using k-NN as a base classifier (with k = 5) on Real World Datasets: Phoneme, Pima,

Robot, Satimage, Vehicle, Wine, Yeast, Spambase, and texture.

Dataset Methods Accuracy Precision Recall F-measure G-mean

Phoneme

SMOTE 0.86704 0.72236 0.88487 0.79492 0.87203

ADASYN 0.86838 0.72181 0.89211 0.79762 0.87503

RAMO 0.85116 0.68451 0.90921 0.78062 0.86715

MWMOTE 0.86876 0.72505 0.88618 0.79717 0.87365

Pima

SMOTE 0.68628 0.53585 0.78775 0.63697 0.70424

ADASYN 0.66936 0.51967 0.76168 0.61664 0.68534

RAMO 0.66668 0.51537 0.80627 0.62805 0.68986

MWMOTE 0.67454 0.52369 0.7688 0.62194 0.69101

Robot

SMOTE 0.91788 0.75107 0.91942 0.8261 0.91832

ADASYN 0.91642 0.74363 0.92809 0.82511 0.92061

RAMO 0.90854 0.71746 0.94109 0.81368 0.92014

MWMOTE 0.91257 0.74051 0.90729 0.81483 0.9105

Satimage

SMOTE 0.89122 0.76241 0.95383 0.84735 0.90685

ADASYN 0.88827 0.75508 0.95826 0.84453 0.90559

RAMO 0.86076 0.70096 0.97839 0.81661 0.88815

MWMOTE 0.89215 0.76235 0.95923 0.84934 0.90879

Vehicle

SMOTE 0.92761 0.77738 0.97727 0.86446 0.94411

ADASYN 0.92334 0.76913 0.97273 0.85694 0.93956

RAMO 0.92122 0.76553 0.97273 0.85435 0.93815

MWMOTE 0.92972 0.7852 0.97251 0.86721 0.94384

Wine

SMOTE 0.96634 0.90143 1 0.94495 0.97629

ADASYN 0.96078 0.88476 1 0.93586 0.97237

RAMO 0.95523 0.8681 1 0.92677 0.96845

MWMOTE 0.9719 0.9181 1 0.95404 0.98022

Yeast

SMOTE 0.84166 0.59178 0.75269 0.65902 0.80426

ADASYN 0.82212 0.55322 0.75591 0.63447 0.79413

RAMO 0.80729 0.52412 0.78237 0.62475 0.79612

MWMOTE 0.85176 0.61539 0.77258 0.67901 0.81796

Spambase

SMOTE 0.87939 0.79324 0.93987 0.86017 0.88847

ADASYN 0.86917 0.77614 0.93987 0.85006 0.87952

RAMO 0.84265 0.72973 0.95587 0.82747 0.85726

MWMOTE 0.88308 0.80005 0.93878 0.86374 0.89158

Texture

SMOTE 0.99361 0.98228 0.99467 0.98842 0.99394

ADASYN 0.99324 0.98226 0.99333 0.98775 0.99327

RAMO 0.99124 0.97215 0.99667 0.98423 0.99292

MWMOTE 0.99434 0.98425 0.99533 0.98974 0.99465
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Table 4.23: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using decision tree as a base classifier on Real World Datasets: Abalone, Breast-cancer-

diagnostic, Breast-cancer-original, Breast-tissue, Ecoli, Glass, Ionosphere, and Libra.

Dataset Methods Accuracy Precision Recall F-measure G-mean

Abalone

SMOTE 0.90159 0.25422 0.4 0.30677 0.56252

ADASYN 0.90966 0.31918 0.465 0.36025 0.61153

RAMO 0.89748 0.24286 0.355 0.28168 0.53446

MWMOTE 0.91801 0.36786 0.395 0.35762 0.59794

Breast cancer diagonostic

SMOTE 0.93311 0.89854 0.92922 0.91199 0.93173

ADASYN 0.92969 0.89585 0.92446 0.90857 0.9282

RAMO 0.92098 0.87276 0.92965 0.89876 0.92223

MWMOTE 0.93317 0.90425 0.92489 0.91217 0.93076

Breast-cancer-original

SMOTE 0.94891 0.91495 0.94565 0.92868 0.94776

ADASYN 0.94588 0.93354 0.91214 0.92125 0.93715

RAMO 0.94296 0.92385 0.91612 0.91842 0.93606

MWMOTE 0.9488 0.92286 0.93297 0.92662 0.94449

Breast-tissue

SMOTE 0.76545 0.64714 0.725 0.6659 0.7367

ADASYN 0.78455 0.68452 0.80833 0.72582 0.78109

RAMO 0.75545 0.64667 0.75833 0.68063 0.74722

MWMOTE 0.79545 0.69167 0.76667 0.71611 0.78195

Ecoli

SMOTE 0.86648 0.71762 0.73929 0.7167 0.81219

ADASYN 0.86905 0.71006 0.75179 0.72472 0.82128

RAMO 0.8777 0.73168 0.7875 0.74646 0.83959

MWMOTE 0.88118 0.74619 0.78214 0.7452 0.83513

Glass

SMOTE 0.8926 0.75111 0.82333 0.7782 0.85501

ADASYN 0.90152 0.78083 0.82 0.79277 0.85936

RAMO 0.90669 0.81952 0.82333 0.81505 0.87458

MWMOTE 0.91991 0.83548 0.84 0.83313 0.88786

Ionosphere

SMOTE 0.85711 0.77784 0.8641 0.81388 0.85612

ADASYN 0.84552 0.77246 0.82436 0.79147 0.83738

RAMO 0.82583 0.72753 0.84038 0.77747 0.82791

MWMOTE 0.87517 0.82165 0.86603 0.83633 0.87032

Libra

SMOTE 0.86955 0.75627 0.575 0.63475 0.72467

ADASYN 0.90862 0.77202 0.78036 0.76718 0.85059

RAMO 0.91108 0.82679 0.725 0.76357 0.83058

MWMOTE 0.90244 0.8081 0.70714 0.73482 0.81296
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Table 4.24: Performance of SMOTE [15], ADASYN [17], RAMO [18], and MWMOTE

using decision tree as a base classifier on Real World Datasets: Phoneme, Pima, Robot,

Satimage, Vehicle, Wine, Yeast, Spambase, and texture.

Dataset Methods Accuracy Precision Recall F-measure G-mean

Phoneme

SMOTE 0.87717 0.76706 0.83026 0.79721 0.86259

ADASYN 0.8766 0.76124 0.83947 0.7981 0.86504

RAMO 0.87067 0.7451 0.84605 0.79198 0.86308

MWMOTE 0.88062 0.77709 0.82895 0.80172 0.86446

Pima

SMOTE 0.68886 0.54961 0.6235 0.58212 0.67011

ADASYN 0.67329 0.53105 0.59744 0.56164 0.65259

RAMO 0.67059 0.52767 0.64573 0.57864 0.66293

MWMOTE 0.69405 0.55049 0.66382 0.60011 0.68405

Robot

SMOTE 0.98717 0.96282 0.97744 0.96993 0.98355

ADASYN 0.99175 0.97627 0.98525 0.9806 0.98934

RAMO 0.9912 0.97135 0.98786 0.97944 0.98996

MWMOTE 0.99395 0.98965 0.98178 0.98562 0.98944

Satimage

SMOTE 0.8864 0.80661 0.84333 0.82451 0.87424

ADASYN 0.88392 0.79942 0.84627 0.82199 0.87333

RAMO 0.86931 0.76956 0.83794 0.80224 0.86054

MWMOTE 0.88066 0.79485 0.84087 0.81696 0.86942

Vehicle

SMOTE 0.9489 0.88898 0.89459 0.89059 0.92885

ADASYN 0.95099 0.88989 0.90368 0.89603 0.93376

RAMO 0.94465 0.86826 0.90368 0.88345 0.9292

MWMOTE 0.9521 0.89746 0.90433 0.89864 0.93458

Wine

SMOTE 0.97745 0.96333 0.96 0.95758 0.97104

ADASYN 0.98301 0.98 0.96 0.96667 0.97496

RAMO 0.98856 0.98 0.98 0.97778 0.98552

MWMOTE 0.98889 1 0.96 0.97778 0.97889

Yeast

SMOTE 0.84906 0.61453 0.71355 0.65709 0.7918

ADASYN 0.84708 0.6079 0.74355 0.6662 0.80473

RAMO 0.83898 0.59164 0.69409 0.63741 0.77879

MWMOTE 0.85445 0.63337 0.69118 0.65944 0.78618

Spambase

SMOTE 0.89502 0.85051 0.89025 0.86981 0.89412

ADASYN 0.89415 0.85076 0.88693 0.86846 0.89286

RAMO 0.88654 0.83627 0.88637 0.8604 0.88644

MWMOTE 0.88828 0.84692 0.8748 0.86059 0.88584

Texture

SMOTE 0.979 0.95907 0.96467 0.96178 0.97446

ADASYN 0.97572 0.95084 0.96133 0.95597 0.97117

RAMO 0.97645 0.95139 0.96333 0.95729 0.97231

MWMOTE 0.97407 0.95647 0.94867 0.9525 0.96599
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methods and outperforms them in several useful performance metrics such as accuracy,

precision, recall, AUC, and ROC graphs. Similar experiments were carried out on 17

real world data sets which gave similar results. Wilcoxon signed-rank significances are

also performed which statistically justify the performance dominance of MWMOTE with

other three methods.



Chapter 5

MWMOTE-Boost: Integration of

MWMOTE with Boosting

In chapter 3, we presented our proposed oversampling technique MWMOTE. In chapter 4,

we showed its effectiveness through experimental results. It was seen that, performance

of MWMOTE is better than the existing oversampling algorithms used in experiments.

Although, oversampling improves minority performance, sometimes it may lead to degra-

dation of majority performance if excessive and inappropriate synthetic minority samples

are generated near the decision boundary. The reduced majority performance may re-

sult in reduced overall performance measures such as accuracy, F-measure and G-mean

are reduced. To this respect, some stand-alone algorithms exist in literature such as

SMOTE-Boost [31] and RAMOBoost [18] which integrates Adaboost.M2 with their over-

sampling procedure. The goal of boosting is to improve the majority performance which

are affected by oversampling. In this chapter, we propose a similar type of algorithm

MWMOTE-Boost based on the MWMOTE oversampling procedure. MWMOTE-Boost

integrates MWMOTE oversampling technique inside Adaboost.M2 ensemble in a manner

similar to the recent RAMOBoost technique [18]. The simulation results at the end of this

chapter shows that, the performance of the new stand-alone algorithm MWMOTE-Boost

supersedes the performance of two other similar boosting algorithms existing in literature.
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5.1 Integration of Boosting with Oversampling

Oversampling creates a bias for the classifier toward the minority class. The bias is ob-

tained by creating synthetic samples near the decision boundary. However, the added

minority samples introduced at the boundary may sometimes tend to over-bias the classi-

fier’s decision. The majority region near the over-sampled minority regions may become

hard-to-learn for the classifier due to the dominance of the minority samples. This may

lead to worse performance on the majority class in those regions of the over-sampled data

set. So, oversampling introduces a trade off which sacrifices the performance on the ma-

jority class for the improved performance on the minority class. Sometimes, the reduced

majority performance may not lead to any improvement in overall classifier performance.

Therefore, it would have been better, if we could improve the minority performance and

at the same time keep the majority performance unaltered. Boosting is introduced to

solve this problem. The effect of boosting on the classifier is to iteratively focusing on the

hard-to-learn examples of the data set and improving decision on those instances. So, if

we add boosting on the over-sampled data set, then boosting may reduce the over-bias

effect by focusing on those hard-to-learn majority samples iteratively. The application of

boosting on oversampled data set has been studied in literature and shown to be very

much successful [18, 31, 32]. So, motivated by those studies, we present a similar algo-

rithm MMWOTE-Boost which MWMOTE oversampling technique inside Adaboost.M2

ensemble.

5.2 MWMOTE-Boost Algorithm

MWMOTE-Boost algorithm adopts the idea of the recent RAMOBoost [18] algorithm.

RAMOBoost’s performance has been shown to beat other stand-alone algorithms for im-

balanced learning problems [18]. So, we used the same idea of RAMOBoost and replaced

RAMOBoost’s oversampling procedure (which is called RAMO) with our MWMOTE.

Since, MWMOTE has outperformed RAMO technique, it is expected that MWMOTE-
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Boost will also outperform RAMOBoost as a stand-alone algorithm. The complete algo-

rithm is shown in [Algorithm 2]

Algorithm 2: MWMOTE-Boost(Smin, Smaj, N, k1, k2, k3)

Input:

1. Training dataset with m class examples (x1, y1), ..., (xm, ym), where xi(i = 1, ...,m)

is an instance of the n dimensional feature space X and yi ∈ Y = {major,minor} is

the class identity label associated with xi

2. N : Number of synthetic samples to be generated

3. k1: Number of neighbors to consider for predicting noisy minority samples

4. k2: Number of majority neighbors to consider for constructing informative minority

set

5. k3: Number of minority neighbors to consider for constructing informative minority

set

Let, B = {(i, y) : i ∈ {1...m}, y 6= yi}

Initialize: D1(i, y) = 1/|B| for (i, y) ∈ B (for two class problems |B| = m)

Procedure Begin Do for t = 1, 2, ..., T .

1. Sample the training data set Dt and get back a sampled data set Se of identical size.

Slice Se into majority subset Smaj and minority subset Smin.

2. Generate N synthetic samples using MWMOTE(Smin,Smaj,N ,k1,k2,k3) oversam-

pling procedure.

3. Provide the base classifier with the Sampled dataset Se and N synthetic samples.

4. Get back a hypothesis, ht: X × Y → {0, 1}
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5. Calculate the pseudo-loss of ht

et =
1

2

∑

(i,y)∈B

Dt(i, y)(1− ht(xi, yi) + ht(xi, y))

6. Set βt = et/(1− et)

7. Update Dt

Dt+1(i, y) =
Dt(i, y)

Zt

β
1+ht(xi,yi)−ht(xi,y)
t

where, Zt is a normalization constant.

8. End Loop

End

Output: The output hypothesis, hfinal(x) is calculated as follows:

hfinal(x) = arg maxy∈Y

∑

t=1...T

log(
1

βt

) ∗ ht(x, y)

5.3 Description of MWMOTE-Boost

MWMOTE-Boost algorithm is constructed by modifying the classic adaptive boosting

algorithm AdaBoost.M2 ensemble procedure [29]. The AdaBoost.M2 algorithm is the

multi-class extension of AdaBoost algorithm using the pseudo-loss rather than error of the

hypothesis [29]. The modification that MWMOTE-Boost incorporates in AdaBoost.M2

algorithm is by inserting synthetic oversampling method inside the boosting iteration

(Step 2 of [Algorithm 2]). The algorithm is called adaptive boosting because the weight

distribution inside the boosting is adaptively updated using error/loss of the learned hy-

pothesis. In [Algorithm 2], Step 1 samples the training data set using weight distribution

Dt to obtain a data set, Se of identical size. Therefore, at each iteration a different data

set is used for learning the base learning algorithm (Step 5 of [Algorithm 2]). This is

the key step of the adaptive boosting algorithms where hard-to-learn examples are kept

in and already learned examples are discarded from the data set that will be used for
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training the next base learning algorithm. Due to this, classifier that will be learned next

can focus only on examples that have not already learned correctly.

In Step 2, N new synthetic minority samples are generated from the examples in Se

using our MWMOTE oversampling procedure. This is the step where MWMOtE-Boost

is different from RAMOBoost algorithm, replacing RAMOBoost’s RAMO oversampling

procedure with out MWMOTE method. In this step, over-sampling Se rather than the

original data set ensures that more synthetic examples are generated for hard-to-learn

minority examples compared to other examples which have already been learned correctly

by the ensemble. The sampled data set Se and newly generated N synthetic samples are

then presented to a base learning algorithm (Step 3). The learning algorithm returns a

new hypothesis, ht (Step 4). In Step 5, the pseudo-loss [29] of hypothesis ht is computed.

Then, the weight distribution Dt is updated (Step 7) to be used in next iteration.

The parameter βt is a function pseudo-loss et which is used to update the weight

distribution. This update rule reduces the weight corresponding those samples which

are correctly learned (in case of two-class problems) or differentiated with other training

classes (in case of multi-class problems) [29]. As a result, the probability of those exam-

ples on which classifier’s decision is poor is increased and probability of rest examples is

decreased. This ensures that at each iteration the algorithm focuses only on remaining

hard-to-learn examples (examples having high probability because they were not learned

correctly in previous iterations) and tries to learn them correctly by the base learning

algorithm.

5.4 Experimental Results of MWMOTE-Boost

In this section, we evaluate performance of MWMOTE-Boost algorithm. We compare

its performance with two other boosting algorithms SMOTEBoost and RAMOBoost.

The experiments are performed using the same real world datasets used previously for

MWMOTE’s experiments (chapter 4). neural network is used as the base classifier for
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Table 5.1: Performance of SMOTEBoost [31], RAMOBoost [18], and MWMOTE-Boost

on 17 on Real World Datasets: Abalone, Breast-cancer-diagnostic, Breast-cancer-original,

Breast-tissue, Ecoli, Glass, Ionosphere, Libra, Phoneme, Pima, Robot, Satimage, and

Vehicle.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Abalone

SMOTEBoost 0.95076 0.59 0.52 0.54304 0.70277 0.87004

RAMOBoost 0.9453 0.51833 0.43 0.45214 0.62893 0.86828

MWMOTEBoost 0.95215 0.63333 0.45 0.515 0.65449 0.85124

Breast-cancer-diagnostic

SMOTEBoost 0.96826 0.96245 0.9526 0.95676 0.96467 0.98019

RAMOBoost 0.96128 0.95835 0.93853 0.9468 0.95581 0.97957

MWMOTEBoost 0.97014 0.96488 0.95736 0.95979 0.96699 0.98192

Breast-cancer-original

SMOTEBoost 0.97063 0.94017 0.9788 0.9588 0.97234 0.97706

RAMOBoost 0.96775 0.93676 0.97482 0.95489 0.96918 0.97562

MWMOTEBoost 0.96494 0.94336 0.95833 0.95021 0.96317 0.97742

Breast-tissue

SMOTEBoost 0.72636 0.57667 0.8 0.65738 0.72173 0.82539

RAMOBoost 0.75455 0.63952 0.75833 0.66629 0.7388 0.85603

MWMOTEBoost 0.81091 0.71548 0.8 0.73193 0.78971 0.87313

Ecoli

SMOTEBoost 0.87833 0.72899 0.78214 0.74566 0.83675 0.92228

RAMOBoost 0.89018 0.73296 0.84464 0.77928 0.87002 0.91258

MWMOTEBoost 0.89321 0.74949 0.81964 0.77488 0.85988 0.92313

Glass

SMOTEBoost 0.94847 0.90905 0.88 0.88711 0.9198 0.95498

RAMOBoost 0.94825 0.90571 0.88 0.89009 0.92156 0.95226

MWMOTEBoost 0.9437 0.89571 0.88 0.88185 0.9175 0.96636

Ionosphere

SMOTEBoost 0.90344 0.90467 0.81731 0.85655 0.8801 0.93401

RAMOBoost 0.9 0.92239 0.80128 0.8469 0.87061 0.92074

MWMOTEBoost 0.90042 0.90707 0.80962 0.85243 0.87622 0.9333

Libra

SMOTEBoost 0.98063 1 0.90357 0.94597 0.94886 0.96471

RAMOBoost 0.97499 0.97083 0.90357 0.93161 0.94494 0.97222

MWMOTEBoost 0.98333 1 0.91607 0.95359 0.9558 0.97421

Phoneme

SMOTEBoost 0.75933 0.55713 0.86053 0.67577 0.78558 0.81615

RAMOBoost 0.73178 0.5252 0.86513 0.65255 0.76438 0.80491

MWMOTEBoost 0.74326 0.53969 0.85592 0.65983 0.77078 0.82678

Pima

SMOTEBoost 0.70048 0.55347 0.84359 0.6646 0.72182 0.76728

RAMOBoost 0.70579 0.55406 0.84758 0.66808 0.72842 0.7877

MWMOTEBoost 0.70702 0.55723 0.8433 0.66784 0.72736 0.77364

Robot

SMOTEBoost 0.82588 0.5645 0.7721 0.65211 0.80537 0.87886

RAMOBoost 0.84916 0.62393 0.73484 0.67435 0.80407 0.88785

MWMOTEBoost 0.84366 0.60021 0.78076 0.67861 0.8196 0.88622

Satimage

SMOTEBoost 0.80591 0.66017 0.80157 0.72107 0.80246 0.87751

RAMOBoost 0.82937 0.69083 0.83202 0.75452 0.82966 0.90408

MWMOTEBoost 0.8272 0.6745 0.87672 0.76241 0.83967 0.9061

Vehicle

SMOTEBoost 0.97768 0.93554 0.97273 0.95319 0.97577 0.98169

RAMOBoost 0.98193 0.94824 0.97727 0.9621 0.98022 0.98042

MWMOTEBoost 0.98086 0.94429 0.97727 0.96008 0.97954 0.98314
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Table 5.2: Performance of SMOTEBoost [31], RAMOBoost [18], and MWMOTE-Boost

on 17 Real World Data sets: Wine, Yeast, Spambase, and texture.

Dataset Methods Accuracy Precision Recall F-measure G-mean AUC

Wine

SMOTEBoost 0.97191 0.92857 0.97917 0.9509 0.97384 0.98819

RAMOBoost 0.97753 1 0.91667 0.95652 0.95743 0.98514

MWMOTEBoost 0.98876 0.96 1 0.97959 0.99228 0.98863

Yeast

SMOTEBoost 0.85378 0.61619 0.76677 0.67974 0.81717 0.86797

RAMOBoost 0.84975 0.60329 0.78312 0.68029 0.82299 0.87641

MWMOTEBoost 0.86457 0.63762 0.80237 0.70816 0.83934 0.88123

Spambase

SMOTEBoost 0.9011 0.83395 0.93658 0.88207 0.90675 0.94425

RAMOBoost 0.89436 0.82307 0.93438 0.87472 0.90052 0.94129

MWMOTEBoost 0.89675 0.82555 0.93768 0.87771 0.90314 0.94709

Texture

SMOTEBoost 0.98594 0.96363 0.986 0.97466 0.98596 0.98585

RAMOBoost 0.98138 0.94993 0.984 0.96665 0.98219 0.98544

MWMOTEBoost 0.98594 0.96737 0.982 0.97455 0.9847 0.98535

Table 5.3: Simulation on real world datasets: Significance test of averaged AUC between

MWMOTEBoost, and SMOTEBoost [31].

Dataset MWMOTEBoost SMOTEBoost Difference Rank

Abalone 0.85124 0.87004 -0.0188 -15

Breast-cancer-diagnostic 0.98192 0.98019 0.00173 +7

Breast-cancer-original 0.97742 0.97706 0.00036 +1

Breast-tissue 0.87313 0.82539 0.04774 +17

Ecoli 0.92313 0.92228 0.00085 +5

Glass 0.96636 0.95498 0.01138 +13

Ionosphere 0.9333 0.93401 -0.00071 -4

Libra 0.97421 0.96471 0.0095 +11

Phoneme 0.82678 0.81615 0.01063 +12

Pima 0.77364 0.76728 0.00636 +9

Robot 0.88622 0.87886 0.00736 +10

Satimage 0.9061 0.87751 0.02859 +16

Vehicle 0.98314 0.98169 0.00145 +6

Wine 0.98863 0.98819 0.00044 +2

Yeast 0.88123 0.86797 0.01326 +14

Spambase 0.94709 0.94425 0.00284 +8

texture 0.98535 0.98585 -0.0005 -3

T = min{R+, R−} = min{133, 22} = 22
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Table 5.4: Simulation on real world datasets: Significance test of averaged AUC between

MWMOTEBoost, and RAMOBoost [18].

Dataset MWMOTEBoost RAMOBoost Difference +Rank

Abalone 0.85124 0.86828 -0.01704 -15

Breast-cancer-diagnostic 0.98192 0.97957 0.00235 +6

Breast-cancer-original 0.97742 0.97562 0.0018 +3

Breast-tissue 0.87313 0.85603 0.0171 +16

Ecoli 0.92313 0.91258 0.01055 +11

Glass 0.96636 0.95226 0.0141 +14

Ionosphere 0.9333 0.92074 0.01256 +12

Libra 0.97421 0.97222 0.00199 +4

Phoneme 0.82678 0.80491 0.02187 +17

Pima 0.77364 0.7877 -0.01406 -13

Robot 0.88622 0.88785 -0.00163 -2

Satimage 0.9061 0.90408 0.00202 +5

Vehicle 0.98314 0.98042 0.00272 +7

Wine 0.98863 0.98514 0.00349 +8

Yeast 0.88123 0.87641 0.00482 +9

Spambase 0.94709 0.94129 0.0058 +10

texture 0.98535 0.98544 -0.00009 -1

T = min{R+, R−} = min{124, 31} = 31
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Figure 5.1: Averaged ROC curves of SMOTEBoost [31], RAMOBoost [18], and

MWMOTE-Boost on real world datasets: (a) Breast Cancer Diagnostic. (b) Breast Can-

cer Original. (c) Breast Tissue.
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Figure 5.2: Averaged ROC curves of SMOTEBoost [31], RAMOBoost [18], and

MWMOTE-Boost on real world datasets: (a) Ecoli. (b) Glass. (c) Ionosphere.
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Figure 5.3: Averaged ROC curves of SMOTEBoost [31], RAMOBoost [18], and

MWMOTE-Boost on real world datasets: (a) Libra. (b) Spambase. (c) Yeast.
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both MWMOTE-Boost and RAMOBoost [18]. The number of boosting iteration, T is

set to 20 for all methods. The other simulation parameters are similar to those used

in experiments for MWMOTE (4). Tables 5.1 and 5.2 show the results obtained from

the simulation experiments. The table shows the values of accuracy, precision, recall,

F-measure, G-mean, and AUC performance measures. All these measures were obtained

after 10-fold cross validation of the dataset. Figures 5.1-5.3 show the ROC graphs of

MWMOTE-Boost, SMOTEBoost, and RAMOBoost algorithms over some representative

datasets.

From the performance measures of Tables 5.1 and 5.2, we see that, MWMOTE-Boost

outperforms each of SMOTEBoost and RAMOBoost in most of the datasets. In many of

these datasets, the performance of MWMOTE-Boost is well over the performance of the

other two methods. The reason is clearly due to the improved oversampling technique

MWMOTE. The ROC graphs (Figs. 5.1-5.3) also show the better behavior of MWMOTE-

Boost algorithm where ROC graphs of MWMOTE-Boost are well above the ROC graphs

of other two methods. To compare the significance of performance difference, we evaluate

Wilcoxon signed-rank significance test on AUC and the results are shown in Tables 5.3

and 5.4. The values of T are found to be 22 and 31 respectively, which are below the critical

value (35). Therefore, the significance test also justifies MWMOTE-Boost’s dominance

over SMOTEBoost and RAMOBoost.

5.5 Summary

In this chapter, MWMOTE-Boost algorithm is proposed which uses MWMOTE oversam-

pling technique inside AdaBoost.M2 ensemble algorithm in a manner similar to existing

RAMOBoost algorithm [18]. Experiments are performed on real world data sets using neu-

ral network base classifier. The results show that MWMOTE-Boost outperforms existing

RAMOBoost and SMOTEBoost in most of the data sets in several performance metrics.

This is mainly the MWMOTE-Boost’s oversampling procedure (MWMOTE) which helps

it achieve better performance than RAMOBoost and SMOTEBoost algorithms.
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Conclusion

Many oversampling algorithms exist in literature which deal with imbalanced data sets

by creating synthetic samples for the minority data set. In this paper, we identify the

difficulties and insufficiencies that existing oversampling algorithms may face in many dif-

ferent scenarios of data samples. We propose a novel oversampling technique MWMOTE

which tries to alleviate the problems of existing techniques. Our MWMOTE effecively

selects a set of hard to learn minority samples from which synthetic data generation is

required. MWOTE then adaptively weights these minority samples depending on its im-

portance in data set. The weighted minority samples are then used to generate a better

set of synthetic data samples. The data generation mechanism of MWMOTE is based on

unsupervised clustering which ensures that the generated synthetic samples reside inside

minority area, thus avoiding any wrong or noisy synthetic data generation observed by

existing techniques. Finally, MWMOTE was integrated with AdaBoost.M2 algorithm in

a manner similar to RAMOBoost [18] algorithm to provide a better stand-alone algorithm

than existing RAMOBoost. The proposed algorithm MWMOTE-Boost tries to improve

both the majority and minority class performance without sacrificing any majority class

performance introduced by the oversampling technique.

Extensive experiments have been carried out to evaluate how well MWMOTE performs

in different data sets in comparison with other oversampling algorithms. Some artificially

88
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created data set and real world datasets were used for evaluating the performance. The

experimental results show that, MWMOTE can outperform existing techniques in terms

of a good number of overall performance measures such as accuracy, precision, F-measure,

G-mean, and AUC. Finally, similar experiments were carried out to show the effective-

ness of MWMOTE-Boost algorithm as a stand-alone classifier. The experiments shows

that, MWMOTE-Boost algorithm can outperform the state-of-the-art RAMOBoost and

SMOTEBoost algorithms in several performance measures.

6.1 Future Research

We can investigate several other research issues using MWMOTE. Firstly, the application

of MWMOTE in multi-class problems. The objective will be how efficiently MWMOTE

can be applied to multi class data sets. The second research issue is the consideration

of nominal features with MWMOTE. In this paper, we have considered datasets with

continuous features only. So, MWMOTE can be generalized to handle features of any

type. Thirdly, it can be investigated whether some other clustering mechanism can give

better performance for MWMOTE. Since, clustering is the key step of the data generation

of MWMOTE, finding a better clustering scheme may give better performance. Fourthly,

the MWMOTE oversampling technique can be integrated with some other undersampling

methods existing in literature and we can investigate whether they together can give better

results than single MWMOTE oversampling procedure. Fifthly, MWMOTE involves a

number of parameters, which can be optimized for best performance depending on the

specific problem at hand.
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