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ABSTRACT 

Some numerical simulations of multi-scale physical phenomena consume a significant 

amount of computational resources, since their domains are discretized on high 

resolution meshes. An enormous wastage of these resources occurs in refinement of 

sections of the domain where computation of the solution does not require high 

resolutions. This problem is effectively addressed by mesh refinement (MR) technique, 

a technique of local refinement of mesh only in sections where needed, thus allowing 

concentration of effort where it is required. Sections of the domain needing high 

resolution are generally determined by means of a criterion which may vary depending 

on the nature of the problem. Fairly straightforward criteria could include comparing 

the solution to a threshold or the gradient of a solution, that is, its local rate of change 

to a threshold or the presence of stress concentrator or stress riser, sharp change in cross 

section, void in material, cracks, holes etc. While the comparing of solution to a 

threshold is not particularly rigorous and hardly ever represents a physical phenomenon 

of interest, it is simple to implement.  However, the gradient criterion is not as simple 

to implement as a direct comparison of values, but it is still quick and a good indicator 

of the effectiveness of the MR technique. The MR technique can be classified into two 

categories. One is h-refinement, where either the existing mesh is split into several 

smaller cells or additional nodes are inserted locally and the other one is r-refinement in 

which move the mesh points inside the domain in order to better capture the dynamic 

changes of solution.  The objective of this thesis is to develop a MR algorithm for the 

solution of fourth order bi-harmonic equation using FDM. In the MR algorithm 

developed, a mesh of increasingly fine resolution permits high resolution computation 

in sub-domains of interest and low resolution in others. In this thesis work, the gradient 

of the solution has been considered as region selecting criteria and existing mesh is 

split into smaller meshes to achieve refine mesh. The developed MR algorithm has 

been applied for the solution of an embedded crack problem. The validity, 

effectiveness, soundness and superiority of this MR algorithm has been verified by the 

comparing of obtained solutions with uniform mesh results, FEM results and also with 

the well known published results of the same embedded crack problem having same 

material, geometry and loading conditions.  
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CHAPTER 1  

INTRODUCTION 

 
1.1 General 

Numerical analysis deals with the study of algorithms for the problems of continuous 

mathematics. These algorithms are routinely applied to many problems in science and 

engineering. Important applications include weather forecasting, climate models, the 

analysis and design of molecules, the design of structures like bridges and airplanes, 

locating oil reservoirs and the like. In addition to mathematical axioms, theorems and 

proofs, numerical analysis uses empirical results of computation runs to probe new 

methods and analyze problems. 

Some of the problems analyzed by numerical analysis can be solved exactly by an 

algorithm. These methods are called direct methods. Significant examples of such 

algorithm are the simplex method in linear programming and the Gaussian elimination 

method for solving systems of linear equations. However, for a majority of the 

problems, direct methods do not exist. For such cases, iterative methods are usually 

employed. An iterative method begins with a guess and finds successive approximation 

that hopefully converges to a solution. 

The iterative procedures consume a lot of computational resources. As a consequence, 

efficiency plays a very significant role and a heuristic method may be preferred above a 

method with a solid theoretic foundation. 

 

1.2 Background of the study 

Stress analysis is a classical topic in the field of engineering. During recent years the 

theory of elasticity has found considerable application in the solution of engineering 

problems. For the solution of the problem several methodologies can be followed, 

however, all of these methods can be classified in the following three general 

categories: experimental, analytical and numerical method. Though experimental 

methods give the most reliable results, it is very costly, as it requires special 

equipments, testing facilities etc. Analytical solution of every problem is almost 

impossible because of complex boundary conditions and shapes or geometry. For these 

reasons numerical methods had become the ultimate choice by the researchers in the 
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last few decades. Invention and rapid improvement of the computing machines i.e. 

sophisticated high performance computers, also played an important role for the 

increasing popularity of the numerical methods. For the numerical simulation of many 

practical problems in physics and engineering, it is often equivalent to solve a set of 

partial differential equations (PDEs), which represent the mathematical model of 

physical problem concerned. There are various methods available for the solution of 

partial differential equations, which are needed for the stress analysis of structures. 

Among them most popular methods are: finite difference method (FDM) and finite 

element method (FEM). The FDM is one of the oldest numerical methods known for 

solving PDE’s. The difference equations that are used to model governing equations in 

FDM are very simple to computer code and the global coefficient matrix that is 

produced by FDM possesses a banded structure, which is very effective for good 

solution. But, somehow these stress analysis problems are suffering from a lot of 

shortcomings. We have often failed in establishing a very good correlation between 

analysis and observation. To make-up this lack of good correlation, we have 

conjectured the behavior of materials in terms of its ultimate strength, yield strength, 

endurance strength, and fracture strength, but still could not really satisfactorily account 

for the shortcomings. Two factors may really be responsible for it. Both these factors 

involve management of the boundary of elastic problems: one is the conditions and 

other is the boundary shape. The necessity of the management of boundary shape has 

lead to the invention of the FEM and it’s over whelming popularity, specifically 

because of the side by side development of high power computer machines. Of course, 

the adaptations of the FEM relieved us from our major inability of managing odd 

boundary shapes but we are constantly aware of its lack of sophistication and doubtful 

quality of the solutions so obtained. The other factor of impediment to quality solutions 

of elastic problems is the treatment of the transition in boundary conditions. Elastic 

problems are either formulated in terms of deformation parameters or stress parameters. 

But, at the boundary, all the problems are invariably subjected to the mixture of both 

known deformations and known stress parameters. But neither of these two 

formulations would allow us to account fully both these two types of boundary 

conditions with equal sophistication in the region of transition where boundary 

conditions change from one type to other. Several attempts were made to overcome 

both these two difficulties faced in the management of boundaries by FDM [1-2]. 

Besides these above shortcomings, both FDM and FEM simulations are still suffered 
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by a shortcoming of consuming huge amount of computational resources because their 

domains are discretized into high resolution of meshes. The remedy of this shortcoming 

of FDM is constantly looked by several researchers [3-6] introducing a new technique 

called mesh refinement. But at present, the mesh refinement technique has limited 

application of solving the problems those are governed by two or less order of PDEs. 

So, in this thesis, a local mesh refinement scheme for fourth order bi-harmonic partial 

differential equation will be developed and this scheme will be applied to investigate 

the stress distribution of 2D elastic field having crack. This thesis is an attempt to 

overcome the shortcomings of FDM simulations of consuming large computational 

resources for solution of mixed boundary value elastic problem by local mesh 

refinement scheme. It uses a new formulation of two-dimensional elastic problems, 

which enables to maintain different scale of resolution at different sections of the 

domain depending on the accuracy level requirement of the solutions. The 

computational work in this formulation is the same magnitude as in the stress 

formulation, in case of numerical approach of solution. 

The present work is confined to homogeneous, isotropic, elastic materials. The 

response of a solid body to external forces is influenced by the geometric configuration 

of the body as well as the mechanical and elastic properties of the material.  It is found 

that most of the elastic bodies are homogeneous, that is, material is continuously 

distributed over its volume so that the smallest element cut from the body possesses the 

same specific physical properties as the body itself.  By the term isotropic it is mean 

that in any part of the body, the elastic properties are the same in all directions. It is also 

found that almost all engineering material possesses to a certain extent the property of 

elasticity. Here interest is restricted to elastic materials in which the deformation and 

stress regain their original status with the removal of external forces, provided that the 

external forces do not exceed a certain limit. 

The formulation of two dimensional elastic problems used here was first introduced by 

Uddin [7], later Idris [8] used it for obtaining analytical solutions of a number of mixed 

boundary value elastic problems, and Ahmed [9-10] extended its use where he obtained 

finite-difference solutions of a number of mixed boundary value problems of simple 

boundary shapes. This thesis simply extends the earlier works to include usability of 

mesh refinement technique to get a fast and better solution in the critical zone of a 
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structure. The rationality and the reliability of the formulation is thus checked 

repeatedly by comparing the results of mixed boundary value elastic problems obtained 

through this formulation with those available in the literature.  

1.3 Objectives of the present study 

Specific objectives are as follows: 

  

(a) Development of a local mesh refinement scheme with special treatment 

of governing equation and boundary condition at the interface of the fine 

and coarse meshes of the domain concerned. 

(b) To investigate the displacement and stress distribution of stress 

concentration zone by local mesh refinement scheme. 

(c) To compare the results obtained by the finite difference and finite 

element methods. 

 Possible Outcomes are as follows: 

(a) Improvement of the solution in the stress concentration zone. 

(b) A new mesh refinement scheme for fourth order bi-harmonic equation 

(Governing equation for potential function approach of elastic field 

analysis). 

(c) Memory savings and less computational efforts in terms of computer 

programming. 

  

1.4 Literature Review 

During recent years the theory of elasticity has found considerable application in the 

solution of engineering problems because there are many cases in which elementary 

methods of strength of materials are inadequate to provide satisfactory and accurate 

information regarding stress distribution in engineering structures. The elementary 

theory is insufficient to give information regarding local stresses near the loads and 

near the supports of structures. It fails also in the cases when the stress distribution in 

bodies, all the dimensions of which are of the same order, has to be investigated, and 

recourse must be made to more powerful methods of the theory of elasticity. Although 

the theory of elasticity had been established long before, solution of the practical 

problems started mainly after the introduction of stress function by Airy, G. B. [11]. 
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The Airy’s stress function is governed by a fourth order partial differential equation and 

the stress components are related to its various second order derivatives. Solutions were 

initially sought through various polynomial expressions of the stress function [12-13], 

but the success of this approach is very limited. Mesnager [12] solved two dimensional 

problems using stress functions in the form of polynomial and applied his results to 

several problems in bending of beams of narrow rectangular cross section. He showed 

that the elementary formulas of strength of materials give correct values for normal and 

shearing stresses in a cantilever, loaded at its free end. He also showed that the rigorous 

solution for a uniformly distributed loaded beam can be obtained with small corrections 

to the elementary formulas, which can be neglected for practical purposes. The problem 

of stress in masonary dams is of great practical interest and has been attempted by 

various authors [14-15] using polynomial expressions for the stress functions. But it 

should be noted that the solutions thus obtained do not satisfy the conditions at the 

bottom of the dam where it is connected with the foundation and would predict 

reasonable values of stress in the region far away from the foundation on account of 

Saint-Venant’s principle [16-17]. For complex boundary shapes and difficulties in the 

management of boundary conditions of practical problems, analytical solutions of such 

problems become difficult. However, most of these difficulties, in most cases, can be 

surmounted by the use of experimental methods, such as, strain measurement by strain 

gauge, photo elastic method etc. 

First application of finite difference equations, i.e. numerical method, in elasticity was 

done by Runge [18], who used this method in solving torsional problems. Subsequently 

finite difference method found very wide application in publications of stress analysis. 

Successful application of the stress function in conjunction with the finite difference 

method was reported in 1951 by Conway et al. [19]. The main shortcoming of the stress 

function formulation is that it accepts boundary conditions in terms of boundary 

loadings only. So problems containing boundary conditions in terms of restraints only 

or in terms of both loading and restraints (mixed boundary value problems) could not 

be solved by this stress function formulation. With a view to solving the problems of 

mixed boundary conditions, Uddin [7] proposed a formulation for the solution of two 

dimensional such mixed boundary value problems using the displacement potential 

function formulation and successfully applied this formulation for the solution of many 

two dimensional elastic mixed boundary value problems [1,2,8,20-22]. Not only that, 
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Hossain [23] extended the displacement potential function formulation for three 

dimensional elastic problems and obtained reliable solution for some classical problems 

of solid mechanics [24].  Solution of the two dimensional elastic problem with hole is 

successfully carried out by Rahman [25]. Beside the finite difference method, another 

numerical method namely finite element method was first successfully applied for the 

two dimensional elastic problem by Turner et al. [26] and Clough [27]. Afterwards it 

became very popular and reliable with the rapid development of the digital computers 

and used by many researchers in both two dimension and three dimension [28]. 

The elementary theory gives no means of investigating stresses in regions of sharp 

variation in cross section of structures. It is known that at reentrant corners a high stress 

concentration occurs and as a result of this cracks are likely to starts at such corners, 

especially if the structure is submitted to a reversal of stresses. The majority of 

fractures of machine parts in service can be attributed to such cracks. The finite 

difference method with Airy’s stress function or potential function approach of such 

cases would provide a better result at the vicinity of stress concentration zone, if their 

domains could discretize on high resolution meshes. But this high resolution of meshes 

needs a significant amount of computational resources. In such cases, an enormous 

wastage of these resources occurs and a huge amount of computational efforts requires 

in refinement of sections of the domain where computation of the solution does not 

require high resolutions. As stated earlier in background study, this problem is 

effectively addressed by mesh refinement (MR) technique, a technique of local 

refinement of a mesh only in sections where needed, thus allowing concentration of 

effort where it is required that is a method of changing the accuracy of solutions in 

certain regions, where solutions of the problem have to be known very accurately. The 

literature for mesh refinement is extensive, dating back to approximately thirty years 

and continuing today as a rich field of research in a number of fields like computational 

fluid dynamics, computational astrophysics, structural dynamics, magnetics, thermal 

dynamics and microwave theory among others. Several approaches [29] exist to solve 

the finite-difference equations on uniform grids in the case of regular domains, as well 

as in the case of irregular domains [30-33]. The spacing of the grid points determines 

the local error and hence the accuracy of the solution. Many physical problems have 

variations in scale and when solving these problems numerically, high grid resolution 

in certain portions is needed to adequately solve the equations. Uniform grids in such 
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situations are inefficient in terms of storage and CPU requirements. Using a highly 

refined mesh in portions of the domain where high levels of refinement are not needed 

represents a waste of computational effort. Limitations on computational resources 

often force a compromise on grid resolution. By locally refining the mesh only where 

needed, adaptive mesh refinement allows concentration of effort where it is required, 

allowing better resolution of the problem [29]. In recent years, many researchers 

applied the mesh refinement technique to solve many challenging engineering 

problems. Bieniasz [34] applied MR technique to solve BVPs in singularly perturbed 

second-order ODEs. Unterweger et al. [35] applied Spacetree-Based adaptive mesh 

refinement for hyperbolic partial Differential equations. Hiester et al. [36] applied 

numerical simulation to evaluate the impact of adaptive meshes on the two-dimensional 

lock exchange flow. 

Mesh refinement (MR) was originally developed by Berger et al. [3,5-6]. The method 

refines the mesh locally to focus computational effort where it is most needed. MR has 

found popularity in a wide range of fields such as computational fluid dynamics, 

astrophysics, oceanography, biophysics and many others [37]. In particular, it has been 

shown that the MR method is advantageous for physical systems with vastly different 

spatial scales. For example, the evolution of a hyperbolic equation often leads to local 

shocks, near which numerical methods can have large errors. These errors might 

propagate and further contaminate the solution across the entire domain. Moreover, the 

solution structures of different scales might interact, and the failure to address features 

on one scale can jeopardize the quality of the entire solution. The multi-resolution 

nature of the MR algorithm makes it ideal for these cases, where computational savings 

can be enormous [5]. The strategies of adaptive mesh refinement can fall into two 

categories from the viewpoint of way of multi-resolution of the domain concerned. The 

first category includes the adaptive algorithms involved local mesh refinement where 

either the existing mesh is split into several smaller cells or additional nodes are 

inserted locally usually referred as h-refinement. This group can be further categorized 

by the mesh type, i.e. hierarchical structured grid approach and unstructured mesh 

refinement approach. One representative of structured grid approaches is adaptive 

Cartesian mesh refinement proposed by Berger et al. [3,5-6]. They represented h-

refinement by splitting the existing mesh into several smaller cells as shown in figure 

1.1. Their approach is established on regular Cartesian meshes, but arranged 



8 

hierarchically with different resolutions. At the fine/coarse cell interfaces, special 

treatment is required for the communications between the meshes at different levels. 

Actually, they replaced the coarse cell value by the average of all the fine grid points in 

that cell for communications between different levels of meshes. Some other structured 

grid approaches of adaptive mesh refinement are represented by different researchers 

[38-39]. In this case, they inserted additional nodes locally to obtain h-refinement. 

Mehl and Hill [38] represented a new method of local grid refinement for two-

dimensional block-centered finite-difference meshes in the context of steady-state 

groundwater-flow modeling. The method uses an iteration-based feedback with shared 

nodes to couple two separate grids shown in figure 1.2. They used Darcy’s law in one 

dimension as governing equation for ground water system which can be given as 

ݍ = ܭ− డ௛
డ௫

 where, q is the heat flux, K is the hydraulic conductivity and డ௛
డ௫

, hydraulic 

gradient. Since the governing equation is first order, it is very easy to satisfy at different 

region of the domain concerned. A solution-adaptive algorithm was presented for the 

simulation of incompressible viscous flows by Ding and Shu [39]. Their framework 

consists of an adaptive local stencil refinement algorithm and 3-points central 

difference discretization. The adaptive local stencil refinement is designed in such a 

manner that 5-points symmetric stencil is guaranteed at each interior node, so that 

conventional finite difference formula can be easily constructed everywhere in the 

domain shown in figure 1.3. Since the governing equation for incompressible viscous 

flow is second order, the two types of stencil (figure 1.3) are sufficient to satisfy the 

domain shown in figure 1.4.      

  

 

 

 

 

Figure 1.1: Structured grid approach of AMR technique obtained by splitting the 

existing cell into smaller one. 

Fine 
mesh 

Coarse 
mesh Interface 
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Figure 1.2: Structured grid approach of AMR technique obtained by inserting mesh 

locally. Darker shading is material represented by the child grid, lighter shading is 

material represented by the parent grid, and no shading is material at the interface. 

 

 

 

Figure 1.3: Two stencil configuration used by Ding and Shu for second order equation. 

 

 

 

 

 

              a) Only domain.                                        b)  Domain and boundary 

Figure 1.4: Discretization of domain under AMR technique used by Ding and Shu. 

With regard to the unstructured mesh refinement approach, Zienkiewicz reviewed the 

state-of-the-art of the automatic mesh refinement strategies in the finite element 

community in [28], and discussed the important role of error estimation and automatic 
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adaptation in the finite element analysis. Unlike the local refinement algorithm, the 

second category of adaptive algorithms involves global mesh-redistribution. These 

methods move the mesh points inside the domain in order to better capture the dynamic 

changes of solution. Therefore, such techniques are usually referred as moving mesh 

method or r-refinement. This group of adaptive methods is less popular than the first 

group. However, it can offer some distinct features. For example, they do not need to 

delete/insert nodes to coarsen/refine the local mesh. The practitioners also do not need 

to construct and maintain a hierarchical mesh structure. Applications of the moving 

mesh method have been extended to many challenging problems, such as the thin flame 

propagating [40], drop formation [41], non-breaking free surface wave [42]. 

1.5 Scope of the present study 

This thesis consists of five chapters. A detail literature review is provided in Chapter 1. 

It illustrates the past research works showing various milestones and events that 

occurred in the field of stress analysis, theory of elasticity, application of various 

solution techniques and the evolution of mesh refinement technique in finite difference 

method.  

In chapter 2, the relevant basic theories are recapitulated in brief to understand the 

theories of elasticity. The mathematical model, used for the finite difference scheme of 

the study is described for better understanding of displacement potential function 

formulation. 

Chapter 3 depicts the numerical modeling of the problem, mainly the finite difference 

formulation of the fourth order partial differential governing equation and different 

boundary conditions. This chapter also describes the treatment of the formulation of 

governing equation and boundary conditions over non-uniform mesh for MR technique. 

Later in the chapter, a summary is also made on finite element method since finite 

element method is the supporting tool for the validation of finite difference results of 

the study. 

In chapter 4, detailed analysis of results is presented accompanied by a validation. A 

similar problem is solved by the FDM and FEM. Both results are compared with each 

other. Another two problems are analyzed to show improvement of accuracy of 

solutions obtained by MR technique over uniform mesh (UM) technique. Results 
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obtained from the finite difference with MR technique for different boundary 

conditions are critically analyzed.   

Finally in Chapter 5, the dissertation is completed with the main conclusions and the 

recommendations for future works. 

 

 



 

 

CHAPTER 2  

MATHEMATICAL MODEL 
 

2.1 Introduction 

One of the most important thing engineers and scientists do is to model physical 

phenomenon. Virtually every phenomenon in nature, whether aerospace, biological, 

chemical, geological or mechanical can be described, with the aid of the laws of physics or 

other fields in terms of algebraic, differential, and/or integral equations relating various 

quantities of interest. A mathematical model can be broadly defined as a set of equations 

that expresses the essential features of a physical system in terms of variables that describe 

the system. The mathematical models of a physical system are developed using 

assumptions concerning how the process works and using appropriate axioms or 

fundamental laws of physics such as the principle of conservation of mass, conservation of 

linear momentum, and conservation of energy, and they are often characterized by very 

complex differential and/or integral equations posed on geometrically complicated 

domains. Consequently, the processes to be studied, until the advent of electronic 

computation, were drastically simplified so that the governing equations can be solved 

analytically. Over the last few decades, however, computers have made it possible, with 

the help of suitable mathematical models and numerical methods, to solve many practical 

problems of engineering.   

Almost all engineering materials possess to a certain extent the property of elasticity. If the 

external forces producing deformations do not exceed certain limit (elastic limit), the 

deformation disappears with the removal of forces. Throughout this thesis it will be 

assumed that the bodies undergoing the action of external forces are perfectly elastic, i.e. 

they resume their initial form completely after removal of the forces. Atomic structure will 

not be considered here. It will be assumed that the matter of an elastic body is 

homogeneous and continuously distributed over its volume so that the smallest element cut 

from the body possesses the same specific physical properties as the body. To simplify the 

discussion it will also assumed that for most of the body is isotropic i.e. that the elastic 

properties are the same in all directions. 



 

13 
 

2.2 Stresses at a Point 

Under the action of external forces, internal forces are produced within the elastic body. 

The intensity i.e. internal forces per unit area of the surface on which they act is called 

stress. External forces may be of two types: surface force and body force. Forces 

distributed over the surface of a body, such as hydrostatic pressure, are called surface 

forces. Forces distributed over the volume of the body, such as gravitational force or inertia 

force, are called body force. As the effect of body forces as compared to the surface forces 

is very small, in most practical cases body forces are neglected. In the present study only 

the surface forces are taken into consideration. 

The displacements, strains and stresses in a deformable body are interlinked. Additionally, 

they all depend on the geometry and material of the work piece, external forces and 

supports. The discussion is beginning on the governing equations with the concept of stress 

at a point. To understand the concept of stress at a point, consider a body subjected to 

external forces and supported in a suitable fashion, as shown in Figure 2.1. Note that, as 

soon as the forces are applied, the body gets deformed and sometimes displaced if the 

supports do not restrain the rigid body motion of the body. Thus, Figure 2.1 shows the 

deformed configuration. In fact, throughout this section, the configuration considered will 

be the deformed configuration. First, the stress vector (on a plane) is defined at point P of 

the body. For this, a plane (called as cutting plane) is passed through point P having a unit 

normal n. On each half of the body, there are distributed internal forces acting on the 

cutting plane and exerted by the other half. On the left half, a small area ΔA is considered 

around point P of the cutting plane. Let ΔF be the resultant of the distributed internal 

forces (acting on ΔA) exerted by the right half. Then, the stress vector (or traction) at point 

P (on the plane with normal n) is defined as 

୬ܜ =  lim
∆୅→଴

∆۴
∆A                                                                                                                                 (2.1) 
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                                                                b 

Figure 2.1: Stress vector at a point on a plane. (a) Cutting plane passing through point P of 

the deformed configuration, (b) Stress vector tn, normal stress component, σn and shear 

stress component, σt acting at point P on the cutting plane. 

The component of tn normal to the plane is called as the normal stress component. It is 

denoted by σn and The component of tn along the plane is called as the shear stress 

component. It is denoted by σs. Note that, on the right half, the normal to the cutting plane 

will be -n and the stress vector at P will be –tn as per the Newton’s third law.  

It can be shown that a stress vector on any arbitrary plane can be uniquely represented in 

terms of the stress vectors on three mutually orthogonal planes. To show this, we consider 

x, y and z planes as the three planes, having normal vectors along the three Cartesian 

directions x, y and z respectively. Let the stress vectors on x, y and z planes be denoted by 

tx, ty and tz respectively. Further, we denote their components along x, y and z directions as 

follows: 
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tx = σx .i+ σxy.j + σxz.k                                               (2.2) 

ty = σyx .i+ σy.j + σyz.k                         (2.3) 

tx = σzx .i+ σzy.j + σz.k                                      (2.4) 

where, (i, j ,k) are the unit vectors along(x, y ,z ) axes. The stress vectors and their 

components are shown in Figure 2.2.To derive the above result, we consider a small 

element at point P whose shape is that of a tetrahedron. The three sides of the tetrahedron 

are chosen perpendicular to x, y and z axes and the slant face is chosen normal to vector n. 

Then, equilibrium of the tetrahedron in the limit as its size goes to zero leads to the 

following result: 

tn = tx .nx + ty. ny +tz.nz                          (2.5) 

Where nx, ny, and nz are the components of the normal vector n. This result is true for 

every stress vector at point P no matter what the orientation of the normal vector n is. 

Further, this result remains valid even if the body forces are not zero or the body is 

accelerating. 

Let the components of the stress vector tn be 

tn = (tn)x. i + (tn)y. j + (tn)z. k                                    (2.6) 
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Figure 2.2: Stress vectors and their components on x, y, and z plane. (a) Stress vector and 

its components on x plane, (b) Stress vector and its components on y plane, (c) Stress 

vector and its components on z plane. 

Substituting Eqs. (2.2-2.4) and (2.6), we get the component form of Eq. (2.5) as follows: 

ቐ
(t୬)୶
(t୬)୷
(t୬)୸

ቑ = ൥
σ୶ σ୷୶ σ୸୶
σ୶୷ σ୷ σ୸୷
σ୶୸ σ୷୸ σ୸

൩ . ൝
n୶
n୷
n୸
ൡ                                                                                            (2.7) 

In array notation, this can be written as 

{t୬} = [σ]୘. {n}                                                                                                          (2.8) 

Where, the stress matrix [ߪ] is 

[σ] =     ൥
σ୶ σ୷୶ σ୸୶
σ୶୷ σ୷ σ୸୷
σ୶୸ σ୷୸ σ୸

൩                                                                                             (2.9) 
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Therefore, it is evident that the stress at a point can be completely described by means of 

just three stress vectors tx , ty and tz acting on mutually orthogonal planes or by their nine 

components: σx, σy, σz, σxy, σyx. σyz, σzy, σxz, and σzx.  In the notation of stresses, the first index 

describes the direction of the normal to the plane on which the stress component acts while 

the second index represents the direction of the stress component itself, when both indices 

are same only one is kept. Thus, σxy indicates a stress component acting in y -direction on 

x -plane. When both the indices are same, then the second one simply omitted and, it 

means the stress component is along the normal to the plane on which it acts. It is called as 

the normal stress component. Thus, σx, σy and σz are the normal stress components. When 

the two indices are different, it means the direction of the component is within the plane. 

Such a component is called as the shear stress component.  

2.3 Stress, Strain and Their Relationship 

In order to provide the complete idea about the states of stresses, strains and displacements 

it is necessary to determine the nine components of stress (σx, σy, σz, σxy, σyx, σyz, σzy, σxz 

and σzx), six components of strain (εx, εy, εz, γxy, γyz, and γzx). Sometimes displacement 

components (u, v and w) are evaluated instead of strains components. These components 

can be better understood with reference to a cubic element as shown in figure 2.3. The first 

subscript of the symbol indicates the direction of the normal of the plane on which the 

stress is acting and the second subscript indicates the direction of the stress. By a simple 

consideration of the equilibrium of the element the number of symbols for shearing 

stresses can be reduced to three i.e. σxy = σyx, σyz = σzy and σxz = σzx. As a result, the nine 

components of stress reduce to six independent components only. 

The deformation of the elastic body is considered very small and by definition, the normal 

and shear strain can be given by  

ε୶ =
∂u୶
∂x , ε୷ =

∂u୷
∂y , ε୸ =

∂u୸
∂z                                                                                                  (2.10) 

γ୶୷ =
∂u୶
∂y +

∂u୷
∂x ,  γ୷୸ =

∂u୷
∂z +

∂u୸
∂y ,  γ୸୶ =

∂u୸
∂x +

∂u୶
∂z                                                   (2.11) 
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Where, εx, εy and εz are the strain components parallel to the co-ordinate axis called normal 

strain and γxy, γyz, and γzx are strain components acting on the planes xy, yz and zx planes 

respectively, called shear strain. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Stress components in a cubic element. 

The stresses are related to the strains by the Hooke’s law. The generalized Hooke’s law 

suggests that each of the stress components is the linear function of the strain components. 

The stresses are related to the strains by the Hooke’s law and Poisson’s law as follows 

[43]: 

ε୶ =
1
E
ൣσ୶ − μ൫σ୷ + σ୸൯൧ 

ε୷ =
1
E
ൣσ୷ − μ(σ୸ + σ୶)൧                                                                                                          (2.12) 

ε୸ =
1
E
ൣσ୸ − μ൫σ୶ + σ୷൯൧ 

Where, E is the modulus of elasticity and μ is the Poison’s ratio. 
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2.4 Plane Stress and Plane Strain 

Although practically all the bodies are three dimensional, most of the practical problems of 

stress analysis could be reduced to two dimensional by applying two simplifying 

assumptions. One, the loading on the body is confined in a plane and the dimension of the 

body in the direction perpendicular to this plane is relatively small as compared to the 

others.  In such cases, the stresses in the body perpendicular to the plane of loading are 

usually very small and thus can be neglected. As a result these problems become two 

dimensional, usually referred to as plane stress problems. Two, one of the three dimensions 

of the body is relatively large or straining in a particular direction is restrained. In such 

cases, the stresses in the large or restrained direction are zero. As a result these problems 

become two dimensional and usually referred to as plane strain problems. 

If a thin plate is loaded by forces applied at the boundary, parallel to the plane of the plate 

and distributed over the thickness (Figure 2.4), the stress components σz, σzx, σyz become 

zero on both faces of the plate, and it may assumed that they are also zero within the plate. 

Thus in a plane stress problems the state of stress is defined by σx, σy, σxy only. 

 

 

 

 

 

 

 

 

Figure 2.4: Plane stress. 
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A similar simplification is possible when the dimension of the body in the z-direction is 

very large. If a long cylindrical or prismatic body is loaded by forces that are perpendicular 

to the longitudinal elements and do not vary along the length, it may be assumed that all 

the cross sections are in the same condition. Problems like a retaining wall with lateral 

pressure (Figure 2.5a), a culvert or tunnel, a cylindrical tube with internal pressure (Figure 

2.5b), a cylindrical roller compressed by forces in a diametric plane as in a roller bearing 

etc. can be considered of this kind and called plain strain problem. 

 

 

(a) Retaining wall with lateral pressure.        (b)  A cylindrical tube with internal pressure. 

Figure 2.5: Plane strain. 

 

2.5 Differential Equations of Equilibrium and Boundary Conditions 

For static equilibrium of the infinitesimal cubic element as shown in figure 2.3, the 

following equations can be obtained, [43] 

∂σ୶
∂x +

∂σ୶୷
∂y +

∂σ୶୸
∂z + X = 0 

∂σ୷
∂y +

∂σ୶୷
∂x +

∂σ୷୸
∂z + Y = 0                                                                                                    (2.13) 

∂σ୸
∂z +

∂σ୶୸
∂x +

∂σ୷୸
∂y + Z = 0 

x 

 
x 

y 

x 

y y 

Z 
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These equations (2.13) are known as the equations of equilibrium, where X, Y, and Z are 

the components of body force per unit volume of the element in x, y, and z-directions 

respectively. The body forces can be eliminated due to their negligible effect as compared 

to that of surface forces. For plane stress condition the cubic element reduces to a thin 

rectangular block and in the absence of body forces acting on that block, hence the 

equilibrium equations yields to 

∂σ୶
∂x +

∂σ୶୷
∂y = 0                                                                                                                          (2.14) 

∂σ୷
∂y +

∂σ୶୷
∂x = 0 

Above equations must be satisfied at all points throughout the body. The stress 

components vary over the volume of the block. At the boundary they must be in 

equilibrium with external forces on the boundary and the external forces may be 

considered as the continuation of the internal stress distribution. So the conditions of 

equilibrium at the boundary can be written as [43], 

σ୬ = σ୶lଶ + σ୷mଶ + 2σ୶୷lm 

σ୲ = σ୶୷(lଶ − mଶ) + ൫σ୷ − σ୶൯lm                                                                                          (2.15) 

Where, σn and σt are the normal and tangential components of the surface forces acting on 

the boundary per unit area and l, m are the direction cosines of the normal to the surface. 

Similarly, normal component of displacement un and the tangential component ut acting on 

the boundary surface can be expressed by 

u୬ = u. l + v. m 

u୲ = v. l − u. m                                                                                                                            (2.16) 

Generally normal components (σn and un) are considered to be positive when act outward 

on the boundary and the tangential components (σt and ut) are considered positive if they 

act in the anti-clockwise direction on the body. 
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2.6 Compatibility Equations 

To determine the state of stress in the two-dimensional elastic body, it is necessary to find 

the solution of the equilibrium equations (Eq. 2.14), which must satisfy the boundary 

conditions (Eq. 2.15 and 2.16) at the boundary. Since these two equations contain three 

unknown stress components (σx, σy, and σxy), they are not sufficient to determine the three 

components. Therefore, the problem is a statically indeterminate one. As a result, to obtain 

the solution, the elastic deformations of the body must be taken into consideration. For two 

dimensional bodies, three strain components can be expressed in terms of the displacement 

components as 

ε୶ =
∂u
∂x ;         ε୷ =

∂v
∂y ;           γ୶୷ =

∂u
∂y +

∂v
∂x                                                                        (2.17) 

Since these three strain components are expressed by two functions only, they can be 

related arbitrarily among themselves. There exists a certain relationship among the strain 

components, which is expressed as, 

∂ଶε୶
∂yଶ +

∂ଶε୷
∂xଶ =

∂ଶγ୶୷
∂x ∂y                                                                                                                   (2.18) 

This differential relation is called the condition of compatibility. It must be satisfied by the 

strain components to ensure the existence of functions u and v connected with the strain 

components by Eq. 2.17. 

Elimination of strains in terms of stresses, equation (Eq. 2.18) yields to 

ቆ
∂ଶ

∂xଶ +
∂ଶ

∂yଶቇ
൫σ୶ + σ୷൯ = 0                                                                                                     (2.19) 

The equations (Eq. 2.14) of equilibrium together with the boundary conditions (Eq. 2.15) 

and the above compatibility equation (Eq. 2.19) give us a system of equations that is 

usually sufficient for the complete solution of stress distribution in a two dimensional 

problem. 
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2.7 Solution Technique for 2-D Problems with Known Stresses at the Boundary 

The solution of two dimensional elastic problems requires integration of the differential 

equations of equilibrium (Eq. 2.14) together with the compatibility equations (Eq. 2.19) 

and the boundary conditions (Eq. 2.15), [43] repeated for ready reference. 

∂σ୶
∂x +  

∂σ୶୷
∂y = 0 

∂σ୷
∂y +  

∂σ୶୷
∂x = 0                                                                                                                         (2.14) 

ቆ
∂ଶ

∂xଶ +
∂ଶ

∂yଶቇ
൫σ୶ + σ୷൯ = 0                                                                                                     (2.19) 

σ୬ =  σ୶. lଶ + σ୷. mଶ + 2σ୶୷. l m 

σ୲ =  σ୶୷. (lଶ − mଶ) + ൫σ୷ − σ୶൯. l m                                                                                    (2.15) 

The usual method of solving these equations is through the introduction of a function 

φ(x,y), known as Airy’s stress function, defined as 

σ୶ =  
∂ଶϕ
∂yଶ ;          σ୷ =  

∂ଶϕ
∂xଶ ;        σ୶୷ =  

∂ଶϕ
∂x. ∂y                                                                    (2.20) 

Which satisfies equations (Eq. 2.14) and transforms the equation (Eq. 2.19) into 

∂ସϕ
∂xସ +  2

∂ସϕ
∂xଶ. ∂yଶ +

∂ସϕ
∂yସ = 0                                                                                                   (2.21) 

Ultimately, equation (Eq. 2.21) has to be integrated satisfying equation (Eq. 2.15) at the 

boundary. But the solution approach stated above through the stress function φ(x,y) is a 

special case of a general problem. Only a problem with pure known stress at the boundary 

can be solved by this approach. But, most of the practical engineering problems are with 

the mixed boundary conditions, that is, the conditions at the boundary might include 

known stresses, known displacements or combination of stresses and displacements with 
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different conditions in different segments at the boundary. A problem of this kind can’t be 

solved through Airy’s stress function φ(x,y), defined in equation (Eq. 2.20). 

2.8 Mathematical Formulation in terms of Displacement Potential Function 

In absence of body forces, the equilibrium equations for two dimensional elastic problems 

in terms of displacements components [9, 44] are as follows 

∂ଶu
∂xଶ + ൬

1 − μ
2 ൰  

∂ଶu
∂yଶ + ൬

1 + μ
2 ൰

∂ଶv
∂x.∂y = 0 

 
∂ଶv
∂yଶ + ൬

1 − μ
2 ൰  

∂ଶv
∂xଶ + ൬

1 + μ
2 ൰

∂ଶu
∂x.∂y = 0                                                                            (2.22) 

These two homogeneous elliptic partial differential equations with the appropriate 

boundary conditions should be sufficient for the evaluation of the two functions u and v, 

and the knowledge of these functions over the region concerned will uniquely determine 

the stress components. 

Although the above two differential equations are sufficient to solve mixed boundary value 

elastic problems but in reality it is difficult to solve for two functions simultaneously. So, 

to overcome this difficulty, investigations are necessary to convert equations (Eq. 2.22) 

into a single equation of a single function. If that function is defined in terms of the 

displacement function u and v, then the determination of that function uniquely determines 

the stress functions sought for. 

A new potential function approach involves investigation of the existence of a function 

defined in terms of the displacement components. In this approach attempt had been made 

to reduce the problem to the determination of a single variable. A function ψ(x,y) is thus 

defined in terms of displacement components as, [3] 

u =
∂ଶψ
∂x. ∂y 

v = − ቈ൬
1 − μ
1 + μ൰

∂ଶψ
∂yଶ + ൬

2
1 + μ൰

∂ଶψ
∂xଶ

቉                                                                                      (2.23) 
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With this definition of ψ(x,y), the first of the two equations (Eq. 2.22) is automatically 

satisfied. Therefore, ψ has only to satisfy the second equation. Thus, the condition that ψ 

has to satisfy is 

∂ସψ
∂xସ +  2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0                                                                                                   (2.24) 

Therefore, the problem is reduced to the evaluation of a single variable ψ(x,y) from the 

above bi-harmonic partial differential equation. 

2.9 Boundary Conditions for the Function ψ for Mixed Boundary Value Problems 

In order to solve the problem by solving for the function ψ of the bi-harmonic equation 

(Eq. 2.24), the boundary conditions should be expressed in terms of ψ. The boundary 

conditions are known restraints and loadings, that is, known values of components of 

stresses and displacements at the boundary. The relation between known functions and the 

potential function ψ at the boundary are [3]: 

u =
∂ଶψ
∂x. ∂y 

v = − ቈ൬
1 − μ
1 + μ൰

∂ଶψ
∂yଶ + ൬

2
1 + μ൰

∂ଶψ
∂xଶ

቉                                                                                      (2.25) 

σ୶ =
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂xଶ ∂y − μ

∂ଷψ
∂yଷ

቉ 

σ୷ = −
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂yଷ + (2 + μ)

∂ଷψ
∂xଶ ∂y

቉                                                                              (2.26) 

σ୶୷ =
E

(1 + μ)ଶ
ቈμ

∂ଷψ
∂yଶ ∂x −

∂ଷψ
∂xଷ

቉                                                                            

From the above expressions it is found that, as far as boundary conditions are concerned, 

either known restraints or known stresses or combinations of stresses and displacements, 

all can be converted to finite difference expressions in terms of ψ at the boundary. 
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Considering a pragmatic applicability, the rectangular components are converted into 

normal and tangential components, as these are actually known at the boundary using the 

following relationship (Eq. 2.15 and Eq. 2.16) [33]. 

u୬ =  u. l + v. m 

u୲ =  v. l − u. m                                                                                                                            (2.16) 

σ୬ =  σ୶. lଶ + σ୷. mଶ + 2σ୶୷. l m 

σ୲ =  σ୶୷. (lଶ − mଶ) + ൫σ୷ − σ୶൯. l m                                                                                    (2.15) 

2.10 Selection of Boundary Conditions 

The possible known boundary components at a boundary point are any two out of four 

quantities, namely, un and ut, the normal and tangential displacement components, σn and 

σt, the normal and tangential stress components. The possible sets of boundary conditions 

can be- 

A. (i) Normal displacement component (un) 

(ii) Tangential displacement component (ut) 

             Or 

B. (i) Normal displacement component (un) 

(ii) Normal stress component (σn) 

Or 

C. (i) Normal displacement component (un) 

(ii) Tangential stress component (σt) 

Or 

D. (i) Tangential displacement component (ut) 

(ii) Normal stress component (σn) 

 Or 

E. (i) Tangential displacement component (ut) 

(ii) Tangential stress component (σt) 

 Or 
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F. (i) Normal stress component (σn) 

(ii) Tangential stress component (σt) 

But among the above six sets of boundary conditions, sets B and E do not usually occur in 

practical problems. So the remaining four possible sets of boundary conditions at any point 

on the boundary, which are considered in the present study are 

1. (un, ut) 

2. (un, σt) 

3. (ut, σn) and 

4. (σn, σt). 

 



 CHAPTER 3  

NUMERICAL  MODEL 
3.1 Introduction 

While the derivation of the governing equations for most of the problems is not unduly 

difficult, their solution by exact methods of analysis is often difficult due to geometric 

and material complexities. In such cases, numerical methods of analysis provide 

alternative means of findings solutions. Numerical methods are techniques by which 

mathematical problems are formulated so that they can be solved with arithmetic 

operations and always give an approximate solution. Although numerical methods can’t 

give an exact result, it is used extensively by the researchers to save money and time, 

compromising with the accuracy, especially when analytical methods are not available. 

Numerical methods typically transform differential equations governing a continuum to 

a set of algebraic equations of a discreate model of the continuum that are to be solved 

using computers. The use of a numerical method and a computer to evalute the 

mathematical model of a process and estimate its characteristics is called numerical 

simulation. There are several reasons why an engineer or a scientist should study a 

numerical method: 1) Most practical problems involve complicated domains (both 

geometry and mateial constitution), loads, and nonlinearities that forbid the 

development of analytical solutions. Therefore, the only alternative is to find 

approximate solutions using numerical methods. 2) A numerical method, with the 

advent of a computer, can be used to investigate the effects of various parameters of the 

system on its response to gain a better understanding of the process/system being 

analyzed.  3) It is cost effective and saves time and material resources compaered to the 

multitude of physical experiments needed to gain the same level of understanding. 4) 

Because of the power of numerical methods and eletronic computation, it is possible to 

include all relevant features in a mathematical model of a physical process without 

worrying about its solution by exact means. 5) Those who are quick to use a computer 

program rather than think about the problem to be analyzed may find it difficult to 

interpret or explain the computer-generated results. Even to develop proper input data 

for the computer program, a good understanding of the underlying theory of the 

problem as well as the numerical method is required. 
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3.2 Finite Difference Method 

The finite-difference method is one of the oldest numerical methods known for solving 

PDE’s. In finite difference method, the derivatives of an original differential equation 

are replaced by the finite divided difference formulae for derivatives which are 

obtained by approximations of Tailor’s series. So a differential equation is converted 

into a set of linear algebraic equation which can be solved by a suitable technique. 

Since all finite difference formulae are approximation of infinite series of differences, it 

is necessary that the series should converge or the error caused by the truncation should 

be sufficiently small to give a reliable result. 

In this method, the region of the body under consideration is divided by lines parallel to 

the co-ordinate axes. And points hence formed at the intersection of the these lines are 

treated as a grid of finite number of discrete points which are called node points as 

shown in Figure 3.1. The continuous problem domain is discretized so that the 

dependent variables are considered to exist only at discrete nodal points. The finite 

difference form of governing partial differential equation is applied to all node points 

except the boundary node points and appropriate boundary conditions are applied to the 

boundary node points. To apply the boundary conditions at the boundary, a false or 

imaginary boundary is considered outside of real boundary as shown in figure 3.1. This 

imaginary boundary is necessary because each boundary point is subjected to a pair of 

boundary conditions such as u,v or u,x or u,xy etc. From these two boundary 

conditions one is applied to real boundary and other is applied to real boundary by 

using pivot at corresponding imaginary boundary points. This gives a complete set of 

simultaneous equations, i.e. number of equations in the set is equal to the number of 

grid points, which is solved by a suitable numerical technique. 

In the remaining portion of the chapter, the conversion procedure of the partial 

differential equation (Eq. 2.24) and boundary conditions (Eq. 2.25 and 2.26) in the 

form of difference equations is provided. 
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3.2.1 Finite Difference Formulae of the Derivatives 

Finite difference approximations of the derivatives are actually truncated form of 

Taylor’s series expansion. Three forms of finite-difference equations are very 

commonly used. The three forms are 

 Forward Difference 

 Backward Difference 

 Central Difference 

The level of accuracy of each form depends on the number of terms of the Taylor’s 

series that are retained during the derivation of these formulas. To illustrate the 

derivation of the difference equations, a pivot point at (i, j) is considered and the 

neighboring points are designated as shown in the Figure 3.1. All points are at a finite 

distance of ‘h’ and ‘k’ form each other in x- and y-directions respectively. If a certain 

function f(x, y) has continuous partial derivatives of considerably higher order, then 

according to Taylor’s series the value of function at a point (i+1, j) can be given by 

           
2 3 n

nh h hf i 1, j f i, j hf i, j f i, j f i, j .......... f i, j ...
2! 3! n!

         
            

(3.1)
 

Where, h= (xi+1, j – xi, j ). Similarly the value of function at (i-1, j) can be expressed as, 

Figure 3.1: Discretization of rectangular body into a grid of points. 
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           
2 3 n

n nh h hf i 1, j f i, j hf i, j f i, j f i, j .......... ( 1) f i, j ...
2! 3! n!

          
 
(3.2)

 

Subtracting last equation from the previous equation gives 

       2

i, j

f i 1, j f i 1, jff i, j O h
x 2h

                                                                            

(3.3)
 

This equation is called central finite divided difference formula for first derivative and 

O(h2) represents the order of the truncation error. And some simple mathematical 

manipulation of Eq. 3.1 and Eq. 3.2 gives respectively 

       
i, j

f i 1, j f i, jff i, j O h
x h

                                                                                    

(3.4)
 

       
i, j

f i, j f i 1, jff i, j O h
x h

                                                                                    

(3.5)
 

The former is called forward finite divided difference formula and later is called 

backward finite divided difference formula for first derivative. It is noticeable that last 

two equations are less accurate then the Eq. 3.3, though all three equations represent the 

difference equation of first derivative. Accuracy of forward and backward difference 

equation can be improved if more points are considered. The value of function at the 

points (i+2, j) and (i-2, j) can be expressed as 

           
2 3 4(2h) (2h) (2h)f i 2, j f i, j 2hf i, j f i, j f i, j f i, j ...

2! 3! 4!
         

      
(3.6)

 

           
2 3 4(2h) (2h) (2h)f i 2, j f i, j 2hf i, j f i, j f i, j f i, j ...

2! 3! 4!
         

       
(3.7)

 

If these two equations (Eq. 3.6 and 3.7) are combined with the previous two equations 

(Eq. 3.1 and 3.2), then it is found that 

         2

i, j

f i 2, j 4f i 1, j 3f i, jff i, j O h
x 2h

                                                       

(3.8)
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         2

i, j

3f i, j 4f i 1, j f i 2, jff i, j O h
x 2h

                                                         

(3.9)
 

It is noticeable that last two equations involve three node points including the point of 

application which is called pivot point. So these three finite difference equations for 

first derivative (Eq. 3.3, 3.8 and 3.9), having same accuracy to order of h2, can be 

expressed graphically (by using stencil) as in Figure 3.2. 

 

Again this accuracy level can be enhanced by considering more points in the 
formulation. So the difference equations of accuracy of order of h2 or k2 can be given as 

Forward finite divided difference equations: 

i) First derivative: 

         2

i, j

f i 2, j 4f i 1, j 3f i, jff i, j O h
x 2h

            

         2

i , j

f i, j 2 4f i, j 1 3f i, jff i, j O k
y 2k

                                                     (3.10) 

ii) Second derivative: 

           
2

2
2 2

i, j

f i 3, j 4f i 2, j 5f i 1, j 2f i, jff i, j O h
x h

            
           (3.11) 

           
2

2
2 2

i, j

f i, j 3 4f i, j 2 5f i, j 1 2f i, jff i, j O k
y k

                          (3.12)
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Figure 3.2: Stencils for first derivative of various forms. 
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iii) Third derivative: 

           
3

2
3 3

i, j

f i 3, j 6f i 2, j 12f i 1, j 10f i, j 3f i 1, jf O h
x 2h

         
          (3.13)

 

           
3

2
3 3

i, j

f i, j 3 6f i, j 2 12f i, j 1 10f i, j 3f i, j 1f O k
y 2k

         
   

      (3.14) 

iv) Fourth derivative: 

     
       

4
2

4 4
i, j

2f i 5, j 11f i 4, j 24f i 3, jf 1 O h
x h 26f i 2, j 14f i 1, j 3f i, j

       
            

                       (3.15) 

     
       

4
2

4 4
i, j

2f i, j 5 11f i, j 4 24f i, j 3f O k
y k 26f i, j 2 14f i, j 1 3f i, j

       
                                        (3.16)                                   

Central finite difference equations: 

i) First derivative: 

       2

i, j

f i 1, j f i 1, jff i, j O h
x 2h

        
                     

       2

i, j

f i, j 1 f i, j 1ff i, j O k
y 2k

        
                                                      (3.17) 

 

ii) Second derivative: 

       
2

2
2 2

i, j

f i 1, j 2f i, j f i 1, jf O h
x h

    
   

                                                    (3.18) 

       
2

2
2 2

i, j

f i, j 1 2f i, j f i, j 1f O k
y k

    
   

                                                    

(3.19) 

iii) Third derivative: 

1 
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         
3

2
3 3

i, j

f i 2, j 2f i 1, j 2f i 1, j f i 2, jf O h
x 2h

       
   

                         (3.20) 

         
3

2
3 3

i, j

f i, j 2 2f i, j 1 2f i, j 1 f i, j 2f O k
y 2k

       
   

                           (3.21) 

iv) Fourth derivative: 

           
4

2
4 4

i, j

f i 2, j 4f i 1, j 6f i, j 4f i 1, j f i 2, jf O h
x h

        
   

 (3.22) 

           
4

2
4 4

i , j

f i, j 2 4f i, j 1 6f i, j 4f i, j 1 f i, j 2f O k
y k

        
   

           (3.23) 

Backward finite divided difference equations: 

i) First derivative: 

         2

i, j

3f i, j 4f i 1, j f i 2, jff i, j O h
x 2h

         
                   

         2

i , j

3f i, j 4f i, j 1 f i, j 2ff i, j O k
y 2k

         
                                     (3.24) 

ii) Second derivative: 

           
2

2
2 2

i , j

f i 3, j 4f i 2, j 5f i 1, j 2f i, jff i, j O h
x h

            
             (3.25) 

           
2

2
2 2

i, j

f i, j 3 4f i, j 2 5f i, j 1 2f i, jff i, j O k
y k

            
             (3.26) 

iii) Third derivative: 

           
3

2
3 3

i, j

f i 3, j 6f i 2, j 12f i 1, j 10f i, j 3f i 1, jf O h
x 2h

        
   

      (3.27) 
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           
3

2
3 3

i , j

f i, j 3 6f i, j 2 12f i, j 1 10f i, j 3f i, j 1f O k
y 2k

        
   

      (3.28) 

iv) Fourth derivative: 

     
       

4
2

4 4
i, j

2f i 5, j 11f i 4, j 24f i 3, jf 1 O h
x h 26f i 2, j 14f i 1, j 3f i, j

       
            

                       

(3.29) 

     
       

4
2

4 4
i, j

2f i, j 5 11f i, j 4 24f i, j 3f O k
y k 26f i, j 2 14f i, j 1 3f i, j

       
            

                       (3.30) 

Besides these, the difference equations of the multiple derivatives are also required for 

the solution. These equations can be found from the combination of the equations from 

3.8 to 3.30 and 3.3. An example is shown as follows- 

2

i, ji, j i, j

f f
x y x y

      
                                                                                                     

(3.31) 

But this equation can have nine different forms as (∂f/∂y)i, j has three different forms, 

forward, central and backward which are shown in Eq. 3.10, 3.17 and 3.24 respectively, 

and (∂f/∂x)i, j also has three different forms of same types as shown in Eq. 3.8, 3.3, 3.9. 

Combination of these makes nine different forms which are- 

1) i- forward, j- forward 2) i- forward, j- central 3) i- forward, j- backward 

4) i- central, j- forward 5) i- central, j- central 6) i- central, j- backward 

7) i- backward, j-forward 8) i- backward, j- central 9) i- backward, j- backward 

Here expression for only i- forward, j- forward (form 1) is shown- 

1 

+O(hଶ, kଶ) 
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2

i, ji, j i, j

i, j i, j

i 2, j i 1, j i, j

f f
x y x y

z ftaking z
x y

z(i 2, j) 4z(i 1, j) 3z(i, j)
2h

1 f f f4 3
2h y y y 

      
            

           
    



        
                  

 

f (i 2, j 2) 4f (i 2, j 1) 3f (i 2, j) 4f (i 1, j 2)1
16f (i 1, j 1) 12f (i 1, j) 3f (i, j 2) 12f (i, j 1) 9f (i, j)4hk
          

              
(3.32) 

Stencil of this equation can be shown as in Figure 3.3a and that of i-backward, j-

backward (form 9) is shown in Figure 3.3b. 

 

 

 

i 

j i, j 

Pivot point 

(a) i-forward, j-forward 

node points associated 

i 

j 

i, j 

(b) i-backward, j-backward 

Figure 3.3: Stencils for (∂2f/∂x∂y). 

y 

x 

y 

x 

+O(hଶ, kଶ) 
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These different types of forms are required for the solution, if (∂2f/∂x∂y)i, j has to apply 

at different parts of the body. If a rectangular body is considered then application of 

different forms are shown in Figure 3.4. Here it will be worthy to mention that, the 

shape and the number of the node points of the stencils is same but the values of the 

coefficients of the associated node points may vary or remain same. Similarly the 

derivative (∂3f/∂x2∂y)i, j can be discretized by using equation Eq. 3.18 and 3.10 and the 

difference equation thus found will be of the form i-central, j-forward. 

3 2

2 2
i, ji, j i, j

2

2
i, ji, j

2

2
i 1, j i, j i 1, j

f f
x y x y

z ftaking z
x y

z(i 1, j) 2z(i, j) z(i 1, j)
h

1 f f f2
h y y y 

      
            

    
       

   


        
                 

 

y 

x h 

k 

j 
i 

For this point, form 1 (i-
forward, j-forward)  

For this point, 
form 7 (i-
backward, j-
forward)  

For this point, form 9 (i-
backward, j-backward)  

For this point, 
form 3 (i-
forward, j-
backward) 

node points 
associated 

Pivot point 

Figure 3.4: Application of different forms of (∂2f/∂x∂y). 
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2

f (i 1, j 2) 4f (i 1, j 1) 3f (i 1, j) 2f (i, j 2)1
8f (i, j 1) 6f (i, j) f (i 1, j 2) 4f (i 1, j 1) 3f (i 1, j)2h k
          

             
    (3.33) 

Similarly, i-forward j- central difference equation for (∂3f/∂x∂y2)i, j can be obtained 

from the manipulation of the equations 3.17 and 3.8. 

3 2

2 2
i, ji , j i , j

2

2
i, ji , j

2

2
i, j 1 i, j i , j 1

2

f f
x y y x

z ftaking z
y x

z(i, j 1) 2z(i, j) z(i, j 1)
k

1 f f f2
k x x x

f (i 2, j 1) 4f (i 1, j 1) 3f

1
k

 

                  

          

   


                         
      



(i, j 1)
2h

f (i 2, j) 4f (i 1, j) 3f (i, j)2
2h

f (i 2, j 1) 4f (i 1, j 1) 3f (i, j 1)
2h

  
    
        

  
           

  

 

2

f (i 2, j 1) 4f (i 1, j 1) 3f (i, j 1) 2f (i 2, j)1
8f (i 1, j) 6f (i, j) f (i 2, j 1) 4f (i 1, j 1) 3f (i, j 1)2k h
          

             
    (3.34) 

Using equations 3.18 and 3.19 difference equation for (∂4f/∂x2∂y2)i, j , i-j both central, 

can be written as 

4 2 2

2 2 2 2
i, j i, j i, j

2 2

2 2
i, j i, j

2

f f
x y y x

z ftaking z
y x

z(i, j 1) 2z(i, j) z(i, j 1)
k

                  

    
        

   


 

 

+O(hଶ, kଶ) 

+O(hଶ, kଶ) 
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2 2

f (i 1, j 1) 2f (i, j 1) f (i 1, j 1) 2f (i 1, j)1
4f (i, j) 2f (i 1, j) f (i 1, j 1) 2f (i, j 1) f (i 1, j 1)h k
         

             
   (3.35) 

With the help of these formulas the governing differential equation (Eq. 2.22) and 

boundary conditions (Eq. 2.24 and 2.25) can be transformed into the desired finite 

difference equations.  

3.2.2 Application Technique of Finite Difference Formulae in Rectangular Grid 

Usually in the region of study, where the dependent function ψ(x, y) has to be 

evaluated, the governing differential equation (Eq. 2.24) is applied at all node points 

except the boundary node points and boundary conditions (Eq. 2.25 and 2.26) are 

applied at boundary node points. For a rectangular shaped body usually two boundary 

conditions are known in each side of the rectangle. If a very simple problem of axially 

loaded member shown in figure 3.5a is considered then boundary conditions for this 

loading condition are shown in figure 3.5b. So each side has two boundary conditions 

and if this body is transformed into a grid of discrete points then it can be shown in 

figure 3.5c. 

As shown in figure 3.5c each boundary node points experiences two boundary 

conditions. If both the two boundary conditions are applied at each boundary node 

points then the system of linear equations will have more number of algebraic 

equations than the number of points. Therefore, to yield a unique solution from the 

system of linear equations will be very difficult. 

This problem can be solved if only one boundary condition is applied in each boundary 

node points. It can be accomplished by applying one boundary condition in a particular 

node point and the other boundary condition in the next neighboring node point and so 

on (figure 3.6a). But in that case, solving procedure of the problem becomes difficult in 

terms of applying governing equation (GE) because central difference form of GE 

cannot be applied at domain nodal points that are situated just next to the physical 

boundary. 

+O(hଶ, kଶ) 
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To overcome this problem a boundary near the physical boundary is assumed to exist, 

which is named as the imaginary boundary. If only the top boundary is considered then 

it can be shown by figure 3.6b. Top boundary nodes have two boundary conditions to 

satisfy, i.e. n=0, t=0. Hence an imaginary boundary is assumed at the outside of top 

physical boundary, immediate top grid points of the top boundary node points, as well 

as at all other boundaries of the rectangle. So if one boundary condition n=0 is 

satisfied by the physical boundary nodes, then other boundary condition t=0 can be 

applied at same physical boundary nodes by taking help of imaginary boundary nodes, 

or vice versa. Actually for both of the boundary conditions, the finite difference 

formulae will be formulated by taking pivot point at physical boundary nodes but for 

the sake of the solution process one boundary condition is taken at imaginary node by 

σn=0, σt=0 

P 

un=0, ut=0 

σn=0, σt=0 σn=P, σt=0 

Figure 3.5: Boundary conditions for an axially loaded member. 

(a) Axially loaded member 

(b) Boundary conditions of problem (a) 

un=0, ut=0 

σn=0, σt=0 

σn=0, σt=0 

σn=P, σt=0 

(in left boundary 
node points) 

(in top boundary 
node points) 

(in right boundary 
node points) 

(in bottom boundary 
node points) 

physical boundary 

(c) Discretetization of  domain 
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changing the pivot point from physical node to imaginary node while all of the 

coefficient of corresponding node will remain unchanged. This also helps to formulate 

GE with central difference formula for all domain nodal points by taking imaginary 

nodes in formulation. So, the system of linear equations will have same number of 

variables and equations. In this research work this technique is followed. 

 

So the difference equations have to develop in such a way that they would cover the 

physical boundary points, inner points and imaginary points also. These finite 

difference forms are described in the following sections.  

3.3 The Mesh Refinement Methodology 

In mesh refinement technique, the physical problem is discretized by taking different 

size of meshes at different regions of the physical problem in order to reduce 

computational efforts and resources and to improve the accuracy of the solutions at 

most critical section of the physical problem. This discretization of the physical 

problem into finer meshes can include either only domain or domain with a part of the 

boundary. Methodology of mesh refinement for both cases will be discussed in next 

section of this thesis under the heading Case-I and Case-II.  

 

σn=0 σt=0 

σn=0 equation assigned at all 
inner top (physical) boundary 
nodes 

σt=0 equation assigned at all 
outer top (imaginary) boundary 
nodes 

Figure 3.6: Boundary condition management (a) without and (b) with imaginary 
boundary. 

Physical boundary 
(a) 

(b) 
Imaginary boundary 
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3.3.1 Case-I: Mesh Refinement includes only domain 

A discretization of physical model under mesh refinement technique in which the finer 

mesh region includes only domain is shown in figure 3.7. In order to satisfy governing 

equation (GE) over the whole domain, a set of stencils have been made in the following 

section of this thesis. The finer mesh (length of h1) region lies only in the domain and it 

is identified by four arbitrary letters A, B, C and D (figure 3.7). 

 

Figure 3.7: Discretization of physical model under mesh refinement technique which 

includes only domain. 

3.3.1.1 Finite Difference Form of the Bi-harmonic Governing Equation (GE) 

This section will illustrate the formulation of different stencils of GE that are necessary 

in order to satisfy GE whole over the domain referring to figure 3.7. By using 

combinations of forward, backward and central difference formula of second and fourth 

derivatives of displacement potential function, ψ some stencils for the bi-harmonic 

governing equation, from Eq. 3.36 to Eq. 3.41, have been developed in this section. 

k1 

  h2 

h1 

B 

j 

A C 

D 

i 

k2 
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Stencil-1: Named as ‘a’ formula 

The governing equation for the problem in terms of displacement potential function, 

Eq. 2.24 

∂ସψ
∂xସ +  2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

By using the difference formula of ப
రந
ப୶ర

, பరந
ப୶మ.ப୷మ

  and ப
రந
ப୷ర

 from the equations Eq. 3.29, 

3.30 and 3.35 respectively, the above equation can be written as 

ଵ
୦ర

[ψ(i + 2, j) − 4ψ(i + 1, j) + 6ψ(i, j) − 4ψ(i − 1, j) + ψ(i − 2, j)] + ଶ
୦మ୩మ

[ψ(i +

1, j + 1) − 2ψ(i + 1, j) + ψ(i + 1, j − 1) − 2ψ(i, j − 1) + 4ψ(i, j)− 2ψ(i, j − 1) +

ψ(i − 1, j + 1) − 2ψ(i − 1, j) + ψ(i − 1, j− 1)] + ଵ
୩ర

[ψ(i, j + 2)− 4ψ(i, j + 1) +

6ψ(i, j)− 4ψ(i, j − 1) + ψ(i, j − 2)] = 0   

→ zk1{ψ(i − 2, j) + ψ(i + 2, j)}− zk2{ψ(i − 1, j) + ψ(i + 1, j)}− zk3{ψ(i. j + 1) +

ψ(i, j − 1)} + zk4ψ(i, j) + zk5{ψ(i − 1, j − 1) + ψ(i − 1, j + 1) + ψ(i + 1, j− 1) +

ψ(i + 1, j + 1) + ψ(i, j − 2) + ψ(i, j + 2)} = 0                                                      (3.36) 

Where,  zk1 = rସ;    zk2 = 4(rସ + rଶ);  zk3 = 4(1 + rଶ);   zk4 = (6rସ + 8rଶ +

6);  zk5 = 2rଶ and r = ୩
୦
 

The above equation (Eq. 3.36) is the finite difference approximation of the bi-harmonic 

partial differential equation and has validity in the domain nodal points which have 

only uniform mesh. The stencil of this equation is shown in figure 3.8. 

 

 

  

 

                                    

Figure 3.8: Stencil of the governing equation ‘a’ formula. 
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Stencil-2: Named as ‘b’ formula. 

Starting from governing equation for the problem in terms of ψ, Eq. 2.24. 

∂ସψ
∂xସ +  2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

By using the combination of finite difference formula of ப
మந
ப୶మ

,  ப
మந
ப୷మ

;  ப
రந
ப୷ర

 from eq.3.18, 

3.19 and 3.16 the above equation can be written as 

ଵ
୦ଵమ

൤ப
మந
ப୶మ ୧ିଵ,୨

− 2 பమந
ப୶మ ୧,୨

+ பమந
ப୶మ ୧ାଵ,୨

൨ + ଶ
୦ଵమ

ቈப
మந
ப୷మ ୧ିଵ,୨

− 2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧ାଵ,୨

቉ + ଵ
୩ଵర

[3ψ(i, j)−

14ψ(i, j + 1) + 26ψ(i, j + 2)− 24ψ(i, j + 3) + 11ψ(i, j + 4)− 2ψ(i, j + 5)] = 0  

Now using the combination of finite difference formula of ப
మந
ப୶మ

 and ப
మந
ப୷మ

 from eq.3.18, 

3.19 and 3.12 give 

 → ଵ
୦ଵమ୦ଶమ

[ψ(i− 3, j)− 2ψ(i− 1, j) + ψ(i + 1, j)] − ଶ
୦ଵర

[ψ(i − 1, j)− 2ψ(i, j) +

ψ(i + 1), j] + ଵ
୦ଵమ୦ଶమ

[ψ(i − 1, j) − 2ψ(i + 1, j) + ψ(i + 3, j)] + ଶ
୦ଵమ୩ଶమ

[ψ(i − 1, j −

2) − 2ψ(i − 1, j) + ψ(i − 1, j + 2)]− ସ
୦ଵమ୩ଵమ

[2ψ(i, j)− 5ψ(i, j + 1) + 4ψ(i, j + 2)−

ψ(i, j + 3)] + ଶ
୦ଵమ୩ଶమ

[ψ(i + 1, j − 2) − 2ψ(i + 1, j) + ψ(i + 1, j + 2)] + ଵ
୩ଵర

[3ψ(i, j) −

14ψ(i, j + 1) + 26ψ(i, j + 2)− 24ψ(i, j + 3) + 11ψ(i, j + 4)− 2ψ(i, j + 5)] = 0 

→ m2{ψ(i − 3, j) + ψ(i + 3, j)} + 2m4{ψ(i − 1, j + 2) + ψ(i− 1, j − 2) +

ψ(i + 1, j − 2) + ψ(i + 1, j + 2)} − (m2 + 2m1 + 4m4){ψ(i − 1, j) + ψ(i + 1, j)} +

(4m1 − 8m3 + 3m5)ψ(i, j) + (20m3 − 14m5)ψ(i, j + 1) + (26m5 − 16m3)ψ(i, j +

2) + (4m3 − 24m5)ψ(i, j + 3) + 11m5ψ(i, j + 4)− 2m5ψ(i, j + 5) = 0          (3.37) 

Where, m1 = ଵ
୦ଵర

;   m2 = ଵ
୦ଵమ୦ଶమ

;  m3 = ଵ
୦ଵమ୩ଵమ

;  m4 = ଵ
୦ଵమ୩ଶమ

;  m5 = ଵ
୩ଵర
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Figure 3.9: Stencil of the governing equation ‘b’ formula. 

Stencil-3: Named as c formula 

Starting from governing equation for the problem in terms of ψ, Eq. 2.24 

∂ସψ
∂xସ +  2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

Using the finite difference formula of ப
రந
ப୶ర

;  డ
మట
డ௫మ

; ப
రந
ப୷ర

  from eq. 3.22, 3.18 and 3.16, the 

above equation can be written as- 

ଵ
୦ଵర

[ψ(i − 2, j)− 4ψ(i − 1, j) + 6ψ(i, j)− 4ψ(i + 1, j) + ψ(i + 2, j)] + ଶ
୦ଵమ

ቈப
మந
ப୷మ ୧ିଵ,୨

−

2 பమந
ப୷మ ୧ିଵ,୨

+ பమந
ப୷మ ୧ାଵ,୨

൨ + ଵ
୩ଵర

[3ψ(i, j)− 14ψ(i, j + 1) + 26ψ(i, j + 2) − 24ψ(i, j + 3) +

11ψ(i, j + 4) − 2ψ(i, j + 5)] = 0  

Now using finite difference formula of  ப
మந
ப୷మ

 from eq. 3.12 and 3.19 gives 

→ ଵ
୦ଵర

[ψ(i − 2, j)− 4ψ(i − 1, j) + 6ψ(i + 1, j)− 4ψ(i + 1, j) + ψ(i + 2, j)] +
ଶ

୦ଵమ୩ଶమ
[ψ(i − 1, j− 2)− 2ψ(i− 1, j) + ψ(i − 1, j + 2)]− ସ

୦ଵమ୩ଵమ
[2ψ(i, j)−

5ψ(i, j + 1) + 4ψ(i, j + 2)− ψ(i, j + 3)] + ଶ
୦ଵమ୩ଶమ

[ψ(i + 1, j− 2)− 2ψ(i + 1, j) +

ψ(i + 1, j + 2)] + ଵ
୩ଵర

[3ψ(i, j) − 14ψ(i, j + 1) + 26ψ(i, j + 2) − 24ψ(i, j + 3) +
11ψ(i, j + 4) − 2ψ(i, j + 5)] = 0  

→ m1{ψ(i − 2, j) + ψ(i + 2, j)} + (−4m1 − 4m4){ψ(i − 1, j) + ψ(i + 1, j) } +
(6m1 − 8m3 + 3m5)ψ(i, j) + 2m4{ψ(i − 1, j − 2) + ψ(i − 1, j + 2) + ψ(i + 1, j −
2) + ψ(i + 1, j + 2) } + (20m3 − 14m5)ψ(i, j + 1) + (26m5 − 16m3)ψ(i, j + 2) +
(4m3 − 24m5)ψ(i, j + 3) + 11m5ψ(i, j + 4)− 2m5ψ(i, j + 5) = 0                 (3.38) 
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Figure 3.10: Stencil of the governing equation ‘c’ formula. 

Stencil-4: Named as ‘d’ formula  

Starting from governing equation for the problem in terms of ψ, Eq. 2.24 

∂ସψ
∂xସ + 2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

Using the finite difference formula of ப
రந
ப୶ర

;  ப
మந
ப୶మ

; ப
మந
ப୷మ

  from eq. 3.22, 3.18 and 3.19, the 

above equation can be written as- 

ଵ
୦ଵర

[ψ(i − 2, j)− 4ψ(i − 1, j) + 6ψ(i, j)− 4ψ(i + 1, j) + ψ(i + 2, j)] + ଶ
୦ଵమ

ቈப
మந
ப୷మ ୧ିଵ,୨

−

2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧ାଵ,୨

൨ + ଵ
୩ଵమ

ቈப
మந
ப୷మ ୧,୨ିଵ

− 2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧,୨ାଵ

቉ = 0  

Now using finite difference formula of  ப
మந
ப୷మ

 from eq. 3.19 gives 

→ ଵ
୦ଵర

[ψ(i − 2, j)− 4ψ(i − 1, j) + 6ψ(i, j) − 4ψ(i + 1, j) + ψ(i + 2, j)] +
ଶ

୦ଵమ୩ଵమ
[ψ(i − 1, j− 1) − 2ψ(i − 1, j) + ψ(i − 1, j + 1) − 2ψ(i, j − 1) + 4ψ(i, j)−

2ψ(i, j + 1) + ψ(i + 1, j − 1) − 2ψ(i + 1, j) + ψ(i + 1, j + 1)] + ଵ
୩ଵమ୩ଶమ

[ψ(i, j − 3)−

2ψ(i, j− 1) + ψ(i, j + 1)] − ଶ
୩ଵర

[ψ(i, j − 1) − 2ψ(i, j) + ψ(i, j + 1)] + ଵ
୩ଵమ୩ଶమ

[ψ(i, j−
1) − 2ψ(i, j + 1) + ψ(i, j + 3)] = 0  

→ m1{ψ(i − 2, j) + ψ(i + 2, j)} + 2m3{ψ(i − 1, j − 1) + ψ(i− 1, j + 1) +
ψ(i + 1. j − 1) + ψ(i + 1, j + 1)} + (−4m1 − 4m3){ψ(i − 1, j) + ψ(i + 1, j)} +
m6{ψ(i, j − 3) + ψ(i, j + 3)} + (−4m3 − 2m5 − m6){ψ(i, j− 1) + (i, j + 1)} +
(6m1 + 8m3 + 4m5)ψ(i, j) = 0                                                                             (3.39) 

Where, m6 = ଵ
୩ଵమ୩ଶమ

; other constant are already defined before. 
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Figure 3.11: Stencil of the governing equation ‘d’ formula. 

Stencil-5: Named as ‘e’ formula 

Starting from governing equation for the problem in terms of ψ, Eq. 2.24 

∂ସψ
∂xସ + 2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

Using the finite difference formula of ப
రந
ப୶ర

;  ப
మந
ப୶మ

; ப
మந
ப୷మ

  from eq. 3.22, 3.18 and 3.19, the 

above equation can be written as- 

ଵ
୦ଵర

[ψ(i + 2, j)− 4ψ(i + 1, j) + 6ψ(i, j)− 4ψ(i − 1, j) + ψ(i, j − 2)] + ଶ
୦ଵభ

ቈப
మந
ப୷మ ୧ିଵ,୨

−

2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧ାଵ,୨

൨ + ଵ
୩ଵమ

ቈப
మந
ப୷మ ୧,୨ିଵ

− 2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧,୨ାଵ

቉ = 0  

Now using finite difference form of ப
మந
ப୷మ

 from eq. 3.19 and 3.12 gives 

→ ଵ
୦ଵర

[ψ(i + 2, j)− 4ψ(i + 1, j) + 6ψ(i, j) − 4ψ(i − 1, j) + ψ(i − 2, j)] +
ଶ

୦ଵమ୩ଵమ
[ψ(i − 1, j− 1) − 2ψ(i − 1, j) + ψ(i − 1, j + 1) − 2ψ(i, j − 1) + 4ψ(i, j)−

2ψ(i, j + 1) + ψ(i + 1, j − 1) − 2ψ(i + 1, j) − ψ(i + 1, j + 1)] + ଵ
୩ଵర

[2ψ(i, j − 1) −
5ψ(i, j) + 4ψ(i, j + 1) −ψ(i, j + 2) − 4ψ(i, j) + 10ψ(i, j + 1) − 8ψ(i, j + 2) +
2ψ(i, j + 3) + 2ψ(i, j + 1)− 5ψ(i, j + 2) + 4ψ(i, j + 3) −ψ(i, j + 3)] = 0  

→ 2m3{ψ(i − 1, j− 1) + ψ(i + 1, j − 1) + ψ(i − 1, j + 1) + ψ(i + 1, j + 1)} +
m1{ψ(i − 2, j) + ψ(i + 2, j)} + (−4m1 − 4m3){ψ(i − 1, j) + ψ(i + 1, j)} +
(−4m1 + 2m5)ψ(i, j− 1) + (6m1 + 8m3 − 9m5)ψ(i, j) + (−4m3 + 16m5)ψ(i, j +
1) − 14m5ψ(i. j + 2) + 6m5ψ(i, j + 3) − m5ψ(i, j + 4) = 0                               (3.40)                           
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Figure 3.12: Stencil of the governing equation ‘e’ formula.  

Stencil-6: Named as ‘f’ formula 

Starting from governing equation for the problem in terms of ψ, Eq. 2.24 

∂ସψ
∂xସ + 2

∂ସψ
∂xଶ. ∂yଶ +

∂ସψ
∂yସ = 0 

Using the different combination of finite difference formula of  ப
మந
ப୶మ

; ப
మந
ப୷మ

  from eq. 3.18 

and 3.19 respectively the above equation can be written as- 

ଵ
୦ଵమ

൤ப
మந
ப୶మ ୧ିଵ,୨

− 2 பమந
ப୶మ ୧,୨

+ பమந
ப୶మ ୧ାଵ,୨

൨ + ଶ
୦ଵమ

ቈப
మந
ப୷మ ୧ିଵ,୨

− 2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧ାଵ,୨

቉ + ଵ
୩ଵమ

ቈப
మந
ப୷మ ୧,୨ିଵ

−

2 பమந
ப୷మ ୧,୨

+ பమந
ப୷మ ୧,୨ାଵ

൨ = 0  

Now using finite difference formula of  ப
మந
ப୶మ

; ப
మந
ப୷మ

 from eq. 3.11, 3.19 and 3.12 gives 

 → ଵ
୦ଵర

[2ψ(i − 1, j) − 5ψ(i, j) + 4ψ(i + 1, j)−ψ(i + 2, j)− 4ψ(i, j) + 10ψ(i + 1, j)−
8ψ(i + 2, j) + 2ψ(i + 3, j) + 2ψ(i + 1, j)− 5ψ(i + 2, j) + 4ψ(i + 3, j)− ψ(i +
4, j)] + ଶ

୦ଵమ୩ଵమ
[ψ(i − 1, j − 1)− 2ψ(i − 1, j) + ψ(i − 1, j + 1)− 2ψ(i, j − 1) +

4ψ(i, j)− 2ψ(i, j + 1) + ψ(i + 1, j− 1)− 2ψ(i + 1, j) + ψ(i + 1, j + 1)] +
ଵ
୩ଵర

[2ψ(i, j− 1)− 5ψ(i, j) + 4ψ(i, j + 1)− ψ(i, j + 2) − 4ψ(i, j) + 10ψ(i, j + 1) −
8ψ(i, j + 2) + 2ψ(i, j + 3) + 2ψ(i, j + 1) − 5ψ(i, j + 2) + 4ψ(i, j + 3)− ψ(i, j +
4)] = 0 

→ 2m3{ψ(i − 1, j− 1) + ψ(i + 1, j − 1) + ψ(i − 1, j + 1) + ψ(i + 1, j + 1) } +
(−9m1 + 8m3 − 9m5)ψ(i, j) + (2m1 − 4m3)ψ(i − 1, j) + (16m1− 4m3)ψ(i +
1, j)− 14m1ψ(i + 2, j) + 6m1ψ(i + 3, j)− m1ψ(i + 4, j) + (−4m3 + 2m5)ψ(i, j −
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1) + (−4m3 + 16m5)ψ(i, j + 1) − 14m5ψ(i, j + 2) + 6m5ψ(i, j + 3) − m5ψ(i, j +
4)] = 0                                                                                                                      (3.41) 

 

 

 

 

 

 

Figure 3.13: Stencil of the governing equation ‘f’ formula.  

3.3.1.2   Application Technique of Finite Difference Formulae of GE 

Referring to figure 3.7, in this section, the application method of different stencils of 

GE, those are formulated in the previous section, over the whole domain will be 

discussed. All the stencils have been formulated for sides A. For other sides, B, C and 

D, the stencils can be obtained only by changing some parameters e.g. any stencils of 

left sides (A) can be used for right sides (C) only by replacing j-* with j+* where * 

means 1, 2 …etc. The conversion procedure of stencils from one side to another side is 

listed in table-1. The stencils for each side are given in figure 3.14. Stencil-1 is 

symmetric about both vertical and horizontal axis, so it shape remain same in all sides. 

Since, it has applicability over uniform fine mesh and also over uniform coarse mesh; 

as a result it has two size of same shape which is shown in figure 3.15. The small one is 

applied over uniform fine mesh and large one is applied over uniform coarse mesh. The 

pivot of each stencil is filled with different color and also the domain nodal points are 

filled with same color of pivot points as shown in figure 3.16. The same color of a 

stencil pivot point and nodal points indicates that this stencil has applicability only on 

these nodal points. Thus the GE is satisfied all over the domain nodal points.   
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                 Stencil-1                       Stencil-2                                   Stencil-3                  

 

 

   

                 Stencil-4                             Stencil-5                              Stencil-6 

a) Stencils of GE for sides A 

 

 

 

                 Stencil-1                              Stencil-2                                   Stencil-3                 

  

 

 

 

                 Stencil-4                              Stencil-5                                Stencil-6 

b) Stencils of GE for sides B 
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              Stencil-1                                      Stencil-2                                   Stencil-3              

  

 

 

                 Stencil-4                                      Stencil-5                                   Stencil-6 

c) Stencils of GE for sides C 

 

 

 

 

 

                 Stencil-1                                      Stencil-2                                   Stencil-3        

 

       

 

 

                  Stencil-4                                   Stencil-5                                Stencil-6 

d) Stencils of GE for side D 

Figure 3.14: Different types of stencils of GE for over whole domain. 
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                          a) Large size                                                      b) Small size  

Figure 3.15: Two different sizes of stencil-1 ‘a’ formula.  

 

Figure 3.16:  Applicability of different stencils of GE over whole domain. 
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Table 3.1: Conversion charts of finite difference formulas of GE for different sides of 

the fine mesh zone of domain. 

Surfaces 
Type of difference 

formula required 
Replacement required 

A  i-centered, j-forward No change required 

B i-backward j-centered i by j, h1 by k1, h2 by k2 and 

then  i-* by i+* and vise versa 

C i-centered, j-backward Only replace j+* by j-* and 

vice versa 

D  i- forward, j-centered 
i by j, h1 by k1 and h2 by k2 

               N.B: ‘*’ means 1,2.3……..and this chart is valid for formula a,b,c,d and e. 

By using this table one can convert the equation a, b, c, d, and e from one side to 

another. Actually, there is no need to convert equation c because it is symmetric about 

horizontal and vertical planes passing through its pivot point. To convert the equation f  

i.e. eq. 3.41, which is valid in top left corner marked by yellow pivot point (figure 

3.16), changing of  i and j by i-* and j-* respectively is required. To convert for bottom 

left corner yellow point (figure 3.10) change only i by i-*, for bottom right corner 

replace i by i-3* and j by j-* and for top right corner, replace j by j-*.   

3.3.1.3 Finite Difference Form of the Boundary Conditions 

The formulation of finite difference formulae of boundary conditions (BCs) will be 

presented in this section. 

B.C.-1: Displacement in x-direction, u 

Starting from the equation of displacement component, u in terms of ψ  eq.2.25 

u =
∂ଶψ
∂x.∂y 

Using the equation 3.9, the above equation reduces to 
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j i,j 

i 

=
1

2h [−3
∂ψ
∂y ୧,୨

+ 4
∂ψ
∂y ୧ାଵ,୨

−
∂ψ
∂y ୧ାଶ,୨

] 

Now using the finite difference formula of பந
ப୷

 from eq.3.10 

= ଵ
ସ୦୩

[−3{−3ψ(i, j) + 4ψ(i, j + 1) −ψ(i, j + 2)} + 4{−3ψ(i + 1, j) + 4ψ(i + 1, j +

1) −ψ(i + 1, j + 2)} − {−3ψ(i + 2, j) + 4ψ(i + 2, j + 1) −ψ(i + 2, j + 2)}]  

= s1. [9ψ(i, j) − 12{ψ(i, j + 1) + ψ(i + 1, j)} + 16ψ(i + 1, j + 1) + ψ(i + 2, j + 2) +

3{ψ(i, j + 2) + ψ(i + 2, j)}− 4{ψ(i + 1, j + 2) + ψ(i + 2, j + 1)}]                       (3.42) 

Where s1= ଵ
ସ୦୩

 

 

 

 

 

 

 

Figure 3.17: Stencil of displacement component, u 

B.C.-2: Displacement in y-direction, v 

Starting from the equation of displacement component, v in terms of ψ  eq.2.25 

v = − ቈ൬
1 − μ
1 + μ൰

∂ଶψ
∂yଶ + ൬

2
1 + μ൰

∂ଶψ
∂xଶ ቉ 

Using finite difference formula of ப
మந
ப୷మ

 and ப
మந
ப୶మ

 from equation 3.19 and 3.18 respectively 



 
 
 
 

55 
 

j i,j 

i 

= − ଵ
ଵାμ

[ଵିμ
୩మ

{ψ(i, j + 1)− 2ψ(i, j) + ψ(i, j − 1)} + ଶ
୦మ

{ψ(i + 1) − 2ψ(i, j) + ψ(i −

1, j)}]  

=s2[c1{ψ(i, j + 1) + ψ(i, j − 1)}− (2c1 + 2zk5)ψ(i, j) + zk5{ψ(i + 1, j) + ψ(i −

1, j)}]                                                                                                                        (3.43)  

Where, s2 = − ଵ
(ଵାμ)୩మ

;      c1 = 1− μ 

 

 

 

 

 

Figure 3.18: Stencil of displacement component, v 

B.C.-3: Stress component in x-direction, x 

Starting from the equation of stress component, x in terms of ψ  eq.2.26 

σ୶ =
E

(1 + μ)ଶ ቈ
∂ଷψ
∂xଶ ∂y− μ

∂ଷψ
∂yଷ቉ 

or, (1 + μ)ଶ
σ୶
E = ቈ

∂ଷψ
∂xଶ ∂y − μ

∂ଷψ
∂yଷ ቉ 

Now using the eq.3.18 and 3.19, the above equation reduces to 

(1 + μ)ଶ ஢౮
୉

= ଵ
୦మ
ቈபந
ப୷୧ିଵ,୨

− 2 பந
ப୷ ୧,୨

+ பந
ப୷୧ାଵ,୨

቉ − μ
୩మ

[பந
ப୷ ୧,୨ିଵ

− பந
ப୷୧,୨

+ பந
ப୷୧,୨ାଵ

]  

Now using the eq.3.10 gives 
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j i,j 

i 

(1 + μ)ଶ ஢౮
୉

= ଵ
ଶ୦మ୩

[−3ψ(i − 1, j) + 4ψ(i− 1, j + 1) − ψ(i − 1, j + 2) + 6ψ(i, j)−

8ψ(i, j + 1) + 2ψ(i, j + 2)− 3ψ(i + 1, j) + 4ψ(i + 1, j + 1) −ψ(i + 1, j + 2)] −
μ
ଶ୩య

[−3ψ(i, j − 1) + 4ψ(i, j)− ψ(i, j + 1) + 6ψ(i, j)− 8ψ(i, j + 1) + 2ψ(i, j + 2)−

3ψ(i, j + 1) + 4ψ(i, j + 2)− ψ(i, j + 3)]  

or, (1 + μ)ଶ ஢౮
୉

= s3[zk9{−3ψ(i − 1, j) + 4ψ(i − 1, j + 1) −ψ(i − 1, j + 2) −

3ψ(i + 1, j) + 4ψ(i + 1, j + 1)− ψ(i + 1), j + 2} + 3ψ(i, j − 1) − (6zk9−

10)ψ(i, j) + (12 − 8zk9)ψ(i, j + 1) + (2zk9− 6)ψ(i, j + 2) + ψ(i, j + 3)]         (3.44) 

Where, 3ݏ = ஜ
ଶ௞య

; 9݇ݖ    = ௥మ

ஜ
 

 

 

 

 

 

Figure 3.19: Stencil of stress component, x 

B.C.-4: Stress component in y-direction, y 

Starting from the equation of stress component, y in terms of ψ  eq.2.26 

σ୷ = −
E

(1 + μ)ଶ ቈ
∂ଷψ
∂yଷ + (2 + μ)

∂ଷψ
∂xଶ ∂y቉ 

or, −(1 + μ)ଶ
σ୷
E = ቈ

∂ଷψ
∂yଷ + (2 + μ)

∂ଷψ
∂xଶ ∂y቉ 

Now using the eq.3.18 and 3.19, the above equation reduces to 

−(1 + μ)ଶ ஢౯
୉

= ଵ
ଶ୩య

[பந
ப୷୧,୨ିଵ

− 2 பந
ப୷୧,୨

+ பந
ப୷୧,୨ାଵ

] + ଶାμ
୦మ

[பந
ப୷୧ାଵ,୨

− 2 பந
ப୷୧,୨

+ பந
ப୷୧ିଵ,୨

]  
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j i,j 

i 

Now using the eq. 3.10 gives 

−(1 + μ)ଶ ஢౯
୉

= ଵ
ଶ୩య

[−3ψ(i, j − 1) − 4ψ(i, j) + 2ψ(i, j + 1) + 6ψ(i, j) − 8ψ(i, j + 1) +

2ψ(i, j + 2)− 3ψ(i, j + 1) + 4ψ(i, j + 2) −ψ(i, j + 3)] + ଶାμ
ଶ୦మ୩

[−ψ(i + 1, j + 2) +

4ψ(i + 1, j + 1) − 3ψ(i + 1, j) + 2ψ(i, j + 2)− 8ψ(i, j + 1) + 6ψ(i, j)− ψ(i − 1, j +

2) + 4ψ(i − 1, j + 1) − 3ψ(i − 1, j)]  

or, −(1 + μ)ଶ ஢౯
୉

= s4{[−3ψ(i, j− 1) + 10ψ(i, j) − 12ψ(i, j + 1) + 6ψ(i, j + 2) −

ψ(i, j + 3)] + zk6[−ψ(i + 1, j + 2) + 4ψ(i + 1, j + 1) − 3ψ(i + 1, j) + 2ψ(i, j + 2) −

8ψ(i, j + 1) + 6ψ(i, j)−ψ(i − 1, j + 2) + 4ψ(i− 1, j + 1)− 3ψ(i− 1, j)]}         (3.45) 

Where, s4 = ଵ
ଶ୩య

;  zk6 = rଶ(2 + μ)  

 

 

 

 

 

Figure 3.20: Stencil of stress component, y 

B.C.-5: Stress component in y-direction, xy 

Starting from the equation of stress component, xy in terms of ψ  eq.2.26 

σ୶୷ =
E

(1 + μ)ଶ ቈμ
∂ଷψ
∂yଶ ∂x −

∂ଷψ
∂xଷ ቉ 

or, (1 + μ)ଶ
σ୶୷
E = ቈμ

∂ଷψ
∂yଶ ∂x−

∂ଷψ
∂xଷ ቉ 

Now using eq. 3.18 and 3.19 the above equation reduces to 
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j i,j 

i 

or, (1 + μ)ଶ ஢౮౯
୉

= μ
୩మ
൤பந
ப୶୧,୨ିଵ

− 2 பந
ப୶ ୧,୨

+ பந
ப୶୧,୨ାଵ

൨ − ଵ
୦మ

[பந
ப୶ ୧ିଵ,୨

− 2 பந
ப୶୧,୨

+ பந
ப୶ ୧ାଵ,୨

]  

Now using eq. 3.8 the above equation reduces to 

(1 + μ)ଶ ஢౮౯
୉

= μ
ଶ୦୩మ

[−3ψ(i, j − 1) + 4ψ(i + 1, j − 1) −ψ(i + 2, j− 1) + 6ψ(i, j)−

8ψ(i + 1, j) + 2ψ(i + 2, j)− 3ψ(i, j + 1) + 4ψ(i + 1, j + 1) −ψ(i + 2, j + 1)] −
ଵ
ଶ୦య

[−3ψ(i − 1, j) + 4ψ(i, j)− ψ(i + 1, j) + 6ψ(i, j)− 8ψ(i + 1, j) + 2ψ(i + 2, j)−

3ψ(i + 1, j) + 4ψ(i + 2, j)− ψ(i + 3, j)]  

or, (1 + μ)ଶ ஢౮౯
୉

= s5[−3ψ(i, j− 1) + 4ψ(i + 1, j− 1)− ψ(i + 2, j − 1) + 6ψ(i, j)−

8ψ(i + 1, j) + 2ψ(i + 2, j)− 3ψ(i, j + 1) + 4ψ(i + 1, j + 1) −ψ(i + 2, j + 1) +

zk7{−3ψ(i − 1, j) + 10ψ(i, j) − 12ψ(i + 1, j) + 6ψ(i + 2, j)− ψ(i + 3, j)}]       (3.46) 

Where, s5 = μ
ଶ୦୩మ

;  zk7 = ୰మ

μ
 

 

 

 

 

 

Figure 3.21: Stencil of stress component, xy 

3.3.1.4   Application Technique of Finite Difference Formulae of Boundary 

conditions 

Recall the figure 3.7 with physical boundary and imaginary boundary lines as shown in 

figure 3.22. To apply the boundary conditions over the physical boundary, the whole 

field is divided into four sectors, which are i) top-left, ii) bottom-left, iii) bottom-right, 

and iv) top-right and shown in figure 3.22. The stencils of figure from 3.17 to 3.21 are 

formulated for top-left region of boundary. For other region, the stencils can be easily 

obtained by replacing some parameters. The conversion procedure from one region to 
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another region is given in table 3.2 and the corresponding stencils are shown in figure 

3.23. The applicability of these boundary conditions over the whole boundary is shown 

in figure 3.24. The pivot point of stencils, applied in a particular region, are filled with 

single color and also the boundary nodal points of this particular region are filled with 

same color of pivot points as shown in figure 3.23 and 3.24. The same color of a stencil 

pivot point and nodal points indicates that this stencil has applicability only on these 

nodal points. Thus any combination of these boundary conditions can be satisfied all 

over the physical boundary nodal points.  

 

Figure 3.22: Mesh refinement of domain only. 

 

 

              B.C.-1: u              B.C.-2: v          B.C.-3 or 4: x or y     B.C.-5: xy 

a)   Stencil of boundary conditions for top-left region. 

j 

i 

Imaginary boundary Physical boundary 

Top left 

Bottom left Bottom right 

Top right 
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              B.C.-1: u              B.C.-2: v          B.C.-3 or 4: x or y     B.C.-5: xy 

b) Stencils of boundary conditions for bottom-left region. 

 

 

              B.C.-1: u              B.C.-2: v          B.C.-3 or 4: x or y     B.C.-5: xy 

c) Stencils of boundary conditions for bottom-right region. 

 

 

              B.C.-1: u              B.C.-2: v          B.C.-3 or 4: x or y     B.C.-5: xy 

d)   Stencils of boundary conditions for top-right region. 

Figure 3.23: Stencils of boundary conditions for different boundary regions. 

Table 3.2: Conversion charts of finite difference formulas of boundary conditions for 

different region of the boundary. 

Boundary region 
Type of difference 

formula required 
Replacement required 

Top-left  i-forward j-forward No change required 

Bottom-left  i-backward j-forward 
 s1 by –s1, s5 by –s5, i-* by i+* and 

i+* by i-* 
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Bottom-right  i-backward j- backward 

s3 by –s3, s4 by –s4, s5 by –s5, i-* 

by i+*, i+* by i-*, j-* by j+*, and 

j+* by j-* 

Top-right  i- forward, j- backward 
s1 by –s1, s3 by –s3, s4 by –s4, j-* 

by j+*, and j+* by j-* 

                                                                                 Where, * stands for digits 1 or 2 or 3 etc. 

 

Figure 3.24: Applicability of different stencils of boundary conditions over the whole 

boundary.  

 

 

 

 

j 

i 

Imaginary boundary Physical boundary 

Top left 

Bottom left Bottom right 

Top right 
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3.3.2 Case-II: Mesh Refinement Includes Domain as well as Boundary 

A discretization of physical model under mesh refinement technique in which the finer 

mesh region includes domain as well as boundary shown in figure 3.25. 

 

Figure 3.25: Discretization under mesh refinement which includes domain as well as 

boundary. 

In this section, mesh refinement procedure for above type of discretization (figure 3.25) 

will be discussed. To satisfy GE over the whole domain, no extra stencils have to be 

developed because stencils that have been formulated in previous sections are sufficient 

for any type of discretization of the domain. But, for this type of discretization, some 

stencils of boundary conditions should have been formulated to satisfy the boundary 

conditions over the whole physical boundary. The following two sections will show the 

application procedure of GE and boundary equations over the whole field. 

E F G 

H 

B 

A 

C 

D 

j 

i 

Imaginary boundary 

Real boundary 
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3.3.2.1 Application Technique of Finite Difference Formulae of GE 

Recalling the figure 3.14 i.e. the different type of stencils of GE, in this section the 

applicability of these stencils over the whole domain will be discussed. Similar to the 

previous sections (Sec. 3.3.1.2), same color of a stencil pivot point and domain points 

indicates that this particular stencil will be applied in these domain points. The detail of 

this applicability of stencils of GE over the domain is shown in figure 3.26. 

     

 

FGHI-Fine uniform mesh region; ABCDEJA-Coarse uniform mesh region; AJEFIH- 

Transition non-uniform mesh region 

 Figure 3.26: Application of finite difference formula of GE over whole domain. 
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3.3.2.2 Finite Difference Form of the Boundary Conditions and Application 

Technique 

In previous sections (sec. 3.3.1.3), some finite difference formulae of boundary 

conditions have been formulated and corresponding stencils have been shown in figure 

from eq. 3.17 to 3.21. But, these stencils have applicability only over the uniform mesh 

(fine or coarse). Since in this time mesh refinement includes domain as well as 

boundary (figure 3.25), so the previously formulated finite difference formulae cannot 

be applied over the whole real boundary because of their limited applicability only over 

uniform mesh. The application technique of eq. 3.17 to 3.21 is shown in figure 3.27. 

Refer to the figure 3.23, same color of stencil pivot point and real boundary point 

indicates that corresponding stencil/stencils is/are applied on these points. In figure 

3.27, it is seen that two points of mesh changing regions are identified by cross (X) 

marks. This cross mark indicates that the stencils of figure 3.23 or eq. 3.17 to 3.21 will 

not valid in these points. Sometimes, from mathematical view point, there is no 

problem to apply some stencils of boundary conditions, those were shown in figure 

3.23, over the transition region but that do not provide better solution of the problem. 

As an example, consider the upper mesh changing region is subjected by boundary 

conditions x=0 and xy=0. Then eq. 3.19 and 3.21 i.e. stencil-3 and stencil-5 of figure 

3.23a can be applied easily and mathematically there is no problem to apply these 

stencils or equation in this mesh changing region. But, author of this thesis examined 

that it did not provide satisfactory solution. So, in this section, some other formulae will 

be developed to apply the boundary conditions over the transition region. For 

displacement component u or v, no other form of finite difference formulae do not 

require because those stencils, formulated in previous section (sc. 3.3.1.3), are 

sufficient to apply boundary conditions in term of u or v in transition region and 

provide satisfactory results. For stress component, x, y and xy, new stencils will 

formulate in the following paragraph of this section. The formulation finite difference 

formulae of boundary conditions for transition region require more inclusion of both 

coarse and fine meshes i.e. central difference formula of derivatives should get 

preference over backward or forward finite difference formula of same order of 

accuracy. Thus, the aligned numerical formulations that is combination of more 

forward and backward finite difference formulae at mesh size transition region could 
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not provide better solution rather the balanced numerical formulations that is 

combination of more central difference at mesh size transition region provide better 

solution. Sometimes, it may also necessary to apply treatment of stencils of boundary 

conditions for the adjacent point of mesh size transition region.   

 

Figure 3.27: Application technique of different stencils of boundary conditions over the 

uniform mesh boundary region both fine and coarse. 

Formulae of new stencils of stress components for the mesh size transition regions- 

B.C.-3: Stress component in x-direction, x 

Starting from the equation of stress component, x in terms of ψ  eq.2.26 
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σ୶ =
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂xଶ ∂y

− μ
∂ଷψ
∂yଷ

቉ 

or, (1 + μ)ଶ
σ୶
E = ቈ

∂ଷψ
∂xଶ ∂y − μ

∂ଷψ
∂yଷ ቉ 

Now using eq. 3.9 and 3.21, the above equation reduces to 

or, (1 + μ)ଶ ஢౮
୉

= ଵ
ଶ୩ଵ

൤3 பந
ப୶మ୧,୨

− 4 பந
ப୶మ୧,୨ିଵ

+ பந
ப୶మ୧,୨ିଶ

൨ − μ
ଶ୩ଶయ

[−ψ(i, j− 4) +

2ψ(i, j− 2)− 2ψ(i, j + 2) + ψ(i, j + 4)]  

Now using eq.3.18, the above equation reduces to  

 (1 + μ)ଶ ஢౮
୉

= ଷ
ଶ୩ଵ୦ଶమ

[ψ(i − 2, j)− 2ψ(i, j) + ψ(i + 2, j)]− ଶ
୩ଵ୦ଵమ

[ψ(i − 1, j − 1) −

2ψ(i, j− 1) + ψ(i + 1, j − 1)] + ଵ
ଶ୩ଵ୦ଵమ

[ψ(i − 1, j − 2)− 2ψ(i, j − 2) + ψ(i + 1, j−

2)]− μ
ଶ୩ଶయ

[−ψ(i, j − 4) + 2ψ(i, j − 2) − 2ψ(i, j + 2) + ψ(i, j + 4)] 

or,   (1 + μ)ଶ ஢౮
୉

= ଷ
ଶ

m7{ψ(i − 2, j) + (i + 2, j)}− 3m7ψ(i, j) − 2m8{ψ(i − 1, j −

1) + ψ(i + 1, j − 1)} + 4m8ψ(i, j− 1) + ଵ
ଶ

m8{ψ(i − 1, j − 2) + ψ(i + 1, j− 2)} −

(m8 + 2m9)ψ(i, j − 2) + 2m9ψ(i, j + 2) − m9ψ(i, j + 4) + m9ψ(i, j − 4)         (3.47)  

 Where, m7 = ଵ
୩ଵ୦ଶమ

;     m8 = ଵ
୩ଵ୦ଵమ

; and   m9 = μ
ଶ୩ଶయ

 

 

Figure 3.28: Stencil of stress component, x for transition region. 

B.C.-4: Stress component in y-direction, y 

Starting from the equation of stress component, y in terms of ψ  eq.2.26 
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σ୷ = −
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂yଷ

+ (2 + μ)
∂ଷψ
∂xଶ ∂y

቉ 

or, −(1 + μ)ଶ
σ୷
E = ቈ

∂ଷψ
∂yଷ + (2 + μ)

∂ଷψ
∂xଶ ∂y቉ 

or,    − (1 + μ)ଶ ஢౯
୉

= ଵ
ଶ୩ଶయ

[−ψ(i, j − 4) + 2ψ(i, j− 2)− 2ψ(i, j + 2) + ψ(i, j + 4)] +

ଶାμ
ଶ୩ଵ

[3 பమந
ப୶మ ୧,୨

− 4 பమந
ப୶మ ୧,୨ିଵ

+ பమந
ப୶మ ୧,୨ିଶ

]  

Now using eq.3.18, the above equation reduces to 

−(1 + μ)ଶ ஢౯
୉

= ଵ
ଶ୩ଶయ

[−ψ(i, j − 4) + 2ψ(i, j − 2)− 2ψ(i, j + 2) + ψ(i, j + 4)] +

ଷ(ଶାμ)
ଶ୩ଵ୦ଶమ

[ψ(i − 2, j) − 2ψ(i, j) + ψ(i + 2, j)] − ଶ(ଶାμ)
୩ଵ୦ଵమ

[ψ(i − 1, j− 1)− 2ψ(i, j− 1) +

ψ(i + 1, j − 1)] + (ଶାμ)
ଶ୩ଵ୦ଵమ

[ψ(i − 1, j − 2) − 2ψ(i, j − 2) + ψ(i + 1, j − 2)]  

or,      − (1 + μ)ଶ ஢౯
୉

= ଷ
ଶ

m10{ψ(i − 2, j) + (i + 2, j)}− 3m10ψ(i, j)− 2m11{ψ(i −

1, j − 1) + ψ(i + 1, j− 1)} + 4m11ψ(i, j− 1) + ଵ
ଶ

m11{ψ(i − 1, j − 2) +

ψ(i + 1, j − 2) − (m11 − 2m12)ψ(i, j − 2) − 2m12ψ(i, j + 2) + m12ψ(i, j + 4)−

m12ψ(i, j − 4)                                                                                                          (3.48) 

Where,    m10 = ୫଻
ଶାμ

;       m11 = ୫଼
ଶାμ

;         m12 = ୫ଽ
μ

 

 

Figure 3.29: Stencil of stress component, y for transition region. 

B.C.-5: Stress component in y-direction, xy 

Starting from the equation of stress component, xy in terms of ψ  eq.2.26 
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σ୶୷ =
E

(1 + μ)ଶ
ቈμ

∂ଷψ
∂yଶ ∂x

−
∂ଷψ
∂xଷ

቉ 

or, (1 + μ)ଶ
σ୶୷
E = ቈμ

∂ଷψ
∂yଶ ∂x−

∂ଷψ
∂xଷ ቉ 

Now using eq. 3.9 and 3.20, the above equation reduces to 

 (1 + μ)ଶ ஢౮౯
୉

=  μ
ଶ୦ଵ

ቈ3 பమந
ப୷మ ୧,୨

− பమந
ப୷మ ୧ିଵ,୨

+ பమந
ப୷మ ୧ିଶ,୨

቉ − ଶ
ଶ୦ଶయ

[ψ(i + 4, j)− 2ψ(i + 2, j) +

ψ(i − 2, j) −ψ(i − 4, j)] 

or, (1 + μ)ଶ ஢౮౯
୉

= ଷμ
ଶ୦ଵ୩ଶమ

[ψ(i, j− 2)− 2ψ(i, j) + ψ(i, j + 2)]− ଶμ
୦ଵ୩ଵమ

[ψ(i − 1, j −

1) − 2ψ(i − 1, j) + ψ(i − 2, j + 1)] + μ
ଶ୦ଵ୩ଵమ

[ψ(i − 2, j− 1)− 2ψ(i− 2, j) +

ψ(i − 2, j + 1)]− ଶ
ଶ୦ଶయ

[ψ(i + 4, j) − 2ψ(i + 2, j) + ψ(i − 2, j) −ψ(i − 4, j)] 

 or,     (1 + μ)ଶτ୶୷/E = ଷ
ଶ

m13{ψ(i, j + 2) + (i, j − 2)}− 3m13ψ(i, j)− 2m14{ψ(i −

1, j − 1) + ψ(i + 1, j− 1)} + 4m14ψ(i− 1, j) + ଵ
ଶ

m14{ψ(i − 2, j + 1) +

ψ(i − 2, j − 1) − (m14 + 2m15)ψ(i, j − 2) + 2m15ψ(i + 2, j)− m15ψ(i + 4, j) +

m15ψ(i − 4, j)                                                                                                          (3.49)                                                         

Where, m13 = μ
୦ଵ୩ଶమ

;                 m14 = μ
୦ଵ୩ଵమ

;                 m15 = ଵ
ଶ୦ଶయ

 

 

Figure 3.30: Stencil of stress component, xy for transition region. 
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The application technique of these new stencils of stress components is shown in figure 

3.31. At upper transition region, only treatment of stress components x and y is 

necessary because existing stencils (figure 3.23a) of other boundary conditions (u, v 

and xy) provide satisfactory results when these are applied over coarse uniform mesh. 

One should apply these stencils over coarse mesh because that would results more 

inclusion of meshes of both fine and coarse mesh. Similarly, for left mesh transition 

region only treatment of stress components xy is necessary because existing stencils 

(figure 3.23a) of other boundary conditions (u, v, x and y) provide satisfactory results 

when these are applied over coarse uniform mesh. 

 

Figure 3.31: Application technique of boundary conditions stencils at transition region 

from fine to coarse mesh. 
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At this point 
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3.4 Solution of a Set of Algebraic Equations (Evaluation of ψ) 

If the whole region is placed in a rectangular grid then the region gives a finite number 

of node points which include reference boundary points, imaginary boundary points 

and inner body points (node points other than the reference and imaginary boundary 

points). Finite difference expressions of the boundary conditions should be applied in 

all reference boundary and imaginary boundary node points. And Finite difference 

expressions of the governing equation should be applied in all inner body points. So 

every point gives rise to a linear algebraic equation and the whole region gives a set of 

linear algebraic equations equal to the number of total node points in the region. The set 

of linear equations can be shown as, 

11 12 13 1n 1 1

21 22 23 2n 2 2

31 32 33 3n 3 3

n1 n 2 n3 nn n n

a a a . . . a ψ c
a a a . . . a ψ c
a a a . . . a ψ c
. . . . . . . . .
. . . . . . . . .

a a a . . . a ψ c

     
     
     
             
     
     
     
         

                                                            (3.50) 

    
or
A ψ C  

Where, a11, a12 ……ann are coefficients, n is the number of total node points, [A] is 

called coefficient matrix and [C] is constant matrix. 

In this equation only unknowns are the ψ’s. Many numerical techniques are available to 

solve this type of equation such as L-U decomposition, Cholesky composition, gauss-

Siedel method, matrix portioning, matrix inversion, relaxation method etc. Here L-U 

decomposition method is used and hence value of ψ at each node point will be found. 
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3.5 Determination of Stress and Displacement Component at Each Grid Point 

Once value of ψ at every node points are evaluated the stress and displacement 

components at each point can be found from the equations (Eq. 2.25and 2.26) stated in 

the earlier chapter which are motioned here for convenience. 

u =
∂ଶψ
∂x. ∂y

 

v = −ቈ൬
1− μ
1 + μ

൰
∂ଶψ
∂yଶ

+ ൬
2

1 + μ
൰
∂ଶψ
∂xଶ

቉ 

       

σ୶ =
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂xଶ ∂y

− μ
∂ଷψ
∂yଷ

቉ 

σ୷ = −
E

(1 + μ)ଶ
ቈ
∂ଷψ
∂yଷ

+ (2 + μ)
∂ଷψ
∂xଶ ∂y

቉ 

     

σ୶୷ =
E

(1 + μ)ଶ
ቈμ

∂ଷψ
∂xଶ ∂y

−
∂ଷψ
∂xଷ

቉ 

In order to calculate stress and displacement the finite difference expressions of these 

equations are required and as before the expressions depend on the section of the region 

where these should be applied. For top-right section (figure 3.27) the finite difference 

equations (eq. 3.42 to eq. 3.46) are given below: 

u୶(i, j) = ቆ
∂ଶψ
∂x. ∂y

ቇ
୧,୨
 

         = s1. [9ψ(i, j)− 12{ψ(i, j + 1) + ψ(i + 1, j)} + 16ψ(i + 1, j + 1) +ψ(i + 2, j + 2) +

3{ψ(i, j + 2) + ψ(i + 2, j)} − 4{ψ(i + 1, j + 2) + ψ(i + 2, j + 1)}]               

u୷ = − ቈ൬
1− μ
1 + μ

൰
∂ଶψ
∂yଶ

+ ൬
2

1 + μ
൰
∂ଶψ
∂xଶ

቉ 

  = s2[c1{ψ(i, j + 1) + ψ(i, j− 1)}− (2c1 + 2zk5)ψ(i, j) + zk5{ψ(i + 1, j) +

ψ(i− 1, j)}] 

σ୶
E

=
1

(1 + μ)ଶ
ቈ
∂ଷψ
∂xଶ ∂y

− μ
∂ଷψ
∂yଷ

቉ 
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or, (1 + μ)ଶ ஢౮
୉

= s3[zk9{−3ψ(i− 1, j) + 4ψ(i− 1, j + 1)− ψ(i − 1, j + 2)− 3ψ(i + 1, j) +

4ψ(i + 1, j + 1)− ψ(i + 1), j + 2} + 3ψ(i, j − 1)− (6zk9− 10)ψ(i, j) + (12− 8zk9)ψ(i, j +

1) + (2zk9− 6)ψ(i, j + 2) +ψ(i, j + 3)]  

σ୷
E

= −
1

(1 + μ)ଶ
ቈ
∂ଷψ
∂yଷ

+ (2 + μ)
∂ଷψ
∂xଶ ∂y

቉ 

or, −(1 + μ)ଶ
஢౯
୉

= s4{[−3ψ(i, j− 1) + 10ψ(i, j)− 12ψ(i, j + 1) + 6ψ(i, j + 2)−

ψ(i, j + 3)] + zk6[−ψ(i + 1, j + 2) + 4ψ(i + 1, j + 1)− 3ψ(i + 1, j) + 2ψ(i, j + 2)−

8ψ(i, j + 1) + 6ψ(i, j) − ψ(i− 1, j + 2) + 4ψ(i− 1, j + 1) − 3ψ(i − 1, j)]}                  

σ୶୷
E

=
1

(1 + μ)ଶ
ቈμ

∂ଷψ
∂xଶ ∂y

−
∂ଷψ
∂xଷ

቉ 

or, (1 + μ)ଶ
஢౮౯
୉

= s5[−3ψ(i, j − 1) + 4ψ(i + 1, j− 1)− ψ(i + 2, j − 1) + 6ψ(i, j) −

8ψ(i + 1, j) + 2ψ(i + 2, j)− 3ψ(i, j + 1) + 4ψ(i + 1, j + 1)− ψ(i + 2, j + 1) + zk7{−3ψ(i−

1, j) + 10ψ(i, j) − 12ψ(i + 1, j) + 6ψ(i + 2, j)− ψ(i + 3, j)}]          

These equations can also be used for the other sections of the region by changing signs 

of the constants i, j, s1, s2, s3, and s4 as shown in table 3.2. The formula structures to 

calculate the stresses and displacements in the different sections of figure 3.22 and 

figure 3.25 of the member are shown in figure 3.32 and 3.34 respectively. Using the 

formula structures as shown in figure 3.33 one can calculate stresses and displacements 

over whole field except those nodal points which have ‘x’ mark. For those points new 

formula structures have been made in the next of this section and corresponding 

stencils are shown in figure 3.35. There are two shade of each color one each deep and 

other is light. In deep color stencils should be used over fine uniform mesh, on the 

other hand, in light color stencils should be used over uniform coarse mesh. 
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Figure 3.32: Different formula structures for stress and displacement calculation at 

different sections of the member for case-I. 

 

 

 

Figure 3.33: Stencils for calculation of displacement and stress at different regions of 
the member. 
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Figure 3.34: Different formula structures for stress and displacement calculation at 

different sections of the member for case-II. 

Formulation of stencils for calculation stresses and displacements at cross marks (X): 

There is no need to formulate stencil for displacement component, u because the 

existing stencils give better result for this reason eq. 3.42 is stated again.   

u =
∂ଶψ
∂x.∂y 

= s1. [9ψ(i, j) − 12{ψ(i, j + 1) + ψ(i + 1, j)} + 16ψ(i + 1, j + 1) + ψ(i + 2, j + 2)

+ 3{ψ(i, j + 2) + ψ(i + 2, j)}− 4{ψ(i + 1, j + 2) + ψ(i + 2, j + 1)}] 

u୷ = − ቈ൬
1 − μ
1 + μ൰

∂ଶψ
∂yଶ + ൬

2
1 + μ൰

∂ଶψ
∂xଶ ቉ 
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= (−3m16 + 2m17)ψ(i, j) + 5m16ψ(i, j− 1)− 4m16ψ(i, j − 2) + m16ψ(i, j −

3) − m17{ψ(i + 1, j) + ψ(i − 1, j)                                                                          (3.51)                                     

Where, m16 = ଵିஜ
(ଵାஜ)୩ଵమ

;                 m17 = ଶ
(ଵାμ)୦ଵమ

 

(1 + μ)ଶ
σ୶
E = ቈ

∂ଷψ
∂xଶ ∂y− μ

∂ଷψ
∂yଷ቉ 

=  ଵ
ଶ

m18{ψ(i + 1, j + 2)− ψ(i + 1, j − 2) + ψ(i − 1, j + 2) −ψ(i − 1, j − 2)}−

(3m19 + 5μ ∗m20)ψ(i, j) + (4m19 + 18μ ∗ m20)ψ(i, j − 1)− (m19 + μ ∗

m20)ψ(i, j − 2) + 14μ ∗ m20ψ(i, j− 3)− 3μ ∗ m20ψ(i, j − 4)                           (3.52) 

Where, ݉18 = ଵ
௛ଵమ௞ଶ

;                 ݉19 = ଵ
௛ଵమ௞ଵ

;              ݉20 = ଵ
ଶ௞ଵయ

 

−(1 + μ)ଶ
σ୷
E = ቈ

∂ଷψ
∂yଷ + (2 + μ)

∂ଷψ
∂xଶ ∂y቉ 

= 5m20ψ(i, j)− 18m20ψ(i, j − 1) + 24m20ψ(i, j − 2) − 14m20ψ(i, j − 3) +

3ψ(i, j− 4) + ଶାμ
ଶ

m18{ψ(i − 1, j + 2) −ψ(i − 1, j− 2) + ψ(i + 1, j + 2) −

ψ(i + 1, j − 2)}− (2 + μ){3m19ψ(i, j)− 4m19ψ(i, j − 1) + m19ψ(i, j − 2)}    (3.53) 

(1 + μ)ଶ
σ୶୷
E = ቈμ

∂ଷψ
∂xଶ ∂y −

∂ଷψ
∂xଷ ቉ 

= ଵ
ଶ

m18{ψ(i + 1, j + 2) − ψ(i + 1, j − 2) + ψ(i − 1, j + 2) −ψ(i − 1, j − 2)}−

m19{3ψ(i, j)− 4ψ(i, j − 1) + ψ(i, j − 2)}− μm20{5ψ(i, j) − 18ψ(i, j − 1) +

24ψ(i, j − 2) − 14ψ(i, j− 3) + 3ψ(i, j− 4)}                                                          (3.54) 

These equations 3.42 and 3.51-3.54 are applied at cross marks of figure 3.32 and 3.34. 

Stencils of equations 3.42 and 3.51-3.54 for different region of the field are shown in 

figure 3.35. The application technique of these stencils for both case-I and case-II is 

shown in figure 3.36 and 3.37 with reference to the figure 3.35. Thus one can calculate 

stress and displacement at over the whole field by using the above procedure. In case-

II, where the refine mesh includes both domain and boundary, may have four different 

scenarios. The refine mesh may locate either any corner of the field; in case-II refine 

i 
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mesh locates at top-left corner of the field and the methodology is already discussed. 

For any other scenario i.e. for top-right, bottom-left and bottom-right, the methodology 

discussed above can be used with some intelligence. Detail procedure of mesh 

refinement methodology is shown in figure 3.37, which shows complete algorithm of 

mesh refinement methodology.    

 

 

 

 

 

  

Figure 3.35: Stencils for stress calculation for cross mark nodes at different region of 

field (see figure 3.35 and 3.36). 
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Figure 3.36: Calculation of stress and displacement at cross mark node for case-I. 
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Figure 3.37: Calculation of stress and displacement at cross mark nodes for case-II. 
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Figure 3.38: Flow chart of MR technique. 
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3.6 Computer Program for the Finite Difference Solution 

A computer program based on the FORTRAN language is developed for the finite 

difference solution of the problem. The program has several subroutines to perform 

different tasks. In the flow chart as shown in figure 3.39, the whole program is briefly 

expressed. It is actually a parsimonious representation of the whole program. First the 

program reads data from one input files. Input file contains data about the coarse and 

fine mesh position in the region, its shape expressed in Cartesian coordinate, boundary 

conditions for different region and loading conditions etc. It is mentionable that the 

input files have to prepare in a prescribed way, otherwise the program won’t read and 

will show error message. The main program first reads the data from input file and 

apply the BCs at real and imaginary boundary of the field. Then main program 

develops global coefficient matrix by applying GE over the whole domain. The 

coefficient matrix is solved by LU decomposition method. Then finally the stresses and 

displacements are calculated over the whole field.   

  

 

Start 
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Figure 3.39: Flowchart of the computer program for finite difference solution 
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3.7 Finite Element Method 

Finite element method is a very popular numerical method and used by many 

researchers over the world for solving a wide range of problems. In the previous 

method, finite difference method, the whole region is divided into a grid of discrete 

points or nodes and in each node finite difference form of the differential equation is 

applied which offers a point wise approximation. In contrast to the finite difference 

method, the finite element method divides the solution region into simply shaped 

regions or elements. An approximate solution for the differential equation is developed 

for each of these elements and the total solution is then generated by linking together 

the individual solutions to ensure the continuity at the inter-element boundary. So this 

technique provides piece wise approximation of the region rather than the point wise 

approximation found in the finite difference method. Based on finite element method 

several commercial software’s are available such as ANSYS, NASTRAN & PATRAN, 

FEMLAB, LS DIANA etc. which are very reliable and equally popular. In this study 

ANSYS is used to solve the problems and hence gives a way to compare and validate 

the finite difference results. Since finite difference solution is the main target of this 

work, finite element method here performs as a supporting tool. Therefore details of the 

solution procedures by commercial software ANSYS (finite element method) are not 

mentioned here. 
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CHAPTER 4 

APPLICATION OF THE SCHEME 
4.1 Introduction 

In this chapter, the mesh refinement scheme is applied to solve several applied 

mechanics problems. At first, numerical solutions of a specific problem are obtained by 

finite difference method with mesh refinement technique and finite element method 

considering same material properties and same boundary conditions. The solutions 

obtained by these methods are compared to each other to establish the reliability, 

soundness and accuracy level of the proposed technique. Once the finite difference 

method with mesh refinement technique results is verified, then some other problems 

are selected to solve by this method and the obtained results are analyzed and compared 

with uniform meshing technique to check the superiority of mesh refinement technique 

over uniform meshing technique. By checking the results of mesh refinement with 

uniform mesh technique, two exclusive feature of mesh refinement technique will be 

identified: one is mesh refinement reduces computational efforts and resources i.e. 

saves computational memory and the other one is for same number of nodal points 

mesh refinement technique provides better solutions of physical problem. The 

exclusive features of mesh refinement technique are verified by comparing the 

solutions with literature and with also with finite element method. After that the 

distribution of stress and displacement is obtained for some other problem by mesh 

refinement algorithm of finite difference technique. The results obtained from the mesh 

refinement finite difference technique for different boundary conditions are critically 

analyzed. 

4.2 Case Study-I: Axially Loaded Member 

A simple member under axial loading as shown in figure 4.1 has been solved for 

displacement and stress to validate the result of the proposed mesh refinement 

technique. The problem is considered as plane stress problem because the loadings on 

the body are applied at the boundary and are parallel to the plane of the plate/member 

and distributed over the thickness i.e. confined in the plane of the plate/member and the 

dimension of the body in the direction perpendicular to this plane is relatively small as 

compared to the others.  In such cases, the stresses in the body perpendicular to the 

plane of loading are usually very small and thus can be neglected. As a result these 
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problems become two dimensional, usually referred to as plane stress problems. The 

left edge of the member is fixed and the right edge is under uniform normalized tensile 

stress. The other two edges (top and bottom) of the member are free surfaces. So, at the 

left edge displacement components should be zero i.e. u=0, v=0, at the right edge 

tangential stress is zero i.e. ୶୷ = 0 and , the normal stress is equal to applied stress i.e. 
஢౯
୉

= ஢౥
୉

= 2.0x10ିସ;  and at the top and bottom edges are stress free so normal stress, 

σ୶ = 0.0, and also tangential stress,  ୶୷ = 0.0. σ௬ is the dimension less stress; σo is 

the applied load in terms of stress directed to y-axis and E is the modulus of elasticity, 

μ is the Poison’s ratio of the material of the member. The geometry of the problem is 

square having a/b=1.0 and a=b=25 unit. To check the validity of proposed technique, 

same problem is solved for stress and displacement distribution by using finite 

difference method with mesh refinement and also by finite element method taking 

μ=0.3. All stress components are normalized by applied stress, so it has no necessity to 

consider the value of E i.e. the results are valid for any material having Poisons ratio 

µ=0.3. For mesh refinement technique, three different sizes of mesh are taken for the 

study. This is shown in figure 4.2. From the knowledge of theory of elasticity, it is well 

known to all that for this above problem the support edge of the member is most critical 

in terms of stress intensity. For this reason, mesh refinement is done at this edge i.e. 

near this edge finest meshes are taken. Mesh sensitivity is done for the finest mesh size 

while the size of finest mesh is half of the size of fine mesh and the size of fine mesh is 

half of coarse mesh i.e. the size of finest mesh is one fourth of the coarse mesh. The 

results obtained by FDM and FEM are compared to each other. Mesh sensitivity 

analysis is performed for both of the methods. The mesh size of finest mesh selected for 

FDM analysis is h/a=0.02 as shown in figure 4.3a and figure 4.3b i.e. mesh length =0.5 

unit (number of meshes =2805 i.e. 50x50 + imaginary nodes), as there is little variation 

of results if the mesh size is further smaller. But this program can solve a set of up to 

4000 linear equations very efficiently; after this limit the computer memory becomes 

insufficient. Due to this limitation, further reduction in mesh size is not possible for the 

study. This thesis paper tries to solve this problem by redistributing the node i.e. mesh 

refinement and getting higher number of node at the critical zone while a small number 

of node at the other zones. Thus staying within the mesh no. limitation, better solutions 

are tried to obtain by MR technique at support end of the problem. In finite element 

method, uniform rectangular meshes are considered throughout the field.  In mesh 
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sensitivity curve for FEM analysis as shown in figure 4.4, the optimum mesh size is 

0.04 to 0.01875 where as the selected mesh size for the analysis is h/a=0.02. It would 

help to compare the two results at similar position of various sections of the specified 

problem. Since under FEM consideration 0.02X0.02 size meshes are taken throughout 

the field, FEM has around 30% greater no. of mesh points than MR technique. 

 

Figure 4.1: A simple member under axial loading. 

 

 

 

 

 

 

 

Figure 4.2: Discretization of field under mesh refinement technique. 
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Figure 4.3a: Variation of normalized maximum displacement, u/a with mesh size by 

mesh refinement FDM scheme. 

Figure 4.5 shows the comparison of displacement (v/b) distribution at various sections 

of the selected problem obtained by FDM and FEM analysis. At y/b=0.0, two results 

are exactly identical as the two lines merge together and both methods give 

displacement component v/b is zero at this section and resembles fixed support. As the 

value of y/b increases the value of displacements (v/b) increases and the right most 

edge experiences the maximum displacement as expected. Except section y/b=0.0, at 

other sections of the member there are very small differences in results obtained by 

above two methods. Near the fixed boundary (left side) sections of the problem the 

differences are much smaller than the right side sections of the problem. But the 

variation of the two results is not in significant amount.  

The distribution of displacement component (u/a) as shown is figure 4.6 is of similar 

nature in both FDM and FEM method. The distribution of displacement component, u/a 

is observed to be in good agreement with the physical model of the plate. Only results 

at y/b=0.0 and y/b=0.24 are shown to understand the solutions clearly because after 

section y/b=0.24 the displacement component v/b at other sections is almost same and 

similar to that of section y/b=0.24. Such like graph for v/b there are insignificant 

amount of deviation of results by FDM and FEM. Result at y/b=0.0 is exactly same for 

both methods, although, in result at y/b=0.24 there is small amount of deviation 

between two methods but not in significant amount. Also in other sections (not shown 

graphically) of the member there present deviation between results of two methods but 

At x/a=0 or 1,y/b = 1.0 
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again deviations are not significant amount. Due to material and loading symmetry of 

the problem about x/a=0.5 the distribution of any parameter should be symmetric about 

this section x/a=0.5.  This phenomena is readily seen in the distribution of v/b and u/a.  

The distribution of most significant stress, σy at section y/b=0.0 of the material by FDM 

and FEM methods is shown in figure 4.7. It indicates that for this particular problem 

stress at section y/b=0.0 is very significant. FDM results are higher that than of FEM 

results at singularity point which is obvious because FEM cannot get the accurate 

results at boundary point due to its limitation of taking nodes at the boundary. FEM 

uses average of element stress to find the results at boundary whereas FDM can take 

node points on boundary by which can conforms better results at the boundary. That is 

indicated by the figure 4.7. The distribution of normal stress, y is also symmetric 

about the section x/a=0.5.  

 At other sections of the material, the variation of the stress σy is very small and nearly 

equal to the applied stress and this is shown by figure 4.8. This matching of results by 

these two methods conform the validity and accuracy of the proposed technique. 

The distribution of normal stress, x at support is shown in figure 4.9 as a comparative 

study.  The FEM method gives a higher value of stress than that of FDM method. This 

is so because, the FDM method has limitation of applying boundary conditions 

properly at the singularity point. In this problem at top-left or bottom-left corner there 

should apply only two boundary conditions u=0, v=0, one on real boundary point and 

other on imaginary boundary point by taking the nodal point lies on left edge of the 

body . But there is another false boundary point at the top edge of the body in which we 

should apply another boundary conditions x=0 or xy=0. In this case we have applied 

xy=0 and get a similar solution of FEM. The distribution of normal stress x for other 

section is shown in figure 4.10 and observed that to be in good agreement with the 

physical model. The distribution of shear stress xy is shown in figure 4.11 as a 

comparative study. The results of two methods do not match exactly at around x=0.0 

and x=1.00. this is due to the limitation of application technique of boundary conditions 

at this corner of the member. At singular point, it is seen that the shear stress is zero 

this is due to the application of xy=0 at this position of the problem. But the maximum 

shear stress is occurring near the vicinity of this singular point which is seen to be good 

agreement with the physical model. The distribution of shear stress at other section of 
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the member is shown in figure 4.12. It shows that the distribution matches with our 

expectation. 
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Figure 4.3b: Variation of normalized maximum displacement, v/b with mesh size by 
mesh refinement FDM scheme. 
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Figure 4.4: Variation of maximum normalized displacement (v max/b) with mesh size by 
FEM. 
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Figure 4.5: Comparison of normalized displacement (V/b) distribution at various 
sections of the material. 
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Figure 4.6: Comparison of normalized displacement (U/a) distribution at various 
sections of the material. 
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Figure 4.7: Comparison of normalized normal stress (σy/o) distribution at y/b=0.0 of 
the simple bar by FDM and FEM. 
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Figure 4.8: Normalized normal stress (σy/o) distribution at different sections of the 
material by FDM with mesh refinement and FEM. 
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Figure 4.9: Comparison of normalized normal stress (σx/o) distribution at y/b =0.0 by 
FDM with mesh refinement and FEM. 
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Figure 4.10: Normalized normal stress (σx/o) distribution of a bar under uniform 
tension at different section by FDM with mesh refinement technique. 
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Figure 4.11: Comparison of normalized shear stress obtained by MR finite difference 
method and finite element method. 
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Figure 4.12: Normalized shear stress (σxy) distribution of a fixed bar under uniform 
tension by FDM with mesh refinement technique. 
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4.3 Case Study-II: Axially Loaded Member with Embedded Crack 

4.3.1 Reduction of number of equation: A huge amount of memory saving  

In this section of this thesis, embedded crack problem is solved by two different 

techniques of FDM: one is considering uniform mesh throughout the numerical field 

and other one is mesh refinement taking three different sizes of meshes at different 

regions of the member. Here, it would help to establish a feature of mesh refinement 

technique: reduction of meshes does not hamper the accuracy of the solutions i.e. a 

huge amount of computational effort and resources is saved by mesh refinement 

techniques. This is so because numerical simulations of physical phenomena under 

uniform mesh technique consume a significant amount of computational resources, 

since their domains are discretized on high resolution meshes throughout the numerical 

field. An enormous wastage of these resources occurs in refinement of sections of the 

domain where computation of the solution does not require high resolutions. On the 

other hand, mesh refinement technique takes different resolution of meshes at different 

regions of the problem depending on the requirement of good solutions. On the 

following section this problem of wastage of resources is effectively solved by mesh 

refinement technique. A simple problem containing embedded crack under uniform 

tensile stress as shown in figure 4.13 is selected for analysis this aspect of the mesh 

refinement technique. The material geometry of the problem is taken as a/b=1.0 and 

size of the crack is taken as one fourth of the width of the member.  The material 

properties are taken as same that of the previous problem. Due to symmetric nature of 

the problem we represent the results only for half portion of the problem as shown in 

figure 4.14 with necessary boundary condition. 

 

 

 

                                                  

 

Figure 4.13: Simple bar with embedded crack under uniform tensile stress. 
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Figure 4.14: Half section of the problem with necessary boundary conditions. 

The discretization process in mesh refinement technique is the most critical tasks 

because mesh refinement technique gives better result over uniform mesh technique if 

and only if discretization process can be done with some intelligence otherwise there 

will no improvement in accuracy of the solution. In mesh refinement technique, 

sections of the domain needing high resolution are generally determined by means of a 

criterion which may vary depending on the nature of the problem. Fairly 

straightforward criteria could include comparing the solution to a threshold or the 

gradient of a solution, that is, its local rate of change to a threshold or presents of stress 

concentrators or sharp change in cross section etc. Comparing the solution to a 

threshold is not particularly rigorous and hardly ever represents a physical phenomenon 

of interest, it is simple to implement. However, the gradient criterion is not as simple to 

implement as a direct comparison of values, but it is still quick and a good indicator of 

the effectiveness of the mesh refinement technique. Some other straightforward criteria 

can include the presence of cracks, void, hole etc., a sharp change in cross section, 

material flaws etc. Since the above problem contains a crack and work as a stress riser, 

mesh refinement is done in vicinity of the crack as shown in figure 4.15a, which 

contain three different mesh sizes, h1, h2 and h3 in the direction of x-axis. For 

simplicity, this thesis takes h2=2*h1 and h3=2*h2. Same types and sizes meshes are also 

considered in y-axis direction i.e. k1=h1, k2=h2 etc. Total no of meshes in MR technique 

is around 2400. To compare the result obtained by mesh refinement technique with 

uniform meshing, the domain of uniform meshing is discretized with mesh having size 

equal to the smallest mesh size of mesh refinement technique throughout the field 

shown in figure 4.15b. Total no. of meshes in uniform technique is around 4000 

(60X60 + imaginary nodes), which is around 40% greater than MR technique. Thus 
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great reductions in mesh number occur in mesh reduction technique. The mesh 

refinement technique has around 40% less nodal points than uniform mesh technique. 

 

 

 

  

 

 

 

 

 

 

 

a) Discreatization of domain under mesh refinement technique. 

 

b) Discretization of domain under uniform mesh technique. 

Figure 4.15: Discretization process of the field. 
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Figure 4.16: Comparison of results for normalized deflection, (u/a) by mesh refinement 

technique and uniform meshing. 

Results obtained by two method mesh refinement technique and uniform meshing 

method of this above problem are shown in figure 4.16 to figure 4.22. Figure 4.16 

shows the results for normalized deflection (u/a) for both methods at different sections. 

There are some differences in results obtained by two techniques but these are not very 

significant. The results obtained by uniform meshing are somewhat magnified than that 

of mesh refinement but difference is not very high. Results are shown only for two 

sections namely y/b=0.00 and y/b=0.25 for clear understanding of results because for 

other sections results are almost same and graphing these results will be crowded the 

figure.  Figure 4.17 shows normalized deflection (v/b) for left most and right most 

section. In the right most section i.e. maximum deflection for the problem matches 

exactly, but at the left most section results do not match exactly. There are some 

differences in value of v/b at the position of crack and it is the maximum at the tip of 

the crack, although the difference is not very significant. The magnitude (10-5) of the 

results by two different methods is same. The maximum deflection at y/b=0.0 for mesh 

refinement is 4.0711x10-5 whereas for uniform meshing is 4.7110x10-5. The figure 4.18 

shows normalized deflection (v/b) at different section. The maximum deflection is 

same for every nodal points at y/b=1.0 which is obvious because the effect of stress 

y/b=0.25 

y/b=0.00 
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concentrator i.e. crack diminishes at earlier section at around section y/b=0.5. Before 

the section y/b=0.5, for each and every section maximum displacement component v/b 

occurs at horizontal mid-section of the plate i.e. at x/a=0.5. 
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Figure 4.17: Comparison of results for normalized deflection, (v/b) at section y/b=0.0 
and y/b=1.0 by mesh refinement technique and uniform meshing. 
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Figure 4.18: Results for normalized deflection, (v/b) at different section by mesh 
refinement technique. 

y/b=0.0 y/b=1.0 



97 
 

x/0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x/
a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Mesh refinement 
Uniform mesh

 

Figure 4.19: Comparison of results for normalized stress, (σx/o) at section y/b=0.0 by 

mesh refinement technique and uniform meshing. 

Figure 4.19 shows the normalized stress (σx/o) distribution at section y/b=0.0. It shows 

that as node point increments from top edge or bottom edge to crack tips, the stress 

increases gradually and this matches with the theory of elasticity. Both the method 

gives same results for normalized stress (σx/o) at the crack tips, so we can conclude 

that the method of mesh refinement saves a great amount of memory without 

compromising the accuracy of the solution. Normalized stress (σx/o) at different 

section by mesh refinement technique is shown in figure 4.20. It shows that normalized 

stress (σx/o) is almost zero at the right section of the materials which keeps the 

conformity of the solution with the basic theory of elasticity. Figure 4.21 shows 

comparison of results for normalized normal stress (σy/o) at section y/b=0.0 i.e. at the 

crack section by mesh refinement technique and uniform mesh refinement technique. 

These two methods give same results, although, mesh refinement scheme play with 

around 40% reduction of node than uniform meshing scheme. The tip of the crack 

suffers the maximum stress and similarity with applied elasticity theory. Without the 

section near the crack all other section have suffered by a smaller stress almost equal to 

the stress applied stress σ1/E= 2.0e-4, that also conforms the theory of elasticity as 

shown in figure 4.22. 
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Figure 4.20: Results for normalized stress, (σx/o) at section y/b=0.0 by mesh 
refinement technique and uniform meshing. 
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Figure 4.21: Comparison of results for normalized stress, (σx/o) at section y/b=0.0 by 
mesh refinement technique and uniform meshing. 
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Figure 4.22: Comparison of results for normalized stress, (σy/o) at different section by 
mesh refinement technique and uniform meshing. 
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4.3.2 Redistribution of Meshes Increases the Accuracy of the Solutions 

As stated before, around 4000 linear equation can be solved effectively by this program 

due to the limitation of computer ability (Pentium(R) Dual Core CPU, E5200 

@2.50GHz, 2.50GHz, 1.00GB of RAM). The previous section of this thesis tries to 

solve this problem of memory exhausting by reducing the no. of equation but not 

compromising the accuracy using mesh refinement technique in finite difference 

method. But one can claim that, using high performance computer or super computer 

will relieve from this problem, then, there will no limitation of using uniform mesh 

technique in terms of nodal points or number of linear equation, so why you use this 

new technique?  This section of this thesis tries to express the concept that for equal no. 

of nodal points mesh refinement technique gives better results than uniform mesh 

technique i.e. redistribution of nodes increases the accuracy of the solutions. Consider 

the following same problem of previous section to establish the above thought. A plate 

having embedded crack under uniform tensile stress as shown in figure 4.13 is 

considered to verify this aspect of this new technique. Due to nature of symmetry of the 

problem only half section is considered for analysis and this is shown in figure 4.14 

with necessary boundary condition. 

Under uniform mesh consideration, the discretization is done by taking same sizes 

mesh over the whole field as shown in figure 4.15b. The discretization, under mesh 

refinement technique, is done only by changing some nodal points of a region of 

uniform meshing discretization to some other regions thus gives an opportunity to 

maintain equal no. of nodal points for both technique (for both technique around 4000 

mesh are considered). The changing of nodal points from one region to other region 

must be done with some intelligence otherwise the benefits of mesh refinement will 

remain under question marks. Here, intensity of the solution of uniform meshing is 

taken as a criterion to change the position of the nodal points from one region to others 

region. Nodal points should be changed from lower intensify areas to higher intensify 

areas. From the results of uniform mesh technique, the left section of the material i.e. 

y/b=0.0 to y/b=0.25 can be taken as higher intensify area as shown in figure 4.23. So, 

nodal points from right section of the domain should be changed to left section of the 

material as shown in figure 4.24 as compared to figure 4.15b. Thus, uniform meshing 

become non-uniform and uniform meshing contain only one mesh length, h2 in x-axis 

direction whereas mesh refinement particularly in this case contain three different mesh 
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length, h1, h2 and h3 and both uniform mesh technique and mesh refinement technique 

has around equal no. of nodal points. There is a relation between h1, h2 and h3 and this 

is h1=h2/2=h3/4. This has been taken for simplifying the problems. 
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Figure 4.23: Results for normalized normal stress (σy/E) obtained by uniform meshing 
technique at various section of the material. 

 

Figure 4.24: Redistribution of meshes in mesh refinement process to obtain better 
results. 
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original shape
deformed shape

 

The results of this particular problem are shown in figure from 4.25 to 4.37. Figure 

4.26, 4.28, 4.29, 4.31 and 4.33 shows a comparative study of results obtained by mesh 

refinement (MR) and uniform meshing (UM) techniques. 

Figure 4.25 shows the original shape and deformed shape of the problem under the 

formulation of MR technique. Form qualitative inspection we see that solution is 

correct. The upper edge moves downward whereas bottom edge moves upward and 

these matches with our expectation. The material gets narrows down in vertical 

direction and elongated in horizontal direction. 

Figure 4.26 deflection (u/a) for both methods and see that results of both techniques 

match numerically each other but MR technique gives a better distribution i.e. a more 

smother curve than UM method. Figure 4.27 shows deflection (u/a) at different section 

of the material by MR technique. Which shows that maximum deflection is occur at 

y/b=0.0. Figure 4.28 shows a comparative study of deflection (v/b) for both methods at 

section y/b=0.0 and shows that at the midpoint of crack the UM technique gives a 

higher value of displacement than MR technique. For all section MR technique gives 

always a smaller value of deflection than UM technique. The difference between two 

values of deflection (v/b) obtained by MR and UM technique increases as y/b value 

increases but the differences are not very significant. From these above discussion we 

cannot conclude that for equal no. of nodal points MR technique improve the accuracy. 

Figure 4.25: Original shape and deformed shape of the material. u and v 
are 1000 times magnified. 

y=o= 2x10-4 

a/b=1.00 
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Now we take a close look to the figure 4.33 which compare the results of normalized 

normal stress (σy/o) obtained by MR and UM technique. From theory of elasticity we 

know that for this type of problem the important parameter is normalized normal stress 

σy/o. Figure 4.33 shows this stress value is much larger for MR technique and from 

literature we know that it should have a large value. This verification is given in the 

next paragraph of this thesis from literature [45]. 

It is possible to analyze certain geometrical shapes by using the methods of the theory 

of elasticity to determine the values of stress concentration factors. Three distinct 

modes of crack propagation exist, as shown in figure 4.34. A tensile stress field gives 

rise to mode I, the opening crack propagation mode, as shown in figure 4.34a. This 

mode is the most common in practice. Mode II is the sliding mode, is due to in-plane 

shear, and can be seen in figure 4.34b. Mode III is the tearing mode, which arises from 

out-of-plane shear, as shown in figure 4.34c. Consider a mode I crack of length 2a in 

the infinite plate of figure 4.35. By using complex stress functions, it has been shown 

that the stress field on a dx dy element in the vicinity of the crack tip is given by [45] 

 

The stress y near the tip, with θ = 0, is 

 

Thus as with the crack, we see that y |=0 →∞ as r →0, i.e. at the tip of the crack the 

stress y should be infinite. But, in practical case the concept of an infinite stress 

concentration at the crack tip is inappropriate. Although, the infinite stress concept at 

the tip of the crack is appropriate, the crack tip should be experienced a large stress 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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concentration. It is already well known that for a circular hole stress should be three 

times higher than the applied stress. Thus, it can conclude that the method which gives 

larger stress at the tip of the crack and better distribution near the crack is an 

appropriate method in terms of solution. From figure 4.33, it is seen that for uniform 

mesh the stress concentration factor is 2.7 and for mesh refinement technique it is 

around 3.55. Thus it can be said that MR technique is more accurate than uniform mesh 

technique for analysis of stress near the vicinity of critical zone. There is an explanation 

why stress at tip of the crack is not infinite. This is so because one can never take a 

node at the tip of the crack, he always remains a half mesh length distance from the tip 

of the crack as shown in figure 4.36. Rectangular box indicates that any condition at 

this node will be applicable over this area. Dashed box shows crack tip condition 

implement area and solid box shows crack condition implement area. As a result, the 

original length of crack is reduced by half mesh length from both sides. The original 

crack is identified by dark line and reduced crack length is identified by length of all 

solid boxes in figure 4.36. Now applying r = half mesh length and  = 0, the eq. 4.2 

gives normal stress value y is 3.75 times of applied stress and this is very close to the 

result of MR technique. Thus MR technique gives better results than uniform mesh 

technique. 

Figure 4.37 shows comparison of normalized normal stress (σy/E) at different section of 

the material. It shows that except y/b=0.0 for other value of y/b results of both 

techniques matches each other. So we can say that MR technique improves the 

accuracy of solution in the vicinity of a stress concentrator.  Figure 4.38 shows the 

distribution of normalized normal stress (σy/o) obtained by MR technique at different 

section of the member. It shows that at every section except the singularity section i.e. 

y/b=0.00, the average of the normal stress (σy/o) over any section is equal to that of 

applied stress, which is another validation of the MR techniques results. 

Figure 4.39 shows normalized shear stress distribution at various sections of the 

material. It shows the upper half of the material exerts a positive shear whereas lower 

half exerts a negative shear, thus total shear force is balanced. The maximum shear 

stress occurs at a section which lies immediate after section y/b=0.0 
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Figure 4.26: Comparison of the results for normalized displacement (u/a) obtained by 
mesh refinement (MR) technique and uniform mesh (UM) technique with almost equal 

no. of nodal points. 
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Figure 4.27: Normalized displacement (u/a) obtained by mesh refinement (MR) 
technique at different section of the member. 
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Figure 4.28: Comparison of the results for normalized displacement (v/b) obtained by 
MR technique and UM technique with almost equal no. of nodal points. 
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Figure 4.29: Comparison of the results for normalized displacement (v/b) obtained by 
MR technique and UM technique with almost same no. of nodal points. 
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Figure 4.30: Normalized displacement (v/b) obtained by mesh refinement (MR) 
technique at different section of the material. 
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Figure 4.31: Comparison of the results for normalized normal stress (σx/o) obtained by 
MR technique and UM technique with almost equal no. of nodal points. 

y/b=0.0 y/b=1.00. 
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Figure 4.32: Distribution of normalized normal stress (σx/o) obtained by MR 
technique at different section of the material. 
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Figure 4.33: Comparison of the results for normalized normal stress (σy/o) obtained by 
MR technique and UM technique with almost equal no. of nodal points. 
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Figure 4.34: Crack propagation modes. 

 

Figure 4.35: A transverse crack of mode-I in an infinite plate located in tension. 

  

 

 

 

a)                                         b)                                c) 
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Figure 4.36: Effect of nodal condition on the length of the crack. 

 

y/0

0.7 0.8 0.9 1.0 1.1 1.2

x/
a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y/b=0.25 by MR
y/b=0.25  by UM
y/b=0.50 by MR
y/b=0.50 by UM
y/b=1.00 by MR
y/b=1.00 by UM

 

Figure 4.37: Comparison of the results for normalized normal stress (σy/o) obtained by 
MR technique and UM technique with almost equal no. of nodal points at different 

section of member. 
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Figure 4.38: Distribution of normalized normal stress (σy/o) obtained by MR 
technique at different section of the member. 
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Figure 4.39: Distribution of normalized normal stress (xy/o) obtained by MR 
technique at different section of the member. 
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4.3.3 Comparison of results of embedded crack with literature and FEM 

In previous two sections, results of MR technique are compared with uniform mesh 

technique and two exclusive features of MR technique have been established, namely: 

reductions of meshes save computational resources and for equal no. of nodal points 

increase the accuracy of the solution. In this section, results of MR technique of same 

problem (figure 4.13) will be compared with literature and FEM. The necessary 

boundary conditions for solving the problem are shown in figure 4.14. For comparison 

purpose, under FEM the numerical field is discretized 101x101 nodal points that is the 

mesh size (h/a x k/b) becomes 0.01 x 0.01. This gives around 10201 meshes and around 

10000 elements. Under MR technique, three different sizes of mesh are considered. The 

finest mesh size is equal to 0.01 x 0.01 and it is taken at the crack end and is covered up 

to y/b=0.25. The size of the fine mesh is 0.02 x 0.02 and it covers from y/b=0.26 to 

y/b=0.50. The size of the coarse mesh is 0.04 x 0.04 and it covers from y/b>0.50 to 

y/b=1.00. The discretzation process is shown in figure 4.40, which contains around 

3500 nodal points. 

 

 

 

 

 

 

 

 

 

 

a)  Discretization of domain under FEM. 

h/a=0.01 

  k/b=0.01 
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b)  Discretiztion process under mesh refinement process. 

Figure 4.40: Discretization process of domain under MR FDM and FEM. 

The results of both methods are shown as a comparative study from figure 4.41 to 4.44. 

The figure 4.41 shows displacement component u/a at four different section of the 

material. Figure 4.41a shows u/a distribution at section y/b=0.0. It is seen that for both 

methods displacement at upper edge of the member is positive and that for lower end is 

negative. From our experience and theory of elasticity support this nature of the 

displacement. Results of both methods match each other although at the tip of the crack 

FEM gives higher displacement than mesh refinement technique. Figure 4.41b, 4.41c 

and 4.41d shows distribution of u/a at section y/b=0.25, 0.50 and 1.00 respectively. At 

every cases MR results matches with FEM results although FEM plays with much 

greater no of nodal points than MR technique. 

h/a=0.01 h2/a=0.02 h3/a=0.04 

 k/b=0.01 

 k2 /b=0.02 

 k3 /b=0.04 

y/b=0.25 
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y/b=1.00 
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a) u/a distribution at y/b=0.00.
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b) u/a distribution at y/b=0.25 



115 
 

u/ax104

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

x/
a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
FEM

 

c) u/a distribution at y/b=0.50 
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d) u/a distribution at y/b=1.00 

Figure 3.41: Comparison of results u/a at different sections of the member of MR 
technique and FEM. 
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Figure 4.42 shows displacement component v/b at different sections of the member. 

Figure 4.42a and 4.42b show v/b distribution at sections y/b=0.00 and y/b=0.25 

respectively. Whereas figure 4.42c shows v/b distribution at sections y/b=0.50 and 

y/b=1.00. In section y/b=0.00, both methods give almost same results but as the y/b 

increases the deviation in displacement of these two methods increase. And the largest 

deviation occurs at right edge of the member. In every section, the FEM gives 

somewhat larger displacement than MR technique. In section y/b=0.00 to y/b=0.50 the 

largest displacement occurs at the centre of the cracks i.e. x/a=0.50 for both methods 

and the displacement for these section reduces as x/a reduces or increases. Beyond the 

section y/b=0.50, the displacement v/b is almost constant for any value of x/a. This type 

of distribution occurs because after y/b=0.50 the effect of crack diminishes.   
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a)  distribution of v/b at section y/b=0.00. 
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b) distribution of v/b at section y/b=0.25. 
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c) distribution of v/b at sections y/b=0.50 and y/b=1.00. 

Figure 4.42: Distribution of displacement component, v/b at different sections of the 
member. 

y/b=0.50 y/b=1.00 



118 
 

The most important result for this type of problem is the stress component in 

direction to applied stress and in this case it is y which is shown in figure 4.43. 

In figure 4.43a, distribution of normal stress y/o at section y/b=0.00 is shown. 

From this figure it is seen that both methods give almost same results and also 

the distribution is follows same pattern. The maximum stress is observed as 

3.75 for FEM and around 3.8 for MR technique. Following the concept of 

previous section i.e. one always remains half mesh length distance from the 

crack tip from eq. 4.2 it is found that the normal stress should become 3.54 

times of the applied stress. Thus FEM and MR technique give almost 

comparable results although MR technique plays with around 40% nodal points 

of FEM method. Figure 4.44b shows distribution of normal stress y/o at 

section y/b=0.25. At mid section of the member, the results are almost same for 

both methods but at singularity points there presents deviation between the 

results of these two methods. This is results from the inability of FEM in 

management of boundary. At the boundary FEM cannot find solution directly, it 

first finds results on element near boundary and then extrapolates it at boundary 

edge. For this reason deviation occurs at boundary of the member.  
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a) distribution of normal stress y/o at section y/b=0.00. 
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b) distribution of normal stress, y/o at section y/b=0.25.  
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c) distribution of normal stress, y/o at sections y/b=0.50 and y/b=1.00. 

Figure 4.43: Distribution of stress component, y/o at different sections of the 
member. 
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The normal stress, x/o distribution is shown in figure 4.44. From figure 4.44a, it is 

seen that the pattern of distribution is similar in both of the methods but FEM give 

somewhat larger stress than that of mesh refinement technique. The stress distribution 

of x/o at section y/b=0.00 is looks like the stress distribution of y/o at section 

y/b=0.00 but intensity of normal stress in y-direction i.e. y/o is larger compared to the 

stress of x-direction i.e. x/o. The tip of the crack experienced the maximum normal 

stress in both x- and y- direction (see figure 4.43a and 4.44a) but as x/a value decreases 

or increases from its value at tip of crack the stress tends to decreases and for both 

methods it becomes zero at the top and bottom edge of the member.  The normal 

stress,x/o distribution in other sections are shown in figure 4.44b, 4.44c, and 4.44d. 

All data are presented in tabular form in table 4.1, 4.2 , 4.3 and 4.4. 
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a) distribution of normal stress x/o at section y/b=0.00. 
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b) distribution of normal stress x/o at section y/b=0.25. 
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c) distribution of normal stress x/o at section y/b=0.50. 
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d) distribution of normal stress x/o at section y/b=1.00. 

Figure 4.44: Distribution of stress component, x/o at different sections of the 

member. 
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Table 4.1: Comparison of results of displacement component u/a at various position of 

the member by FEM and MR technique. 

x/a u/a(y/b=0) u/a(y/b=0.25) u/a(y/b=0.50) u/a(y/b=1.00) 

FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) 

0 3.45E-05 3.41E-05 3.07E-05 3.06E-05 2.86E-05 2.88E-05 2.89E-05 2.90E-05 

0.01 3.39E-05 3.36E-05 3.01E-05 3.01E-05 2.80E-05 2.83E-05 

0.02 3.33E-05 3.31E-05 2.94E-05 2.96E-05 2.73E-05 2.72E-05 2.77E-05 

0.03 3.27E-05 3.26E-05 2.88E-05 2.90E-05 2.67E-05 2.71E-05 

0.04 3.21E-05 3.21E-05 2.81E-05 2.85E-05 2.61E-05 2.62E-05 2.65E-05 2.70E-05 

0.05 3.15E-05 3.16E-05 2.74E-05 2.74E-05 2.55E-05 2.59E-05 

0.06 3.09E-05 3.10E-05 2.68E-05 2.69E-05 2.48E-05 2.46E-05 2.53E-05 

0.07 3.02E-05 3.00E-05 2.61E-05 2.63E-05 2.42E-05 2.47E-05 

0.08 2.96E-05 2.95E-05 2.55E-05 2.58E-05 2.36E-05 2.35E-05 2.41E-05 2.50E-05 

0.09 2.90E-05 2.90E-05 2.48E-05 2.47E-05 2.29E-05 2.35E-05 

0.1 2.84E-05 2.85E-05 2.41E-05 2.41E-05 2.23E-05 2.25E-05 2.29E-05 

0.11 2.78E-05 2.80E-05 2.34E-05 2.36E-05 2.17E-05 2.23E-05 

0.12 2.72E-05 2.75E-05 2.28E-05 2.30E-05 2.11E-05 2.10E-05 2.17E-05 2.21E-05 

0.13 2.66E-05 2.67E-05 2.21E-05 2.19E-05 2.05E-05 2.11E-05 

0.14 2.60E-05 2.60E-05 2.14E-05 2.13E-05 1.98E-05 1.98E-05 2.05E-05 

0.15 2.55E-05 2.55E-05 2.07E-05 2.07E-05 1.92E-05 1.99E-05 

0.16 2.49E-05 2.50E-05 2.00E-05 2.02E-05 1.86E-05 1.84E-05 1.93E-05 1.91E-05 

0.17 2.43E-05 2.41E-05 1.93E-05 1.96E-05 1.80E-05 1.87E-05 

0.18 2.38E-05 2.36E-05 1.86E-05 1.90E-05 1.74E-05 1.74E-05 1.81E-05 

0.19 2.32E-05 2.31E-05 1.78E-05 1.78E-05 1.68E-05 1.75E-05 

0.2 2.27E-05 2.27E-05 1.71E-05 1.72E-05 1.62E-05 1.64E-05 1.69E-05 1.71E-05 

0.21 2.22E-05 2.22E-05 1.64E-05 1.66E-05 1.56E-05 1.63E-05 

0.22 2.17E-05 2.18E-05 1.57E-05 1.60E-05 1.50E-05 1.54E-05 1.58E-05 

0.23 2.12E-05 2.14E-05 1.49E-05 1.48E-05 1.44E-05 1.52E-05 

0.24 2.07E-05 2.09E-05 1.42E-05 1.42E-05 1.38E-05 1.34E-05 1.46E-05 1.52E-05 

0.25 2.02E-05 2.01E-05 1.35E-05 1.36E-05 1.32E-05 1.40E-05 

0.26 1.98E-05 1.97E-05 1.27E-05 1.30E-05 1.27E-05 1.24E-05 1.34E-05 

0.27 1.93E-05 1.93E-05 1.20E-05 1.18E-05 1.21E-05 1.29E-05 

0.28 1.89E-05 1.90E-05 1.13E-05 1.12E-05 1.15E-05 1.14E-05 1.23E-05 1.22E-05 

0.29 1.86E-05 1.86E-05 1.06E-05 1.06E-05 1.09E-05 1.17E-05 

0.3 1.83E-05 1.83E-05 9.84E-06 1.01E-05 1.04E-05 1.05E-05 1.11E-05 

0.31 1.80E-05 1.80E-05 9.14E-06 9.47E-06 9.81E-06 1.06E-05 

0.32 1.78E-05 1.77E-05 8.45E-06 8.89E-06 9.26E-06 9.55E-06 1.00E-05 1.03E-05 

0.33 1.77E-05 1.74E-05 7.78E-06 7.78E-06 8.71E-06 9.44E-06 

0.34 1.76E-05 1.72E-05 7.13E-06 7.24E-06 8.17E-06 8.61E-06 8.87E-06 

0.35 1.78E-05 1.71E-05 6.50E-06 6.71E-06 7.63E-06 8.31E-06 

0.36 1.82E-05 1.69E-05 5.89E-06 5.69E-06 7.09E-06 7.41E-06 7.75E-06 7.95E-06 

0.37 1.93E-05 1.76E-05 5.31E-06 5.22E-06 6.56E-06 7.19E-06 

0.38 2.17E-05 1.82E-05 4.75E-06 4.75E-06 6.04E-06 5.93E-06 6.63E-06 
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0.39 2.25E-05 1.85E-05 4.22E-06 4.32E-06 5.52E-06 6.07E-06 

0.4 2.08E-05 1.87E-05 3.72E-06 3.88E-06 5.00E-06 5.05E-06 5.51E-06 5.61E-06 

0.41 1.87E-05 1.86E-05 3.25E-06 3.09E-06 4.49E-06 4.96E-06 

0.42 1.67E-05 1.63E-05 2.80E-06 2.73E-06 3.98E-06 3.34E-06 4.41E-06 

0.43 1.46E-05 1.48E-05 2.38E-06 2.37E-06 3.47E-06 3.85E-06 

0.44 1.25E-05 1.17E-05 1.99E-06 2.04E-06 2.97E-06 2.50E-06 3.30E-06 3.24E-06 

0.45 1.04E-05 1.01E-05 1.62E-06 1.72E-06 2.47E-06 2.75E-06 

0.46 8.32E-06 8.44E-06 1.27E-06 1.41E-06 1.97E-06 1.66E-06 2.20E-06 

0.47 6.24E-06 5.09E-06 9.40E-07 8.33E-07 1.48E-06 1.65E-06 

0.48 4.16E-06 3.40E-06 6.19E-07 5.52E-07 9.86E-07 8.32E-07 1.10E-06 1.17E-06 

0.49 2.08E-06 1.70E-06 3.07E-07 2.76E-07 4.93E-07 5.49E-07 

0.5 0 9.94E-09 3.12E-16 -7.00E-10 4.43E-16 2.41E-09 7.27E-16 

0.51 -2.08E-06 -1.69E-06 -3.07E-07 -2.72E-07 -4.93E-07 -5.49E-07 

0.52 -4.16E-06 -3.39E-06 -6.19E-07 -5.44E-07 -9.86E-07 -8.27E-07 -1.10E-06 -1.17E-06 

0.53 -6.24E-06 -5.08E-06 -9.40E-07 -8.25E-07 -1.48E-06 -1.65E-06 

0.54 -8.32E-06 -8.43E-06 -1.27E-06 -1.41E-06 -1.97E-06 -1.66E-06 -2.20E-06 

0.55 -1.04E-05 -1.01E-05 -1.62E-06 -1.71E-06 -2.47E-06 -2.75E-06 

0.56 -1.25E-05 -1.17E-05 -1.99E-06 -2.03E-06 -2.97E-06 -2.49E-06 -3.30E-06 -3.24E-06 

0.57 -1.46E-05 -1.48E-05 -2.38E-06 -2.36E-06 -3.47E-06 -3.85E-06 

0.58 -1.67E-05 -1.63E-05 -2.80E-06 -2.72E-06 -3.98E-06 -3.33E-06 -4.41E-06 

0.59 -1.87E-05 -1.85E-05 -3.25E-06 -3.08E-06 -4.49E-06 -4.96E-06 

0.6 -2.08E-05 -1.87E-05 -3.72E-06 -3.87E-06 -5.00E-06 -5.04E-06 -5.51E-06 -5.61E-06 

0.61 -2.25E-05 -1.84E-05 -4.22E-06 -4.31E-06 -5.52E-06 -6.07E-06 

0.62 -2.17E-05 -1.82E-05 -4.75E-06 -4.74E-06 -6.04E-06 -5.92E-06 -6.63E-06 

0.63 -1.93E-05 -1.76E-05 -5.31E-06 -5.21E-06 -6.56E-06 -7.19E-06 

0.64 -1.82E-05 -1.70E-05 -5.89E-06 -5.69E-06 -7.09E-06 -7.40E-06 -7.75E-06 -7.95E-06 

0.65 -1.78E-05 -1.69E-05 -6.50E-06 -6.70E-06 -7.63E-06 -8.31E-06 

0.66 -1.76E-05 -1.72E-05 -7.13E-06 -7.23E-06 -8.17E-06 -8.61E-06 -8.87E-06 

0.67 -1.77E-05 -1.74E-05 -7.78E-06 -7.77E-06 -8.71E-06 -9.44E-06 

0.68 -1.78E-05 -1.77E-05 -8.45E-06 -8.89E-06 -9.26E-06 -9.54E-06 -1.00E-05 -1.03E-05 

0.69 -1.80E-05 -1.80E-05 -9.14E-06 -9.46E-06 -9.81E-06 -1.06E-05 

0.7 -1.83E-05 -1.83E-05 -9.84E-06 -1.00E-05 -1.04E-05 -1.05E-05 -1.11E-05 

0.71 -1.86E-05 -1.86E-05 -1.06E-05 -1.06E-05 -1.09E-05 -1.17E-05 

0.72 -1.89E-05 -1.89E-05 -1.13E-05 -1.12E-05 -1.15E-05 -1.14E-05 -1.23E-05 -1.22E-05 

0.73 -1.93E-05 -1.93E-05 -1.20E-05 -1.18E-05 -1.21E-05 -1.29E-05 

0.74 -1.98E-05 -1.97E-05 -1.27E-05 -1.24E-05 -1.27E-05 -1.24E-05 -1.34E-05 

0.75 -2.02E-05 -2.01E-05 -1.35E-05 -1.30E-05 -1.32E-05 -1.40E-05 

0.76 -2.07E-05 -2.05E-05 -1.42E-05 -1.42E-05 -1.38E-05 -1.34E-05 -1.46E-05 -1.52E-05 

0.77 -2.12E-05 -2.13E-05 -1.49E-05 -1.48E-05 -1.44E-05 -1.52E-05 

0.78 -2.17E-05 -2.18E-05 -1.57E-05 -1.54E-05 -1.50E-05 -1.53E-05 -1.58E-05 

0.79 -2.22E-05 -2.22E-05 -1.64E-05 -1.66E-05 -1.56E-05 -1.63E-05 

0.8 -2.27E-05 -2.27E-05 -1.71E-05 -1.72E-05 -1.62E-05 -1.63E-05 -1.69E-05 -1.71E-05 

0.81 -2.32E-05 -2.31E-05 -1.78E-05 -1.78E-05 -1.68E-05 -1.75E-05 

0.82 -2.38E-05 -2.36E-05 -1.86E-05 -1.84E-05 -1.74E-05 -1.74E-05 -1.81E-05 



125 
 

0.83 -2.43E-05 -2.41E-05 -1.93E-05 -1.90E-05 -1.80E-05 -1.87E-05 

0.84 -2.49E-05 -2.45E-05 -2.00E-05 -2.01E-05 -1.86E-05 -1.84E-05 -1.93E-05 -1.91E-05 

0.85 -2.55E-05 -2.55E-05 -2.07E-05 -2.07E-05 -1.92E-05 -1.99E-05 

0.86 -2.60E-05 -2.60E-05 -2.14E-05 -2.13E-05 -1.98E-05 -1.98E-05 -2.05E-05 

0.87 -2.66E-05 -2.65E-05 -2.21E-05 -2.19E-05 -2.05E-05 -2.11E-05 

0.88 -2.72E-05 -2.70E-05 -2.28E-05 -2.24E-05 -2.11E-05 -2.10E-05 -2.17E-05 -2.21E-05 

0.89 -2.78E-05 -2.75E-05 -2.34E-05 -2.35E-05 -2.17E-05 -2.23E-05 

0.9 -2.84E-05 -2.80E-05 -2.41E-05 -2.41E-05 -2.23E-05 -2.25E-05 -2.29E-05 

0.91 -2.90E-05 -2.90E-05 -2.48E-05 -2.47E-05 -2.29E-05 -2.35E-05 

0.92 -2.96E-05 -2.95E-05 -2.55E-05 -2.52E-05 -2.36E-05 -2.35E-05 -2.41E-05 -2.50E-05 

0.93 -3.02E-05 -3.00E-05 -2.61E-05 -2.63E-05 -2.42E-05 -2.47E-05 

0.94 -3.09E-05 -3.10E-05 -2.68E-05 -2.68E-05 -2.48E-05 -2.46E-05 -2.53E-05 

0.95 -3.15E-05 -3.15E-05 -2.74E-05 -2.74E-05 -2.55E-05 -2.59E-05 

0.96 -3.21E-05 -3.21E-05 -2.81E-05 -2.79E-05 -2.61E-05 -2.61E-05 -2.65E-05 -2.70E-05 

0.97 -3.27E-05 -3.26E-05 -2.88E-05 -2.85E-05 -2.67E-05 -2.71E-05 

0.98 -3.33E-05 -3.31E-05 -2.94E-05 -2.96E-05 -2.73E-05 -2.72E-05 -2.77E-05 

0.99 -3.39E-05 -3.36E-05 -3.01E-05 -3.01E-05 -2.80E-05 -2.83E-05 

1 -3.45E-05 -3.41E-05 -3.07E-05 -3.06E-05 -2.86E-05 -2.88E-05 -2.89E-05 -2.90E-05 
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Table 4.2: Comparison of results of displacement component u/a at various position of 

the member by FEM and MR technique. 

x/a 
v/b(y/b=0) v/b(y/b=0.25) v/b(y/b=0.50) v/b(y/b=1.00) 

FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) 

0 0 7.21E-11 5.25E-05 5.23E-05 1.07E-04 1.03E-04 2.08E-04 2.01E-04 

0.01 0 -8.56E-12 5.26E-05 5.26E-05 1.07E-04 2.08E-04 

0.02 0 -8.92E-11 5.28E-05 5.27E-05 1.07E-04 1.03E-04 2.08E-04 

0.03 0 -3.41E-11 5.30E-05 5.29E-05 1.07E-04 2.08E-04 

0.04 0 2.10E-11 5.31E-05 5.30E-05 1.07E-04 1.03E-04 2.08E-04 2.01E-04 

0.05 0 -1.84E-11 5.33E-05 5.32E-05 1.07E-04 2.08E-04 

0.06 0 -5.77E-11 5.34E-05 5.34E-05 1.07E-04 1.03E-04 2.08E-04 

0.07 0 -3.02E-11 5.36E-05 5.35E-05 1.07E-04 2.09E-04 

0.08 0 -2.65E-12 5.38E-05 5.38E-05 1.07E-04 1.03E-04 2.09E-04 2.02E-04 

0.09 0 2.49E-11 5.39E-05 5.39E-05 1.07E-04 2.09E-04 

0.1 0 5.25E-11 5.41E-05 5.40E-05 1.07E-04 1.03E-04 2.09E-04 

0.11 0 5.44E-11 5.43E-05 5.42E-05 1.07E-04 2.09E-04 

0.12 0 5.63E-11 5.44E-05 5.43E-05 1.07E-04 1.04E-04 2.09E-04 2.02E-04 

0.13 0 1.70E-11 5.46E-05 5.46E-05 1.08E-04 2.09E-04 

0.14 0 -2.23E-11 5.48E-05 5.48E-05 1.08E-04 1.04E-04 2.09E-04 

0.15 0 3.08E-11 5.50E-05 5.50E-05 1.08E-04 2.09E-04 

0.16 0 8.39E-11 5.52E-05 5.51E-05 1.08E-04 1.04E-04 2.09E-04 2.02E-04 

0.17 0 4.65E-11 5.55E-05 5.55E-05 1.08E-04 2.09E-04 

0.18 0 9.13E-12 5.57E-05 5.58E-05 1.08E-04 1.05E-04 2.09E-04 

0.19 0 -2.64E-12 5.60E-05 5.60E-05 1.08E-04 2.09E-04 

0.2 0 -1.44E-11 5.62E-05 5.62E-05 1.09E-04 1.05E-04 2.09E-04 2.02E-04 

0.21 0 4.07E-11 5.65E-05 5.65E-05 1.09E-04 2.09E-04 

0.22 0 9.58E-11 5.68E-05 5.68E-05 1.09E-04 1.06E-04 2.09E-04 

0.23 0 3.08E-11 5.72E-05 5.70E-05 1.09E-04 2.09E-04 

0.24 0 -3.41E-11 5.75E-05 5.73E-05 1.09E-04 1.06E-04 2.09E-04 2.02E-04 

0.25 0 -4.62E-12 5.79E-05 5.80E-05 1.09E-04 2.09E-04 

0.26 0 2.49E-11 5.83E-05 5.83E-05 1.09E-04 1.06E-04 2.09E-04 

0.27 0 -2.63E-11 5.88E-05 5.87E-05 1.10E-04 2.09E-04 

0.28 0 -7.74E-11 5.92E-05 5.91E-05 1.10E-04 1.06E-04 2.09E-04 2.02E-04 

0.29 0 -3.61E-11 5.97E-05 5.95E-05 1.10E-04 2.09E-04 

0.3 0 5.24E-12 6.02E-05 5.99E-05 1.10E-04 1.07E-04 2.09E-04 

0.31 0 -6.59E-12 6.07E-05 6.07E-05 1.10E-04 2.09E-04 

0.32 0 -1.84E-11 6.13E-05 6.11E-05 1.10E-04 1.07E-04 2.09E-04 2.02E-04 

0.33 0 -2.68E-12 6.18E-05 6.16E-05 1.11E-04 2.09E-04 

0.34 0 1.31E-11 6.24E-05 6.20E-05 1.11E-04 1.07E-04 2.09E-04 

0.35 0 5.44E-11 6.30E-05 6.25E-05 1.11E-04 2.09E-04 

0.36 0 9.58E-11 6.36E-05 6.29E-05 1.11E-04 1.07E-04 2.09E-04 2.02E-04 

0.37 0 5.64E-11 6.41E-05 6.38E-05 1.11E-04 2.09E-04 

0.38 0 1.71E-11 6.47E-05 6.42E-05 1.11E-04 1.08E-04 2.09E-04 
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0.39 1.79E-05 1.65E-05 6.53E-05 6.46E-05 1.11E-04 2.09E-04 

0.4 2.56E-05 2.55E-05 6.58E-05 6.50E-05 1.11E-04 1.08E-04 2.09E-04 2.02E-04 

0.41 3.14E-05 3.16E-05 6.64E-05 6.54E-05 1.12E-04 2.09E-04 

0.42 3.57E-05 3.47E-05 6.69E-05 6.57E-05 1.12E-04 1.08E-04 2.09E-04 

0.43 3.91E-05 3.78E-05 6.73E-05 6.60E-05 1.12E-04 2.09E-04 

0.44 4.19E-05 4.02E-05 6.77E-05 6.63E-05 1.12E-04 1.08E-04 2.09E-04 2.02E-04 

0.45 4.41E-05 4.26E-05 6.81E-05 6.65E-05 1.12E-04 2.10E-04 

0.46 4.58E-05 4.44E-05 6.84E-05 6.67E-05 1.12E-04 1.08E-04 2.10E-04 

0.47 4.71E-05 4.62E-05 6.86E-05 6.68E-05 1.12E-04 2.10E-04 

0.48 4.80E-05 4.65E-05 6.88E-05 6.70E-05 1.12E-04 1.08E-04 2.10E-04 2.02E-04 

0.49 4.85E-05 4.68E-05 6.89E-05 6.70E-05 1.12E-04 2.10E-04 

0.5 4.87E-05 4.70E-05 6.89E-05 6.71E-05 1.12E-04 1.08E-04 2.10E-04 

0.51 4.85E-05 4.68E-05 6.89E-05 6.70E-05 1.12E-04 2.10E-04 

0.52 4.80E-05 4.65E-05 6.88E-05 6.70E-05 1.12E-04 1.08E-04 2.10E-04 2.02E-04 

0.53 4.71E-05 4.61E-05 6.86E-05 6.68E-05 1.12E-04 2.10E-04 

0.54 4.58E-05 4.44E-05 6.84E-05 6.67E-05 1.12E-04 1.08E-04 2.10E-04 

0.55 4.41E-05 4.26E-05 6.81E-05 6.65E-05 1.12E-04 2.10E-04 

0.56 4.19E-05 4.02E-05 6.77E-05 6.63E-05 1.12E-04 1.08E-04 2.09E-04 2.02E-04 

0.57 3.91E-05 3.78E-05 6.73E-05 6.60E-05 1.12E-04 2.09E-04 

0.58 3.57E-05 3.47E-05 6.69E-05 6.57E-05 1.12E-04 1.08E-04 2.09E-04 

0.59 3.14E-05 3.16E-05 6.64E-05 6.54E-05 1.12E-04 2.09E-04 

0.6 2.56E-05 2.55E-05 6.58E-05 6.50E-05 1.11E-04 1.07E-04 2.09E-04 2.02E-04 

0.61 1.79E-05 1.65E-05 6.53E-05 6.46E-05 1.11E-04 2.09E-04 

0.62 0 -1.05E-10 6.47E-05 6.42E-05 1.11E-04 1.07E-04 2.09E-04 

0.63 0 1.35E-12 6.41E-05 6.38E-05 1.11E-04 2.09E-04 

0.64 0 1.08E-10 6.36E-05 6.34E-05 1.11E-04 1.07E-04 2.09E-04 2.02E-04 

0.65 0 7.81E-11 6.30E-05 6.29E-05 1.11E-04 2.09E-04 

0.66 0 4.86E-11 6.24E-05 6.25E-05 1.11E-04 1.07E-04 2.09E-04 

0.67 0 7.21E-12 6.18E-05 6.20E-05 1.11E-04 2.09E-04 

0.68 0 -3.41E-11 6.13E-05 6.16E-05 1.10E-04 1.06E-04 2.09E-04 2.02E-04 

0.69 0 -3.61E-11 6.07E-05 6.07E-05 1.10E-04 2.09E-04 

0.7 0 -3.81E-11 6.02E-05 6.03E-05 1.10E-04 1.06E-04 2.09E-04 

0.71 0 -2.63E-11 5.97E-05 5.99E-05 1.10E-04 2.09E-04 

0.72 0 -1.44E-11 5.92E-05 5.91E-05 1.10E-04 1.06E-04 2.09E-04 2.02E-04 

0.73 0 3.67E-11 5.88E-05 5.87E-05 1.10E-04 2.09E-04 

0.74 0 8.79E-11 5.83E-05 5.83E-05 1.09E-04 1.06E-04 2.09E-04 

0.75 0 3.48E-11 5.79E-05 5.80E-05 1.09E-04 2.09E-04 

0.76 0 -1.84E-11 5.75E-05 5.77E-05 1.09E-04 1.05E-04 2.09E-04 2.02E-04 

0.77 0 7.21E-12 5.72E-05 5.73E-05 1.09E-04 2.09E-04 

0.78 0 3.28E-11 5.68E-05 5.68E-05 1.09E-04 1.05E-04 2.09E-04 

0.79 0 -2.03E-11 5.65E-05 5.65E-05 1.09E-04 2.09E-04 

0.8 0 -7.35E-11 5.62E-05 5.62E-05 1.09E-04 1.05E-04 2.09E-04 2.02E-04 

0.81 0 -8.53E-12 5.60E-05 5.60E-05 1.08E-04 2.09E-04 

0.82 0 5.64E-11 5.57E-05 5.58E-05 1.08E-04 1.04E-04 2.09E-04 
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0.83 0 5.64E-11 5.55E-05 5.55E-05 1.08E-04 2.09E-04 

0.84 0 5.64E-11 5.52E-05 5.53E-05 1.08E-04 1.04E-04 2.09E-04 2.02E-04 

0.85 0 4.07E-11 5.50E-05 5.50E-05 1.08E-04 2.09E-04 

0.86 0 2.49E-11 5.48E-05 5.48E-05 1.08E-04 1.04E-04 2.09E-04 

0.87 0 3.67E-11 5.46E-05 5.46E-05 1.08E-04 2.09E-04 

0.88 0 4.85E-11 5.44E-05 5.45E-05 1.07E-04 1.04E-04 2.09E-04 2.02E-04 

0.89 0 2.10E-11 5.43E-05 5.43E-05 1.07E-04 2.09E-04 

0.9 0 -6.54E-12 5.41E-05 5.42E-05 1.07E-04 1.03E-04 2.09E-04 

0.91 0 1.90E-11 5.39E-05 5.40E-05 1.07E-04 2.09E-04 

0.92 0 4.46E-11 5.38E-05 5.38E-05 1.07E-04 1.03E-04 2.09E-04 2.02E-04 

0.93 0 4.46E-11 5.36E-05 5.36E-05 1.07E-04 2.09E-04 

0.94 0 4.46E-11 5.34E-05 5.34E-05 1.07E-04 1.03E-04 2.08E-04 

0.95 0 3.08E-11 5.33E-05 5.33E-05 1.07E-04 2.08E-04 

0.96 0 1.70E-11 5.31E-05 5.32E-05 1.07E-04 1.03E-04 2.08E-04 2.01E-04 

0.97 0 3.25E-12 5.30E-05 5.30E-05 1.07E-04 2.08E-04 

0.98 0 -1.05E-11 5.28E-05 5.28E-05 1.07E-04 1.03E-04 2.08E-04 

0.99 0 -1.05E-11 5.26E-05 5.26E-05 1.07E-04 2.08E-04 

1 0 -1.05E-11 5.25E-05 5.24E-05 1.07E-04 1.03E-04 2.08E-04 2.01E-04 
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Table 4.3: Comparison of results of stress component, (y/o) at various position of the 

member by FEM and MR technique. 

x/a 
y/o(y/b=0.00) y/o (y/b=0.25) y/o (y/b=0.50) y/o (y/b=1.00) 

FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) 

0 1.01E+00 1.01E+00 1.09E+00 1.13E+00 1.06E+00 1.11E+00 1.00E+00 1.00E+00 

0.01 1.02E+00 1.01E+00 1.09E+00 1.13E+00 1.06E+00 1.00E+00 

0.02 1.03E+00 1.02E+00 1.09E+00 1.13E+00 1.06E+00 1.10E+00 1.00E+00 

0.03 1.04E+00 1.03E+00 1.09E+00 1.13E+00 1.05E+00 1.00E+00 

0.04 1.04E+00 1.04E+00 1.08E+00 1.13E+00 1.05E+00 1.10E+00 1.00E+00 1.00E+00 

0.05 1.05E+00 1.04E+00 1.08E+00 1.13E+00 1.05E+00 1.00E+00 

0.06 1.05E+00 1.05E+00 1.08E+00 1.13E+00 1.05E+00 1.10E+00 1.00E+00 

0.07 1.06E+00 1.05E+00 1.08E+00 1.13E+00 1.05E+00 1.00E+00 

0.08 1.06E+00 1.06E+00 1.08E+00 1.13E+00 1.04E+00 1.09E+00 1.00E+00 1.00E+00 

0.09 1.07E+00 1.06E+00 1.08E+00 1.14E+00 1.04E+00 1.00E+00 

0.1 1.07E+00 1.06E+00 1.08E+00 1.14E+00 1.04E+00 1.09E+00 1.00E+00 

0.11 1.08E+00 1.07E+00 1.08E+00 1.14E+00 1.04E+00 1.00E+00 

0.12 1.08E+00 1.07E+00 1.08E+00 1.14E+00 1.04E+00 1.08E+00 1.00E+00 1.00E+00 

0.13 1.09E+00 1.08E+00 1.08E+00 1.14E+00 1.03E+00 1.00E+00 

0.14 1.09E+00 1.08E+00 1.08E+00 1.14E+00 1.03E+00 1.08E+00 1.00E+00 

0.15 1.10E+00 1.08E+00 1.08E+00 1.15E+00 1.03E+00 1.00E+00 

0.16 1.10E+00 1.09E+00 1.09E+00 1.15E+00 1.03E+00 1.07E+00 1.00E+00 1.00E+00 

0.17 1.11E+00 1.10E+00 1.09E+00 1.15E+00 1.02E+00 1.00E+00 

0.18 1.11E+00 1.10E+00 1.09E+00 1.15E+00 1.02E+00 1.07E+00 1.00E+00 

0.19 1.12E+00 1.11E+00 1.08E+00 1.15E+00 1.02E+00 1.00E+00 

0.2 1.12E+00 1.12E+00 1.08E+00 1.15E+00 1.02E+00 1.06E+00 1.00E+00 1.00E+00 

0.21 1.13E+00 1.12E+00 1.08E+00 1.14E+00 1.01E+00 1.00E+00 

0.22 1.14E+00 1.13E+00 1.08E+00 1.14E+00 1.01E+00 1.05E+00 1.00E+00 

0.23 1.15E+00 1.14E+00 1.08E+00 1.13E+00 1.01E+00 1.00E+00 

0.24 1.16E+00 1.15E+00 1.08E+00 1.13E+00 1.01E+00 1.05E+00 1.00E+00 1.00E+00 

0.25 1.17E+00 1.16E+00 1.07E+00 1.12E+00 1.00E+00 1.00E+00 

0.26 1.19E+00 1.17E+00 1.07E+00 1.11E+00 1.00E+00 1.04E+00 1.00E+00 

0.27 1.21E+00 1.19E+00 1.06E+00 1.11E+00 9.96E-01 1.00E+00 

0.28 1.23E+00 1.22E+00 1.05E+00 1.10E+00 9.93E-01 1.03E+00 1.00E+00 1.00E+00 

0.29 1.25E+00 1.24E+00 1.04E+00 1.08E+00 9.90E-01 1.00E+00 

0.3 1.28E+00 1.27E+00 1.03E+00 1.07E+00 9.87E-01 1.03E+00 1.00E+00 

0.31 1.32E+00 1.29E+00 1.02E+00 1.06E+00 9.84E-01 1.00E+00 

0.32 1.37E+00 1.38E+00 1.01E+00 1.04E+00 9.80E-01 1.02E+00 1.00E+00 1.00E+00 

0.33 1.44E+00 1.47E+00 9.98E-01 1.02E+00 9.77E-01 1.00E+00 

0.34 1.54E+00 1.55E+00 9.83E-01 1.00E+00 9.74E-01 1.02E+00 1.00E+00 

0.35 1.69E+00 1.77E+00 9.66E-01 9.84E-01 9.71E-01 1.00E+00 

0.36 1.98E+00 1.99E+00 9.49E-01 9.64E-01 9.68E-01 1.01E+00 1.00E+00 1.00E+00 

0.37 2.56E+00 2.72E+00 9.31E-01 9.43E-01 9.65E-01 1.00E+00 

0.38 3.77E+00 3.85E+00 9.12E-01 9.22E-01 9.62E-01 1.01E+00 1.00E+00 
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0.39 8.94E-01 9.01E-01 9.59E-01 1.00E+00 

0.4 8.75E-01 8.80E-01 9.57E-01 1.00E+00 1.00E+00 1.00E+00 

0.41 8.56E-01 8.61E-01 9.55E-01 1.00E+00 

0.42 8.39E-01 8.41E-01 9.52E-01 1.00E+00 1.00E+00 

0.43 8.22E-01 8.24E-01 9.50E-01 1.00E+00 

0.44 8.07E-01 8.07E-01 9.49E-01 9.98E-01 1.00E+00 1.00E+00 

0.45 7.93E-01 7.95E-01 9.47E-01 1.00E+00 

0.46 7.82E-01 7.82E-01 9.46E-01 9.96E-01 1.00E+00 

0.47 7.73E-01 7.74E-01 9.45E-01 1.00E+00 

0.48 7.66E-01 7.66E-01 9.44E-01 9.95E-01 1.00E+00 1.00E+00 

0.49 7.62E-01 7.63E-01 9.44E-01 1.00E+00 

0.5 7.61E-01 7.61E-01 9.44E-01 9.94E-01 1.00E+00 

0.51 7.62E-01 7.63E-01 9.44E-01 1.00E+00 

0.52 7.66E-01 7.66E-01 9.44E-01 9.95E-01 1.00E+00 1.00E+00 

0.53 7.73E-01 7.74E-01 9.45E-01 1.00E+00 

0.54 7.82E-01 7.82E-01 9.46E-01 9.96E-01 1.00E+00 

0.55 7.93E-01 7.95E-01 9.47E-01 1.00E+00 

0.56 8.07E-01 8.08E-01 9.49E-01 9.98E-01 1.00E+00 1.00E+00 

0.57 8.22E-01 8.25E-01 9.50E-01 1.00E+00 

0.58 8.39E-01 8.41E-01 9.52E-01 1.00E+00 1.00E+00 

0.59 8.56E-01 8.61E-01 9.55E-01 1.00E+00 

0.6 8.75E-01 8.80E-01 9.57E-01 1.00E+00 1.00E+00 1.00E+00 

0.61 8.94E-01 9.01E-01 9.59E-01 1.00E+00 

0.62 3.77E+00 3.85E+00 9.12E-01 9.22E-01 9.62E-01 1.01E+00 1.00E+00 

0.63 2.56E+00 2.72E+00 9.31E-01 9.43E-01 9.65E-01 1.00E+00 

0.64 1.98E+00 1.99E+00 9.49E-01 9.64E-01 9.68E-01 1.01E+00 1.00E+00 1.00E+00 

0.65 1.69E+00 1.77E+00 9.66E-01 9.84E-01 9.71E-01 1.00E+00 

0.66 1.54E+00 1.55E+00 9.83E-01 1.00E+00 9.74E-01 1.02E+00 1.00E+00 

0.67 1.44E+00 1.47E+00 9.98E-01 1.02E+00 9.77E-01 1.00E+00 

0.68 1.37E+00 1.38E+00 1.01E+00 1.04E+00 9.80E-01 1.02E+00 1.00E+00 1.00E+00 

0.69 1.32E+00 1.29E+00 1.02E+00 1.06E+00 9.84E-01 1.00E+00 

0.7 1.28E+00 1.27E+00 1.03E+00 1.07E+00 9.87E-01 1.03E+00 1.00E+00 

0.71 1.25E+00 1.24E+00 1.04E+00 1.08E+00 9.90E-01 1.00E+00 

0.72 1.23E+00 1.22E+00 1.05E+00 1.10E+00 9.93E-01 1.03E+00 1.00E+00 1.00E+00 

0.73 1.21E+00 1.19E+00 1.06E+00 1.11E+00 9.96E-01 1.00E+00 

0.74 1.19E+00 1.17E+00 1.07E+00 1.11E+00 1.00E+00 1.04E+00 1.00E+00 

0.75 1.17E+00 1.16E+00 1.07E+00 1.12E+00 1.00E+00 1.00E+00 

0.76 1.16E+00 1.15E+00 1.08E+00 1.13E+00 1.01E+00 1.05E+00 1.00E+00 1.00E+00 

0.77 1.15E+00 1.14E+00 1.08E+00 1.13E+00 1.01E+00 1.00E+00 

0.78 1.14E+00 1.13E+00 1.08E+00 1.14E+00 1.01E+00 1.05E+00 1.00E+00 

0.79 1.13E+00 1.12E+00 1.08E+00 1.14E+00 1.01E+00 1.00E+00 

0.8 1.12E+00 1.12E+00 1.08E+00 1.15E+00 1.02E+00 1.06E+00 1.00E+00 1.00E+00 

0.81 1.12E+00 1.11E+00 1.08E+00 1.15E+00 1.02E+00 1.00E+00 

0.82 1.11E+00 1.11E+00 1.09E+00 1.15E+00 1.02E+00 1.07E+00 1.00E+00 
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0.83 1.11E+00 1.10E+00 1.09E+00 1.15E+00 1.02E+00 1.00E+00 

0.84 1.10E+00 1.10E+00 1.09E+00 1.15E+00 1.03E+00 1.07E+00 1.00E+00 1.00E+00 

0.85 1.10E+00 1.09E+00 1.08E+00 1.15E+00 1.03E+00 1.00E+00 

0.86 1.09E+00 1.0882 1.08E+00 1.14E+00 1.03E+00 1.08E+00 1.00E+00 

0.87 1.09E+00 1.0845 1.08E+00 1.1424 1.03E+00 1.00E+00 

0.88 1.08E+00 1.0813 1.08E+00 1.1411 1.04E+00 1.08E+00 1.00E+00 1.00E+00 

0.89 1.08E+00 1.078 1.08E+00 1.1397 1.04E+00 1.00E+00 

0.9 1.07E+00 1.0745 1.08E+00 1.1384 1.04E+00 1.09E+00 1.00E+00 

0.91 1.07E+00 1.071 1.08E+00 1.1358 1.04E+00 1.00E+00 

0.92 1.06E+00 1.0645 1.08E+00 1.1347 1.04E+00 1.09E+00 1.00E+00 1.00E+00 

0.93 1.06E+00 1.0612 1.08E+00 1.1337 1.05E+00 1.00E+00 

0.94 1.05E+00 1.05E+00 1.08E+00 1.1326 1.05E+00 1.10E+00 1.00E+00 

0.95 1.05E+00 1.05E+00 1.08E+00 1.1316 1.05E+00 1.00E+00 

0.96 1.04E+00 1.04E+00 1.08E+00 1.1308 1.05E+00 1.10E+00 1.00E+00 1.00E+00 

0.97 1.04E+00 1.03E+00 1.09E+00 1.1297 1.05E+00 1.00E+00 

0.98 1.03E+00 1.02E+00 1.09E+00 1.1295 1.06E+00 1.10E+00 1.00E+00 

0.99 1.02E+00 1.01E+00 1.09E+00 1.1303 1.06E+00 1.00E+00 

1 1.01E+00 1.01E+00 1.09E+00 1.1324 1.06E+00 1.11E+00 1.00E+00 1.00E+00 
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Table 4.4: Comparison of results of stress component, (x/o) at various position of the 

member by FEM and MR technique. 

x/a 
x/o (y/b=0.00) x/o (y/b=0.25) x/o (y/b=0.50) x/o (y/b=1.00) 

FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) FEM FDM(MR) 

0 -1.35E-03 1.20E-06 -3.89E-04 -1.21E-06 3.08E-04 4.84E-07 -2.02E-05 1.08E-05 

0.01 5.56E-04 3.25E-04 -3.28E-04 -1.93E-04 1.28E-05 -6.12E-05 

0.02 1.35E-03 6.48E-04 -8.01E-04 -9.70E-04 3.09E-05 9.88E-07 -1.70E-04 

0.03 2.60E-03 2.58E-03 -1.55E-03 -1.55E-03 6.02E-05 -3.21E-04 

0.04 4.24E-03 4.06E-03 -2.56E-03 -2.44E-03 1.00E-04 5.46E-06 -4.66E-04 3.17E-04 

0.05 6.24E-03 5.54E-03 -3.78E-03 -3.34E-03 1.52E-04 -5.74E-04 

0.06 8.54E-03 7.45E-03 -5.20E-03 -5.66E-03 2.16E-04 7.32E-05 -6.26E-04 

0.07 1.11E-02 9.36E-03 -6.80E-03 -7.04E-03 2.97E-04 -6.11E-04 

0.08 1.40E-02 1.39E-02 -8.56E-03 -8.41E-03 3.97E-04 1.41E-04 -5.24E-04 6.23E-04 

0.09 1.71E-02 1.65E-02 -1.05E-02 -1.15E-02 5.20E-04 -3.64E-04 

0.1 2.04E-02 1.91E-02 -1.25E-02 -1.33E-02 6.70E-04 3.66E-04 -1.28E-04 

0.11 2.40E-02 2.20E-02 -1.47E-02 -1.50E-02 8.52E-04 1.80E-04 

0.12 2.79E-02 2.49E-02 -1.69E-02 -1.69E-02 1.07E-03 1.08E-03 5.59E-04 1.68E-03 

0.13 3.21E-02 3.15E-02 -1.93E-02 -2.07E-02 1.33E-03 1.01E-03 

0.14 3.65E-02 3.53E-02 -2.17E-02 -2.26E-02 1.64E-03 2.43E-03 1.52E-03 

0.15 4.13E-02 3.90E-02 -2.42E-02 -2.46E-02 2.00E-03 2.09E-03 

0.16 4.65E-02 4.32E-02 -2.68E-02 -2.67E-02 2.42E-03 3.29E-03 2.71E-03 2.75E-03 

0.17 5.21E-02 4.75E-02 -2.93E-02 -2.87E-02 2.89E-03 3.39E-03 

0.18 5.82E-02 5.72E-02 -3.19E-02 -3.07E-02 3.44E-03 4.59E-03 4.12E-03 

0.19 6.49E-02 6.29E-02 -3.44E-02 -3.27E-02 4.05E-03 4.88E-03 

0.2 7.22E-02 6.86E-02 -3.68E-02 -3.64E-02 4.73E-03 5.89E-03 5.69E-03 6.38E-03 

0.21 8.04E-02 7.54E-02 -3.90E-02 -3.82E-02 5.48E-03 6.52E-03 

0.22 8.94E-02 8.22E-02 -4.11E-02 -3.97E-02 6.31E-03 7.66E-03 7.39E-03 

0.23 9.96E-02 9.86E-02 -4.29E-02 -4.13E-02 7.22E-03 8.27E-03 

0.24 1.11E-01 1.09E-01 -4.44E-02 -4.24E-02 8.20E-03 9.43E-03 9.18E-03 8.62E-03 

0.25 1.24E-01 1.19E-01 -4.56E-02 -4.40E-02 9.26E-03 1.01E-02 

0.26 1.40E-01 1.32E-01 -4.62E-02 -4.45E-02 1.04E-02 1.16E-02 1.10E-02 

0.27 1.58E-01 1.46E-01 -4.63E-02 -4.43E-02 1.16E-02 1.19E-02 

0.28 1.79E-01 1.81E-01 -4.58E-02 -4.28E-02 1.28E-02 1.38E-02 1.29E-02 1.09E-02 

0.29 2.05E-01 2.05E-01 -4.46E-02 -4.17E-02 1.42E-02 1.38E-02 

0.3 2.36E-01 2.30E-01 -4.27E-02 -3.94E-02 1.55E-02 1.63E-02 1.47E-02 

0.31 2.76E-01 2.65E-01 -3.99E-02 -3.72E-02 1.69E-02 1.56E-02 

0.32 3.28E-01 3.01E-01 -3.63E-02 -3.37E-02 1.84E-02 1.88E-02 1.65E-02 1.53E-02 

0.33 3.98E-01 3.57E-01 -3.18E-02 -3.03E-02 1.99E-02 1.73E-02 

0.34 4.99E-01 5.04E-01 -2.65E-02 -2.57E-02 2.13E-02 2.14E-02 1.81E-02 

0.35 6.58E-01 5.95E-01 -2.04E-02 -1.54E-02 2.28E-02 1.89E-02 

0.36 9.81E-01 8.75E-01 -1.35E-02 -9.68E-03 2.43E-02 2.40E-02 1.97E-02 1.71E-02 

0.37 1.62E+00 1.09E+00 -5.96E-03 -3.13E-03 2.57E-02 2.04E-02 

0.38 2.02E+00 1.70E+00 2.09E-03 3.43E-03 2.72E-02 2.89E-02 2.11E-02 
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0.39 1.05E-02 1.76E-02 2.85E-02 2.18E-02 

0.4 1.91E-02 2.47E-02 2.98E-02 3.09E-02 2.23E-02 1.88E-02 

0.41 2.77E-02 3.19E-02 3.10E-02 2.29E-02 

0.42 3.62E-02 3.86E-02 3.22E-02 3.30E-02 2.34E-02 

0.43 4.42E-02 5.12E-02 3.32E-02 2.38E-02 

0.44 5.16E-02 5.71E-02 3.41E-02 3.43E-02 2.42E-02 1.98E-02 

0.45 5.82E-02 6.16E-02 3.49E-02 2.45E-02 

0.46 6.38E-02 6.61E-02 3.56E-02 3.56E-02 2.48E-02 

0.47 6.84E-02 6.89E-02 3.61E-02 2.50E-02 

0.48 7.17E-02 7.18E-02 3.65E-02 3.61E-02 2.52E-02 2.08E-02 

0.49 7.38E-02 7.28E-02 3.67E-02 2.53E-02 

0.5 7.45E-02 7.37E-02 3.68E-02 3.65E-02 2.53E-02 

0.51 7.38E-02 7.28E-02 3.67E-02 2.53E-02 

0.52 7.17E-02 7.18E-02 3.65E-02 3.61E-02 2.52E-02 2.08E-02 

0.53 6.84E-02 6.89E-02 3.61E-02 2.50E-02 

0.54 6.38E-02 6.61E-02 3.56E-02 3.56E-02 2.48E-02 

0.55 5.82E-02 6.16E-02 3.49E-02 2.45E-02 

0.56 5.16E-02 5.71E-02 3.41E-02 3.43E-02 2.42E-02 1.98E-02 

0.57 4.42E-02 5.12E-02 3.32E-02 2.38E-02 

0.58 3.62E-02 3.86E-02 3.22E-02 3.30E-02 2.34E-02 

0.59 2.77E-02 3.19E-02 3.10E-02 2.29E-02 

0.6 1.91E-02 2.47E-02 2.98E-02 3.09E-02 2.23E-02 1.88E-02 

0.61 1.05E-02 1.76E-02 2.85E-02 2.18E-02 

0.62 2.02E+00 1.70E+00 2.09E-03 3.44E-03 2.72E-02 2.89E-02 2.11E-02 

0.63 1.62E+00 1.09E+00 -5.96E-03 -3.12E-03 2.57E-02 2.04E-02 

0.64 9.81E-01 8.75E-01 -1.35E-02 -9.68E-03 2.43E-02 2.40E-02 1.97E-02 1.71E-02 

0.65 6.58E-01 5.95E-01 -2.04E-02 -1.54E-02 2.28E-02 1.89E-02 

0.66 4.99E-01 5.04E-01 -2.65E-02 -2.57E-02 2.13E-02 2.14E-02 1.81E-02 

0.67 3.98E-01 3.57E-01 -3.18E-02 -3.03E-02 1.99E-02 1.73E-02 

0.68 3.28E-01 3.01E-01 -3.63E-02 -3.37E-02 1.84E-02 1.88E-02 1.65E-02 1.53E-02 

0.69 2.76E-01 2.65E-01 -3.99E-02 -3.72E-02 1.69E-02 1.56E-02 

0.7 2.36E-01 2.30E-01 -4.27E-02 -3.94E-02 1.55E-02 1.63E-02 1.47E-02 

0.71 2.05E-01 2.05E-01 -4.46E-02 -4.17E-02 1.42E-02 1.38E-02 

0.72 1.79E-01 1.81E-01 -4.58E-02 -4.29E-02 1.28E-02 1.38E-02 1.29E-02 1.09E-02 

0.73 1.58E-01 1.46E-01 -4.63E-02 -4.43E-02 1.16E-02 1.19E-02 

0.74 1.40E-01 1.32E-01 -4.62E-02 -4.45E-02 1.04E-02 1.16E-02 1.10E-02 

0.75 1.24E-01 1.19E-01 -4.56E-02 -4.40E-02 9.26E-03 1.01E-02 

0.76 1.11E-01 1.09E-01 -4.44E-02 -4.24E-02 8.20E-03 9.42E-03 9.18E-03 8.63E-03 

0.77 9.96E-02 9.86E-02 -4.29E-02 -4.13E-02 7.22E-03 8.27E-03 

0.78 8.94E-02 8.22E-02 -4.11E-02 -3.97E-02 6.31E-03 7.65E-03 7.39E-03 

0.79 8.04E-02 7.54E-02 -3.90E-02 -3.82E-02 5.48E-03 6.52E-03 

0.8 7.22E-02 6.86E-02 -3.68E-02 -3.64E-02 4.73E-03 5.88E-03 5.69E-03 6.38E-03 

0.81 6.49E-02 6.29E-02 -3.44E-02 -3.27E-02 4.05E-03 4.88E-03 

0.82 5.82E-02 5.72E-02 -3.19E-02 -3.07E-02 3.44E-03 4.58E-03 4.12E-03 
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0.83 5.21E-02 4.75E-02 -2.93E-02 -2.87E-02 2.89E-03 3.39E-03 

0.84 4.65E-02 0.0432 -2.68E-02 -2.67E-02 2.42E-03 3.29E-03 2.71E-03 2.75E-03 

0.85 4.13E-02 0.039 -2.42E-02 -0.0247 2.00E-03 2.09E-03 

0.86 3.65E-02 0.0353 -2.17E-02 -0.0226 1.64E-03 2.43E-03 1.52E-03 

0.87 3.21E-02 0.0315 -1.93E-02 -0.0207 1.33E-03 1.01E-03 

0.88 2.79E-02 0.0249 -1.69E-02 -0.0169 1.07E-03 1.08E-03 5.59E-04 1.68E-03 

0.89 2.40E-02 0.022 -1.47E-02 -0.015 8.52E-04 1.80E-04 

0.9 2.04E-02 0.0191 -1.25E-02 -0.0133 6.70E-04 3.64E-04 -1.28E-04 

0.91 1.71E-02 0.0165 -1.05E-02 -0.0116 5.20E-04 -3.64E-04 

0.92 1.40E-02 0.0139 -8.56E-03 -8.42E-03 3.97E-04 1.40E-04 -5.24E-04 6.17E-04 

0.93 1.11E-02 9.36E-03 -6.80E-03 -7.04E-03 2.97E-04 -6.11E-04 

0.94 8.54E-03 7.47E-03 -5.20E-03 -5.66E-03 2.16E-04 7.29E-05 -6.26E-04 

0.95 6.24E-03 5.57E-03 -3.78E-03 -3.34E-03 1.52E-04 -5.74E-04 

0.96 4.24E-03 4.07E-03 -2.56E-03 -2.45E-03 1.00E-04 5.52E-06 -4.66E-04 3.09E-04 

0.97 2.60E-03 2.57E-03 -1.55E-03 -1.55E-03 6.02E-05 -3.21E-04 

0.98 1.35E-03 6.53E-04 -8.01E-04 -9.65E-04 3.09E-05 7.45E-07 -1.70E-04 

0.99 5.56E-04 3.25E-04 -3.28E-04 -1.91E-04 1.28E-05 -6.12E-05 

1 -1.35E-03 -3.10E-06 -3.89E-04 -8.27E-07 3.08E-04 1.73E-07 -2.02E-05 1.98E-06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

4.4 Case Study-III: Analysis with Surface Crack 

In this section of this thesis, another problem is analyzed for the equal no. of nodes by 

both MR and UM techniques. The statement of the problem is shown in figure 4.45a, 

which shows a simple bar having surface crack under uniform tensile stress. Due to 

symmetric nature of the problem only half section of the problem is considered and this 

half section with necessary boundary condition is shown in figure 4.45b. Under 

uniform mesh consideration, the discretization is done by using only one sizes mesh 

over the whole body. The discretization, under mesh refinement technique, is done only 

by changing some nodal points of a region of uniform meshing discretization to some 

other regions. The changing of nodal points from one region to other region must be 

done with some intelligent otherwise the benefits of mesh refinement will remain under 

question marks. Here, intensity of the solution of uniform meshing is taken as a 

criterion to change the position of the nodal points from one region to others region. 

Nodal points should be changed from lower intensify areas to higher intensify areas. 

From the results of uniform mesh technique, the left section of the material (figure 

4.45b) i.e y/b=0.0 to y/b=0.25 can be taken as higher intensify area as shown in figure 

4.46. So, nodal points from right section of the domain should be changed to left 

section of the material as shown in figure 4.47a and b. Thus, uniform meshing become 

non-uniform and uniform meshing contain only one mesh length, h2 in x-axis direction 

whereas mesh refinement contain three different mesh length, h1, h2 and h3. There is a 

relation between h1, h2 and h3 and this is h1=h2/2=h3/4. This has been taken for 

simplifying the problems. 

 

  

 

  

 

 

Figure 4.45a: A simple bar under uniform tensile loading. 
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σy,τxy=0 

v,τxy=0 

σx,τxy=0 

σy= σ1/E=2xe-4,τxy=0 

σx,τxy=0 

 

 

 

 

 

 

 

Figure 4.45b: Half section of the problem with necessary boundary condition. 
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Figure 4.46: Results for normalized normal stress (σy/E) obtained by uniform meshing 
technique at various section of the material. 
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Figure 4.47: Discretization of the domain for finite difference method. 

b)   Discretization for mesh refinement technique. 
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origial shape
deformed shape

 

Figure 4.48 shows the original shape and deformed shape of the body. From qualitative 

view the result is correct. From this figure we see that bending occurs in the clockwise 

direction. This is due to eccentricity of forces. Due to the presence of crack the neutral 

axis and centroidal axis does not coincide each other and as a result there creates a 

moment that causes the material to rotate in clockwise direction. 

The results, of this above problem, obtained by these two techniques are shown from 

figure 4.49 to 4.56. The figure 4.49 shows normalized displacement (v/b) at y/b=0.0 by 

these two methods as a comparative study. At y/b=0.0 for mesh refinement technique 

there is greater number of nodal points (almost double) than that of uniform meshing 

technique as shown in figure 4.47. From figure 4.49, at y/b=0.0 the displacement 

obtained by two methods almost same but distribution of displacements points is much 

better in mesh refinement technique. Also maximum displacement is somewhat larger 

by mesh refinement technique. Figure 4.50 shows same results for a section at 

y/b=1.00. This figure shows that deflection varies linearly with x/a for both of these 

two methods. Again results of both techniques are similar in nature but results obtained 

by uniform meshing are smaller in magnitude than that of obtained by mesh refinement 

technique. Figure 4.51 shows normalized displacement v/b for another two sections 

y/b=0.25 and y/b=0.5 and the results of both methods matches each other in nature. But 

there is small difference in results of these two method in magnitude and as we move 

Figure 4.48: Original shape and deformed shape of the body. u and v are 300 
times magnified. 
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from y/b=0.0 to y/b=1.00 the differences increases. However, the differences is always 

is lies in acceptable range. This displacement obtained by mesh refinement technique 

does not show any improvement over uniform mesh refinement technique in terms of 

accuracy. So take a closer look to figure 4.52. Which shows Comparison of the results 

for normalized normal stress (σy/E) obtained by mesh refinement technique and 

uniform mesh technique with almost same no. of nodal points at two section y/b=0.0 

and y/b=1.00. This figure shows that at y/b=1.00 the results of both methods is exactly 

same and equal to applied stress σ1/E= 2.00x10-4. But at y/b=1.00, the results obtained 

by mesh refinement technique is larger than that of uniform meshing technique and this 

is the improvement of results by mesh refinement technique over uniform meshing 

technique because literatures say that at the tip of the crack the stress should higher 

than other section of the material. Since mesh refinement technique gives higher results 

than that of uniform meshing technique, so it can be stated that for same amount of 

nodal points mesh refinement technique improve the accuracy of results over uniform 

meshing technique in the vicinity of a stress riser. 
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Figure 4.49: Comparison of the results for normalized displacement (v/b) obtained by 
mesh refinement technique and uniform mesh technique with almost equal no. of nodal 

points. 
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Figure 4.50: Comparison of the results for normalized displacement (v/b) obtained by 
mesh refinement technique and uniform mesh technique with almost equal no. of nodal 

points. 
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Figure 4.51: Comparison of the results for normalized displacement (v/b) obtained by 
mesh refinement technique and uniform mesh technique with almost equal no. of nodal 

points. 
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Figure 4.52: Comparison of the results for normalized normal stress (σy/E) obtained by 
mesh refinement technique and uniform mesh technique with almost equal no. of nodal 

points. 
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Figure 4.53: Results for normalized normal stress (σy/E) obtained by mesh refinement 
technique at various section of the material. 
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Figure 4.54: Results for normalized normal stress (σy/E) obtained by uniform meshing 
technique at various section of the material. 

 

Figure 4.55 and 4.56 shows normalized normal stress in x-direction, σx/E with x/a. 

Figure 4.55 show a comparative study of stress obtained by MR and UM technique. For 

both techniques stress is maximum at the crack tips and it reduces as x/a increases. The 

MR technique gives a larger value of σx at the crack tip than obtained by UM 

technique. 
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Figure 4.55: Comparison of the results for normalized normal stress (σx/E) obtained by 
mesh refinement technique and uniform mesh technique with almost equal no. of nodal 

points. 
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Figure 4.56: Results for normalized normal stress (σx/E) obtained by mesh refinement 
technique at various section of the material. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In this study a finite difference approach based on the displacement potential 

function formulation has been developed for the solution of two-dimensional elastic 

problems of simple homogeneous material under different boundary conditions. 

Since this approach deals with a single variable displacement potential function (ψ), 

it is found to be convenient to work with. The purpose of this thesis had not to solve 

this above type of problem but to develop a new mesh refinement technique for 

fourth order bi-harmonic partial differential equation by which problems that contain 

sharp change in cross section, stress concentrator or riser, material flaws and voids, 

cracks, holes etc. can be solved very effectively and efficiently. From this point of 

view this work reaches its goal successfully. A general algorithm has been made by 

which one can easily choose any part of the field to analysis critically by taking finer 

mesh in that part. Six different stencils for bi-harmonic governing equation and some 

other stencils for boundary conditions have been made and applicability on nodes of 

these stencils has been shown by figures.  An efficient management technique is 

successfully developed to manage the boundary conditions and GE at position where 

mesh sizes transition regions. Also an efficient way has been created to apply fourth 

order bi-harmonic partial differential equation over non-uniform mesh. A 

programming code in the FOTRAN language is developed for this finite difference 

approach. Finite element results are carried out by using the commercial software. 

Results are presented in the graphs as non-dimensional form. Finally, the following 

conclusions are drawn in relation to the present research work: 

1. The recently available methodology for the numerical solutions of mixed 

boundary-value elastic problem based on the ψ-formulation can be applied to 

the body of isotropic mechanical properties. An extended and completely new 

computational approach of this ψ-formulation for stress analysis is presented 

in this thesis removing the limitations uniform meshing of domain and 

boundary. 
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2. Completely new numerical formulations are developed in this thesis to handle 

to apply governing equation and boundary conditions for the mesh size 

transition regions. The numerical formulations with greater inclusion points 

at the mesh size transition region provide better solution i.e. the aligned 

numerical formulations like combination of more forward backward finite 

difference formulae at mesh size transition region could not provide better 

solution rather the balanced numerical formulations like combination of more 

central difference at mesh size changing region provide better solution. 

3. The obtained solutions from the finite difference method are verified in 

numerous ways like comparison with the solution from finite element 

method, well-known published results, and uniform meshing by FDM, by 

seeing the symmetric and anti-symmetric nature of the solutions and by 

qualitative intuition.  

4. Comparison between the results by the mesh refinement finite difference 

method and the existing standard commercial software based on finite 

element method provide the good superiority of the MR technique over FEM. 

5. This mesh refinement technique i.e. taking high resolution in mesh size where 

necessary overcome the limitation of classical FDM which uses uniform 

mesh length and size. This new technique reduces the number of nodal points 

thus number of linear equation which makes the solution faster i.e. reduces 

the time consuming to run the program and due to lowering the number of 

nodal points, saves a huge amount computer memory.  

6. To study the benefits of new technique one single problem is solved by two 

method, one is classical FDM which uses uniform mesh size and length and 

other one is this new technique and see that for almost equal number of nodal 

points i.e. linear algebraic equation, this new technique gives better results 

i.e. improves the accuracy of the results. 

5.2. Recommendations for further research  

The present study is perhaps the first attempt for the analysis of stresses by 

displacement potential function for two-dimensional elastic problems by introducing 

mesh refinement technique. Due to this reason the present study is limited to simple 
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elastic problem one can spread this technique to solve much more complex problem 

by writing new program. 

 This thesis is limited to applying three different sizes mesh, attempts 

should be made to increase the total number of mesh refinement zone for 

more accurate results i.e. taking four, five, etc different sizes mesh and 

making ultra fine mesh around the part where results have to be known 

accurately. Moreover, it will be appropriate to use smaller mesh size all 

along the boundary and near the vicinity of crack this will produce better 

result. 

 .This thesis has limited application of this new technique over some 

simple problem but one can apply this technique on very complex 

problem such as stress analysis of gear teeth, at wing of air plane etc. In 

these cases one has to incorporate the direction cosine to apply boundary 

conditions because for such cases the geometry will not rectangular. 

 This new technique can be applied to solve stress around a hole by taking 

finer mesh around hole which gives a chance of checking accuracy of this 

new technique because stress concentration factor for a circular hole or 

ellipse is a well known value.  

 This thesis work obtained h-refinement by splitting the existing mesh in 

smaller one, so there presents opportunity to develop another MR 

algorithm of h-refinement by inserting mesh locally in the existing mesh 

and could compare the results with each other to check which one is 

better in terms of computational efforts and memory consuming. 
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