
M.Sc. Engg. Thesis

Multicast Video-on-Demand Service in

Enterprise Networks with

Distributed Client Assisted Patching

by

Munima Jahan

Submitted to

Department of Computer Science and Engineering in partial fulfilment

of the requirements for the degree of Master of Science in Computer

Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

The thesis titled “Multicast Video-on-Demand Service in Enterprise Networks with

Distributed Client Assisted Patching,” submitted by Munima Jahan, Roll No. 100505031P,

Session October 2005, to the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, has been accepted as satisfactory in partial fulfilment

of the requirements for the degree of Master of Science in Computer Science and Engineering

and approved as to its style and contents. Examination held on August 9, 2011.

Board of Examiners

1.

Dr. Md. Mostofa Akbar Chairman

Associate Professor (Supervisor)

Department of CSE

BUET, Dhaka 1000

2.

Dr. Muhammad Masroor Ali Member

Professor & Head (Ex-officio)

Department of CSE

BUET, Dhaka 1000

3.

Dr. M. Kaykobad Member

Professor

Department of CSE

BUET, Dhaka 1000

4.

Dr. Md. Humayun Kabir Member

Assistant Professor

Department of CSE

BUET, Dhaka 1000

5.

Dr. Mohammad Rashedur Rahman Member

Assistant Professor (External)

Department of EECS
ii

North South University, Bashundhara, Dhaka

Candidate’s Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Munima Jahan

Candidate

iii

Contents

Board of Examiners ii
Candidate’s Declaration iii

Acknowledgements ix
Abstract x

 1 Introduction

1.1 Multicast VoD Techniques 1

1.2 Batching and Patching 2
1.3 Problem Definition and Previous Work 3
1.4 Scope and Focus of the Thesis 4
1.5 Outline of the Thesis 6
2 Preliminaries and Literature Review
2.1 Multicast Video-on-Demand Services 7
2.2 Server-Initiated Multicast Schemes 8

2.2.1 Cooperative Client Approach 8
2.3 Client-Initiated Multicast Schemes 9

2.3.1 Batching Policies 10
2.4 Dynamic Multicasting 10

2.4.1 Patching 11
2.4.2 Client Assisted Patching 12

2.4.2.1 Architecture of the Client Assisted Patching 13
2.4.2.2 Basic principles of the Client Assisted Patching 14

2.4.3 Double Patching 15
2.4.4 Expanded Patching Technique using Four Types of Streams

(XP4S)

17

2.5 Range Multicast 17
2.6 Client-To-Client Streaming Scheme for VoD Applications 18
2.7 Some other related research on Multicast VoD services 19
2.8 Network Simulator 21

2.8.1 Parsec 21
2.8.2 GloMoSim 21

3.1 Distributed Client Assisted Patching 23

3.2 Distribution policy 24

3.3 An Illustrative Example 25

3.4 Motivation Example 29

3.5 Analysis for Server Bandwidth Requirement 31

3.6 Algorithm for Distributed Client Assisted Patching 32

iv

3.6.1 Data Structures used in the proposed system 33

3.6.2 Procedures and Algorithms 34

3.7 Performance Analysis 36

3.7.1 Complexity Analysis 36

3.7.2 Buffer Requirements 37

3.8 Comparison of Patching Effort 43

4 Performance Study

4.1 Simulation Technique 45

4.1.1 Simulation Parameters 46

4.1.2 Simulation Assumptions: 47

4.2 Some Probability Distribution Used in the System 48

4.3 Performance Analysis of Distributed Client-Assisted Patching 49

4.3.1 Number of Servers 49

4.3.2 Number of Replica 50

4.3.3 Patching Window 50

4.3.4 Average waiting time 51

4.4 Comparison with Client Assisted Patching 52

4.4.1 Percentage of Served Requests 52

4.4.2 Percentage of Patched Requests 53

4.4.3 Average waiting time 55

4.4.4 Bandwidth Requirement of Server 56

4.4.5 Execution Time Comparison 58

4.5 Trade off between Server Bandwidth and Execution Time 59

v

4.6 Comparison with CAP with the Doubled Window size 59

4.7 Observations from the Simulation Results 61

5 Conclusion

5.1 Major Contributions 62

5.2 Future Directions of Further Research 63

vi

List of Figures
1.1 A multicast VoD system 3
1.2 Client Assisted Patching and conventional Patching in an Enterprise Network. 4
2.1. Patching: A dynamic multicast technique. 11
2.2. Client Assisted Patching. 12
2.3. The architecture of a VoD system in Enterprise Network. 13
2.4 Optimal Patching vs. Double Patching 16
2.5 Overlay topology of range multicast enabled routers 18
3.1 Example of the Distributed client assisted patching at time t=0. 26
3.2 Example of the Distributed client assisted patching at time t=5. 26
3.3 Example of the Distributed client assisted patching at time t=8. 27
3.4 Example of the Distributed client assisted patching at time t=11. 27
3.5 Example of the Distributed client assisted patching at time t=21. 28
3.6 Example of the Distributed client assisted patching at time t=22. 28
3.7(a)

3.7(b)

 Data transmitted by Client Assisted Patching (CAP).

Data transmitted by Distributed Client Assisted Patching (DCAP).

29

30
3.8 The flow chart of the Admission Control. 33
3.9 Buffer requirement analysis for Case (i). 39
3.10 Buffer requirement analysis for Case (ii). 39
3.11 Buffer requirement analysis for Case (iii). 41
4.1 Percentage of served requests for different request rates in Distributed Client-

Assisted Patching with different number of servers.

49

4.2 Percentage of served requests in Distributed Client-Assisted Patching with

different request rates and replication.

50

4.3 Percentage of served requests for different request rates in Distributed Client-

Assisted Patching with different patching window size.

51

4.4 Average waiting time with different server bandwidth. 51
4.5 Percentage of served requests for different request rates and different server

bandwidth.

52

4.6(a) Showing percentage of patched requests for different request rates with

medium server bandwidth and different number of clients.

54

4.6(b) Showing percentage of patched requests for different request rates with higher

server bandwidth and different number of clients.

54

4.7(a) The average waiting time for a client with different request rate. 55
4.7(b) The average waiting time for a client with different request rate. 56
4.8(a) Server Bandwidth Requirements for different request rates of Client-Assisted

and Distributed Client Assisted Patching schemes.

57

4.8(b) Server Bandwidth Requirements for different request rates of Client-Assisted,

Distributed Client Assisted and Conventional Patching schemes

57

4.9

4.10

Computation time of conventional and Client Assisted Patching schemes with

varying number of clients in the system.

Comparing the average waiting time when both CAP and DCAP has a patch

window of 1200 STU.

58

59

vii

4.11 Comparing the percentage of patched requests when both CAP and DCAP has

a patch window of 1200 STU.

60

4.12 Comparing the server bandwidth requirement when both CAP and DCAP has

a patch window of 1200 STU.

60

4.13 Comparing the execution time when both CAP and DCAP has a patch window

of 1200 STU.

60

viii

List of Tables
2.1 Classification of batching polices 10
3.1 Distribution policy used in the proposed system. 24
3.2 Calculation of patching effort for both CAP and DCAP. 43
4.1 Simulation Setting. 45
4.2 Usual Simulation Setting. 46
4.3 Simulation Setting. 52

Acknowledgments

ix

All praises due to Allah, the most benevolent and the most merciful.

This master thesis work was assigned and supervised by Dr. Md. Mostofa Akbar, Professor,

Department of CSE, BUET, Bangladesh. And it would not have been possible to accomplish

without the support and guidance of him.

First and foremost, I express my great gratitude to my supervisor Dr. Md. Mostofa Akbar for

giving me this thesis work opportunity. I want to give my deepest gratitude to him for his

constant guidance and help through all the phases of this work. I always get a strong support

from him when I was struggling with the programming. I express my heart-felt gratitude to my

supervisor for his illuminating instruction and kind help through all the stages of writing the

report.

I would also like to express my gratitude to Dr. Md. Humayun Kabir for his kind assistance and

suggestions. He helped me a lot in different aspect of this work and guided me with proper

directions in different stage of my work.

I would also want to thank the members of my thesis committee for their valuable suggestions. I

thank Professor Dr. Muhammad Masroor Ali, Dr. Md. Humayun Kabir, Dr. M. Kaykobad and

specially the external member Dr. Mohammad Rashedur Rahman.

I would also like to thank my family and friends, for their moral support along the way.

x

Abstract

Multicast Video-on-Demand (VoD) services have become some of the most popular real-time

multimedia applications available via the Internet for last few years. Multicast communication

with patching enables clients to join an existing multicast session with out any service latency. In

this research, we propose a new distributed patching technique DCAP (Distributed Client

Assisted Patching) where the initial portion of a movie is distributed to multiple clients to store

and provide as patch stream to other clients interested to join an ongoing session within a short

time. This scheme significantly reduces the server load without requiring larger client cache

space than the similar existing systems such as Client Assisted Patching. We present detailed

algorithms for the admission control of patching clients in this research. The policy of

distributing the initial part of the movie among different clients is also formulated. The analysis

of time requirement for admission controlling, buffer requirement for the patching clients and the

bandwidth requirement of the server and link connecting the servers are presented in this thesis.

To validate the theoretical results we have done simulation of the proposed system using Parsec,

a parallel simulator suitable for simulating different entities in the VoD systems. The detailed

analysis on the simulation results reveals that the new system outperforms the previous systems

in terms of number of requests served and average waiting although it requires more time in

admission controlling for finding suitable patch client during patching. Moreover the system is

more scalable and cost effective than many other existing systems.

xi

Chapter 1

Introduction

Video on demand is a technology that provides entertainment on demand to all the

subscribers of the service. Video on demand provides customers with informative

and entertaining streams of multimedia and video information. A multicast Video-on-

Demand (VoD) system allows clients to share a server stream by batching the user

requests. Multicast extends the traditional unicast communications with efficient

multipoint communications in which data can be sent to a set of destinations

simultaneously. Given the rapid development and deployment of multimedia

applications and the multireceiver nature of video programs, real-time video

distribution has emerged as one of the most important IP multicast applications. It is

also an essential component of many current and emerging Internet applications, such

as videoconferencing and distance learning.

1.1 Multicast VoD Techniques

A multicast VoD system allows clients to share a server stream by batching their

requests, and hence, improves channel utilization. Multicast communications is one of

the critical techniques to enhance the VoD service scale by sharing the

communication bandwidth.

The key idea is to avoid transmitting the same packet more than once on each link of

the network by having branch routers duplicate and then send the packet over multiple

downstream branches. The VoD service in multicast communication is called near

VoD service (NVoD). The reasons that multicast can significantly improve the VoD

performance are as follows:

 Alleviates the workload of the VoD server and improves the system

throughput by batching requests.

2

 Reduces the required network bandwidth significantly, thereby decreasing the

overall network load.

 Offers high scalability which, in turn, increases the system capacity to house

large number of clients.

 Provides considerable cost/performance benefits.

However, in the typical multicast communication, all receivers are expected to access

the same multicast stream at approximately the same time. Therefore, only few

customers can be served in the same multicast stream and additional multicast streams

are required since most requests issued at different time.

1.2 Batching and Patching

Customer requests arriving within a short time can be batched together and serviced

by a single stream is called Batching [2]. Batching increases the system throughput by

increasing the possibility of larger multicast group formation. This is because when

the batch duration is introduced it is more likely that more similar requests will be

accumulated in this short interval of time. However, it increases initial service latency

that may cause some impatient customers to renege.

Patching is a multicast technique that enables a server to transmit only the beginning

of the entire video data to clients and ensures that clients download the rest data of the

video from an ongoing stream. By making multiple clients share an ongoing stream,

Patching can reduce server network bandwidth requirements for TVoD services.

Double Patching [3] ensures that a long patching stream delivers not only essential

data for the current client but also extra data for future clients, so it significantly

reduces the total amount of video data delivered by all streams.

3

Figure.1.1 A multicast VoD system

1.3 Problem Definition and Previous Work

Multicast networks are well suited for delivery of video. Rather than transmitting

duplicate frames to multiple clients, a video source sends one frame and lets the

duplication of data occur in a distributed nature throughout the switches of the

network. Hence it allows a broad range of applications including entertainment and

information services, distance learning, corporate telecasts and narrowcasts etc. to

clients across a high-speed network. However, due to the bandwidth intensive nature

(usually larger than 1Mbps) of high quality digital video, and the long-lived nature

(tens of minutes to a couple of hours) of video content, server and network

bandwidths are major limiting factors in the widespread streaming of such videos over

the Internet. The problem is further complicated by the fact that clients are plentiful

and heterogeneous, and that clients asynchronously issue requests for the same media

stream. Particularly for popular clips, a large number of client requests may arrive

close together in time relative to the duration of the stream.

Patching [4] eliminates the service latency imposed by the Batching scheme [2]. The

objective of Patching is to substantially improve the number of requests each channel

can serve per time unit, thereby sufficiently reducing the per-customer system cost. In

Patching scheme channels are often used to patch the missing portion of a service or

deliver a patching stream, rather than multicasting the video in its entirety. In

Patching, a client might have to download data from both regular multicast and

4

patching channels simultaneously. However, Patching temporarily puts a heavy load

on the servers as patching streams are dedicated to the patched clients.

Figure. 1.2. Client Assisted Patching and conventional Patching in an Enterprise Network.

Client Assisted Patching [5], a newly proposed system uses client side cache to

reduces the server load. In this approach, all patching channels are provided by the

cooperative clients rather than the server itself. Thus, the system alleviates server load

and the conserved bandwidth can be used to satisfy more multicast groups. It also

increases the throughput and scalability of the system. The minimum buffer

requirement in the intervals is same as the conventional patching scheme requires.

Client Assisted Patching technique is illustrated in Fig. 1.2. The patching stream is

released when the missing portion is made up and the client will continue with the

regular stream until the end of the session.

Client Assisted Patching reduces the server load by using the client side cache.

However client cache is limited and only a small portion of the video can be stored in

a single client to patch. In our newly proposed system we considered that different

clients will store different portion of the movie. Thus we can provide a larger amount

for patching. The new scheme proposed in our research is defined as Distributed

Client-Assisted Patching.

1.4 Scope and Focus of the Thesis

Since streaming of any multimedia object like high quality video consumes a

significantly large amount of network resources, network bandwidth limitation is the

major constraint in most of the multimedia systems. So request-to-service delay,

5

network traffic, congestion and server overloading are the main parameters to be

considered in video streaming over the communication networks that affect the

quality of service (QoS). Providing VoD service over the internet in a scalable way is

a challenging problem. The aim of this research is to address this problem in an

Enterprise Network with a set of media servers.

This thesis represents a solution of VoD service aided with multicast communication

technique in an Enterprise Network. There will be a set of media servers in the

Enterprise Network. We analyze the methodologies to handle the interactive requests

in the proposed system. The new patching technique is proposed in this thesis called

Distributed Client-Assisted Patching. In this patching technique multiple clients are

assumed to serve a requesting client by dedicating their patched portion.

Distribution of storing the initial portion of a multicast session will be based on the arrival

time of a new patching client. Thus it is most likely that the earlier clients will store the earlier

part and the later client will store the later part of the patched stream.

This research also presents architecture of an Admission Controller for an Enterprise

Network to deliver the multicast VoD service. Clients’ requests are made to the

Admission Controller and bandwidth requirement for these requests is ignored

compared to the bandwidth requirement for actual data transmission. It is also

assumed that a central database will keep all network and server resource information

but the actual multimedia data stream will be kept only on the servers with possible

replications of only popular movies. The media servers and the underlying network

are assumed to be able to reserve resources for admitted clients’ sessions.

Testing the scheme in a real world scenario or in a prototype is out of scope of this

research. Discrete event simulation model is used to simulate the VoD requests in the

proposed system. The simulation results will be validated by comparing the analytical

performance measures.

6

1.5 Outline of the Thesis

This thesis describes the detail design and implementation issues of a scalable video-

on-demand service in an Enterprise Network based on multicast communication

technique which outperforms similar approaches.

The details of video-on-demand service have been illustrated in Chapter 2. A literary

review of Cooperative client approach and conventional Patching approach has been

presented. This chapter also includes preliminary description of some terminologies

and concepts of video-on-demand services. Different languages and tools supporting

discrete event simulation are mentioned in this chapter as well.

Chapter 3, the main chapter of this thesis, illustrates our proposed patching technique

and various adaptation techniques in Enterprise Network. The admission control

methodologies and client buffer requirement analysis are also presented in this

chapter.

Chapter 4 consists of the simulation results and comparative study against Client

Assisted Patching scheme. This chapter also includes the detail description of

simulation settings and different comparative parameters that are used in the

simulation process.

Chapter 5 concludes this thesis by summarizing the key contributions and presenting

directions towards future research in this field.

7

Chapter 2

Preliminaries and Literature Review

The VoD services allow customers to access the video program with the VCR-like

interactive operations over the networks. In normal operation, the customer subscribes

a request to the video providers and the providers deliver the selected video program

to the customer via the networks. In general, individual video stream is delivered for

each customer to provide the true VoD services. Unfortunately, this scheme requires

lots of communication bandwidth and is not practical in the real applications. One

important strategy to share the communication cost is the multicast communications,

in which many customers can share the same video stream. However, this scheme

assumes all receivers accessing the same multicast stream at approximately the same

time, and hence restricts the number of customers served in the same multicast group.

2.1 Multicast Video-on-Demand Services

A multicast Video-on-Demand system allows clients to share a server stream by

batching their requests, and hence, improves channel utilization. Multicast offers

efficient one-to-many data transmission and thus provides the foundation for various

applications that need to distribute data to many receivers in a scalable manner. It

reduces both the server-side overhead and the overall network load. Thus, multicast

VoD has good scalability and excellent cost/performance efficiency (See [6] for an

excellent survey of multicast VoD services). However, it is difficult to support VCR-

like interactivity with multicast VoD and, at the same time, improve service efficiency.

There are several proposals [7, 8, 9] to solve this problem.

Multicast communication is one of the critical techniques to enhance the VoD service

scale by sharing the communication bandwidth. However, in the typical multicast

communication, all receivers are expected to access the same multicast stream at

approximately the same time. Therefore, only few customers can be served in the

8

same multicast stream and additional multicast streams are required since most

requests are issued at different time.

2.2 Server-Initiated Multicast Schemes

In server-initiated scheme, the bandwidth is dedicated to video objects rather than to

users. Videos are decomposed into segments which are then broadcast periodically via

dedicated channels. Although the worst-case service latency experienced by any

subscriber is guaranteed to be less than the interval of broadcasting the leading

segment and is independent of the current number of pending requests, this strategy is

more efficient for popular videos than for unpopular ones due to the fixed cost of

channels. One of the earlier periodic broadcast schemes was the Equally-spaced

interval Broad casting [2]. Since it broadcasts a given video at equally-spaced

intervals, the service latency can only be improved linearly with the increase of the

server bandwidth. To significantly reduce the service latency, Pyramid Broadcasting

(PB) was introduced in [10]. In PB, each video file is partitioned into the segments of

geometrically-increasing sizes, and the server capacity is evenly divided into K logical

channels. The i-th channel is used to broadcast the i-th segments of all videos

sequentially. Since the first segments are very small, they can be broadcast more

frequently through the first channel. This ensures a smaller waiting time for every

video. Some other works [11, 12, 13] are also discussed in the literature to address

different issues of periodic multicast VoD services. Cooperative Client approach has

been discussed in [14, 15]. We present this approach in the following section as it is

related to our research.

2.2.1 Cooperative Client Approach

Cooperative client approach is recently proposed approach that relies on the

cooperation of the video clients in forming an overlay network over which the video

is propagated [14, 15]. In this approach, a client currently in the overlay network

forwards the content it is receiving, and serves other client’s request as a server. Thus

the forwarding capability of the overlay network will grow incrementally. Each newly

admitted client will bring an extra bandwidth capacity to the system.

9

A video server S periodically broadcasts video program in C channels after a certain

time interval d. Each channel can be used to transmit one video stream. There is an

application layer multicast tree associated with each channel. The server serves the

clients with the original stream, and m time-shifted streams. The streams are labeled

as s0, s1…, sm. Stream s0 is the original stream, while si starts after a i × d delay. Video

server is the single source of the video content, and is the root of the application layer

multicast tree. It processes client requests to join, leave, and rejoin the multicast group,

and is responsible for maintaining the topological structure and resource availability

of the multicast tree. When a client first joins the multicast group, it always joins a

multicast tree of the original stream. If the server has free video channel available, the

client connects to the server directly. Otherwise, the client joins the tree by connecting

to a client already in the tree who has enough available bandwidth resources, while at

the same time, has the shortest overlay path to the video server. The cooperating client

is called patching parent of the other client. A client in the multicast tree suffers

service disconnection in two cases: up stream link congestion and an ancestor node’s

failure.

Patching parent selection algorithms are discussed in [15]. Thus, the streaming

problem from a single server to a large number of clients is solved in this work. But

the system relies extensively on client cooperation which might create significant

service interruption in the system.

2.3 Client-Initiated Multicast Schemes

In this thesis, we mainly concentrate on client initiated approach. Using a client-

initiated multicast, when a server channel becomes available, the server selects a

batch to multicast according to some scheduling policies discussed in the next section.

Requests for a movie arriving within short time can be batched together and serviced

using a single stream is called Batching [2]. Customer reneging behavior has been

discussed in [2]. To eliminate the service latency, several dynamic multicast

techniques have been proposed in [16, 4, 1, 17, 18]. In subsequent section we will

describe some of the works related with this research.

10

2.3.1 Batching Policies

The free channels of the server are made available to the customers according to a

policy called scheduling policy on which the system performance is related to. Some

of the important scheduling policies are discussed in Table 2.1. The scheduling

policies shown in Table 2.1 and some of their variants are discussed in [2, 19]. As

MFQLF policy maximizes the system throughput without compromising fairness, we

have adopted this policy in this work.

Table 2.1: Classification of batching polices

Batching Policies Working Principle Objective

Maximum Queue Length

First

(MQLF)

Requests for the video

with the largest number of

pending requests to serve

first.

Maximizing the server

throughput but unfairness

to unpopular videos.

First-Come-First-Served

(FCFS)

The request with the

longest waiting time to

serve next.

Fairness but a lower

system throughput.

Maximum Factored Queue

Length First (MFQLF)

The pending batch with

the largest size waited by

the factor to serve next.

A throughput close to that

of MQLF without

compromising fairness

2.4 Dynamic Multicasting

Multicast session tree can be dynamically expanded after session starts. Such schemes

save the resources that are otherwise required to serve the clients who request the

same movie shortly afterwards. Many works on dynamic multicast have been

discussed in the literature. However, we will discuss some of the related works.

11

2.4.1 Patching

Patching was introduced in [4] in order to eliminate the initial service latency of the

clients. Patching increases the number of requests each channel can serve per time

unit and decreases service cost. In patching scheme, channels are often used to patch

the missing portion of a service or deliver a patching stream, rather than multicast the

video in its entirety. The Figure 2.1 illustrates the Patching scheme. At time zero a

multicast session starts and at time five a new request for the same video arrives and it

is patched by a dedicated separate channel from the server.

Figure 2.1. Patching: A dynamic multicast technique.

Given that there is an existing multicast video, when to schedule another multicast for

the same video is crucial. The time limit, up to when a newly arrived client will be

patched after a multicast session starts, is called patching window [20, 4]. Some

modifications of patching technique are discussed in [21, 17]. Two simple approaches

of setting the patching window are discussed in [4]. The first one uses the length of

the video as the patching window. That is, no multicast is initiated as long as there is

an in-progress multicast session for the video. This approach is called the Greedy

Patching because it tries to exploit an in-progress multicast as much as possible.

However, over-greed can actually reduce data sharing [4]. The second approach,

called the Grace Patching, uses a patching stream for the new client only if it has

enough buffer space to absorb the skew. Hence, under Grace Patching, the patching

window is determined by the client buffer size. In conventional patching scheme there

is a problem of server load mainly experienced at patching time. Server spares a

patching stream to each client who will join dynamically to the on going session. This

significantly increases server load. This issue has been discussed in [1]. One of the

12

objectives of this thesis is to alleviate this server load. In this case we propose a new

patching technique which greatly decreases the demand for the server load.

2.4.2 Client Assisted Patching

Client Assisted Patching [5] reduces the server load by using the client side cache. In

this approach, all patching channels will be provided by the cooperative clients rather

than the server itself. Thus, the system alleviates server load and the conserved

bandwidth can be used to satisfy more multicast groups. It also increases the

throughput and scalability of the system.

Here a service interruption may occur when the patching parent changes multicast

group through a VCR request or leaves the session. In this case another patching

parent is to be selected by the Admission Controller to deliver the missing portion of

the patched client. The leaving patching parent can send a message to the child client

about its departure or the child client will eventually encounter the loss of patching

stream. Whatever may be the leaving process, delay might be introduced for the

patched client in this situation. The minimum buffer requirement in the intervals is

same as the conventional patching scheme requires.

Figure 2.2. Client Assisted Patching.

Client Assisted Patching technique is illustrated in Fig. 2.2. A session is assumed to

be started at Time 0 with six clients as shown in Fig. 2.2(a). Patching window is

assumed to be 5 time units long. At Time 4, Client C8 requests the same movie. As the

13

request time is within the time interval of the patching window, the Admission

Controller will select a nearby client to supply the patching stream. At this time,

Client C3 is selected as shown in Fig. 2.2(b) to supply the patching stream to the

newly arrived Client C8. The patching stream is released when the missing portion is

made up and the client will continue with the regular stream until the end of the

session.

2.4.2.1 Architecture of the Client Assisted Patching

The architecture of the proposed video-on-demand service in an Enterprise Network

is shown in Figure 2.3. The system components are described below.

Figure 2.3. The architecture of a VoD system in Enterprise Network.

 Enterprise network: We consider a privately owned small enterprise network

with network switches (nodes) and links between them. In Figure 3.3, S1 through

S6 represent network nodes. We use switches and network nodes interchangeably

in this text to interpret the same entity. Links or connections between them are

shown by lines between them.

 Video server: The video servers stores video streams and delivers the requested

movies through multicast channels. First round movies are replicated in different

servers in order to satisfy enormous demand for that kind of movies.

 Client: A client is connected to the enterprise network through an interface. The

interface can be a workstation or a device. The device must be able to send and

S1

S4

S3

S5

S2

S6

Media
Server 1

Media
Server 2

Media
Server 3

CPE CPECPE

CPE CPECPE

CPE CPECPE

Admission
Controller

with a central
database

S: Layer3 Switch
CPE: Client

Premise Equipment

14

receive control messages required to communicate with the Admission Controller,

patching parents and servers. The device receives and processes a video stream. It

also receives and processes input from the customer via a remote control. The

customer can either request a movie or request VCR-style functions such as pause,

rewind and fast forward. Buffering a small number of frames in the customer end

also helps provide continuous play out in the event of short and unexpected delays

in the video server or network.

 Admission Controller: The Admission Controller is in charge of accepting or

rejecting the clients’ requests and acts as a moderator. The Admission Controller

maintains a centralized database that contains all necessary information of the

system. These include available memory, CPU cycles and I/O bandwidth of

different servers and bandwidth of connecting links. Multimedia data information

i.e. the whereabouts of the media data are also stored in the database. Note that the

centralized database does not contain actual multimedia data. The server will send

the media data to the clients according to the instruction of the Admission

Controller. The Admission Controller also maintains the session related

information.

2.4.2.2 Basic principles of the Client Assisted Patching

The architecture of the Client Assisted Patching is described in the previous section

where the Enterprise Network is composed of several layer 3 switch nodes, servers,

clients and a powerful Admission Controller. Basic principles of the proposed system

are demonstrated in the following points:

 Clients will place their requests to the Admission Controller and subsequently

served by the video servers.

 After receiving a request the ADC will batch it for a fixed time defined as batch

window if there is no ongoing multicast session for the requested video.

 Each client joined in the multicast session will store the initial portion of the

movie.

 A request will be patched if there exist a multicast session for the same movie and

it comes within the interval of the patching window.

15

 A nearby client of that session will be selected by the Admission Controller to

supply the patching stream. The selected nearby client is called the patching

parent and the requesting client is called patched child.

 The newly joined client will also store the initial portion of the movie according to

the distribution technique described in next section depending on its arrival time.

 If a client requests movie after the patch window limit but with in two patch

window the ADC will select two patch parents for the client. The first window

size will be provided by the first parent and the rest will be provided by the next

parent.

 In our proposed system, a client will supply patching stream to at best a single

client at a time. Thus, clients in the proposed system have a limited responsibility

that makes the management task easier and efficient.

 Patched clients may experience service interruption in the proposed system. This

may happen when a client issues a VCR request or session leave request while

serving as a patching parent.

 If service interruption is occurred ADC will select a new patch parent for the

client.

2.4.3 Double Patching

In double patching [3] technique two patch streams are used, a long stream (L-stream)

and a short stream (S-stream). As the skew between the latest regular stream (R-

stream) and a new request becomes longer, the length of a patching stream also

becomes longer. In order to shorten the length of a patching stream, Double Patching

introduces a long patching stream (L-stream). A client receiving an L-stream has to

share the latest R-stream; the L-stream can be shared with future clients. It uses two

time thresholds: a multicast window and a patching window. The multicast window

(Wm) is the minimum interval between two sequential R-streams; the patching

window (Wp) is the minimum interval between two sequential L-streams. The

patching stream in Optimal Patching is called a short patching stream (S-stream) in

Double Patching. The algorithm that a server uses to schedule a new stream for the

current client is as follows:

16

Fig. 2.4 Optimal Patching vs. Double Patching

 If the skew between the current client and the latest R-stream is greater than

Wm, it schedules a new R-stream.

 Otherwise, it schedules a new L-stream /S-stream as follows:

o If the skew between the current client and the latest R-stream/L-stream

is less than or equal to Wp, it schedules a new S-stream to deliver the

beginning of the entire video data that the client has not received from

the latest R-stream/L-stream. In this case, to play back the entire video

data, the client plays back data in the following order:

S-stream, L-stream if the client has to share it, and R-stream.

o Otherwise, it schedules a new L-stream to deliver the beginning of the

video that the client has not received from the R-stream and the

following data of the video that will be continuously played back

during 2×Wp time units after playback of the beginning. In this case,

the client first plays back the data from the L-stream and then the data

from the R-stream.

Fig. 2.4 shows how to schedule streams for client requests in Optimal Patching and

Double Patching. As shown in Fig. 2.4, the length of an L-stream is (2×Wp) longer

17

than that of a corresponding patching stream in Optimal Patching. However, because

Wp is much smaller than that in Optimal Patching, S-streams that are scheduled for

clients sharing the same L-stream become very short. As a result, Double Patching

can decrease the total amount of transmitted video data by 50% compared with

Optimal Patching, and significantly reduce the server network bandwidth

requirements [3].

2.4.4 Expanded Patching Technique using Four Types of Streams (XP4S)

A multicast technique that completely prevents a server from transmitting

unnecessary video data like double patching and uses four types of streams: regular

stream (R-stream), patching stream (P-stream), short patching stream (S-stream) and

linking stream (LK-stream). An R-stream, an S-stream, Wm, and Wp in the proposed

XP4S [22], have the same meanings as in Double Patching.

A P-stream is scheduled in the same manner that Double Patching schedules an L-

stream, except that it does not deliver extra data. In other words, a P-stream delivers

the beginning of the entire video data that the current client has not received from the

latest R-stream and it does not deliver extra data for possible future clients. If a client

request is within the patching window of the latest R-stream/P-stream, an S-stream is

scheduled to make it share the R- stream/P-stream. In XP4S, a VoD server can

multicast a single LK-stream to all clients that have received their respective S-

streams and shared the same P-stream. Using LK-streams, the proposed XP4S

completely prevents the server network bandwidth wastage that can be generated by

the extra data of Double Patching. As a result, server network bandwidth requirements

for TVoD services can be reduced [22]. Using the same server network bandwidth,

our technique always has better average service latency and client defection rate

compared with Double Patching.

2.5 Range Multicast

Range Multicast is a new communication paradigm for VoD applications [1]. This

scheme is a shift from a conventional thinking about multicast where every receiver

must obtain the same data packet at all times. In Range Multicast environment, RM

enabled nodes are placed on the Internet and forms an overlay topology shown in

18

Figure 2.5. As video stream passes through a sequence of nodes on the delivery path

each caches the video data in a fixed-sized FIFO buffer. The root node does not need

to cache any movie because it is directly connected to the server. A client requests a

video to its nearby RM router called representative router. In Figure 2.5 R2, R3, R6 and

R8 are representative routers. The representative router then broadcasts a find request

to the overlay nodes if it does not posses the cache of that movie. A RM router which

has the cached copy of the initial part of that movie responds to the broadcast request.

The representative router then sends ACK to the earlier response. Thus the client gets

the movie.

Figure 2.5: Overlay topology of range multicast enabled routers

2.6 Client-To-Client Streaming Scheme for VoD Applications

Client-to-client streaming scheme for VoD application is an [23] is an efficient client-

to-client streaming approach to cooperatively stream the video using chaining

technique with unicast communication among the clients. This approach considers

two major issues of VoD:

i) Prefix caching scheme to accommodate more number of videos closer to client,

so that the request-service delay for the user can be minimized.

ii) Cooperative proxy and client chaining scheme for streaming the videos using

unicasting.

19

This approach minimizes the client rejection rate and bandwidth requirement on

server to proxy and proxy to client path. The simulation results show that the

proposed approach achieves reduced client waiting time and optimal prefix caching of

videos minimizing server to proxy path bandwidth usage by utilizing the client to

client bandwidth, which is occasionally used when compared to busy server to proxy

path bandwidth.

The main goal of this streaming scheme is to make each client act as a server while it

receives the video, so that the available memory and bandwidth of the clients can be

utilized more efficiently. The un-scalability of traditional client-server unicast VoD

service lies in the fact that the server is the only contributor and can thus become

flooded by a large number of clients submissively requesting the service.

2.7 Some other related research on Multicast VoD services

Many other researches have been done on multicast Video on Demand services. Some

of them are described shortly in the following section:

An enhanced client-centric approach for efficient video broadcast is described in

[24]. P2Cast—an architecture that uses a peer-to-peer approach to cooperatively

stream video using patching techniques, while only relying on unicast connections

among peers. The following two key technical issues are addressed in P2Cast: (1)

constructing an application overlay appropriate for streaming; and (2) providing

continuous stream playback (without glitches) in the face of disruption from an early

departing client. P2Cast can serve many more clients than traditional client server

unicast service, and that it generally out-performs multicast-based patching if clients

can cache more than 10% of a stream’s initial portion. Disruptions are handled by

delaying the start of playback and applying the shifted forwarding technique. The

threshold in P2Cast, i.e., the length of time during which arriving clients form a single

session, can serve as a “knob” to adjust the balance between the scalability and the

clients’ viewing quality.

MegaDrop: A Cooperative Video-on-Demand System in a Peer-to-Peer

Environment is a new technique proposed in [25]. This paper describes a fully

decentralized VoD service via P2P techniques, which is referred to as the MegaDrop

20

system. The MegaDrop system not only takes active peers into consideration but also

provides mechanisms for discovering inactive peers that contain desired media objects.

Evaluation results of the MegaDrop system show that the architecture performs more

efficiently when the more inactive peers involving to provide media blocks.

A New Zero-Delay Video-on-Demand Scheme is a technique proposed to solve the

server delay of high-performance static streaming scheme [26]. It contains the

outstanding thoughts from two efficient schemes: GEBB and patching scheme. The

scheme allocates (optional) the number of channels to minimize the bandwidth

consumption. The scheme can provide zero-delay VoD service with sending the first

part of video via unicast channel when the client request arrived. To improve the

performance, the residual part of video is delivered by using revised GEBB. Since

most services require the server to deliver only a small leading part of the video, the

server can serve many more clients per time units. Simulation results show that the

schemes can minimal bandwidth consumption effectively.

P-chaining: a practical VoD service scheme autonomically handling interactive

operations proposes a service scheme based on chaining [27], in which clients as well

as the server provide streaming services. In the proposed scheme, services are

provided by unicast and managed locally using node lists. In addition, proposed

scheme can support frequent VCR operations without incurring significant overhead

in the server workload. The proposed scheme reduces server workload significantly

and the frequent VCR operations can be served smoothly without causing too much

overhead.

Proxy-assisted scalable periodic broadcasting of videos for heterogeneous clients is

proposed in [28]. In this paper, a scheme is proposed to significantly reduce the

waiting time of all heterogeneous clients, without the need for any additional

backbone bandwidth. This scheme uses a proxy buffer within video-on-demand

systems using PB. In the proposed system, the server broadcasts a video using one of

the traditional PB protocols. Simultaneously, the proxy receives the stream from the

server and stores it in its local buffer, then broadcasts the stored data to the clients in

its local network. Because the proxy provides extra, transparent channels to the server,

21

clients are likely to reduce their reception bandwidth requirements through the use of

efficient reception schedules using the extra channels.

2.8 Network Simulator

In this section, we briefly describe some important simulators that are used in the

simulations of different types of networks like wired, wireless and sensor networks.

2.8.1 Parsec

Parsec [29] (for PARallel Simulation Environment for Complex systems) is a C-based

discrete-event simulation language and it is a package as well. It adopts the process

interaction approach to discrete-event simulation. An object (also referred to as a

physical process) or set of objects in a physical system is represented by a logical

process. Interactions among physical processes (events) are modelled by time

stamped message exchanges among the corresponding logical processes. One of the

important distinguishing features of Parsec is its ability to execute a discrete-event

simulation model using several different asynchronous parallel simulation protocols

on a variety of parallel architectures. Parsec is designed to cleanly separate the

description of a simulation model from the underlying simulation protocol, sequential

or parallel, used to execute it. Thus, with few modifications, a Parsec program may be

executed using the traditional sequential (Global Event List) simulation protocol or

one of many parallel optimistic or conservative protocols. In addition, Parsec provides

powerful message receiving constructs that result in shorter and more natural

simulation programs. Hence we have implemented our simulation programs with this

language.

2.8.2 GloMoSim

GloMoSim [30] is a scalable simulation environment for wireless and wired networks

systems developed initially at UCLA Computing Laboratory. It has been designed

using the parallel discrete-event simulation capability provided by Parsec. GloMoSim

currently supports protocols for purely wireless networks. It is build using a layered

approach. Standard APIs are used between the different layers of the system. This

22

allows the rapid integration of models developed at different layers by users. To

specify the network characteristics, the user has to define specific scenarios in text

configuration files: app.conf and Config.in. The first file contains the description of

the traffic to generate (applicationtype, bit rate, etc.) and the second contains the

description of the remainder parameters.

The statistics collected can be either textual or graphical. In addition, GloMoSim

provides various applications (CBR, ftp, telnet), transport protocols (TCP, UDP),

routing protocols (AODV, flooding) and mobility schemes (random waypoint,

random drunken).

23

Chapter 3

Distributed Client Assisted Patching

Client Assisted Patching [5] reduces the server load by using the client side cache to

store the initial portion of the movie. In this approach, all patching channels are

provided by the cooperative clients rather than the server itself. Thus, the system

alleviates server load and the conserved bandwidth can be used to satisfy more

multicast groups.

The patch window during the multicasting is defined by the duration when a

particular client can join the multicast group. The number of users in a multicast

group depends on the size of window. But increased window size requires larger

buffer in the clients and client buffer is limited. So storing the same portion to all

clients can provide only a limited portion as patch to other clients. If the storage

required for storing the initial portion of the movies can be distributed among a group

of clients then it is possible to support a larger window size with the same amount of

buffer in the clients. Thus it requires less buffer and a large multicast group can be

supported with smaller network bandwidth.

3.1 Distributed Client Assisted Patching

In the Distributed Client Assisted Patching storing the initial portion of the session is

distributed among the participating clients. Some observation about the new scheme

can be described as follows:

 The clients are allowed to join an ongoing multicast session with in 2W

time from the beginning of the session. Where W is the patch window in

client assisted patching. Thus the effective patching window is doubled.

 Each client in a multicast session will store a portion of the video with

length W depending on its arrival time. The distribution policy is described

in the later section.

24

 If a client requests for a movie after starting of multicast session the ADC

will select one or two patch parents for the client. Different parts of the

patching stream may be supplied by different clients.

 In the new scheme the patch streams are distributed among the clients. It

means that a client will not store the whole patch stream and the ADC

must find multiple clients for patching. The main problem here is the

reduced probability of finding a patch client. Thus in some cases waiting

time will be increased and the percentage of served will be decreased. But

as we are getting larger patch window we can effectively get more clients

to be served with single movie stream.

3.2 Distribution policy

In our proposed system each client in a multicast session will store a portion of the

initial part of the movie with length W depending on its arrival time. The distribution

policy of the part of the movie to be stored in patched clients is described in the

following table.

Table 3.1: Distribution policy used in the proposed system.

Arrival time, t Part of the Movie Stored, B

0 ≤ t <W/2 0 ≤B <W

W/2 ≤ t <W W/2 ≤ B < W+W/2

W≤ t ≤ W+W/2 W ≤ B ≤2W

W+W/2< t ≤2W None

the distribution policy is explained with proper reasoning as follows

– The clients coming within the time 0 to W/2 will store the initial part of the

movie from starting to W time duration. Here we should mention that our

scheme is a combination of both batching and patching. So the regular

multicast stars with a group of clients in the batch who will also store the

first part of the initial portion. So even if no patch requests come within 0

to W/2 time interval the first part of the patch stream is always available to

some of the clients. That is why the initial part indicating time duration

from 0 to W/2 is not stored by other group of clients coming later.

25

– Again the clients joining with in the time interval W/2 ≤ t <W will store the

initial part from W/2 to W+ W/2 and clients coming with in the time

interval W/2 ≤ t < W+W/2 will store the part from W≤ B <2W. Here we can

see that the initial part from W/2 to W and W to 3W/2 are stored by the two

different groups of clients. This has been done to ensure that there will be

less chance to miss any part of the initial portion.

– Part of the movie from 3W/2 to 2W is stored by only one patch client

group with arrival time W ≤ t <3W /2. This part of movie is required only

by the clients arriving 3W/2 <t <2W during the patching. It is assumed that

this is sufficient to serve this part as it is required by less number of clients

compared to other patching clients.

– The client coming at t (t>2W) need not to store any part of the movie

because clients arriving after this interval will not be allowed for patching.

These clients will be batched for next multicast session.

– If no clients joins the ongoing session with in the interval W/2 ≤ t <W no

clients will store the part from W/2 to W+W/2. But still we can get the

portion W/2 to W from the first group and the portion W to W +W/2 from

the second group.

– Again if no client comes within W ≤ t < W+W/2 we can get the initial part

0 to W+W/2 from the first two groups but we may miss the portion W+W/2

to 2W as no client stores this part. In this case patching will be served

directly from the server.

– If no client joins with in the time interval W/2≤ t ≤ W+W/2 then only the

initial part from 0 to W is available. Though this would be a very rare

situation if this happens then patching will be allowed for 0 to W interval

and rest of the portion will be patched directly from the server.

3.3 An Illustrative Example

Suppose a multicast session starts with 5 clients C0, C1, C2, C3 and C4. All these five

clients will store the first 10 min of data if the client buffer is limited to store 10 min

of movie data.

26

Time t=0:

Figure 3.1 Example of the Distributed Client Assisted Patching at time t=0.

Time t=5:

Figure 3.2 Example of the Distributed Client Assisted Patching at time t=5.

Suppose a client C5 joins at time t=5. C5 will get the patch stream from C1 and will

store first 10 min of data.

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

0-10

C5

Patching stream

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

27

Time t=8:

Figure 3.3 Example of the Distributed Client Assisted Patching at time t=8.

C8 requests for the movie at time t=8. C8 will get patch from C3 and will store 5 to 15

min of data.

Time t=11:

Figure 3.4 Example of the Distributed Client Assisted Patching at time t=11.

C11 comes at time 11 min. As the client C11 comes at time t>W but t<2W it needs two

patch parents. C4 will be selected as patch parent for the first 10 min and then C8 will

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

0-10

C5 Patching stream

5-15 C8

C11 10-20

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

0-10

C5

Patching stream

5-15 C8

28

be selected as patch parent for next one min data. Again C11 will store the initial

stream from 10 to 20 min.

Time t=21:

Figure 3.5 Example of the Distributed Client Assisted Patching at time t=21.

At time t=21 C3 will complete the patching stream for C8. Also C4 will complete

patching of the first part for C11 and C8 starts giving the second patch stream to C11 as

shown in the Figure 3.5.

Time t=22:

Figure 3.6 Example of the Distributed Client Assisted Patching at time t=22.

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

0-10

C5

5-15 C8

C11 10-20

C0

Regular Stream

Server

S1

S2

S3

C0

Server

S1

S2

S3

C3

C4

0-10

0-10

C3 0-10

0-10

C1 C2

0-10 0-10

C1 C2

0-10

C5

Patching stream

5-15 C8

C11 10-20

29

At time t=22 C8 completes the patch stream for C11. Also the window size is over and

no patch request will be accepted any more.

3.4 Motivation Example

Let us consider an example. The length of the video is 20 minutes. Each client has

enough disk space to store necessary patch stream. The arrival rate is one request per

minute. Suppose the client buffer size is 5 minute.

Client Assisted Patching:

The patch request will be allowed till W=5 min.

Suppose the first client requests for the movie at time 0. So a regular multicast will be

initiated at time zero and will be continued for next 20 min. this is the only data

stream provided by the server. The next 4 users will be given patch stream from

different clients.

The data delivered by server Ds=20 min and the data delivered by the client is Dc=

5

1i

i =15 min. This data is shared by 5 users for one multicast session. Again with in

20 min there will be four multicast sessions which needs to send 4×20 =80 min of

data by the server to serve 20 users. So the average data required for individual client

is 4 min from server and 3 min from patch client.

(a) Data transmitted by Client Assisted Patching (CAP).

Patch to C4

t0 t1 t2 t3 t5 t7 t9 t11 t13 t15 t17 t19 t21 t25t23

Patch to C1C0

R1

C1

C2

C5

C3

C4

Patch to C2

Patch to C5

Patch to C3

Regular Stream

Regular Stream

R2R1

Patch window =5
Regular Stream
Patch Stream

30

(b) Data transmitted by Distributed Client Assisted Patching (DCAP).

Figure 3.7 Comparing CAP and DCAP

Distributed client assisted patching:

In this system first client will initiate the regular stream and rest 9 user will be patched

within 2W =10 min the effective window size. The data delivered by the server will

be Ds=20 min and the data delivered by the clients will be

9

1i

i =45 for 9 clients in one

multicast session. Again within 20 min there will be only two regular multicasts

which need only 2×20=40 min of data to be delivered by the server to serve 20 users.

So we can see that the same number of user can be served with half of the server

bandwidth. Here the average data required for each client is 2 min from server and 5

min from client.

Thus we can see that the distributed Client Assisted Patching requires 50% less data

from the server. So it is obvious that the server bandwidth requirement is reduced 50%

in our system.

Patch to C8

Patch to C6

Patch to C4

t0 t1 t2 t3 t5 t7 t9 t11 t13 t15 t17 t19 t21 t25t23

Patch to C1C0

R1

C1

C2

C3

C4

Patch to C2

Patch to C5

Patch to C3

Regular Stream

C6

C7

Patch to C7

C5

Patch to C9C8

C9

Patch window =10

R1 R2

Patch Stream
Regular Stream

Regular Stream

Patch to C10

C10

31

3.5 Analysis for Server Bandwidth Requirement

In our analysis we will refer to the amount of data in terms of their play back duration.

Let us make the following assumptions:

 Both batching and patching are combined in this system.

 The batching window size is WB and the patching window size is WP and all

clients have enough buffer to store necessary patch stream.

During the patch window of a particular multicast session there will be only one

regular multicast stream transmitted by the server. The rest will be patched by the

client. During the batching no new clients will be served and they will get the stream

in the next multicast session. So the total data delivered by the server during one

multicast session for the ith movie Mi is

Ds= iL (3.1)

Where, iL is the length of the ith movie Mi. The patch streams for the late clients will

be provided by the cooperative clients.

If k patching streams are initiated between t and t+Δt, then total data transmitted by k

patch stream can be approximated as kt if Δt is negligible. If the probability of

initiating k patch stream during Δt is P(k, Δt) then the total data delivered by the

clients between t and Δt is

1

),(
k

tkktP . To calculate the mean total amount of video

data delivered by a multicast group we can partition (0, Wp) into tWP small time

segment. Then total data transmitted by the client

t

w

t k
c

p

tkktPD
1 1

),((3.2)

To determine the expression of the probability we assume that the multicast initiation

process is Poisson with rate λ. The probability density function is x
x ef , where x

indicates the first time of the patch client arrival and fx indicates the probability that

the first client arrives at time x. Now we can derive
!

),(
k

e
ttkP

t
k

 . Dc can be

derived as follows:

1

),(
k

tkktP

32

=

1 !k

t
k

k

e
tkt =

1)!1(k

t
k

k

e
tt =

1)!1(k

k
t

k

t
te = tt tete = tt

If we set Δt equals to 1 second then we get

PW

t

PP
c

WW
tD

1 2

1 (3.3)

Since the client request rate is λ, the patch window is Wp and the batch window is WB

the mean interval between two multicast group is τ = WB +Wp.

Now consider N multicast session in a time interval T. Thus TN . Total data

stream supplied by these N streams will be Dst = NLavg

Thus the server bandwidth requirements

= TDst =
T

bNLavg
=

 bLavg =
PB

avg

WW

bL

(3.4)

Again the patching by the client will be continued within patch window Wp. So the

link bandwidth required for patch streams which is provided by the clients to other

clients can be measured as

link bandwidth= b
W

D

p

c =

b
WP

2

1
 (3.5)

Where b is the video play back rate and Lavg is the average movie length.

If we represent the patch window of Client Assisted Patching as Wcap we can write

Wp=2Wcap (3.6)

From the equation (4) we can see that the server bandwidth requirement is inversely

proportional to the patch window. So the larger the patch window the less will be the

requirement of server bandwidth. Again distributed Client Assisted Patching supports

a patch window that is double of the patch window supported by the Client Assisted

Patching system. So we can say that our system saves about 35% bandwidth than that

of Client Assisted Patching if WB=Wcap.

3.6 Algorithm for Distributed Client Assisted Patching

The Admission Controller plays a very important role in the proposed VoD system.

The basic algorithm of admission control is same as the admission controller of Client

Assisted Patching system [5].The flow chart of the admission control procedure is

illustrated in Figure 3.8 which is already presented in the Client Assisted Patching [5].

33

Here we will not describe the admission control procedure in details. We will only

describe the data structure and algorithm that we have added in our system.

(a) Thread for batch processing (b) Online request receiving and processing

thread

Figure 3.8 The flow chart of the Admission Control.

3.6.1 Data Structures used in the proposed system

Some of the data structures used in our program are described bellow:

clientPatchInfo:This is a structure data type to store the information about the patch

session of individual clients. That means it stores the required patch information and

the node selected as patch parent.

serverSource[] : This is an array of nodes to which servers are connected. No more

than one server is connected to a node.

session_Time: a double value representing the time when a specific client joins a

multicast session which is a member of the structure clientPatchInfo.

WindowSize Wp: The threshold value up to which a client can join an ongoing session.

Here window size is double of the initial part stored in each client.

34

3.6.2 Procedures and Algorithms

The details of the procedure and its sub-procedures are described below:

multicastTrees[] dijkstra(network, serverSource[]) : The procedure returns a list of

shortest path trees of the network assuming roots are at serverSource[]. Dijkstra

algorithm is used to construct these shortest path trees.

clientPatchInfo FindClientPatchDetail (sessionTime, movieId,

graph[NO_OF_SERVERS][NODES], clientSource, clientId): this function checks

whether the client can be given patch stream. That means it checks whether the

request came within path window time. It also checks if single patch is enough or two

parents are required. The function returns the suitable patch session with necessary

resources including patching parents if patch session is available. Otherwise it returns

a null session to indicate that patch is not possible.

Void StoreInitialPart(clientId, nodeId, sessionTime): the procedure is used to store the

specific part of the initial portion to the client buffer depending on the session time

that means the time when the client is joining the session.

patchClientNodeResource selectPatchingParent(network, source, sessionTime,

clientId): this procedure returns the patch parent that has the necessary patch stream

depending on the session time. If there is more than one patch parent available then it

returns the one which requires less resources.

Procedure Process-Movie-Request(client : C, movie-id : M, session_Time: T)

/* The procedure will be invoked when MOVIE-REQUEST message has been

accepted */

session ← FindClientPatchDetail(C, M, T)

patchingParent ← session.PatchParents

if (session ≠Nil and patchingParent ≠Nil) then /* Client C is patched */

Admit C in session /* Allocation of resources for Client C */

Distribute_Patch_Stream(C, Current_Timet, M)

Send MOVIE-ACCEPTED(session, patchingParent) to C

else /* If patching is not possible then batch the request */

add(batchList[M], C) /* Client C is batched */

35

endif

end Procedure Process-Movie-Requests

Procedure FindClientPatchDetail:(Network N, client C, movie-id M, session_Time

T)

returns patchSession

if T <Wp

// single patch_parent is required

patchSession .PatchParents[0]← selectPatchingParent(N, C, M, T)

else if Wp< t<2*Wp

// double patch_parent

patchSession .PatchParents[0]← selectPatchingParent(N, C, M, Wp)

patchSession .PatchParents[1]← selectPatchingParent(N, C, M, T)

end if

resourcse←Find_Resource for patchSession .PatchParents

if resource ≠Nil and patchSession .PatchParents ≠Nil

return patchSession

else

request rejected

end if

end Procedure FindClientPatchDetail

Procedure selectPatchingParent:(Network n, client Ck , movie-id M, sessionTime t)

returns patchingParent

newTree ← dijkstra(n, source node of Ck)

min ← ∞

for each client Cp of n do /* Finding shortest path parent */

d ← distance(newTree, Cp, Ck)

Select a client Cp such that

1. Cp has the necessary patch stream.

2. Cp is not serving as a patch parent. // To reduce the load of a

patching client.

3. min>d.

36

set Cp as patch parent

 min ← d

 Cj ← Cp

end for

 return Cj.

end Procedure selectPatchingParent

Procedure StoreInitialPart (client Ck, SessionTime t, movie-id M)

if 0 ≤ t <W/2

 //Ck will store from 0 to W

Store the initial part of M from 0 to W in the client buffer

else if W/2 ≤ t <W

 //Ck will store from W/2 to W+W/2

Store the initial part of M from W/2 to W+W/2 in the client buffer

else if W≤ t ≤ W+W/2

 //Ck will store from W to 2W

Store the initial part of M from W to 2W in the client buffer

end if

end Procedure StoreInitialPart

3.7 Performance Analysis

In this section we will discuss the complexity analysis of our program and also the

buffer requirements of the clients in the subsequent section.

3.7.1 Complexity Analysis

The complexity of Admission-Control in Client Assisted Patching is O(sE log V + m2

+ ncE log V + n2
c E) which is the sum of the complexity of two threads Batched-

Requests-Processing and Online-Requests-Processing and the procedure Init-

Admission-Controller . Here, s is the number of servers, m is the number of movies, V

is the number of nodes, E is the number of edges, nr is the number of clients that are

seeking admission and nc is the number of clients already admitted in multicast

session.

In the Distributed Client Assisted Patching unlike the Client Assisted Patching the

users do not store the same initial portion. Rather three different groups of users store

37

the different portion of the initial part. Also in this system the users are allowed to

join an ongoing multicast session within a patch window which is double of the patch

stream stored in a single client. That means the system allows a window size which is

twice as much as used in the client assisted patching.

In distributed Client Assisted Patching a user coming within the single patch window

requires only one patch parent for the first part of the initial portion of the movie

stored in one client buffer. Here single patch window refers to the half of the

supported threshold with in which a client is allowed to join an ongoing multicast

session. In this case admission controller invokes the procedure selectPatchingParent

once to get a single patch parent. Where the complexity of the procedure is nc
2E. In

this case our system takes the same computational time as client assisted patching.

But a client requesting for the same movie after the single patch window time but

within the double window size which is the effective patching window in our system

requires two patch parents. The first parent will provide the first part of the required

patch and the second parent will provide the rest. So the admission controller has to

invoke the procedure selectPatchingParent twice to get two different patch parents.

Thus the complexity of this procedure will be 2nc
2E. So the total time complexity of

the proposed system can be described as: O(sE log V + m2 + ncE log V + 2nc
2 E). So

we can see that the time complexity of our system looks same as that of the client

assisted patching. But as the procedure selectPatchingParent needs to be invoked

twice in case of two different patch parents the time requird to execute the program

will be higher than that of Client Assisted Patching.

3.7.2 Buffer Requirements

In conventional patching scheme patching stream is played back first and regular

stream is stored in the client buffer for the future play out. The limit up to when a

newly arrived client will be patched after a multicast session starts is called patching

window [4]. If patching window size is W time units then the upper bound of buffer

requirement is WM. where, M is the average amount of movie data stream per time

unit.

In Client Assisted Patching scheme each client caches the initial part of the movie

stream up to the time period of patching window to provide patch stream to future

38

clients. The upper limit of the required buffer is still WM in Client Assisted Patching

[5].

In our scheme users are allowed to join an ongoing multicast session with in 2W time

after the session starts. The initial part of the movie is distributed to different client

such that each client will store maximum W time unit for serving future clients.

To estimate the buffer requirements let us consider the following situations assuming

a multicast session has started at time t0.

i) A client requested the same movie in the time interval (t0, t0 +W/2).

ii) A client requested the same movie in the time interval (t0+W/2, t0 +W).

iii) A client requested the same movie in the time interval (t0+W, t0 +2W).

For Case (i), if a client requests the movie at time t1 and t1 − t0≤W/2, then

simultaneous downloading and storing of both the streams are required for already

passed away time (i.e. t1−t0) from the beginning. The patching stream makes up the

missing portion by (2t1 − t0) where (2t1 − t0) ≤ (t0 +W). Streaming at different time

interval can be shown in the figure. If b is the cache required for the newly admitted

client and L be the average movie duration the possible equations for different

situations are shown in the Figure 3.9.

 A client coming at time t1 where t1< t0 +W/2 needs to store both the

initial part and the regular stream till 2t1 − t0. The buffer requirement

for this interval is shown by the equation 3.7 which can be at best WM.

 After the time 2t1 − t0 the missing portion will be made up but the

client needs to store the initial part 0 to W for patching. This situation

is described by the equation 3.8.

 A client will not make the buffer free till there is a chance to be

selected as patch parent. In the worst case a client will join as patch

client at t0+2W and will be able to get the stream up to t0+3W. This is

shown by the equation 3.9.

 After t0+3W the client buffer used for storing the initial part can be

freed. Only the missing portion will be stored in the client buffer. The

buffer required for this state is shown by the equation 3.10.

39

Figure 3.9 Buffer requirement analysis for Case (i).

b = 2(t − t1)M t∈ [t1, 2t1 − t0] (3.7)

b = 2(2t1 − t0 − t1)M + (t − 2t1 + t0)M t∈ (2t1 − t0, t0 +W]

 = (2t1 − 2t0 + t − 2t1 + t0)M = (t − t0)M (3.8)

b = 2(t1 − t0)M + (t0 +W − 2t1 + t0)M t∈ (t0 +W ¸ t0 + 3W]

 = (2t1 − 2t0 + W − 2t1 + 2t0)M = 3WM /2 (3.9)

b = (t1 − t0)M t∈ (t0 + 3W, L] (3.10)

Figure 3.10 Buffer requirement analysis for Case (ii).

Considering Case (ii), if a session starts at time t0 and a new client requests the same

movie at time t1 and t1 − t0 >W/2. In this case downloading and storing both patch

stream and regular streams will be continued up to 2t1 − t0 from time t1 where (2t1 −

t0)>(t0+W). Any client can be selected as patching parent with in t0 +2W time interval

t0+3W/2t0+W/2 t1 t0+Wt0 t0+2W

2t1-t0

Regular stream

Patching stream

t1+W/2
t1+W

t1+3W/2

t0+2W/3t0+W/2t1 t0+W
t0

t0+2W

2t1-t0

Regular stream

Patching stream

Missing Portion

Missing Portion

40

and after that the initial chunk can be freed one by one to make free space for regular

stream.

There may be five states of a client buffer at different intervals at described in Figure

3.10. This can be discussed as follows:

 A client joined with in the time duration (t0+
2

W , t0+W) will store the initial

part after t0+
2

W . So in the time interval (t1, t1+
2

W) only the storing of regular

stream will take place. At the end of this interval the buffer will be at best
2

WM .

This is shown in Equation 3.11.

 After the time t1+
2

W both initial part and the regular stream will be stored in

the client buffer and continued till 2 t1− t0. The combined situation is discussed

in the equation 3.12. The maximum buffer size can be
2

3W M.

 The missing portion will be made up at time 2t1 − t0 and only the patching

stream continues till t1+
2

3W . The maximum buffer required for this interval is

2WM. This is shown in Equation 3.13.

 A client may be selected as a patching parent up to time t0 +2W. So, initial

data needs to be in the buffer is up to this time. If a client is selected as a

patch parent at t0+2W it will take t0+3W time to finish the patch stream. This is

shown in Equation 3.14 and the data status can be of maximum size the 2WM.

 After Time t0 + 3W patching by the client is ended up if it is selected as

patching parent. So, only the data equivalent to the initial missing time will

remain in its buffer during the rest of the time. This is shown in Equation 3.15.

b=(t− t1)M t∈ [t1, t1+W/2] (3.11)

b=(t1+W/2−t1)M+2(t−t1−W/2)M t∈ [t1+W/2, 2t1− t0] (3.12)

= 3WM/2

b=(t1+W/2−t1)M+2(2t1− t0− t1 −W/2)M

+(t− 2t1+ t0)M t∈ [2t1− t0, t1+3W/2] ` (3.13)

= WM/2+2(t1− t0−W/2)+(t1+3W/2−2 t1+ t0)M

41

= WM/2+ WM+(3W/2-(t1- t0))M

= WM/2+ WM +WM/2

= 2WM

b=(2t1− t0− t1)M+(t1+3W/2−t1 − W/2) M t∈ [t1+3W/2, t1+3W] (3.14)

=(t1−t0)M+WM

=2WM

b=(2t1− t0−t1)M t∈ (t0 + 3W¸,L) (3.15)

 =WM

Figure 3.11 Buffer requirement analysis for Case (iii).

Considering Case (iii), if a session starts at time t0 and a new client requests the same

movie at time t1 and t1−t0>W.

There may be different states of a client buffer at different intervals as described in

Figure 3.11. This can be discussed as follows:

 A client joined with in the time (t0+W, t0+2W/3) will store the initial part after

t0+W. So in the time interval (t1, t1+W) only the storing of regular stream will

take place. At the end of this interval the buffer will be at best WM. This is

shown in Equation 3.16.

 At the time interval [t1+W, 2t1−t0] both initial stream and regular stream are

stored. Here we can see that t1+W > t0+2W and our system allows a new client

to join only with in t0+2W time. But a client joined with in t0+2W can request

for second parent till t0+3W. So the client will store the initial part from t1+W

t0+3W/2t0+W/2
t1t0+Wt0 t0+2W

2t1-t0

Regular stream

Patching stream

t1+W

t0+3W

Missing Portion

42

to t1+2W. The situation can be expressed by Equation 3.17. The maximum

buffer size can be 2WM.

 The missing portion will be made up at time 2t1 − t0 and only the patching

stream continues till t1+2W. Here 2t1−t0 >2W and a new client are allowed to

join an ongoing session till t0 +2W time. But a client admitted at t0+2W needs

W time for the first patch. So any client can be selected as patch parent till

t0+3W for the second patch stream. This is shown in Equation 3.18. In this

interval the maximum buffer size can be 2WM.

 A client selected as a patching parent at time t0 +3W needs to complete the

patch stream till t0+4W. Then the initial chunk can be freed for regular stream.

This situation is shown in Equation 3.19 and the data status can be of

maximum size the 2WM.

 For the remaining time interval only the regular stream will be remained at the

client buffer which is of 2WM length and described by the equation 3.20. So

the upper bound of the client buffer requirement is 2WM in our scheme where

the effective window size is 2W.

 If a client comes after the time t0 +3W/2 time it will only store the missing

portion and no other buffering is required. The situation can be expressed as in

Equation 3.21. Where the maximum buffer requirement can be 2WM.

b=(t−t1)M t∈ [t1, t1+W] (3.16)

b=(t1+W− t1)M+2(t−t1−W) t∈ [t1+W, 2t1−t0] (3.17)

=(t1+W− t1)M+2(2t1−t0−t1−W)

=2WM

b=(2 t1−t0 − t1)M+(t−t1−W)M t∈ [2t1−t0, t0+3W] (3.18)

=(t1−t0)M+(t0+3W −t1−W)M=2WM

b=(2t1−t0−t1)M+ (t0+3W –t1−W)M t∈ [t0+3W, t0+4W] (3.19)

 =2WM

b=(2t1−t0 −t1)M t∈ [t0+4W, L] (3.20)

 =(3W/2)M

b=(2t1−t0 −t1)M t∈ [t1, L] (3.21)

=2WM

43

3.8 Comparison of Patching Effort

In this research we define a new parameter called patching effort to justify the

performance of our system with respect to the Client Assisted Patching. The Patching

effort is defined as the duration of patching multiplied by the average buffer

requirements during this interval. This parameter expresses the measure of the effort

that a client needs to provide as a patch parent during a single multicast session.

First we have determined the time at which a client can act as a patch parent and we

measure the minimum buffer required at this time. Then we measure time duration

how long a client needs to store the initial portion of the movie to provide as patch

and also calculated the maximum buffer required during this interval. Then we get the

average buffer requirements from the minimum buffer and maximum buffer. Finally

we have calculated the patching effort by multiplying the average buffer requirement

with the duration and find the total patching effort. The summary of the measurement

of client efforts in different case are given in Table 3.2.

Table 3.2: Calculation of patching effort for both CAP and DCAP.

DCAP (Window size 2W)

Case Min
buffer
Require
ment

Max
buffer
Require
ment

Average
buffer

Start as
patch
parent

Relinquish
the initial
buffer at

duration Client
efforts

Case (i) 0 3 W /2 3 W /4 t0 t0+3 W 3 W 9 W 2/4

Case (ii) W/2 2W 5W/4 t0+ W t0+7 W /2 5 W /2 25 W 2/8

Case (iii) W 2 W 3 W /2 t0+2 W t0+4 W 2 W 6 W 2/2

Total client effort= 8.375 W 2

CAP (Window size 2W)

Case (i) 0 2 W W t0 t0+4 W 4 W 4 W 2

Case (i) 0 2 W W t0+ W /2 t0+4 W 7 W /2 7 W 2/2

Case (i) 0 2 W W t0+ W t0+4 W 3 W 3 W 2

Case (i) 0 2 W W t0+3 W /2 t0+4 W 5 W /2 5 W 2/2

Total client effort= 13 W 2

44

In this analysis we have considered the patch window of same size for both the

system to compare the effort. Here we have considered three different cases for

Distributed Client Assisted patching and four different cases for Client Assisted

Patching. Because in our system the user coming after the time t0+3W/2 need not to

store any part of the movie and need not act as a patch parent. But in the case of

Client Assisted Patching any client coming within the patch window stores some part

of the movie and need to store till double of the window size. Because a client

selected at the end of the patch window needs another patch window time to complete

the total stream.

From the above analysis we can see that our system requires less patching effort than

that of Client Assisted Patching when both of the system has the same window size.

That means in our system a client has to give less effort as a patching parent to

provide the same patch stream.

45

Chapter 4

Performance Study

We have described the architecture and algorithm of the admission controller along

with its complexity analysis in the previous chapter. In this chapter we describe the

simulation results of Distributed Client Assisted Patching in an enterprise network.

We study the behaviour of our approach and evaluate its performance based on the

simulation results. We also compare the simulation results of the proposed scheme

with Client Assisted Patching [4].

4.1 Simulation Technique

We simulate Distributed Client Assisted Patching using Parsec [29], a C-based

parallel discrete event simulation language developed in UCLA Parallel Computing

Laboratory. The main objective of the simulation is to understand the impact of

various parameters on the performance issues of the proposed system. We also

simulate Client Assisted Patching to make a comparison between our approach and

Client Assisted Patching on various metrics. In Parsec, we have two kinds of objects:

entity – a processing node that performs certain operations and message –

information passed from one entity to another to coordinate functions among the

entities. For details of the simulation entities and messages the interested readers are

referred to [4]. In the following sub sections we describe the various settings of our

simulation. Table 4.1 presents the entire simulation settings. Similar parameter

settings are considered in simulating Client Assisted Patching scheme.

Table 4.1: Simulation Setting.

Parameter Value

General Settings

Number of nodes 20

Number of links 32

Number of clients 500 – 1200

Number of servers 4 – 10

46

Number of replica 1 – 3

Event Reporting

Reporting type Discrete Event-driven

Packet type Request, Response, Query

Request generation process of a

client

Poisson process

Inter-arrival of events Exponential (mean 1000 STU*)

Event generator client selection Uniform random

Event Timings

Batch interval 60 – 300 STU

Threshold for VCR request Integer multiple of batch interval

120 STU

Patching window 300 – 720 STU

Duration of a movie 3600 STU

Simulation time 86400 STU

*STU means Simulation Time Unit which is equivalent to almost 4.5 µSecond.

4.1.1 Simulation Parameters

We run our simulation for an enterprise network as a connected graph of switch nodes.

Number of clients is varied in the rage of 500–1200. The clients are randomly

distributed to different nodes. Thus, the clients are evenly distributed to different

nodes.

While getting some particular simulation results a specific parameter is varied

keeping other parameters constant. These usual parameter settings (which are kept as

contant) are shown in Table 4.2. Client requests are generated in our simulation

according to a Poisson process. We vary the request rate in a range from 0.2

request/second to 2 request/second.

Table 4.2: Usual Simulation Setting.

Parameter Value

General Settings

Number of clients 500

Number of servers 5

Number of replica 1

47

Event Reporting

Request rate of a client 1 request/second

Event Timings

Batch interval 120 STU

Threshold for VCR request batch interval

Patching window 600 STU

Here 0.2 requests/second indicates a lightly loaded system and 2 requests/second

indicates a heavily loaded system.

4.1.2 Simulation Assumptions:

The necessary assumptions for the simulation are listed as follows:

 We considered two different types of requests in the simulation. Firstly the

regular requests for movies or videos. Secondly the VCR requests made by the

clients of the system.

 The regular movie requests are either batched for the next regular multicast

session or it is patched in the current multicast session.

 It is assumed that the VCR requests are generated after a random time which is

sometime larger than the patch time of a client when there is a patch request.

This is because we consider our scheme as a less interactive system. The

number of VCR requests is less than 5% of the regular movie requests.

 Only pause, fast forward and rewind are considered as VCR actions in

simulation. The requests are directly served from the multimedia server. No

batching or patching scheme is applied for these types of requests.

 We consider the probability of issuing VCR actions during a play out is higher

at the later part of a movie than the earlier part of the movie. A similar

probability distribution is also considered for the event of leaving a session

during a play out.

 Service interruption due to leaving of a patching parent is not considered in

this simulation.

 We consider MPEG-2 streaming which requires network bandwidth in the

range of 3–10 Mbps. However, we consider 5 Mbps for MPEG-2 in our

simulation.

 We have considered a fixed play back rate in our system.

48

4.2 Some Probability Distribution Used in the System

We have already mentioned that we have considered the request generation

process of a client in our system as a Poisson process. We have also considered

that the videos are requested with frequencies following a Zipf-like distribution. In

this section we discuss some of the distributions.

Poisson process:

A Poisson process is a stochastic process in which events occur continuously and

independently of one another.

The Poisson process is a collection {N(t) : t ≥ 0} of random variables, where N(t)

is the number of events that have occurred up to time t (starting from time 0). The

number of events between time a and time b is given as N(b) − N(a) and has a

Poisson distribution.

Poisson distribution:

Poisson distribution is a discrete probability distribution that expresses the

probability of a given number of events occurring in a fixed interval of time

and/or space if these events occur with a known average rate and independently of

the time since the last event.

If the expected number of occurrences in this interval is λ, then the probability that

there are exactly k occurrences (k being a non-negative integer, k = 0, 1, 2, ...) is

defined as

!
);(

k

e
kf

k

Zipf-Law :

Zipf-Law states that the probability of occurrence of words or other items starts

high and tapers off. Thus, a few occur very often while many others occur rarely.

We have used Zipf-like distribution to select the movie with a skew factor z.

The probability that a video i is selected is

N

j z

z

j
i

1

1
1

Higher value of skew factor means that there are few popular movies.

49

4.3 Performance Analysis of Distributed Client-Assisted Patching

In this section we discuss the simulation results obtained for Distributed Client-

Assisted Patching. We discuss the performance analysis of the proposed system by

varying different simulation parameters. The parameters we consider are the number

of servers, the number of replica for each content, the patching window size and the

total number of clients in the system.

4.3.1 Number of Servers

We have considered that the movies are distributed randomly in multiple servers in an

enterprise network. The number of servers in the network has a positive impact on the

performance of the system. If the number of servers is increased the movies are

further dispersed. This definitely increases the percentage of served requests of the

system. Figure 4.1 shows the percentage of served requests for different request rates.

For low request rate the system accepts almost all the requests and the system remains

underutilized. We find the effectiveness of using more servers for higher request rates

where the system is totally congested with lower acceptance rate by the Admission

Controller and hence resulting lower percentage of served requests. But the

percentage of served is not doubled when the number of server is doubled. Increase of

number of servers causes the increase of server source but the link bandwidths

connecting the servers and users are not proportionally increased. This is the main

reason behind this observed behaviour of the percentage of served request with the

increase in number of servers in the system.

Figure 4.1: Percentage of served requests for different request rates in Distributed Client Assisted

Patching with different number of servers. (The numbers in the legend indicate the number of server.)

 Effect of number of Server in DCAP

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate (Request/sec)

%
 S

er
ve

d

Server-2

Server-3

Server-4

Server-5

Server-7

50

4.3.2 Number of Replica

We consider that the popular movies are replicated to different servers in our system.

The popular movies are those which experience most of the requests. These are also

called as first round movies [31]. Replication of popular movies is considered only to

satisfy the high demand of such movies. Here replication means to make copies of the

same movie in more than one server. No replica means a movie is stored in a single

server. Number of replica is always less than the number of server.

We have changed the number of replication to observe the performance of the scheme

without changing other parameters. Increasing the number of replica of popular

movies thereby increases the number of alternative sources of popular movies. Thus,

the system will be able to admit more requests of popular movies and this in turn

increases the percentage of served requests of the system. Figure 4.2 shows the effect

of replication of movies with the increase in request rates. We observe almost the

same behaviour as reported for the curve for different number of servers shown in

Figure 4.1. The percentage of served requests increases significantly if replication is

used for higher request rates. But the effect of replication on the percentage of served

requests is not as significant as that of using more servers. Replication only makes

more alternative source but other resources are still limited. It ensures better

utilization of the server and link resources but does not increase the resources.

Figure 4.2: Percentage of served requests in Distributed Client Assisted Patching with different request

rates and replication.

4.3.3 Patching Window

This section describes the effect of patching window in the proposed system. As the

patching window size increases, more and more client requests are likely to be

 Effect of Replica in DCAP

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate (Request/sec)

%
 S

er
ve

d

Replica-0

Replica-1

Replica-2

Replica-3

Replica-4

51

patched. The patch clients share a single movie stream among themselves to utilize

the server resources. Thus patching will be more effective at increased window size

and thereby increasing the percentage of served requests of the system. This is

observed in Figure 4.3.

Figure 4.3: Percentage of served requests for different request rates in Distributed Client Assisted

Patching with different patching window size. (The number in the legend indicates length of the

patching window.)

4.3.4 Average waiting time

Figure 4.4 shows the average waiting time of a client with varying server bandwidth.

Here we can see that the waiting time is almost same for different request rate for a

fixed server bandwidth. A particular multicast movie stream can serve unlimited

number of users if the underlying network has the required capability. Thus more

requests in the system will not consume more server bandwidth. That is why the

request rate (i.e. the number of users) has very insignificant effect on the waiting time

for a particular server bandwidth.

Figure 4.4: Average waiting time with different server bandwidth. (The number in the legend indicates

server bandwidth.)

Effect of Patching Window in DCAP

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate (Request/sec)

%
 S

er
ve

d

PW-60-STU

PW-120-STU

PW-300-STU

PW-600-STU

PW-900-STU

Comparing Average waiting t ime
(user=1200)

0

20

40

60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate (Request/sec)

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
ec

)

DCAP-10

DCAP-20

DCAP-30

DCAP-50

DCAP-100

52

From Figure 4.4 we observe that the waiting time is higher when the available server

bandwidth is low. Because increasing the server bandwidth will allow the system to

run more patching and more multicast stream as well. Thus the users need not wait for

subsequent batches for a particular request and hence reduce the average waiting time.

But when the request rate is very low (request rate=0.2) with a high available server

bandwidth (BW=100) all the requests seem to be different requests for different

movies, so the requests must wait until the new batch starts. Eventually the patching is

not effective here. But if the request rate is little bit increased to 0.4 the patching will

be in effect thereby decreasing the average waiting time. For higher request rate with

this server bandwidth the contribution of congestion occurs rejection of requests

resulting the increase of average waiting time. Such behaviour is also observed for

higher server bandwidth. Or low bandwidth the rejection for congestion occurs even

for low request rate. Thus we do not observe the high average waiting time for low

server bandwidth with low request rate.

4.4 Comparison with Client Assisted Patching

In this section, we compare various results of Distributed Client Assisted Patching

with the results obtained for Client Assisted Patching scheme. We observe and

compare several performance metrics such as bandwidth requirement of servers, the

percentage of served requests of the system, the percentage of patched requests of the

system and time requirement from the simulation results obtained by varying different

parameters. The parameter settings for the simulations are given in Table 4.3.

Table 4.3: Simulation Setting.

Parameter Value

General Settings

Server Bandwidth 20-100

Link Bandwidth 500-700

Number of clients 500 – 1200

4.4.1 Percentage of Served Requests

In this section we compare the percentage of served requests of the proposed scheme

and that of the Client Assisted Patching scheme.

53

Figure 4.5 Percentage of served requests for different request rates and different server bandwidth.

(The number in the legend indicates server bandwidth and the abbreviation DCAP means Distributed

Client Assisted Patching and CAP means Client Assisted Patching schemes.)

Figure 4.5 compares the percentage of served requests of Client Assisted Patching and

distributed Client Assisted Patching with different server bandwidth. We observe that

distributed scheme outperforms the previously proposed Client Assisted Patching

scheme as the distributed Client Assisted Patching scheme provides the scope of more

patching streams. From the figure we observe that for the server with higher

bandwidth and low request rate both the systems get enough bandwidth for regular

multicast and patching as there will be less number of users in the system. So

percentage served is almost 100% and we get similar performance for both the

schemes. But when the server bandwidth is very low with high request rate both the

system will perform worse as there will be contention for resources. This results

almost the same percentage of served requests in both the systems. Though the

distributed Client Assisted Patching allows more patches, this is also limited and

insignificant for a specific multicast session.

4.4.2 Percentage of Patched Requests

The number of requests patched is a very important factor in both Client Assisted

Patching and our proposed scheme. If a user is patched from the cooperative clients

the server bandwidth can be saved. The patching window is doubled in distributed

Client Assisted Patching scheme compared to Client Assisted Patching scheme. So it

can satisfy a larger user group by providing patches to the clients using only the link

Comparing %served

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate(Request/sec)

%
 S

er
ve

d

DCAP-40

DCAP-100

DCAP-20

CAP -40

CAP -100

CAP -20

54

bandwidths. Server bandwidth is only used to initiate the regular multicast and it is

possible to save server bandwidth further by delaying the regular multicast.

Figure 4.6(a) Showing percentage of patched requests for different request rates with medium server

bandwidth and different number of clients. (The number in the legend represents the number of users.)

Figure 4.6(b) Showing percentage of patched requests for different request rates with higher server

bandwidth and different number of clients. (The number in the legend represents the number of users.)

It is observed from Figure 4.6(a) that percentage of patching degrades with the

increase in request rate. For a system with low server bandwidth there will be less

number of multicast movie streams and the large number of clients will be competing

for patching. This will create contention in link bandwidth and the clients will be

rejected for patching when there are not enough resources in links.

Comparing %patched
(SBW=50)

30

35

40

45

50

55

60

65

70

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

%
Pa

tc
h

ed

CAP-500

CAP-1000

DCAP-500

DCAP-1000

Comparing %patched
(SBW=100)

30

40

50

60

70

80

90

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

%
P

at
ch

ed

CAP-1000

DCAP-1000

CAP-500

DCAP-500

55

We do not observe this degrading behaviour of the percentage of patched clients in

Figure 4.6(b) as there are sufficient resources for multicast movie stream and the

patched clients will be better served because of low contention. Here we observe that

when both the systems have enough server bandwidth the distributed Client Assisted

Patching performs 30% better (on average) than the client assisted patching. This is

because our system provides a larger patching window. But when the available server

bandwidth is lower as shown in the Figure 4.6(a) the performance of the Client

Assisted Patching further degrades where as our system shows almost the same

performance as before. It is because our system requires less server bandwidth and the

number of patch request depends only on the available link bandwidth.

4.4.3 Average waiting time

Figure 4.7 shows the average waiting time of a client with respect to different request

rate. We have collected the simulation result with varying different parameters like

server bandwidth and number of users. In general we can say that the higher the

request rate the more will be the waiting time. This is because when the request rate is

higher there may be shortage of resources. So some clients may need to wait for the

necessary resources.

Figure 4.7(a): The average waiting time for a client with different request rate. (The number in the

legend represents the number of users.)

Comparing Average waiting time
(SBW=100)

10

15

20

25

30

35

40

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

A
ve

ra
g

e
w

ai
tin

g
tim

e

DCAP-1200

CAP-1200

DCAP-500

CAP-500

56

Figure 4.7(b): The average waiting time for a client with different request rate. (The number in the

legend represents the number of users.)

When comparing with Client Assisted Patching we observe that our system

outperforms with less waiting time as shown in Figure 4.7(a) and 4.7(b). Actually the

lack of server bandwidth may not allow frequent batching for a multicast movie

stream and clients need to wait for a long time to get available resources. This waiting

time for batching plays a significant role in average waiting time. The Distributed

Client Assisted Patching overcomes this problem by allowing the broader scope of

patching and hence reduces the average waiting time which is observed in the figures.

The observed profile of Client Assisted Patching are almost the same as shown in Fig

4.7(a) and 4.7(b). The explanation of this profile is already presented in Section 4.3.4.

4.4.4 Bandwidth Requirement of Server

In multicast VoD system only a single server stream is provided to a group of clients

for a regular multicast and patching stream is also provided from the server. But in the

proposed system patching stream is provided by the clients and the server only needs

to transmit the regular stream. In both Client Assisted Patching scheme and our

proposed scheme patching is done by the cooperative clients. But as our system

supports a patch window double of the window supported by Client Assisted Patching

more clients can be supported by a single multicast session. Also the less bandwidth

requirement allows the server to delay batching and incorporate more multicast

session.

Comparing Average waiting time
(SBW=30)

25

30

35

40

45

50

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

A
v

er
ag

e
w

ai
tin

g
ti

m
e

DCAP-500

CAP-500

DCAP-1200

CAP-1200

57

The following figure compares the bandwidth requirement of the client assisted

scheme and distributed client assisted system and also justifies information on favour

of the fact we have discussed earlier. Here required server bandwidth is measured by

summing up the total bandwidth used in the system during the simulation time.

Figure 4.8(a) Server Bandwidth Requirements for different request rates of Client-Assisted and

Distributed Client Assisted Patching schemes. (The number in the legend represents the number of

users.)

From the figure 4.8(a) we can see that our scheme needs about 45% less bandwidth

than that of Client Assisted Patching.

Figure 4.8(b) Server Bandwidth Requirements for different request rates of Client-Assisted, Distributed

Client Assisted and Conventional Patching schemes (CP means Conventional Patching.).

Figure 4.8(b) shows the comparison between Client Assisted Patching, Distributed

Client Assisted Patching and Conventional Patching scheme. Here we can see that

Conventional Patching scheme requires huge bandwidth with compare to other two

Comparing Server Bandwidth

500

600

700

800

900

1000

1100

1200

1300

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request Rate (Request/sec)

Se
rv

er
 B

an
dw

id
th

 (S
tr

ea
m

s)

CAP-500

DCAP-500

Comparing Server Bandwidth

500

1500

2500

3500

4500

5500

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate(Request/sec)

Se
rv

er
 B

an
dw

id
th

 (S
tr

ea
m

s)

CAP

CP

DCAP

58

schemes because in conventional patching all patch streams are provided from the

server.

4.4.5 Execution Time Comparison

We have already discussed the time complexity of our system in Chapter 3. We have

shown that the Admission Control procedure of the proposed system needs O(sE log

V + m2 + ncE log V + 2nc
2 E) computation where s is the number of servers, V is the

number of switch nodes, E is the number of connecting links i.e. edges, m is the

number of movies and nc is the number of clients presently enjoying movies in the

system.

For the same simulation parameters and environment the complexity of Client

Assisted Patching is O(sE log V + m2 + ncE log V + n2c E) . This means that, Client

Assisted Patching requires less time for execution. This is because in Client Assisted

Patching scheme only single patching parent is required to serve the patch stream and

as all clients store the same part of the initial portion only a free patch parent finding

is enough. But in our system different groups of clients stores different part of the

initial portion. So when selecting patching parent for a client we have to find a parent

not serving any user which has the required portion of the patching stream. As all

clients do not store the same portion of the initial part it may require long time to find

a patch parent. Again when two patch parents are required, we have to perform the

search twice. Thus, the proposed system needs more computation to find a patch

parent than Client Assisted Patching. This is observed in our simulation results as

shown in Figure 4.9. The quadratic pattern of time requirement curve justifies the

complexity analysis expression.

Figure 4.9 Computation time of conventional and Client Assisted Patching schemes with varying

number of clients in the system.

Comparing Execution T ime

0
0.5

1
1.5

2
2.5

3
3.5

200 300 400 500 600 800 900 1000 1100 1200

No of users

T
im

e(
se

c)

CAP

DCAP

59

4.5 Trade off between Server Bandwidth and Execution Time

From the analysis of server bandwidth requirements described in the Figure 4.8 we

can see that our system requires less server bandwidth compared to Client Assisted

Patching. But on the other hand the Figure 4.10 shows that our system requires more

execution time than that of the Client Assisted Patching. So there may arise some

question about how we can make the trade off between the server bandwidth and the

execution time. In that case we must say that server bandwidth is the key parameter

for any VoD system. And the cost for the server bandwidth is a recurring one. So if

we can save the server bandwidth we will require less recurring cost. But when the

question is about the performance or execution time we can say that only a few

second extra waiting is required in our system which can be negligible. Or even if we

are concern about the speed it is possible to set up a high speed system which will

cost only for once. So we can say that it is better to save the server bandwidth even if

it incurs some extra execution time.

4.6 Comparison with CAP with the Doubled Window size

In this section we compare our system with the Client Assisted Patching when the

window size is the same in both of the scheme. To make the window size same we

just doubled the patching window of CAP so that it equals to the effective window

size of DCAP and tried to compare the performance of the two schemes.

Figure 4.10: Comparing the average waiting time when both CAP and DCAP has a patch window of

1200 STU.

Comparing Average Waiting Time

0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

A
ve

ag
e

w
ai

ti
ng

 ti
m

e(
se

c)

CAP

DCAP

60

Figure 4.11: Comparing the percentage of patched requests when both CAP and DCAP has a patch

window of 1200 STU.

Figure 4.12: Comparing the server bandwidth requirement when both CAP and DCAP has a patch

window of 1200 STU.

Figure 4.13: Comparing the execution time when both CAP and DCAP has a patch window of 1200

STU.

Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate

T
im

e
(s

ec
)

CAP

DCAP

Comparing Server Bandwidth

0

500

1000

1500

2000

2500

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request Rate (Request/sec)

Se
rv

er
 B

an
dw

id
th

 (S
tr

ea
m

s)

CAP

DCAP

Comparing % of Patched request

0

5
10

15

20

25
30

35

40

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request rate(Request/sec)

%
 P

at
ch

ed

CAP

DCAP

61

Figure 4.10 to Figure 4.12 compares the average waiting time, percentage of the

patched request and server bandwidth requirement respectively of the two schemes

when the patch window is same.

Figure 4.13 compares the execution time of the both scheme when they have same

patching window. From the Figure 4.13 we see that our system requires extra time to

execute with respect to CAP when the patch window size is same. So from the above

observations we can say that both the system has a similar performance when they

have a patch window of same size. But in the previous chapter we have observed that

our system requires a less client effort to serve this performance. So we can say that

our system has a similar performance with a less client effort.

4.7 Observations from the Simulation Results

From the simulation result we have discussed in the previous subsections we get the

following observations that Distributed Client Assisted Patching outperforms Client

Assisted Patching:

 It significantly alleviates the server load.

 It is more scalable.

 Our system is cheaper to operate.

 It reduces the service latency introduced by batching technique.

 The scheme supports larger multicast group.

62

Chapter 5

Conclusion

In this concluding chapter, we have summarized the major contributions made by our

research work and also focused on some directions for future research over the issue.

5.1 Major Contributions

Since streaming of any multimedia object like high quality video consumes a

significantly large amount of network resources, network bandwidth limitation is the

major constraint in most of the multimedia systems. Multicast Video-on-Demand

(MVoD) systems with Patching are scalable and cheap-to-operate. Under Standard

Patching, requests arriving within a patching window are able to share the same

multicast using a patching stream. As time elapses, these patching streams need to

“patch” more data, and therefore incur a higher communication cost. To optimize

system performance, Over the past few years extensive research has been done on

MVoD. Even though the significant progress has been made, it is still regarded as

challenging research domain in VoD service. Our thesis work contributes to this

challenging area.

The contributions that have been made in this thesis can be described as follows:

 In this thesis, we have proposed a new patching technique called Distributed

Client Assisted Patching where the initial part of the movie is distributed

among groups of client for patching.

 In this system a client can get a larger amount of patch stream combinedly

from two different patch parents. Thus our system provides larger patch

window.

 As the system is providing a larger patching window a larger multicast group

can be supported in a single multicast session. Hence it increases resource

sharing and saving server bandwidth.

63

 In our research we have derived some probabilistic mathematical model to

analyse the server bandwidth requirements as well as link bandwidth

requirement.

 Distributed Client Assisted Patching and conventional Client Assisted

Patching require the same size buffer. But the effective patch window is

higher.

 We not only present the multicast video-on-demand system, but also simulate

the system using Parsec to make closer observations into the VoD system. We

make a rigorous simulation based study of various performance issues of the

proposed approach and analyze the simulation output against the expected

behaviour.

 We also do simulation of our counter scheme, Client-Assisted Patching, to

compare our approach with it. Simulation reveals that Distributed Client

Assisted Patching outperforms Client Assisted Patching with a very sharp

margin in various important aspects like bandwidth requirement of servers.

5.2 Future Directions of Further Research

Based on our current design and the results of simulations presented in this thesis, we

can look into the extension of our works in future in the following directions:

1. We have considered only three groups of clients who will store the initial part.

This distribution can be further studied with the analysis of the optimal

strategy.

2. In this research we used a specific distribution policy to store the initial part.

Different distribution policy can be applied to find the impact.

3. We designed the admission controller in a small scale, for an Enterprise

Network, a network with limited number of nodes and edges. Further study is

necessary to extend the architecture for Internet or interconnected multiple

Enterprise Networks.

4. Our admission controller acts as a central moderator in the VoD system. Like

any centralized system, our system is also prone to the problem of single point

of failure. A distributed system can be established where multiple admission

controllers will try to optimize their respective revenues from users’ requests

which requires data transmission among different networks.

64

5. The system rejects some clients’ requests due to resource shortages. Rejected

clients simply leave the system. But users sometimes prefer to make future

reservations. Thus the admission controller and different protocols need to be

redesigned.

6. Further study is required in efficient management of VCR action for

significantly reducing interactive action blocking rate where patching is in

effect. In this research we have totally ignored patching during VCR actions.

65

Bibliography

[1] Hua, K. A. and D. A. Tran. Range Multicast for Video on Demand. Multimedia

Tools and Applications, Volume 27, pp. 367–391, May 2005.

[2] Dan, A., Sitaram, D., Shahabuddin, P., “Scheduling Policies for an On-Demand

Video Server with Batching,” ACM Conference on Multimedia, pp. 391-398, October

1994.

[3] Cai, Y., W. Tavanapong and K. Hua, “A Double Patching Technique for Efficient

Bandwidth Sharing in Video-on-Demand Systems”, Multimedia Application and

Tools, Volume 32, Issue 1, pp.115-136, January 2007.

[4] K. A. Hua, Y. Cai and S. Sheu, “Patching: A multicast Technique for True Video-

on-Demand Services,” Sixth ACM Multimedia Conference, pp. 191-200, Bristol, UK,

September1998.

[5] Farhad, S.M., Akbar, M.M. , Kabir, M.H., “Multicast Video-on-Demand Service

in an Enterprise Network with Client-Assisted Patching”, Multimedia Tools and

Applications, Volume 43, Issue 1, pp 63 – 90, May 2009.

[6] Ma, H., Shin, K. G., “Multicast video-on-demand services,” ACM Computer

Communication Review, Volume 32, Issue 1, pp. 31-43, ACM Press, 2002.

[7] Emmanuel, L. Profeta A., Shin, K. G., “Providing unrestricted VCR capability in

multicast video-on-demand systems,”Conference on Multimedia Computing and

Systems’98, June-July 1998.

[8] Almeroth, K.C., Ammar, M.H., “The use of multicast delivery to provide a

scalable and interactive video-on-demand service,” IEEE J. Select. Areas Commune,

Volume 14, Issue 6, pp. 1110–1122, Aug. 1996.

[9] Liao W., Li V.O.K., “The split and merge protocol for interactive video-on-

demand,” IEEE Multimedia, pp. 51–62, Oct.-Dec.1997.

[10] Aggarwal, C. C., Wolf, J. L., Yu P. S., “A Permutation-Based Pyramid

Broadcasting Scheme for Video-on-Demand Systems,” IEEE Int’l Conference on

Multimedia Systems, June 1996.

[11] Hua, K. A., Sheu, S., “Skyscraper Broadcasting: A New Broadcasting Scheme

for Metropolitan Video-on-Demand Systems,” ACM SIGCOMM, September 1997.

[12] Jung, J., Lee, D., “Harmonic Broadcasting for Video-on-Demand Service,” IEEE

Transactions on Broadcasting, Volume 43, Issue 3, pp. 268-271, 1997.

66

[13] Viswanathan, S., Imielinski, T., “Metopolitan Area Video-On-Demand Service

Using Pyramid Broadcasting,” IEEE Multimedia Systems, Volume 4, pp. 197-208,

1996.

[14] Guo, M., Ammar, M. H., “Scalable Live Video Streaming to Cooperative Clients

Using Time Shifting and Video Patching,” IEEE Infocom, Hong Kong, March 2004.

[15] Guo, M., Ammar, M. H., “Cooperative Patching: A Client Based P2P

Architecture for Supporting Continuous Live Video Streaming,” IEEE International

Conference on Computers, Chicago, IL, October 2004.

[16] Carter,,S. W., Long, D. D. E., “Improving Video-on-Demand Server Efficiency

Through Stream Tapping,” Sixth International Conference on Computer

Communications and Networks, (ICCCN1997), pp. 200-207, Las Vegas, NV, USA,

September 1997.

[17] Shin, H. Ma, K. G., Wu, W., “Best-Effort Patching for Multicast True VoD

Service,” Multimedia Tools and Applications Archive, Volume 26, pp. 101-122, May

2005.

[18] Sheu, S., Hua, K. A., Tavanapong W., “Chaining a Generalized Batching

Technique for Video-on-Demand Systems,” IEEE ICMCS’97, pp. 110-117, Ottawa,

1997.

[19] Ma, H., Shin, K. G., “Multicast Video-on-Demand Services”, ACM Computer

Communication Review, Volume 32, Issu 1, pp. 31-43, 2002.

[20] Cai, Y., Hua, K. A. , Vu, K., “Optimizing Patching Performance,” Multimedia

Computing and Networking, MMCN’99, January 1999.

[21] Cai Y., Hua, K. A., “An Efficicent Bandwidth-Sharing Technique for True Video

on Demand Systems,” ACM Multimedia’99, pp. 211-214, Orlando, November 1999.

[22] Ha, S.J., Bae I.H., Kim J.G., Park Y.H. and Oh S.J., “An Expanded Patching

Technique using Four Types of Streams for True VoD Services”, KSII Transactions

On Internet And Information Systems, Volume 3, Issue 5, pp 444-460 October 2009.

[23] Dakshayini1, M., Nair2, Dr T R G. K., “Client-To-Client Streaming Scheme For

Vod Applications,” The International Journal of Multimedia & Its Applications

(IJMA), Volume 2, Issue 2, May 2010.

[24] Guo, Y., Suh, K., · Kurose, J., Towsley, D., “An enhanced client-centric

approach for efficient video broadcast,”, Multimedia Tools and Applications,Volume

33, pp. 109–129, 2007.

67

[25] Chen, J. M., Leu, J. S., Chen, Y. C., Wei, H. W., Shih, W. K., “MegaDrop: A

Cooperative Video-on-Demand System in a Peer-to-Peer Environment”, Journal Of

Information Science And Engineering, Volume 27, pp. 1345-1361, 2011.

[26] Wang, Y., Zhang, Y., Hu L., Huang, X., “A New Zero-Delay Video-on-Demand

Scheme”, Journal of Information & Computational Science , Volume 7, Issue 10 pp.

2122–2129, 2010, Available at http://www.joics.com.

[27] Kim, H., Yeom, H. Y. ,“P-chaining: a practical VoD service scheme

autonomically handling interactive operations”, Multimedia Tools and Applications,

Volume 39, pp. 117–142, 2008.

[28] Kwon, J. B., “Proxy-assisted scalable periodic broadcasting of videos for

heterogeneous clients”, Multimedia Tools and Applications, Volume 51, pp.1105–

1125, 2011.

[29] Bagrodia, R., Meyerr, R., “PARSEC: A Parallel Simulation Environment for

Complex System,” UCLA Technical Report, 1997.

[30] Bajaj, L., Takai, M., Ahuaja, R., Tang, K., Bagrodia, R., Gerla, M., “Glomosim:

A Scalable Network Simulation Environment,” Technical Report 990027, UCLA

Computer Science Department, May 1999.

[31] Islam, M. M., M. M. Akbar, Hossain, H., Manning, E.G., “Admission Control of

Multimedia Sessions to a Set of Multimedia Servers Connected by an Enterprise

Network Communications,” Computers and Signal Processing (PACRIM2005), IEEE

Pacific Rim Conference, pp. 157-160, August 2005.

	inner
	main

