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Abstract

Full band simulation studies are performed for Silicon nanowires using sp®d®s* or-
bital basis tight-binding approach. The electronic properties of Silicon nanowires
have been studied for different growth directions, shape and size of the cross-
section. Then the -V response are calculated for an n-channel Silicon nanowire
transistor of wire cross section 0.82 ninx0.82 nm and 1.2 nmx1.2 nm using the
same basis. The smaller device has the tunneling and thermal components of
current in both off and on states. The intrinsic switching delay is in the fraction
of picosecond and the unity current gain frequency is in Tera Hertz range. The
device has an on/off current ratio of 107 and near ideal subthreshold slope. Simu-
lation is also performed using nanowire confined effective masses and is compared
against the full band calculation. The full band and effective mass I-V characteris-
tics of 1.2 nmx1.2 nm wire show very good agreement. However, relatively larger
mismatch is observed for the 0.82 nmx0.82 nm wire, especially at the lower gate
biases. This is because the current has both the thermal and tunneling compo-
nents, and the nanowire effective mass model overestimates the tunneling current.
This overestimation is relatively larger for thinner wires, The thermal component
of current is same in both the nanowire effective mass and full band models. To
facilitate simulation using nanowire effective mass model, we calculate the band
structure using sp’d®s* atomic orbital basis, extract the band gap and electron
effective masses, and fit them to analytic expression. Calculations are performed

for nanowires grown in <100> and <110> directions.
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Chapter 1

Introduction

There has been aggressive downscaling of conventional transistors in the past
few years by reducing gate length, oxide thickness and channel depth. Perfor-
mance degradation takes place due to this s-caling including short channel effects,
reduced electron mobility and weakened gate control. For future nanotechnol-
ogy, novel materials such as nanowires (NW) can be useful building blocks be-
cause of their superior characteristics. They have attracted significant attentions
[1, 2, 3, 4, 5, 6], because their electronic properties can be controlled in a pre-
dictable manner and they are compatible with the CMOS processes. Controlled
growth of Silicon nanowires (SiNWs) down to 3 nm diameter {7}, their applications
as Field Effect Transistors (FETs) [1, 2, 5, 8], logic gates (9], and sensors [10] have
been demonstrated. As the nanowires’ dimension is in the nanometer regime, ef-
fects like tunneling and quantum confinement play dominant role. To understand

device physics and to asses the performance simulation work is important.

1.1 Literature Review

Atomic orbital basis has been used to study electronic properties of SINWs at
material level [11, 12, 13, 14, 15| and also using first principle calculations.The
bulk crystal symmetry is not preserved in SiNWs due to quantum confinement

in the transverse directions, and therefore, the bulk effective mass approximation



fails for nanowires of smaller diameter [11]. The validity of bulk effective mass
approximation has been investigated at device level using ballistic top of the bar-
rier model [16] that ignores the tunneling current. For this, Wang et al. [16] have
calculated the band structure and nanowire confined masses using spd°s* tight
binding orbital basis. The Schrodinger’s equation is then solved in continuum
basis using both the bulk and nanowire masses. According to their study, the
bulk effective mass approximation overestimates the threshold voltage for wire
width < 3 nm and the on current for wire width < 5 nm. Nehari et al. [17] have
extracted the subband position and transport effective masses from tight binding
calculations. With these as the input parameters, they have solved Schrodinger’s
equation and have calculated current using mode space approach. Their study
shows that the bulk effective mass overestimates the on/off current ratio for wire
width < 3 nm, underestimates the tunneling current, and overestimates the ther-
mal current. Gnani et al. [18] have investigated the effects of nonparabolic band
structure on the electrical characteristics of Silicon Nal'Lo;.nfire Field Effect Transis-
tors (SINWFETSs) by expanding the dispersion relation in power series up to third
order.

The simulations used so far to calculate the current-voltage characteristics use
either bulk effective masses or nanowire confined effective masses. We find that
Luisier et al. [19, 20] have performed full band I-V calculations, and very recently
Boykin et al. [21] have developed an optimized renormalization method for efficient
calculation of multiband transmission. The full band current calculation is very
costly. The bulk effective mass approximation fails for nanowires of width < 5
nm. The nanowire confined effective mass model requires the atomistic calculation
of band structure and extraction of effective masses. Moreover, the accuracy of
nanowire confined effective mass model against the full band calculations should
be verified. Recently Marconcini et al. [22] have compared the nanowire effective

mass I-V with the full band calculations. Their full band I-V has been extracted
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from [19]. In this paper, we perform full' baﬁd (sp®d®s* orbital basis) simulation
study of Silicon nanowire transistors, evaluate the performance metrics, calculate
the band structure, extract the band gap and nanowire confined effective masses
and fit them to analytic expression, and compare the I-V calculated from the
nanowire effective mass model against the full band calculation. The focus is on
the n-channel transistors for <100> and <110> grown nanowires. The band
gap and the electron effective masses are found to fit the analytic expression
A1+A2/W, where A; and A are fitting parameters and W is the nanowire width in
nanometer. The current has both the tunneling and the thermal components. The
nanowire effective mass model overestimates the tunneling component of current
and this overestimation is relatively larger for thinner wires. The simulated I-
V characteristics from both the parameterized effective mass model and the full
band model closely match for wire dimension of 1.2 nm. The device has small
capacitance in the atto Farad range. The intrinsic switching delay is in the fraction

of picosecond and the intrinsic unity current gain frequency is in tera Hertz range.

1.2 Objective of the Work

The objectives of the work and possible outcomes are:

To generate the atomic positions of a Silicon nanowire grown in any arbitrary
direction.

To show band structure for the grown nanowire using sp?d°s* tight binding
orbital basis.

To find the I-V characteristics of SINWFET built from <110> oriented small

diameter nanowire.

1.3 Organization of the thesis

The second chapter describes how the nanowire was grown and the tight-binding

hamiltonian was built. We utilized Recursive Green Functions algorithm to get



charge density and calculate current from the converged potential profile. The
poisson equation was solved in 2-D cylindrical co-ordinates. The second chapter
also explains how the self-consistent loop was formed and how to calculate I-V
characteristics from both full band and effective mass model. The third chapter
discusses the results of the thesis. Then we conclude and make suggestions for

future work in the forth chapter.



Chapter 2

Methodology

2.1 Generate Atomic Positions within a Nanowire

To build the tight-binding hamiltonian we need to know the atomic positions of

individual atoms in the Silicon nanowire.

e

ar=t. 534 3nm

Figure 2.1: Unit cell of a Silicon crystal.

A mathematical modelis developed to generate the atomic positions of a nanowire

given the following parameters




o Crystallographic orientation
e Nanowire cross-section in nanometer square

o Shape of cross-section

The nanowire growth direction is symbolized as 61 wﬁich can be <100>, <110,
<111> etc. The model can generate a square nanowire. The Matlab program is
then modified to produce nanowire of different cross-sectional shapes (e.g. circu-
lar, triangular, hexagonal, pentagonal and octagonal). The electronic properties
depend heavily on crystal orientation and dimension. They also differ for different
cross-sectional shapes. To grow a nanowire of the desired shape, a square nanowire

is grown first, then the outer atoms are eliminated to form the desired shape.

Algorithm to Grow Nanowire:

The three basis vectors of FCC crystal

1 1
0
0
1
= 1 (2.2)
1
RN
g = — 0 ] (23)
2
1
Therefore co-ordinates of anions can be obtained from
Ry = nid} + nad} + nads (2.4)

While defining the crystal orientation (f"l, the other two directions C_"g and 53

are also defined such that Cy, C, and Cy are mutually orthogonal.




e Step 1- Finding R,, R, K.:

We need to find three atomic positions in the @, C, and Cs, directions such

that they are the first neighbors of the reference {0,0,0) atom in those directions.

So now define these vectors ﬁa,ﬁb,ﬁc that are corresponding to those atomic

positions
R, = (someconstant(sc))Cy
R}, = (sc)(?z

| R, = (sc)Cs

As R, Ry, R, point to atomic positions they follow Equation 2.4
Let us calculate R; -

n101() + naaz(z) + nzaz(z) = Ry(z)

ma1(y) + naaz(y) + naas(y) = Ra(y)

nia1(z) + noag(z) + ngaz(z) = R,l-(z) '.
ar(z) ao(z) az(z) {m R.(z)
a1(y) ax(y) .as(y) ny | = Haily
ai(z) aa(z) az(z) \ 73

{alfn] = (s6)[C]
alin/sd = [C3]

[/ sc] = [a] (]

(2.5)
(2.6)

(2.7)

(2-8)
(2.9)

(2.10)

(2.11)

(2.12)
(2.13)

(2.14)

Solving Equation 2.14 will give the values of ny, ng, ng divided by a common

denominator (or multiplied by a common factor). Dividing the result by the GCD
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b

of the three numbers will give ny, npandng. Similarly R, and R, are found.

eStep 2 - Generation of atomic co-ordinates in the volumed spanned by

-

the vectors R;, R'b, R

The volume spanned by }ia, ﬁb, ﬁc has eight corners. The co-ordinates of those
COrners are
co—ory = (0,0,0)
co—ory = R,
co—ors = Ry
co—ory =R,
co—or5=§a+ﬁb
€O — OTg = ﬁb+ﬁc
cofor7:ﬁc+]§'a
co—érgzﬁa+§a+ﬁa

All these co-ordinates correspond to atomic positions within the crystal and there-
fore follow Equation 2.4. Now solving Equation 2.14 with co-ordinates as the right
hand sides will give 8 different values of 11, na, n3. To get the atoms within the vol-
ume, we need to pick up the lowest and highe.st values of ny, 19, n3 and vary each
value of ny,ng, ny ‘within the limit to get an atomic position and check whether

the atom falls within the volume or not. For a particular set of n, ng, ng,

naﬁa + nb};’,}, + nc]ic = nidi + nady + nzdy = cGor (2.15)
R.(z) Ry{z) R.z) Mg coor ()
Ry(y) Ru(y) Rely) || m [ =] coor(y) (2.16)
R.(z) Rp(z) R.(z} e coor(z)

[R][n] = [coor] {2.17}

[n] = [R] [coor] {2.18)



if each of ng, ny, n. is less than one, only then the cédr corresponds to an atom
within the volume/unit cell. The co-ordinate will give the position of an anion.

To get the corresponding cation, we need to do the following operation

cation = anion + véc (2.19)
where,
1 1
vee=— [ 1 (2.20)
4 1

oStep 3 - Repeating the unit cell:

Once the unit cell is formed, it is repeated along A, and R, directions until
the desired cross-sectional area is achieved. This final set of co-ordinates is called
super cell. The nanowire is a one-dimensional device and it is assumed to be
infinite in the growth direction (R,). So the super cell is repeated along R, only
for once. It will help us to construct the bandstructure of the nanowire according
to. Finally hydrozen atoms are added at the open bonds at the wire boundaries.
The Si-Si bond length is 2.35A" and Si-H bond length is 1.49A°% The bond angle

is the same on both occasions.

——
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Figure 2.2: Cross-sections of various shapes, (a) <100> and (b) <110> NW.
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11
2.2 Building the Tight-Binding Hamiltonian

The basis of the Hamiltonian is sp3d®s* and if the system contains for example, 2
atoms the hamiltonian will be a 20 x 20 matrix, each of the element of the matrix
signifies the interaction between the orbitals. When two orbitals overlaps, the
type of bond will be 7, ¢ or/and é depending on the type of orbitals involved. If
one of the orbitals is s or s* then only ¢ bond is possible.

In order to illustrate how the individual matrix element is calculate we can
consider two examples. First, let us assume the two orbitals involved are both s
orbitals. In this case the interaction element will be just equal to V,,, which is
the coupling energy between s orbitals and called orbital parameter. Although
these parameters are tuned to produce bulk Silicon behavior we can still assume
then can work very well for nanowires having dimension >0.5nm. If one orbital is
changed to p orbital, then the expression will be < ¢|I:I ' >= {(Vipe). For ba;nd

structure calculation, the Hamiltonian is created from
H(k;) = Ho(ky) + toa €27 + trpe™ 0" (2.21)

Here k; is the one dimensional (1D) wave vector and Az is the distance between
the last layer of a unit cell and the first layer of the next unit cell. The matrix

elements of Hy(k,) are created from
Hy(i, ) =< il Hidjm > e™=lom=on), (2.22)
and those of ty; are created from

' ‘tﬂl(p: Q) =< ¢P,U|ﬁ|¢q,v > . : ' (2'23)

Here n and m label the atoms in a unit cell, and % and v label the atoms between
adjacent unit cells. The basis, ¢, is the sp®d®s* atomic orbitals and ¢, is the 5%
orbital of the m!* atom. The Hamiltonian is created under tight binding approx-

imation. The energy integral expressions', < ¢i,n|ﬁ’ |¢hjm > and < ¢p,u|lfl bgw >,

1A complete list of energy integral expressions and orbital parameters are provided in Ap-
pendix A and B
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are taken from Slater [23], and the orbital parameters are taken from Boykin [24]
and Zheng [11]. Spin-orbit coupling is not considered in this study. The band
structure is obtain by calculating the eigen energies of H(k,) defined in Equation

(2.21).

2.3 Retarded Green Function Algorithm for Charge
Calculation

Non-equilibrium Green functions with empirical and atomistic Hamiltonians have
been used over a decade with great success in quantum device simulation for both
Silicon devices. The Recursive Green Function Algorithm (RGFA) is the most
efficient algorithm known to solve the Green function equations. In the following
section, we discuss briefly the RGFA.

Recursive Green function algorithm (RGFA) [25, 26] is used to solve nonequi-
librium Green’s function equations for charge density calculation. The charge

density at each orbital of an atomic layer L is calculated from

| dE
p = (29) [ S-diag{fsAL, + fpAf ). (2.24

dE
pr = (29) _[ "é;;dmg{fsfli,g + /b [AL,L - AE,L}}- (2.25)

Here fs and fp are the source and drain Fermi functions, respectively, and Ai I
Af, 1, and Ay ;, are the left-connected, right-connected and full spectral functions,
respectively, of the L* atomic layer. Af; and Ay are full Ny X N matrices,
where N, is the number of orbital in an atomic layer, and py is an Ny, x 1
vector formed by taking the diagonal elements of the matrix on the right hand
side of Equation {2.25). The left connected spectral function, the right connected

spectral function and the full spectral function are calculated from [25, 27]
AL =G TG (2.26)

AR =G AT Gy (2.27)
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App =1 (GL,L - GE,L) ; , (2.28)
Tfy =i(3h — ) | (2.29)
I%L =i(Z2 —T}) (2.30)
the retarded Green function is defined as-
G = [EI-Hp-U-— E; — 5! (2.31)
Here lH p 15 the Hamiltonian. The self energies can be found from
¥ = tiogootor ‘ (2.32)
Lo = tn v gne N+t NN (2.33)

The algorithm of Reference [28] is used to calculate surface green function g. The
charge density obtained from Equation (2.25) at each atomic layer is interpolated
to the Poisson’s grids on that layer. Charge density is non-zero in Silicon nanowire

only.

2.4 RGFA for Current Calculation
The coherent current can be calculated from one of the following
I = %de te [Poy (Ary = GaT1aGL)| (5 = £P) o
I = 27:3 [ Bt [PuGiatunGly] (£ - 77). (2.34)

where A;; = i(GM - Ggﬂ-) is the full spectral function. Therefore, we need the
first column block and the diagonal block of retarded Green’s function for electron

density calculation and only the (1,1) or (1, N} block for transmission calculation.

EX)
-



2.5 Poisson Solver

14

The potential distribution in poisson grid points is obtained fromn Poisson’s equa-

tion in cylindrical coordinates.

Unit vectors
F = (cost)E + (sind)g + (0)2
¢ = (—sinb)z + (cosd)j + (0)2
F=(0)2 + (0)7 + (1)2

and

S
1l
E\b
™
I
—

=q5‘

3

7.

™
Il
™
=
Il
o

Fd=¢.

Derivative of unit vectors

All zero except
8 _
O
@ s
o

Gradient

a_Hng Aﬁ
V= *raqb

Poisson equation {2D)

=—p

( .
g -1 _a. . .0v oV
ar +o-—+2 —— =

(7 98 T ia)

(2.35)
(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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Figure 2.3: The device cross section used for simulation.

@V  oVoe 10V Vo &V _ (2.45)
“rr " Bror  r or @ 8208z 02 P '

[azv 13_V+_32_V]_+3_V&+Q\_/ﬁ
€ grz 7 dr  0z2% dr dr 9z 0z
gV PV 1 18V 109V _ p

rtar G T imaer T e (2.47)

=—p (2.46)

here
€ = €€y (2.48)

where € = €pé, is the dielectric constant, V is the 2D potential and p is the 3D
charge density, which is non-zero in Silicon nanowire only. The 2D Poisson’s equa-
tion has been solved before for electrostatics of a gate-all-around Silicon nanowire
transistor [29]. Poisson kernel is created by discretizing Equation (2.47) using

finite difference.

2.6 The Self Consistent Loop

The cross section of the gate-all-around device used in our simulation is shown
in Figure 2.3. The Silicon nanowire channel has a square cross section of 0.82

nm X 0.82 nm. We simulate 130 unit cells that is corresponding to the nanowire
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length of 50 nm. The gate length, L,, is 10 nm and the gate oxide thickness,
toz, i 2 nm. The nanowire under the gate region (channel) is undoped and the
doped source and drain extension, L,s and L,p, is 20 nm each. The uniform

source-drain doping concentration of 2 x 10 cin—*

is assumed. The gate oxide
is 810, with dielectric constant of 3.9. The channel has é band gap of 2.88 ev.
For decent values of drain current, the gate metal-semiconductor work function
difference, ¢,,s, of 1.0 ev is used so that the zero gate bias potential barrier in
the channel becomes approximately equal to the supply voltage. The simulation
model uses a self-consistent solution between two dimensional {2D) electrostatics
and three dimensional (3D) charge density.

With gate voltage set to a particular value, we assume an initial guess of orbital
voltages. The orbital at the source region is assumed to have a voltage at £, and
those at the drain region have £y — Vp. For gate region, the voltage is assumned
as By 4+ Ey/2 — ¢ms and ¢, is set to 1.0 ev to reduce the barrier height and get
a considerable amount of current. The initial guess of the potential distribution
will look like in Figure 2.4. RGFA will provide the charge density at each orbital.
The total charge of a particular atomic site is then calculated as the sum of all
the orbital charges divided by the volume of an atom. Then the charge density at
each atom is interpolated to find the density at poisson grid points.

Poisson equation is then solved to get potential distribution from the calculated
charge density at poisson grid points using standard Newton-Rapshon method
with Anderson mixing [30] to accelerate convergence. Dirichlet boundary condition
is used on the gate metal. There the potential is fixed to Vg5 — ®;/q, where Oy is
the gate metal work function. Von Neumann boundary conditions are used along
the exposed surface of the dielectric and at the doped source and drain contacts.
There, the normal component of electric field is set to zero. The axial grids are
taken at each atomic layer position. Potential obtained from Poisson selver at each

atomic layer is interpolated to the atomic sites of that layer. And the orbitals are
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Figure 2.4: The initial guess of the potential distribution for Vg = 0.

assumed to have the same potential as the atom they belong to. When we get the

converged potential profile, current is calculated from Equation 2.34.

2.7 Current Calculation Using Effective Mass Ap-
proximation

Instead of considering the atomic positions of the NW, we can visualize the
nanowire having several grid points within the NW and obtain the Hamiltonian by
discretizing the Schrodinger equation written in the cartesian co-ordinate. Hamil-
tonian thus formed can be used in the RGFA algorithm in the same way as the
atomistic Hamiltonian was. But the dimension of the latter is much shorter and
the computation time will be dramatically reduced. But the reliability will in-
evitably be reduced for small dimension NW when the atomistic approach will be

the only option. Next we describe how the Schrodinger equation was discretized.

o T ——
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The Schrodinger equation in 3D cartesian coordinates is

oR2fa(1aw\ 0 (1ow\ 8 (1 av\]_
SEER)EEe) EER) - e

where ¢ is the wave function, m,, m,, and m, are the effective masses in
device coordinates, and h is the reduced Planck’s constant. The nanowire is
grown in {100) direction, which is device z coordinate in our study. Ballistic
transport is assumed and recursive Green’s function algorithm (RGFA) [25] is
used to solve Schrodinger equation for charge density and current calculations.
The open boundary condition in transport direction {z) is included in Schrodinger
equation via self-energy matrices and hard-wall boundary condition is used in the
transverse directions (y and z). The Schrodinger equation is discretized using

ﬁni’qe difference method and it becomes

tathir1 i+ tatbi 1k + byl griatyWiio1e + ik a1 — 2{ts + 1y + E W8 =

where,
. .

t, = wwﬁ_
2mg{Az)?

h2
b=
2m, (Ay)?

2
t, = mﬁ'—
2m,{Az)?

(2.51)

Here Az, Ay, Az are the grid spacing in x, y and z direction respectively and
i=1,2,7=1,23,..... Ny, k=1,23,....... N, where N, and N, are the number
of grid points in y, and z direction respectively. For RGFA, the layer (cross-section)
Hamiltonian and layer-to-layer coupling matrices are calculated from discretized
Schrodinger equation. The left hand side of the Schrodinger equation can be

represented in matrix form as
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Where hgp and hqy are the layer hamiltonian and #¢; and ¢;p are the layer to
layer coupling matrix. From the hamiltonian we generate the right connected

Green function.

Cem



Chapter 3

Results and Discussions

3.1 Electronic Properties of Silicon Nanowire

The electronic properties, namely the band structure, the bandgap, and the elec-
tron effective masses of SINWs are studied in this section. The SiNWs used in
this study are grown in <100> and <110> directions. During nanowire growth,
the bulk bond length is assumed and the dangling bonds are passivated with hy-
drogen atoms. The cross sections of <100> and <110> SiNWs are shown in
Figure 3.1. The gray atoms are Silicon and the black atoms are hydrogen. The
nanowire growth direction is x, which is into (or out of) the paper. The y and =z
directions are < 010 > and <001>, respectively for the <100> wires, and <110>
and <001>>, respectively for the <110> wires. The cross section of <100> wire
looks rectangular. The unit cell is 0.543 nm long and has 4 atomic layers. The
«<110> nanowire looks hexagonal. It has 2 atomic layers in a 0.384 nm unit cell.

The calculated band structure of <100> and <110> wires are shown in Figure
3.2 and 3.3, respectively. The cross section of <100> wire is 3.295 nm x 3.295
nm, and that of <110> wire is 3.508 nm x 3.508 nin. Both the wires show direct
band gap. The bulk Silicon is an indirect band gap material with conduction band
minima at 0.832 x 27/a in the A direction. The conduction band minima of butk
Silicon have six equivalent A valleys. For nanowire grown in <1002 direction,

four of the six equivalent A valleys (i.e., [0 £ 10} and [00 % 1j) are projected to

20
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Figure 3.1: The cross sections of (a) <100> and (b) <110> nanowires. The gray
atoms are Silicon and the black atomns are hydrogen.
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Figure 3.2: The band structure plots (E vs. k) of a <100> wire of cross section
3.295 nm x 3.295 nm.
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Figure 3.3: The band structure plots (E vs. k) of a <110> wire of cross section
3.508 nm x 3.508 nm.
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the " point in the one dimensional Brilluoin zone to form the conduction band
edge. The other two A valleys (i.e., [£100]) are zone folded to the points &k, =
+0.355 x 7/a in the wire Brilluoin zone. In Figure 3.2, we see that the four bands
are degenerate at T point. However, they split due to quantization effects for NWs
with smaller cross section, and this feature has been observed before {Figure 1(a)
of Reference [8)). Two unprimed bulk valleys are projected at I' point to form the
conduction band edge in <1103 wire as shown in Figure 3.3. The valley splitting
at the conduction band minimum (I" point) is not observed here. Our simulation
shows that the valley splitting becomes significant for wire width < 2 nm (results
are not shown here). This observation matches with the results reported in (13].
A second valley is observed at k, = 0.817/a, and the splitting between these two
valleys is & 65 meV. This splitting increases for smaller wire and the second valley
slightly moves from k, = 0.817/a. Note that @ is the unit cell length, and it is
0.543 nm for the <100> wires and 0.384 nm for the <110> wires.

The band gap E, versus the wire dimension for both the <100> and <110>

wires are shown in Figure 3.4.
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Figure 3.4: The band gap versus wire dimension for the (a) <100> and (b) <110>

wires. The solid lines are calculated from the sp®d®s* orbital basis and the dashed
lines are fitting to analytic expression.
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The band gap falls rapidly with wire dimension for smaller cross sections and
then slowly appro;aches the bulk value. At the same cross section, the <100>
wire has larger band gap compared to the <110> wire. The band gap for both
the ’Wires are fitted to the analytic eﬁpression A, + Ay/W and are shown as the
dashed lines in Figure 3.4. Here W is the wire width in nanometer and the values
of fitting parameters A; and Ay are listed in the plots.

Next we parameterize the effective masses where the masses depend on the
wire dimensions. The electron effective masses for unprimed valleys maq at I’
point and for the primed valleys maz at k; = 0.355 m/a for the <100> wires are
shown in Figure 3.5 as a function of wire width. The effective mass is calculated

from

1 _188 1B —251E,
mr REOkE K (Ak)?

where E, is the energy at the bottom of a conduction band valley and E, and

(3.1)

E’_ are the energies at £k, from the valley, respectively. We use a Ak, value of
(0.005) x 7/a for effective mass calculation. Note that the bulk effective masses
calculated by Boykin [24], from where the energy integral values are taken, uses a
modified k-p method and incomplete eigen state basis. The modified k-p method
and the text book formula (Equation 3.1); however, have excellent agreemént (31],
and we, therefore, use the textbook formula for simplicity. The curvature of band
at the valleys increases with wire width, and therefore, the effective masses, maq
and mas, decrease with wire width and approach the bulk values of 0.201mp and
'0.89my [24], respectively. The effective mass values at I' point, maq4, match with
published values, Figure 3(b) of [13], Figure 2 of [17], Figure 5(a) of {12], and
Figure 8(b) of [16]. However, our may is numerically larger compared to the maq
calculated for <001> wires by Zheng et al., Figure 6(a) of [11]. For example, maq
is & 0.376myq for 2 nm wire in our calculation, and this value is = 0.3my for 2
nm wire in [11]. Tn our simulation results (not shown here), we notice that the

A, valley does not appear for nanowires of smaller dimension. This observation
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Figure 3.5: The electron effective masses magy and maz versus wire dimension for

the <100> wires. The solid lines are calculated from the sp*d®s* orbital basis and
the dotted lines are fitting to analytic expression.
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matches with Figure 1{a) of [8], Figure 2(a} of [16], and Figure 3(a) of [12]. We
fitted the effective masses, mas and masg, to the analytic expression Ay + Az /W,
where W is the wire width in nm. The fitted values are shown in Figure 3.5 as
the dotted lines. The fitting parameters are A; = 0.1484 and A = 0.4623 nm™!
for mas and A; = 0.8163 and A; = 0.5425 nm™" for maz, respectively.

The effective masses for <110> wire are shown in Figure 3.6. Here m; is the
effective mass at the [' point of the 1D Brilluoin zone of the nanowire and my
is the effective mass at the second valley as shown in the band structure plots of
Figure 3.3 at k, = 0.817/a. mg decreases with wire width and approaches the bulk
value'as maa and mao of <100> wire. However, m; increases with wire width and
approaches the bulk value. The increase of rny with wire width can be understood
from the E-k plots as shown in Figure 3.6(c). The plots are the E-k near I" point
for two different wire widths. Note that the bottoms of the conduction bands for
the two wires are not at the same energy. They have been shifted for comparison.
From the E-k plots, we see that the curvature of the conduction band near the
[ point of the <110> wire decreases with wire width that results in increase in
the effective mass (see Equation (3.1)). The masses are also fitted to the analytic
expression m* = A; + A;/W and are shown in Figure 3.6 (2} and (b} as the dotted

lines. The values of A; and A, are also listed there.

3.2 Effects of Cross-Sectional Shape on the Elec-
tronic Properties

Figure 3.7 shows the bandstructure for three different cross-sectional shapes while
keeping the cross-section area sarne at 2.65nm?. Figure 3.8(a) shows the variation
of band gap with dimension. The band gap increases with decreasing cross-section
area as a result of quantum Conﬁnément. For large wires, the bandgap equals
that of bulk Silicon (1.13ev). When plotted against dimension, square nanowires

exhibit lowest bandgaps and the bandgap for the triangular wire is the highest. But
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Figure 3.6: The electron effective masses 1, and my versus wire dimension for
the <110> wires. The definitions of m; and my are given in the text. The solid
lines are calculated from the sp®d®s* orbital basis and the dotted lines are fitting
to analytic expression. Figure (c) is the E-k relations near the I point for two
different wires to explain the behavior of m; with wire dimension.
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Figure 3.8: Bandgap variation with (a) dimension, (b) cross-section area.

)



31

10° —— T ——————
1 {a) ;
- [ ~a, - —a— Square
q:.;_ . -~ ~--=-- Circular
= 10 - - - Triangular
o s 3
R —
1T}
10°f E
1 e |
5 10 15 20 25 30
Area (nm”)
300 [! T T T T T T ]
), (b) |
_ 250 "\\ —s— Square
2 200N\ —--e=-- Circular
E ! X . — -+ - Triangular |
5 150 i
g 100}
1T}
50}

Figure 3.9: Effect of wire cross-section area on A4 and A; conduction band valleys,
(a) Variation of forth highest conduction band energy at A4 valley taking the
lowest energy as reference, (b) Splitting of A4 and A, valleys.

this dissimilarity is not for wire shape, because the triangular wire with dimension
D has an area of 0.433D2, which is 43.3% of the square wire area (D?) having
the same dimension D. This fact is clear when we plot the bandgap against cross-
section area, the bandgap for all shapes are remarkably similar (Figure 3.8 (b)).
This reveals that the energy gap simply depends on the wire cross-section area,
not on the shape.

The conduction band degeneracy at the I point for <100> wire is considered
next (Figure 3.9 (a)). The forth highest band is plotted taking the lowest con-
duction band as reference. The four valley degeneracy is almost similar for square

and circular wires, while the valleys are less degenerate for triangular wire. As the
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Figure 3.10: Effect of wire area on the splitting of the three highest valence bands
taking the highest valence band Ewv; as reference, (a) The energies Ev; and (b)
Ewvs with respect to Ev;. ‘

cross-section area is increased, the separation between A4 and Ag valley energies
is decreased (Figure 3.9 (b)). This energy difference is lowest for square wire and
highest for triangular wire. Figure 3.10 shows the effect of quantum confinement
on thé three highest valence bands. The second and third highest valence bands
are plotted taking the topmost valence band as reference. Here the valence band
splitting is lowest for circular wire. Splitting for triangular wire is less than that of
square wire at lower area{< 12.0nm?*) after which it is similar for both the wires.

Next we calculate effective masses at Ay and A, valleys for <100> oriented
nanowires. The effective mass at A4 valley decreases with wire area and ap-

proaches the bulk Si transverse electron effective mass of 0.20%mp as area is in-
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Figure 3.11: Electron effective mass for <100> wire at (a) A4 valley (b) A, valley
Versus area.

creased as shown in Figure 3.11. At Ay valley effective mass is highest for square
wire and that of triangular wire is the lowest. m} at A valley is lowest for circu-
lar wire while that of the other two are almost similar. m} at A; valley reaches
the bulk Si longitudinal electron effective mass of 0.89myg for large wires (>6nm).
Electron effective mass at the T' point for <110> wire m; is shown in Figure 3.12
(a). With dimension, m; increases until it reaches the bulk value (0.20*mq). Again
the triangular wires show lower values than the other two wires. Figure 3.12 (b)
showé. the electron effective mass my at £0.81x7/a. It decreases with wire area
and reaches a steady value of 0.55%myg for large wires. Then we calculate hole
effective mass for the highest valence band for <100> wire. Figure 3.13 shows

the variation of hole effective mass. For triangular wire, hole effective mass is
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Figure 3.12: Variation of electron effective mass with area for <110> wire, (a) my
and (b} my. The definitions of m, and rny are given in the text.
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approximately two times larger than that of the bulk Si heavy hole at large di-
mension. It reaches a value of —0.5m for cross-section area > 20nm?. For square
and circular wires, hole effective masses are much heavier (atleast five time than
the bulk value). m? is highest (magnitude only) for circular wire. For reference,

v

the bulk Si valence band <100 effective mass is mu, = —0.2767n,.

3.3 I-V Response of the SINWFET

In this section we calculate the current-voltage characteristics of a SINWFET using
sp®d®s* orbital basis with <110> wire as the channel material. We next evaluate
the performance metrics of the transistor and compare the full band current-
voltage characteristics with the I-V calculated from the parameterized nanowire
effective mass Hamiltonian. |

The simulated full band (sp3d°s* orbital basis) Ip versus Vs characteristics
are shown in Figure 3.14, both in log and linear scales. The drain voltage is 0.5 V
and the gate bias ranges from 0.0 V to 0.5 V. The device has a threshold voltage
of &~ 0.3 V and the on/off current ratio of 1.8 x 107. The inverse subthreshold

slope is & 60 mV/dec.
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Figure 3.14: Simulated Ip versus Vgg plots. The solid lines are full band calcu-
lation and the dashed lines are calculated from nanowire confined effective mass
model. The nanowire is <110> with cross section of 0.82 nm x 0.82 nm.

To understand the transport physics, we plot, in Figure 3.15, the energy band
diagrams in both off (Vgs = 0.0 V& Vpg = 0.5 V) and on (Vgs = 0.5 V & Vpg
= 0.5 V) states superimposed on the energy distribution of current. The source
Fermi level is at 0.0 ev and the drain Fermi level is set to -0.5 ev. Note that
the valence bands are not shown because the current through the valence bands
is zero. The current has both the tunneling and the thermal components. The
thermal component of the current can be evaluated by integrating J from the top
of the conduction band to oo, and the tunneling component can be evaluated by
integrating J from —oo to the top of the conduction band. The off state current
has about 38% tunneling and 62% thermal currents and the on state current has
about 50% tunneling and 50% thermal components. We observe that the current
density, J, has a peak at an energy slightly below the top of the conduction band
in the on state and slightly above the top of the conduction band in the off state.

Next we numerically calculate the figures of merit, namely the gate capaci-
tance Cy, the transconductance g, the intrinsic switching delay 75, and the unity

current gain frequency fr. The gate capacitance is calculated from the electric
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current in both (a) off-state and (b) on-state. The solid lines are full band calcu-

lation and the dashed lines are caleulated from nanowire confined effective mass
model.
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The first integral is over the length of the gate along the bottom of the gate
metal. The second integral is over the two sides of the gate metal. Equation (3.2)
gives the total gate capacitance, C; = Cyy + Cyq which includes the effect of the
quaﬁtum capacitance and the fringing fields directly from the gate metal to the
source and drain. The transconductance g, is calculated from g, = 8Ip/8Vgs,
the intrinsic gate delay 75 from 7 = CyVpp/Ioy, and the intrinsic unity current
gain frequency fr from fr = gm/27C,. Here Vpp is 0.5 V in our study and Ipn
is the on state current. |

The gate capacitance, the transconductance, the intrinsic switching delay, and
the intrinsic unity current gain frequency are shown in Figure 3.16. The gate
capacitance is very small in the atto Farad range due to low gate dielectric 5i0,.
The switching delay is in the fraction of picosecond and the intrinsic unity current
gain frequency is in tera Hertz. The on state transconductance value is = 18 uS.

Finally we self-consistently calculate the I-V using the eflective masses ex-
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Figure 3.17: Simulated Ip versus Vgg plots. The solid lines are full band calcu-
lation and the dotted lines are calculated from nanowire confined effective mass
model. The nanowire is <110> with cross section of 1.2 nm x 1.2 nm.

tracted from the band structure. The simulated current is shown in Figure 3.14
as the dashed lines in both log and linear scales. The effective mass model over-
estimates the current. This overestimation is larger in the off state and almost
negligible in the on state. The reason can be explained from the band profiles
superimposed on the energy distribution of current as shown in Figure 3.15 as the
dashed lines. The thermal current is same, however, the tunneling current is over-
estimated by the nanowire confined effective mass model and this overestimation
is larger in off state. This is because the tunnel barrier shape is almost similar for
both the full band and the nanowire effective mass models in the on-state. The
mismatch in the calculated I-V from the full band and nanowire effective mass
models is noticeable for this small wire 0.82 nm x 0.82 nm. This mismatch is
expected to improve for relatively thicker wires. This is indeed the case. The sim-
ulated full band and nanowire effective mass I-V characteristics for 1.2 nm x 1.2
nm wire are shown in Figure 3.17. The calculated I-V characteristics show very
good agreement. The full band and nanowire effective mass models comparison is
not performed for wires > 1.2 nm due t6 computational resource limitation. The
reason that the nanowire effective mass model shows excellent agreement with full

band calculations for wire width down to 1.2 nm can also be explained from a
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different viewpoint. The electron transport usually involves in the lowest 2 to 3
energy subbands, and the lowest three energy subbands calculated from nanowire
effective masses and sp3d®s* atomic orbital basis match exactly for wire width

down to 1.5 nin [32].



Chapter 4

Conclusions

Electronic properties of Silicon nanowires are observed for different crystal orien-
tation, cross-sectional size and shape using nearest neighbor sp”d®s* atomic orbital -
basis with emprirical tight binding parameters. Band gap and effective mass show
strong variations as a result of quantum confinement aid they also vary with crys-
tal orientation. Cross-sectional shape has its effect on effective mass and triangular
wires have the lowest effective mass compared with the other shapes. Then full
band simulation of a Silicon nanowire field effect transistor is performed using
the same basis and the performance metrics is evaluated. The current is also cal-
culated self-consistently from the nanowire confined effective mass model and is
compared to full band calculation. The effective mass calculation is reasonably
accurate for nanowire with >1.2. The thermal component of current is same,
however, the tunneling current is overestimated by the effective mass model for
smaller dimension. The nanowire effective mass model is facilitated by calculating
the band gap and electron effective masses using sp3d°s* atomic orbital basis and

by fitting them to analytic expression.

4.1 Suggestions for Future Work

Caléula.ting the I-V response from the full band hamiltonian requires significant

amount of time. An efficient algorithm which will both be computationally efficient

41
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and reliable even at lower dimensions is thus required. It can be achieved by
combining both effective mass and atomistic approach.

Strain engineering has been one of the most useful techniques to improve de-
vice performance for conventional MOSFETs. For NWs too, strain can be used
to modify the band gap and effective mass of the material and thus device perfor-
mance can be enhanced. A comprehensive treatment of strain on NWs and the

resulted device performance is still missing in the literature.
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Appendix A

Energy Integrals for Crystal in terms of Two-Center Integrals!

E, s = (ss0)

E, o = (55%0)

Eou s = (85%0)

E, . = l{spo)

E.. = (1) x i{spo)
B,y = m{spo)

By = (=1) x m(spo) -
E, , = n(spo)

E,s = (1) x n{spo)

tx

oy = V3lm(sdo)

e = v/3lm(sdo)

wyz = V3mn(sdo)

Bye, = /3mn(sdo)

Esix = v3nl(sda)

E.. . = V3nl(sdo)

Eyzomq2 = %\/3(!2 — m?)(sdo)
Erp—y2s = 3V3(1* — m?){sdo)

By 322 = [n* — (2 +m?)](sdo)
Esz r2s = [n? — (12 + m?)]|(sdo)

M|

1A limited version is provided in Ref. [23] and the rest are derived.
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Eouou = (5*s%0)

E,. . = l(s*po)

Eypr = (=1) x (s°p0)

Egy = m{s*pa)

E, o = (—1) x m(s*po)
E...=n(s*po)

E, o = (—1) x n(s*po)

E., ., = V3lm(s*do)

Eoy o = V3lm(s*do)

By = v/3mn(s*do)

By = v/3mn{s*do)

Eyu 2o = V/3ni(s*do)

E,p e = /3ni(s*do)

B g2y = 3V3(12 — m?)(s*do)
Erp_yoon = 3V3(12 - m?)(s*do)

B aza-ro = [0? — L(1* + m?)](s*do)
Ess3 rae = [1° — 3(I* +m?)](s*do)

E, . = P(ppo) + (1 — %)(ppr)
E.y = Im[(ppo) — (ppm)]
E, . = Im[(ppo} — (ppm))
E, . = In[(ppo) — (ppr)]
E, = In{(ppo) — (ppr)|

Eqz oy = V312m(pdo) + m(1 — 212)(pdn)
Eppz = {—1) x [V32m(pda) + m(1 — 21*)(pdr)]
Eyy: = V3lmn(pda) — 2lmn(pdr)

Ey .z = (—1) x [V3lmn(pdo) — 2lmn(pdr)]
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E. .. = V/3n(pdo) + n(1 — 2{%)(pdn)

E.rz = (—1) x [V3{*n(pdo) + n(1 - 21*)(pdx)]

Eraryo = 2V3I(I2 — m2)(pdo) +1(1 — 2 + m?)(pdm)

Erroype = (—1) (WP — m)(pda) + U(1 — & + m?) (pd)
Epaza-rz = I(n* — %(12 + m?))(pdo) — V/3In?(pdr)

Essrzz = (—1) x [U(n? = 3(2 + m?))(pdo) — V/3In*(pdr)]

Eyy = m*(ppo) + (1 — m*}{(ppr)

By = mn[(ppo) — (ppr)]

E. y = mn[(ppo) — (ppr)]

yzy = V3Im*(pdo) + (1 — 2m?)(pdr)

E.,, = (=1) x [/3im%(pdo) + (1 — 2m?)(pdx)]

2 = V3m2n(pda} + n(1 — 2m?}(pdr)

.y = (=1} x [V3min(pdo) + n(1 — 2m?)(pdr)]

sz = \/glmn(pda) — 2imn(pdr)

2y = (—1) x {V3lmn(pdo) — 2lmn(pdr))|

Eyzo—ye = 33m(l? — m?*}(pdo) — m(1 + 1> — m?)(pdr)

t

b

Buoypny = (—1) % [1v3m(2 — m?)(pdo) — m(1+ 12 — m?)(pdn)]

Ey,SzZ—rE = ’J’TI,(’."LQ - %(F + mQ))(de) - \/gmnz(pdﬁ'r))
Esir_ray = (—1) x [m(n? — 3(I* + m®))(pdo) — V/3mn® (pdn)]

B, = n*(ppo) + (1 - n*)(ppr)

E. 5y = V3lmn(pdo) — 2lmn(pdr)

E.,. = (=1} x [V3Imn(pdo) — 2lmn(pdr)]

E, .= V3n2m(pdo) + m(1 — 2n?)(pdx)

E,.. = (=1} x [V3n*m(pdo) + m(l — 2n?)(pdr)|
E. .» = V3n2l(pdo) + (1 — 2n?)(pdn)

Bro = (—1) x [v/3r2U(pdo) + (1 — 20?)(pdr)]
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E.ma—y2 = 3V/30(l% — m?)(pdo) — n(l* — m®)(pdr)

Esa-yp,e = (=1) x [§V3n{f® — m?)(pdo) — n(I* — m?)(pdr)]
E.3:2 2 = n(n® — 3(1* +m?))(pdo) + V3n(® + m?)(pdr)
Esin-rae = (1) x [n(n? = 3(1% + m?))(pdo) + V3n(I? + m?)(pdn)]

Epy 2y = 312m?(ddo) + (I + m? — 4*m?)(ddr) + (n® + *m?*)(dd$)
Eryys = 3Im2n(ddo) + In(1 — 4m?)(ddr) + In{m?* — 1)(dds)
Eyezy = 3im*n(ddo) + in(1 — 4m?)(ddr) + In(m? — 1)(ddd
E,y oz = 32mn(ddo) + mn{l — 4%}{ddr) + mn(l* — 1)(ddS
E. 2y = 3Pmn(ddo) + mn(1 — 4*}{ddr) + mn(l* — 1)(ddd
Eryar—y2 = 2lm(1* — m2){(ddo) + 2m(m? — 1%)(ddr) + Im(l* — m?}(ddd)
Eyyypay = Hm(i? — m?)(ddo) + 2m(m? — I?)(ddr) + Lm (2 — m?2)(ddd)

By 3:2-r2 = V3lm[n? — 1(12 + m?)](ddo) — 2v/3lmn?(ddr) + 5+/3lm(1 4+ n*}{(dd?)
Esa a2y = V3lmn? — 1(12 + m?)|(ddo) — 2v/3lmn?(ddr) + 3v/3lrn(1 + n2){dd?)

)
}
)
(

E,. 4. = 3n*m?(ddo) + (n? + m? — dn?*m?)(ddm) + (I* + n*m?)(ddd)
Eyz oz = 3lmn?(ddo) + mi(1 — 4n?)(ddmr} + mi(n® — 1)(ddé)
B,y = 3lmn?{(ddo) + ml(1 — 4n?)(ddr) + mi(n® — 1)(dd8)

$mn(1? —m?)(ddo) —mn[1+2(1* —m?))(ddr) + mn[1+ 3 (1* —m?))(dd5)
Erz—y2y: = smn(l* —m?)(ddo) —mn[142(12 —m?)](ddr )+ mn[1+ 5 (I* —m?)](ddd)
Eyzsza 2 = V3mn[n?— 12+ m?)|(ddo) +V3mn(l?+m? —n )(dd’.’r)—;\/—mn(lhr
m?)(dds)
Bas2-rays = V3mn[n?— (2 +m?)(ddo}+/3mn {2 +m? —n*Hddm) — 3/3mn(l* +
m?}(ddé)

Eop er = 30%1%(ddo) + (n? + 12 — 4n202)(ddn) + (m? + n??)(ddd)
B go-y2 = Snl(1? —m?)(ddo) +nl[l — 2(1!2 —m2)|(ddr) — nd[1 — 3(1* —m?)](ddd)
Erp_yoze = 2nl( — m2)(ddo) + ni[1 — 2(1 — m*)](ddm) — ni[l — 5(&* — m?)](dd?)
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Eypaz2-r2 = V3In[n? — (1 + m®)](ddo) + V3In( +m? — n®)(ddr) — I\/3in(1? +
m?)(dds) '

E3ua-r220 = V3Inn? — 3+ m®))(ddo) + V3in(i2 + m? — n®){(ddr) — 2/3in(l? +
m?)(dds) | |

Erg gz gy = %(lz-mQ)z(dda)+[lz+m2k(lz—mQ)Q](ddTr)+['n,2+i(52—m2)2](dd6)
Eua ypa:0 0 = %\/g(lg—m2)[n2ﬁ%(52+m2)](dd0)+\/gn‘?(mz-lz)(dd?r)-l-i\/g(l-l-
n?) (12 — m?)(ddd)
B3 ra22-y2 = %\/5(52-mz)[nzk%(£2+m2)](dd0)+\/Enz(mz—lz)(ddrr)—l-ix/g(l—k
n?)(1? — m?)(ddé)

Eaz2ra8:2r2 = [0® — 5(I + m?)2(ddo) + 3n2(1% + m?)(ddr) + 312 + m?)2(ddé)



Appendix B

Empirical Tight-Binding Parameters for Silicon (same-site and two-

center integrals) in the Slater-Koster notation®

E, =—2.15168
E, = 4.22925

E,, = 19.11650
E, = 13.78050

E.ey = —1.95033
Eyupes = —4.24135
Eyors = —1.52230
Eupe = 3.02562
Eueps = 3.15565
Eogp = —2.28485
Eyeto = —0.80993
Eppo = 4.10364
Eppn = —1.51801
Epgy = —1.35554
Epar = 2.38479
Eagy = —1.68136
Ear = 2.58880

2Taken from [24]
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Eaas = —1.81400
By = —3.999720
Eopsso = —1.697700
Eoppo = 4.251750
Eopgo = —2.105520

o4



Appendix C

Flow chart: The flow chart of the algorithm of self-consistent loop is shown in

the next page.
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|
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|

Charge density at
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orbitals of
an atom / volume of the atom

}
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