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Abstract

Full band simulation studies are performed for Siliconnanowires using sp3d5s' or-

bital basis tight-binding approach. The electronic properties of Silicon nanowires

have been studied for different growth directions, shape and size of the cross-

section. Then the I-V response are calculated for an n-channel Silicon nanowire

transistor of wire cross section 0.82 nmxO.82 nm and 1.2 nmx 1.2 nm using the

same basis. The smaller device has the tunneling and thermal components of

current in both off and on states. The intrinsic switching delay is in the fraction

of picosecond and the unity current gain frequency is in Tera Hertz range. The

device has an on/off current ratio of 107 and near ideal subthreshold slope. Simu-

lation is also performed using nanowire confined effectivemasses and is compared

against the full band calculation. The full band and effectivemass I-V characteris-

tics of 1.2 nmX1.2 nm wire show very good agreement. However, relatively larger

mismatch is observed for the 0.82 nmxO.82 nm wire, especially at the lower gate

biases. This is because the current has both the thermal and tunneling compo-

nents, and the nanowire effectivemass model overestimates the tunneling current.

This overestimation is relatively larger for thinner wires. The thermal component

of current is same in both the nanowire effectivemass and full band models. To

facilitate simulation using nanowire effective mass model, we calculate the band

structure using sp3d5s' atomic orbital basis, extract the band gap and electron

effectivemasses, and fit them to analytic expression. Calculations are performed

for nanowires grown in <100> and <110> directions.
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- ,



;..

Chapter 1

Introduction

There has been aggressive downscaling of conventional transistors in the past

few years by reducing gate length, oxide thickness and channel depth. Perfor-

mance degradation takes place due to this scaling including short channel effects,

reduced electron mobility and weakened gate control. For future nanotechnol-

ogy, novel materials such as nanowires (NW) can be useful building blocks be-

cause of their superior characteristics. They have attracted significant attentions

[1, 2, 3, 4, 5, 6]' because their electronic properties can be controlled in a pre-

dictable manner and they are compatible with the CMOS processes. Controlled

growth of Siliconnanowires (SiNWs) down to 3 nrn diameter [7],their applications

as Field Effect Transistors (FETs) [1,2,5,8], logic gates [9]' and sensors [10]have

been demonstrated. As the nanowires' dimension is in the nanometer regime, ef-

fects like tunneling and quantum confinement play dominant role. To understand

device physics and to asses the performance simulation work is important.

1.1 Literature Review

Atomic orbital basis has been used to study electronic properties of SiNWs at

material level [11, 12, 13, 14, 15] and also using first principle calculations.The

bulk crystal symmetry is not preserved in SiNWs due to quantum confinement

in the transverse directions, and therefore, the bulk effectivemass approximation

1
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fails for nanowires of smaller diameter [11]. The validity of bulk effective mass

approximation has been investigated at device level using ballistic top of the bar-

rier model [16]that ignores the tunneling current. For this, Wang et al. [16]have

calculated the band structure and nanowire confined masses using sp3d5s' tight

binding orbital basis. The Schrodinger's equation is then solved in continuum

basis using both the bulk and nanowire masses. According to their study, the

bulk effective mass approximation overestimates the threshold voltage for wire

width < 3 nm and the on current for wire width < 5 nm. Nehari et al. [17]have

extracted the subband position and transport effective masses from tight binding

calculations. With these as the input parameters, they have solved Schrodinger's

equation and have calculated current using mode space approach. Their study

shows that the bulk effective mass overestimates the onloff current ratio for wire

width < 3 nm, underestimates the tunneling current, and overestimates the ther-

mal current. Gnani et al. [18]have investigated the effects of nonparabolic band

structure on the electrical characteristics of Silicon Nanowire Field Effect Transis-

tors (SiNWFETs) by expanding the dispersion relation in power series up to third

order.

The simulations used so far to calculate the current-voltage characteristics use

either bulk effective masses or nanowire confined eflective masses. We find that

Luisier et al. [19, 20Jhave performed full band I-V calculations, and very recently

Boykin et al. [21]have developed an optimized renormalization method for efficient

calculation of multiband transmission. The full band current calculation is very

costly. The bulk effective mass approximation fails for nanowires of width < 5

nm. The nanowire confined effectivemass model requires the atomistic calculation

of band structure and extraction of effective masses. Moreover, the accuracy of

nanowire confined effective mass model against the full band calculations should

be verified. Recently Marconcini et al. [22]have compared the nanowire effective

mass I-V with the full band calculations. Their full band I-V has been extracted
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from [19]. In this paper, we perform full band (sp3d5s' orbital basis) simulation

study of Silicon nanowire transistors, evaluate the performance metrics, calculate

the band structure, extract the band gap and nanowire confined effectivemasses

and fit them to analytic expression, and compare the I-V calculated from the

nanowire effectivemass model against the full band calculation. The focus is on

the n-channel transistors for < 100> and < 110> grown nanowires. The band

gap and the electron effective masses are found to fit the analytic expression

Al +Az/W, where Al and Az are fitting parameters and \11is the nanowire width in

nanometer. The current has both the tunneling and the thermal components. The

nanowire effectivemass model overestimates the tunneling component of current

and this overestimation is relatively larger for thinner wires. The simulated I-

V characteristics from both the parameterized effective mass model and the full

band model closely match for wire dimension of 1.2 nrn. The device has small

capacitance in the atto Farad range. The intrinsic switching delay is in the fraction

of picosecond and the intrinsic unity current gain frequency is in tera Hertz range.

1.2 Objective of the Work

The objectives of the work and possible outcomes are:

To generate the atomic positions of a Silicon nanowire grown in any arbitrary

direction.

To show band structure for the grown nanowire using sp3d5 s' tight binding

orbital basis.

To find the I-V characteristics of SiNWFET built from <110> oriented small

diameter nanowire.

1.3 Organization of the thesis

The second chapter describes how the nanowire was grown and the tight-binding

hamiltonian was built. We utilized Recursive Green Functions algorithm to get
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charge density and calculate current from the converged potential profile. The

poisson equation was solved in 2-D cylindrical co-ordinates. The second chapter

also explains how the self-consistent loop was formed and how to calculate I-V

characteristics from both full band and effectivemass model. The third chapter

discusses the results of the thesis. Then we conclude and make suggestions for

future work in the forth chapter.



Chapter 2

Methodology

2.1 Generate Atomic Positions within a Nanowire

To build the tight-binding hamiltonian we need to know the atomic positions of

individual atoms in the Silicon nanowire.

Ho=:0.543ulll

Figure 2.1: Unit cell of a Silicon crystal.

A mathematical modelis developed to generate the atomic positions of a nanowire

given the following parameters

5
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• Crystallographic orientation

• Nanowire cross-section in nanometer square

• Shape of cross-section

The nanowire growth direction is symbolized as C1which can be <100>, <110>,

<111> etc. The model can generate a square nanowire. The Matlab program is

then modified to produce nanowire of different cross-sectional shapes (e.g. circu-

lar, -triangular, hexagonal, pentagonal and octagonal). The electronic properties

depend heavily on crystal orientation and dimension. They also differ for different

cross-sectional shapes. To growa nanowire of the desired shape, a square nanowire

is grown first, then the outer atoms are eliminated to form the desired shape.

Algorithm to Grow Nanowire:

The three basis vectors of FCC crystal

a2=~U)
a3=~U)

Therefore co-ordinates of anions can be obtained from

(2.1)

(22)

(2.3)

(2.4)

While defining the crystal orientation C1, the other two directions C2 and C3

are also defined such that C1, C2 and C3 are mutually orthogonal.
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• Step 1- Finding R:, Rb, R-;':

We need to find three atomic positions in the C" C2 and C3 directions such

that they are the first neighbors of the reference (0,0,0) atom in those directions.

So now define these vectors R:, R-;',Rc that are corresponding to those atomic
positions

R: = (someconstant(sc))C!

As R:, R-;',Rc point to atomic positions they followEquation 2.4

Let us calculate R: -

[aJ[n] = (sc)[C!]

[aJ[n/ sc] = [C!]

[n/scJ = [at![C!]

(25)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(211)

(2.12)

(2.13)

(214)

Solving Equation 2.14 will give the values of nt, n2, n3 divided by a common

denominator (or multiplied by a common factor). Dividing the result by the GCD
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of the three numbers will give nj, n2andnS' Similarly fib and fie are found.

_Step 2 - Generation of atomic co-ordinates in the volumed spanned by

the vectors fia, fib, fie:

The volume spanned by fia, fib, fie has eight corners. The co-ordinates of those

corners are

co-orj = (0,0,0)

co - 07'2 = fia
co - ors = fib

co- or4 = fie

CO- ors = R-;'+ fib

CO- or6 = fib + fie

CO-c aT7 = fie + R-;'

CO- ors = fia + fia + fia

All these co-ordinates correspond to atomic positions within the crystal and there-

fore follow Equation 2.4. Now solving Equation 2.14 with co-ordinates as the right

hand sides will give 8 different values of nj, n2, n3. To get the atoms within the vol-

ume, we need to pick up the lowest and highest values of nj, n2, n3 and vary each

value of nr, n2, ns 'within the limit to get an atomic position and check whether

the atom falls within the volume or not. For a particular set of nj, n2, ns,

(215)

(

Ra(x) Rb(x)
. Ra(y) Rb(y)

Ra(z) Rb(z)

[R][n] = [coor]

Re(x) ) ( na ) ( coar(x) )
Re(y) nb = coor(y)
Re(z) ne coor(z)

(216)

(2.17)

(2.18)

..~..•. J
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if each of na, nb, ne is less than one, only then the COOTcorresponds to an atom

within the volume/unit cell. The co-ordinate will give the position of an anion.

To get the corresponding cation, we need to .do the following operation

cation = anion + vec

where,

.Step 3 - Repeating the unit cell:

(2.19)

(2.20)

Once the unit cell is formed, it is repeated along Rb and Re directions until

the desired cross-sectional area is achieved. This final set of co-ordinates is called

super cell. The nanowire is a one-dimensional device and it is assumed to be

infinite in the growth direction (Ra). So the super cell is repeated along Ra only

for once. It will help us to construct the bandstructure of the nanowire according

to. Finally hydrozen atoms are added at the open bonds at the wire boundaries.

The Si-Si bond length is 2.35Ao and Si-H bond length is 1.49Ao The bond angle

is the same on both occasions.

('

l
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Figure 2.2: Cross-sections of various shapes, (a) <100> and (b) <110> NW.
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2.2 Building the Tight-Binding Hamiltonian

The basis of the Hamiltonian is sp3d5 s* and if the system contains for example, 2

atoms the hamiltonian will be a 20 x 20 matrix, each of the element of the matrix

signifies the interaction between the orbitals. When two orbitals overlaps, the

type of bond will be 1r, a or/and 8 depending on the type of orbitals involved. If

one of the orbitals is s or s* then only a bond is possible.

In order to illustrate how the individual matrix element is calculate we can

consider two examples. First, let us assume the two orbitals involved are both s

orbitals. In this case the interaction element will be just equal to V,," which is

the coupling energy between s orbitals and called orbital parameter. Although

these parameters are tuned to produce bulk Silicon behavior we can still assume

then can work very well for nanowires having dimension >0.5nm. If one orbital is

changed to p orbital, then the expression will be < <pIHI<p >= [(Vspa)' For band

structure calculation, the Hamiltonian is created from

(2.21)

Here kx is the one dimensional (lD) wave vector and Clx is the distance between

the last layer of a unit cell and the first layer of the next unit cell. The matrix

elements of Ho(kx) are created from

(2.22)

and those of to! are created from

(2.23)

Here nand m label the atoms in a unit cell, and u and v label the atoms between

adjacent unit cells. The basis, <P, is the sp3d5s* atomic orbitals and <Pj,m is the ph

orbital of the mth atom. The Hamiltonian is created under tight binding approx-

imation. The energy integral expressions!, < <Pi,nIHI<Pj,m > and < <pp,uIHI<pq,v >,

1A complete list of energy integral expressions and orbital parameters are provided in Ap-
pendix A and B
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are taken from Slater [23]' and the orbital parameters are taken from Boykin [24]

and Zheng [11]. Spin-orbit coupling is not considered in this study. The band

structure is obtain by calculating the eigen energies of H(k,,) defined in Equation

(2.21) .

2.3 Retarded Green Function Algorithm for Charge
Calculation

Non-equilibrium Green functions with empirical and atomistic Hamiltonians have

been used over a decade with great success in quantum device simulation for both

Silicon devices. The Recursive Green Function Algorithm (RGFA) is the most

efficient algorithm known to solve the Green function equations. In the following

section, we discuss briefly the RGFA.

Recursive Green function algorithm (RGFA) [25, 26] is used to solve nonequi-

librium Green's function equations for charge density calculation. The charge

density at each orbital of an atomic layer L is calculated from

J dE . {L RPL = (2q) 27f dzag IsAL,L + IDAL,d.

PL = (2q) J dE diagUsAf L + ID [ALL - Af L]}
27f ' "

(2.24)

(2.25)

Here Is and ID are the source and drain Fermi functions, respectively, and Ai,L'

Af,L and AL,L are the left-connected, right-connected and full spectral functions,

respectively, of the Lth atomic layer. AZ,L and AL,L are full Nocb x Nocb matrices,

where Norb is the number of orbital in an atomic layer, and PL is an NOTb x 1

vector formed by taking the diagonal elements of the matrix on the right hand

side of Equation (2.25). The left connected spectral function, the right connected

spectral function and the full spectral function are calculated from [25, 27]

(2.26)

(227)

\.
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the retarded Green function is defined as

G = [EI - HD - U - L;l - L;2rl

Here HD is the Hamiltonian. The self energies can be found from

(2.28)

(2.29)

(230)

(2.31 )

(2.32)

(2.33)

The algorithm of Reference [281is used to calculate surface green function g. The

charge density obtained from Equation (2.25) at each atomic layer is interpolated

to the Poisson's grids on that layer. Charge density is non-zero in Silicon nanowire

only.

2.4 RGFA for Current Calculation

The coherent current can be calculated from one of the following

I

I

~ J dE tr [r11 (A1,1- G1,lrl,IGL)] (is - jD) or

~ J dE tr [r11GI,NrN,NG~,I] (is - jD), (2.34)

where Ai,i = i (Gi,i - G1,i) is the full spectral function. Therefore, we need the

first column block and the diagonal block ofretarded Green's function for electron

density calculation and only the (1, 1) or (1, N) block for transmission calculation.
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2.5 Poisson Solver

The potential distribution in poisson grid points is obtained from Poisson's equa-

tion in cylindrical coordinates.

Unit vectors

T = (cose)£ + (sine)i) + (o)z

~= (-sine)£ + (cose)i) + (O)z

T = (0)£ + (O)i) + (l)z

and

T.T = ~.~ = z.z = 1

Derivative of unit vectors

All zero except

&~ -
-=-Toq;

Of -- =-q;oq;

Gradient

AO Ala AO
\7 = r- + q;-- + z-or r oq; oz

Poisson equation (2D)

\7.(£ \7 V) = -p

(

A a ;,1 a _a) [AOV _OVIr- + '1'-- + z- . £r- + £z- =-por r oq; oz or oz

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41 )

(2.42)

(2.43)

(2.44)

r
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Figure 2.3: The device cross section used for simulation.

here

02V oV OE 1 OV oV OE 02V
E-- + -- + -E- + -- + E-- = -por2 or or r or OZ OZ oz2

E[02V + ~oV + 02V] + oV OE+ oil OE= _p
or2 r or OZ2 or or OZ OZ

(2.45)

(2.46)

(2.47)

(2.48)

where E= EOEris the dielectric constant, V is the 2D potential and p is the 3D

charge density, which is non-zero in Silicon naJlOwireonly. The 2D Poisson's equa-

tion has been solved before for electrostatics of a gate-all-around Silicon nanowire

traJlsistor [29]. Poisson kernel is created by discretizing Equation (2.47) using

finite difference.

2.6 The Self Consistent Loop

The cross section of the gate-all-around device used in our simulation is shown

in Figure 2.3. The Silicon nanowire channel has a square cross section of 0.82

nm x 0.82 nm. Vie simulate 130 unit cells that is corresponding to the nanowire

{
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length of 50 nm. The gate length, Lg, is 10 nm and the gate oxide thickness,

tox, is 2 nm. The nanowire under the gate region (channel) is undoped and the

doped source and drain extension, Lus and LuD, is 20 nm each. The uniform

source-drain doping concentration of 2 x 1020 cm-3 is assumed. The gate oxide

is Si02 with dielectric constant of 3.9. The' channel has a band gap of 2.88 ev.

For decent values of drain current, the gate metal-semiconductor work function

difference, <Pm$> of 1.0 ev is used so that the zero gate bias potential barrier in

the channel becomes approximately equal to the supply voltage. The simulation

model uses a self-consistent solution between two dimensional (2D) electrostatics

and three dimensional (3D) charge density.

With gate voltage set to a particular value, we assume an initial guess of orbital

voltages. The orbital at the source region is assumed to have a voltage at Ej and

those at the drain region have Ej - VD. For gate region, the voltage is assumed

as Ej + Eg/2 - <Pm, and <Pm, is set to 1.0 ev to reduce the barrier height and get

a considerable amount of current. The initial guess of the potential distribution

will look like in Figure 2.4. RGFA will provide the charge density at each orbital.

The total charge of a particular atomic site is then calculated as the sum of all

the orbital charges divided by the volume of an atom. Then the charge density at

each atom is interpolated to find the density at poisson grid points.

Poisson equation is then solvedto get potential distribution from the calculated

charge density at poisson grid points using standard Newton-Rapshon method

with Anderson mixing [30]to accelerate convergence. Dirichlet boundary condition

is used on the gate metal. There the potential is fixed to Vcs - ific/q, where ific is

the gate metal work function. Von Neumann boundary conditions are used along

the exposed surface of the dielectric and at the doped source and drain contacts.

There, the normal component of electric field is set to zero, The axial grids are

taken at each atomic layer position. Potential obtained from Poisson solver at each

atomic layer is interpolated to the atomic sites of that layer. And the orbitals are
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Figure 2.4: The initial guess of the potential distribution for VG = O.

assumed to have the same potential as the atom they belong to. When we get the

converged potential profile, current is calculated from Equation 2.34.

2.7 Current Calculation Using Effective Mass Ap-
proximation

Instead of considering the atomic positions of the NW, we can visualize the

nanowire having several grid points within the NW and obtain the Hamiltonian by

discretizing the Schrodinger equation written in the cartesian co-ordinate. Hamil-

tonian thus formed can be used in the RGFA algorithm in the same way as the

atomistic Hamiltonian was. But the dimension of the latter is much shorter and

the computation time will be dramatically reduced. But the reliability will in-

evitably be reduced for small dimension NW when the atomistic approach will be

the only option. Next we describe how the Schrodinger equation was discretized.

I
I,
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The Schrodinger equation in 3D cartesian coordinates is

. 1i2 [8 ( 1 81/;) 8 ( 1 81/;) . 8 ( 1 81/;)]
-2 8x m" 8x + 8y my 8y + 8z Tn,z 8z = E1/;

(2.49)

where 1/; is the wave function, mx, my, and mz are the effective masses in

device coordinates, and Ii, is the reduced Planck's constant. The nanowire is

grown in (100) direction, which is device x coordinate in our study, Ballistic

transport is assumed and recursive Green's function algorithm (RGFA) [25] is

used to solve Schrodinger equation for charge density and current calculations,

The open boundary condition in transport direction (x) is included in Schrodinger

equation via self-energymatrices and hard-wall boundary condition is used in the

transverse directions (y and z), The Schrodinger equation is discretized using

finite differencemethod and it becomes

where,

(2,51)

Here 6.x, 6.y, 6.z are the grid spacing in x, y and z direction respectively and

i= 1,2, j = 1,2,3, """"Ny, k = 1,2,3, """"Nz where Ny and Nz are the number

of grid points in y, and z direction respectively, For RGFA, the layer (cross-section)

Hamiltonian and layer-to-layer coupling matrices are calculated from discretized

Schrodinger equation, The left hand side of the Schrodinger equation can be

represented in matrix form as

(
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hoo

D=

hl1

Where hOD and hll are the layer hamiltonian and to! and tlO are the layer to

layer coupling matrix. From the hamiltonian we generate t.he right. connect.ed

Green function.

(,



Chapter 3

Results and Discussions

3.1 Electronic Properties of Silicon Nanowire

The electronic properties, namely the band structure, the bandgap, and the elec-

tron effectivemasses of SiNWs are studied in this section. The SiNWs used in

this study are grown in <100> and <110> directions. During nanowire growth,

the bulk bond length is assumed and the dangling bonds are passivated with hy-

drogen atoms. The cross sections of <100> and <110> SiNWs are shown in

Figure 3.1. The gray atoms are Silicon and the black atoms are hydrogen. The

nanowire growth direction is x, which is into (or out of) the paper. The y and z

directions are < 010 > and <001>, respectively for the <100> wires, and <110>

and <001>, respectively for the <110> wires. The cross section of <100> wire

looks rectangular. The unit cell is 0.543 nm long and has 4 atomic layers. The

<110> nanowire looks hexagonal. It has 2 atomic layers in a 0.384 nm unit cell.

The calculated band structure of <100> and <110> wires are shown in Figure

3.2 and 3.3, respectively. The cross section of <100> wire is 3.295 nm x 3.295

nm, and that of <UO> wire is 3.508nm x 3.508 nm. Both the wires show direct

band gap. The bulk Siliconis an indirect band gap material with conduction band

minima at 0.832 x 21r / a in the D.direction. The conduction band minima of bulk

Silicon have six equivalent D. valleys. For nanowire grown in <100> direction,

four of the six equivalent D. valleys (i.e., [0:1:10] and [00:1:1]) are projected to

20



21

Figure 3.1: The cross sections of (a) <100> and (b) <110> nanowires. The gray
atoms are Silicon and the black atoms are hydrogen.
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the r point in the one dimensional Brilluoin zone to form the conduction band

edge. The other two Ll. valleys (i.e., [:!:l00]) are zone folded to the points kx =

::1:0.355x 7r/a in the wire Brilluoin zone. In Figure 3.2, we see that the four bands

are degenerate at r point. However,they split due to quantization effects for NWs

with smaller cross section, and this feature has been observed before (Figure l(a)

of Reference [8]). Two unprimed bulk valleys are projected at r point to form the

conduction band edge in <110> wire as shown in Figure 3.3. The valley splitting

at the conduction band minimum (r point) is not observed here. Our simulation

shows that the valley splitting becomes significant for wire width < 2 nm (results

are not shown here). This observation matches with the results reported in [13].

A second valley is observed at kx "" 0.8h /a, and the splitting between these two

valleys is "" 65 meV. This splitting increases for smaller wire and the second valley

slightly moves from kx "" 0.8h/a. Note that a is the unit cell length, and it is

0.543 nm for the <100> wires and 0.384 nm for the <110> wires.

The band gap Eg versus the wire dimension for both the <100> and <110>

wires are shown in Figure 3.4.
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Figure 3.4: The band gap versus wire dimension for the (a) <100> and (b) <110>
wires. The solid lines are calculated from the sp3d5s' orbital basis and the dashed
lines are fitting to analytic expression.
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The band gap falls rapidly with wire dimension for smaller cross sections and

then slowly approaches the bulk value. At the same cross section, the <100>

wire has larger band gap compared to the <110> wire. The band gap for both

the wires are fitted to the analytic expression Al + A>lW and are shown as the

dashed lines in Figure 3.4. Here W is the wire width in nanometer and the values

of fitting parameters Al and A2 are listed in the plots.

Next we parameterize the effective masses where the masses depend on the

wire dimensions. The electron effective masses for unprimed valleys rnM at r
point and for the primed valleys rn"'2 at kx = 0.355 x Kia for the <100> wires are

shown in Figure 3.5 as a function of wire width. The effective mass is calculated

from

1 1 [J2E
=

rn* li2 ok2
x

1 E_ - 2Eo + E+
li2 (6kx)2

(3.1)

where Eo is the energy at the bottom of a conduction band valley and E+ and

E_ are the energies at c:l:6kx from the valley, respectively. We use a 6kx value of

(0.005) x Kia for effective mass calculation. Note that the bulk effective masses

calculated by Boykin [24]' from where the energy integral values are taken, uses a

modified k.p method and incomplete eigen state basis. The modified k-p method

and the text book formula (Equation 3.1), however, have excellent agreement [31]'

and we, therefore, use the textbook formula for simplicity. The curvature of band

at the valleys increases with wire width, and therefore, the effective masses, m"'4

and m"'2, decrease with wire width and approach the bulk values of 0.201mo and

.0.89rno [24]' respectively. The effective mass values at r point, rnM, match with

published values, Figure 3(b) of [13]' Figure 2 of [17]' Figure 5(a) of [12]' and

Figure 8(b) of [16]. However, our mM is numerically larger compared to the mM

calculated for <001> wires by Zheng et at., Figure 6(a) of [11]. For example, rnM

is "" 0.376rno for 2 nm wire in our calculation, and this value is "" 0.3rno for 2

nm wire in [11}. In our simulation results (not shown here), we notice that the

62 valley does not appear for nanowires of smaller dimension. This observation



27

0.40
wire <100> (a)

mA4_fil= ~+A./W-0 ~ = 0.1484E 0.30-..• ~ = 0.4623E<l
0.25 mA4

........ m
A4_fit

0.20
1.10 wire <100> (b

mAUl = ~+A./W
- ~ = 0.81630.s 1.00 ~ = 0.5425
NE<l
0.95

mAl
........ m

0.90 A2_fit ...

2 3 4 5 6 7
wire width, W (nm)

Figure 3.5: The electron effectivemasses m/14 and mil.2 versus wire dimension for
the <100> wires. The solid lines are calculated from the sp3d5s' orbital basis and
the dotted lines are fitting to analytic expression.
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matches with Figure l(a) of [8]' Figure 2(a) of [16]' and Figure 3(a) of [12]. We

fitted the effective masses, mM and m1l.2, to the analytic expression A, + A2/W,
where W is the wire width in nm. 'The fitted values are shown in Figure 3.5 as

the dotted lines. The fitting parameters are A, = 0.1484 and A2 = 0.4623 nm-'
for mM and A, = 0.8163 and A2 = 0.5425 nrn-' for m1l.2, respectively.

The effective masses for <110> wire are shown in Figure 3.6. Here m, is the

effective mass at the r point of the 1D Brilluoin zone of the nanowire and Tn2

is the effectivemass at the second valley as shown in the band structure plots of

Figure 3.3 at kx = 0.8l1r/ a. m2 decreases with wire width and approaches the bulk
value as mM and mll.2 of <100> wire. However,m, increases with wire width and

approaches the bulk value. The increase ofm, with wire width can be understood
from the E-k plots as shown in Figure 3.6(c). The plots are the E-k near r point
for two different wire widths. Note that the bottoms of the conduction bands for

the two wires are not at the same energy. They have been shifted for comparison.

From the E-k plots, we see that the curvature of the conduction band near the

r point of the < 110> wire decreases with wire width that results in increase in
the effectivemass (see Equation (3.1)). The masses are also fitted to the analytic

expressionm' = A, +AdW and are shown in Figure 3.6 (a) and (b) as the dotted

lines. The values of A, and A2 are also listed there.

3.2 Effects of Cross-Sectional Shape on the Elec-
tronic Properties

Figure 3.7 shows the bandstructure for three different cross-sectional shapes while

keeping the cross-section area same at 2.65nm2 Figure 3.8(a) shows the variation

of band gap with dimension. The band gap increases with decreasing cross-section

area as a result of quantum confinement. For large wires, the bandgap equals

that of bulk Silicon (1.13ev). When plotted against dimension, square nanowires

exhibit lowest band gaps and the bandgap for the triangular wire is the highest. But
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Figure 3.9: Effect ofwire cross-section area on 64 and 62 conduction band valleys,
(a) Variation of forth highest conduction band energy at 64 valley taking the
lowest energy as reference, (b) Splitting of 64 and 62 valleys.

this dissimilarity is not for wire shape, because the triangular wire with dimension

D has an area of 0.433D2, which is 43.3% of the square wire area (D2) having

the same dimension D. This fact is clear when we plot the bandgap against cross-

section area, the bandgap for all shapes are remarkably similar (Figure 3.8 (b)).

This reveals that the energy gap simply depends on the wire cross-section area,

not on the shape.

The conduction band degeneracy at the r point for <100> wire is considered

next (Figure 3.9 (a)). The forth highest band is plotted taking the lowest con-

duction band as reference. The four valley degeneracy is almost similar for square

and circular wires, while the valleys are less degenerate for triangular wire. As the
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Figure 3.10: Effect of wire area on the splitting of the three highest valence bands
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EVa with respect to EVl'

cross-section area is increased, the separation between t,.4 and t,.2 valley energies

is decreased (Figure 3.9 (b)). This energy difference is lowest for square wire and

highest for triangular wire. Figure 3.10 shows the effect of quantum confinement

on the three highest valence bands. The second and third highest valence bands

are plotted taking the topmost valence band as reference. Here the valence band

splitting is lowest for circular wire. Splitting for triangular wire is less than that of

square wire at lower area(< 12.0nm2) after which it is similar for both the wires.

Next we calculate effectivemasses at t,.4 and t,.2 valleys for <100> oriented

nanowires. The effective mass at t,.4 valley decreases with wire area and ap-

proaches the bulk Si transverse electron effectivemass of 0.20*moas area is in-
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Figure 3.11: Electron effectivemass for <100> wire at (a) ll.4valley (b) ll.2valley
versus area.

creased as shown in Figure 3.11. At ll.4valley effectivemass is highest for square

wire and that of triangular wire is the lowest. m: at ll.2valley is lowest for circu-

lar wire while that of the other two are almost similar. m: at ll.2 valley reaches

the bulk Si longitudinal electron effectivemass of 0.89mo for large wires (>6nm).
Electron effectivemass at the r point for <110> wirem) is shown in Figure 3.12

(a). With dimension, m) increases until it reaches the bulk value (0.20'mo). Again

the triangular wires show lower values than the other two wires. Figure 3.12 (b)

shows the electron effectivemass m2 at :1:0.81x 7f / a. It decreases with wire area

and reaches a steady value of 0.55'mo for large wires. Then we calculate hole

effectivemass for the highest valence band for <100> wire. Figure 3.13 shows

the variation of hole effective mass. For triangular wire, hole effective mass is

I
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"

approximately two times larger than that of the bulk Si heavy hole at large di-

mension. It reaches a value of -0.5mti for cross-section area> 20nm2 For square

and circular wires, hole effectivemasses are much heavier (atleast five time than

the bulk value). m~ is highest (magnitude only) for circular wire. For reference,

the bulk Si valence band <100> effectivemass is mhh = -0.276mo.

3.3 1-V Response of the SiNWFET

In this section wecalculate the current-voltage characteristics of a SiNWFET using

sp3d5s* orbital basis with <110> wire as the channel materia!. We next evaluate

the performance metrics of the transistor and compare the full band current-

voltage characteristics with the I-V calculated from the parameterized nanowire

effectivemass Hamiltonian.

The simulated full band (sp3d5 s* orbital basis) In versus Vas characteristics

are shown in Figure 3.14, both in log and linear scales. The drain voltage is 0.5 V

and the gate bias ranges from 0.0 V to 0.5 V. The device has a threshold voltage

of "" 0.3 V and the on/off current ratio of 1.8 x 107. The inverse subthreshold

slope is "" 60 mV/ dec.
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Figure 3.14: Simulated ID versus VGS plots. The solid lines are full band calcu-
lation and the dashed lines are calculated from nanowire confined effective mass
model. The nanowire is <110> with cross section of 0.82 nm x 0.82 nm.

To understand the transport physics, we plot, in Figure 3.15, the energy band

diagrams in both off (VGS = 0.0 V & VDS = 0.5 V) and on (VGS = 0.5 V & VDS

= 0.5 V) states superimposed on the energy distribution of current. The source

Fermi level is at 0.0 ev and the drain Fermi level is set to -0.5 ev. Note that

the valence bands are not shown because the current through the valence bands

is zero. The current has both the tunneling and the thermal components. The

thermal component of the current can be evaluated by integrating J from the top

of the conduction band to 00, and the tunneling component can be evaluated by

integrating J from -00 to the top of the conduction band. The off state current

has about 38% tunneling and 62% thermal currents and the on state current has

about 50% tunneling and 50% thermal components. We observe that the current

density, J, has a peak at an energy slightly below the top of the conduction band

in the on state and slightly above the top of the conduction band in the off state.

Next we numerically calculate the figures of merit, namely the gate capaci-

tance eg, the transconductance gm, the intrinsic switching delay TS, and the unity

current gain frequency h. The gate capacitance is calculated from the electric
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Figure 3.15: The conduction bands superimposed on the energy distribution of
current in both (a) off-state and (b) on-state. The solid lines are full band calcn-
lation and the dashed lines are calculated from nanowire confined effectivemass
model.
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Figure 3.16: The gate capacitance, the transconductance, the switching delay, and
the unity current gain frequency versus gate bias. The drain to source bias is fixed
to 0.5 V:

flux density vector normal to the gate metal surface

fn
Lg oDT [tox~ex oDz

Cg = 21fR dz nr + 21f -cdr nr .
. 0 UVg ,to", UVg

(3.2)

The first integral is over the length of the gate along the bottom of the gate

metal. The second integral is over the two sides of the gate metal. Equation (3.2)

gives the total gate capacitance, C9 = C9, + Cgd which includes the effect of the

quantum capacitance and the fringing fields directly from the gate metal to the

source and drain. The transconductance 9m is calculated from 9m = iJID/iJVas,

the intrinsic gate delay 78 from 7S = CgVDD/IoN, and the intrinsic unity current

gain frequency h from h = 9m/21fCg' Here VDD is 0.5 V in our study and ION

is the on state current.

The gate capacitance, the transconductance, the intrinsic switching delay, and

the intrinsic unity current gain frequency are shown in Figure 3.16. The gate

capacitance is very small in the atto Farad range due to low gate dielectric Si02.

The switching delay is in the fraction of picosecond and the intrinsic unity current

gain frequency is in tera Hertz. The on state transconductance value is "" 18 f.'S.

Finally we self-consistently calculate the I-V using the effective masses ex-
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lation and the dotted lines are calculated from nanowire confined effective mass
model. The nanowire is <110> with cross section of 1.2 nm x 1.2 nm.

tracted from the band structure. The simulated current is shown in Figure 3.14

as the dashed lines in both log and linear scales. The effectivemass model over-

estimates the current. This overestimation is larger in the off state and almost

negligible in the on state. The reason can be explained from the band profiles

superimposed on the energy distribution of current as shown in Figure 3.15 as the

dashed lines. The thermal current is same, however, the tunneling current is over-

estimated by the nanowire confined effectivemass model and this overestimation

is larger in off state. This is because the tunnel barrier shape is almost similar for

both the full band and the nanowire effectivemass models in the on-state. The

mismatch in the calculated I-V from the full band and nanowire effective mass

models is noticeable for this small wire 0.82 nm x 0.82 nm. This mismatch is

expected to improve for relatively thicker wires. This is indeed the case. The sim-

ulated full band and nanowire effectivemass I-V characteristics for 1.2 nm x 1.2

nm wire are shown in Figure 3.17. The calculated I-V characteristics show very

good agreement. The full band and nanowire effectivemass models comparison is

not performed for wires> 1.2 nm due to computational resource limitation. The

reason that the nanowire effectivemass model shows excellent agreement with full

band calculations for wire width down to 1.2 nm can also be explained from a
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different viewpoint. The electron transport usually involves in the lowest 2 to 3

energy subbands, and the lowest three energy subbands calculated from nanowire

effective masses and sp3d5s' atomic orbital basis match exactly for wire width

down to 1.5 nm [32].



Chapter 4

Conclusions

Electronic properties of Silicon nanowires are observed for different crystal orien-

tation, cross-sectional size and shape using nearest neighbor sp3d5 s' atomic orbital

basis with emprirical tight binding parameters. Band gap and effectivemass show

strong variations as a result of quantum confinement and they also vary with crys-

tal orientation. Cross-sectional shape has its effect on effectivemass and triangular

wires have the lowest effective mass compared with the other shapes. Then full

band simulation of a Silicon nanowire field effect transistor is performed using

the same basis and the performance metrics is evaluated. The current is also cal-

culated self-consistently from the nanowire confined effective mass model and is

compared to full band calculation. The effective mass calculation is reasonably

accurate for nanowire with >1.2. The thermal component of current is same,

however, the tunneling current is overestimated by the effective mass model for

smaller dimension. The nanowire effectivemass model is facilitated by calculating

the band gap and electron effectivemasses using sp3d6s' atomic orbital basis and

by fitting them to analytic expression.

4.1 Suggestions for Future Work

Calculating the I-V response from the full band hamiltonian requires significant

amount of time. An efficientalgorithm whichwillboth be computationally efficient
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and reliable even at lower dimensions is thus required. It can be achieved by

combining both effectivemass and atomistic approach.

Strain engineering has been one of the most useful techniques to improve de-

vice performance for conventional MOSFETs. For NWs too, strain can be used

to modify the band gap and effectivemass of the material and thus device perfor-

mance can be enhanced. A comprehensive treatment of strain on NWs and the

resulted device performance is still missing in the literature.
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Appendix A

Energy Integrals for Crystal in terms of Two-Center Integrals!

E", = (SSIT)

E"" = (ss'IT)

E",s = (ss'IT)

E"x = l(spIT)

Ex,s = (-1) x l(spIT)

E"y = m(spIT)

Ey" = (-1) x m(spIT) .

Es,z = n(spIT)

Ez,s = (-1) x n(spIT)

E"xy = V31m(sdIT)

Exy" = V31m(sdIT)

Es,yz = V3mn(sdIT)

Eyz" = V3mn(sdIT)

Es,zx = V3nl(sdlT)

Ezx" = V3nl(sdIT)

Es,x2-y2 = ~V3W- m2)(sdIT)

Ex2-y2,s = ~V3(12 - m2)(sdIT)

E,,3z2-r2 = [n2 - ~(12 + m2)](sdIT)

E3z2-r2,s = [n2 - ~W+ m2)](sdIT)

1A limited version is provided in Ref. [23] and the rest are derived.
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Es<,x = l(s*piJ)

Ex,s< = (-1) x l(s*pa)

Es<,y = m(s'pa)

Ey,s< = (-1) x m(s'pa)

Es<,z = n(s*pa)

Ez,," = (-1) x n(s'pa)

Es<,xy = V31m(s*da)

Exy,s< = V31m(s'da)

Es<,yz = V3mn(s*da)

Eyz,s< = V3mn( s*da)

Es<,zx = V3nl(s'da)

Ezx,s< = V3nl(s*da)

Es*,x2-y2 = !V3(12 - m2)(s'da)

Ex2-y2,s* = !V3(12 - m2)(s'da)

Es<,3z2-r2 = [n2 - !(l2 + m2)](s*da)

E3z2-r2,s< = [n2 - !(l2 + m2)](s'da)

Ex,x = 12(ppa) + (1 -12)(pp1r)

Ex,y = lm[(ppa) - (pp1r)]

Ey,x = lm[(ppa) - (pp1r)]

Ex,z = In[(ppa) - (pp1r)]

Ez,x = In[(ppa) - (Pp7r)]

Ex,xy = V312m(pda) + m(l - 212) (pd1r)

Exy,x = (-1) x [V3Fm(pda) +m(l- 2F)(pd1r)]

Ex,yz = V31mn(pda) - 21mn(pd1r)

Eyx,x = (-1) x [V31mn(pda) - 21mn(pd1r)]
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Ex,zx= V312n(pdIJ) + n(l - 212) (pd7r)

Ezx,x = (-1) x [V312n(pdIJ) + n(l - 212) (pd7r)]

Ex,x2-y2 = ~V31(12 - m2)(pdIJ) + 1(1 _12 + m2)(pd7r)

Ex2-y2,x = (-1) x [~V31W - m2)(pdIJ) + 1(1 - 12 + m2)(pd7r)]

Ex,3z2-r2 = l(n2 - ~W+ m2)) (pdIJ) - V31n2(pd7r)

E3z2-r2,x = (-1) x [1(n2 - ~W+ m2))(pdIJ) - V31n2(pd7r)]

Ey,y = m2(ppIJ) + (1 - rn2)(pp7r)

Ey,z = mn[(ppIJ) - (pp7r)]

Ez,y = mn[(ppIJ) - (pp7r)]

Ey,xy = V31m2(pda) + 1(1 - 2m2)(pd7r)

Exy,y= (-1) x [V31m2(pdIJ) + 1(1 - 2m2) (pd7r)]

Ey,yz = V3m2n(pdIJ) + n(l - 2m2) (pd7r)

Eyz,y = (-1) x [V3m2n(pdIJ) + n(l- 2m2) (pd7r)]

Ey,zx = V31mn(pdIJ) - 21mn(pd7r)

Ezx,y = (-1) x [V31mn(pdIJ) - 21rnn(pd7r) I
Ey,x2-y2 = ~V3m(12 - m2)(pdIJ) - m(l + 12 - m2)(pd7r)

Ez2-y2,y = (-1) x [~V3m(12 - m2)(pdIJ) - m(l + 12 - m2)(pd7r)]

Ey,3z2-r2 = m(n2 - ~(12 + m2))(pdIJ) - V3mn2(pd7r))

E3z2-r2,y = (-1) x [m(n2 - ~W+ m2)) (pdIJ) - V3mn2(pd7r)]

Ez,z = n2(ppIJ) + (1 - n2)(pp7r)

Ez,xy = V31mn(pdIJ) - 21mn(pd7r)

Exy,z = (-1) x [V31mn(pdIJ) - 2Imn(pd7r)]

Ez,yz = V3n2m(pda) + m(l - 2n2) (pd7r)

Eyz,z = (-1) x [V3n2m(pdIJ) + m(l - 2n2)(pd7r)]

Ez,zx = V3n21(pdIJ) + 1(1 - 2n2) (pd7r)

Ezx,z = (-1) x [V3n21(pdIJ) + 1(1- 2n2) (pd7r)]
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Ez,x2-y2 = !V3n(z2 - m2)(prlcr) - n(l2 - m2)(prl'Jr)

Ex2-y2,z = (-1) x [!V3n(12 - m2)(prlcr) - n(12 - m2)(prl'Jr)]

Ez,3z2-r2 = n(n2 - !(12 + m2))(prlcr) + V3n(12 + m2)(prl'Jr)

E3z2-r2,z = (-1) x [n(n2 - HZ2 + m2)) (prlcr) + V3n(12 + m2)(prl'Jr)]

Exy,xy = 312m2(rlrlcr) + W + m2 - 412m2) (rlrl'Jr)+ (n2 + 12rn2)(rlrl8)

Exy,yz = 31m2n(rlrlcr) + In(l - 4m2)(rlrl'Jr) + In(m2 - 1)(rlrl8)

Eyz,xy = 31m2n(rlrlcr) + In(l - 4m2) (rlrl'Jr)+ In(m2 - 1)(rlrl8)

Exy,zx = 3z2mn(rlrlcr) + mn(l - 412)(rlrl'Jr)+ mn(l2 - 1)(rlrl8)

Ezx,xy = 312mn(rlrlcr) + mn(l - 412)(rlrl'Jr)+ mnW - 1)(rlrl8)

Exy,x2-y2 = ~lmW - m2)(rlrlcr) + 21m(m2 -12)(rlrl'Jr) + !lm(l2 - m2)(rlrl8)

Ex2-y2,xy = ~lmW - m2)(rlrlcr) + 21m(m2 -12)(rlrl'Jr) + !lm(12 - m2)(rlrl8)

Exy,3z2-r2 = V31m[n2 - !W + m2)] (rlrlcr) - 2V3lrnn2(rlrl'Jr) + ~V31m(1+ n2)(rlrl8)

E3z2-r2,xy = V31m[n2 - ~W+ m2)] (rlrlcr) - 2V3lmn2(rlrl'Jr) + ~V31m(1+ (2)(rlrl8)

Eyz,yz = 3n2m2(rldcr) + (n2 + m2 - 4n2m2) (dd'Jr) + (12+ n2m2)(dd8)

Eyz,zx = 31mn2(ddcr) + ml(l - 4n2) (dd'Jr) + ml(n2 - 1)(dd8)

Ezx,yz = 31mn2(rlrlcr) +ml(l - 4n2) (dd'Jr) + ml(n2 - 1)(dd8)

Eyz,x2-y2 = ~mn(12 _m2) (rldcr) -mn[l +2(z2 -rn2)](dd'Jr) +mn[l + ~(12 -m2)](dd8)

Ex2-y2,yz = ~mn(12 _m2) (ddcr) -mn[l +2W -m2)](dd'Jr) +mn[l + HZ2 -m2)](rlrl8)

Eyz,3z2-r2 = V3mn[n2- !W+m2)](ddcr) +V3mn(12+m2 _n2) (rld'Jr)- ~V3mn(12+

m2)(dd8)

E3z2-r2,yz = V3mn[n2- !W+m2)](ddcr)+V3mn(12 +m2 -n2)(dd'Jr) - ~V3mnW+

m2)(dd8)

Ezx,zx = 3n212(ddcr) + (n2 + 12 - 4(212)(dd'Jr) + (m2 + (212)(dd8)

Ezx,x2-y2 = ~nl(12 - m2)(ddcr) + nl[l - 2(12 - m2)](dd'Jr) - nl[l - Hl2 - m2)](dd8)

Ex2-y2,zx = ~nl(12 - m2)(ddcr) + nl[l- 2W - m2)](dd'Jr) - nl[l - ~(z2 - m2)](dd8)
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Ezz,3z2-r2 = V3ln[n2 - ~W+ m2)](dda) + V3lnW + m2 - n2)(Mrr) - ~V3ln(12 +
m2)(ddo)

E3z2-r2,zx = V3ln[n2 - ~W+ m2)](dda) + V3ln(l2 +m2 - n2)(Mrr) - ~V3ln(12 +
m2)(ddo)

Ez2-y2,x2-y2 = ~W-m2)2(dda)+ [12+m2_ (12-m2)2](dd1r)+ [n2+ ~(12-m2)2](ddo)

Ez2-y2,3z2-r2 = ~V3W_m2)[n2 - ~W+m2)](dda) +V3n2(m2 -t2)(dd1r) +~V3(1+
n2)(12 - (2)(ddo)

E3z2-r2,z2-y2 = ~V3W_(2)[n2 - ~W+m2)](dda)+V3n2(m2 -12)(dd1r)+ ~V3(1+
n2)W - m2)(ddo)



Appendix B

Empirical Tight-Binding Parameters for Silicon (same-site and two-

center integrals) in the Slater-Koster notation2

E, =-2.15168

Ep = 4.22925

E,. = 19.11650

Ed = 13.78950

E"a = -1.95933

E"s<a = -4.24135

Es,.a = -1.52230

Esp" = 3.02562

E,.pa = 3.15565

Esda = -2.28485

E,.da = -0.80993

Eppa = 4.10364

E_ = -1.51801

Epda = -1.35554

Epd~ = 2.38479

Edda = -1.68136

Edd~ = 2.58880

2Taken from [241
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Edd8 = -1.81400

Eshsa = -3.999720

EshsM = -1.697700

Eshpa = 4.251750

Eshdn = -2.105520
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Appendix C

Flow chart: The flow chart of the algorithm of self-consistent loop is shown in

the next page.
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Get the atomistic
Hamiltonian and set Vg
at a particular value

Initial guess of
vorbital and vgTid

Charge at
each orbital

Charge density at
each atom = sum of
charges of all the

orbitals of
an atom I volume of the atom

Charge density at
poisson grids

Voltage at
poisson grids

Voltage at
each atom
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Assign the voltage
of each atom to
all its orbitals

y

Calculate current
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