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Abstract

A C-testable and easily synthesizable MXN bit carry save array multiplier architecture is

developed using Very High Speed Integrated Circuit Hardware Description

Language(VHDL). The architecture is translated in efficient VHDL code and the

designed hardware code can be used as an Intellectual Property (IP) core in designing

VLSI system on a chip.

The basic cell of the multiplier has four inputs. So we can test the cell with sixteen input

combinations. In order to minimize the test pattern (input combinations) special care is

taken during multiplier testing. We can divide the testing scheme into two parts. Basic

cell consists ofa full adder with an AND gate. At first AND gate is tested which needed

four test patterns. Then keeping AND gate output '0' applying various combinations of

c,d and keeping AND gate out']' applying various combinations of c,d we need another

four test patterns. Out of these twelve test patterns two test patterns are cornmon. With

the remaining ten test patterns multiplier is C- testable.

Moreover the test pins Dodd, Deven, Codd, Ceven, Dia_odd, Dia_even, FA_x, FA_Cin,

Test are fixed, don't vary with the operand sizes. '0' is given to these input pins during

multiplications. Care is taken to minimize the total numbers of test pins. For

multiplications of signed numbers the result will be in twos complement form.
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Chapter-I

Introduction

1.1 Motivation

The advancement of Very Large Scale Integration (VLSI) technology has made it

possible to build System on a Chip (SOC). Multipliers are one of the key elements in

single chip Digital Signal Processor, microcontroller, microprocessor etc [1]-[4].

Depending upon application, these SOC devices need multiplier with various operand

sizes. It is desirable that the design of the various components of SOC devices such as the

multiplier should be reusable in order to reduce the design cycle of the chip. Array

multiplier due to their high regularity, are efficiently designed as parts of complex VLSI

devices [5]. However due to the increasing complexity of VLSI circuits, it is becoming

more and more difficult and costly to test them [6]-[7].Specially the embedded

multipliers in SOC devices have low controllability and observability, making the use of

appropriate testing scheme a necessity. Some work on C-testable array multiplier has

been done in the past [8]. However to make the design reusable it is necessary to use

process independent design approach. It is also desirable that the design should be

parameterizable such that multipliers of arbitrary operand size could be designed without

any external effort. The design core should also be generalized such that both signed and

unsigned multiplication can be accomplished.



1.2 Objective

The objective of this work is to design an easily testable and parameterizable Carry save

array multiplier using Very High Speed Integrated Circuit Hardware Description

Language(VHDL). Because of parameterizable approach the design code could be

executed for any number of arrays (operands) and this property will make the multiplier

code reusable. Also process independent design approach will be ensured by VHDL

based design approach. The designed multiplier would be exhaustively testable for single

stuck-at fault with fixed number of test patterns irrespective of its size with minimum

number pf additional pin added. It will also be able to perform multiplication for both

signed and unsigned multiplicand and multiplier.
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Chapter-2

Issues in VLSI Design

2.1 Test and testability

Once we have designed our logic, we must develop tests to allow manufacturing to

separate faulty chips from good ones. A fault is a manifestation of a manufacturing

defect; fault may be caused by small imperfections in starting material, processing steps,

or in photo masking which may results in bridged connections or missing features. It is

the aim of test procedure to determine the fault as early as possible. Testing a chip can

occur:

• at the wafer level.

• at the packaged chip level.

• at the board level.

• at the system level.

• in the field .

By detecting a malfunctioning chip at an earlier level, the manufacturing cost may be

kept low. A relationship, known as 'the rule often', tends to apply as far as test costs are

concerned. This rule is concisely put as follows:

If the chip test cost = $x, then once that chip is soldered into a p.c. board with other

components, test cost rises to $lOx. Further, once that board is integrated into a

system/equipment, then the cost escalates by a further factor of ten results in test cost of

3



;lOOx. Finally, a factor which is often overlooked is that test cost may escalate by a

'urther factor of ten when the equipment is in service in the field. It is thus essential to

.est at the chip level as comprehensively as possible. Design of testability (DFT) is an

-essential part of good design. The requirements of testing must be considered at the

outset and a satisfactory and sufficient measure of testability built into the architecture.

2.2 Benefits oftestability
The time and money saved by designing for testability are the obvious major advantages -

_the more efficiently and accurately we test the more profitable the product but there are

many other advantages as well.

Designing for testability:

• Reduces the time required to pass the design to manufacturing

• Lowers the cost of manufacturing

• Minimizes the design engineer's involvement in production set up

• Improves cross-functional communication and cooperation between

design, engineering, and manufacturing.

• Lowers both initial and life cycle costs

• Decreases test times and virtually eliminate harrowing production delays

• Guarantees more efficient diagnosis and repair in the field

• Provides more accurate diagnostics to the part and pin level

4



2.3An overview ofVLSI testing

The role of testing in the VLSI device realization process is illustrated in fig2.I. Test

planning begins with specifications. Device specifications include functional (input-

output behavior, frequency, timing, etc.), environmental (power, temperature, humidity,

noise, etc.), and reliability (incoming quality, failure rate, etc.) specifications.

Device specification
I

Test plan gen Architectural Design-

+
Logic synthesis

l
Testability analysis

+
Physical design

Test programming ~

Fabrication

••
Testing

~

VLSI devices

Fig.2.1 Test functions in VLSI device realization
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Test activities are interwoven with design. Architectural design consists of portioning of

the VLSI chip into realizable functional blocks. The next step, logic design, includes

several test activities. Either the logic should be synthesized in a testable form, or the

synthesized logic should be analyzed (and improved) for testability

After logic synthesis, test vectors are generated and evaluated for their effectiveness. The

next test activity takes place after physical design (layout, timing verification, mask

generation) and fabrication (wafer processing). Using test specifications and test vectors,

we can develop a test program for the test equipment to be employed.

2.4 Method of testing

Testing in the digital systems is defined by the process by which a defect of a system can

be exposed. The defect can occur at time of manufacture or when the system is in the

field.

TEST
VECTORS .I__ D_U_T --- •• RESPONSE

Fig: 2.2 Testing of a device

To find the actual fault in the device, a device under test (OUT) is shown above. Here test

vectors are applied to the device. The resulting response is monitored and compared with

the expected response. If we have the knowledge of correct response then we can know

that the device under test has a defect or not.
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2.5 Types of testing

Tests may fall into two main categories:

2.5.1 Functionality test

These tests assert that all the gates in the chip, acting together to achieve the desired

function. These tests are usually used early in the designed cycle to verify the

functionality of the circuit. Functionality tests are usually the first tests a designer might

construct as part of the design process. Does this adder add? Does this counter count?

Does this state-machine yield the right outputs at the right clock cycles?

For the most systems, functionality tests involve proving that the circuit is functionally

equivalent to some specification. That specification might be a verbal description, a

plain-language textual specification, a description in some high level computer language

or in a hardware-description language such as VHDL, Verilog, or simply a table of inputs

and required outputs. Functional equivalence involves running a simulator at some level

on the two descriptions of the chip (say, one at the gate level and one at functional level)

and ensuring for all inputs applied that outputs are equivalent at some convenient check-

points in time. The most det,ailed check might be on a cycle-by-cycle basis.

Functional equivalence may be carried out at various level of design hierarchy. If the

description is in a behavioral language, the behavior at a system level may be verifiable.

For instance, in the case of microprocessor, the operating system might be booted and

key program might be run for the behavioral description. However, this might be

impractical (due to long simulation times) for a gate level model and extremely

impractical for a transistor level model. The way out of this impasse is to use the

hierarchy inherent within a system to verify chips and modules within chips. That,
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combined with well-defined modular interfaces, goes a long way in increasing the

likelihood that a system composed of many VLSI chips will be first time functional.

2.5.2 Manufacturing test

These tests are used after the chip is manufactured to verify the function of the chiP. as a

whole. It verifies that every gate and register in the chip functions correctly. The need to

do this arises from a number of manufacturing defects that might occur during chip

fabrication or during accelerated life testing (where the chip is stressed by over-voltage

and over-temperature operation). Typical defects include:

• layer-to-layer shorts(i.e. metal to metal).

• discontinuous wires(i.e. metal thins when crossmg vertical topology

jumps).

• thin-oxide shorts to substrate or well.

These in turn lead to particular circuit maladies, including:

• nodes shorted to power or ground.

• nodes shorted to each other.

• inputs floating/outputs disconnected.

Test is required to verify that each gate and register is operational and has not been

compromised by a manufacturing defect. Tests are normally carried out at the wafer level

to cut out bad die, and then on the packaged parts.

Apart from the verification of internal gates, VO integrity IS also tested through

completing the following tests:

• VO-level test (i.e. checking the noise margin for TTL, ECL, or CMOS

VO pads).

• Speed test.
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• IDD test.

The last of the tests checks the leakage if the circuit is composed of complementary logic.

Any value markedly above the expected value for a given wafer tests may be done at high

speed or low speed due to possible power and ground bounce effects that may be present

in older testers.

In general, manufacturing-test generation assumes that the circuit/chip functions

correctly, and ways of exercising all gate inputs and of monitoring all gate outputs are

required.

2.6 System partitioning

The problems of testing, particularly at the prototype stage, are generally eased if the

system is sensibly partitioned into subsystems, each of which is as self-contained and

independent as possible. For production items, also, it helps greatly if the subsystems can

be checked out individually by providing the appropriate additional inlet/outlet pads for

the test purposes. The test requirements for exhaustive testing of large digital systems are

quite prohibitive if the system is tested as a whole.

2.7 Reset/Initialization

One simple but very effective aid to testing and testability is to design a reset facility into

all digital systems of any complexity. This has the considerable advantage if setting all

internal states to known values, and testing may then at least proceed from known

conditions.
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2.8 Design for testability

There are two key concepts to ensure that the designer considers the provision of means

of setting or resetting key nodes in the system and of observing. the response at key

points.

The effects of testability or lack of it are such that it has been predicted that testability

will soon become the main design criterion for VLSI circuits. The alternative is to save

area by ignoring testability, but the penalties are such that even for modest complexity

(i.e. 10,000 gates per chip) the test costs could rise by a factor of five to ten, compared

with the same system designed for testability. Given that test is already a significant

component of LSI chip costs, the effects will be quite dramatic and could well cause the

test costs to exceed all other production cost by significant factor.

The inputs to the DDT are subjected to a test pattern (or test vector) which supplies a set

of binary values, in combination and/or in sequence, to detect faults. The specification of

the test vector sequences must involve the designer, while the generation and application

of test patterns to a DDT are the problem faced by the test engineer. Test pattern

generation is assisted by using automatic test pattern generation (ATPG), but they are

complicated to use properly and ATPG costs tend to rise rapidly with the circuit size.

Once the application of a test pattern has revealed a fault, the process of diagnosis must

be invoked to localize the fault.

2.9 Different types of fault

We are starting with the assumption that logically, the system performs its desired

function, and that any faults occurring will be due to electrical problems associated with

one or more of its component parts.
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Two key concepts are of interest here, these are:

• Controllability

• Observability

During the design of a system, the designer must ensure that the test engineers have the

means to set or reset key nodes in the system, that is, to control them. Equally as

important is the requirement that the response to this control will be observable, that is,

that we will be able to see clearly the effects of the test patterns applied.

• Controllability - Being able to set up known internal states.

• Combinatorial Testability - Being able to generate all states to fully exercise

all combinations of circuit states.

• Observability - Being able to observe the effects of a state change as it occurs

(preferably at the system primary outputs).

A fault is an actual defect that occurs in the device. When the test vector is applied to

faulty device then incorrect response is produced. A fault may change the logic value

from 0 to I or vice versa is called "Logical fault n. On the other hand if the fault causes

some parameters of the circuit to change then it is termed as "Parametric fault".

A fault may also be categorized on the basis of duration for which it last. The categories

are:

2.9.1Transient

Transient fault exits for a small duration. This fault is dominant cause of system failure.

These type of fault is caused by -particle radiation, power supply fluctuation etc, but no

permanent damage is done by this fault. As it exists for short duration, it is difficult to

detect.

2.9.2 Intermittent
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These type of fault appears regularly but not present continuously. Environmental effects

like temperature and humidity variations cause this fault.

2.9.3 Permanent

If fault presents continuously. These faults are easy to detect. Shorts and opens of VLSI

circuits cause them.

2.10 Fault modeling

Failures may occur in VLSI chips throughout their life cycle. Failures are caused by

design errors, material defects, process defects, and extremes in operational environment,

deterioration due to length of operation or age, and so on. Phenomena causing failures

can be physical or chemical in nature. However, to analyze the faulty behavior and

develop techniques to detect and locate failures, we use abstract fault models. Fault

model allow cost-effective development of test stimuli that will identify failed chips and,

if necessary, diagnose the failure.

Fault models also limit the number of tests as opposed to applying all possible inputs.

Practical fault models depend upon the chip model, the technology, and, in some cases,

the particular phase in the life cycle of the chip where analysis is conducted. By the chip

we mean how the chip is described. Typically, one describes a VLSI chip at the following

levels: specification, behavioral, functional, logic, circuit and layout. The translation

between levels may be manual or automatic, but the complexity of the description grows

in details as we move specification towards layout. Some of the causes of faults, which

occur at any level, are errors in specification, errors in the translation from one level to

another, errors in the manufacturing process, or material failures. Fault model must

mimic the effects of these errors, yet they should easily analyzable. Compromises are

often necessary to balance the complexity of a fault model necessary for accuracy against
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the tractability of analysis. The guiding principle in arriving at a good compromise is to

model most probable failures. The percentage of chips found faulty in the field is used as

a measure to certify the adequacy of the fault model used in testing. In the sequel we will

describe several fault models currently in use.

2.10.1 Stuck-at-faults

The most commonly used fault model to represent failures in logic circuits is the stuck at

fault. A line in a logic circuit is an input or output oflogic gate, and by fault "line I stuck-

at-O" we mean that line I in the faulty circuit remains in the logic 0 state independent of

the input to the circuit.

Similarly when any line of the circuit is at I then that is called stuck-at-I fault. Another

class of faults is the transistor-stuck faults. A 'stuck on' fault in a transistor represents a

failure that causes the transistor to permanently turned on. A 'stuck open' fault represents

a failure causing the transistor to remain permanently in the open or off state.

Since the only thing the line fault needs is a logical model, and most digital circuits,

irrespective of the specific technology, can be modeled at this level, these faults are often

called logical faults or technology independent faults. In contrast, the transistor-stuck

faults are specific to the MOS technology and are often referred to as non-classical faults;

. stuck faults are regarded as the classical model.

2.10.2 Shorts and open

The diminishing feature size allows increased circuit density. Certain failures in high

density VLSI chips require fault models that are different from the stuck model. A short

or Bridging fault is defined as an electrical short circuit between two nodes that are

supposed to be electrically isolated. Actually a short fault causes thos':l two nodes to have

13



the same voltage at all times. An open fault represents a failure that causes a line or wire

in the circuit to be broken.

2.10.3 Delay fault

Even a circuit is free from all structural defects; it may not propagate a signal in the

proper time allowed. This is termed as delay fault. The voltage in the delay line could

either be slow-to-rise (STR) or slow-to-fall (STF). Two types of delay fault models are

generally used:

• Gate delay model

• Path delay model

In the Gate delay model, delay defects at the inputs or outputs of a gate. On the other

hand, the Path delay model models those defects which cause cumulative propagation

delays along the circuit path to exceed the specified value. Path delay model needs

increasing number of test generation and test generation time however gate delay model

does not have this problem.

2.10.4 Functional faults

It often happens to the user of a complex VLSI chip that he/she does not have access to a

detailed circuit or logic level description of the chip. In those situations, functional faults

that model failures at the register level or processor instruction level can be used. Such

model developed for microprocessors, have proved effective in deriving tests that cover a

high percentage of gate level stuck faults. Functional faults have also been used for

cellular logic arrays and sequential machines. For example, an m input cell in a logic

array may be assumed to realize any other m-input function, or the state table of a

sequential machine is assumed to have an erroneous entries.

14
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Multiplier Algorithm and Architecture

3.1 Introduction

Multiplier design starts with the elementary school algorithm for multiplication. At each

step, we multiply one digit of the multiplier by the full multiplicand; we add the result,

shifted by the proper number of bits, to the partial product. When we run out of digits, we

are done. The computation of partial products and their accumulation into the complete

product can be optimized in many ways. We have chosen the Carry Save Array

architecture for implementing a C-testable and easily synthesizable M X N bit multiplier.

3.2Carry save Array Multiplier

The elementary multiplication algorithm suggests a logic and layout structure for a

multiplier which is surprisingly well suited to VLSI implementation-the array multiplier.

The logic structure is shown in the parallelogram form both to simplify the drawing of

wires between stages and also to emphasize the relationship between the array and the

basic multiplication steps shown in fig 3.1. As when multiplying by hand, partial

products are formed in rows and accumulated in columns, with partial products shifted by

the appropriate amount. The partial products are called summand. In a carry save array

multiplier the summands are collected through a carry save adders. At the bottom of the

array an adder is used to convert the carry save form to the required form of output.
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Fig.3.1shows the proposed carry save array multiplier. For simplicity 4X4 bit version is

shown in the figure and the basic cell by which the multiplier is constructed is shown in

the left side of the diagram.

The Boolean function for the basic cell output is:

x = (a and b) xor c xor d;

y = ((a and b) and c) or (c and d) or ((a and b) and d);

The proposed multiplier has two parts. One is for converting the operands in two's

complement form when the operand is a signed number. The operand a propagate

vertically and the operand b propagate horizontally. When the operand A is a negative

number then the signal Asgnm is 1. At the 151 row of the multiplier the cell inputs a and b

are shorted together and both are the same i.e only one bit of operand a. Asgnm signal is

given to c input and d input is grounded. so the Boolean equation for x becomes

x = al(i) xor 1

Hence output of the 1~ row will results in l's complement of the inputs al(i).here input to

the 2's complement block is assumed as al(i) and input to the main multiplier after 2nd

row is a(i) and in the 2nd row only 1 is added to the 1st row's results. So after the 2nd

row we get the 2's complement of the al(i). But al(i) will remain same if Asgnm is 0 i.e

when the
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a1(4) a1(3) a1(2) a1(i=1)
Asgnm

abc d

CELL

Y Bsgnm

3:
carry sum =

"out ~
Fig.3.1(b)

Prd(3) Prd(2) Prd(1)

Fig.3.1(a)

Fig: 3.1 (a)A 4x4 Carry Save Array Multiplier (for signed and unsigned

numbers), (b) Basic cell

operand A is an unsigned number. The same happens for the operand B.

The main architectural block of the CSA is shown in the dotted box. Then in the cell

block the output of each cell is x term and y term. x term propagate to the next stage

vertically and y term propagate diagonally to the next stage. The n x n Carry Save Array

multiplier receives two n-bit operands and produces a 2n-bit product consisting n2 cells
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arranged as n rows with n cell each. There are n rows and 2n-l diagonals III this

arrangement. A cell is denoted (i, j) if it is in the ith row and jth diagonal.

The primary inputs to the CS array multiplier consists of following five n-bit vectors

a = (an-I, an-2, al,~)

C = (cn-t, Cn-2, .~ Cl,CO)

d = (dn-J,dn_2, d1>do)

Cn_1= (en-In-J,Cn-2n-J,... COn-I)

Where a and b are main inputs to the array multiplier, i.e. multiplicand and multiplier.

The rest of them are used only for testing purpose. So during multiplication these inputs

are kept 'O'.Each test pattem in CSA multiplier is denoted by T" [a, b, c, d, Cn_l].Each

cell-input vector can be represented by a binary 4-tuple <a, b, c, d>. The pattem Vk

stands for test pattern Tk <a, b, c, d >. The other pin c, d, Cn.1is used for testing purpose.

During multiplication these input are kept at O.

The A and B pins are used for multiplicand and the multiplier with the bit size of n. The

main advantages of symmetrical input test vectors are utilized in this program algorithm.

All c, d, Cn_1inputs of basic cells are divided into two categories. Codd and Ceven for c,

Dodd and Deven for d and Dia_odd and Dia_even for Cn_1inputs. FA_Cin and FA_x

pins are used to control the inputs of Full Adder block during testing the multiplier.
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Chapter-4

Testability of the proposed multiplier

4.1 C-testability

A carry-save array multiplier is a regularly structured circuit. So it is easily testable. An

iterative logic array (ILA) is a logic circuit that consists of regular array of identical cell.

For testing the structured circuit it is necessary to test all the cells in a generallLA. If the

test pattern needed for testing the entire circuit is independent of size of the array, then

the circuit is said to be C-testable.

For example a full adder can be fully tested with only eight test patterns. Because a full

adder has only three input signal. The basic building block or cell used for most of the

array multiplier is a full adder with a 2-input and gate connected to one of the three

inputs of the full adder. The basic cell is shown in Fig 4.1. The cell has four inputs,

labeled as a, b, c, and d and two outputs, labeled as x and y. x and y stand for sum and

carry output respectively of the full adder.

abc d

CELL

carry sum

Fig.4.1 Basic cell structure
The principle aim of testing approach is to exhaustively test each cell in an array. But it is

impractical to test exhaustively the entire array, as it is time consuming. By taking the
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advantage of the structure of ILA, every cell in the array can be simultaneously tested.

Fault model in this thesis assumes:

a) The fault is permanent fault (i.e. the fault permanently changes the circuit's logic

characteristics)

b) The fault may alter the cell's output functions in any arbitrary way, as long as the

faulty cell remains on the combinational circuit.

With these assumptions for exhaustively testing each cell in the array multiplier requires

all possible inputs patterns and observing all outputs.

• Conditions for an array multiplier to be testable:

I) All possible input vectors ( 24 ) must be applied to every cell in the array.

2) For each cell input vector applied to a cell under test any faulty signal produced at the

output of the cell can be propagated to primary output of the array.

• Conditions for an array multiplier to be C-testable:

An array multiplier is C-testable if it is testable and number of test pattern required is

constant and independent of the size of the array multiplier.

4.2 Test Vector (Test pattern) Generation

In VLSI circuits, we have a high ratio of logic gates to pins on the device, there is

generally no way of accessing most of the logic, so we cannot directly probe the internals

of the device. Because of this problem, we need a way of generating tests which, when

applied to the inputs of a circuit, give a set of signals which indicate whether or not the

device is good or faulty. The set of stimulus input and expected output pattern is called a

"Test Vector". The test vectors distinguish between the good machine and the faulted

machine.
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The n x n Carry Save array multiplier receives two n-bit operands and produces a 2n-bit

product consisting n2 cells arranged as n rows with n cell each. During multiplication the

c and d inputs of the top row and the c inputs of the leftmost diagonal are kept at O.But

during testing these inputs are available at primary inputs. There are n rows and 2n-1

diagonals in this arrangement. A cell is denoted (i, j) if it is in the ith row and jth

diagonal. A 4 x 4 Carry Save array multiplier is shown in fig. 3.1 in chapter-3.

As we need to exhaustively test each cell, the test pattern must be such that for each

pattern, every cell in the array has same input. So if there is no fault then each cell will

have same inputs as well as same outputs. Test pattern for our proposed array multiplier

can be denoted by T;[a,b,c,d,cn-t]. T; represents the test pattern for input V;[a,b,c,d] . 1n

this case as the basic cell of carry-save array multiplier has four input signals, so sixteen

input combinations are possible, we will first test the and gate by applying various input

combinations of a and b which are [00,01,10,11] then from testability point of view,

inputs to the basic cell are now reduced to three i.e< out put of the and gate,c,d>. While

testing the and gate '0' is given to both c and d inputs. For testing the and gate the

required test patterns are as follows:

1. TO [0000]

2. T4 [0100]

3. T8 [1000]

4. Tl2 [1100]

After the and gate is tested then various combinations of the inputs are given to the other

two inputs c and d. With all of these combinations of inputs if the results of the array are
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correct then we can consider that the multiplier has no fault. Depending on the response

test patterns are categorized in the following three groups.

Group-a:

Each test patterns of this group is denoted by T; [a, b, c, d, Cn_l]. T; represents the test

pattern for input v; .which means that input and output of the every cell of every row is

same. Following four test patterns can be applied to every cell in the array.

I) To= [<00 ... 00> <00 ... 00> <00 ... 00> <00 ... 00> <00 ... 00>]

2) T2 = [<00 ... 00> <00 ... 00> <11. .. 11> <00 ... 00> <II.. .11>]

3) T4= [<00 ... 00> <11...11> <00 ... 00> <00 ... 00> <00 ... 00>]

4) T15 = [< II... II> < 11. .. 11> < I 1... I I> <11. .. 11> < 11. .. 11>]

Input and output vectors for the test pattern TI5 and Toofthis group are shown in fig 4.2

(a) and Fig 4.2(b) respectively. Here ifany vector is like <OIOI>which means that every

odd position bit is I and every even position bit is O. and position of LSB is considered

here' I'.

~I
I

IIII
1II1 IIII

II

1111
JIll I1I1
IIII I1II
IIII 1111

I I
Faj:in

I

1111
111I
1111

IIII IIII
II I

0000 0000 0000 0000
0000 0000 0000 00 0

Fa_x 0000 0000 0000 00 0

~o
0000 0000 0000 0000

0 00 0 o 0
Faj:in

0 0 0 0 0 0 0 0

Full adder output (n-bit) Cell output (n-bit) Full adder output (n-bit) Cell output (n-bit)

T" ~<IIII>, Test pattern for Full adder, <III>

Fig. 4.2(a) Bit conditions for TI5
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To~<OOOO>,Test pattern for Full adder, <000>

Fig. 4.3(b) Bit conditions for To



Group-b:

Each test pattern in this group is denoted by Tij ,which represents one input vector v, ,to

one half in the array and another input vector Vj ,to another half in the array. Each test

pattern Tij has a companion test pattern Tj,iwhich applies Vj(Vi) those cell having input

vector Vi(Vj) under Tij test pattern. There are two test pattern in this group,

1) T9,14 = [<11 ... 11> <10 .. ,10> <00 ... 00> <11 ... Il> <10 ... 10»

2) T14•9= [<11..,11> <01..,01> <11..,11> <00 ... 00> <01 ... 01»

Input and output vectors of array multiplier for these two patterns are shown in Fig.4,3(a)

and Fig. 4,3 (b)

Full adder output (n-bit)

o I
Faj:in

I 0 I 0

I Cell output (n-bit) I

Fa x

~I
o

o o

1110
1001 1001

10

o o

1001
1110
1001

11101110 1110
1001 1001 10 I
1110 1I10
1001

1110 111011101110 1110
1001 1001 1001 10 I

Fa_x 1110 1110 11010 1110

~ I
1001 1001 1001 1001

0 10 o 0
FaJ:in

I 0 0

Cell output (n-bit)

T14.9,Test pattern for Full adder, <101>

Fig.4,3 (a) Bit conditions for T 14,9

23

T'4.9, Test pattern for Full adder, <100>

Fig.4.3 (b) Bit conditions for T14,9



Group-c:

The test pattern of this group is denoted by T ij,k,1 ,which applies four input vector Vi , Vj ,

Vk ,VI to one-fourth in the array. T j,k,l,i ,T k.l,ij ,T I.ij,k together with T ij,k.1 can be used to

apply four input vector Vi, Vj , Vk ,VI in the array, In this group there are four test patterns.

I) T8,ll,12,13 = [<11...11> <01. .. 01> <00 ... 00> <01...01> <00 ... 00>]

2) TI2,13,8,11 = [<II.. .11> <10 ... 10> <01. .. 01> <0 I.. .01> <00 ... 00>]

3) TIl,8,13,12 = [<11...11> <01. .. 01> <00 ... 00> <10 ... 10> <00 ... 00>]

4) T13,12,11,8 = [<11. .. 11> <10 ... 10> <10 ... 10> <10 ... 10> <01. .. 01>]

Input and output vectors of array multiplier for the test pattern T13,12,11.8 are shown in

Fig.4.4.

1011 1000 lOll 1000
1101 1100 1101 I 00

Fa x 1011 1000 lOll I 00

!I
1101 1100 1101 1100

I 0 00 I
FaJ:in

0 0 I 0 0

Full adder outpul (n-bit) Cell output (n-bil)

TI3,12,11,8 Test pattern for Full adder, <001,110>

Fig.4.4 Bit conditions for patterns T13,12,11.8

So using these ten test patterns our proposed Carry Save Array Multiplier can be tested

independent on the size of the array.
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4.3 Test patterns for testing the multiplier

These following test patterns are identical for both odd and even n.

Table 4.3: Patterns for both odd and even n

Test a b c d en.l

Pattern (n- bit) (n-bit) (n-bit) (n-bit) (n-bit)
To <00 ... 00> <00 ... 00> <00 ... 00> <00 ... 00> <00 ... 00>

T2 <00 ... 00> <00 ... 00> <11. .. 11> <00 ... 00> <11. .. 11>

T4 <00 ... 00> <II. .. 11> <00 ... 00> <00 ... 00> <00 ... 00>

TIS <11. .. 11> <II. .. 11> <11. .. 11> <II. .. 11> <11...11>

T9•14 <11.. .11> <10 ... 10> <00 ... 00> <11. .. 11> <10 ... 10>

T14.9 <11...11> <01 ... 01> <11...11> <00 ... 00> <01. .. 01>

For this following group, test pattern differs for different values of n.

Table 4.4: Test patterns for EVEN-n

Test a b c d Cn-l
Pattern (n-bit) (n-bit) (n-bit) (n-bit) (n-bit)
TS,II.12.13 <11. .. 11> <01. .. 01> <00 ... 00> <01. .. 01> <00 ... 00>

TI2,13.S,11 <11...11> <10 .. ,10> <01. .. 01> <01. .. 01> <00 .. ,00>

T1I.S,13,12 <11. .. 11> <01. .. 01> <00 .. ,00> <10 .. ,10> <00 .. ,00>

T13,12,II.S <11..,11> <10 .. ,10> <10, .. 10> <10 .. ,10> <01. .. 01>
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Table 4.5: Test patterns for ODD-n

Test a b c d en.}

Pattern (n-bit) (n-bit) (n-bit) (n-bit) (n-bit)
TS,II,12,IJ <11..,11> <10",01> <00" ,00> <10",01> <01..,10>

TI2,lJ,8,11 <11",11> <01..,10> <10" ,01> <10. ,,01> <01" ,01>

TII,8.IJ,12 <11..,11> <10" ,01> <00" ,00> <01..,10> <00" ,00>

TlJ,12,11,8 <11..,11> <01..,10> <01...10> <01..,10> <00".00>

Test pattern applied to Full adder for exhaustively testing:

Table 4.6: Test patterns for EVEN-n

Test pattern Control bit for FA testing Test pattern for CSA
for FA FA Cin FA x Tcs

000 0 0 To, T4
001,110 1 1 TlJI2118
010 0 0 T914
011 1 0 T914
100 0 1 T2, TI49
101 1 1 T2, Tl49

110,001 0 0 TI2 IJ 8 II
III 1 1 TIS

Table 3.7: Test patterns for ODD-n

Test pattern Control bit for FA testing Test pattern for CSA
for FA FA Cin FA x Tcs

000 0 0 To, T4
001,110 1 0 T1I8lJI2
010 0 0 TI49
011 1 0 Tl49
100 0 1 T2
101 1 1 T2

110,001 0 1 T81112lJ
III 1 1 TIS
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The test pattern applied to full adder for exhaustively testing comes from the test pattern

applied to the multiplier circuit. So we need not to be worried about the test pattern for

the full adder. But we have to control the full adder input in such a way that each full

adder in the full adder block gets the same input. For this task we need only two control

bits, FAJ and FA_Cin, where FA_Cin is the Carry input for the first full adder and

FA_x is the x input of the left most full adder in the full adder block. The table 3.6 and

3.7 cover the test pattern needed for both Even and Odd n. With the application of test

pattern in the multiplier and for different combination of Full adder control bits, different

output pattern is shown in the Fig.4.2, Fig. 4.3 and Fig. 4.4 for the operand a and b size of

4.0utput patterns for both even and odd n for ten test patterns applied is shown in the

table below:

Table 4.7 Output patterns for the applied test patterns for the n x n Carry save Array
Multiplier

Test n-Even Output pattern n-Odd Output pattern
pattern (2n-bit) (2n-bit)
Tc, Fa Cin Fa x FA out Cell out Fa Cin Fa x FA out Cell out

(n-bit) (n-bit) (n-bit) (n-bit)
To 0 0 <00 ..00> <00 ..00> 0 0 <00 ..00> <00 ..00>

T2 0 I <11..11> <11..11> 0 1 <11..11> <11..11>
I <00 ..00> 1 <00 ..00>

T4 0 0 <00 ..00> <00 ..00> 0 0 <00 ..00> <00 ..00>

TI5 1 1 <11..11> <11..11> 1 I <11..11> <11..11>

T14.9 0 I <11..11> <10 ..10> 0 0 <11..11> <01..10>
I <00 ..00> I <00 ..00>

T9•14 0 0 <11..11> <01..01> 0 1 <11..11> <10 ..01>
I <00 ..00> I <00 ..00>

TB.II.12,13 0 0 <01..01> <00 ..00> 0 1 <01..10> <00 ..00>

TI2,13,B,11 0 0 <01..10> <00 ..00> 0 0 <10 ..01> <00 ..00>

TII,B,13,12 0 0 <10 ..10> <01..01> 1 0 <10 ..01> <10 ..01>

T13,12,II,B I 1 <01 ..01> <10 ..10> 0 0 <01..10> <01..10>
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In the output pattern, FA out and Cell out means the output bits of the Full adder block

and Cell output respectively. As the operand size isn for both a and b, so the output of

the full adder block will be n-bits and output of the cell will also be n-bits.

Different signals are as follows:

FA_cin: Carry input of rightmost fulladder connected with last row of multiplier cells.

FA_x: x input ofleftmost full adder connected with last row of multiplier cells.

Codd: All odd 'c' input of each cells are ANDed together to get this input pin.

Ceven: All even 'c' input of each cells are ANDed together to get this input pin.

Dodd: All odd 'd' input of each cells are ANDed together to get this input pin.

Deven: All even 'd' input of each cells are ANDed together to get this input pin.

a: Give 'a' input vector like <000 ... 0> or <I I II.. .1>, Here all bits should be same.

bodd: all odd positioned bits should be of the same type.

beven: all even positioned bits should be of the same type. If bodd=1 and beven=O then

'b' input vector is< ... 010101>

Dia_even: All even 'd' input of each cells ofleftmost diagonal are ANDed together to get

this input pin.

Dia_ odd: All odd 'd' input of each cells ofleftmost diagonal are ANDed together to get

this input pin.
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Chapter- 5

VHDL overview

5.1 Introduction

VHDL is a general-purpose programming language as well as a hardware description

language, so it is possible to create VHDL simulation programs ranging in abstraction

from gate level to system. VHDL has a rich verbose syntax that makes its models appear

to be long and verbose. However, VHDL models are relatively easy to understand once

one is used to the syntax. VHDL stands for VHSIC (Very high-speed integrated circuits)

Hardware description language. It is advantageous to express complex digital design &

system for both simulation and synthesis.

VHDL has the features to create re-usable circuit building blocks in larger circuits.

VHDL fits into overall electronic design process, particularly as the process relates to

FPGA, PLD and ASIC design problem.

VHDL includes a rich set of control and data representation features. One of the

important applications of VHDL is to test the performance of a circuit in the form of

Testbench. By using Test bench along the description of the circuit, the expected output

of the circuit can be verified over a period of time.VHDL was developed by committee
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intended for documenting digital hardware behaviorally. The intent for the language was

solely for the explicit purpose of documentation. A documentation language for its digital

designs has provided the initial momentum. In an effort to focus its use on practical

applications and to expand beyond the use as simply a documentation language, it has

been through numerous iterations. During this refinement process it has become IEEE

standard 1076 in 1987.

5.2 History ofVHDL

In past the language to describe the Hardware was Verylog. In the early 1980, VHDL

was developed, funded by U.S department of Defense. During the VHSIC program,

researchers were confronted with the dauntir,g task of describing circuits of enormous

scale and managing very large circuit design problems that involved multiple teams of

engineers. With only gate-level design tools a,.ailable, it soon became clear that better,

more structured design methods and tools would be needed.

To meet the challenge, a team of engineers from three companies - IBM, Texas and

Intermetrics were contracted by the department of Defense to complete the specification

and implementation of a new, language-based design description method in July 1983.

• In August 1985, the final version ofthe language under government contract was

released: VHDL version 7.2

• In December 1987, VHDL became IEEE standard 1076-1987 and in 1988 an ANSI

standard.
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• In September 1993, VHDL was restandardized to clarify and enhance the language.

• YHDL has been accepted as a Draft International Standard by the lEe.

5.3 Benefits ofVHDL

• Allows for various design methodologies.

• Provides technology independence.

• Describes a wide variety of digital hardware.

• Eases communication through standard language.

• Allows for better design management.

• Provides a flexible design language.

• Has given rise to derivatives standards:

D WAYES, YITAL, Analog YHDL

5.4 Compiler used for VHDL language

One of the easiest and most sophisticated compilers to use YHDL system is MAX+PLUS

II software. This software will run on several different types of computer system like

Windows-95, Windows-98 or Windows NT. Using this software design of logic circuits

can be performed by using schematic capture, writing YHDL code and using a truth

table.

Other software for compiling the YHDL system is Peak Accolade YHDL, Active-HDL

etc.
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The program in this thesis paper has been written in VHDL code in MAX+PLUS II

(Version 9.23) software environment. Any VHDL file in this enviromnent must be saved

with the extension of vhd. If several leaf cells are used in designing the digital systems

then all VHDL file must saved in the same directory. Iil the MAX+PLUS II software

environment the VHDL code written in the text editor and can also be served as a default

extension of tdf, which stands for TEXT DESIGN FILE. It is used for files that contains

the source code written in the Altera Hardware Description Language (AHDL), which is

another language supported by MAX+PLUS II system.

MAX+PLUS II software is a fully integrated, architecture-independent package for.

designing logic with Altera programmable logic devices, including Classic™, MAX@

5000, MAX 7000, MAX 9000, FLEX@ 6000, FLEX 8000, and FLEX 10K devices.

MAX+PLUS II offers a full spectrum of logic design capabilities: three design entry

methods for hierarchical designs; floorplan editing; powerful logic synthesis; design

partitioning; functional, timing, and board-level-type linked simulation; detailed timing

analysis; automatic error location; and device. programming and verification.

MAX+PLUS II also reads standard EDIF net1ist files, VHDL net1ist files, Verilog HDL

netlist files, OrCAD Schematic Files, and Xilinx Netlist Format Files, and writes EDIF,

VHDL, and Verilog HDL net1ist files, including VITAL-compliant files, for a convenient

interface to other industry-standard CAE software. In addition, MAX+PLUS II for UNIX

workstations allows running the Synopsys Design Compiler and FPGA Compiler

automatically, which allows processing both VHDL and Verilog HDL designs. The

MAX+PLUS II Compiler ensures that a design--called a project in MAX+PLUS II--fits

into the device architecture in the most efficient way possible.
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5.4.1 MAX+PLUS II Highlights

MAX+PLUS II offers rich graphical user interface complemented with an illustrated,

easy-to-use on-line help system. The complete MAX+PLUS II system includes ten fully

integrated applications that take through every step from design entry to device

programmmg.

Many features and commands are shared by the different MAX+PLUS II applications.

For example, using identical commands in each MAX+PLUS II application to open files,

to assign project devices, and to begin compiling the current project. The design editors

in MAX+PLUS II--the Graphic, Text, and Waveform Editors--and the auxiliary editors--

the Floorplan and Symbol Editors--also share numerous design entry tools and features.

Each editor allows performing similar tasks, such as assigning a pin, in the same way.

We can open multiple design files and transfer information between them, while

simultaneously compiling or simulating another project. We can view an entire hierarchy

of design files and move smoothly from one hierarchical level to another. As we open a

design files, MAX+PLUS II automatically starts the appropriate design editor.

The MAX+PLUS II Compiler lies at the heart of the MAX+PLUS II system, providing

powerful design processing to customize to achieve the best possible silicon

implementation of our project. Automatic error location and extensive documentation on

error and warning messages make design modifications as simple as possible. We can

create output files in a variety of formats for simulation, timing analysis, and device
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programming, including EDIF, Verilog HDL, and VHDL files for use with other

industry-standard EDA tools. At every step in the design process, MAX +PLUS II

software makes it easy for us to focus on our design--not on how to use the software.

The superb integration of MAX+PLUS II software improves our efficiency and

productivity, putting us in control of our logic design environment.

5.5 Standard Logic 1164

• The LIBRARY statement is used to reference a group of previously defined

VHDL design units

(other entities or groups procedures/functions known as 'packages'.

• The USE statement specifies what entities or packages to use out of this library; in

this case

'USE IEEE.std _logic_I I64.all' imports all procedures/functions in the

sid_logic j 164 package.

• The sid_logic j 164 package defines a multi-valued logic system, which will be

used as the data types for the signals defined in our examples.

• The VHDL language definition had a built-in bit type which only supported two

values, 'I' and '0' which was insufficient for modeling and synthesis applications.

• The 1164 standard defines a 9-valued logic system; only 4 of these have meaning

for synthesis:

'I', '0', 'z' (high impedance), '-' (don't care).

• The 1164 single bit type sid_logic and vector type sld_logic_veclor (for busses)

will be used for all signal types in the tutorial examples.
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5.6 Primary VHDL constructs we will use for synthesis

• signal assignment
Nextstate <= HIGHWAY GREEN

• compansons
= (equal), /= (not equal),
> (greater than), < (less than)
<= (less than or equal), >= (greater than or equal)

• logical operators
(and, xor, or, nand, nor, xnor, not)

• 'if statement
if (presentstate = CHECK_CAR) then ....
end if I elsif ....

• 'for' statement (used for looping in creating arrays of elements)

• Other constructs are 'when else', 'case', 'wait '. Also ". =" for
variable assignment.

5.7General Comments on VHDL Syntax

Most syntax details will be introduced on an 'as-needed' basis. The full syntax of a

statement type including all of its various options will often NOT be presented.

Generalities:

• VHDL is not case sensitive.

• The semicolon is used to indicate termination of a statement.

• Two dashes ('--') are used to indicate the start of a comment.

• Identifiers must begin with a letter, subsequent characters must be

alphanumeric or '_' (underscore).
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• VHDL is a strongly typed language. There is very little automatic type

conversion; most operations have to operate on common types. Operator

overloading is supported in which a function or procedure can be defined

differently for different argument lists.

5.8 Model Template

Entity model_name is
Port
(

list of inputs and outputs
);

end model_name;

architecture architecture name of model name IS

begin

VHDL concurrent statements

end architecture_name;
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5.8.1 Logic diagram of full adder

a

b
c

[)--sum

carry

Fig. 5.1 Logic diagram of full adder

VHDL code for full adder:

library ieee;

use ieee.std_logic _1164.all;

entity full adder is

port(X,Y,Cin:in std_logic;

Cout,Sum:out std_logic);

end full adder;

architecture concurrent of fulladder is

begin

Sum<=X xor Y xor Cin;

Cout<=(X and Y) or (X and Cin) or (Y and Cin);

end concurrent;
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5.8.2 Logic diagram of basic cell:

a

b
c
d

D-x

Fig.5.2 logic diagram of basic cell

VHDL code for basic cell:

architecture structure of cell is

component full adder

port(X,Y,Cin:in std_logic;

Cout,Sumout std_logic);

end component;

signal andout:std_logic;

signal faoul: std_logic;

signal modsig: std_logic;

begin

andout<=a and b;
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fulladderl :fulladder port map (X=>andout,Y=>c,Cin=>d,Cout=>faout,Sum=>x);

y<=faout;

end structure;
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5.9 Program algorithm

Generate (nx+ny)x2 interconnected
2's complement cell blocks

Generate ox x oy interconnected cell
blocks and interconnect them with 2's

com lement cell block output

Asgnm~l

Generate A' s twos
complement

Bsgnm~l

Generate B's twos
complement

Pass the signals through nx x ny
interconnected cell block
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+

AsgnmEBBsgnm~l

Do 2's
complement

Output product signal

End

5.10 VHDL code for the multiplier:

VHDL code for carry save array multiplier

library ieee;

use ieee.std_logic_1164.all;

entity MCSA_Mull is

generic( nx: integer:=4 ;ny:integer:=4);

port ( Al :in std_logic_vector(nx downto I);

B I :in std_logic_vector(ny downto I);

Codd,Ceven :in std_logic;
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Dodd,Deven

Asgnm,Bsgnrn

:in std_logic;

:in stdJogic;

Dia_odd,Dia_even :in std_logic;

FA_Cin,FAJ :in std_logic;

Test :out std_logic;

Sumn :out std_logic _vector(nx+ny downto I»;

end MCSA_Mult;

architecture MCSA ofMCSA Mult is

component cell

port(a,b,c,d:in std_logic;

x,y:out std_logic);

end component;

component full adder

port(X,Y,Cin:in std_logic;

Cout,Sum:out std_logic);

end component;

constant high:std_logic:='I ';

constant low:std _logic:='O';

signal Coutm : std_logic _vector(nx downto I);

signal tempI: std_logic_vector(nx downto 1);
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signal temp2: std_Iogic_vector(nx downto I);

signal temp3 : std_Iogic_vector(nx downto I);

signal Coutmy: std_Iogic_vector(ny downto I);

signal temp4 : std_logic_vector(ny downto 1);

signal tempS: std_logic_vector(ny downto 1);

signal temp6 : std_logic_vector(ny downto 1);

signal A : std_logic _vector(nx downto I);

signal B : std_logic_vector(ny downto I);

signal testl : std_Iogic;

signal test2,test3 : std_logic;

signal high I : std_logic;

signal cO : std_Iogic_vector(nx-1 downto I);

signal x : std_Iogic_vector(nx*ny downto 1);

signal y : std_Iogic_vector(nx*nydownto I);

signal prd : std_logic _vector(nx+ny+ I downto I);

signal sgn : std_logic;

signal cxor: std_logic _vector(nx+ny+ 1 downto 1);

signal onecom: stdJogic _vector(nx+ny downto 1);

begin

testl <=Asgnm;

test3<=Bsgnm;

test2<=low;
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M:

for i in 1 to nx generate

Ml :if i<=nx generate

M2:cell port map(Al(i),Al(i),testl ,test2,temp 1(i),temp2(i));

--A(i)<=templ (i);

end generate;

end generate;

M3:

for i in 1 to nx generate

M4:ifi=1 generate

M5:cell port map(temp 1(i), temp 1(i),test2,testl ,A(i),temp3(i));

Coutm(i)<=temp3(i);

end generate;

M6:if i> 1 generate

M7:cell port map(temp 1(i), temp 1(i),test2,Coutm(i-l ),A(i),temp3(i));

Coutm(i)<=temp3(i);

end generate;

end generate;

----------- For y --------------

yM:

for i in 1 to ny generate

yMl:ifi<=ny generate

yM2:cell port map(B 1(i),B 1(i),test3,test2,temp4(i),temp5(i));

--A(i)<=templ(i);
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end generate;

end generate;

yM3:

for i in I to ny generate

yM4:if i=1 generate

yM5 :cell port map( temp4(i),temp4(i), test2,test3 ,B(i),temp6(i));

Coutmy(i)<=temp6(i);

end generate;

yM6:if i> I generate

yM7 :cell port map(temp4(i), temp4(i),test2,Coutmy(i-1 ),B(i),temp6( i));

Coutmy(i)<=temp6(i);

end generate;

end generate;

labell :

for j in ny downto I generate

label2:

for i in nx downto I generate

cl:ifj=1 and i=1 generate

PI :cell port map(A(i),BU),Codd,Dodd,x(j),y(i+(j-I)*ny));

prd(j)<=x(j);

end generate;

45



c2a:ifj=1 and i>l and i-2*(i/2)=1 generate

P2:cell port map(A(i),B(j),Codd,Dodd,x(i+(j-l )*ny),y(i+(j-l )*ny»;

end generate;

c2b:ifj=1 and i>l and i-2*(i/2)=O generate

P2:cell port map(A(i),B(j),Ceven,Deven,x(i+(j-l )*ny),y(i+(j-l )*ny»;

end generate;

c3:ifj>1 and i=l andj<ny generate

P3:cell port map(A(i),B(j),x(i+ 1+(j-2)*ny),y(i+(j-2)*ny),x(i+(j-l )*ny),y(i+(j-

l)*ny»;

prd(j)<=x(i+(j-l )*ny);

end generate;

c4:if j> 1 and j<ny and i<nx and i>1 generate

P4:cell port map(A(i),B(j),x(i+ 1+(j-2)*ny),y(i+(j-2)*ny),x(i+(j-l )*ny),y(i+(j-

1)*ny));

end generate;

c5a:ifj>1 andj<ny and i=nx andj-2*(j/2)=1 generate

P5 :cell port map(A(i),B(j),Dia _odd,y(i+(j-2)*ny),x(i+(j-l )*ny),y(i+(j-l )*ny»;

end generate;

c5b:if j> 1 and j<ny and i=nx and j-2*(j/2)=O generate

P5 :cell port map(A(i),B(j),Dia _even,y(i+(j-2)*ny),x(i+(j-l )*ny),y(i+(j-l )*ny»;

end generate;
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e6:ifj=ny and i=1 generate

P6:eell port map(A(i),BU),x(i+ 1+G-Z)*ny),y(i+G-Z)*ny),x(i+G-I )*ny),y(i+G-

I)*ny));

prd(i+j-I )<=x(i+G-I )*ny);

end generate;

e7:if j=ny and i=Z and nx>Z generate

P7:eell port map(A(i),BG),x(i+ 1+G-Z)*ny),y(i+G-Z)*ny),x(i+G-I )*ny),y(i+G-

1)*ny));

FAI :fulladder port map(x(i+G-I )*ny),y(i+G-I )*ny-I ),FA_Cin,eO(i-1 ),prd(i+j-I »;

end generate;

e8:if j=ny and i>Z and i<nx generate

P8:eell port map(A(i),BU),x(i+ 1+G-Z)*ny),y(i+G-Z)*ny),x(i+G-I )*ny),y(i+G-

I)*ny));

FAZ:fulladder port map(x(i+G-I )*ny),y(i+G-I )*ny-I ),eO(i-Z),eO(i-1),prd(i+j-I ));

end generate;

e9a:ifj=ny and i=nx andj-Z*GI2)=1 generate

P9:eell port map(A(i),BU),Dia _odd,y(i+G-Z)*ny),x(i+G-1 )*ny),y(i+G -I )*ny»;

FA3:fulladder port map(x(i+G-I )*ny),y(i+G-I )*ny-I ),cO(i-Z),cO(i-1),prd(i+j-I ));

end generate;

c9b:ifj=ny and i=nx andj-Z*G/Z)=O generate
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P9:cell port map(A(i),B(j),Dia _even,y(i+(j-2)*ny),x(i+(j-l )*ny),y(i+(j-l )*ny));

FA3:fulladder port map(x(i+(j-l )*ny),y(i+(j-l )*ny-l ),cO(i-2),cO(i-l ),prd(i+j-l ));

end generate;

--------------------------------
end generate;

end generate;

--------------------------------
FA4:fulladder port map(Fa _x,y(nx*ny),cO(nx-1 ),prd(nx+ny+ I),prd(nx+ny));

----------------------------------

PAR:

for i in nx+ny+ I downto I generate

cxor(i)<=prd(i);

end generate;

sgn<=Asgnm xor Bsgnm;

process( cxor,sgn)

variable sig,sigl ,sig2:stdJogic;

begin

for i in I to nx+ny loop

onecom(i)<=sgn xor cxor(i);

ifi=1 then

sig:=sgn;

else

sig:=sigl;

end if;
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Sumn(i)<=onecom(i) xor sig;

sigl :=(onecom(i) and sig);

end loop;

---testl <= not(prd xor Sumn);

if sigl ='O'then

sig2:=high;

high I<=sig2;

Test<=high I;

else

Test<=sigl;

end if;

end process;

end MCSA;

configuration MCSA_2scom of MCSA_Mult is

for MCSA

end for;

end MCSA_2scom;
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5.11 Simulation result For multiplication of unsigned numbers
Ref: ~Io_o_n_s 11!l!J Time: ~11_54_.8_n_s ~

DOns
Interval: 1~15_4_.8_n_s ~

Name: Value: 1oo.ons

iF- FA_, 0

•••• FA_Cin 0
__ Dodd D

iF- Dia_odd 0

iF- Dia_even 0

•••• Deven 0

iF- Codd 0

iF- Ceven 0

iF- Bsgnm 0

iF-Asgnm 0

~A1 D2 2 Y. 3 4 Y
~B1 D3 3 Y. 4 5 Y.

iI!Ji} Sumn 06 6 vr:tA 12 '{jJ 20

Fig: 5.3 when n = 3 (A and B are decimal number)

In the above figure simulation result for multiplication of two positive decimal numbers(

AI,BI with bit size ofn=3) is shown. results is shown in the sumn row. One number Al

starting from 2 and incremented by I after every 50 ns . Another number B I starting from

3 incremented by 'I' after every 50 ns. In the first block A I=2 and B1=3 and the result is

6.
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Ref: 1,0,On. ,11~t.•1 Time 1=20=.4~n~o___ ,I Interv,l: 1,20.4no ,
o Ons

Name: Value: 100,On. 200.1
_FA_, 0

,

_FA_Cin 0
,

_Dodd 0
_Oi,_odd 0
•••• Dia _even 0
UP- Deven 0 ,

••• Codd 0
iif- Ceven 0
iP- 8sgnm 0
iP-A.gnm 0
_Test 1
~Al H 02 02 '( 04 X 06 X 08 X OA V

~Bl H 05 05 X 07 X 09 X DB V

~Sumn HODOA OOOA l'iIDD14X 001C ~ln002A»:n X-):lf D046 X'/H D06E

Fig: 5.4 when n=8(A and B are hexadecimal numbers)

In the Fig,S.4 multiplication of two positive hexadecimal numbers is shown with the

operand size is n=8
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5.12 For multiplication of signed numbers

Ref: 10.Ons Im Time: 19.6ns I Interval: 19.6ns

Name: Value: 100.Dns

Ii- Bsgnm 0

li-Asgnm 1

rA1 B 0010 0010 0101 1000

rB1 B 0001 0001 0100 0111

~ Sumn 11111110 11101100

Fig.5.5 Simulation results for n=4 when A is negative number and B
is positive

In the Fig.5.5 simulation result for multiplication of signed number is shown. Here A is

negative number and B is positive binary number. As the number A is negative so the

signal Asgnm is '[ '. thats makes the input A to the multiplier block dashed block shown

in the Fig.3.1 is 2's complement of the original input. That why we get the result in 2's

complement form.
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,et: IU.Uns II~T"Ilime: liJ4.Uns Interval: liJ4.Uns
O.Ons

~ame: Value: 1000ns

•••• FA_x 0

if- FA_Gin 0

,.. Dodd 0

if- Dia_odd 0

if- Dia_even 0

••• Deven 0

••• Godd 0

••• Ceven 0

••• Bsgnm 0

••• Asgnm 1

~A1 H 12 12

~B1 H2O 20

~ Sumn H FOGO FDCO

Fig. 5.6 when n = 8 (A is negative and B is positive hexadecimal
numbers)

Here multiplication results for one signed hexadecimal and one unsigned hexadecimal

numbers is shown.
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5.13 For testing the multiplier

Ref [BOO.Ons II!llI Time: 19_01_.B_ns 1Interval: l~lO_1.B_ns _

Name: Value: 900.0ns

j- FA_x 0

j-FAJin 1

••• Dodd 1

j- Dia_odd 0

j- Die_even 1

••• Deven 1

••• Codd 0

••• Ceven 0

••• Bsgnm 0

rAsgnm 0

Ii» Test 1

PJi A1 B 111111 111111
.

PJi B1 B 101010 101010

mP Sumn - 000000010101

Fig.5.7 When n = 6 and test pattern is T9,14

In the Fig.5.7 output patterns for test pattern T9•14 is shown.
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Ref: 1739.1ns I~ Time: 1_77_7,_On_s llnterval: 1_37_.9_ns _
739.1 ns
~

Name: BOO.Ons 900.0ns

ii- FA_x
Ii-FA_Cin
0;- Dodd

ill'- Dia_odd
,

0;- Dia_even

rDeven

rCodd

rCeven ,

IP- Bsgnm

rAsgnm

•• Test

~A1 11111111

~B1 01010101

~Sumn 0101010101010101

Fig. 5.8 When n = 8 and test pattern is Tl1,8,13,12

In the Fig.5.S output patterns for test pattern T11.8,IJ,12 is shown.
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Chapter-6

Simulation result
6.1 Device information after simulation

Project Information

c:\max2work\vhdl\mcsa _mult.rpt

MAX+plus II Compiler Report File

Version 9.3 7/23/1999

Compiled: 12/25/200423:41 :51

Any megafunction design, and related net list (encrypted or decrypted).support

information, device programming or simulation file, and any otherassociated

documentation or information provided by Altera or a partnerunder Altera's

Megafunction Partnership Program may be used only to program PLD devices (but not

masked PLD devices) from Ahera. Any otheruse of such mega function design, net list,

support information, device programming or simulation file, or any other related

documentation orinformation is prohibited for any other purpose, including, but

notlimited to modification, reverse engineering, de-compiling, or use withany other

silicon devices, unless such use is explicitly licensed undera separate agreement with

Altera or a megafunction partner. Title tothe intellectual property, including patents,

copyrights, trademarks, trade secrets, or maskworks, embodied in any such megafunction

design, net list, support information, device programming or simulation file, or any other

related documentation or information provided by Ahera or a megafunction partner,

remains with Ahera, the megafunction partner, or their respective licensors. No other
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***** Project compilation was successful

MCSA MULT

** DEVICE SUMMARY **

Chip! Input Output Bidir LCs

POF Device Pins Pins Pins LCs % Utilized

mesa mult

8282ALC84-2

User Pins:

26

26

17

17

o 172

o

82%

Project Information

c\max2work\ vhdl\mcsa_ mult.rpt

** FILE HIERARCHY **

Device-Specific Information:

c:\max2work\vhdl\mcsa _mult.rpt

mesa mult

***** Logic for device 'mcsa_mult' compiled without errors.

Device: EPF8282ALC84-2
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chip.txt
A
(
0 R R R R R R R R R R R R
N E E E E E E E E E E E E
F S S S S S S S S S S S S v " S S

A E E E E E E E E E E E u ( S E U
D D R R R R R R R R R R R m C D R T m A
0 ( v v V V G V V V V V V v n I 0 V e n n
N L E E E E N E E E E E E E 1 N U E 5 1 S
E K D D D D D D D D D D D D 2 T T D t 3 P----------------------------------------------------------------- -

/ 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75
615 1 12 74 AMSELO

Sumnl0
+DATAO
DeVen
codd

VCCINT
(even

A14
&6sgnm

A16
Sumn6

DiiLeven
sumn2

F~cin
GND

&sumn9

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

EPF8282AL(84-2

73 613
72 &Dodd
71 A15
70 612
69 614
68 GND
67 Asgnm
66 A12
65 All
64 A13
63 A17
62 Sumnl
61 Sumn7
60 Sumn8
59 VC(INT

616
-liiLOdd

F~x
RESERVED

611

"nSTATUS

1 28 58 1

1 29 57 I Sumn4
1 30 56 1 Sumn3
1 31 55 1 &Sumn5

1 32 54 I 617
1- 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 -I------------------------------------------------------------------

A R R R R v R R R R R R R R G R S R S G A
n E E E E ( E E E E E E E E N E' U E U N M
C S S S S ( S S S S S S S S D S m S m D S
0 E E E E I E E E E E E E E E n E n E
N R R R R N R R R R R R R R R 1 R 1 L
F V V V V T V V v V V V V V v 1 V 4 1
I E E E E E E E E E E E E E E
G D D D D D D D D D D D D D D
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N.C. =No Connect. This pin has no internal connection to the device.

VCCINT = Dedicated power pin, which MUST be connected to VCC (5.0 volts).

VCCIa =Dedicated power pin, which MUST be connected to VCC (5.0 volts).

GND = Dedicated ground pin or unused dedicated input, which MUST be connected to

GND.

RESERVED = Unused va pin, which MUST be left unconnected.

Device-Specific Information:

c: \max2work\ vhdl\mcsa _mul t.rpt

mcsa mult

Total dedicated input pins used:
Total va pins used:
Total logic cells used:
Average fan-in:
Total fan-in:

4/4
41/64
172/208
3.83/4

660/832

(100%)
( 64%)
( 82%)
( 95%)
( 79%)

Total input pins required: 26
Total input va cell registers required: 0
Total output pins required: 17
Total output va cell registers required: 0
Total buried va cell registers required: 0
Total bidirectional pins required: 0
Total reserved pins required 2
Total logic cells required: 172
Total flipflops required: 0
Total logic cells in carry chains: 0
Total number of carry chains: 0
Total logic cells in cascade chains: 0
Total number of cascade chains: 0

Device-Specific Information:
c:\max2work\vhdl\mcsa _mult.rpt
mcsa mult

Total dedicated input pins used:
Total va pins used:
Total logic cells used:
Average fan-in:
Total fan-in:

4/4 (100%)
37/64 (57%)
1371208 ( 65%)
3.81/4 (95%)

523/832 ( 62%)
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o
24

o
o

o
2

137
o
o
o
o
o

Total input pins required:
Total input I/O cel1registers required:
Total output pins required: 15
Total output I/O cell registers required:
Total buried I/O cell registers required:
Total bidirectional pins required:
Total reserved pins required
Total logic cells required:
Total flipflops required:
Total logic cells in carry chains:
Total number of carry chains:
Total logic cells in cascade chains:
Total number of cascade chains:

Synthesized logic cells: 8/208 ( 3%)

** INPUTS **
Fan-In Fan-Out

Pin LC Row Col Primitive Code INP FBK OUT FBK Name
67 - A INPUT 0 0 0 I Asgnm
65 - A -- INPUT 0 0 0 14 All
66 - A -- INPUT 0 0 0 14 A12
64 - A -- INPUT 0 0 0 14 A13
19 - A -- INPUT 0 0 0 14 A14
71 A INPUT 0 0 0 14 A15
21 - A -- INPUT 0 0 0 14 A16
63 - B -- INPUT 0 0 0 14 AI7
20 - A -- INPUT 0 0 0 I Bsgnm
31 INPUT 0 0 0 14 BII
70 - A INPUT 0 0 0 14 BI2
73 - - -- INPUT 0 0 0 14 B13
69 - A -- INPUT 0 0 0 14 B14
12 - - -- INPUT 0 0 0 14 BI5
28 - B -- INPUT 0 0 0 14 B16
54 - - -- INPUT 0 0 6 Ceven
16 - A -- INPUT 0 0 0 8 Codd
15 - A -- INPUT 0 0 0 6 Deven
23 - B INPUT 0 0 0 6 Dia_even
58 - B -- INPUT 0 0 0 6 Dia odd
72 - A -- INPUT 0 0 0 8 Dodd
25 - B -- INPUT 0 0 0 2 FA Cin
29 - B INPUT 0 0 0 I FA x
Code:

s = Synthesized pin or logic cell
+ = Synchronous flipflop
/ = Slow slew-rate output
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! =NOT gate push-back
r = Fitter-inserted logic cell

Device-Specific Information:
c:\max2work\vhdl\mcsa _mult.rpt
mcsa mult

** OUTPUTS **

Fed By Fan-In
Pin LC Row Col Primitive Code
84 - - 09 OUTPUT 0
81 11 OUTPUT 0
49 II OUTPUT 0
4 05 OUTPUT 0
41 05 OUTPUT 0
48 10 OUTPUT 0
9 01 OUTPUT 0
34 - 01 OUTPUT 0
55 - B OUTPUT 0
60 - B -- OUTPUT 0
56 - B -- OUTPUT 0
30 - B -- OUTPUT 0
61 - B -- OUTPUT 0
25 B -- OUTPUT 0
57 - B -- OUTPUT 0
28 - B -- OUTPUT 0
29 - B -- OUTPUT 0

Code:

s = Synthesized pin or logic cell

+ = Synchronous flipflop

/ = Slow slew-rate output

! =NOT gate push-back

r = Fitter-inserted logic cell

Compilation Times

Fan-Out
INP FBK OUT FBK Name
I 0 0 Sumnl
I 0 0 Sumn2
I 0 0 Sumn3
I 0 0 Sumn4
I 0 0 Sumn5
I 0 0 Sumn6
I 0 0 Sumn7
I 0 0 Sumn8
I 0 0 Sumn9
1 0 0 SumnlO
I 0 0 Sumn11
I 0 0 Sumnl2
I 0 0 Sumn13
I 0 0 Sumn14
I 0 0 Sumn15
1 0 0 Sumnl6
1 0 0 Test
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Compiler Netlist Extractor 00:00:01

Database Builder 00:00:00

Logic Synthesizer 00:00:01

Partitioner 00:00:01

Fitter 00:00:01

Timing SNF Extractor 00:00:00

Assembler 00:00:00

--------------------------
Total Time 00:00:04

Memory Allocated

Peak memory allocated during compilation = 9,838K

6.2 Conclusion

Here architecture for the multiplication of signed and unsigned numbers is proposed and

VHDL code for the proposed architecture is written. Our design has the capability in

designing parameterizable architecture for any target process. This program can be used

to implement various sizes of multipliers on FPGA without any modification. For the

multiplier testing the total number of test pins are fixed i .e don't vary with the operand

size. For signed operation the output is obtained. in two's complement form. In future this

architecture can be implemented with Booth algorithm for better performance.
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