
, .

ECG COMPRESSION USING RUN LENGTH

ENCODING

by
Shahin Akhter

A Thesis
Submitted to the Department of

Electrical and Electronic Engineering, BUET,
in partial fulfillment ofthe requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL AND ELECTRONIC ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

November 2009



The thesis titled, "ECG COMPRESSION USING RUN LENGTH

ENCODING" submitted by Shahin Akhter, Roll No: I005062l2(P),

Session: October 2005, has been accepted as satisfactory in partial fulfillment

of the requirement for the degree of Master of Science in Electrical and

Electronic Engineering on 21 November 2009.

BOARD OF EXAMINERS

i

)

/

1.

2.

3.

4.

Dr. Md. Aynal Haque
Professor
Dept. ofEEE, BUET, Dhaka

D;'s!fp~d:-r"I'1
Professor and Head
Dept. ofEEE, BUET, Dhaka

~'W\

Dr. Newaz Muhammad Syfur Rahim
Associate Professor
Dept. ofEEE, BUET, Dhaka

Dr. Khondkar Siddique-e-Rabbani
Professor and Chairperson
Dept. of Biomedical Physics and Technology
University of Dhaka, Dhaka

II

Chairman

Member
(Ex-officio)

Member

Member
(External)

..~.
. 'f'Il. ~C



.j

CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of it has not been

submitted elsewhere for the award of any degree or diploma.

Shahin Akhter
Roll No. 100506212 (P)
Session - October 2005

iii



r

/

I

I
I

••••

ACKNOWLEDGEMENTS

The author would like to express his indebtedness and gratitude to his supervisor Dr.

Md. Aynal Haque for his endless patience, friendly supervision and invaluable

assistance in making a difficult task a pleasant one.

The author wishes to express his thanks and regards to the Head of the Department of

Electrical and Electronic Engineering, BUET, Dhaka, for his support during the

work.

Sincerest thanks to friends and colleagues for their constant support and criticism of

the thesis work.

iv



.'-,'

./
i

CONTENTS

Acknowledgements

Abstract

List of Figures

List of Tables

CHAPTER I INTRODUCTION
1.1 Historical Background
1.2 Objective of the Thesis
1.3 Organization of the Dissertation

CHAPTER 2 THE HEART AND THE ECG
2.1 Anatomy and Physiology of Human Heart
2.2 Components of the Electrocardiogram
2.3 ECG Leads

CHAPTER 3 SIGNAL COMPRESSION
3.1 Compression and distortion measures
3.2 Compression measures
3.3 Error criterion and distortion measures

3.3.1 Percentage root-mean-square difference (PRD)
3.3.2 Root mean square (RMS) error
3.3.3 WDD index

iv

vii

viii

x

1
1
3
4

5
5
8
9

12
12
13
13
14
14
14

CHAPTER 4 DISCRETE COSINE TRANSFORM (DCT) 17
4.1 Fourier series and Fourier Transform 17
4.2 DCT 19
4.3 Quantization 22

CHAPTER 5 PREPROCESSING OF ECG SIGNAL 24
5.1 QRS detection 25
5.2 T wave detection 30
5.3 P wave detection 32
5.4 Baseline estimation 34
5.5 ST segment features 35

CHAPTER 6 PROPOSED ALGORITHMS AND RESULTS 38
6.1 Proposed Algorithm 38

6.1.1 ECG segmentation 39
6.1.2 DCT Transform 40
6.1.3 Quantization 41
6.1.4 Run length encoding 41
6.1.5 Huffman encoding 42
6.1.6 Bit rate calculation 44

v



)

6.2 Test dataset
6.3 The values of WOO parameters
6.4 Results

6.4.1 Comparison with other methods
6.4.2 Neural Network based compression

CHAPTER 7 CONCLUSION
7.1 Discussion
7.2 Future Perspectives

APPENDIX
REFERENCES

vi

45
45
47
50
54

58
58
59

60
61



ABSTRACT

The electrocardiogram (ECG) is one of the most vital medical signals that are

recorded for various analysis and diagnostic purposes. Modern clinical systems

require effective and economic data storage for telemedicine applications, like

telecardiology, to overcome the bandwidth limitations of data transmission channels.

Recent advancements in ECG compression reveal that transformational approaches

performs better than direct time domain approaches for high compression ratio (CR)

and low noise insensitivity. Among the transformational approaches, discrete cosine

transform (OCT) is more applicable than others, as it has the energy conservation

property that measures the efficiency of the compression scheme directly by tracking

its ability to pack input data into as few coefficients as possible.

In this work, we have performed OCT on the time domain ECG signals to obtain the

spectral density in spatial domain. Energy compaction property of OCT facilitates

the application of quantization by accumulating the correlative coefficients into

separate segments. Thus the high probability of redundancies in consecutive

coefficients facilitates the use of run length encoding (RLE). Also, less calculation

complexity in encoder and decoder makes RLE faster and easier to implement. To

increase the CR, two stages of RLE to quantized OCT coefficients are performed.

Then Huffman coding is applied on the RLE values to convert them into binary.

Here, the preservation of relevant clinical diagnostic information in the reconstructed

signal is ensured by measuring the amount of distortion in terms of weighted

diagnostic distortion (WOO), percentage root-mean-squared difference (PRO) and

root-mean-square (RMS) error indices. The proposed compression algorithm has

obtained compression ratio of 14.87 with a bit rate of 185 bps for MIT-BIH

Arrhythmia database Record 117.

To compare the performance of the proposed RLE based compression scheme, a 3-

layer neural network system is also applied here. Our proposed scheme has shown

better CR over neural network based system in terms of WDO, PRO and RMS

indices.
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Electrocardiogram (ECG) is the graphical representation of the electrical activity of

human heart. It shows the potential difference between two points on body surface

with respect to time. ECG is largely employed as a diagnostic tool in clinical practice

in order to assess the cardiac status of the object. The real-time transmission of the

ECG like telemedicine, in urgent situations can improve the survival chances of the

patient. However, one of the greatest problems involving this kind of telemedicine

application is the network bandwidth. ECG exams may generate too much data,

which makes it difficult to apply telecardiology in real time. As an example, with the

sampling rate of 360 Hz, I I bit/sample data resolution, a 24 hours record requires

about 43MBytes per channel. This requires enormous storage capacity and network

bandwidth for transmission. Therefore, efficient coding of the data is required before

transmission. The main goal of any ECG data processor is to obtain a minimum

information rate, while retaining the relevant diagnostic information in the

reconstructed signal. To measure the relevancy between original and reconstructed

signal, most of the researchers uses mathematical calculations like percentage root-

mean-squared difference (PRO), root-mean-square (RMS) and etc. This sort of

representation has very little impact on clinical diagnosis. But, if characteristic

parameters like PQRST shapes, features or amplitudes are utilized for the

measurement, then the clinical acceptability of the signal will be achieved. An

example of this type of measurement is weighted diagnostic distortion (WOO).

1.1 Historical Background

ECG compression techniques are required to reduce (i) storage requirements of

hospital databases and ambulatory ECG data, and (ii) the time to transmit data over

telephone lines and other narrowband channels [I]. These requirements motivate

researchers to look for efficient compression methodologies to reduce the amount of



data. Numerous methods for compressing ECG signal have been proposed and

published over the last four decades. Compression methods used for ECG signal can

be classified into three major categories [2]:

I) Direct time-domain techniques (OTT)

2) Transformational approaches (TA)

3) Parameter extraction techniques (PET)

OTT methods usually rely on utilizing prediction or interpolation algorithms as

amplitude zone-time epoch coding [3] and turning point [4]. In most of the cases,

they are superior to TA with respect to the system simplicity and error. However, TA

methods usually achieve higher compression ratio (CR), and are insensitive to noise

in ECG signals [5]. Some applications ofTA methods are wavelet transform [I], [2],

[6], discrete cosine transform (OCT) [7], [8] and etc. Here, the original samples are

subjected to a linear transformation followed by proper encoding of the transformed

output [6], [7]. Some recent one dimensional (I-D) and two dimensional (2-D)

wavelet transform based compression schemes with low reconstruction error and

smooth signal quality are presented in literature [I], [2], [6]. Although they can

achieve high CR, because of the requirements of accurate QRS detection, period

normalization, amplitude normalization and mean removal, the 2-D system becomes

complex. Again, the complexities of 2-D systems become crucial for real-time

transmission, as they introduce delays and these schemes are not suitable for

transmission of ECG data through low bandwidth networks. A OCT based scalar

quantizer with linear coding has achieved a good CR with excellent reconstruction

quality and minimum PRO [7]. Because, OCT transform has the property to provide

a large number of small coefficients, which can be zeroed without altering the signal

significantly. To facilitate this interesting property of OCT, linear encoding can be

performed on the quantized OCT coefficients. As a linear encoder RLE is more

acceptable than others as one of the main advantages of RLE is its lower calculation

complexity with easier encoding and decoding stages. That makes it fast and easy to

implement in comparison with other encoding methods to perform better

compression without distortion [2].
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Again, up to now, usually researchers utilize simple mathematical distortion

measures like percentage PRO, mean squared error (MSE), RMS etc. to evaluate the

reconstructed signal quality. Among them, PRO is the most widely used index for

evaluation of distortion, because of its simplicity and mathematical convenience [2].

But PRO is not a good measure of the true compression error and results in poor

diagnostic relevance [9]. Thus, from the point of view of diagnosis, a standard

methodology should be maintained to ensure the acceptability and reliability of the

reconstructed ECG data obtained from various compression schemes. Also, due to

the dependency on the dc level, PRO can introduce confusion in the evaluation of

ECG compressors [10]. Such measures are also irrelevant from the point of view of

diagnosis [9]-[11]. So, the use ofa distortion measure such as WOO index can be an

effective tool for determining the performance ofa compression algorithm [11]-[13].

Thus, the utilization of WOO instead of PRO or RMS as distortion measurement

technique increases the reliability of the reconstructed ECG signal. Throughout the

research work we have tried to utilize the positive impact of WOO on the relevancy

of clinical diagnosis, instead of PRO.

1.2 Objective of The Thesis

ECG data compression algorithm leads to a conflicting result which requires a high

CR over good signal fidelity. So it is necessary to design a compression scheme

which preserves diagnostically important information by offering high compression

ratio. Reconstructed signal should have as much low WOO value as possible at high

compression ratios.

In this thesis, to compress an ECG signal a OCT based RLE is performed. And also,

WOO based distortion index is used to measure the efficiency of the compression

scheme. As WOO based distortion index is a less widely used technique in literature,

an artificial neural network (ANN) based compression scheme is also developed in

this research work to facilitate the performance evaluation process of proposed OCT

based scheme. The objectives of this research are:

3



1. To implement a less complex and faster algorithm with easier coding for

ECG signal compression.

2. To ensure that a high CR can be achieved on the point of clinical diagnostic

relevancies after reconstruction.

3. To evaluate the performance of the proposed compression scheme using

standard database and compare it with a NN based technique using WOO,

PRO and RMS error indices.

1.3 Organization ofthe Dissertation

The thesis begins with an overview of the factors motivating the design of an

effective ECG compression scheme that preserves signal information important to

disease diagnosis. This overview leads to the formulation of objectives, strategy and

scope of thesis. The structure of this work is:

Chapter 1 is a preface and contains the introduction and the purpose of this

work.

Chapter 2 describes the physiological background of the heart and the ECG

signal.

Chapter 3 presents review of some distortion and compression measures and

describes the problem with the standardization of the distortion measures.

Chapter 4 This chapter discusses the concept of OCT-based compression

techniques in detailed.

Chapter 5 describes the methods for feature extraction from the ECG signal that

are implemented in the pre-processing stage of ECG analysis.

Chapter 6 describes the proposed RLE based ECG compression scheme in

detail. It also includes the results of the proposed compression algorithm. Here

we have analyzed the performance of our proposed compression scheme by

developing an ANN based compression system to perform with the same test

conditions. Some existing OCT and RLE based compression techniques are also

used for performance comparison.

Chapter 7 contains a summary, conclusions, and recommendations for

continuation.

4



Chapter 2

THE HEART AND THE ECG

Electrocardiograms are signals that originate from the action of the human heart.

They are largely employed as a diagnostic tool in clinical practice in order to assess

the cardiac status of object like the examination of ambulatory patients or patients in

intensive care. Recordings are examined by a physician who visually checks features
/

of the signal and perform estimation of the most important parameters of the signal

to provide suggestions accordingly. Proper investigation of the condition of patient

may become difficult if there exists variations (size, duration and etc.) in the

characteristics parameters of ECG or exists a considerable amount of noise in the

signal. So, to highlight the purpose of recognition and analysis ofECG signal in the

sense of diagnosis this chapter contains a detailed description of the heat, its activity

and the electrocardiogram.

2.1 Anatomy and Physiology of Human Heart

The sole purpose of the heart is to circulate blood through the blood circulatory

systems of the body that consists of four hollow chambers (Figure 2.1) [14]. The

upper two chambers, the right and left atria, are thin-walled; the lower two, the right

and left ventricles are thick-walled and muscular. The walls of the ventricles are

composed of three layers of tissue: the innermost thin layer is called the

endocardium; the middle thick, muscular layer, the myocardium; and the outermost

thin layer, the epicardium. The walls of the left ventricle are more muscular and

about three times thicker than those of the right ventricle.

The atrial walls are also composed of three layers of tissue like those of the

ventricles, but the middle muscular layer is much thinner. The two atria form the

base of the heart; the ventricles form the apex of the heart.

5
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Figure 2.1: Anatomy of the heart

The inter-atrial septum (a thin membranous wall) separates the two atria, and a

thicker, more muscular wall, the inter-ventricular septum, separates the two

ventricles. The two septa, in effect, divide the heart into two pumping systems, the

right heart and the left heart, each one consisting of an atrium and a ventricle.

The right heart pumps blood into the pulmonary circulation (the blood vessels within

the lungs and those carrying blood to and from the lungs). The left heart pumps

blood into the systemic circulation (the blood vessels in the rest of the body and

those carrying blood to and from the body).

The right atrium receives unoxygenated blood from the body via two of the body's

largest veins (the superior vena cava and inferior vena cava) and from the heart itself

by way of the coronary sinus. The blood is delivered to the right ventricle through

the tricuspid valve. The right ventricle then pumps the unoxygenated blood through

the pulmonic valve and into the lungs via the pulmonary artery. In the lungs, the

blood picks up oxygen and releases excess carbon dioxide.

6



The left atrium receives the newly oxygenated blood from the lungs via the

pulmonary veins and delivers it to the left ventricle through the mitral valve. The left

ventricle then pumps the oxygenated blood out through the aortic valve and into the

aorta, the largest artery in the body. From the aorta, the blood is distributed

throughout the body where the blood releases oxygen to the cells and collects carbon

dioxide from them.

The heart performs its pumping action over and over in a rhythmic sequence. First,

the atria relax (atrial diastole), allowing the blood to pour in from the body and lungs.

As the atria fill with blood, the atrial pressure rises above that in the ventricles,

forcing the tricuspid and mitral valves to open and allowing the blood to empty

rapidly into the relaxed ventricles. Then the atria contract (atrial systole), filling the

ventricles to capacity.

Following the contraction of the atria, the pressures in the atria and ventricles

equalize, and the tricuspid and mitral valves begin to close. Then, the ventricles

contract vigorously, causing the ventricular pressure to rise sharply. The tricuspid

and mitral valves close completely, and the aortic and pulmonic valves snap open,

allowing the blood to be ejected forcefully into the pulmonary and systemic

circulations.

Meanwhile, the atria are agam relaxing and filling with blood. As soon as the

ventricles empty of blood and begin to relax, the ventricular pressure falls, the aortic

and pulmonic valves shut tightly, the tricuspid and mitral valves open, and the

rhythmic cardiac sequence begins anew.

The period from the opening of the aortic and pulmonic valves to their closing,

during which the ventricles contract and empty of blood, is called ventricular systole.

The following period from the closure of the aortic and pulmonic valves to their

reopening, during which the ventricles relax and fill with blood, is called ventricular

diastole. The sequence of one ventricular systole followed by a ventricular diastole is

7



called the cardiac cycle, commonly defined as the period from the beginning of one

heart beat to the beginning of the next.

2.2 Components of the Electrocardiogram

The impulse as it crosses the heart can be observed by measuring the electrical

current with electrodes placed on the patient's skin in relative and specific places.

This impulse, when filtered through a specially designed machine called

electrocardiogram, produces characteristic waveforms that can be compared to

established normal waveforms and some other information about the current state of

the heart is determined. The electric current generated by atrial depolarization is

recorded as the P wave, and that generated by ventricular depolarization is recorded

as the Q, R, and S waves: the QRS complex. Atrial repolarization is recorded as the

atrial T wave (Ta), and ventricular repolarization, as the ventricular T wave, or

simply, the T wave. Because atrial repolarization normally occurs during ventricular

depolarization, the atrial T wave is buried or hidden in the QRS complex.

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex and

the T wave (Figure 2.2) [13].

The sections of the ECG between the waves and complexes are called segments and

intervals: the PR segment, the ST segment, the TP segment, the PR interval, the QT

interval, and the R-R interval. Intervals include waves and complexes, whereas

segments do not. The normal ECG complex consists of three key elements, in

parenthesis is presented the amplitude:

• the P-Wave, representing the impulse across the atria to the AY node (0.25

mY)

• the QRS representing the impulse as it travels across the ventricles (R-1.6

mY, Q, S-25% ofR wave)

• the T-Wave, representing the repolarization of the ventricles (0.1-0.5 mY)

8
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Figure 2.2: Components of the ECG

When electrical activity of the heart is not being detected, the ECG is a straight, flat

line as like as the isoelectric line or baseline.

2.3 ECG Leads

An ECG lead is a record (spatial sampling) of the electrical activity generated by the

heart that is sensed by either one of two ways: (I) two discrete electrodes of opposite

polarity or (2) one discrete positive electrode and an "indifferent," zero reference

point. A lead composed of two discrete electrodes of opposite polarity is called a

bipolar lead; a lead composed of a single discrete positive electrode and a zero

reference point is a unipolar lead.

Depending on the ECG lead being recorded, the positive electrode may be attached

to the right or left arm, the left leg, or one of several locations on the anterior chest

wall. The negative electrode is usually attached to an opposite arm or leg or to a

reference point made by connecting the limb electrodes together.

For a detailed analysis of the heart's electrical activity, usually in the hospital setting,

an ECG recorded from 12 separate leads (the 12-lead ECG) is used. The 12-1ead

9
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BCG is also used in the pre-hospital phase of emergency care in certain advanced life

support services to diagnose acute myocardial infraction and to help in the

identification of certain arrhythmias. A 12-lead ECG consists of three standard

(bipolar) limb leads (leads I, II, and 1II) (Figure 2.3), Three augmented (unipolar)

leads (leads aVR, aVL, and aVF) (Figure 2.4), and six precordial (unipolar) leads

(VI, V2, V), V4, Vs, and V6) (Figure 2.5) [13]. When monitoring the heart solely for

arrhythmias, a single ECG lead, such as the standard limb lead II, is commonly used,

especially in the pre-hospital phase of emergency care.
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Chapter 3

SIGNAL COMPRESSION

A typical computerized medical signal processing systems requires a large amount of

data to examine the condition of the patient, which is difficult to store and transmit

[16]. So, it is very desirable to find a method of reducing the quantity of data without

a little or no loss of important information. A solution to this problem is the

application of data compression that tries to obtain a minimum data storage by

eliminating redundancy where possible. The compression performance is measured

as the ratio of the number of bits of the original signal to the number stored in the

compressed signal. A high CR is wanted, typically, but using this alone to compare

data compression algorithms is not acceptable. Generally the bandwidth, sampling

frequency, and precision of the original data very much affect the CR [5].

A data compression algorithm must also retrieve the data with acceptable fidelity. In

biomedical data compression, the clinical acceptability of the reconstructed signal

has to be determined through visual inspection. The residual between the

reconstructed signal and the original signal may also be measured by numerical

methods. Here a loss less data compression algorithm produces zero residual, and the

reconstructed signal exactly replicates the original signal. However, clinically

acceptable quality is neither guaranteed by a low nonzero residual nor ruled out by a

high numerical residual [10], [17]. This chapter focuses on the definitions of various

terminologies that are commonly used in the field of data compression.

3.1 Compression and distortion measures

The criterion for testing performance of compression algorithms includes three

components: compression measure, reconstruction error and computational

complexity. The compression measure and the reconstruction error are usually

dependent on each other and are used to create the rate-distortion function of the

12



algorithm. The computational complexity component is part of the practical

implementation consideration but it is not part of any theoretical measure.

3.2 Compression measures

The size of compression is often measured by the CR which is defined as the ratio

between the bit rate of the original signal and the bit rate of the reconstructed one:

b .
CR Or/g.

bcomp.
(3.1 )

Here problem arises from the application of different sampling frequencies and

different number of quantization levels; thus, the bit rate of the original signal is not

standard. Use of the number of bits transmitted per sample of the compressed signal

as a measure of information rate removes the dependency on the quantizer resolution,

but the dependence on the sampling frequency remains. Another way to remove the

dependency on quantizer's resolution and sampling frequency is the use of bits

transmitted per second.

3.3 Error criterion and distortion measure

One of the most difficult problems in ECG compression applications and

reconstruction is defining the error criterion. The purpose of the compression system

is to remove redundancy, the irrelevant information (which does not contain

diagnostic information - in the ECG case). Consequently the error criterion has to be

defined such that it will measure the ability of the reconstructed signal to preserve

the relevant information. Such a criterion has been defined in the past as

"diagnostability" [18]. Today the accepted way to examine diagnostability is to get

cardiologists' evaluations of the system's performance. This solution is good for

getting evaluations of coders' performances, but it can not be used as a tool for

designing ECG coders and certainly, can not be used as an integral part of the

compression algorithm. However, in order to use such a criterion for coders design,

one has to give it a mathematical model that represents the deviation of the original

and reconstructed signal. An example of this type of model is WDD that compares

predefined characteristic features of original and reconstructed ECG signals.

13



3.3.1 PERCENTAGE ROOT-MEAN-SQUARE DIFFERENCE (PRD)

PRD measure is defined as follows,

PRD =

NI « x(n) - x(n)) 2
n - I x 100
NI (x(n) - x(n)) 2

n = 1

(3.2)

where x(n) is the original signal, x(n) is the reconstructed signal, x(n) is the

mean of the original signal and N is the size of the window over which PRO is

calculated.

3.3.2 ROOT MEAN SQUARE (RMS) ERROR

The RMS is defined as

RMS=

NL«x(n) - x(n))2
n=l

N
(3.3)

(3.4)

where N is the length of the window over which reconstruction is performed.

3.3.3 WDD INDEX

WOO index is based on comparison of the relative preservation of the diagnostic

information in PQRST complex features of the original ECG signal and the

reconstructed signal. These PQRST complex features are the location, duration,

amplitudes, and shapes of the waves that exist in every beat as shown in Figure 3.1.

These diagnostic features were chosen with the help of an experienced cardiologist

[13].

For every beat of the original signal and for the reconstructed signal, a vector of

diagnostic features is defined as in (3.1) and (3.2),

J3T = [f31'f32, ... ,f3P] ; Original signal

(3.5)

14
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where p is the number offeatures in the vector.

RRint

!Tamp

QTPint :~,
QTint

i~i

PRint: ••

P !:..
amp

-.J I.- t QRS;mp
Pdur .

Figure 3.1: Some of the diagnostic features ofECG

The number of features p ~ 18 is used in this work. The diagnostic parameters (l3i ,

i ~ 1,2, ...,p) are chosen as follows: RRint., QRSdur', QTint-. QTPint-. Pdur., PRint-.

QRSpeaks_no(the number of peaks and notches in the QRS complex) , Qw,ve_exsisl

(the sign of the first peak in the QRS) , ~wave_exsisl(the existence of delta wave, Tshap"

Pshapel STshape, QRS;mp' QRS;mp,' Pamp., Tamp., STelevation, STslope as shown in Figure 3.1

[13]:

The WDD index between these two vectors is:

WDrfJJ,/J)~ ~fJ'.~NJx 100
tr[A]

(3.6)

where Ml is the normalized difference vector as,

(3.7)

For the duration features and the amplitude features, the difference is defined as:

(3.8)

For the shape features (Tshape,Pshape,and STshape)the difference is determined by

fixed penalty matrices (one matrix for each shape feature):
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; ; ;
WII WI2 WI,

; ; i
W21 W22 W2,

Wi= (3.9)

i i i
W,I W,2 W"

\vhere Z is the number of shapes for the relevant feature (Z = 9 for Pshape,Z = 5 for

i
STshape,and Z = 3 for Tshape)' Wfg is the difference between the shape f and the shape

g of the original shape feature Pi and the reconstructed one Pi respectively. The
.penalty matrix used here for shape features (PshapeoTshapeand STshape)are as follows:

0 .2 .2 .2 .3 .2 .2 .2 .4

.2 0 .1 .1 .3 .4 .4 .4 .2

.2 .1 0 .1 .3 .4 .4 .4 .2

.2 .1 .1 0 .3 .4 .4 .4 .2
Wi'= .3 .3 .3 .3 0 .3 .3 .3 .3

.2 .4 .4 .4 .3 0 .1 .1 .2

.2 .4 .4 .4 .3 .1 0 .1 .2

.2 .4 .4 .4 .3 .1 .1 0 .2

.4 .2 .2 .2 .3 .2 .2 .2 0

0 .2 .4

WT= .2 0 .2
.4 .2 0

0 .1 .2 .1 .4

.1 0 .2 .4 .1
WST = .2 .2 0 .2 .2

.1 .4 .2 0 .1

.4 .1 .2 .1 0

Finally, the diagonal weighting matrix can be defined as,

A = diag [Ai], Ai> O;i = (1,2, .... , pl.
The diagonal weighting matrix used in the present work is as follows,

A=[2 1 1 1 1 1 1 0.250.251 1 1 2 2 1 1 1 1

(3.10)
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Chapter 4

DISCRETE COSINE TRANSFORM (DCT)

Transform-based ECG compression methods use an invertible orthogonal

transformation to the signal that helps to reduce the redundancy present in the new

representation. A transformation is, therefore, defined to map this spatial (correlated

time domain) data into transformed (Uncorrelated) coefficients. Due to the

decorrelation and energy compaction properties, transform domain approaches like

cosine [7], [8], [I 9], and wavelet [1], [2], [6], [20] transforms are widely

investigated for data compression. For example DCT has been used for ECG

compression [7], [8], [21]-[23]. As transformation is a lossless operation, therefore,

the inverse transformation produces a perfect reconstruction of the original data. This

chapter contains detail discussion on the origin of DCT and also its application in the

field of data compression.

4.1 Fourier series and Fourier Transform

Frequency representation of periodic functions in terms of series of sines and cosines

is known as Fourier series. So, for a periodic signalf(t), Fourier series will be,

00 00

J(t) = ao + 2>n cosnwot +I,bn sinnwot,
n=! n=!

2"wherewo =-.
T

The Equation (4.1) can be written as:

00

J(t) = I,cnejnl1'OI
n=-co

(4.1)

The concept of Fourier series can be extended through some modifications to obtain

the representation for non periodic signals. The equation for Fourier transform and its

inverse is shown in Equation (4.2) and (4.3) respectively.

17



00

F(w) = fJ(t)e-jOJldt
-00

(4.2)

(4.3)
1 00

I(t) = - jF(w)ejOJI dw
27C -00

The function F(w) can represent the fluctuations of the signal at different

frequencies. And the inverse of the transform shows the ability to accumulate the

fluctuating components at different frequencies. The reversible process of Fourier

transform ensures that the process is energy-preserving. The property reveals that the

total energy content remains same both in time and frequency domains. This can be

shown by Equation (4.4).

11/(1)12 dt = _1 1F(w)1
2

dw,
-00 27C_00

where, W = 2;( .

(4.4)

(4.5)

(4.6)

The procedures of Fourier series and transform are based on signals that are

continuous function of time. But in practical situations, most of the signals are the

samples of continuous signal at different moments. To deal with this type of signals,

Discrete Fourier transform (OFT) is introduced from Fourier series. The Fourier

series coefficient Ck of continuous function /(1) is changed to a repetitive function of

N samples within a time interval T.

Periodic representation of coefficients Ck in Equation (4.5) has been changed to

Equation (4.6).

C k = ~ fl(t)ejkwOI dt
o
1 TN-I

Fk = - fJ(t) L 8(t _!1- T)ejkOJOI dt
To n=O N

27C
where, Wo = -.

T
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The only difference between the representations is the duration where one is the

period of the other periodic sequence. But the main drawback of this assumption ofa

non periodic signal to a periodic sequence using OFT is that there introduces a sharp

discontinuity at the beginning and end of OFT sequences. In order to represent the

sharp discontinuity, OFT needs to keep its higher frequency components as nonzero.

Normally, transform based data compression schemes eliminates the high frequency

components of the transformed coefficients. But, as the high frequency content is a

necessity for OFT, the coefficient reduction introduces distortions in the retrieved

data sequences. So, if there could be introduced a mirroring effect of OFT

coefficients by doubling the period N, the effect of sharp discontinuity at the edges

can be eliminated.

An example of this type of application is the OCT that is the first N-points of the

resulting 2N-point OFT. This OCT should have more energy-compaction property

than OFT as the effect of high frequency components can now be neglected easily.

So in terms of CR, the OCT performs better than OFT.

4.2 DCT

The most common OCT definition of a I-0 sequence of length N is

N-l [Jr(2X+l)U]
C(u)=a(u) x~Of(x)cos 2N

For u=0,1,2, ... N-1.

Similarly, the inverse transformation is defined as

N-l [Jr(2X+ I)U]
f(x) = u~O a(u)C(u)cos 2N

For x=0,l,2, ....N-1.

In both equations (4.7) and (4.8) a(u) is defined as,

H For u =0
a(u)=

~

For u * 0
(4.9)

(4.7)

(4.8)
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It is clear from Figure 4.1, that the first transform coefficient is the average value of

the sample sequence. In literature of OCT, this value is referred to as the DC

Coefficient. All other transform coefficients are called the AC Coefficients.

To visualize the ideas of OCT, variations of u is plotted in Figure 4.1 for N = 8 by

ignoringf(x) and a(u)as follows:

1234~,G78
,.

:~I._-.IJ'
12345G7B

:~••II••~'-.'':[ I-I••~-I I
12345678 12345678:I........ rR I {S_II-~.I
12345678 1234~,678:51••1•• r"':I-.II~I.- r-.,I
12345678 12345678

Figure 4.1: One dimensional cosine basis function (N=8)

From previous discussions on 1-0 OCT, the first the top-left waveform in Figure 4.1

shows a constant (DC) yalue, whereas, all other waveforms (u = 1,2 ... 7) shows a

progressive increase of frequencies [19]. These waveforms are called the cosine

basis function. They are the orthogonal basis function of OCT. Because,

multiplication of any waveform in Figure 4.1 with another waveform. followed by a

summation over all sample points yields a zero (scalar) value, whereas multiplication

20



of any waveform in Figure 4.1 with itself followed by a summation yields a constant

(scalar) value. Also, orthogonal waveforms are always independent as none of the

basis functions can be represented as a combination of other basis functions [19).

The 1-0 OCT can be directly extended to the 2-0 OCT as is given in Equation

(4.10).

N-IN-I [Jl'(2X+I)U] [Jl'(2Y+l)V]C(u,v)=a(u)a(v) I I f(x,y)cos --- cos ---
x=Oy= 0 2N 2N

For u,v = O,I,2,....N -I.

The inverse transform is:

N-IN-l [Jl'(2X+I)U] [Jr(2Y+I)V]f(x,y) = I I a(u)a(v)C(u, v)cos ---- cos -'-~--'-
u=Ov=O 2N 2N

(4.10)

(4.11 )

For x=O,I,2, ...N-I.
Basis functions for the 2-0 can be generated by multiplying the horizontally oriented

1-0 basis functions (shown in Figure 4.1) with vertically oriented set of the same

functions. Here a progressive increase of frequencies occur both in the vertical and

horizontal directions.

From the above discussion and visualization, it can be concluded that OCT is nothing

but a one-to-one mapping of N point vectors between the time and the frequency

domains. This behavior of DCT introduces energy compaction in the coefficients

with highly correlated data in time domain. So, correlation chrematistic of input data

determines whether the frequency domain has high energy concentrated in the low

frequency region or not. This property helps to produce a large sequence of zeros for

higher order coefficients and also in the quantization process for further processing.

So, elimination of some high frequency content has little impact on significant

quality degradation of the reconstructed signal. To enhance the energy compaction

property of OCT, segmentation (QRS, P and T sections) of ECG data can be

performed in time domain. Then a combination of the quantization and linear
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encoding can improve the efficiency of the compression of OCT coefficients. The

aforementioned attributes of the OCT have led to its widespread deployment in data

compression. Normally compression schemes that uses any kind of transformation,

integrates a type of approximation to the compressor. This is known as quantizer and

the system helps to reduce variations among transform coefficients.

4.3 Quantization

The quantization reduces redundancy in the OCT coefficients and also the number of

bits required to encode coefficients. Thus the process can be defined as mapping of Q

from an input set X to an output set C such that the ordinality (number of bits) ofC is

smaller than that ofX.

It maps the input x ~ (x;},x, E X, to an outputq E C, where q is a quantization index

taken from the set of quantization indicesC. Ifx contains only one element, then this

operation is called scalar quantization and it is called vector quantization if x

contains more than one elements. By its very nature, quantization is a non-invertible

function and is mainly responsible for the loss of information or distortion.

(a) (b)

Figure 4.2: Graphs of simple quantizer functions (a) rounding function,

(b) Truncation function

Threshold function e(x) returns x if X" II, where e ERa threshold value and it

returns zero otherwise. Other scalar quantization methods include: (a) rounding
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function which returns nearest integer to its argument and (b) truncation function

which returns only integer parts of its argument.

The output of e(x) may usually be rounded to the nearest integer in order to reduce

the ordinality (number of elements) of C. Such quantizers are of great importance for

both signal and image coding because they produce zero output for small input

values. Here scalar quantization is chosen over vector quantization because of the

memory and speed requirements of affordable tele-cardiology workstations.

Rounding the output values of threshold function returns two type of output: zero and

non-zero integer values greater than () in magnitude. This simple modification helps

to feed the output of quantizer directly to an entropy coder. Entropy coding is

designed so that the numbers that are expected to appear most often in integer

sequence need the least amount of space in coder output. Then data compression is

achieved by replacing each fixed-length input symbol by the corresponding variable-

length prefix codeword. An example of the entropy encoding is the Huffman coding.

In this research work this type of coding is used to encode the length of long

redundant input sequences.
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Chapter 5

PREPROCESSING OF ECG SIGNAL

A significant part of most of the ECG signals analysis and compression schemes are

the identification of the various waves and complexes (PQRST features) presents in

the signal. Among the feature detection processes, QRS detection is the predecessor

of all. R wave helps to detect and classify other features like P and T waves, ST

segment classification, baseline removal and etc. SO, QRS detection plays a vital role

in ECG signal preprocessing and it should be done first.

The database used in this work is a collection of files from the MIT-BIH Arrhythmia

Database. Each signal file contains two channels of ECG signals sampled at 360 Hz.

Each sample is represented by II-bit two's complement amplitude. Mean noise value

is removed from these 360 Hz sampled raw ECG data by applying mean reduction.

Then these files are resample at 250 Hz, in order to fit the compression and the

feature extraction algorithms. Then to extract the amplitude, shape and duration

features for measuring the WOO index and also the compression ratio of our

proposed algorithm, we have applied some preprocessing to the resample ECG data

(P, QRS, and T sections).

The compression algorithm also uses other diagnostic features for comparing the

compressed beat signal (after reconstruction) and the original beat. So, the main

effort of feature extraction is finding the exact location of the characteristic

parameters as shown in Figure 5.1 [13].

After finding the waves' locations, the determination of the wave's amplitudes and

shapes is much simpler. The strategy for finding the waves' locations is to first

recognize the QRS complex, which has the highest frequency components. T wave is

recognized next, and, finally, the P wave, which is usually the smallest wave. Then

the baseline and the ST features are relatively easily estimated ..
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Figure 5.1: PQRSTcomplexes location points of one beat

5.1 QRS detection

The detection ofQRS complexes is the basis of ECG processing applications such as

rhythm analysis, feature recognition (P, QRS, T) and ECG compression. The main

challenges in QRS detection lie in patterns with varying morphology, large P and T

waves, and different types of artifacts and noise. A general scheme for QRS detector

consists of three steps: 1. Coarse QRS limits determination, 2. Peaks and notches

determination, and 3. Exact limits determination [13]. The block diagram of three

stage QRS detection process is shown in Figure 5.2.

QRS"iJ
R Wave and.
QRS Peaks
Locations

QRSon
QRS'1f

QRS Limits
mination by
reshold

CG s" (n) sd (n t(n) Coarse
ional LPF Non-linear

25 Hz Derivative ~ Transform Deter
filter Thr- QRS""

BPF
590 (n) d(n) Peaks and Notches

f------. 1- 90 Hz Difference Determination

Smoothing
f(n) fd(n)

Exact Limits4 Difference --Filter Determination

E
S

Figure 5.2: Simplified block diagram of the QRS detector
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Step 1: Coarse QRS limits determination - The ECG signal is first filtered with a

25 Hz low pass filter to eliminate noise that might influence the detection algorithm.

Then a derivative filter is applied to the filtered output. The equation of the

derivative filter is:

sd(n) =(s2S(n + I) - s25 (n -1))/2 (5.1)

After applying derivative filter, ECG data is passed through a moving average filter

with the help of a non-linear transform. The equation of the non-linear transform is:

kl2
l(n)= I,sd(n+i) (5.2)

j=-kI2

The window size k of the average filter is determined by the average width of QRS

complex. Here value of k is used as 25.

To determine the coarse limits of the QRS complex, we threshold moving average

filter's output. Normally threshold level determination is dependent on the previous

epoch of the nonlinear transformed signal. But, due to excessive amount of high

frequency noise or movement artifact, this type of coarse limit detection may fail as

sudden increase in l(n)may not in be dependent on the previous epoch. So, here we

have used not only the maximum epoch as a standard but also the mean of all the

filtered coefficients is added to the maximum.

.
Thus, the values of the variable thresh are determined heuristically:

thresh = «0.5 x max(l(n) + mean(l(n)))/2

Here, false coarse limits caused by T waves and artifact are rejected.

(5.3)

(5.4)

Step 2: Peaks and Notches determination - The ECG signal is re-filtered using J -

90 Hz band pass, and differenced. The difference operation has the transfer function:

+1 -1z -z
Hd(z)=--

2
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Figure 5.3: The QRS complex coarse limits estimation process

The differenced signal den) is used to find the R wave and other peaks and notches in

the QRS complex (if they exist). This is done by defining a derivative threshold d'h

for each complex, which is calculated with this equation:
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dmax = _ max _ ~d(n~}
QRSon 5,n5,QRSof[

dmin = _ max _ ~d(n~}
QRSon -305,nSQRSon

drh = 1.05 x max{ dmin, d;~x}

(5.5)

The factor 1.05 that is used to calculate the drh might be varied depending on the

variations in the height of QRS for different database as the original ECG signal

often suffers from baseline wander noise. The output will have constant baseline with

exaggerated high frequency components. Thus, noise level can be estimated by

looking at the isoelectric part of the output signal. Two thresholds are applied to the

differentiated signal d(n) to determine the positions of the peaks and notches of the

ECG signal and they are identified by +I or -I of pne(n) using the equation:

j
I if d(n) ?+dth

pne(n) = 0 if - dlh < d(n) < +dth
-I if d(n) 5,-dlh

(5.6)

The peaks and notches locations in the QRS complex are determined by the locations

of the zero crossing of the pne(n) signal as shown in Figure 5.4 (c), inside the search

interval. The size of the interval is controlled by the coarse limits of the QRS

complex (QRS
oo

and QRSoff ). The first positive wave in the QRS complex in the

QRS complex is defined as R wave.

Step 3: Exact limits determination - The exact limits of every QRS complex are

determined by first filtering the ECG signal by a smoothing FIR filter with the

transfer function:

(5.7)
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Figure 5.4: The estimation process of peaks and exact limits of one QRS complex

(a) Two beat of ECG signal (b) The derived signal den)

(c) pne(n) that emphasizes on the locations of peaks and notches

and then differentiating the smoothed signal (fd(n) ). Two thresholds are then
calculated:

_ max lfd(n~}
th = QRS,,,,5.n5.jir.rl pr:ak

lin 10

max _ lfd(n~}
h la.ll peaks.nSQRSoj{t --------
off - 10

The locations are identified as the exact onset and offset of QRS complex by the

following equation:

(5.10)
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(5.11 )

The exact limit ofthe QRS onset QRSon is targeted as the first sample of/den) that is

less than the threshold thon (from/don and backward) and the exact limit ofQRS

offset QRSoffis the first sample of/den) that is less than the threshold thoff(from/doff

and forward).

5.2 T wave detection

T wave always appears after the QRS complex and can have various shapes. In this

section we are going to detect the peak Tp and the offset ofT wave TOffalong with the

shape of the wave T,hap,' Three shapes are to be considered for T wave: positive,

negative, and flat. The detection algorithm is based on [13]. 250 Hz sampled ECG

signal is given to the T wave detector along with the locations of the QRS complex

offset (QRS'ifJ) and the R wave that are estimated by the QRS complex detector. The

whole T wave detection process is shown in Figure 5.5 by using simplified block

diagrams.

ECG
signal Filtering

and
derivation

g(n) Search
window

multiplication

Min&
max

search

min.
max T shape

determination
& threshold
calculation

Ih,
r~hape Finding

T'ff& Tp

T.ihape

Figure 5.5: Simplified block diagram of the T wave detector

The ECG signal is filtered and differentiated, by a filter with a transfer function:

(5.12)

The derived signal g(n) is multiplied by a search window, which has the equation:

W;"I+l1
1 ; R + bw :0: n :0: R + mw

n-R-mw
; R+mw:O:n:o:R+ew (5.13)

ew-mw
0 else
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where bw. mw, and ew are the beginning, middle and end points of the window

respectively. Their value depends on the average value of the RR interval (RRav):

{
120msec RRav > 700msec

bw~
100m sec RRav ~ 700m sec

ew ~ {500m sec
. O.7RRav

RRav > 700m sec

RRav ~ 700m sec

mw ~ O.8(ew - bw)

This window is shown in Figure 5.6 (b). The slope of the window is used to reduce

large and close P waves. The search for maximum and minimum values is made over

the multiplied derived signal gw(n) as shown in the Figure 5.6 (d).

(a)

i:I-+E~" ! 3£1'..~.
« 0 100 200 300 400 500 600

Sample Index

i]--fFf 'I' :bF+--
« 0 100 200 300 400 500 600

Sample Index
(c)

!1~~ I ;=;= !....... 'r=+.'. ~Io~t ..~L .._.._.._...L.:._.. _. __ -,-I_L=ts j
« 0 100 200 300 400 500 600

Sample Index

t:I~i47-'1-1 ?SI-
5 -2

0-< 100 200 300 400 500 600
Sample Index

Figure 5.6: Twave detection (a) The input ECG signal (b) The derived signalg(n)

(c) The search window (d) The multiplied derived signal g. (n) by the search window
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Shapes of T waves are determined as follows: positive - if max before min,

negative - if min before max. The threshold th for finding the T offset Toff is

calculated using the equation:

{
g,,(min)/2

th-
- g...(max)/2

if T is positive
if T is negative

The TOff point is determined to be the threshold crossing point. The Tp is determined

to be the zero crossing point between the min and max points. T wave is determined

to be flat if the difference amplitude between Tp and TOff is less than 1mm (I mm =

O.lmV).

5.3 P wave detection

Normal duration of the P wave is about 100 msec and appearance is before QRS

complex. P wave is usually the smallest wave in the ECG signal that makes P wave

detection a difficult task. The algorithm used in this work is from [13]. Table 5.1

shows the possible nine shapes of P wave that can be estimated by the P wave

detector.

Table 5.1: P wave shapes

V A I""\v V' r\ "---J J\ V --

negative positive biphasic biphasic notched notched pulmonale pulmonale flat

I II positive negative positive negative.

The block diagram of the P wave detector is shown in Figure 5.7.

ECG
signal Filtering

and
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j(n) Search
window
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j...(n) Primary P shape
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threshold
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Finding
P shape Pshape

correction
limits & peaks Pon

finding FOJf
1

TheWindow:~o

7;;ff I , '
r,n +O.I5(ORS,," - r,n)

Figure 5.7: The block diagram of the P wave detector
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The input to the detector is the ECG signal and the location points of QRSon of the

current beat and TOff of the previous beat. The ECG signal is filtered with a band pass

filter of 0'.01 - 30 Hz and differenced, before it is given to the detector. Then the

differenced signal fin) is multiplied by a search window and the temporal shape of

the P wave is determined.

(a)

5'..s
'"'0 a .......
" :.'"0.
E« -1

0 100 200 300 400 500 600
Sample Index

(b)

: :
: ( I: ~ ...

:
: ; ;

5' 05
..s
'"-g 0
~
a.

~ -0.5 o 100 200 300
Sample Index

(e)

400 500 600

'"~ 0
0.
E -1«

. . . .. . .. .. .

o 50 100 150 200 250 300 350 400 450 500 550
Sample Index

Figure 5.8; P wave detection (a) The input ECG signal after band pass filteringf(n)

(b) The derived signaljiv(n) (c) The search window

The algorithm for P shape classification Pshape consists of three stages: 1. primary

classification, 2. edge of P wave detection, and 3. final classification with peaks and

notches detection. The flow chart of the primary P shape classification is shown in

Figure 5.9.
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After the primary P shape determination, the limits of the P wave ( Pon , PojJ) are

estimated by a the similar process as used for the QRS exact limits estimation with a

threshold value that is 5 times less than the derived signal peaks max, maxt/minL ,

maxR/minR at the edges. P shape decision correction is performed after the limits

estimation with the procedure shown in the flow chart in Figure 5.10. The peaks and

notches locations are determined by the zero crossing of the derived signal.fiv(n)

between the P limits (Pon, PojJ).

YES

minR ~ argmin{j",(n))
n>max

minL ~ argmin{j,,(n)}

NO

maxR ~ argmax{j;,,(n)}
n>max

maxL ~ argmax{j",(n))

if
,J".(minR) < -Q,28Jw(max
B, J,,(minrl < -Q,28J,,(max)

YES ?
BOTH

P shape:
Biphasic II

NO

No P wave!

YES
BOTH
P shape:
Biphasic I

Figure 5.9: The flow chart of the primary P shape classification

5.4 Baseline Estimation

Normally the baseline is characterized by low frequency noise (baseline drift) on

which the ECG signals is rides on as shown in Figure 5.11.

The Base Line can be extracted in three stages:

l. For every ECG beat that includes a P wave, a 32msec window with

minimum variance is searched in the interval [PojJ. QRSon].

2. In this window the mean is calculated and a point in the center of this

window with the value of the mean is denoted (BLP;).

34



Temporal P shape

Positive

;f
kce(n)}- m;n {M:e(n) <

Pon<n<Poff

Negative

Biphasic

Pulmonale
negative

Figure 5.10: The flow chart of the P shape decision correction

3. Making a first order interpolation with these points (BLP; , i= I ,2, ... ,number of

complexes with P wave). The process of estimation of baseline is shown in Figure

5.1 I [13]. The circles are the ELP; points.

After Base Line removal from the ECG signal, all the amplitude features are re-

calculated. All processing demonstrated graphically above, are calculated after

baseline removal from original ECG signal.

5.5 ST Segment Features

In the ST segment, three features are extracted: ST elevation, ST slope, and ST

shape. The process begins with determining the location of the ST point as shown in

Figure 5.13. The location of the ST point is dependent on the heart rate. So, if the

heart rate is slower than 60 bpm, then the ST point is placed 80msec after QRSo/!.

35



Abnormal Beats
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Figure 5.11: ECG signal with baseline drift

(The dashed line is the estimated baseline)
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Figure 5.12: Baseline Estimation ofECG signal
(a) ECG signal before baseline removal
(b) Estimated baseline
(el ECG signal after baseline removal
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Again, if the heart rate is faster than 60 bpm, then the ST point is placed 60msec after

QRSoff The ST elevation is the amplitude of the ST point. The ST slope is the slope

in mm/sec units of the ST point relatively to QRSofJas indicated by the J point. The

ST shape is one of five shapes: flat, concave, convex, straight positive and straight

negative. The ST shape is determined using a very simple algorithm, which

compares the amplitudes of three points: 1. the point that is distant 60 msec before

the ST point, 2. the ST point, and 3. the point that is distant 60 msec after the ST

point. If the maximum difference between the amplitude of these three points is less

than Imm, the shape is determined to be flat.

R

T
wave

QRSojJ or
J point

p
wave

~~l
slope

Figure 5.13: The ST segment features

""0 ••• Baseline
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Chapter 6

PROPOSED ALGORITHM AND RESULTS

This chapter contains the detailed description of our proposed RLE based

compression algorithm. It performs RLE on the length of redundant sequences of

DCT coefficients and then uses Huffman coding of the RLE values for digitization.

The compression can be considered as a hybrid of the transformation techniques and

parametric extraction techniques. Also, this chapter presents the results obtained by

the proposed scheme and evaluates its performance with some existing techniques in

literature. To evaluate our scheme with some other well known compression

standards, we have utilized a NN based ECG compressor. Throughout the evaluation,

our main target is to explore and emphasize on the idea of using clinical diagnostic

features of ECG signal as a tool for performance comparison. To meet our desired

goals, we have pre-processed and prepared the input data so that calculation of PRD,

WDD, RMS distortion indices can be performed easily.

6.1 Proposed Algorithm

In this section, we describe the proposed compression algorithm whose block

diagram is shown in Figure 6.1. The long ECG record is first divided into segments

QRS region and non-QRS regions. The segmentation is indicated by the locations

provided in Figure 6.3. Then each segment is passed through the transform process.

After that, the resulting DCT coefficients quantized using linear quantizer. This

quantization helps to introduce redundancies into the DCT coefficients. After that,

the quantized DCT coefficients are encoded using RLE algorithm that accumulates

the consecutive sequences of similar coefficients. In ECG signal processing, we are

allowed to lose some redundant information by quantization. This affects the quality

of the signal's reconstruction. The ability of diagnosis of the recovered signal

controls the amount of allowed distortion introduced by quantization. In the

following subsections, detailed descriptions of the process of our ECG compression

algorithm are given.
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Figure 6.1: Block diagram of our proposed compression scheme

6.1.1 ECG Segmentation

To utilize the correlation property of OCT, here, quasi-periodic characteristics of

ECG signal is used. This property reveals that there exists correlation between

adjacent or neighbor ECG beats (inter-beat correlation) and correlation between

adjacent samples (intra-beat correlation) of ECG signal according to Figure 6.2 [13].

It is observed that for inter-beat correlation, high correlation peaks exists in every RR

time lag. Also, Figure 6.2 (c) shows a high correlation between adjacent samples for

intra-beat ECG signal and it becomes the worst at R wave peaks.

20 20
a b

10
10 0

0 -10
-20

-100 50 100 150 0 500 1000
sample index sample index

C d

0.5
0,5 0

-0.5
0 -1

-0.5 -1.5
0 50 100 150 0 500 1000

sample index sample index

Figure 6.2: Inter- and intra-beat correlation (a) One beat (b) ECG signal (c) Intra-

beat correlation (d) Inter-beat correlation (correlation between (a) and (b»

To utilize this correlative behavior among ECG beats, there should be two separate

regions: the high correlated non-QRS region and low correlated QRS region. An
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appropriate use of this correlation is the segmentation of ECG beats before they are

converted into DCT coefficients. This will produce long sequences of zeros in

frequency domain by conserving more energy in less no. of coefficients.

Depending on the high correlation between QRS and non-QRS regions, we have

segmented the ECG signal into two sections: QRS complex and P and T section. To

facilitate the segmentation process, the original 360 Hz sampled MIT-BIH ECG data

sets are down sampled to 250 Hz. Denoising of the raw ECG signal is accomplished

by mean reduction technique and baseline removal. Then segmentation of P, QRS

and T features and baseline removal is performed according to [25], [13] as are

described in detail on Chapter 5. Also, the indication of start and end of various

segments are shown in Figure 6.3.

QRS
complex

R

T
wave

QRSon QRSof!

p
wave

S

Pon POf! Tp TOf!

Figure 6.3: P, QRS and T features ofECG signal

6.1.2 DCT Transform

A DCT technique transforms N point data from time domain to N point coefficients

in frequency domain. Each QRS-complex and P and T sections are transformed to 1-
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D DCT separately. Due to the energy conservation property of DCT, it generates a

long sequence of zeroes at higher frequency coefficients. Most of the energy is

packed into the low frequency region. It is also verified that segmentation has a great

impact on the energy conservation characteristics of DCT. But redundant use of

segmentation also increases the processing complexity and the storage requirements.

An optimum solution to this problem to maintain only two separate set of l-D DCT

coefficients: one for QRS-complex and the other for P and T sections. The algorithm

for DCT is described in Chapter 4.

6.1.3 Quantization

Quantization plays an important role in data compression. It's an irreversible process.

The amount of loss controls the no. of members in the discrete dataset that are

produced after quantization. Precision of reconstruction depends on the amount of

approximation or step size of quantizer. In this work, we have scalar quantized the

floating point DCT coefficients both for single precision and double precision. But,

we have preferred the single precision quantizer over double precision, because, with

respect to CR, single precision quantization performs better and it is simple to

implement. The qunatizer have step size starting from 0.1 and proceeded by 0.1 until

there introduces significant amount of distortion after reconstruction.

6.1.4 Run Length Encoding

The use of quantization is always motivated by the need to reduce the amount of data

to represent a signal. So, the data set representing an ECG signal interms of DCT

coefficients is quantized to use redunacy encoding. By reducing the precision of the

transformed values using quantization, the amount redundancy increases, as well as

the requirement of number of bits to represent the coefficients is substantially

reduced.

One portion of our compression scheme is the binary representation of the run values

by Equation (6.1).

no. of symbols x bits/symbol (6.1)
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Figure 6.4: An example of our RLE based encoding scheme

Bits/symbol can be determined by the formulalogz x, where x is the no. of distinct

symbols in the signal. The other portion is the result of 2nd stage RLE on lengths.

Here, further data compression is possible by applying Huffman coding to the output

of RLE. Also, Huffman coding is the easy method of binary encoding for any data

set.

6.1.5 Huffman Encoding

Normally, discrete amplitudes of quantized signal do not occur with equal

probability. So, using variable length encoding to them, depending on their frequency

of occurrences, is more acceptable than fixed length encoding. Data that occur

frequently is assigned a shorter code word. An example of Huffman coding scheme is

presented in Figure 6.5.

Figure 6.5 reveals that at first the given data set is used to calculate the probability of

occurrences and then the probabilities are used to formulate the Huffman tree.

Traversal though the branches of the tree, provides a variable length code word for a

symbol depending on the position of the leaf, that represents the probability of that
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symbol. A left branch traversal is indicated by"]" and a right branch traversal is

indicated by "0".

1111111222222333334444555667

Probability calculation

0.25 0.21 0.18 0.14 0.11 0.07 0.04

Huffman Tree fonnulation

o

Figure 6.5: An Example of Huffman Tree formulation from a given dataset

By observing the tree, it can be concluded that, tree traversal for a code word of a

particular symbol always ends at the branch that has no leaf. Now the dictionary of

symbols for this Huffman coding scheme is presented in Table 6.1.

The expected code word length/bit can be calculated by Equation (6.2).

E[l] = I~~11iPi (6.2)

Where, Ii represents the length of Huffman code for that symbols and Pi is the

probability of that symbol.

To transmit the data set in binary format, we have to replace each symbol by its

equivalent code word from the Huffman dictionary. In the receiving end, to decode
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the binary information, it requires the Huffman tree or the code dictionary. To

retrieve the original data set, Huffman dictionary has to be sent as a header. Decoding

of the binary data file is possible using the Huffman dictionary. The process always

starts from the root. For each symbol, starting from the root, if a "1" is received, then

we visited the left child and if a "0" is received, we visited the right child. This

process continues until we get into a branch that has no child.

Table 6.1: Huffman dictionary

Fixed length
Probability Huffman

Symbols encoding
of code

occurrence
1 001 0.25 10

2 010 0.21 00

3 011 0.18 I 11

4 100 0.14 110
5 101 0.11 011

6 110 0.07 0101

7 I 11 0.04 0100

A branch with no leaf indicates the finishing of a data symbol. The symbol can be

decoded using the Huffman dictionary that we have transmitted as header to the

binary file. This decoding continues from root for all the symbols until all the code

bits. are completed. For this research work, we have used two separate dictionaries:

one for the QRS complexes and the other for the P and T sections.

6.1.6 Bit rate calculation

Now, the total size of our compressed ECG data file is consists of:

1. Code from the 1st stage RLE run values for each ECG beat

a) For P and T sections

b) For QRS complex

2. Code from the Huffman coding of the 2nd stage RLE values for each ECG beat

a. For P and T sections

b. For QRS complex

3. Combined Huffman code dictionary for all ECG beats
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(6.3)

a. For P and T sections

b. For QRS complex

Calculation of bit rate depends on the ratio of the total compressed data bits to the

equivalent time interval to generate that portion of ECG beat. We have used MIT-

BIH Arrhythmia database as a test data set for our proposed compression scheme.

Here, each data element is digitized using a II-bit code word. So, we have calculated

the CR of our proposed RLE based compression scheme as follows in Equation (6.3).

Nxm
CR = --------------

n
dp +dq + I(cPi +cqi +rpi +rq)

;~1

Here, N is for the no. of ECG samples (data), m is the no. of bits/data used in MIT-

BIH database, dp and dq are the dictionary size for P and T sections and QRS complex

respectively, i is the no. of ECG beats, cp and cq are the Huffman code size for P and

T sections and QRS complex respectively and rp and rq are the binary code run values

ofRLE for P and T sections and QRS complex respectively. And bit rate is:

Bit rate = (Total no. of bits after compression)! (Total no. of data) x (Sampling rate)

6.2 Test Dataset

In order to maintain the consistency of relative comparison with other ECG data

compression techniques, in this research work we have used MIT-BIH Arrhythmia

database as a standard test datasets. This is a collection of 48 half-hour Holter

recordings, each of which contains data from two separate ECG leads, sampled at

360 Hz with II-bits per sample. A set of 25 records containing a variety of

pathological cases was selected for testing compression performance. Appendix

summarizes the major characteristics of some of the test signals. Standard limb lead

II (MUl) data is commonly used in pre-hospital phase of emergency care when

monitoring the heart solely for arrhythmia.

6.3 The Values ofWDD Parameters

For all the results that are analyzed in this chapter, uses WDD as a distortion index to

measure the compression performance. Predefined values of some characteristic
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parameters for WDD are presented in this section. For the shape features (Tshape,

Pshape,and STshape)of WDD as discussed in Chapter 3, the fixed penalty matrices are

provided below [13].

0 .2 .2 .2 .3 .2 .2 .2 .4

.2 0 .1 .1 .3 .4 .4 .4 .2

.2 .1 0 .1 .3 .4 .4 .4 .2

.2 .1 .1 0 .3 .4 .4 .4 .2
wP =.3 .3 .3 .3 0 .3 .3 .3 .3

.2 .4 .4 .4 .3 0 .1 .1 .2

.2 .4 .4 .4 .3 .1 0 .1 .2

.2 .4 .4 .4 .3 .1 .1 0 .2

.4 .2 .2 .2 .3 .2 .2 .2 0

0 .2 .4

W" = .2 0 .2
.4 .2 0

0 .1 .2 .1 .4

.1 0 .2 .4 .1

WST = .2 .2 0 .2 .2
.1 .4 .2 0 .1

-. .4 .1 .2 .1 0

Decoding of the specific weight for a particular shape difference between the original

and the reconstructed signal from the weighting matrix is done with the help of the

sequence numbers used in Table 6.2 [13].

Table 6.2: The numbering of the WDD shape features for the penalty matrices

~
1 2 3 4 5 6 8 97

Shape
feature

Pshape negative pulmonale notched biphasic nat positive pulmonale notched biphasic

negative negative II positive positive I

Tshape positive nat negative

STshape straight concave nat convex straight

positive negative
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Diagonal weighting matrix in the present work is as follows [13]:

1\=[2 1 1 1 1 1 1 0.250.251 1 1 2 2 1 1 1 1

6.4 Results

The effects of RLE compression on ECG signals are presented in Figure 6.6, 6.8 and

6.10 respectively by varying the step size of DCT coefficients for three MIT-BIH

records. These Figures indicate that the shape, amplitude and duration of the

reconstructed ECG signals are almost identical to the original signals after

compression. Also, Table 6.3 illustrates the obtained compression ratios and the

corresponding WDD and PRD indices with respect to the quantization resolution and

bit rate for MIT -BIH record 117. By analyzing the numerical values, it is quite clear

that the application of WOD as distortion measure is much better than PRO with

respect to compression ratio. From literature [13], it is obtained that distortions will

be in a considerable level, if we can limit our compression within 2%-4% of WDD

and 6%-9% of PRD. Thus, a quantization step size of 0.2 with compression ratio

13.92 will be reasonable in the point of clinical diagnosis. So, the major portion of

the ECG signals extracted from MIT-BIH arrhythmia database are tested up to the

step size of 0.2.

Table 6.3: WDD and PRD variation with Quantization resolution and bit rate (bps)

for Record-I 17

Quantization
CR Bit rate (bps) WDD(%) PRD (%)

step size

0.01 2.73 1007 0.0575 1.0235

0.05 6.5 423 0.3773 3.4919

0.1 10.125 271 0.455 5.9786

0.2 13.92 198 0.6362 9.299

0.4 14.866 185 2.55 15.28
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Figure 6.6 shows an example of original and reconstructed ECG signal, which was

compressed by the proposed compression algorithms (OCT-RLE). The original ECG

signal is taken from the MIT-BIH database - record 117. Oistortion indices are

calculated on beat by beat basis for graphical representation of PRO and WOO with

variations of CR and bit rate for a particular MIT-BIH record. For this particular

record, the effects of change in bit rates on WOO, PRO and CR using our proposed

compression technique are shown in Figure 6.7.

(a)B=--ff-..•.-u-I£H
<{ 0 100 200 300 400 500 600

sample Index

1:1--* OJ =pc=j
o 100 200 300 400 500 600

Sample Index
(c)i:EH~-,---f+E

<{ .10 100 200 300 400 500 600
Sample index

Figure 6.6: Original and reconstructed signal of record 117 (MIT-B1H)

(a) Original signal

(b) OCT-RLE compressor (CR 10.12, WOO 0.455%, PRO 5.97%)

(c) OCT-RLE compressor (CR 13.92, WOO 0.636%, PRO 9.299%)

The trend of the distortion indices indicates that the bit rate below 200 bps introduces

a drastic change in the quality of the reconstructed signal by the sharp upward

bending. Also, the pattern confirms that WOO is less sensitive than PRO on

variations of the bit rate. In reality, as WOO deals with the relevancy of the distortion
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with respect to the clinical acceptability, instead of mathematical calculations, it

remains less sensitive to the distortion. This property of WOO facilitates the

compression process by offering higher compression ratio.
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Figure 6.7: The compression ratio and distortion-rate curves of our proposed

compression scheme for MIT -BIH record I 17 with respect to bit rate variation

Again, for Figure 6.9, similar conclusions can be written as are in Figure 6.7. CR

after 200 bps will create significant amount of distortion. The variations in the

behavior of WOO for both record I 17 and 119 confirm that the slope of PRO, WOO

and CR vary for each record.

The trend lines of Figure 6.9 indicate that for the Record I 19, our proposed OCT-

RLE based scheme with WOO performs better than PRO. The variations of WOO

with bit rate seem to take a sharp turn after bit rate 250 bps. This indicates that

further increase in bit rate will increase the amount of distortion on the diagnostic

features along with higher CR. Also, from the distortion rate curves of Figure 6.7 and

49



6.9, different amount of WOO index indicates the variations of the characteristics

parameters of different datasets.
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Figure 6.8: Original and reconstructed signal of record 119 (MIT-BIH)

(a) Original signal

(b) OCT-RLE compressor (CR 6.96, WOO 1.337 %, PRO 5.286%)

(c) OCT-RLE compressor (CR 8.86, WOO 2.619%, PRO 8.857%)

6.4.1 Comparison with Other Methods

The compression algorithm developed in this paper can be used for most 1-0 ECG

signals. However, the choices ofthe quantization step sizes are signal dependent. Till

now, application of WOO for performance evaluation of ECG compression schemes

is not explored widely. Only from [13], we have obtained some analysis on distortion

measurement using WOO. Theses observations and analysis of the author regarding

WOO are also presented in this work in Figure 6.11 to evaluate our system.
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Figure 6.9: The compression ratio and distortion-rate curves of our proposed

compression scheme for MIT-BIH record 119 with respect to bit rate variation

Moreover, we have used some other widely used distortion indices like PRO or RMS

to evaluate our compression schemes with others in literature. It is noted that the

performance of the compression algorithm depends on the particular ECG record

being compressed.

From Figure 6.11, it can be observed that with respect to bit rate, LTP, AZTEC, and

SAPA2 all three compression schemes represent a high distortion index than our

previous results. Also, for ASECWOO, for a bit rate of 200 bps, WOO remains more

than 2.5. But, for the same bit rate, our OCT-RLE based compression scheme shows

less WOO than that in Figure 6.11. Further comparisons with literature are presented

in Table 6.4.

Our evaluation with other compression schemes in Table 6.4 shows that our system

performs much better compression than others with respect to PRO as a distortion

index.

51



From the Table it can be observed that, 1-0 and 2-0 OCT based schemes in [21]

have a low CR and high distortion indices with respect to our proposed OCT-RLE

based compression scheme.

i:r~ ••....~......=r='
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Figure 6.10: Original and reconstructed signal of record 101 (MIT-BlH)

(a) Original signal

(b) OCT-RLE compressor (CR 8.62, WOO 2.35 %, PRO 8.97%)

(c) OCT-RLE compressor (CR 12.06, WOO 4.79 %, PRO 13.48%)
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Figure 6.11: The distortion-rate curves of the algorithms:

ASECwDD, LTP, SAPA2, and AZTEC

Table 6.4: WOO and PRO variation with some other techniques from literature

From literature
CR CRps PRD PRDps WDD WDDps

Compressor

AZTEC [29] 6.9 6.73 15.5 4.358 - 0.857

Long Term Prediction [29] 6.9 6.73 7.3 4.358 - 0.857

6.0 6.73 7.5 4.358 - 0.857
1-0 OCT [21]

12.0 11.39 15.0 9.087 - 1.627

Cut and align beats

approach with 2-0 OCT 6.0 6.73 3.5 4.358 - 0.857

[21]

ASECPRD[29] 6.9 6.73 5.5 4.0 5.1 0.857

PS denotes proposed DCT -RLE based scheme.
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6.4.2 Neural Network based ECG compression

Artificial Neural Network (ANN) is a special type of supervised learning system,

where the main task is to determine a function from given input-output sample pairs

(the training sample). The function maps any input to an output such that

disagreement with future input-output pairs is minimized. A multilayer perceptron

(MLP) based feed forward network with one input layer and one output layer, with

one or more hidden layers is implemented here. The activation function of each

neuron computes a weighted sum of all synapse inputs, subtract the sum from a

predefined bias and pass the results through a nonlinear sigmoidal function whose

output ranges between 0 and I [27]. Application of NN consists of a training phase

and a testing phase. During the training phase, pattern data are applied as the input,

which finally adjust the weights (wi}) and bias. Here, the standard deterministic

gradient-based back propagation learning algorithm is used as the training algorithm.

A 3-layer neural network system with a single node for both input and output layers

is presented in Figure 6.11. The activation function of the hidden layer neuron is a

unipolar sigmoidal function as in Equation (6.4).

I
f(x,u) = -(71:) (6.4)

I+e U

where, U is the coefficient of the function. Interconnections of hidden layer with

input and output layers are dependent on the weights wi}' The weights are modified

iteratively according to the gradients of error function using the learning rate T] and

momentum a as follows in Equation (6.5).

k+! k aEk
k

wij = wij - TJ Ow + a .~wij (6.5)
u

where Ek
is the k.the error term.

The learning rate of4.88281 x 10-5 and momentum of 0.5 was configured for the ANN

using Neural Simulator [28]. Segmentation is performed on each ECG beat before

ANN based learing according to the preprocessing described in Chapter 5. Figure

6.12 indicates the performance of the NN based scheme.
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Figure 6.12: A 3-Layer Neural Network

The WOO of the reconstructed signal from the OCT-RLE in Figure 6.10 (b) is

0.455%, with an average bit rate of271 bps, CR of 10.12 and a PRO of 5.97%. For

the same MIT-BIH record our developed NN based scheme has shown a CR of 9.8

with WOO of 0.56% and PRO of 7.33%. This result indicates the superiority of our

proposed compression scheme over ANN based compression. Note that, the error of

the NN compressor is somewhat larger than the error of the OCT-RLE compressor in

the reconstructed signal in Table 6.5 for all the presented ECG databases. Rate

distortion curves both for OCT-RLE and NN based schemes are presented in Figure

6.13.
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Figure 6.13: MIT-BIH record 101 afterNN based compression

(CR 8.65, WOO 3.6%, PRO 10.86%)

Table 6.5: Results of WOO index, PRO and RMS errors ofOCT-RLE based
and NN based schemes

MIT-BIH MIT-BIH MIT-BIH

Performance Record 101 Record 117 Record 119

measure

PS NN PS NN PS NN
Avg. CR 8.62 6.78 13.92 9.80 8.86 6.14

Avg. WOO(%) 2.35 2.5 I 0.64 0.56 2.62 5.29

Avg. PRO(%) 8.97 9.57 9.29 7.33 8.86 7.99

Avg. RMS I. 0.016 0.0177 0.021 0.0167 0.0279 0.0192

PS denotes proposed DCT-RLE based scheme. NN denotes neural network based scheme.
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Chapter 7

CONCLUSION

7.1 Discussion

In this research, an algorithm for compressing ECG signals using 1-0 OCT and RLE

is described and experimental results from applying this method to different MIT-

BIH database records are presented. The effects of different step size of quantization,

bit rates, feature distortions and compression ratios are examined. The final choice of

optimal threshold for quantization in ECG compression application depends on the

reconstructed signal's quality along with the ability of clinical diagnosis. To facilitate

the comparison of our proposed algorithm with other well known algorithms, we

have also implemented aNN based compression scheme.

From our results we find that the 2-stage RLE with Huffman coding on quantized

OCT coefficients performed better than NN based compression. Also, from the

distortion rate curves, it can be concluded that the compressor performs worst if we

decrease the bit rate lower than 200 bps for all the presented datasets. The result

coincides both for the numerical and visual distortion measures through PRO and

WOO indices respectively. Review by cardiologists suggest that with a compression

ratio of 15:1, the memory requirement of the digital recording will be reduced to 2.85

Mbytes for a single lead system, II-bit amplitude resolution with sampling rate 360

Hz. With the availability of low cost portable storage devices and digital signal

processors, using the proposed methodology, it wi II be possible to overcome the

limitation of bandwidth for real time data transfer in emergency medical situations.

Here the main strength of this algorithm is the use of WDO based feature extraction

instead of numerical analysis of the reconstructed ECG data.
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7.2 Future Perspectives
In any compression system the target is to present the recovered signal as much as

original one with lowest possible bit rate. Here, if we can apply fixed length window

for segmentation of ECG, then it will be possible to introduce 2-0 OCT on the time

domain data. Then it will be possible to apply beat code book or long term prediction

on that data. This will improve the performance of our system by increasing the CR

with lower reconstruction error. This can be done before OCT conversion of the data

to obtain the generalized pattern of each ECG beat. Our future work is aimed towards

this improvisation. Here we have used only three records of MIT-BIH, because

application of these three records was found in all most the researches. So this helps

us to compare the results with others. Using a wide range of different database

records can materialize our concept to reality. By using simple and efficient adaptive

quantization strategy of the non-zero OCT coefficients, our compressor can improve

its performance. A simple and effective binary lookup table can be formed by using

beat code book that will improve considerably the storage efficiency and also less

header wastage for Huffman dictionary.

The compression system may be more computationally complex than most of the

published ECG compression algorithms. But, it can be possible to implement in real

time using inexpensive OSP chips. From the point of view of computational

complexity, the diagnostic feature extraction for WOO measure can be made faster

by integrating it as a tool to the compressor. Complexity can also be reduced by the

extraction of fewer features, or by developing more efficient extraction algorithms.
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APPENDIX
Characteristics ofECa Test Signals from MIT-BIH

Record Subject Primary Rhythm and Morphology
Number
100 Male, age 69 Normal sinus rhythm (NSR)

101 Female, age 75 Normal sinus rhythm (NSR), normal conduction

102 Female, age 84 Normal sinus rhythm, Paced rhythm

103 Male (age not recorded) NSR, Atrial premature contraction (APC)

104 Female, age 66 NSR, Preventricular contractions (PVC)

105 Female, age 73 Normal sinus rhythm, high-grade noise and artifact

106 Female, age 24 NSR. noise in lower signal, Ventricular tachycardia

107 Male, age 63 Paced rhythm, complete heart block

108 Female, age 87 First degree AV block and sinus arrhythmia

109 Male, age 64 NSR, left bundle branch block

111 Female, age 47 NSR, left bundle branch block, first degree AV block

112 Male, age 54 APC, S-T segment depression in the upper channel

115 Female, age 39 NSR, Sinus arrhythmia, Baseline wander in lower

signal

116 Male, age 68 NSR, Preventricular contractions (PVC)

117 Male, age 69 Normal sinus rhythm

118 Male, age 69 NSR, right bundle branch block

119 Female, age 51 Normal sinus rhythm, Ventricular trigeminy

121 Female, age 83 Normal sinus rhythm, Noise in lower signal

122 Male, age 51 NSR, low-amplitude high-frequency noise

123 Female, age 63 Sinus arrhythmia, Interpolated PVC

124 Male, age 77 Multiform pyes, Accelerated junctional rhythm

200 Male, age 68 Atrial fibrillation, pyes are uniform and late-cycle

202 Male, age 68 Normal sinus rhythm, PVCs

205 Male, age 59 Ventricular tachycardia, Noise in lower signal

207 Female, age 89 NSR, first degree AV block and left bundle branch

block

209 Male, age 62 Atrial premature contraction (APC), PVCs

210 Male, age 89 Atrial fibrillation, Ventricular tachycardia

214 Male, age 53 NSR with left bundle branch block and PVC

228 Female, age 80 Ventricular bigeminy, First degree AV block

231 Female, age 72 2° heart block, Blocked APC
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