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ABSTRACT

Modeling of data plays an important role in understanding the underlying physical

mechanism generating and controlling the data. Fractal modeling is a nonlinear

nonparametric model Used to understand the characteristics of a signal. Fractal

theory calculates the dimension of a signal, termed as fractal dimension (FD),

considering the signal as an object. FD may be non-integer.

This project describes the application of fractal modeling to electrocardiogram

(ECG) with an ultimate aim of detecting cardiac abnormality. The widely used four

techniques such as box counting (BC), rescaled range (RS), relative dispersion (RD)

and Fourier methods are applied to calculate the FD of data. In order to determine

the dependency of a method on data length and other factors, the FD of a signal of

known FD is calculated first by each method. It is seen that a data length of around

6000-7000 provides best result. The rescaled range method provides best result even

for a lower data length.

The FD is calculated for instantaneous heart rate (IHR) calculated from measured

ECG of 5 healthy adult subjects. It is observed that the rescaled range method gives

consistent FD for all data sets. In order to find the applicability of fractal theory to

detect cardiac condition the normal data is corrupted with random noise and thus

noisy IHR time series is obtained. The FD of noisy IHR is statistically different from

that of normal IHR. It indicates that fractal modeling can be applied to ECG to

detect different types of pathology present in cardiac system.
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Chapter 1

INTRODUCTION

1.1 Problem Overview
The electrocardiogram (ECG) represents the electrical activity of heart. ECG is often

used as a diagnostic tool to detect cardiac and other associated abnormality. Both

short-term and long-tern1 ECG is used for diagnosis. In long-term monitoring,

physicians often use Holter devices attached with a subject for 24 hours to

continuously monitor ECG. The ECG is normally printed in a long paper and the

physicians look for some abnormal beats present in the ECG.This is a tedious job

for a physician as he has to look for more than 100,000 cycles of ECG. There may

be error due to fatigue and human over-looking in looking for such a huge number

of cycles. So, there is a need for automatic software based recognition of ECG

characteristic points to help the physicians in diagnosing the ECG.

The heart rate (HR) is calculated from the ECG and is also used as a quick

diagnostic tool. It is already proved that ECG is a non-stationary signal while the

HR is stationary and nonlinear [I). So, far different methods have been developed

for finding the characteristic points of ECG and the researchers are continuously

trying to develop a quick method for the diagnosis of cardiac abnormality. The

ultimate aim of the researchers is to develop a method that can differentiate

abnormal ECG from a normal one. Fractal theory is a new concept which may be

applied to detect cardiac abnormality. Fractal theory states that any signal can be

viewed as an object and its calculated dimension, termed as fractal dimension (FD),

can be used to understand the internal mechanism of a system generating and

controlling the signal. There are different methods to calculate FD of a signal.

Although FD is continuously being applied to many fields, it is yet to test its

applicability in detecting cardiac conditions. Hence, the problem that should be

addressed include the following:

• Out of many methods, which one is best to calculate FD ofECG or HR?
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• Is ECG or HR is fractal in nature?

• How FD can be used as a diagnostic tool of cardiac abnormalities?

The above problems have been addressed in this work.

1.2 Historical Background
In recent years, a particular attention has arisen in noninvasive medical diagnostic

procedures. Because biosignals recorded on the body surface reflect the internal

behavior and status of the organism or its parts, they are ideally suited to provide

essential information of these organs to the clinicians without any invasive

measures. Here some questions arise. How are the recorded time courses of the

signals to be interpreted with regard to a diagnostic decision? What are the essential

features and in what code is the information hidden in the signals? These questions

can be answered by the recognition of detailed signal patterns. Since signal

processing is concerned with the mathematical representation of a signal and the

algorithmic operation carried out to extract the information present in the signal, the

systems generating and controlling the signal must be understood first. A system is

any physical device that performs an operation on a signal.

Modeling is the mathematical description of a physical system. Once a model of a

system is available, one can analyze its overall behavior and predict the response of

its output to different inputs. The difficulty, however, lies in determining such a

mathematical description. Indeed, although one can derive a model for some simple

systems, such as electric motors, there are many systems whose outright complexity

makes such a task impossible. In such cases, one has to resort to the numerical

techniques of system identification [2]. In attempting to determine empirically the

mathematical descriptions associated with systems, modeling techniques are used.

The classical theory of time series analysis has been well developed over the past

two decades, and excellent accounts of this theory are available [3], [4]. An

important assumption that is made in the classical theory is that the structure of the

series can be described by a linear model.
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Two broad categories of methods are used in the modeling of time senes data,

namely, parametric and nonparametric methods. Nonparametric methods make no

assumption about how the data are generated, and mainly use Fourier based

approach and periodogram. Nonparametric methods are relatively simple, well

understood and easy to compute using the FFT algorithm. However, these methods

require the availability of long data records in order to obtain necessary frequency

resolution required in many applications. Furthermore, these methods suffer from

the leakage effects due to windowing that are inherent in finite-length data records.

Often, the leakage masks weak signals that are present in the data.

On the other hand, parametric methods of data modeling eliminate the need of

window functions. As a consequence, parametric methods avoid the problem of

leakage and provide better resolution than do the FFT based nonparametric methods.

This is specially true in applications where short data records are available due to

time-variant of transient phenomena.

In all areas of medical research there is a common physiological theme. Complexity

is the salient feature shared by all such systems; a feature that is attracting more and

more attention in physical systems as well. Until recently, scientists have assumed

that understanding such systems in different contexts, or even understanding various

physiological systems in the same organism, would require completely different

models. One of the most exciting prospects for the new scaling addressed herein is

that it may well provide a unifying theme to many investigations, which up until

now have been considered unrelated. The swirling spiral of the cochlea and the

finely branched structure of the bronchial tree suggest the complex interrelations

among biological development, form, and function. Relationships that depend on

scale can have profound implication for physiology. Consider, for example, one of

the standard problems in scaling: mass increases as the cube of a typical length, but

surface area increases only as the square. Accordingly, if one species is twice the

size of another likely to be eight times heavier, but have only four times the surface

area. Thus the larger plants and animals must compensate for their bulk; respiration

depends on surface area for the exchange of gases, as does cooling by evaporation
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from the skin, and nutrition by absorption through membranes. One way to add

surface to a given volume is to make the exterior more irregular, as with branches

and leaves; another way is to hollow out the interior. The human lung, with about

300 million alveoli, approaches the more favorable ratio of surface to volume

enjoyed by our evolutional ancestors, the single-celled microbes.

The classical scaling concepts in biology, while of great importance, are not capable

of accounting for the irregular surfaces and structures seen in hearts, lungs,

intestines and brains. Experiments suggest that biological processes are not

continuous, homogeneous, and regular, but rather are discontinuous,

inhomogeneous, and irregular [5]. Thus, a new way of analyzing such processes is

required. This new perspective is that of fractal geometry and fractal statistics.

A basic theme in science is that of the invariance or symmetry of laws with respect

to various types of transformations that may be performed in ordinary space and

time, or even in certain abstract mathematical spaces. In dynamics there are the

familiar symmetries in space and time which lead to conservation laws. For

example, translational invariance implies conservation of linear momentum, whereas

invariance with respect to rotation implies conservation of angular momentum.

Using the known symmetries of a given system provides a framework to which the

details of structure and motion must conform. In some cases, it is not known initially

just what symmetry a system possesses because of lack of fundamental information

about interactions among the elements of the system. However, a time-honored

strategy for constructing the equations of motion for a complex system i.e., to

assume a symmetry property, and then determine the forces required to maintain this

symmetry over time. This approach is the variational principle, and it has been

applied to such quantities as the system's entropy, mass, and energy. This strategy

for determining the dynamic properties of a system has been very useful In

bioengineering, where concepts such as efficiency have been introduced. A

biosystem can be assumed to operate so as to maximize its efficiency. The equations

that produce this effect are sought through a variational principle. In other areas,

where it might at first seem that symmetry is of little use, it turns out that there is
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often an unnoticed symmetry framework present that determines system behavior.

As an example, the motions of individual molecules in an equilibrium gas in the

lungs are random, and symmetry seems to be the last thing one would think about to

describe the gas exchange process. Considered another way, however, equivalent

randomness occurs everywhere in the gas, so there is a statistical symmetry with

respect to spatial translation. The entire gas can be generated by taking a small

element of volume, one that contains many particles with an equilibrium distributed

of velocities characterized by a constant temperature, and copying it in all directions

throughout the given volume. In this way, a disorganized system may be self-similar

under scale changes and can be thought of as being formed by repetitious

translations of a generating element. The idea of forming a large set of points from a

smaller generating set is used below to provide one definition of dimension for sets

of points.

In the 1960s, Benoit Mandelbrot began discussing a new geometry of nature [6], one

that embraces the irregular shapes of objects such as coastlines, lightning bolts,

cloud surfaces, and molecular trajectories. It' was soon realized that these

geometrical ideas could be applied in other areas, including non-traditional ones [7],

from outside the physical sciences. A common feature of these objects, which

Mandelbrot called fractals, is that their boundaries are so irregular that it is not easy

to understand how to apply simple metrical ideas and operations to them. Such

fundamental concepts a dimension and length measurement must be generalized.

Therefore, let us consider some of the metric peculiarities of a few unusual

mathematical objects, which we subsequently use to describe some biomedical

systems.

Fractal modeling is an alternative way to describe some of the self similar or self

affine signals and is the nonparametric modeling of. the signal. First coined by

Mandelbrot the fractal analysis involves the dimensional study of the objects. A

fractal is an object whose Housdorff dimension is greater than its Euclidean

dimension [6]. Demonstrating the fractal nature of a signal is valuable, since it

provokes the development of new ways for discovering how the system works. It
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has been proven that fractal geometry can play an important role in the analysis of

natural phenomenon. Fractal modeling technique has been applied to a variety of

fields ranging from one-dimensional signal study [8] to image processing [9], from

sea-scattered radar signal [10] to medical image analysis [II]. Fractal dimension is

also extensively used in understanding of the characteristics of strange attractors, the

case of a chaotic signal. Some works on the modeling of biosignals using fractal

model have recently been suggested [12], [13].

The topics of fractals are central concepts in a relatively new branch of science

called nonlinear dynamics. Fractals are highly irregular objects and, as a result, have

noninteger or fractional dimensions. The internal look alike property of fractals is

referred to as self-similarity. The more closely one inspects a fractal, the more detail

one sees, and the small scale structure is similar to, though not necessarily identical

to, the larger scale form. As a consequence, fractal objects do not have a well-

defined length. The measured length of a fractal line will vary depending on the size

of the ruler used.

Fractal geometry is widespread in nature: coastlines, clouds, lightning flashes, and

winding rivers, to name but a few. Example of fractal-like anatomies include the

vascular system, the His-Purkinje network, the tracheobronchial tree, as well as the

folds of the small bowel and brain. Fractal was adopted in the analysis of cardiac

electrophysiology due to the self-similarity of cardiac electrical conduction system

[14].

1.3 Aim of the Project
The ECG reflects the electrical activity of heart. Heart rate (HR), calculated from

ECG, is a major indicator of cardiac conditions. Moreover, it also reflects the

conditions of other functional physiological systems, such as autonomic nervous and

respiratory systems. Biological data are often modeled with an ultimate aim of

differentiating the data generated by a nonnal organ with that by a pathologic one.

The objective of this research is to apply fractal dimension analysis for the modeling

of I-lR time series data. To test the applicability of methods to calculate fractal
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dimension, the methods are first applied to a simulated time series data of known

fractal dimension. The methods are also applied to calculate the fractal dimension of

normal and pathologic HR data with an ultimate aim to differentiate abnormal HR

from a normal one.

1.4 Organization of the Dissertation
Four methods to calculate fractal dimension of HR are considered. Chapter 2

represents ECG and its wave shapes in different leads. Chapter 3 describes briefly

the methods used to calculate fractal dimension (FD). FD calculation of simulated

data by various methods is presented in chapter 4. Chapter 5 describes the

calculation of FD of normal and abnormal HR. Chapter 6 represents the conclusions

of the findings.



Chapter 2

ELECTROCARDIOGRAM

2.1 Cardiac Activity
The heart is a muscular organ located in the chest (thoracic) cavity and covered by a

fibrous sac, the pericardium. It acts as the pump used to force the blood through the

cardiovascular system. Its walls are composed primarily of cardiac muscle

(myocardium). The inner surface of the myocardium, i.e., the surface in contact with

the blood within the heart chambers is lined by a thin layer of epithelial cells

(endotheli um).

The human heart is divided longitudinally into right and left halves, each consisting

of two chambers, an atrium and a ventricle. The cavities of the atrium and ventricle

on each side of the heart communicate with each other but the right chambers do not

communicate directly with those on the left. Thus the right and left ventricles are

distinct.

The heart is contained in the pericardium, a membranous sac consisting of an

external layer of dense fibrous tissue and an inner serous layer that surrounds the

heart directly .The base of the pericardium is attached to the central tendon of the

diaphragm and its cavity contains a thin serous liquid. The two sides of the heart are

separated by the septum or dividing wall of tissue .The septum also incl udes the

atrioventricular node (AV node), which plays a role in the electrical conduction

through the cardiac muscles.

Function of the four chambers of the heart is different. The right atrium is elongated

and lies between the inferior (lower) and superior (upper) vena cava. Its interior is

complex; the anterior (front) wall being very rough, whereas the posterior (rear) wall

(which form a part of the septum) and the remaining walls are smooth. At the

junction of the right atrium and superior vena cava is situated the sinoatrial node
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(SA node), which is the pacemaker or initiator of the electrical impulses that excites

the heart. The right ventricle is situated below and to the left of the right atrium.

Communication between the atrium and ventricle is accomplished only via the AV

node. Since the ventricle has to perform a more powerful pumping action, its walls

are thicker than those of the atrium and its surfaces are ridged. Between the anterior

wall of the ventricle and the septum is muscular ridge that is a part of the heart's

electrical conduction system, known as the Bundle of His. At the junction of the

right and left atrium and the right ventricle of the septum, there is another node, the

atrioventricular node. The Bundle of His is attached to this node. Figure 2.1 shows

the anatomy of human heart.

r.J1arginill Brancn
Coronary Circulators

Fig. 2.1 Anatomy of human heart

The right atrium and left ventricle are joined by a fibrous tissue known as the

atrioventricular ring, to which are attached the three cups of the tricuspid valve,

which is the connecting valve between the two chambers.
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The left atrium is smaller than the right atrium. Entry to it is through four pulmonary

veins. The walls of the chambers are fairly smooth. It is joined to the left ventricle

through the mitral valve, sometimes called the bicuspid valve since it consists of two

cups.

The left ventricle is considered the most important chamber, for this is the power

pump for all the systemic circulation. Its walls are approximately three times as

thick as the walls of the right ventricle because of this function. Conduction to the

left ventricle is through the left Bundle branch, which is the ventricular muscle on

the septum side.

A discussion about the anatomy of the heart and of the electrical excitation system

necessary to produce and control the muscular contraction should help to round out

the background materials needed for understanding of cardiac dynamics. The ECG,

which is a record of bio-potential events, can be used to show the relationship that

exists between the electrical and mechanical events ofthe heart.

Figure 2.2 depicts the blood circulation within the human heart. Blood enters the

heart on the right side through two main veins: the superior vena cava, which leads

from the body's upper extremities and the inferior vena cava leading from the

body's organs extremities below the heart. The right atrium pumps it into right

ventricle. The right ventricle pumps the blood through the pulmonary artery to the

lungs where it is oxygenated. The oxygen-emiched blood then enters the left atrium

through the pulmonary veins, from which it is pumped into the left ventricle. The

output from the ventricle is then pumped the aorta into the arteries to circulate

through the body.

2.2 The Electrocardiogram
The electrocardiogram (ECG) is the graphical recording or display of the time

variant biopotentials produced by the myocardium during the cardiac cycle. The
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term electrocardiograph means the instrument used for this type of recording and

electrocardiography means the technique used for such measurement [I].

Right Atdum
RA ---__. ---

SuperioT V,=na ;l;a'/a
$V(.

PlJlmn!}!'lfJ 1I,(,1('{1 PA
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Right Ventricle
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j
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frHi?mOV11 S;~p~t;rn

~-- ....-..•._ Ml~n;J Vill'/:!
MV

~-..~ LeH Venlricle
LV

Fig. 2.2 Blood circulation in human heart

Each action potential in the heart originates near the top of the right atrium at a point

called the pacemaker or SA node. The pacemaker is a group of specialized cells that

spontaneously generate action potentials at a regular rate, although the rate is

controlled by innervation. To initiate the heartbeat, the action potentials generated

by the pacemaker propagate in all direction along the surface of both atria. The

wave of activation travels parallel to the surface of the atria toward the junction of

the atria and the ventricles. The wave terminates at a point near the center of the

heart, called the AV node. At this point, some special fibers act as a "delay line" to

provide proper timing between the action of the atria and the ventricles. Once the

electrical excitation has passed through the delay line, it is rapidly spread to all parts

of both ventricles by the bundle of His .The fibers in this bundle, called Purkinje
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fibers, divide into two branches to initiate action potentials simultaneously in the

powerful musculature of the two ventricles. The wave front in the ventricles does

not follow along the surface but is perpendicular to it and moves from the inside to

outside of the ventricular wall, terminating at the tip or apex of the heart. As

indicated earlier, a wave of repolarization follows the depolarization wave by about

0.2 to 0.4 second. This repolarization, however, is not initiated from neighboring

muscle cells but occurs as each cell returns to its resting potential independently.

R

I~
~ I\ T

'\"-"

~ p U;.:::l ~.,---.
J

I,

~<i: ,
P-R (H

Fig. 2.3 A typical ECG wave

A typical pattern of ECG is provided in Fig. 2.3. Alphabetic designations have been

given to each of the prominent features. These can be identified with events related

to the action potential propagation pattern. To facilitate analysis, the horizontal

segment of this waveform preceding the P wave is designated as the baseline or the

isopotential line. The P wave represents depolarization of the atrial musculature. The

QRS complex is the combined result of the repolarization of the atria and the

depolarization of the ventricles, which occur almost simultaneously. The T wave is

the wave of ventricular repolarization. The U wave, if present, is generally bel ieved

to be the result of after-potentials in the ventricular muscle. The P-Q interval

represents the time during which the excitation wave is delayed in the fibers near the

AV node. The shape and polarity of each of these features vary with the location of

the measuring electrodes with respect to the heart, and a cardiologist normally bases

his diagnosis on readings take from several electrode locations.
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The P-R Interval is taken from the start of the P wave to the start of the QRS

complex. It is the time taken for depolarization to pass from the SA node via the

atria, AV node and His-Purkinje system to the ventricles. The QRS represents the

time taken for depolarization to pass through the His-Purkinje system and the

ventricular muscles. It is prolonged with disease of the His-Purkinje system. The Q-

T interval is taken from the start of the QRS complex to the end of the T wave. This

represents the time taken to depolarize and repolarize the ventricles. The S-T

segment is the period between the end of the QRS complex and the start of the T

wave. All cells are normally depolarized during this phase. The ST segment is

changed by pathology such as myocardial ischemia or pericarditis. The normal heart

rate can vary from 60 to 120 beats per minute (BPM). For a heart rate of 120 BPM,

the normal values of waves are as follows [1]:

Amplitudes: P wave 0.25 mV

R wave 1.60 mV

Q wave 25% ofR wave

Twave 0.1 to 0.5 mV

Durations: P-R interval 0.12 to 0.20 sec

Q-T interval 0.35 to 0.44 sec

S-T interval 0.05 to 0.15 sec

P wave interval 0.11 sec

QRS interval 0.09 sec

2.3 ECG Lead Systems
The term lead is used to indicate an ECG collected by a particular group of

electrodes. Because ECG signal is measured from electrodes applied to the surface

of the body, the waveform of this signal is varied dependent on the placement of the

electrodes. Einthoven, who developed the first clinically usable ECG in 1903,

selected anatomical sites for placing electrodes. He chose the two arms Right arm

(RA), Left arm (LA) and left leg (LL), designating the three different recording

schemes as: lead I (RA - LA), lead II (RA - LL), lead III (LA -LL). The formation

of these 3 leads is shown in Fig. 2.4.
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Fig. 2.4 Bipolar limb leads

Lead I, lead II and lead III are called bipolar limb leads. Although the electrodes are

placed on the members, the latter act as electrolytic conductors and, in reality, the

electrodes are electrically at the shoulders and left abdomen. Einthoven postulated

that at any given instant of the cardiac cycle, the frontal plane representation of the

electrical axis of the heart is a two dimensional vector. Further the ECG measured

from anyone of the three basic limb lists is a time-variant single-dimensional
\

component of that vector. Einthoven also made that assumption that the heart (the

origin of the vector) is near the center of an equilateral triangle, the apexes of which

are the right and left shoulder and the crotch. By assuming that the ECG potentials at

the shoulder is essentially same as the wrists and the potential at the crotch differ

little from those at either ankle, he let the points of this triangle repre'sents the

electrode positions for the three limb leads. This triangle is known as the Einthoven

triangle, is shown in Fig. 2.5. The sides of the triangle represent the lines along

which the three projections of the ECG vector are measured. Based on this,

Einthoven showed that the instantaneous voltage measured from anyone of the three

limb lead positions is approximately equal to the algebraic sum of the other two or

that the vector sum of the projections on all three lines is equal to zero. For these to

actually hold true, the polarity of the lead II measurement must be reversed.
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Fig. 2.6 Unipolar chest leads
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Fig. 2.7 Directions of the V leads of Wilson

It was soon recognized that the limb electrodes are quite distant from the heart and

in order to examine its electrical activity more accurately, chest leads were



16

introduced. Since physiologists like to be able to examine events under a single

electrode, Wilson (1934) introduced the V terminal, which constitutes an

"indifferent" electrode. The V lead is formed by connecting resistors (5-100 kQ)

from a common point to the right arm, left arm, and left leg electrodes (Fig. 2.6).

The "active" exploring electrode is placed on the chest. There are six standard

unipolar V leads. Occasionally, additional sites on the right chest are used. The

positioning directions of V leads are depicted in Fig. 2.7.

Goldberger (1942) introduced the augmented V leads (aV) which are also unipolar

in nature. They are aVR, aVL and aVF as shown in Fig. 2.8. With the three standard,

three augmented, and six V leads, the spatial direction of excitation and recovery of

the heart chambers can be identified.
Lead aVF

Lead aVA

oJ/I{

Fig. 2.8 Unipolar limb leads

At this point it may be through that there is an excessive number of leads for

electrocardiography. From a mathematical viewpoint this is certainly true, since

only three leads obtained f:om mutually perpendicular (orthogonal) axis are required

to locate a vector in space. However, each ECG leads "sees" a different part of the

heart. For example, the chest (V) leads provide a highly localized examination of

the ventricular myocardium, and the activity that is recorded is the projection in the

horizontal plane. The limb leads record the frontal-plane projection and are less

highly localized. By recording a large number of leads it is possible to examine the

ECG and estimate the axis of excitation and recovery by inspection, rater than by
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having to plot amplitudes on the reference frames and graphically determine the

vectors. Figure 2.9 shows the ECG as observed in different leads.

L~adlf!

LL I. I. I. 1 i.

•

. L.<>JI'J

uadl'5

u<U!"J

Fig. 2.9 ECG wave shapes in different leads

Beyond the lead systems already discussed, there are certain additional lead

modifications that are of considerable use in the coronary care unit. The most

widely used modification for ongoing ECG monitoring is the modification chest

lead I (MCL I) also called the Marriott lead, named after its inventor. This lead

system simulates the VI position with electrode placement as follows: positive

electrode, fourth intercostal space, right sternal border, negative electrode just below

the outer portion of the left clavicle, with ground just above anywhere but usually

below the right clavicle. The monitor is set on lead I for bipolar tracing. Recordings

obtained in this way are very useful in differentiating left ventricular ectopic

rhythms from aberrant right ventricular or supraventricular rhythms. The former
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situation usually necessitates prompt therapeutic action; the later is off less clinical

significance.

Out of various leads, lead II is used for quick diagnosis. The typical ECG pattern as

shown in Fig. 2.3 is of lead II. Heart rate is calculated from this lead.



Chapter 3

FRACTAL MODELING TECHNIQUES

3.1 Introduction
Fractal modeling is used to analyze self-similar data. When signals are self similar

(self affine) or scale invariance the best way to model such signals is to use a fractal

model. Many natural shapes such as coastlines, mountains and clouds are easily

described by fractal models. If the graph representing the data is characterized by a

continuous derivative then it is not difficult to understand that the graph has a

dimension I. The same is true if the graph is of bound variation. However it is

possible for a continuous function to be sufficiently irregular to have a graph

dimension strictly greater than 1. With a notion that complex objects are better

described by fractal geometry than Euclidean geometry fractal concepts are finding

application not only in specialized fields of science and engineering but also in many

familiar fields. Fractal theory has achieved greatest success in medical imagery,

texture of images of all kinds and speech signals. In this chapter the techniques to

determine the fractal dimension are described.

There is no unanimously accepted method of generating fractal signal as well as

calculating the fractal dimension of a time series data. Four methods namely Box

counting, rescaled range, relative dispersion and Fourier are widely used to find the

fractal dimension (FD) of time series data [lS], [16]. The methods are briefly

described below:

3.2 Box Counting Method
The idea of box counting method crop up in mind from the perception that as the

fractal dimension of a graph increases the graph tends to fill the plane on which it is

drawn. For one-dimensional data it is easy to say that FD will lie between land 2.

One would naturally assign a low value of D to the lower stochastic fractal, since it



20

would look like a straight line. In Fig. 3.1 a large part of the two-dimensional

surface is filled by the curve, indicating a value of 0 closer to 2.

Fig. 3.1 Example of a fractal signal
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Fig. 3.2 Example of box counting

The Box dimension of a curve is widely used and easy to calculate. Box dimension

is defined by-
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Where No is the smallest number of boxes that are needed to include the total graph

and 8 represents the box size. Figure 3.2 represents an example of box counting.

Here, 27 boxes are required for a box size of 1/12. To calculate the box dimension

the following steps are followed:

• Normalize the data so that it fit into a one by one square.

• Choose a set of box sizes so that 8 tends to zero slowly. A sufficient

condition is that the ratio of logarithm of two successive box sizes tends to

unity. Theoretically, the FD is independent of resolution (sampling rate) of

the series because of the scale-invariant property of fractals i.e. 8 can be

infinitely small.

• Cover the unit square with boxes and count the number of boxes required to

include all the data.

• Plot log No against -log 8 for various values of 8. If the time series data is

fractal then the curve is a straight line. The estimate of FD is given by the

slope of the straight line.

The procedural steps to calculate FD by box method are provided in appendix A I.

3.3 Rescaled Range Method
Edwin Hurst, a hydrology engineer, first used this method to solve his statistical

problem of designing the Aswan dam on the Nile River. He has the problem to

estimate the height of the dam capable of containing hold all the incoming water

flow under a constant outflow condition. When the inflow of dam is a stationary

random variable, the water level of the lake is the integral of the differences of the

inflow and the constant outflow. That is each data contributes to the integral whether

lowering or augmenting the result.

In our analysis we dealt with discrete data which is beyond the scope of prediction.

Here a data has no effect on the successive data (as we assume when generating data
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and which is a condition of being fractal signal). To get the FD by this method first

we segmented the total data at our hand into some convenient equal parts of length

t-t and mark starting point of each segment as to, tl, t2 etc. RlS is calculated for a set

of predefined data span, u for each data segment starting at to, tl, t2 etc. Range, R(u)

is defined as the maximum value minus minimum value of the integral of the

differences of each data from the arithmetic mean of a span of data averaged at

different starting point.

R(u)=Max L[Xj - <X>]-Min L[X j - <X>] 3.2

i=to to to+u or

i=tl to tl+U etc.

When range is divided by the standard deviation, S(u) of the corresponding data

span then we get RlS. For each u we have a number (equal to the number of

segments) of RlS and for our ease to draw graph we took the average of those data

and found the FD from the following relationship.

Log[R(u)/S(u)]=c+(2-D)log(u) 3.3

The flow chart to calculate FD by rescaled range method is provided in appendix

A2.

3.4 Relative Dispersion Method
In this analysis we make use of the fact that variance of a variable changes as the

measurement resolution changes. Relative dispersion (RD) is defined as the standard

deviation divided by the mean. In time series analysis at highest level of resolution

variance is maximum. As the resolution may be decreased by averaging the signal

over pairs of consecutive values the variance is decreased by a factor 1/2°5 This

happens because as a consequence to averaging mean remains same but standard

deviation is reduced by the same factor. When we average two consecutive values

repeatedly we actually increase the bin size geometrically starting from 2 to some

desired value (bin sizes are 2, 4, 8 etc). By calculating RD for different bin sizes, n,

and plotting in a log-log paper FD can be easily estimated from the following

relationship.
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10g(RD) = 10g(RDo)+ (l-D)log(n/no) 3.4

where RDo is RD for some reference bin size no. The above is an equation of straight

line whose slope is directly related to Fractal Dimension of that time series. We use

least square method to have the best-fit straight line. Appendix A3 provides the flow

chart to calculate FD by RD method.

3.5 Fourier Method

There is a relationship between the FD and power law index (a) for time series.

Results based on spectral analyses are the most common means of qualifying

irregular time series. When the power spectral density (PSD) has appreciably more

power at lower frequencies than higher frequencies (a>O) and it has no eminent

peak then there is the natural tendency to approximate it by using a power law

relationship P(f)=fa. A typical power spectrum of a fractal signal is given in Fig. 3.3

which exhibits a behavior which consistent with the power law relationship. Power

index is given by the slope of the spectral density measured in terms of logarithmic

scale. The power index is one of the measure of the irregularity of time series data.

The power law index is related to FD of a time series by

D = (5-a)/2 for 1< D < 2 3.5

In other words FD can be determined directly from its power spectrum. The slope of

the power spectrum is determined by fitting a straight line using least square

method. Since we are concerned with discrete data we used FFT and estimated the

Power Spectral Density of discrete-time signal vector using Welch's averaged,

modified periodogram method. PSD calculation flow chart is provided in appendix

A4.
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Fig. 3.3 Typical PSD of a fractal signal



Chapter 4

FRACTAL DIMENSION OF SIMULATED

DATA

4.1 Introduction
Since fractal is a relatively new concept in the analysis of time series data, the

validity of each method to determine fractal dimension is of great concern. Any

method to calculate fractal dimension must be applied first to a signal of known

fractal dimension. This chapter describes the generation of fractal signal and

application of each of the methods described in the previous chapter (Chapter 3) to

see the effect of method, data length, etc. on the fractal dimension.

4.2 Description of Data
There is no single unanimously accepted method to generate a signal of known

fractal dimension. Two algorithms are normally used to generate a fractional

Brownian motion, fErn, with a parameter H, that defines the fractal dimension of the

signal. The first algorithm uses the well-known ordinary Brownian motion, such as a

random walk of diffusion particles, is a fractional Brownian motion with H = 0.5.

The successive differences between points of an fErn are called fractional Brownian

noise, fEn. Because determining H or D from fEm is difficult, the fEn is needed to

estimate fractal dimension. Fractional Brownian noise signals with positive

correlations have H>0.5 and that with negative correlations have H<0.5. The other

algorithm which are applicable to generate a signal with fractal dimension H in the

range of 1 to 2 uses the familiar Weierstrass's equation [17]. Since our objective is

to calculate fractal dimension of heart rate and it is assumed to have a value between

1 and 2, the second algorithm is used here to generate fractal signal. The

Weierstrass's equation is reproduced below:

~
f(i) = 2>1. (H-2)k sin(A k t)

bd

4.1
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where 1<H<2 and 1-.>1. This function is nowhere differentiable and has a fractal

dimension H.

Fig. 4.1 Fractal signal generated using Weierstrass's equation for 1-.=1.5 and fractal

dimension H of (a) 1.1 (b) 1.5 (c) 1.9

Figure 4.1 shows the graphical representation of the signals for 3 different values of

fractal dimensions.

4.3 Estimation of Fractal Dimension
We applied four methods as previously described to estimate FD on generated data

with s=1.5 & 1-.=1.5. Since the calculation of PSD using FFT requires a data length

which must be a power of 2, we have considered same data length type for all

methods. The dimensions were estimated for different data length by each method to

observe the convergence, i.e., to estimate the data length to have an FD of 1.5. The

results are depicted in Table 4.1.
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Table 4.1 FD of simulated data by different methods

Data Be RS RD Fourier
length method method method method
1024 1.132 1.781 1.540 1.251
2048 1.251 1.702 1.529 1.350
4096 1.412 1.581 1.538 1.435
8192 1.60 I 1.610 1.510 1.518

4.4 Discussion
From the obtained results we see that in case of box counting method there is a

tendency of increasing FD with the increase in data length and the best result is

found when data length is 6000. It is interesting to notice that rescaled range method

also gives best result when data length is 6000 but there in no monotonous variation

in estimated FD in this method. The relative dispersion method shows a tendency of

estimating lower FD as data length becomes higher. In this both 4096 and 8192 data

lengths give acceptable results. Fourier method most unexpectedly does not provide

us with an appreciable result. Seeing the trend of the result we may expect that a

data length of 7000 or some thing more will give a usable result. But due to

limitation of the software we used we discarded the idea of testing Fourier method

with a huge quantity of data. Figure 4.2 supports our expectation. In this figure, the

abscissa indicates the data length and the ordinate indicates the estimated FD.

J,

I
900080007000600050004000300020001000

:f-LJ-f--~-l,-.-~F..,=-= .•~...
12'-7'~ I I

1 I~l I I: ...--,

::l--II-~I---l-~i__-_-L_;: :--
0.4 ~ I .-j--.---~ .-_...
o:j~1 I I I I I ~

o

Fig. 4.2 Extrapolation ofFD by Fourier method for different data length
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Chapter 5

FRACTAL DIMENSION OF HEART RATE

5.1 Introduction
Cardiac activities can be assessed based on Mean Heart Rate (MHR) and

Instantaneous Heart Rate (IHR). The heart can vary widely even in short period of

time. The MHR can't keep track of these momentary heart rate fluctuations. IHR

throws more light on this sudden change in heart rate and we in our thesis dealt with

!HR. This chapter describes the calculation of IHR and the application of different

methods to calculate the fractal dimension of normal and pathologic IHR time series

data.

5.2 Data Description
The IHR was calculated from ECGs. The ECGs were stored in a microcomputer

through a 12-bit A/D converter. The digitized signals were temporarily saved on the

hard disk driver and the transferred to a file server. The frequency at which the

signals are to be sampled may cause errors in the calculation of IHR. Due to the

limited capacity of the computer memory, the signals were sampled at a lower

frequency of 50 Hz. On the other hand, in order to calculate the IHR with accuracy

of less than one beat/min (bpm), the sampling frequency (f) which satisfies the

following relation is needed [18],

f~ 2(60-~t)/(.Mi 5.1

Where ~t=60/IHR. For example, for a maxImum IHR value of 120 bpm, the

minimum sampling frequency is 476 Hz. The signals sampled at 50 Hz were

restored by the sinc function,

() ~ ( ) sin[2nfM (t - nT)]x t = ~ x nt -~-'~---
"=_~ 2nfM (t - nT)

Where T is the sampling interval (i.e. 20 msec) and FM is Nyquist reflection

frequency (25 Hz). In order to minimize time of calculation, the signal restoration

was made only for the period of 40 msec when three points sampled were found to
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constitute a peak of ECG corresponding to each heartbeat. After restoration of the

peak wave, the maximum point was looked for in restored wave, the time interval

between two successive maximum points was determined to be 40 I (i .e. n=200) in a

preliminary experiment. In the preliminary experiment, the ECGs were sampled at a

frequency of 500 Hz and the IHR was calculated from the time intervals of two

successive peaks (referred to as HRsoo). Then signal values of every 80 sampling

points (which correspond to the signals sampled at 50 Hz) were extracted and the

ECG waves were restored by equation 5.2 changing n from 100 with a step of 5. The

IHR was calculated for each wave restored with different values of n. It was found

that the IHR so calculated was consistent with HRsoowhen n was more than 200 in

all data sets.

The IHR was calculated from the ECG taken from 5 adult normal healthy subjects.

The IHR is presented in Fig. 5.1 where the data is presented for 30 minutes. In the

Figure, the alphabet in each panel indicates the person's identification and the

number indicates the age of the person. The main characteristics of IHR calculated

are provided in Table 5.1 where the mean and standard deviation (SD) ofIHR along

with total number of total beats for 30 minute IHR are provided.

Table 5.1 Mean, SD and N of calculated IHR

Subject Mean SD N

ID (bpm) (bpm)

H 70.1 3.2 2401

J 80.6 6.4 2362

K 75.2 6.2 2112

S 86.7 6.1 2482

T 82.4 4.6 2301

The IHR calculated is not evenly spaced in time. It does not make any sense to

calculate FD of unevenly spaced heart rate data as long as we want to manipulate

this dimension in taking decision about cardiac condition. So we extrapolated the

IHR data to get data with equal spacing.
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5.3 Fractal Dimension of Normal Heart Rate
After applying the four methods we got the following results with data length 2048.

Table 5.2 Fractal dimension of normal IHR with different methods

Data BC RS RD Fourier

set method method method method

H 1.25 1.24 1.11 1.26

J 1.20 1.23 1.27 1.46

K 1.24 1.23 1.18 1.50

S 1.21 1.23 1.35 1.70

T 1.30 1.25 1.17 1.71

Fro th~ above table we notice that the rescaled range method gives almost constant

FD for all data sets. This indicates that the small variation of SD of data set does not

change FD. In the previous chapter it was found that this method provides best result

for a data length of around 6000. Here we find consistent results for a much lower

data length. On the other hand, the other 3 methods provide variable FD for different

data set although all IHR are of normal subjects. The variation of FD by Fourier

method is highest. Although fa like characteristic is evident in HR time series [5],

the poor performance of Fourier method may be due to the straight-line

approximation of PSD. In the approximation process, most of the PSD in low and

high frequencies are discarded which highly affects the results. Since we had IHR

data length of around 2300 for all data sets, we have to confine our test with a data

length of 2048. Had we been able to take a data length of around 6000, we could

have better and consistent result by Fourier method as shown in the previous chapter

(Chapter 4).

5.3 Fractal Dimension of Abnormal Heart Rate
Since the aim of applying fractal dimensional analysis IS to detect cardiac

abnormality, it is hoped that the FD of an abnormal HR time series will be different

from that of normal one. There may be many types of abnormality. To find the FD

,--
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of an abnormal HR time series, the aforesaid 5 data sets were made "abnormal" by

adding random white noise in each data set. The noise was generated using the

'random' function as built in the C programming language, with mean taken as 0

and variance as that of the original IHR. This noise incorporated data is termed as

noisy IHR. The FD was calculated by rescaled range method. The results are

presented in Table 5.3 together with the FD of normal IHR reproduced from Table

5.2.

Table 5.3 FD of normal and noisy IHR with rescaled range method

Data set FD of normal FD of

IHR noisy IHR

H 1.24 1.08

J 1.23 1.08

K 1.23 1.06

S 1.23 1.01

T 1.25 1.06

The FD of normal IHR has mean of 1.236 and standard deviation of 0.009. In

contrast, the FD of noisy IHR is 1.058:t0.029. To observe the difference between

normal and noisy FD, analysis of variance (ANOVA) technique [19] was used. In

the ANOV A technique, the [value is calculated. It was seen that the normal FD is

significantly difference from noisy FD, the [value was found to be 74.55 and the

value of /c'l/ical is 5.32 at 95% confidence level. This indicates that FD can

differentiate abnormal IHR from normal one.

5.4 Discussion
The calculation of FD of normal and noisy HR time series data is presented in this

chapter. The results show that the rescaled range method gives consistent FD for all

5 data sets of normal IHR. This finding is expected since fractal concept is based on

the scale-invariance property of a time series data. It also indicates that the IHR is of

fractal nature. Hence fractal theory can be used to model cardiac activity. This

method also can detect abnormality of cardiac rhythm.
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It is expected that different types of cardiac malfunctioning will give different FD if

proper data length is selected. In this work, only one type of induced abnormality is

considered. The incorporation of only random noise may not actually exhibit true

abnormality of cardiac activity. This is a limitation of this work. To apply fractal

theory to detect actual abnormality, we need to calculate FD of IHR of different

types of pathology.



Chapter 6

CONCLUSIONS

6.1 Discussions
This works describes the application of four methods namely box counting, rescaled

range, relative dispersion and Fourier methods to calculate the fractal dimension

(FD) of !HR. The methods were first applied to calculate FD of a simulated data of

known FD. The results show that each method is highly dependent of data length,

more or less. The methods were also applied to calculate FD of normal IHR of. !HR

was calculated from the ECG of 5 healthy adults and 5 data sets were constructed,

each of 30 minutes duration. The results indicate that consistent FD was obtained

with the rescaled range method. In this method, we tried to segment the total data

into convenient numbers (usually 3 or 4). When span length approaches segment

length we see that variation in RS is not marked and if we neglect that portion we

get better result. The poor performance in terms of FD by other methods can be

explained as follows:

• In our analysis for box counting method we used III 00 as the lowest box

dimension and 1110 as the highest box dimension. These two are two

extremities, any dimension beyond these range does not produce acceptable

result. Although box counting method gives a straight line, the space-filling

properties may not be truly representative as of scale-invariance for IHR.

The FD by this method has a little variation, higher than rescaled range

method but much less than other two methods.

• For relative dispersion (RD) method, we notice that in case of small bin size

there is no appreciable variation in RD. But in high resolution, there is a

sluggish variation of the slope and we calculated the slope of the curve

neglecting the variable portion. This approximation may be one cause of

variable FD.
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• In case. of Fourier method, we neglected very low frequency and very low

power to have a straight-line curve of PSD. This may affect the result. Also,

truly smooth PSD is not attainable, there is spurious peaks in frequencies

other than the harmonic ones.

6.2 Future Perspectives
In this work, we have tried to apply fractal theory to model HR dynamics. We have

shown that HR time series data can be modeled with FD. Also, FD can distinguish

between normal and abnormal cardiac rhythm. But, there is more to do in this field.

In this work, we have calculated only noise-corrupted lHR in an attempt to test the

applicability of fractal theory to detect cardiac abnormality. Since calculation of FD

needs a long data length of IHR and it is not available at the present moment, we are

unable to calculate FD of pathologic lHR. IHR of different types of cardiac patients

should be subjected to the calculation of FD and then we can certainly say whether

fractal can be used as a diagnostic tool. Moreover since the range ofthe dimension is

from I to 2, it may not be possible to accommodate numerous cardiac conditions

within this narrow range. Calculation of FD of cardio-electrical images may provide

better results in this direction.
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A2: Flow chart for rescaled range method
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A3: Flow chart for relative dispersion method
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A4: Flow chart for Fourier method
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