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Abstract

Formants are the distinguishing frequency components of human speech, which play an

important role in characterizing di�erent voiced sounds. Formant based speech synthe-

sis and coding are widely used in several real life applications. such as voice operated

controls and telecommunication.In almost all practical applications speech signals are

a�ected by di�erent kinds of background noise and estimation of formants under severe

background noise is a di�cult task. In this thesis e�cient formant estimation is in-

vestigated and methods for formant estimation are devised with a view to improve the

estimation performance under severe noisy conditions. In order to extract the formant

frequencies, �rst a strongly voiced portion of the given speech utterance is extracted based

on the energy measure. Instead of considering the whole duration of a voiced sound at

a time, frame by frame analysis is performed. Within a frame of voiced speech sig-

nal, formants can be estimated by using di�erent time or frequency domain approaches.

Correlation based methods are the most common time domain approaches to estimate

formants from speech signals . In linear predictive coding (LPC) based methods, from

the autocorrelation function (ACF) of the given speech utterance, Yule-Walker equations

are constructed and from their solutions formants can be obtained. Spectral peak pick-

ing is another extremely popular method of formant estimation, where both parametric

and non parametric spectral estimation techniques are used. Recently cepstrum domain

methods has been used in formant estimation . In the presence of heavy background

noise, spurious peaks appear in the speech spectrum making the task of accurate formant

estimation very di�cult. The estimation performance of both time and frequency domain

methods deteriorates drastically under heavy noisy conditions.The main goal here is to
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develop a formant estimation scheme which provides satisfactory performance even at low

levels of signal to noise ratio (SNR). In order to reduce the e�ect of noise the strength

of dominant pole pairs on the spectrum of noisy speech needs to be enhanced. With a

view to achieve this objective a spectral domain ramp cepstrum model of autocorrelation

function of speech signal is developed. The model utilizes the advantageous property of

the ACF that provides better noise immunity in comparison to the noisy signal directly.

Transforming to cepstral domain from time domain o�ers the advantage of homomorphic

deconvolution which can reduce the e�ect of pitch in speech analysis. In order to avoid

the rapid cepstral decay, instead of cepstrum, ramp cepstrum is used. Since, the pole

preserving property of the ramp cepstrum (RC) is better exploited via spectral peaks,

the spectrum of RC of the ACF of speech is proposed as the desired model. In order to

extract the formants from the observed noisy speech signal utilizing the derived model,

model matching scheme is introduced. In the model matching technique, instead of rely-

ing on the peak picking, �tting error is minimized over a wider peak zone resulting more

accurate formant frequency estimation. Finally, the estimated formants are used in vowel

recognition scheme as potential features. The linear discriminant based algorithm is used

for the purpose of recognition. Extensive experimentation is carried out considering dif-

ferent male and female vowel utterances from standard speech database under di�erent

noisy conditions. It is found that the proposed methods provide a high degree of formant

estimation accuracy in comparison to that obtained by some state of the art methods,

especially at very low levels of SNR.
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Chapter 1

Introduction

The ability of communicating intelligently via speech is a major quality that distinguishes

homo sapiens from other species. Speech is one of the earliest modes of communication

in human beings and the possibility of using speech in newer and newer applications has

fascinated humans for centuries. Speaking a language is an amazing skill that serves

not only in communication but also in sharing experiences, feelings, thoughts and ideas

among people. Because of various acoustic and articulatory features di�erent sounds

are distinguishable and are used to form di�erent meaningful words. One major areas of

research is to analyze speech characteristics which signi�cantly helps to deal with di�erent

real life speech applications, such as voice synthesis, speech coding, speech enhancement

etc.

1.1 Speech Characteristics

1.1.1 Voiced and Unvoiced Sounds

Speech is air pressure waves radiating from the mouth and nostrils of the speaker. The

main components of the human speech production apparatus are the lungs, the glottis

and the vocal tract. The lungs are the source of an air�ow that passes through the larynx

and vocal tract, before leaving the mouth as pressure variations constituting the speech

signal. At the glottis, the vocal cords constrict the path from the lungs to the vocal tract.

1



Vocal tract is the most important component in speech production. The vocal tract has

two speech functions: (1) it can modify the spectral distribution of energy in glottal

sound waves, and (2) it can contribute to the generation of sound for obstruent (stop

and fricative) sounds. Di�erent sounds are primarily distinguished by their periodicity

(voiced or unvoiced sounds), spectral shape (which frequencies have the most energy),

and duration [1]. The vocal folds specify the voicing feature, and a sound's duration is

the result of synchronized vocal tract actions, but the major partitioning of speech into

sounds is accomplished by the vocal tract via spectral �ltering. As volumes of air and

corresponding sound pressure waves passes through the vocal tract, certain frequencies

are attenuated and others are ampi�ed, depending on the �lters frequency response.

As we speak, we change the shape of the vocal tract, and thus the frequency response

of the �lter, in order to produce di�erent sounds. The excitation is �ltered by the vocal

tract to produce the sounds. The shape of the vocal tract, i.e. the position of the jaws,

the opening of the lips, the shape of the tongue and the opening or closing of the velum

will determine the frequency response of the vocal tract. In voiced sounds, air pressure

from the lungs build up behind the closed vocal cords, until they abruptly open to release

a burst of air before closing again. The cycle repeats and produces a quasi periodic

sequence of excitation pulses.The intonation of speech is determined by the variations of

the fundamental frequency. Due to the closure of vocal tract voiced sounds are produced

with huge energy and they are of high magnitude. The inverse of the pulse period is

called the fundamental frequency, which determines the perceived pitch of the speech

signal. In unvoiced sounds, the vocal cords stay open and thus the signal amplitude and

energy in unvoiced sounds are much lower than that of voiced sounds.

2
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Figure 1.1: Voiced speech sound /aa/ taken form the TIMIT sentence �His head �opped
back�
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Figure 1.2: Voiced speech sound /eh/ taken form the TIMIT sentence �His head �opped
back�
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Figure 1.3: Unvoiced speech sound /f/ taken form the TIMIT sentence �His head �opped
back�
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Figure 1.4: Unvoiced speech sound /z/ taken form the TIMIT sentence �His head �opped
back�

In Figs. 1.1 and 1.2 voiced speech sounds /aa/ and /eh/ are shown. In Figs. 1.3 and

1.4 unvoiced speech sounds /f/ and /z/ are shown. All the sounds are taken from the

sentence �His head �opped back� of the TIMIT speech corpus uttered by a male speaker.

From these �gures it is quite clear that the voiced sounds have much higher amplitude

than the unvoiced sounds.

The smallest distinguishing unit of a language is the phoneme. The phoneme is an

abstraction, covering a multitude of possible actual realizations, phones, of the sound.

Di�erent sounds are created by moving the articulators (e.g. tongue, lips, jaws). The

articulators are physical entities with a mass, which means that their movement cannot be

instantaneous. Thus, the realization of a phoneme will depend on the articulator positions

of the preceding and the succeeding sounds. This phenomenon is called co-articulation.

An accurate modeling of the co-articulation phenomena is vital for the performance of

both speech recognizers and speech synthesizers.

1.1.2 Formants

The vocal tract can be modeled as an acoustic tube with resonances and antiresonances.

Analysis of the vocal tract shows that the frequency response will typically be dominated

by a small number of resonances, called formants. Formants are the distinguishing or

meaningful frequency components of human speech. They are often mathematically de-

4



�ned as poles of a system transfer function expressing the input-output relation of a vocal

tract.

Formants are de�ned as the spectral peaks of the sound spectrum |P (f)| of the voice.

They are the characteristics of voiced sounds. They are often measured as amplitude

peaks in the frequency spectrum of the sound, using a spectrogram or a spectrum analyzer,

though in vowels spoken with a high fundamental frequency, as in a female or child voice,

the frequency of the resonance may lie between the widely-spread harmonics and hence

no peak is visible. In unvoiced sound no formants are evident.
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Figure 1.5: Magnitude spectrum of the voiced speech sound /eh/ showing distinct formant
peaks
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Figure 1.6: Magnitude spectrum of the voiced speech sound /f/

In Fig. 1.5 spectrum of the voiced natural sound /eh/ as presented in Fig. 1.2 is

shown and in Fig. 1.6 spectrum of unvoiced natural sound /f/ as presented in Fig. 1.3 is

shown. In the spectrum of voiced sound formant peaks are quite clearly identi�able, but

in case of unvoiced spectrum there are no such peaks.

The formant with the lowest frequency is called F1, the second and third formants

are named F2 and F3 respectively. Vowels (including diphthongs) are voiced and are

the phonemes with the greatest intensity. They range in duration from 50 to 400ms in

normal speech. Like all sounds excited solely by periodic glottal source, vowel energy

is primarily concentrated below 1kHz and falls o� at about -6dB/octave with frequency.

The vowel signals are quasi-periodic due to repeated excitations of the vocal tract by

vocal fold closures. Thus, vowels have line spectra with frequency spacing of F0 Hz

(energy concentrated at multiples of F0). The largest harmonic amplitudes are near the

low formants frequencies. Vowels are distinguished primarily by the location of their

three formant frequencies.

6



Figure 1.7: The Vowel Triangle Showing First Formant F1 on x axis and F2 on y axis

The information that humans require to distinguish between vowels can be represented

purely quantitatively by the frequency content of the vowel sounds. In speech, these

are the characteristic partials that identify vowels to the listener. The positions of the

formant are the most signi�cant factor in terms of human identi�cation of speech sounds.

Vowels, to a large extent can be identi�ed on the basis of the position of the two lowest

formant, F1 and F2 (Fig. 1.7). However, the distribution of F1/F2 values for the di�erent

vowels has overlapping regions where the formant information is insu�cient for making

unambiguous decisions on vowel identity.

1.1.3 Problems in Formant Estimation

Formants can be estimated both in time and frequency domain. Among di�erent for-

mant estimation techniques, correlation based methods, such as di�erent variants of lin-
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ear predictive coding (LPC) methods, are most commonly used. However, under a noisy

condition , the estimation performance of the LPC based formant estimation methods

deteriorate signi�cantly. The e�ect of noise and variation of speech are two major prob-

lems in formant estimation. Due to noise speech is a�ected both in time and frequency

domain. Thus in time domain parameters necessary for formant estimation becomes er-

roneous. In spectral domain, due to noise many spurious peaks other than the formant

peaks are present which makes the task of estimating the formant peaks di�cult.

The e�ect of fundamental frequency or pitch can introduce signi�cant errors in formant

estimation. These e�ects can be generally of three types. They are rapid variations of

pitch, vary high pitch and very low pitch. Due to the e�ect of pitch formant estimation

performance can be greatly reduced.

1.2 Major Areas of Applications

Speech processing is a broad and established �eld with a long history. All through

these years several branches of speech processing has been emerged. Speech and Speaker

recognition systems are one of the earliest of these branches. An important application of

speaker recognition technology is in forensics. Speech synthesis is another interesting �eld

which has many di�erent applications. Speech to Text and Text to Speech applications

are also very common.

Speech recognition, which is amongst the most popular applications of speech, is

implemented in front-end or back-end of the medical documentation process in the health

care domain.

The application of speech recognition systems in training air tra�c controllers (ATC)

is another excellent domain. Automatic Speech Recognition (ASR) in the �eld of tele-

phony is now common and in the �eld of computer gaming and simulation it is becoming

widespread. Speech is used mostly as a part of User Interface (UI), for creating pre-

de�ned or custom speech commands. Speech is also used in person authentication, voice

operated control etc. Speech is extensively used in speech to text and text to speech
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applications.

In spite of extensive research e�orts over nearly half a century and numerous applica-

tions that are seen everyday, the task of making truly speech enabled machines remains

an elusive goal. Although the technology has come a long way since the �rst e�orts

at producing electronic machinery for this purpose, the state-of-the-art systems are still

at an early evolutionary stage. For human beings learning to speak and comprehend a

language though generally takes quite some time to master, doesn't require too much

hardship while communicating once it is learnt. For example, once learned, the human

capacity of recognizing speech even in noisy environments is quite amazing. Near perfect

speech recognition in environments where the noise level exceeds the speech level is some-

thing most people do without too much e�ort. On the other hand an automatic speech

recognizer will be rendered nearly useless if the SNR drops below 10�15 dB. Changes in

speech patterns, topic shifts etc. are also handled without problems by humans while

the machines have huge di�culties with situations that deviate from a well-de�ned and

well known setting. Thus speech research which had a vivid past until now, has a bright

albeit challenging future ahead with `miles to go before' it can reach the destination.

1.3 Automatic Vowel Recognition

In statistical automatic vowel recognition, the human speech is represented as a stochastic

process, for which an acoustic model is used to approximate the acoustic aspects (such

temporal and spectral patterns) and a language model is used to deal with the linguistic

aspects (such as syntax and semantics) of speech. Acoustic models ate often established

in feature space, where features are meant to be salient representations of speech signals

for the purpose of recognizing the embedded linguistic targets.

An vowel recognition system includes a module of feature extraction in the front end

and a module of speech models in the back end. The parameters in speech models are

�rst trained with train data and then used for test data. After an ASR system has been

trained and tested, its performance can be evaluated by di�erent performance based
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on the objective of the underlying application. In summary, the �rst step of speech

recognition is reading voiced speech and extract features, next templates are made with

this features for training and testing and �nally an algorithm is used for recognition.

There are mainly two types of voice recognition methods 1. Direct Matching 2. Fea-

ture based matching. Direct Matching is a simple method but high computational cost

and much memory space is required. It is time consuming as well and not suitable in

some practical cases like real time applications. Feature based method is more suitable

for practical uses. It does not use all the values of a voice signal. Rather, it extracts some

features from the speech signal. This approach requires less computational complexity,

less memory and less time. Features can be found by time domain analysis, frequency

domain analysis or time-frequency domain analysis. LPC based feature extraction meth-

ods require time domain analysis while spectral peak peaking and power spectral density

based methods use frequency domain analysis. Cepstrum [2] and wavelets [3] are examples

of time-frequency domain analysis methods.

Vowel recognition in particular means classi�cation of di�erent vowel groups based on

some features. Male Frequency Cepstral Coe�cients(MFCC) are most commonly used

as features in vowel recognition. But in noisy conditions MFCC s can not be estimated

properly and thus it a�ects the vowel recognition accuracy. Formants can be used as

features in conjunction with MFCCs to increase the vowel recognition accuracy. For

these combined features if noise free MFCCs are taken for both training and testing then

vowel recognition accuracy mostly depends on the formant estimation performance.

1.4 Literature Review

In recent years, there has been an increasing demand for the development of accurate,

e�cient and compact representations of speech production systems. Such representations

require the extraction of the characteristics of a vocal-tract system from speech signals.

Thus, vocal-tract system identi�cation(VTSI) received potential applications in many

areas of speech processing, such as speech analysis/synthesis [4],[5],[6] speech coding [7],
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speech recognition [8],[9], [10] , acoustic phonetics [11],[12], modeling of speech produc-

tion process[13]. Formants are one of the most important features in speech signals, and

is used in almost all the speech applications. Previous formant extraction methods can

largely be classi�ed into spectral peak picking, root extraction, and analysis by synthesis

[14], [15]. The spectral peak picking methods and their variants have been widely used for

a long time because of low computational complexity, but they often seriously su�er from

the peak merger problems [14], [15], where two adjoining formants are identi�ed into a

single one. The spectral peak picking method and its variants have been widely used for

formant extraction . In most cases, instead of the short-term spectrum itself, smoothed

spectra, such as linear prediction (LP) spectrum or cepstrally smoothed spectrum are

often employed. However, LP spectra are more often used for this purpose, since they

show conspicuous peaks. In The root extraction methods try to �nd out all the locations

of roots by solving a prediction error polynomial obtained from linear prediction coe�-

cients (LPC), which obviously requires much computation [16]. An e�cient method for

evaluating the pole locations by iteratively computing the number of poles in a sector

in the z plane has been reported in [14]. However, the accuracy of the root extraction

methods can hardly be high because it is not always clear to determine whether a root

obtained forms a formant or just shapes the spectrum [16].

Estimating the formants accurately becomes a much di�cult task, especially in the

presence of severe background noise. Among di�erent formant estimation techniques,

linear predictive coding (LPC) based methods are most commonly used, which o�er a

little noise immunity [17]. In LPC based methods, from the autocorelation function

(ACF) of the given speech utterance, Yule-Walker equations are constructed and from

their solutions formants can be obtained. Spectral peak picking is another extremely

popular method of formant estimation, where both parametric and non parametric spec-

tral estimation techniques are used[18]. As far as real-life applications are concerned,

development of a formant estimation method that performs well in noise is essential but

very challenging. Most of the formant frequency estimation methods so far reported are

capable of handling only nise free environments [19],[20],[21]. Even some of the recent
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methods on formant estimation reported results only in case of noise free environments

[22]. In order to overcome the noise e�ect, an adaptive �lter-bank method is proposed

in [23], where the formants are extracted from di�erent spectral bands of pre-processed

noisy speech. In [24], modi�ed Yule walker equations are applied on once repeated auto-

correlation function for the purpose of system identi�cation in the noisy environments.

Utilizing the advantageous properties of conventional autocorrelation and cepstrum [25]

in handling noisy environment, ramp-cepstrum model based autoregressive system identi-

�cation methods are proposed in [26]. However, the formant estimation accuracy of these

methods has not been investigated on state-of the art databases of continuous speech

signals, especially under severe noisy conditions.

It is to be mentioned that in speech recognition applications, formants and most com-

monly the mel-frequency cepstral coe�cients (MFCC) can be employed as features to

deal with noise-free conditions [15]. MFCC feature derived from a perceptually warped

spectrum are the most widely used feature for speech recognition. In [27], formant fre-

quencies in combination with MFCC features are employed in classi�cation with the

condition that classi�cation incorporates a con�dence measure in each formant frequency

estimation. In [28] the techniques described in [27] was extended allowing the system

to choose the most appropriate parametrization depending on speech sound type which

was being hypothesized. Other approaches attempt to model spectral peaks rather that

looking the resonances in the signal.

However, the performance of the MFCC based recognition system drastically degrades

in the presence of noise [29]. It would be interesting to analyze the performance of a vowel

recognition system in noise utilizing noise robust formant estimates. In [9] it was shown

that combining formants with MFCCs can give can o�er good vowel recognition accuracy.

Thus, development of a noise robust formant estimation algorithm for obtaining better

vowel recognition accuracy in noisy environment would be a challenging task.
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1.5 Objective of the Thesis

The objectives of the thesis are:

� To derive a spectral domain ramp cepstrum model of autocorrelation function of

band limited speech.

� To derive a spectral domain ramp cepstrum model of once repeated autocorrelation

function of band limited speech.

� To design an e�ective spectral domain reisdue based model �tting algorithm to

obtain formant estimates in noise.

� To develop a noise robust automatic vowel recognition scheme incorporating the

estimated formants.

� To investigate the performance of the proposed formant estimation as well as vowel

recognition schemes in di�erent standard real life speech databases under various

noisy conditions.

1.6 Organization of the thesis

The major objective of this thesis is to develop noise robust formant estimation meth-

ods that are able to provide better formant estimation performance than the available

methods. Another objective is to apply these estimated formants in vowel recognition

to improve the recognition accuracy in highly noisy conditions. Spectral domain models

based on autocorrelation and cepstrum have been proposed for achieving robustness to

noise and pitch variation. Using these models formants are computed from a spectral do-

main model �tting approach. In this thesis the estimated formant frequencies are chosen

as features along with conventional features like MFCC for achieving better recognition

accuracy even at a very low SNR. In conjunction to commonly used features for recog-

nition such as MFCC, which are badly corrupted by noise, relying on the performance

of the proposed estimation methods, estimated formants, which are less e�ected by the
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noise, are selected as features for vowel recognition. An LDA based classi�er is used for

classi�cation.

In Chapter 2 of this thesis, �rstly, a brief description of vocal tract modeling and the

use of autocorrelation and cepstrum for �nding better formant estimates is described.

Then a spectral domain model is proposed and later it is employed in �nding formants.

The performance of the proposed formant estimation method in fomant based vowel

recognition is also shown in comparison to some other existing methods. In Chapter 3,

the e�ect of repeated autocorrelation both in time and frequency domain are explored

and using repeated autocorrelation and cepstral domain analysis a spectral domian for-

mant estimation scheme is formulated which gives better formant estimation accuracy in

comparison to some other existing methods. In Chapter 4, banding of the speech signal is

explored for the purpose of deriving a better model for formant estimation in comparison

to the previous full band models. The e�ect of using repeated autocorrelation and cep-

strum on the banded signal is explored and eventually a noise robust formant estimation

is devised. The formant estimation accuracy of the proposed band limited method along

with the vowel recognition performance of the estimated formants is compared with some

available methods.

Finally, in Chapter 5, some concluding remarks regarding the contributions of the

thesis and some future works are presented.
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Chapter 2

Spectral Domain Ramp Cepstrum

Model of Autocorrelation Function

The objective of this chapter is to develop a formant estimation scheme which can ef-

�ciently tackle the adverse e�ect of observation noise and provide an accurate estimate

of formant frequencies of speech signals. Considering the overall human vocal-tract as

an all-pole system, we propose a band limited spectral domain ramp cepstrum (SDRC)

model for a single sided autocorrelation function (SSACF) of speech signals. The param-

eters of the proposed SDRC model provide a direct relationship with formant frequencies.

A band limited model �tting based approach is introduced for formant estimation which

gives better results even in the presence of severe noise. The estimated formants are used

in vowel recognition scheme as potential features. The linear discriminant based algo-

rithm is used for the purpose of recognition. Extensive experimentation is carried out

considering di�erent male and female vowel utterances from standard speech database

under di�erent noisy conditions. It is found that the proposed methods provide a high

degree of formant estimation accuracy in comparison to that obtained by some state of

the art methods, especially at very low levels of SNR.
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2.1 Methodology

In this section, �rstly vocal tract modeling for formant estimation purpose is described.

Next the problem of formant estimation in noise is presented. To overcome this prob-

lem a spectral domain model based on a cepstral domain representation of single sided

ACF (SSACF) of speech is introduced. Finally a model matching scheme is proposed to

estimate formants in noise.

2.1.1 Background

Human vocal tract can be assumed to be a causal, stable, linear time-invariant and

stationary autoregressive (AR) system, and thus a voiced speech signal constructed from

it can be characterized as

x(n) = −
P∑
k=1

akx(n− k) +Gu(n), (2.1)

where {ak} are the system parameters, G denotes the gain factor, P is the known system

order and u(n) represents the excitation to the system. The AR system transfer function

H(z), which in this case is the vocal tract transfer function can be expressed as

H(z) =
G

1 +
∑P

k=1 akz
−k

=
G∏P

k=1(1− pkz−1)
, (2.2)

where pk = rke
jωk denotes the k-th pole of the AR system with magnitude rk and angle

ωk. Formants are associated with the free resonances of the vocal tract system. In order

to model each formant, a pair of complex conjugate poles is required. In (2.2), each

formant corresponds to pk and it's conjugate. Thus, for a vocal tract system modelled

with P -th order AR system, there exists P/2 formants. Formant frequency (Fk) and

bandwidth (Bk) can be expressed in terms of pole parameters as [30]

Fk =
Fs
2π
ωk;Bk = −Fs

π
ln(rk), (2.3)

where Fs is the sampling frequency.
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In the LPC based methods, the ACF of the given speech signal x(n) is used in the

Yule-Walker equations to obtain the AR parameters and thereby the poles of the vocal

tract system and from the estimated poles, formants are calculated [1],[15],[29]. But in

the presence of observation noise, LPC based methods fail to provide an accurate estimate

of the AR parameters and thus exhibit poor formant estimation accuracy. Moreover, the

e�ect of pitch variation may cause signi�cant errors in the LPC based formant estima-

tion [31]. Hence, development of a formant estimation scheme, which can estimate the

formants with a higher accuracy even in the presence of severe background noise as well

as handle the e�ect of pitch variation is in great demand.

2.1.2 Cepstral Domain Analysis

In speech analysis, in order to reduce the e�ect of pitch from the speech signal, cepstrum

that o�ers the advantage of homomorphic de-convolution has been most commonly used.

The principle of homomorphic de-convolution helps in separating signals that have been

combined via convolution and thus it becomes a very important tool in di�erent speech

processing applications, such as speech recognition. The complex cepstrum of a signal

h(n) is de�ned as [24],[32]

chc(n) = F−1
{
ln(H(ejω))

}
, (2.4)

where F−1 {.} denotes the inverse Fourier transform and the spectrum of h(n) is given by

H(ejw). Here an additional c along with h in the subscritpt is introduced just to indicate

the type of the cepstrum. Considering the vocal tract (VT) system as minimum phase,

chc(n) is a sequence that is real and causal. Now, according to (2.2), ln[H(ejw)] of (2.4)

can be expanded as
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ln[H(ejω)] = −
P∑
i=1

ln(1− pie−jω) + lnG

=
P∑
i=1

∞∑
n=1

pni
n
e−jωn + lnG. (2.5)

In (2.5), constant term lnG exhibits only at the origin and has no e�ect for n > 0. Thus,

from (2.4) and (2.5), chc(n) can be expressed in terms of poles as

chc(n) =

p∑
i=1

pni
n
, n > 0. (2.6)

On the other hand, the real cepstrum of h(n) is de�ned as

ch(n) = F−1
{
ln(|H(ejω)|)

}
. (2.7)

In order to avoid notational complexity, instead of denoting real cepstrum as chr(n),

simply ch(n) is used, i.e. an additional subscript `r' is not used hereafter. For n > 0,

the relation between complex and real cepstra is given by ch(n) = 0.5chc(n). Hereafter,

for simplicity, only real cepstrum shall be considered. In order to avoid logarithm of

negative values, in practical applications real cepstra is most commonly used. Here, for

real cepstrum (2.6) can be written as

ch(n) = 0.5
P∑
i=1

pni
n
, n > 0. (2.8)

The speech signal x(n) given by (2.1) can be considered as a convolution sum between

h(n), the impulse response of the V.T. system and u(n), the excitation to the V.T. system

as follows

x(n) = h(n) ∗ u(n). (2.9)
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Cepstral representation of x(n) can be written as

cx(n) = F−1
{
ln(|X(ejω)|)

}
= F−1

{
ln(|H(ejω)|) + ln(|U(ejω)|)

}
(2.10)

= ch(n) + cu(n).

Here cu(n) is the cepstrum of the excitation u(n) and U(ejω) is the frequency domain

representations of u(n). The periodic impulse-train excitation is commonly considered to

model the voiced sounds. A periodic impulse-train excitation {u(n)}N−1n=0 with period T

can be expressed as

u(n) =
λ−1∑
k=0

δ(n− kT ), λ = dN/T e, (2.11)

where λ is the total number of impulses within the excitation. Based on (2.10), utiliz-

ing the advantage of homomorphic de-convolution, cepstral domain system identi�cation

methods have been proposed, which deal with the noise free environment [33].

In Fig. 2.1, poles of an AR(6) system excited by a periodic impulse train excitation

with a period of T = 200 samples is presented in z domain. Here the gain G is chosen

as unity. The poles are located at 0.9883ej0.161 , 0.9806ej0.536 and 0.9767ej1.068 . The

angles corresponding to these poles are ±9.2250°, ±30.7125° and ±60.9525°. These pole

positions are chosen in such a manner that they follow the approximate pole locations

as found from the spectrum of an utterance /eh/ taken from the TIMIT natural speech

corpus. Spectrum of the chosen natural TIMIT speech sequence is shown in Fig. 2.2.

The spectrum of a signal constructed from the system introduced in Fig.2.1 using the

unit impulse train excitation given by (2.11) as input with T=200 sec is shown in Fig.

2.3. The periodic spike in the frequency spectrum is observed because of the e�ect of

pitch. In this �gure the magnitude response of the AR(6) system is also shown, which

appears as the envelope of the spiky spectrum. It is observed grom the �gure that both

spectral peaks match very closely as expected.

It is apparent from (2.8) and (2.10) that in order to extract the system poles pi from
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Figure 2.1: Pole plot of an AR(6) system having three pairs of complex conjugate poles
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Figure 2.2: Smoothed normalized magnitude spectrum of a frame of natural voiced speech
/eh/ taken from the TIMIT database
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Figure 2.3: Magnitude spectrum of the signal constructed from the AR(6) system shown
in Fig. 2.1 and magnitude response of the AR(6) system.

a given cx(n), one needs to extract ch(n). In case of periodic impulse train excitation, it

can be shown that cu(n) contributes to cx(n) at the origin and periodically after each T

interval. Thus, even in case of �nite data analysis, within the range 0 < n < T , the e�ect

of cu(n) can be neglected, resulting

cx(n) = ch(n) =
P∑
i=1

pni
n
, 0 < n < T. (2.12)

It indicates that the cepstral coe�cients corresponding to cx(n) can be considered similar

to that of ch(n) within the range 0 < n < T .

In the presence of additive white Gaussian noise (AWGN) v(n), the observed signal

y(n) can be written as

y(n) = x(n) + v(n), (2.13)

where v(n) is assumed to be zero mean stationary and independent of u(n). The real

cepstrum of y(n) can then be expressed as

cy(n) = F−1{ln(|X(ejω)|)}+ F−1{ln(1 +
|V (ejω)|
|X(ejω)|

)}

= cx(n) + cw(n). (2.14)

Here cw(n) appears in the presence of noise and vanishes in its absence.
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Figure 2.4: Time domain waveform of an utterance of /eh/ (a) without the background
noise and (b) with -5dB background noise
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In Fig. 2.4, time domain waveform of an utterance of /eh/ is shown both in noise free

and noisy conditions. The background noise added here is AWGN and the signal to noise

ratio (SNR) is -5 dB. It is clearly observed that the e�ect of noise completely destroys

the noise free signal pattern. In Fig. 2.5, comparison of cx(n) and cy(n) at SNR = −5 dB

is shown. From this �gure it is evident that at all samples cy(n) is signi�cantly di�erent

from cx(n) because of cw(n). At severe noise it is very di�cult to get an accurate estimate

of cx(n) from cy(n), since the cepstrum decomposition techniques are very sensitive to

the noise level. As a result, it is desirable to develop an algorithm that can reduce the

e�ect of noise on the signal, thereby reducing the e�ect of cw(n) on cy(n) and producing

more noise robust cepstral coe�cients. In this regard, we propose to investigate the e�ect

of increasing the number of poles on the formant location to enhance the strength of the

formant peaks, which will be presented in the next subsection.

2.1.3 Peak Enhancement and Spectral Domain Transformation

In view of enhancing the spectral peaks corresponding to a particular frequency, one

possible approach would be to introduce new poles having that frequency. In particular,

if the new poles can be generated exactly at the same location of those original poles,

the spectral peak corresponding to that pole location will be signi�cantly enhanced. As

only the speech signal is available at hand and one cannot change the vocal tract transfer

function, it is not possible to place poles at designated places to enhance spectral peaks.

As an alternate, if a signal is convolved with its folded version new poles would be

introduced, which are related to the original system poles. An equivalent approach of

achieving this e�ect is carrying out the autocorrelation operation on the signal. The ACF

of x(n) is de�ned as

rxx(m) = x(n) ∗ x(−n)

= E[x(n)x(n+m)], (2.15)
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here E[.] denotes the expectation operator. In practical applications, the ACF of x(n) is

computed by using the working formula given below

rxx(n) =
1

N

N−1−|n|∑
k=0

x(k)x(k + |n|), n = 0, 1, 2, ...,M − 1, (2.16)

where M denotes the number of lags to be considered.According to (2.15), in frequency

domain rxx(n) can be expressed as

Rxx(e
jω) = X(ejω)×X(e−jω)

= H(ejω)× U(ejω)×H(e−jω)× U(e−jω)

= Rhh(e
jω)×Ruu(e

jω), (2.17)

where Rhh(e
jω) and Ruu(e

jω) are the frequency domain representations of rhh(n) and

ruu(n), the ACFs corresponding to h(n) and u(n), respectively. According to the de�nition

(2.15), Rhh(e
jω) can be written as

Rhh(e
jω) = H(ejω)×H(e−jω). (2.18)

Using (2.2), interms of poles Rhh(e
jω) can be expressed as

Rhh(e
jω) =

C1∏P
i=1(1− pie−jω)(1− p∗i ejω)

. (2.19)

Here for each pole pi = rie
jθ, there exists a pole 1/p∗i which is placed at conjugate

reciprocal locations. From (2.19) it is clearly seen that total number of poles in Rhh(e
jω)

is 2P , which is twice as the number of poles in H(ejω). Due to the autocorrelation

operation new P poles are introduced in Rhh(e
jω) which are conjugate reciprocal to the

original P poles of H(ejω), i.e. the new poles are located at the original pole angles as

expected.

Pole plots of an all pole system having three pole pairs is shown in Fig. 2.6. In

order to demonstrate the e�ect of autocorrelation operation on system poles, in Fig. 2.7

another all pole system is shown having all three pole pairs of the system considered in
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Figure 2.6: An all pole system consisting of three pole pairs
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Figure 2.7: An all pole system having original poles of the system shown in Fig. 2.6 along
with their conjugate reciprocal poles.
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Figure 2.8: Magnitude Response of (a) h(n), (b) ACF of the synthetic speech signal
presented in 2.3 and (c) ACF of the TIMIT signal presented in 2.2
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Fig. 2.6 along with their complex conjugate poles. From the �gure it is seen that at each

angular position of the original poles, one new pole is generated outside the unit circle.

Obviously, with the increase in number of poles at a particular angular position, the

spectral energy corresponding to that particular frequency will be signi�cantly increased.

Especially in the presence of noise this can help in �nding out the formant peaks in spite

of the presence of several unwanted noise peaks. In order to present the e�ect of spectral

peak strengthening, in Fig. 2.8 spectra corresponding to h(n),rsynx(n), rxx(n) are shown.

It is to be mentioned that the synthetic speech considered here to calculate the ACF

rsynx(n) is the one that is used in Fig. 2.3. The same natural sound /eh/ as shown in

Fig. 2.2 is used here to obtain the spectrum of rxx(n) in Fig. 2.8(c). From the �gure it

can be easily seen that due to autocorrleation the magnitude of the formant peaks are

enhanced.

At this point, it can be shown that to deal only with the causal part of the signal if

single sided ACF (SSACF) is considered, the dominant peaks would become more distinct

[34]. Since our objective is to handle the severe noisy condition, the use of SSACF would

be a better choice. The SSACF of x(n) namely r+xx(m), can be obtained from the double

sided ACF (DSACF) as

r+xx(m) =


rxx(m) , m > 0

0.5rxx(m) , m = 0

0 , m < 0

(2.20)

Since the DSACF is symmetric about the zero lag (m = 0), it can be computed using

(2.15). The fourier transform of r+xx(m) is a complex spectrum R+
xx(e

jω) and its spectral

envelope is de�ned as

E(ejω) = |R+
xx(e

jω)| (2.21)

Due to the large dynamic range of speech spectra, the envelope of R+
xx(e

jω) strongly

enhances the highest power frequency bands with respect to the spectrum of rxx(m),
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Figure 2.9: Magnitude Response of (a)ACF and (b)SSACF of the synthetic speech signal
presented in 2.3 at noiseless condition and noisy condition with SNR=0 dB.
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namely Rxx(e
jω) . Consequently, the noise components lying outside the enhanced fre-

quency bands are largely attenuated in E(ejω) with respect to Rxx(e
jω), and thus use

of the envelope of R+
xx(e

jω) is more robust to broadband noise than using Rxx(e
jω). In

addition to the noise robustness, there is another well known advantage, that the SSACF

and the original signal x(n) have the same poles[34], [35]. These two properties, i.e.

robustness to noise and pole preservation, suggest that AR parameters of the speech

signal can be more reliably estimated from the SSACF. The robustness of the SSACF

to additive white noise is illustrated in Fig. 2.9. As can be seen from this �gure that

the envelope of the squared magnitude spectrum of the SSACF shows a prominent �rst

formant, and the whole curve is more robust to additive white noise in comparison to

that obtained by using the DSACF. It can be shown that similar to (2.15), the SSACF of

x(n), can be expressed as the convolution between r+hh(m) and r+uu(m), which are single

sided autocorrelation sequences generated from h(n) and u(n), respectively within the

limit 0 ≤ m < T , where T is the time period of the impulse train u(n). This relation is

expressed in the following manner

r+xx(m) = r+hh(m) ∗ r+uu(m), 0 ≤ m < T (2.22)

Here, r+uu(m) is a periodic sequence which has the same priodicity as u(n). From (2.22)

it is now obvious that transferring to the cepstral domain can provide the opportunity of

source signal separation using the propetry of homomorphic deconvolution. In cepstral

domain, (2.22) can be written as

cr+xx(m) = cr+hh
(m) + cr+uu(m), (2.23)

where cr+xx(m), cr+hh
(m) and cr+uu(m) are the real cepstra corresponding to r+xx(m), r+hh(m)

and r+uu(m), respectively, computed in the same manner as (2.7). In Fig. 2.10, cr+xx(m)

and cr+hh
(m) , computed from the signal as considered in Fig. 2.5 are shown. From this

�gure it is observed that cr+xx(m) is approximately equal to cr+hh
(m) within 0 < m < T

and (2.23) can be written as
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cr+xx(m) ≈ cr+hh
(m), 0 < m < T (2.24)

Since, r+xx(m) and the original signal x(n) have the same poles, the fourier transform of

r+hh(m) will have poles inside the unit circle similar to H(ejω). Hence, (2.10) the complex

cepstra corresponding to r+hh(m) can be repesented as

cr+hh
(m) = F−1[ln(R+

hh(e
jω))]

= F−1[ln(H(ejω))]

= 0.5ch(m),m > 0. (2.25)

Using 2.8 and (2.25), one can write
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cr+hh
(m) = 0.5

P∑
k=1

pmk
m
,m > 0. (2.26)

It is now evident that cr+hh
(m) is directly related to the system poles and according to

(2.24) within the range 0 < m < T the same relationship to the system poles holds true

for cr+xx(m). Hence, with a view to developing a spectral domain scheme for formant

frequency estimation it would be su�cient to consider the detailed analysis of cr+hh
(m)

instead of cr+xx(m). As is seen from (2.26), cepstrum decays rapidly with m, which makes

it di�cult to use in estimating the system poles. In order to overcome this problem, an

easy-to-handle ramp cepstrum is proposed as,

φh(m) = mcr+hh
(m) = 0.5

P∑
k=1

pmk ,m > 0. (2.27)

According to (2.24) the ramp cepstrum corresponding to r+xx(m), namely φx(m) =

mcr+xx(m) can be expressed as

φx(m) ≈ φh(m) = 0.5
P∑
k=1

pmk , 0 < m < T. (2.28)

Using (2.13) and (2.15), the ACF of noisy speech y(n) can be expressed as

ryy(n) = rxx(n) + rww(n), (2.29)

where

rww(n) = rvv(n) + rvx(n) + rxv(n). (2.30)

Here, rvv(n) is the ACF of noise v(n) and rvx(n) and rxv(n) are the cross correlation

terms. Since v(n) is uncorrelated with x(n), it is expected that the values of the cross-

correlation terms, in comparison to that of rxx(n) , will be negligible. On the other hand,

the ACF of the AWGN v(n) generally exhibits a peak at the zero lag and the values at

all other lags should be very small and ideally should be zero.

In Figs. 2.11(a)-2.11(f), di�erent ACFs, namely rxx(n), ryy(n), rww(n), rvv(n), rxv(n)

and rvx(n) are plotted at SNR= −5 dB. From Figs. 2.11(e) and 2.11(f), it can be observed
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that the values of the cross correlation terms are very small as expected. As seen in Fig.

2.11(d), rvv(n) although exhibits very large peak at zero lag, nonzero small values exist

at all other lags because of the �nite data length. It is also observed in Fig. 2.11(c)

that rww(n) exhibits the maximum value at the zero lag and the values at other lags are

comparatively very small. From these �gures, it can be concluded that in comparison to

the e�ect of v(n) on x(n) as shown in Fig. 2.4, the e�ect of rww(n) on rxx(n) is drastically

reduced because of the autocorrelation operation. Now, the cepstral coe�cients of ryy(n)

can be expressed as

cryy(n) = F−1{ln|Rxx(e
jω)|}+ F−1{ln(1 +

|Rww(ejω)|
|Rxx(ejω)|

)}

= crxx(n) + crw1(n). (2.31)

Here crxx(n) is the cepstrum of rxx(n), crw1(n) is the cepstrum corresponding to the

additional term in (2.29) and Rxx(e
jω) represents the Fourier transform of rxx(n). In time

domain, as described before that the e�ect of rww(n) on rxx(n) is smaller in comparison to

the e�ect of v(n) on x(n). For all lags other than the zero lag, the energy ratio of rww(n)

to rxx(n) is much smaller than that of v(n) to x(n). Based on Parseval's theorem, it can

be inferred that over the entire range of frequency overall spectral energy of |Rww(ejω)| is

lower in comparison to that of |Rxx(e
jω)|. Hence, it is expected that the e�ect of crw1(n)

on cryy(n) in (2.31) is smaller than the e�ect of cw(n) on cy(n) in (2.14). In this case,

(2.31) can be rewritten as

cryy(n) ≈ crxx(n). (2.32)

This relation holds true also for the cepstrum computed using the SSACF, which as stated

earlier provides more noise robustness. Hence, the cepstrum of the SSACF of the noisy

signal can be rewritten as

cr+yy(n) ≈ cr+xx(n). (2.33)

35



Corresponding relationship in ramp cepstral domain as per (2.28) can be written as

φy(m) ≈ φx(m) = 0.5
P∑
k=1

pmk ,m > 0. (2.34)

Here, φy(m) = mcr+yy(m) is the ramp cepstrum of r+yy(m). Hence, it is expected that

given noisy speech, if ramp cepstrum of its single sided correlation sequence is computed,

depending on the level of noise, it may exhibit more noise immunity in comparison to

time domain analysis.

As in (2.28) it is shown that φh(m) is directly related to system poles, the correspond-

ing frequency domain representation is given by

Φh(e
jω) =

P∑
i=1

Ci
(1− pie−jω)

=

P/2∑
i=1

{ Ci
(1− pie−jω)

+
C ′i

(1− p∗i e−jω)
}, (2.35)

where Φh(e
jω) is the Fourier transform of φh(m) and Ci and C

′
i are gain factors and pi

and p∗i are a complex conjugate pole pair. As seen from (2.35) the system corresponding

to the SSACF of h(n), namely R+
hh(e

jω), has P/2 pairs of complex conjugate poles.

Based on (2.28), (2.34) and (2.35) it is expected that in noisy environment it is

advantageous to use the spectrum of φy(m), within 0 < m < T , which exhibits more

noise robustness in comparison to ryy(m) and can be approximated as

Φy(e
jω) ≈ Φh(e

jω), (2.36)

where Φy(e
jω) is the Fourier transform of φy(m), which can be computed from r+yy(m) in

the following manner

Φy(e
jω) = F [m× F−1{ln|F [r+yy(m)]|}] (2.37)

Here, F [.] denotes Fourier transform.

In Fig. 2.12, for the natural voiced speech /eh/ as shown in Fig. 2.2, a comparison

between the noiseless and noisy spectra at SNR = 0 dB is shown. In Fig. 2.13, spectrum

of the ACF of the noisy signal presented in Fig. 2.12, is shown and in Fig. 2.14, the
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Figure 2.12: Spectrum of the noisy and noiseless signal
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Figure 2.13: Spectrum of the ACF of the noisy signal presented in 2.12
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Figure 2.14: Spectrum of the ramp cepstrum of SSACF of the noisy signal
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Figure 2.15: Response of the system in Fig. 2.1 and multiplied response of three subsys-
tems each consisting of a pair of complex conjugate poles.

spectrum of the ramp cepstrum of the SSACF of the noisy signal is shown. From these

�gures it is evident that the spectrum of the ramp cepstrum of the SSACF retains the

dominat peaks of the origianl signal and exhibits less spurious peaks than the spectrum

of the ACF.

2.1.4 Model Generation and Model matching

As given by (2.2), the transfer function of the VT system if modeled as an AR(P) system

, one can consider it as a cascade of P/2 blocks where each block consists of a pair of

complex conjugate poles. In Fig. 2.15, the magnitude response of an AR(6) system with

three complex conjugate poles is shown along with the magnitude responses of the three

individual pole pairs. From this �gure it is clearly observed that the response of the AR
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system exhibits three prominent peaks corresponding to the three formants each of which

is related to a particular pole pair. Considering the vocal tract as an AR system, a pair

of complex conjugate poles is responsible for generating a dominant peak in the spectral

domain. Although the e�ect of other pole pairs, unless otherwise located at a very close

vicinity, may enhance the spectral level, dominance of a particular formant peak is mostly

because of the pole pair located in that particular formant frequency. For real life speech

applications the �rst three formants are mostly considered. Thus considering only the

�rst three formants, the cascaded spectrum representation of (2.2) can be written as

H(ejω) = Ci∏3
i=1(1−pie−jω)(1−p∗i e−jω)

= H1(e
jω)H2(e

jω)H3(e
jω)

(2.38)

Hence, the ramp cepstrum corresponding to the SSACF of (2.38)can be written as follows

φh(m) = φh1(m) + φh2(m) + φh3(m) (2.39)

According to (2.35) it can be shown that the spectral domain representation of (2.39) is

obtained as

Φh(e
jω) = F [φh(m)], m > 0 (2.40)

= Φh1(e
jω) + Φh2(e

jω) + Φh3(e
jω)

The �rst formant peak is prominent in the spectrum of ramp cepstrum of SSACF pre-

sented in Fig. 2.14, indicating that the e�ect of Φh2(e
jω) and Φh3(e

jω) are negligible on

Φh1(e
jω). Using this property, it can be assumed that the output response closely match

Φh1(e
jω) around the �rst formant peak. Thus instead of conventional peak picking, in

this chapter, the task of formant estimation is carried out through spectral model �tting,

which ensures that both the frequency and bandwidth of formant peaks are matched.

However, in noisy environments, presence of spurious peaks may cause di�culties in
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identi�cation of formant peaks even in the case of band limited signals. As discussed

in the previous section, the autocorrelation operation can reduce the e�ect of noise.

Moreover, performing the ramp cepstrum operation on the SSAC sequence will de�nitely

exhibit signi�cant noise reduction. In order to identify the formant peaks, especially

under noisy condition, one possibility is to consider a transfer function which can produce

an impulse response that closely matches the ramp cepstrum of the SSACF of the most

prominent subsystem whose frequency domain representation is Φh1(e
jω). By limiting the

comparison to only the zone where only the �rst formant frequency should be present, the

spectrum corresponding to that transfer function can then be used in a spectral matching

technique along with the spectrum obtained from the ramp cepstrum of SSACF of the

noise corrupted signal. In this case, the transfer function of the subsystem responsible

for the spectrum of the ramp cepstrum of the SSACF around the �rst formant peak as

per (2.35) can be represented as

Φh1(e
jω) =

C1

(1− p1e−jω)(1− p∗1e−jω)
, (2.41)

where C1 = 1−Re[p1]e−jω.

As, in the previous section a direct relationship between Φy(e
jω) and Φh(e

jω) is de-

veloped, (2.41) can be used to derive a model for the ramp cepstrum of the SSACF of a

noisy sequence for the �rst formant as follows

Φ1
model(e

jω) =
C1

(1− p1e−jω)(1− p∗1e−jω)
, (2.42)

where Φ1
model(e

jω) is the representation for the �rst band.

In the proposed formant estimation method, a spectral model corresponding to the

�rst formant zone of the spectrum of the ramp cepstrum of SSACF of the speech signal is

introduced, which is utilized in a model matching technique to �nd out the model param-

eters that in turn will provide the �rst formant frequency. In what follows the proposed

approach of model matching will be elaborated in detail where each formant will be esti-
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mated once at a time. In the estimation of each formant, one such model corresponding

to that speci�c formant is required. Similar to (2.42) for the �rst formant, for estimating

each formant one such model is required and the i-th model can be represented as

Φi
model(e

jω) = Ci

(1−pie−jω)(1−p∗i e−jω)
,

pi = rie
jθi , p∗i = rie

−jθi
(2.43)

The spectrum Φi
y(e

jω) of the ramp cepstrum of the SSACF of the observed noisy signal

y(n) is used in conjunction with the proposed model Φi
model(e

jω) to form an objective

function and for the �rst formant with i = 1 based on the absolute di�erence of these

spectra, namely

eimin(rj, θj) =

min

rl < ri < rh

θl < θi < θh

ωhc∑
ω=ωlc

(
|Φi

model(e
jω)| − |Φi

y(e
jω)|
)

(2.44)

Note that here the superscript i is introduced to control the step by step algorithm. The

algorithm for the �rst formant where i = 1, is given below in brief.

1. From given noisy speech y(n) computing Φi
y(e

jω) using (2.37)

2. Generating Φi
model(e

jω) using the model of (2.43)

3. Minimizing the objective function in 2.44 within a restricted frequency range ωlc to

ωhc which depends on the range of each formant zone.

One may utilize the−3dB points on the lower and higher sides of the peak in the spectrum

of the model to extract ωlc and ωhc. Within that speci�ed range ωlc ≤ ω ≤ ωhc, the

optimum values of the two variables ri and θi are obtained at the minimum of absolute

di�erences. Based on the fundamental knowledge of traditional range of formants, one

may restrict the search range for the two variables i.e., rl ≤ r ≤ rh and θl ≤ θ ≤ θh or

adopt a coarse and �ne search approach [36]. Formant frequencies are estimated from

the pole angle θj that produces the best match between the spectra using (2.44) .

Once the �rst formant frequency F1 is obtained, (2.43) is utilized to estimate the
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second formant frequency F2. Φi
y(e

jω) can be written as the sum of Φ1
y(e

jω), Φ2
y(e

jω)

and Φ3
y(e

jω) alike (2.40). From the magnitude spectrum of Φi
y(e

jω) the estimated model

spectrum Φ1
model(e

jω) is subtracted such that the resulting spectrum closely resembles the

sum of Φ2
y(e

jω) and Φ3
y(e

jω). Hence Φi
y(e

jω) in general for estimating second and third

formant can be expressed as

Φi
y(e

jω) = Φi−1
y (ejω)− Φi−1

model(e
jω), i > 1 (2.45)

Then similar to the matching in the �rst formant zone, matching is performed in the

second formant zone and F2 is estimated. Then from the magnitude spectrum of Φ2
y(e

jω)

the estimated model spectrum Φ2
model(e

jω) is subtracted to obtain Φ3
y(e

jω). According to

the simpli�ed modeling of the vocal tract presented above, Φ3
y(e

jω) should closely match

with Φ3
model(e

jω), leading to a similar approach as described in (2.43) and (2.44) to obtain

F3.

2.1.5 Formant Based Vowel Recognition

After estimating formants in the described manner, in the proposed scheme they are

employed in a vowel recognition system as potential features along with the commonly

used Mel frequency cepstral coe�cients (MFCC).

A typical ASR system includes a module of feature extraction in the front end and

a module of speech models in the back end. The parameters in speech models are �rst

trained with trained data and then used for test data. After an ASR system has been

trained and tested, its performance can be evaluated by di�erent performance measures

based on the objective of the underlying application. In summary, the �rst step of speech

recognition is reading voiced speech and extract features, next templates are made with

this features for training and testing and �nally an algorithm is used for recognition.

There are mainly two types of voice recognition methods, direct and feature based.

Direct Matching is a simple method but high computational cost and much memory

space is required. It is time consuming as well and not suitable in some practical cases

like real time applications. Feature based method is more suitable for practical uses. It
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does not use all the values of a voice signal. Rather, it extracts some features from the

speech signal. This approach requires less computational complexity, less memory and

less time. Features can be found by time domain analysis, frequency domain analysis

or time-frequency domain analysis. LPC based feature extraction methods require time

domain analysis while spectral peak peaking and power spectral density based methods

use frequency domain analysis. Cepstrum and wavelets are examples of time-frequency

domain analysis methods.

The task of vowel recognition in particular means classi�cation of di�erent vowel

groups based on some features. Male Scale Cepstral Coe�cients(MFCC) are most com-

monly used as features in vowel recognition. But in noisy conditions MFCC s can not be

estimated properly and thus it a�ects the vowel recognition accuracy. Formants can be

used as features in conjunction with MFCCs to increase the vowel recognition accuracy.

For these combined features if noise free MFCCs are taken for both training and testing

then vowel recognition accuracy mostly depends on the formant estimation performance.

In the proposed scheme for the purpose of recognition two major steps are followed.

First given the train data set for di�erents vowels, formants and MFCC features are

extracted. For each vowel a number of samples (tokens) are considered in the training

stage. during the testing phase, the similar features are extracted from the test vowels.

Utilizing the Linear discriminant analysis (LDA) based classi�er, the label of the unknown

test vowel is identi�ed. It is to be noted that the use of formants increases the dimension

by 3. However, as can be seen from the experimental result, it will o�er a huge increase

in estimation accuracy.

LDA based discriminants take into account the intra-cluster scatter matrix computed

from the training vectors pertaining to each of the classes. For our proposed scheme, a

frame by frame classi�cation method is used, which o�ers vowel recognition results for

each voiced frame independently. The classi�er classi�es the data into di�erent groups

generally, depending on the signi�cant characteristics of the group members. The quality

of a classi�er depends on its ability to provide the compactness among the member

within a cluster and the separation between the members of di�erent clusters in terms of
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feature characteristics. The task of recognizer is to identify the class label of a test sample

utilizing the classi�ed data. In a feature based scheme, classi�cation is performed utilizing

the extracted features of the data, instead of directly employing the data themselves. In

the proposed method, the LDA is used to classify the vowel among the di�erent classes

(in our case, vowel) available. In LDA, the total scatter matrix is a scaled covarience

matrix, de�ned as

S =
N∑
i=1

[xi − µ][xi − µ]T (2.46)

where µ denotes the global mean of the entire set of the training vector. The between-class

scatter matrix is denoted as

Sb = N+[µ+ − µ][µ+ − µ]T +N−[µ− − µ][µ− − µ]T (2.47)

Here the three points (µ, µ+ and µ−) are collinear, meaning that

[µ+ − µ] =
N−
N

[µ+ − µ−] (2.48)

and

[µ− − µ] = −N+

N
[µ+ − µ−] (2.49)

using the values obtain from (2.48,2.49) in (2.47), the between class scatter matrix is

obtained as

Sb =
N−N+

N
[µ+ − µ−][µ+ − µ−]T (2.50)

in addition, the within class scatter matrix is de�ned as

Sw =
∑

[xi − µ+][xi − µ+]T +
∑

[xi − µ−][xi − µ−]T (2.51)

The goal of LDA is to �nd out the linear projection wopt using these relationships that

maximized a special kind of signal to noise ratio. Here the signal is represented by the
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projected inter-cluster distance and the noise by the projected intra-cluster variance.The

objective function is based on determining a projection direction w to maximize the

Fisher's discriminant de�ned as [37]

J(w) =
wTSbw

wTSww
(2.52)

2.2 Results and Simulation

For evaluating the formant estimation performance of the proposed method, numerous

experiments have been conducted using the voiced speech signals taken from the TIMIT

acoustic-phonetic continuous speech corpus, which has jointly been developed by Mas-

sachusetts Institute of Technology (MIT), Stanford Research Institute (SRI) and Texas

Instruments (TI) [38]. The TIMIT database contains a large collection of sentences

uttered by both male and female English speakers using various dialects. A total of 6300

sentences, with 10 sentences spoken by each of the speakers are present in the database.

Phonetic description of the database is also available, which helps in identifying voiced

and unvoiced frames. However, as the TIMIT database does not contain reference values

of formants, in order to compare estimated results, the most commonly used reference

formant database for the TIMIT speech corpus is chosen, where formant frequencies are

estimated based on vocal tract resonances (VTR) with manual adjustment [39]. The

formant estimates reported in [39] are taken as ground truth and the estimation perfor-

mance of di�erent methods is evaluated at di�erent levels of signal to noise ratios (SNR).

The VTR reference database of TIMIT speech corpus contains 376 sentences across the

training set, representing 173 speakers. These sentences contain 18 voiced phonemes, out

of which, the diphthongs have been ignored, and 11 phonemes are considered. A total

of 2726 utterances of phonemes are used from the VTR subset, out of which 1583 are

from male and 1143 are from female speakers, have been analysed. In VTR database,

formant estimates are reported for every 10 ms interval. However, vowel duration is gen-

erally much larger than 10 ms. In the frame by frame formant analysis, when the size of
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analysis frame is larger than 10 ms, the estimated formants are then compared with the

average VTR formant values obtained over the di�erent 10 ms frames within the duration

of that formant under investigation. For the purpose of performance comparison, �rst

the most widely used LPC based formant estimation method [40] is chosen, where the

order of the LPC is chosen as 12. It is to be noted that the performance of the most

widely used LPC-10 based formant estimation is also investigated and most of the cases

it is found that the performance of the LPC-12 method is comparatively better.

Apart from the LPC method, a state of the art adaptive �lter bank (AFB) method is

also chosen. In the AFB method, formant estimation is carried out in sample by sample

basis, and for the purpose of comparison, average estimated formant values over a period

is considered [23].

Table 2.1: Performance comparison in terms of mean error(%) for synthetic speech

Vowels
5dB −5dB

Proposed LPC AFB Proposed LPC AFB

/a/
F1 4.45 20.24 46.90 4.97 20.46 49.77
F2 9.31 65.23 32.58 13.79 113.79 30.99
F3 2.92 17.80 8.45 3.13 34.02 9.84

/o/
F1 10.37 49.53 128.07 12.27 78.29 18.29
F2 9.62 138.88 20.42 17.08 133.29 46.61
F3 1.24 39.93 9.56 2.26 36.28 12.53

/u/
F1 9.60 72.96 109.00 10.96 98.29 12.98
F2 7.98 116.33 14.62 14.82 121.92 33.72
F3 1.41 52.31 11.40 1.72 40.60 13.74

In the proposed model �tting scheme, the range of the model parameters are set

according to the general behavior of the vocal tract. The possible range of the parameter

r is changed within the limit 0.8 to 0.99, which covers even a very rapidly decaying

impulse for the purpose of our simulation. The search range for θ is set according to the

determined formant band. Search resolutions for r and θ are chosen as4r = 0.01 and

4θ = 0.001π, respectively. In our experiments in order to obtain a noisy signal, noise

sequence of a particular SNR is added with the clean (noise-free) signal. Noisy signals

are generated according to (2.13) where the noise variance σv is appropriately determined

according to a speci�ed level of SNR de�ned as
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SNR = 10log10

∑N−1
n=0 x(n)2∑N−1
n=0 v(n)2

(2.53)

At �rst results for three synthetic vowels /a/, /o/ and /u/ are presented in Table 2.1.

Vowels with duration of 80 ms are synthesized using the Klatt synthesizer considering

the pitch values of 220 Hz . Estimation eroor for the �rst three formants are taken into

consideration after performing estimation for 10 independent trials. Here the estimation

error, the mean average deviation between the estimated formant frequency fE and the

reference formant frequency fR is de�ned as

E = |fE − fR
fR

| × 100% (2.54)

In Table 2.1, the estimatin error is shown for the three synthesized vowels at the

presence of white Gaussian noise with a SNR of 5dB and−5dB for both male and female

sounds, respectively. It is clearly observed that the proposed method is able to reduce

estimation error signi�cantly in the case of noisy environments.
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Table 2.2: Performance comparison in terms of mean error(%) for male speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 16.11 30.88 30.53 17.01 17.74 26.48

/aa/ F2 16.65 36.42 82.19 10.63 21.87 45.44

F3 21.15 15.47 43.35 16.83 17.07 39.80

F1 18.02 24.12 31.64 17.37 16.31 24.65

/ah/ F2 12.90 28.88 57.43 9.72 24.41 35.57

F3 19.00 13.09 39.21 14.16 11.61 37.72

F1 18.36 35.49 22.63 18.06 37.77 19.72

/ow/ F2 16.03 26.03 47.20 12.08 24.65 41.67

F3 19.02 14.20 36.68 17.22 14.00 37.74

F1 18.79 36.49 20.14 19.24 36.55 19.49

/uh/ F2 12.34 23.49 38.02 12.21 23.23 37.48

F3 14.60 13.89 37.24 14.09 13.86 37.33

F1 18.64 36.72 29.66 18.28 39.58 20.09

/uw/ F2 13.40 23.14 40.36 12.23 22.49 36.45

F3 16.51 14.53 39.48 15.29 14.50 38.25
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Table 2.3: Performance comparison in terms of mean error(%) for female speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 14.23 19.40 45.04 13.74 12.33 25.84

/aa/ F2 15.34 69.07 27.67 9.24 21.02 20.53

F3 11.51 30.96 12.77 11.56 20.79 11.95

F1 15.29 14.68 36.14 13.51 10.79 17.91

/ah/ F2 16.52 37.14 21.46 11.90 13.37 20.44

F3 10.76 23.14 15.75 9.32 19.79 12.44

F1 12.34 11.75 26.75 12.20 10.82 15.70

/ow/ F2 15.94 43.25 26.84 10.56 27.30 20.96

F3 10.35 18.63 15.23 10.21 17.84 10.00

F1 13.02 12.91 18.07 13.14 10.54 16.46

/uh/ F2 13.52 23.46 21.40 11.49 18.72 20.04

F3 8.97 18.93 10.40 8.83 18.40 9.54

F1 13.37 9.47 16.67 13.26 9.12 16.37

/uw/ F2 13.18 17.18 20.33 10.57 16.46 18.49

F3 9.55 18.12 9.82 9.61 18.19 9.42

The simulation results for TIMIT database are presented next. The estimation errors

obtained by the proposed method and that by the other two methods are presented under

the in�uence of white gaussian noise conditions for male and female speakers in Tables

2.2 and 2.3.

For Table2.2 and Table 2.3 SNR levels 5dB and 0dB are considered. For each vowel,

the estimation errors for three di�erent formants, namely F1,F2 and F3 are listed. As

can be seen from the tables, the proposed method o�ers better performance than both

the12 order LPC and the AFB methods under presence of background noise. It can be

observed that the estimation error obtained by the proposed method in comparison to

that of the other methods is extremely lower in such severe noisy conditions.

In some cases it is found that the estimation accuracy decreases for the cases when

the two formants are very closely spaced, for example in case of vowel /ih/, though,

considering the level of noise, the estimation accuracy obtained by the proposed method

is quite acceptable. It is also observed that the estimation error relatively increases in
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Figure 2.16: Error comparison of all formants for di�erent methods

case of high pitch female speakers. It is clearly observed that the estimation performance

for the third formant, which is by nature very di�cult to estimate because of low spectral

magnitude, is signi�cantly enhanced by the proposed method. Hence, overall it can be

said that, the proposed method increases formant estimation performance.

In order to present the overall formant estimation errors over a large range of SNRs

considered in the experimental setup, in Fig. 2.16 the overall estimation error for all

vowels are shown. In a simiar way, in order to present the overall formant estimation

errors over a large range of SNRs considered in the experimental setup, in Fig. 2.17

the overall estimation error for all vowels are shown. It is observed that the formant

estimation performance obtained by the three methods remains similar in case of high

level of SNR. However, with the decrease in SNR level, the estimation performance of

the other two methods deteriorates in comparison to that of the proposed method. The

performance of the proposed method remains quite consistent even in the low levels of

SNRs and level of performance degradation is not very signi�cant till −15 dB. However,

beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

In the proposed method formant estimation is carried out frame by frame with a

frame length of 512 samples and 10 ms overlap between the successive frames. As a
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Figure 2.17: Error comparison of all formants for di�erent methods for female

result for a vowel sound of duration of about 80 ms, 5 frames are analyzed. It is to be

noted that, because of the inherent characteristics of the fast Fourier transform (FFT)

operation, there exists an inherent error caused by the minimum width of the FFT bin.

For instance, when a 512 point FFT is performed on a speech frame with sampling

frequency of 16 kHz, the resulting FFT has a resolution of 15.6 Hz.

Table 2.4: Recognition Accuracy

Feature Vector

SNR MFCC + Proposed Method MFCC + LPC-12

-10 dB 68.00 60.00

-5 dB 82.67 80.00

5 dB 89.33 85.33

By incorporating the estimated formants in a feature vector along with traditional

MFCC, signi�cantly better vowel recognition accuracies are achieved compared to a fea-

ture vector consisting of MFCC and formants estimated by LPC, especially under the

in�uence of noise. By using these formants along with the traditional 12 MFCC coef-

�cients as a feature vector, vowel recognition was performed for the vowels /aa/, /ux/
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and /ix/ from the TIMIT database. As formant ranges for male and female vowels vary

signi�cantly, they are considered as separate classes for this LDA based classi�cation op-

eration. There are 20 utterances for male and 20 utterances for female considered for each

vowel. Accuracies are calculated by leaving one sample out while training the classi�er

and then testing the left out sample. This check is performed for all the samples in the

database, and it is found that the proposed feature vector o�ers better performance in

noisy conditions. The recognition accuracies for di�erent vowels is presented in Table 2.4.

It can be concluded from the table that the proposed noise robust formant estimation

method, when used for vowel recognition, increases the recognition accuracy for vowel

recognition systems under the in�uence of noise.

As seen from these analyses, the proposed method o�ers a better performance over

the LPC and AFB methods in noise free as well as in noisy conditions. In order to

demonstrate the e�ectiveness of our proposed method, a spectrogram of the sentence

�His head �opped back�, uttered by a male speaker taken from the TIMIT database is

shown in Fig. 2.18. The formant frequencies estimated at di�erent frames using the

proposed method uder SNR= 0 dB are shown over the spectrogram of clean speech. In

the tracking, only the estimated formants of the vowels are shown. It can be observed

from the �gure that the proposed method tracks the formant frequencies quite accurately

even in noisy speech.

2.3 Conclusion

In this chapter it is shown that the spectrum of the ramp cepstrum of the SSACF of

the system impulse response exhibits direct relationship with the system poles. Hence,

a spectral model of the RC using the SSACF is proposed to use as a target function to

extract formants from given noisy speech observations. A residue based spectral domain

model matching scheme is introduced where the spectral error between the proposed

model and the spectrum of the RC of the SSACF of noisy speech signal is minimized.

In order to reduce the computational burden, in the proposed residue based spectral
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Figure 2.18: Spectrogram of the sentence �His head �opped back� at 0 dB noise with
tracked formant by the proposed method

matching scheme �tting operation is carried out for each formant separately restricting

the search within a formant zone. Formant estimation is performed considering di�erent

vowels uttered. Estimation performance of the proposed method is compared with the

widely used LPC and AFB formant estimation methods.
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Chapter 3

Spectral Domain Ramp Cepstrum

Model of Repeated ACF

The objective of this chapter is to develop a formant estimation scheme which can pro-

vide an accurate estimate of formant frequencies of speech signals even under severe

noisy condition. Motivated by the advantageous properties of the ACF such as the peak

strengthening and noise reduction, the use of repeated ACF in ramp-cepstral domain is

introduced. Considering the overall human vocal-tract as an all-pole system, we propose

a spectral domain ramp cepstrum (SDRC) model for a once repeated single sided auto-

correlation function (ORSSACF) of speech signals. Since, parameters of the proposed RC

model provide a direct relationship with formant frequencies; the residue based model

�tting approach is employed for formant estimation.

3.1 Methodology

3.1.1 Background

As shown in the previous chapter, vocal tract can be assumed to be a causal, stable, linear

time-invariant and stationary autoregressive (AR) system, and thus a voiced speech signal

constructed from it can be characterized as
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x(n) = −
P∑
k=1

akx(n− k) +Gu(n), (3.1)

where {ak} are the system parameters, G denotes the gain factor, P is the known system

order and u(n) represents the excitation to the system. The AR system transfer function

H(z), which in this case is the vocal tract transfer function can be expressed as

H(z) =
G

1 +
∑P

k=1 akz
−k

=
G∏P

k=1(1− pkz−1)
, (3.2)

where pk = rke
jωk denotes the k-th pole of the AR system with magnitude rk and angle

ωk. Formants are associated with the free resonances of the vocal tract system. In order

to model each formant, a pair of complex conjugate poles is required. In (3.2), each

formant corresponds to pk and it's conjugate. Thus, for a vocal tract system modeled

with P -th order AR system, there exists P/2 formants. Formant frequency (Fk) and

bandwidth (Bk) can be expressed in terms of pole parameters as [30]

Fk =
Fs
2π
ωk;Bk = −Fs

π
ln(rk), (3.3)

where Fs is the sampling frequency.

In the LPC based methods, the ACF of the given speech signal x(n) is used in the

Yule-Walker equations to obtain the AR parameters and thereby the poles of the vocal

tract system and from the estimated poles, formants are calculated. But in the presence

of observation noise, LPC based methods fail to provide an accurate estimate of the AR

parameters and thus exhibits poor formant estimation accuracy. Moreover, the e�ect of

pitch variation may cause signi�cant errors in the LPC based formant estimation. Hence,

development of a formant estimation scheme, which can estimate the formants with a

higher accuracy even in the presence of severe background noise as well as handle the

e�ect of pitch variation is in great demand.
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3.1.2 Cepstral Domain Analysis

As introduced in the previous chapter, in order to reduce the e�ect of pitch from the

speech signal, cepstrum that o�ers the advantage of homo-morphic de-convolution has

been most commonly used. The principle of homomorphic deconvolution helps in separat-

ing signals that have been combined via convolution and thus it become a very important

tool in di�erent speech processing applications, such as speech recognition. The complex

cepstrum of a signal h(n) is de�ned as [24]

chc(n) = F−1
{
ln(H(ejω))

}
, (3.4)

where F−1 {.} denotes the inverse Fourier transform and the spectrum of h(n) is given by

H(ejw). Considering the VT system as minimum phase, using (3.2) chc(n) is a sequence

that is real and causal. Recalling from the previous chapter,chc(n) can be expressed in

terms of poles as

chc(n) =
P∑
i=1

pni
n
, n > 0. (3.5)

On the other hand, the real cepstrum of h(n) is de�ned as

ch(n) = F−1
{
ln(|H(ejω)|)

}
. (3.6)

In order to avoid notational complexity, instead of denoting real cepstrum as chr(n),

simply ch(n) is used, i.e. an additional subscript `r' is not used hereafter. For n > 0, the

relation between complex and real cepstra is given by ch(n) = 0.5chc(n). Hereafter, alike

previous chapter, only real cepstrum shall be considered. In order to avoid logarithm of

negative values, in practical applications real cepstra is most commonly used. Here, for

real cepstrum (3.5) can be written as

ch(n) = 0.5
P∑
i=1

pni
n
, n > 0. (3.7)

The speech signal x(n) given by (3.1) can be considered as a convolution sum between

h(n), the impulse response of the V.T. system and u(n), the excitation to the V.T. system
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as follows

x(n) = h(n) ∗ u(n). (3.8)

Thus, one can write the corresponding cepstral representation of x(n) as

cx(n) = ch(n) + cu(n). (3.9)

Here, ch(n) is the cepstrum of h(n) , cu(n) is the cepstrum of the excitation u(n) and

H(ejω) and U(ejω) are frequency domain representations of h(n) and u(n). As peri-

odic impulse-train excitation is commonly considered to model the voiced sounds, here

a periodic impulse-train excitation {u(n)}N−1n=0 with period T is considered, which can be

expressed as

u(n) =
λ−1∑
k=0

δ(n− kT ), λ = dN/T e. (3.10)

Here, λ is the total number of impulses within the excitation. As introduced in the

previous chapter, based on (3.6), utilizing this advantage of homomorphic deconvolution,

cepstral domain system identi�cation methods have been proposed which deal with the

noise free environment . It is apparent from(3.5) and (3.9) that in order to extract the

system poles pi, from a given cx(n) one needs to extract ch(n). However, as stated in (3.9)

, ch(n) is mixed with cu(n) resulting cx(n). In case of periodic impulse train excitation,

it can be shown that cu(n) contributes to cx(n) at the origin and periodically after each

T interval. Thus, even in case of �nite data analysis, within the range 0 < n < T , the

e�ect of cu(n) can be neglected, resulting

cx(n) = ch(n) = 0.5
P∑
i=1

pni
n
, 0 < n < T (3.11)

It indicates that the cepstral coe�cients corresponding to cx(n) can be considered similar

to that of ch(n) within the range 0 < n < T .
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3.1.3 E�ect of Noise

In the presence of additive white Gaussian noise (AWGN) v(n), the observed signal y(n)

can be expressed as

y(n) = x(n) + v(n), (3.12)

where v(n) is assumed to be zero mean stationary and independent of u(n). The cepstral

coe�cients of y(n) can then be expressed as

cy(n) = F−1{ln(|X(ejω)|)}+ F−1{ln(1 +
|V (ejω)|
|X(ejω)|

)}

= cx(n) + cw(n). (3.13)

cw(n) appears in the presence of noise and vanishes in its absence. As shown in the

previous chapter, at severe noise it is very di�cult to get an accurate estimate of cx(n)

from cy(n), since the cepstrum decomposition techniques are very sensitive to the noise

level. As a result, it is desirable to develop an algorithm that can reduce the e�ect of

noise on the signal, thereby reducing the e�ect of cw(n) on cy(n) and producing more

noise robust cepstral coe�cients. In this regard, we propose to investigate the e�ect of

increasing the number of poles on the formant location to enhance the strength of the

formant peaks.

In view of enhancing the spectral peaks corresponding to a particular frequency, one

possible approach would be to introduce new poles having that frequency. In particular,

if the new poles can be generated exactly at the same location of those original poles,

the spectral peak corresponding to that pole location will be signi�cantly enhanced. As

only the speech signal is available at hand and the VT transfer function can not be

changed, it is not possible to place poles at designated places to enhance spectral peaks.

As an alternate, if a signal is convolved with its folded version new poles would be

introduced, which should be related to the original system poles. An equivalent approach

is to achieve this e�ect by simply doing the autocorrelation operation on the signal. The

autocorrelation function (ACF) of x(n) is de�ned as
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rxx(m) = x(n) ∗ x(−n)

= E[x(n)x(n+m)]. (3.14)

Here E[.] denotes the expectation operator.

As, shown in the previous chapter, according to (3.14) and (3.8), the z transform of

rxx(n) can be expressed as

Rxx(e
jω) = Rhh(e

jω)×Ruu(e
jω), (3.15)

where Rhh(e
jω) and Ruu(e

jω) are the frequency domain representations of rhh(n) and

ruu(n), the ACFs corresponding to h(n) and u(n), respectively. According to the de�nition

(3.14), Rhh(e
jω) can be written as

Rhh(e
jω) = H(ejω)×H(e−jω). (3.16)

Using (3.2), interms of poles Rhh(e
jω) can be expressed as

Rhh(e
jω) =

C1∏P
i=1(1− pie−jω)(1− p∗i ejω)

. (3.17)

Here for each pole pi = rie
jθ, there exists a pole 1/p∗i which is placed at conjugate

reciprocal locations. From (3.17) it is clearly seen that total number of poles in Rhh(e
jω)

is 2P , which is twice as the number of poles in H(ejω). Due to the autocorrelation

operation new P poles are introduced in Rhh(e
jω) which are conjugate reciprocal to the

original P poles of H(ejω), i.e. the new poles are located at the original pole angles as

expected.

Using (3.12) and (3.14), the ACF of noisy speech y(n) can be expressed as

ryy(n) = rxx(n) + rww(n). (3.18)
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Figure 3.1: E�ect of noise in the autocorrelation domain: plot of di�erent autocorrelation
functions (a)rxx(n), (b) ryy(n), (c) rww(n), (d) rvv(n), (e)rxv(n) and (f) rvx(n)

where,

rww(n) = rvv(n) + rvx(n) + rxv(n). (3.19)

Here rvv(n) is the ACF of noise v(n)and rvx(n) and rxv(n)are the cross correlation terms.

Since v(n) is uncorrelated with x(n), it is expected that the values of the cross-correlation

terms, in comparison to that of rxx(n),will be negligible. On the other hand, the ACF of

the AWGN v(n) generally exhibits a peak at the zero lag and the values at all other lags

should be very small and ideally should be zero.

In Figs. 3.1(a)-3.1(f), di�erent ACFs, namely rxx(n), ryy(n), rww(n), rvv(n), rxv(n)

and rvx(n) are plotted at SNR= −5 dB. From Figs. 3.1(e) and 3.1(f), it can be observed

that the values of the cross correlation terms are very small as expected. As seen in

Fig. 3.1(d), rvv(n) although exhibits very large peak at zero lag, nonzero small values
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exist at all other lags because of the �nite data length. It is also observed in Fig. 3.1(c)

that rww(n) exhibits the maximum value at the zero lag and the values at other lags are

comparatively very small. From these �gures, it can be concluded that in comparison

to the e�ect of v(n) on x(n) as shown in Fig. 2.4, the e�ect of rww(n) on rxx(n) is

signi�cantly reduced because of the autocorrelation operation.

3.1.4 E�ect of Double Autocorrelation

Realizing the e�ect of spectral peak strengthening and reduction of noise due to auto-

correlation as described in the previous section, we propose to generate more poles at

the location of the original poles to further strengthen the spectral peaks. In view of

achieving this objective, the ACF operation can be repeated, which not only strengthens

the dominant peaks but also preserves pole locations. Performing further autocorrelation

operation on an ACF of a noise corrupted speech signal will imitate duplication of poles

at the original locations of the system. Hence, the resulting double correlated signal is

expected to exhibit more noise immunity and in its spectrum, even under heavy noisy

condition, the formant peaks will be signi�cantly enhanced. Hence, use of the spectrum

corresponding to the double correlated signal, instead of that corresponding to the noisy

signal, would be much convenient for formant estimation. According to the de�nition of

the ACF given in (3.14), the ACF of rxx(m), namely the repeated ACF of x(n) can be

expressed as

ρxx(m) = rxx(m) ∗ rxx(−m). (3.20)

Transferring (3.20) into z domain yields the following,
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Pxx(e
jω) = Rxx(e

jω)×Rxx(e
−jω)

= Rhh(e
jω)×Rhh(e

−jω)×Ruu(e
jω)×Ruu(e

−jω)

= Phh(e
jω)× Puu(ejω), (3.21)

where Phh(e
jω) and Puu(e

jω) are the frequency domain representations of ρhh(n) and

ρuu(n), the ACFs corresponding to rhh(n) and ruu(n), respectively.

Using (3.2) and (3.17) interms of poles Phh(e
jω) can be expressed as

Phh(e
jω) =

C1∏2P
i=1{(1− pie−jω)(1− p∗i ejω)}

=
C1∏P

i=1{(1− pie−jω)(1− p∗i ejω)}2
. (3.22)

Here for each pole pi = rie
jθ, there exists a pole 1/p∗i which is placed at conjugate

reciprocal locations. From (3.22) it is clearly seen that total number of poles in Phh(e
jω)

is 4P , which is twice as the number of poles in Rhh(e
jω). Due to the autocorrelation

operation new 2P poles are introduced in Phh(e
jω) which are conjugate reciprocal to the

original 2P poles of Rhh(e
jω). Hence, new poles are located at the original pole angles

as expected and for each original pole location of Rhh(e
jω), both inside and outside unit

circle, in Phh(e
jω) there exists two poles.

In order to demonstrate the e�ect of double autocorrelation operation on system

poles, in Fig. 3.2 another all pole system is shown having all six pole pairs of the system

considered in Fig. 2.7 along with their complex conjugate poles. From the �gure it

is seen that at each angular position of the original poles, one new pole is generated

both inside and outside the unit circle. Obviously, with the increase in number of poles

at a particular angular position, the spectral energy corresponding to that particular

frequency will be signi�cantly increased. Especially in the presence of noise this can

help in �nding out the formant peaks in spite of the presence of several unwanted noise

peaks. In order to present the e�ect of spectral peak strengthening, in Fig. 3.3 spectra

corresponding to the synthetic speech x(n), its ACF rsynx(m), and ORACFρsynx(m) are

64



−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2

2

2

2

2

2

2

2

2

2

2

Real Part

I
m

a
g
i
n
a
r
y
 P

a
r
t

Figure 3.2: Pole locations of ORACF
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Figure 3.3: Magnitude Spectra of (a) x(n), (b) ACF of x(n) and (c) ORACF x(n) for
the synthetic signal used in Fig. 2.3 all at SNR = −5dB.
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shown at SNR = −5dB. It is to be mentioned that the synthetic speech considered here

is the one that is used in Fig. 2.3. From the �gure it is quite clear that ORACF much

more noise robust not only than the noisy signal x(n) but also from its ACF rsynx(m).

Moreover, ORACF shows lesss spurious peaks than ACF

At this point if only the causal part of the ACF signal i.e. the single sided ACF

(SSACF) is considered, the dominant peaks would become more distinct [34]. Since our

objective is to handle the severe noisy condition, the use of SSACF would be a better

choice. Following (2.20) for the SSACF of x(n), namely r+xx(m), the ORSSACF of x(n),

namely ρ+xx(m) can be obtained from the double sided ACF (DSACF) as

ρ+xx(m) =


ρxx(m) , m > 0

0.5ρxx(m) , m = 0

0 , m < 0

(3.23)

Since the DSACF is symmetric about the zero lag (m = 0), it can be computed using

(3.20). The fourier transform of ρ+xx(m) is a complex spectrum P+
xx(e

jω) and its spectral

envelope is de�ned as

E2(ejω) = |P+
xx(e

jω)|

It can be shown that due to the large dynamic range of speech spectra, the envelope of the

ORSSACF spectrum, P+
xx(e

jω) enhances the highest power frequency bands with respect

to the spectrum of ρxx(m), namely Pxx(e
jω), just like the SSACF spectrum R+

xx(e
jω)

enhances the highest power frequency bands with respect to Pxx(e
jω) [41]. Consequently,

the noise components lying outside the enhanced frequency bands are largely attenuated

in E2(ejω) with respect to Pxx(e
jω), and thus use of the envelope of P+

xx(e
jω) is more

robust to broadband noise than using Pxx(e
jω). As shown in the previous chapter, the

SSACF and the original signal x(n) have the same poles[34], [35]. SSAC sequence only

has the causal part of the double sided sequence and doesnot include the poles outside the

unit circle. Similarly, ORSSAC sequence has only the causal part of the repeated ACF
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Figure 3.4: Pole locations of ORSSACF

sequence and thus it should include only the poles inside the unit circle. Hence, following

(3.22) in terms of poles the frequency domain representation of the transfer function in

relation to ORSSAC sequence is given below,

P+
hh(e

jω) =
Ghh∏2P

i=1(1− pie−jω)
=

Ghh∏P
i=1{(1− pie−jω)(1− p∗i e−jω)}2

, (3.24)

It is to be noted that as P+
hh(z) has 2P poles all inside the unit circle, it hasP complex

conjugate pole pairs in P/2 locations. Thus in each pole locations it has two poles.

In Fig. 3.4 pole locations of a ORSSAC sequence is demonstrated where in each of

the original pole locations two poles are found and there are no poles outside the unit

circle which indicates the system is causal and stable. Obviously, with the increase in

number of poles at a particular angular position, the spectral energy corresponding to that

particular frequency will be signi�cantly increased. Now, properties of ORSSACF like
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Figure 3.5: Magnitude Spectra of (a) ORACF, (b) ORSSACF of x(n) for the synthetic
signal used in Fig. 2.3 at noiseless conditions and SNR= −5 dB.
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noise robustness and pole preservation, suggest that AR parameters of the speech signal

can be more reliably estimated from the ORSSACF. The robustness of the ORSSACF to

additive white noise at SNR=0 dB is illustrated in Fig. 3.5. As can be seen from this

�gure that the envelope of the squared magnitude spectrum of the ORSSACF shows a

prominent �rst formant, and the whole curve is more robust to additive white noise in

comparison to that obtained by using the once repeated ACF (ORACF).

Using (3.21) it can be shown that in time domain similar to (3.20), the ORSSACF of

x(n), can be expressed as the convolution between ρ+hh(m) and ρ+uu(m), which are single

sided autocorrelation sequences generated from rhh(m) and ruu(m), respectively within

the limit 0 ≤ m < T , where T is the time period of the impulse train u(n). This relation

is expressed in the following manner

ρ+xx(m) = ρ+hh(m) ∗ ρ+uu(m). 0 ≤ m < T (3.25)

Here, ρ+uu(m) is a periodic sequence which has the same priodicity as u(n).From (3.25) it

is obvious that transferring to the cepstral domain can provide the opportunity of source

signal separation using the property of homomorphic deconvolution. In cepstral domain,

3.25 can be written as

cρ+xx(m) = cρ+hh
(m) + cρ+uu(m), (3.26)

where, cρ+xx(m), cρ+hh
(m) andcρ+uu(m) are the real cepstra of ρ+xx(m),ρ+hh(m) and ρ+uu(m) .

In Fig. 3.6 comparison of ch(n) and cx(n) and in Fig. 3.7 cρ+xx(m) and cρ+hh(m) of a

signal x(n) constructed from the system in Fig. 2.1is shown. From these two �gures it

is observed that cρ+xx(m) follows cρ+hh(m) within 0 < m < T in a much clearer manner than

ch(n) follows cx(n) and thus 3.26 can be approximated as

cρ+xx(m) ≈ cρ+hh
(m), (3.27)

Using (3.24), the complex cepstrum corresponding to ρ+hh(m) can be repesented in the

same manner of (2.25) and (2.26) as
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Figure 3.6: Comparison of ch(n) and cx(n)
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cρ+hh
(m) = F−1[ln(P+

hh(e
jω))]

= F−1[
2P∑
i=1

∞∑
n=1

pni
n
e−jωn + lnG2]

=
2P∑
i=1

pmi
m
,m > 0. (3.28)

From this relation it is obvious that the cepstrum of the ORSSACF is directly related to

the system poles. But, as is seen from (3.28), cρ+hh
(m) decay rapidly with m, which makes

it di�cult to estimate the system poles from it. In order to overcome this problem, an

easy-to-handle ramp cepstrum [26] is proposed as

µh(m) = mcρ+hh
(m) =

2P∑
i=1

pmi ,m > 0 (3.29)

According to (3.27) the ramp cepstrum corresponding to ρ+xx(m), namely µx(m) = mcρ+xx(m)

can be expressed as

µx(m) ≈ µh(m) =
2P∑
i=1

pmi , 0 < m < T. (3.30)

In case of noisy signals further application of ACF on the noise corrupted signal ryy(n)

produces ρyy(n) which can be expressed as

ρyy(n) = ρxx(n) + ρc(n)

ρc(n) = ρww(n) + ρwx(n) (3.31)

where ρxx(n) and ρww(n)are the ACF of rxx(n) and rww(n) and ρxw(n) and ρwx(n) are

cross correlation terms. It is expected that the e�ect of ρc(n) on ρxx(n) is very negligible,

as there exists very little correlation between rxx(n) and rww(n), and rww(n) is quite

insigni�cant at points other than the zero lag.

In Figs. 3.8(a)-(c), the DACFs ρyy(n) ,ρxx(n),ρc(n) , are shown. It is clearly observed

that the values of ρc(n) are extremely small at all lags except the zero lag in comparison

to that of ρxx(n) as expected. From these �gures, it can be concluded that in comparison
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to the e�ect of rww(n) on rxx(n) as shown in Fig. 2.11, the e�ect of ρc(n) on ρxx(n)

is signi�cantly reduced because of the repeated autocorrelation operation. Now, let us

consider the cepstral coe�cients of ρyy(n) which can be expressed as

cρyy(n) = F−1{ln|Pxx(ejω)|}+ F−1{ln(1 +
|PC(ejω)|
|Pxx(ejω)|

)}

= cρxx(n) + cρc(n). (3.32)

Here, cρyy(n) is the cepstrum of ρyy(n), cρxx(n) is the cepstrum of ρxx(n), cρc(n) is

the cepstrum of ρc(n) . In time domain, the e�ect of ρc(n) on ρxx(n) is smaller than the

e�ect of rww(n) on rxx(n) , because for lags greater than zero the energy ratio of ρc(n) to

ρxx(n) is smaller than the energy ratio of rww(n) to rxx(n). Thus alike the previous case

of single autocorrelation, according to Parseval's theorem, in frequency domain the e�ect

of PC(ejω) on Pxx(e
jω) in 3.32 is smaller than the e�ect of Rww(ejω) on Rxx(e

jω) shown

in the previous chapter. In this case, 3.32 can be rewritten as

cρyy(n) ≈ cρxx(n). (3.33)

This relation holds true also for the cepstrum computed using the ORSSACF, which as

stated earlier provides more noise robustness. Hence, the cepstrum of the ORSSACF of

the noisy signal can be rewritten as

cρ+yy(n) ≈ cρ+xx(n). (3.34)

Corresponding relationship in ramp cepstral domain as per (3.29) can be written as

µy(m) ≈ µx(m) = 0.5
2P∑
k=1

pmk ,m > 0. (3.35)

Here, µy(m) = mcρ+yy(m) is the ramp cepstrum of ρ+yy(m). Hence, it is expected that

given noisy speech, if ramp cepstrum of its ORSSAC sequence is computed, depending

on the level of noise, it may exhibit more noise immunity in comparison to time domain
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Figure 3.9: Spectrum of the noisy and noiseless signal as used in 2.2 at SNR = −5dB

analysis.

As from (3.30) it is shown that µh(m) is directly related to system poles, the corre-

sponding frequency domain representation is given by

µH(ejω) =
2P∑
i=1

Ghh

(1− pie−jω)
, (3.36)

where µH(ejω) is the Fourier transform of µh(m), Ghh is a gain factor and pi is accompa-

nied by its complex conjugate pole p∗i . As seen from (3.36) the system corresponding to

the ORSSACF of h(n), namely P+
hh(e

jω), has P pairs of complex conjugate poles.

Based on (3.35) and (3.36) it is expected that in noisy environment it is advantageous

to use the spectrum of µy(m), within 0 < m < T , which exhibits more noise robustness

in comparison to ρyy(m) and can be approximated as

µY (ejω) ≈ µH(ejω), (3.37)

where µY (ejω) is the Fourier transform of µy(m), which can be computed from ρ+yy(m) in

the following manner

µY (ejω) = F [m× F−1{ln|F [ρ+yy(m)]|}] (3.38)

Here, F [.] denotes Fourier transform.

In Fig. 3.9, for the natural voiced speech /eh/ as shown in Fig. 2.2, a comparison
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between the noiseless and noisy spectra at SNR = −5dB is shown. In Fig. 3.10, spectrum

of the ORACF of the noisy signal presented in Fig. 3.9, is shown and in Fig. 3.11, the

spectrum of the ramp cepstrum of the ORSSACF of the noisy signal is shown. From these

�gures it is evident that the spectrum of the ramp cepstrum of the ORSSACF retains the

dominat peaks of the origianl signal and exhibits less spurious peaks than the spectrum

of the ORACF. Thus spectrum of the ramp cepstrum of the ORSSACF can be used as a

model in a spectral domain model matching scheme for noise robust formant estimation.

3.2 Model matching

As given by (3.2), the transfer function of the VT system if modeled as an AR(P )

system, one can consider it as a cascade of P/2 blocks where each block consists of a pair

of complex conjugate poles. From Fig. 2.15 of previous chapter where the magnitude

response of an AR(6) system with three complex conjugate poles is shown along with

the magnitude responses of the three individual pole pairs, it is clearly observed that

the response of the AR system exhibits three prominent peaks corresponding to the

three formants each of which is related to a particular pole pair. Considering the vocal

tract as an AR system, a pair of complex conjugate poles is responsible for generating

a dominant peak in the spectral domain. Although the e�ect of other pole pairs, unless

otherwise located at a very close vicinity, may enhance the spectral level, dominance of

a particular formant peak is mostly because of the pole pair located in that particular

formant frequency. As, for real life speech applications the �rst three formants are mostly

considered, taking only the �rst three formants into consideration alike previous chapter,

the cascaded spectrum representation of (3.2) can be written as

H(ejω) = Ci∏3
i=1(1−pie−jω)(1−p∗i e−jω)

= H1(e
jω)H2(e

jω)H3(e
jω)

(3.39)

Hence, the ramp cepstrum corresponding to the ORSSACF of (3.39) can be written as

follows

78



µh(m) = µh1(m) + µh2(m) + µh3(m) (3.40)

According to (3.36) it can be shown that the spectral domain representation of 3.40

is obtained as

µH(ejω) = F [µh(m)], m > 0 (3.41)

= µH1(e
jω) + µH2(e

jω) + µH3(e
jω)

The �rst formant peak is prominent in the spectrum of ramp cepstrum of ORSSACF

presented in Fig. 2.14, indicating that the e�ect of µH2(e
jω) and µH3(e

jω) are negligible on

µH1(e
jω). Using this property, it can be assumed that the output response closely match

µH1(e
jω) around the �rst formant peak. Thus instead of conventional peak picking, in

this chapter, the task of formant estimation is carried out through spectral model �tting,

which ensures that both the frequency and bandwidth of formant peaks are matched.

However, in noisy environments, presence of spurious peaks may cause di�culties in

identi�cation of formant peaks even in the case of band limited signals. As discussed in the

previous section, the autocorrelation operation can reduce the e�ect of noise. Moreover,

performing the ramp cepstrum operation on the ORSSAC sequence will de�nitely exhibit

signi�cant noise reduction. In order to identify the formant peaks, especially under

noisy condition, one possibility is to consider a transfer function which can produce an

impulse response that closely matches the ramp cepstrum of the ORSSACF of the most

prominent subsystem whose frequency domain representation is µH1(e
jω). By limiting the

comparison to only the zone where only the �rst formant frequency should be present, the

spectrum corresponding to that transfer function can then be used in a spectral matching

technique along with the spectrum obtained from the ramp cepstrum of ORSSACF of the

noise corrupted signal. In this case, the transfer function of the subsystem responsible

for the spectrum of the ramp cepstrum of the ORSSACF around the �rst formant peak

as per (2.35) can be represented as
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µH1(e
jω) =

C1

{(1− p1e−jω)(1− p∗1e−jω)}
, (3.42)

where C1 = 1−Re[p1]e−jω.

As, in the previous section a direct relationship between µY (ejω) and µH(ejω) is de-

veloped, (3.42) can be used to derive a model for the ramp cepstrum of the ORSSACF

of a noisy sequence for the �rst formant as follows

µ1
model(e

jω) =
C1

{(1− p1e−jω)(1− p∗1e−jω)}
, (3.43)

where µ1
model(e

jω) is the representation for the �rst band.

In the proposed formant estimation method, a spectral model corresponding to the

�rst formant zone of the spectrum of the ramp cepstrum of ORSSACF of the speech sig-

nal is introduced, which is utilized in a model matching technique to �nd out the model

parameters that in turn will provide the �rst formant frequency. In what follows the

proposed approach of model matching will be elaborated in detail where each formant

will be estimated once at a time. In the estimation of each formant, one such model cor-

responding to that speci�c formant is required. Similar to (3.43) for the �rst formant, for

estimating each formant one such model is required and the i-th model can be represented

as

µimodel(e
jω) = Ci

{(1−pie−jω)(1−p∗i e−jω)} ,

pi = rie
jθi , p∗i = rie

−jθi

(3.44)

The spectrum µiY (ejω) of the ramp cepstrum of the ORSSACF of the observed noisy signal

y(n) is used in conjunction with the proposed model µimodel(e
jω) to form an objective

function and for the �rst formant with i = 1 based on the absolute di�erence of these

spectra, namely
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eimin(rj, θj) =

min

rl < ri < rh

θl < θi < θh

ωhc∑
ω=ωlc

(
|µimodel(ejω)| − |µiy(ejω)|

)
(3.45)

Note that here the superscript i is introduced to control the step by step algorithm.

The algorithm for the �rst formant where i = 1, is given below in brief.

1. From given noisy speech y(n) computing µiY (ejω) using (2.37)

2. Generating µimodel(e
jω) using the model of (3.44)

3. Minimizing the objective function in (3.45) within a restricted frequency range ωlc

to ωhc which depends on the range of each formant zone.

One may utilize the−3dB points on the lower and higher sides of the peak in the spectrum

of the model to extract ωlc and ωhc. Within that speci�ed range ωlc ≤ ω ≤ ωhc, the

optimum values of the two variables ri and θi are obtained at the minimum of absolute

di�erences. Based on the fundamental knowledge of traditional range of formants, one

may restrict the search range for the two variables i.e., rl ≤ r ≤ rh and θl ≤ θ ≤ θh or

adopt a coarse and �ne search approach [36]. Formant frequencies are estimated from

the pole angle θj that produces the best match between the spectra using (3.45) .

Once the �rst formant frequency F1 is obtained, (3.44) is utilized to estimate the

second formant frequency F2. µiY (ejω) can be written as the sum of µ1
Y (ejω), µ2

Y (ejω)

and µ3
Y (ejω) alike (3.41). From the magnitude spectrum of µiY (ejω) the estimated model

spectrum µ1
Y (ejω) is subtracted such that the resulting spectrum closely resembles the

sum of µ2
Y (ejω) and µ3

Y (ejω). Hence µiY (ejω) in general for estimating second and third

formant can be expressed as

µiY (ejω) = µi−1Y (ejω)− µi−1model(e
jω), i > 1 (3.46)

Then similar to the matching in the �rst formant zone, matching is performed in the

second formant zone and F2 is estimated. Then from the magnitude spectrum of µ2
y(e

jω)
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the estimated model spectrum µ2
model(e

jω) is subtracted to obtain µ3
y(e

jω). According to

the simpli�ed modeling of the vocal tract presented above, µ3
y(e

jω) should closely match

with µ3
model(e

jω), leading to a similar approach as described in (3.44) and (3.45) to obtain

F3.

3.2.1 Formant Based Vowel Recognition

After estimating formants in this manner, in the proposed scheme they are employed

in vowel recognition as features along with the commonly used mel frequency cepstral

coe�cients (MFCC) coe�cients. Linear discriminant analysis (LDA) based classi�er is

used to accomplish this task. For our proposed scheme, a frame by frame classi�cation

method is used, which o�ers vowel recognition results for each voiced frame independently.

The classi�er classi�es the data into di�erent groups generally, depending on the

signi�cant characteristics of the group members. The quality of a classi�er depends on its

ability to provide the compactness among the member within a cluster and the separation

between the members of di�erent clusters in terms of feature characteristics. The task

of recognizer is to identify the class label of a test sample utilizing the classi�ed data.

In a feature based scheme, classi�cation is performed utilizing the extracted features of

the data, instead of directly employing the data themselves. In the proposed method,

the LDA is used to classify the vowel among the di�erent classes (in our case, vowel)

available. In LDA, a linear projection is determined that maximizes a ratio between the

signal, represented by the projected inter-cluster distance and the noise, represented by

the projected intra-cluster variance. Here the objective function is based on determining

a projection direction w to maximize the Fisher's discriminant de�ned as

J(w) =
wTSbw

wTSww
(3.47)

where Sw and Sb are within- and between-class scatter matrices, respectively [37].
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3.3 Results and Simulation

In order to evaluate the recognition performance of the proposed methods, numerous

experiments have been conducted on the TIMIT acoustic-phonetic continuous speech

corpus, which has jointly been developed by Massachusetts Institute of Technology (MIT),

Stanford Research Institute (SRI) and Texas Instruments (TI) [38]. The TIMIT database

contains a large collection of sentences uttered by both male and female English speakers

using various dialects. A total of 6300 sentences, with 10 sentences spoken by each

of the speakers are present on the database. Voiced and unvoiced portions of speech

are clearly marked on accompanying phone �les. However, as TIMIT does not contain

reference values of formants, to compare estimated results, the most commonly used

formant database is chosen, where formant frequencies are estimated based on vocal

tract resonances (VTR) with manual correction [39]. The formant estimates reported

in [39] are taken as ground truth and the estimation performance of di�erent methods is

evaluated at di�erent levels of signal to noise ratios (SNR). This VTR subset of TIMIT

database contains 376 sentences across the training set, representing 173 speakers. These

sentences contain 18 voiced phonemes, out of which, the diphthongs have been ignored,

and 11 phonemes are considered. A total of 2726 utterances of phonemes are used from

the VTR subset, out of which 1583 are from male and 1143 are from female speakers,

have been analysed. In VTR database, formant estimates are reported for every 10 ms

interval. However, vowel duration is generally much larger than 10 ms. In the frame by

frame formant analysis, when the size of analysis frame is larger than 10 ms, the estimated

formants are then compared with the average VTR formant values obtained over the

di�erent 10 ms frames within the duration of that formant under investigation. For

the purpose of performance comparison, �rst the most widely used LPC based formant

estimation method [40] is chosen, where the order of the LPC is chosen as 12. Apart

from the LPC method, a state of the art adaptive �lter bank (AFB) method is also

chosen. In the AFB method, formant estimation is carried out in sample by sample

basis, and for the purpose of comparison, average estimated formant values over a period

is considered [23].
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Table 3.1: Performance comparison in terms of mean error(%) for synthetic speech

Vowels
5dB −5dB

Proposed LPC AFB Proposed LPC AFB

/a/

F1 3.58 20.24 46.90 3.14 20.46 49.77

F2 9.45 65.23 32.58 7.75 113.79 30.99

F3 16.82 17.80 8.45 4.58 34.02 9.84

/o/

F1 12.44 49.53 128.07 15.10 78.29 18.29

F2 3.21 138.88 20.42 26.04 133.29 46.61

F3 14.85 39.93 9.56 5.38 36.28 12.53

/u/

F1 12.31 72.96 109.00 13.78 98.29 12.98

F2 4.32 116.33 14.62 20.30 121.92 33.72

F3 13.06 52.31 11.40 2.91 40.60 13.74

In the proposed model �tting scheme, the range of the model parameters are set

according to the general behavior of the vocal tract. The possible range of the parameter

r is changed within the limit 0.8 to 0.99, which covers even a very rapidly decaying

impulse for the purpose of our simulation. The search range for θ is set according to the

determined formant band. Search resolutions for r and θ are chosen as4r = 0.01 and

4θ = 0.001π, respectively. In our experiments in order to obtain a noisy signal, noise

sequence of a particular SNR is added with the clean (noise-free) signal. Noisy signals

are generated according to 3.12, where the noise variance σv is appropriately determined

according to a speci�ed level of SNR de�ned as

SNR = 10log10

∑N−1
n=0 x(n)2∑N−1
n=0 v(n)2

(3.48)

At �rst results for three synthetic vowels /a/, /o/ and /u/ are presented in Table 3.1.

Vowels with duration of 80 ms are synthesized using the Klatt synthesizer considering

the pitch values of 220 Hz . Estimation eroor for the �rst three formants are taken into

consideration after performing estimation for 10 independent trials. The estimatin error

is shown for the three synthesized vowels a SNRs of 5dB and−5dB for both male and

female sounds, respectively. It is clearly observed that the proposed method is able to

reduce estimation error signi�cantly in comparison to the other methods, even with an
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increase in the level of background noise.

Table 3.2: Performance comparison in terms of mean error(%) for male speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 16.33 30.88 30.53 16.37 17.74 26.48

/aa/ F2 13.10 36.42 82.19 9.38 21.87 45.44

F3 20.06 15.47 43.35 11.15 17.07 39.80

F1 16.07 24.12 31.64 15.43 16.31 24.65

/ah/ F2 9.62 28.88 57.43 9.16 24.41 35.57

F3 16.90 13.09 39.21 11.11 11.61 37.72

F1 20.20 35.49 22.63 17.14 37.77 19.72

/ow/ F2 15.66 26.03 47.20 11.65 24.65 41.67

F3 18.02 14.20 36.68 11.86 14.00 37.74

F1 17.44 36.49 20.14 16.84 36.55 19.49

/uh/ F2 12.20 23.49 38.02 11.92 23.23 37.48

F3 11.90 13.89 37.24 11.50 13.86 37.33

F1 16.76 36.72 29.66 16.55 39.58 20.09

/uw/ F2 13.12 23.14 40.36 12.63 22.49 36.45

F3 14.09 14.53 39.48 11.37 14.50 38.25

The estimation errors obtained by the proposed method and that by the other two

methods are presented, under the in�uence of white gaussian noise conditions for male

and female speakers of TIMIT database, in Tables 3.2 and 3.3 . Here the estimation

error, the mean average deviation between the estimated formant frequency fE and the

reference formant frequency fR is de�ned as

E = |fE − fR
fR

| × 100% (3.49)

For Table 3.2and Table 3.3SNR levels 5dB and 0dB are considered. For each vowel,

the estimation errors for three di�erent formants, namely F1,F2 and F3 are listed. As

can be seen from the tables, the proposed method o�ers better performance than both

the12 order LPC and the AFB methods under presence of background noise. It can be

observed that the estimation error obtained by the proposed method in comparison to
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Table 3.3: Performance comparison in terms of mean error(%) for female speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 12.79 19.40 45.04 13.19 12.33 25.84

/aa/ F2 13.60 69.07 27.67 10.79 21.02 20.53

F3 13.62 30.96 12.77 12.53 20.79 11.95

F1 14.17 14.68 36.14 13.47 10.79 17.91

/ah/ F2 17.30 37.14 21.46 17.86 13.37 20.44

F3 12.01 23.14 15.75 10.90 19.79 12.44

F1 12.08 11.75 26.75 12.61 10.82 15.70

/ow/ F2 17.49 43.25 26.84 17.52 27.30 20.96

F3 12.69 18.63 15.23 11.02 17.84 10.00

F1 13.07 12.91 18.07 13.13 10.54 16.46

/uh/ F2 17.90 23.46 21.40 19.11 18.72 20.04

F3 11.63 18.93 10.40 10.27 18.40 9.54

F1 13.25 9.47 16.67 13.13 9.12 16.37

/uw/ F2 19.02 17.18 20.33 19.07 16.46 18.49

F3 11.96 18.12 9.82 10.76 18.19 9.42

that of the other methods is extremely lower in such severe noisy conditions.

In some cases it is found that the estimation accuracy decreases for the cases when

the two formants are very closely spaced, for example in case of vowel /ih/, though,

considering the level of noise, the estimation accuracy obtained by the proposed method

is quite acceptable. It is also observed that the estimation error relatively increases in

case of high pitch female speakers. It is clearly observed that the estimation performance

for the third formant, which is by nature very di�cult to estimate because of low spectral

magnitude, is signi�cantly enhanced by the proposed method. Hence, overall it can be

said that, the proposed method increases formant estimation performance.

In order to present the overall formant estimation errors over a large range of SNRs

considered in the experimental setup, in Fig. 3.12 the overall estimation error for all

vowels are shown. In a simiar way, in order to present the overall formant estimation

errors over a large range of SNRs considered in the experimental setup, in Fig. 3.13

the overall estimation error for all vowels are shown. It is observed that the formant
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Figure 3.12: Error comparison of all formants for di�erent methods
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Figure 3.13: Error comparison of all formants for di�erent methods for female
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estimation performance obtained by the three methods remains similar in case of high

level of SNR. However, with the decrease in SNR level, the estimation performance of

the other two methods deteriorates in comparison to that of the proposed method. The

performance of the proposed method remains quite consistent even in the low levels of

SNRs and level of performance degradation is not very signi�cant till −15 dB. However,

beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

In the proposed method formant estimation is carried out frame by frame with a

frame length of 512 samples and 10 ms overlap between the successive frames. As a

result for a vowel sound of duration of about 80 ms, 5 frames are analyzed. It is to be

noted that, because of the inherent characteristics of the fast Fourier transform (FFT)

operation, there exists an inherent error caused by the minimum width of the FFT bin.

For instance, when a 512 point FFT is performed on a speech frame with sampling

frequency of 16 kHz, the resulting FFT has a resolution of 15.6 Hz.

Table 3.4: Recognition Accuracy

Feature Vector

SNR MFCC + Proposed Method MFCC + LPC-12

-10 dB 66.67 60.00

-05 dB 85.00 80.00

05 dB 90.00 85.33

By incorporating the estimated formants in a feature vector along with traditional

MFCC, signi�cantly better vowel recognition accuracies are achieved compared to a fea-

ture vector consisting of MFCC and formants estimated by LPC, especially under the

in�uence of noise. By using these formants along with the traditional 12 MFCC coef-

�cients as a feature vector, vowel recognition was performed for the vowels /aa/, /ux/

and /ix/ from the TIMIT database. As formant ranges for male and female vowels vary

signi�cantly, they are considered as separate classes for this LDA based classi�cation op-

eration. There are 20 utterances for male and 20 utterances for female considered for each

vowel. Accuracies are calculated by leaving one sample out while training the classi�er
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Figure 3.14: A spectrogram of the sentence �His head �opped back� with tracked formant
by the proposed method at 0 dB SNR

and then testing the left out sample. This check is performed for all the samples in the

database, and it is found that the proposed feature vector o�ers better performance in

noisy conditions. The recognition accuracies for di�erent vowels is presented in Table 2.4.

It can be concluded from the table that the proposed noise robust formant estimation

method, when used for vowel recognition, increases the recognition accuracy for vowel

recognition systems under the in�uence of noise.

As seen from these analyses, the proposed method o�ers a better performance over

the LPC and AFB methods in noise free as well as in noisy conditions. In order to

demonstrate the e�ectiveness of our proposed method, a spectrogram of the sentence

�His head �opped back�, uttered by a male speaker taken from the TIMIT database is

shown in Fig. 3.14. The formant frequencies estimated at di�erent frames using the

proposed method uder SNR= 0 dB are shown over the spectrogram of clean speech. In

the tracking, only the estimated formants of the vowels are shown. It can be observed

from the �gure that the proposed method tracks the formant frequencies quite accurately

even in noisy speech.
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3.4 Conclusion

In this chapter, the advantageous e�ect of double autocorrelatioon in comparison to the

single autocorrelation is explored. It is found that the once repeated ACF is capable of

providing better noise reduction and spectral peak strengthening. It is shown that similar

to the previous chapter, in order to estimate the formants a residue based spectral domain

model matching scheme is employed where the proposed spectral model is �tted with the

spectrum of the spectrum of the ORSSACF of noisy speech. In order to reduce the

computational burden, in the proposed residue based spectral matching scheme �tting

operation is carried out for each formant separately restricting the search within a formant

zone. Formant estimation is performed considering di�erent vowels uttered. Estimation

performance of the proposed method is compared with the widely used LPC and AFB

formant estimation methods.
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Chapter 4

Spectral Domain Ramp Cepstrum

Model Using Band Limted Speech

Signals

The objective of this chapter is to develop a noise robust formant estimation scheme

considering the band limited signals. As shown in the previous chapter that the spectral

peak strengthening e�ect of the correlation or repeated correlation operation is more

prominent in the spectral region containing dominant poles. Hence, in this chapter,

the spectral models are developed considering band-limited signals where the bands are

chosen in such a manner that in each band mainly the formant peak dominates. Spectral

models of RC of ORSSACF are derived for the band limited signal. However, instead of

the residue based iterative spectral model �tting appraoch used in the previous chapter a

direct spectral error minimization scheme is used to determine the model parameters. It

is shown that the proposed method can e�ciently tackle the adverse e�ect of observation

noise and provide an accurate estimate of formant frequencies of speech signals.
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4.1 Methodology

4.1.1 Background

As shown in previously, vocal tract can be assumed to be a causal, stable, linear time-

invariant and stationary autoregressive (AR) system, and thus a voiced speech signal

constructed from it can be characterized as

x(n) = −
P∑
k=1

akx(n− k) +Gu(n), (4.1)

where {ak} are the system parameters, G denotes the gain factor, P is the known system

order and u(n) represents the excitation to the system. The AR system transfer function

H(z), which in this case is the vocal tract transfer function can be expressed as

H(z) =
G

1 +
∑P

k=1 akz
−k

=
G∏P

k=1(1− pkz−1)
, (4.2)

where pk = rke
jωk denotes the k-th pole of the AR system with magnitude rk and angle

ωk. Formants are associated with the free resonances of the vocal tract system. In order

to model each formant, a pair of complex conjugate poles is required. In (4.2), each

formant corresponds to pk and it's conjugate. Thus, for a vocal tract system modeled

with P -th order AR system, there exists P/2 formants. Formant frequency (Fk) and

bandwidth (Bk) can be expressed in terms of pole parameters as [30]

Fk =
Fs
2π
ωk;Bk = −Fs

π
ln(rk), (4.3)

where Fs is the sampling frequency.

In the LPC based methods, the ACF of the given speech signal x(n) is used in the

Yule-Walker equations to obtain the AR parameters and thereby the poles of the vocal

tract system and from the estimated poles, formants are calculated. But in the presence

of observation noise, LPC based methods fail to provide an accurate estimate of the AR

parameters and thus exhibits poor formant estimation accuracy. Moreover, the e�ect of

pitch variation may cause signi�cant errors in the LPC based formant estimation. Hence,
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development of a formant estimation scheme, which can estimate the formants with a

higher accuracy even in the presence of severe background noise as well as handle the

e�ect of pitch variation is in great demand.

As introduced in the previous chapter, in order to reduce the e�ect of pitch from

the speech signal, cepstrum that o�ers the advantage of homo-morphic de-convolution

has been most commonly used. The principle of homomorphic deconvolution helps in

separating signals that have been combined via convolution and thus it become a very

important tool in di�erent speech processing applications, such as speech recognition.

The complex cepstrum of a signal h(n) is de�ned as [24]

chc(n) = F−1
{
ln(H(ejω))

}
, (4.4)

where F−1 {.} denotes the inverse Fourier transform and the spectrum of h(n) is given by

H(ejw). Considering the VT system as minimum phase, using (3.2) chc(n) is a sequence

that is real and causal. Recalling from the previous chapter,chc(n) can be expressed in

terms of poles as

chc(n) =
P∑
i=1

pni
n
, n > 0. (4.5)

On the other hand, the real cepstrum of h(n) is de�ned as

ch(n) = F−1
{
ln(|H(ejω)|)

}
. (4.6)

In order to avoid notational complexity, instead of denoting real cepstrum as chr(n),

simply ch(n) is used, i.e. an additional subscript `r' is not used hereafter. For n > 0, the

relation between complex and real cepstra is given by ch(n) = 0.5chc(n). Hereafter, alike

previous chapter, only real cepstrum shall be considered. In order to avoid logarithm of

negative values, in practical applications real cepstra is most commonly used. Here, for

real cepstrum (4.5) can be written as
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ch(n) = 0.5
P∑
i=1

pni
n
, n > 0. (4.7)

The speech signal x(n) given by (3.1) can be considered as a convolution sum between

h(n), the impulse response of the V.T. system and u(n), the excitation to the V.T. system

as follows

x(n) = h(n) ∗ u(n). (4.8)

Thus, one can write the corresponding cepstral representation of x(n) as

cx(n) = ch(n) + cu(n). (4.9)

Here, ch(n) is the cepstrum of h(n) , cu(n) is the cepstrum of the excitation u(n) and

H(ejω) and U(ejω) are frequency domain representations of h(n) and u(n). As peri-

odic impulse-train excitation is commonly considered to model the voiced sounds, here

a periodic impulse-train excitation {u(n)}N−1n=0 with period T is considered, which can be

expressed as

u(n) =
λ−1∑
k=0

δ(n− kT ), λ = dN/T e. (4.10)

Here, λ is the total number of impulses within the excitation. As introduced in the

previous chapter, based on (4.6), utilizing this advantage of homomorphic deconvolution,

cepstral domain system identi�cation methods have been proposed which deal with the

noise free environment . It is apparent from(4.5) and (4.9) that in order to extract the

system poles pi, from a given cx(n) one needs to extract ch(n). However, as stated in (4.9)

, ch(n) is mixed with cu(n) resulting cx(n). In case of periodic impulse train excitation,

it can be shown that cu(n) contributes to cx(n) at the origin and periodically after each

T interval. Thus, even in case of �nite data analysis, within the range 0 < n < T , the
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e�ect of cu(n) can be neglected, resulting

cx(n) = ch(n) = 0.5
P∑
i=1

pni
n
, 0 < n < T (4.11)

It indicates that the cepstral coe�cients corresponding to cx(n) can be considered similar

to that of ch(n) within the range 0 < n < T .

In the presence of additive white Gaussian noise (AWGN) v(n), the observed signal

y(n) can be expressed as

y(n) = x(n) + v(n), (4.12)

where v(n) is assumed to be zero mean stationary and independent of u(n). The cepstral

coe�cients of y(n) can then be expressed as

cy(n) = F−1{ln(|X(ejω)|)}+ F−1{ln(1 +
|V (ejω)|
|X(ejω)|

)}

= cx(n) + cw(n). (4.13)

cw(n) appears in the presence of noise and vanishes in its absence. As shown in the

previous chapter, at severe noise it is very di�cult to get an accurate estimate of cx(n)

from cy(n), since the cepstrum decomposition techniques are very sensitive to the noise

level. As a result, it is desirable to develop an algorithm that can reduce the e�ect of

noise on the signal, thereby reducing the e�ect of cw(n) on cy(n) and producing more

noise robust cepstral coe�cients. In this regard, we propose to investigate the e�ect of

increasing the number of poles on the formant location to enhance the strength of the

formant peaks.

In view of enhancing the spectral peaks corresponding to a particular frequency, one

possible approach would be to introduce new poles having that frequency. In particular,

if the new poles can be generated exactly at the same location of those original poles,

the spectral peak corresponding to that pole location will be signi�cantly enhanced. As

only the speech signal is available at hand and the VT transfer function can not be
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changed, it is not possible to place poles at designated places to enhance spectral peaks.

As an alternate, if a signal is convolved with its folded version new poles would be

introduced, which should be related to the original system poles. An equivalent approach

is to achieve this e�ect by simply doing the autocorrelation operation on the signal. The

autocorrelation function (ACF) of x(n) is de�ned as

rxx(m) = x(n) ∗ x(−n)

= E[x(n)x(n+m)]. (4.14)

Here E[.] denotes the expectation operator.

As, shown in the previous chapter, according to (4.14) and (3.8), the z transform of

rxx(n) can be expressed as

Rxx(e
jω) = Rhh(e

jω)×Ruu(e
jω), (4.15)

where Rhh(e
jω) and Ruu(e

jω) are the frequency domain representations of rhh(n) and

ruu(n), the ACFs corresponding to h(n) and u(n), respectively. According to the de�nition

(4.14), Rhh(e
jω) can be written as

Rhh(e
jω) = H(ejω)×H(e−jω). (4.16)

Using (3.2), interms of poles Rhh(e
jω) can be expressed as

Rhh(e
jω) =

C1∏P
i=1(1− pie−jω)(1− p∗i ejω)

. (4.17)

Here for each pole pi = rie
jθ, there exists a pole 1/p∗i which is placed at conjugate

reciprocal locations. From (4.17) it is clearly seen that total number of poles in Rhh(e
jω)

is 2P , which is twice as the number of poles in H(ejω). Due to the autocorrelation

operation new P poles are introduced in Rhh(e
jω) which are conjugate reciprocal to the

original P poles of H(ejω), i.e. the new poles are located at the original pole angles as
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expected.

Using (4.12) and (4.14), the ACF of noisy speech y(n) can be expressed as

ryy(n) = rxx(n) + rww(n). (4.18)

where,

rww(n) = rvv(n) + rvx(n) + rxv(n). (4.19)

Here rvv(n) is the ACF of noise v(n)and rvx(n) and rxv(n)are the cross correlation terms.

Since v(n) is uncorrelated with x(n), it is expected that the values of the cross-correlation

terms, in comparison to that of rxx(n),will be negligible. On the other hand, the ACF of

the AWGN v(n) generally exhibits a peak at the zero lag and the values at all other lags

should be very small and ideally should be zero.

4.1.2 Peak Enhancement By Repeated ACF

Realizing the e�ect of spectral peak strengthening and reduction of noise due to auto-

correlation as described in the previous section, we propose to generate more poles at

the location of the original poles to further strengthen the spectral peaks. In view of

achieving this objective, the ACF operation can be repeated, which not only strengthens

the dominant peaks but also preserves pole locations. Performing further autocorrelation

operation on an ACF of a noise corrupted speech signal will imitate duplication of poles

at the original locations of the system. Hence, the resulting double correlated signal is

expected to exhibit more noise immu-nity and in its spectrum, even under heavy noisy

condition, the formant peaks will be signi�cantly enhanced. Considering the same nat-

ural sound /eh/ as shown in Fig. 2.2, the spectral domain e�ect of repeated ACF on

this speech signal is shown in Fig.4.1. It is observed from this �gure that because of the

repeated ACF the formant peaks become enhanced in all the formant positions. The en-

hancement of the �rst formant is quite prominent in Fig. 4.1. However, for each ACF the

dominance of second and third formant peak reduces furter in comparison to the most

dominant �rst peak. Thus simply repeating the ACF would not completely solve the
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Figure 4.1: Comparison of signal spectra with ACF and RACF
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Figure 4.2: Spectrum of RACF of the signal considered in Fig. 4.1 at SNR = −5dB
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problem of estimating second and third formant erroneously in severe noisy environment.

In Fig. 4.2, spectrum of RACF of the signal considered in Fig. 4.1 at 0dB SNR,

where the magnitude is shown in log scale. From this Fig. it is clearly observed that in

comparison to the spectra corresponding to y(n), the �rst peak in the spectra correspond-

ing to ρyy(n) exhibits a extremely large peak in comparison to other peaks. One major

concern in double autocorrelation operation is that it makes the e�ect of a strong pole

more stronger shadowing the e�ect of relatively weak poles. This phenomenon is also

observed in Fig. 4.1 and in Fig. 4.2. In comparison to the increase in the �rst formant

peak, the spectral peaks corresponding to other formants remain very weak. This be-

comes a great problem in case of severe noise if spectral peak picking is used for formant

estimation. In that case, several spurious peaks may appear in the spectrum with magni-

tudes greater than the desired peaks. In view of overcoming this problem, one practical

solution is to divide the full band signal into a number of sub-bands. The sub-bands

should be formulated in such a way that each sub-band corresponds to approximately

one formant, in other words it should contain the e�ect of one dominant pole pair only.

Number of sub-bands to be made depends on the number of formants to be estimated.

Higher formants become increasingly weak due to their low energy concentration and the

tilt caused by the lip radiation. Thus, the �rst three formants are mostly considered for

real life applications. Unlike conventional formant analysis methods, in this paper, the

task of formant estimation is carried out on the band-limited speech signal instead of the

full-band signal.

4.1.3 Banding of the full-band signal

Performing autocorrelation on a speech segment signi�cantly increases the strength of

the most dominant peak with respect to other peaks, thus amplifying the e�ect of �rst

formant with respect to other formants on the spectrum of a voiced speech segment.

Although the autocorrelation operation can signi�cantly reduce the e�ect of noise on the

�rst formant peak, it obscures the second and third formant peaks. In order to overcome

this problem, a method of localized searching for each formant based on �ltered speech
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signal is proposed. It o�ers the advantage of dealing with a band limited speech signal

possessing only one dominant peak within a band. In this regard, a set of band-pass �lters

must be employed to extract the band-limited signal from the per-processed speech signal,

where each �lter corresponds to a conventional band of frequency for respective formants.

It is expected that the �lters utilized for the purpose of band-limiting exhibit sharp cut-

o�s and low pass-band ripples. The main advantage of dealing with a band-limited signal

for extracting a speci�c formant lying in a particular band is its robustness against the

interference of nearby formants and other spurious frequencies that may exhibit in the

presence of noise. The band-limited signal is obtained by applying band pass �lters that

are tuned to the �rst three formant frequency bands.The z-transform of the band-limited

signal xi(n) obtained by using the i-th �lter transfer function Bi(z) is given by

Xi(z) = X(z)Bi(z) (4.20)

In the proposed method, in order to obtain the sharp cuto� and low ripple while

keeping the �lter order low, instead of using a bandpass �lter, separate lowpass and

highpass �lters are employed. In view of designing the required bandpass �lter, highpass

and lowpass �lters are used in cascade. Di�erent types of �lters with varying �lter

orders are tested. It is found that the elliptic �lters with order 10 can provide the most

satisfactory �lter characteristics. In case of cascaded con�guration, the �lter transfer

function Bi(z) can be represented as

Bi(z) = Bih(z)Bil(z) (4.21)

where Bih(z) and Bil(z) correspond to the transfer function of the highpass and low-

pass �lters, respectively.

As mentioned previously, it is more insightful to investigate the e�ects of �ltering on

the impulse response of the vocal tract system instead of the speech signal for the purpose

of formant estimation. In that case, within a particular formant band, if the e�ect of

frequency peaks outside the band is neglected, one can assume that a pair of pole of the
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vocal tract system is mainly responsible for the frequency spectrum of a band-limited

signal. As a result, the spectrum corresponding to the bad-limited signal, denoted by

Xi(e
jω), will exhibit formant peaks at exactly the same location of the spectrum for

Hi(z) where it is assumed that the bandlimiting operation on H(z) with the i-the �lter

produces Hi(z). It is to be mentioned that the DACF operation which o�ers more peak-

strengthening e�ect in comparison to the SACF, is more capable of handling the severe

noisy condition. Thus before performing the autocorrelation operation on the speech

frame, it would be de�nitely advantageous to extract the band-limited signal containing

only the region that is directly associated with a single formant. However, formant

frequencies and bandwidths vary widely between di�erent phonemes, and across genders.

Therefore, the upper and lower cuto�s for the �lters have to be adjusted for frequency

domain characteristics of individual frames. First each formant band is selected as per

the conventional global formant band limits expected to be suitable for all voiced sounds

[1], which are typically broad frequency bands. Within such a wide band, the region

of interest for searching the formant could be a smaller zone containing higher spectral

energy. In the proposed method, instead of considering the broad bands, a spectral energy

based adaptive searching is carried out to determine such narrow bands, which are then

used in the model matching algorithm for formant estimation.

In this approach, problems arise due to overlapping formant zones. For instance, for

the phonemes uttered by female speakers, in case of /u/ the second formant is at around

950 Hz, and the third formant is at around 2600 Hz, while for /i/, the second formant

is at around 2800 Hz and the third formant is at around 3300 Hz. On the other hand,

for male /u/, the �rst three formants are located at around 400 Hz, 950 HZ and 2200

Hz. Therefore setting up a hard limit for formant boundaries is not a good approach,

rather an adaptive band limiting algorithm is required. The proposed adaptive band

selection algorithm consists of two major steps, namely, gender detection and correction

of false band selections. One major advantage of prior gender detection is that it greatly

reduces the complexity arising due to overlapping formant ranges. Even then, situations

may arise when no formants are present within the broad search area. Then the selected
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Figure 4.3: Response of a typical BPF used for �ltering devised from a cascaded combi-
nation of a low pass and a high pass �lter

high energy frequency zone eventually may not provide an estimate of the true formant.

Once the three high energy frequency zones are selected, an adaptive control algorithm

is developed to avoid false zone selection. Due to the natural spectral roll o�, spectral

energy around the formant decreases with the increase in frequency. In view of utilizing

such spectral energy property, the pre-emphasis operation is avoided. According to this

property, if the estimated third formant zone contains higher spectral energy compared

to that of the estimated second formant zone, the estimated second formant zone is

considered as a false estimation and therefore, the third formant zone is treated as the

new estimation for the second one. Then a search for the third formant zone is performed

in frequencies higher than the new second formant zone. This ensures that banding works

even under extreme cases.

Normally the �rst formant is the most dominant one, and therefore the e�ect of

banding is not very prominent. The banding is done with the help of one high pass

and one low pass �lter with sharp cut-o�s. The �lter response obtained by cascaded

combination of these two �lters is shown in Fig. 4.3. The �lter responses for the three

sub bands are shown in Fig 4.4. After applying this �lter to the /eh/ waveform whose

spectrum was presented on Fig. 4.1 the response of the three banded signals is shown in

Fig. 4.5. In Fig. 4.6 ACF of the three sub-band signals is shown and in Fig. 4.7 response

of these banded autocorrelation sequences are shown. Performing RACF on the subband
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Figure 4.4: Response of three band pass �lters used for the three formant bands
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Figure 4.5: Response of the three band limited signals
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Figure 4.6: ACF of the three band limited signals
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Figure 4.7: Response of the ACF of the three band limited signals
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Figure 4.8: RACF of the three band limited signals
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Figure 4.9: Response of the RACF of the three band limited signals
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signals, the signals in Fig. 4.8 are obtained whose spectra can be seen at Fig. 4.9.

After comparing Fig. 4.5 with Fig. 4.1, it can be seen that the banding process has

achieved its goal by removing the e�ect of dominant poles from the poles of the second

formant band. While in Fig. 4.1, the second formant peak is barely visible, in Fig. 4.5(b),

the second formant peak is dominant. This is also true for the third formant frequency

range, whose �ltered RACF spectrum is shown in Fig. 4.5(c). It is also seen that while for

the full band signal due to each ACF the domiance of the second and third formant peaks

were reduced, for the banded signals dominance of each banded signals are increased due

to ACF. Thus the goal of peak enhancement is fully achieved for banded signals which is

evident from Figs. 4.7 and 4.9. Here, due to ACF and RACF on the banded signals the

resultant spectra become smooth and spurious peaks become reduced in number.

4.1.4 Formulation of Proposed Model

After band limiting and performing DACF, formant estimation is performed by perform-

ing parameter extraction through matching a frequency domain model with the �ltered

DACF signal.

After performing the banding as described, it is assumed that there is only one dom-

inant complex pole pair in a sub-band. Following (4.2), the transfer function for each

sub-band can be written as,

Hi(e
jω) =

C ′′i∏2
k=1(1− pke−jω)

, (4.22)

Keeping the fact in mind that autocorrelation introduces new conjugate reciprocal

poles, transfer function of the two sided ACF for banded speech signal can be de�ned as

follows,

Ri
hh(e

jω) =
C ′i∏2

k=1(1− pke−jω)(1− p∗kejω)
, (4.23)

Here poles, conjugate reciprocal to the original poles are introduced due to autocor-

relation. The signal of (4.23) has both causal and anti-causal parts. Anti-causal parts
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are introduced due to the poles outside the unit circle. Equation (4.23) represents the

double sided ACF of the function in (4.22).

Following the previous chapter for a full band signal with P poles(P/2 conjugate pole

pairs), the transfer function for the once repeated ACF (ORACF) can be written as

Phh(e
jω) =

C∏2P
i=1{(1− pie−jω)(1− p∗i ejω)}

=
C∏P

i=1{(1− pie−jω)(1− p∗i ejω)}2
(4.24)

Here for each pole pi = rie
jθ, there exists a pole 1/p∗i which is placed at conjugate

reciprocal locations. From (3.22) it is clearly seen that total number of poles in Phh(e
jω)

is 4P , which is twice as the number of poles in Rhh(e
jω). Due to the autocorrelation

operation new 2P poles are introduced in Phh(e
jω) which are conjugate reciprocal to the

original 2P poles of Rhh(e
jω). Hence, new poles are located at the original pole angles

as expected and for each original pole location of Rhh(e
jω), both inside and outside unit

circle, in Phh(e
jω) there exists two poles.

Thus for a the subband signal in relation to (4.23), the transfer function of (4.24) can

be expressed as,

Phhi(e
jω) =

Ci∏2
k=1{(1− pke−jω)(1− p∗kejω)}2

, (4.25)

Here, two new pairs of poles are introduced both inside and outside of the unit circle. All

of these new pole pairs are reciprocal to original four pole pairs.

Previously it was shown that to deal only with the causal part of the signal if single

sided ACF (SSACF) from this banded once repeated correlation signal is considered the

dominant peaks become more distinct as in this case poles inside the unit circle are taken

into consideration only. The property of original pole retention and noise robustness of

SSAC sequence was described in [34]. Since our objective is to handle the severe noisy

condition, the use of SSACF would be a better choice. Thus, in order to consider only the

causal parts we should discard the poles outside the unit circle and the transfer function

for the ORSSACF can be modeled as,
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P+
hhi

(ejω) =
Ci∏2

k=1{(1− pke−jω)}2
, (4.26)

In (3.35) it was shown that within a speci�ed range the ramp cepstrum of the ORSSACF

of the noisy speech signal, µy(m) is approximately equal to µx(m) , the ramp cepstrum

of the ORSSACF of x(n), corresponding to the original AR system. This relation should

hold true for ORSSACF of a band limited signal also. Thus for the ORSSACF of a band

limited signal following (3.36) it can be written that

µiy(m) ≈ µxi(m) =
2∑

k=1

pmk ,m > 0. (4.27)

In (3.36) it can be found that µH(ejω) is directly related to system poles. Now, following

(4.27) and (3.37) of the previous chapter, where a relationship between the spectrum

of µy(m) and the spectrum of µh(m), the ramp cepstrum of the ORSSACF of h(n) is

established, a relation between the band limited spectra can be expressed as follows

µiY (ejω) = µHi
(ejω) =

2∑
k=1

Ghh

(1− pke−jω)
, (4.28)

where µiY (ejω) is the Fourier transform of the ramp cepstrum of the ORSSACF of the

banded noisy speech signal, µiy(m), µHi
(ejω) is the Fourier transform of µhi(m), the

transfer function for the ramp cepstrum of the ORSSACF of a banded signal, Ghh is the

gain factor and for i-th band p1 and p2 are a complex conjugate pole pair where the band

consists of two pair of poles such as these.

4.1.5 Proposed Model Fitting Approach

In the proposed formant estimation method, a spectral model corresponding to the spec-

trum of the ramp cepstrum of ORSSACF of the band limited speech signal is introduced,

which is utilized in a model matching technique to �nd out the model parameters that in

turn will provide the formant frequency corresponding to a band. The ramp cepstrum of

ORSSACF of each banded noisy speech frame yi(n) is computed and used in the proposed
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model matching technique.

Following (4.28) a spectral model for the ramp cepstrum of the ORSSACF of a ban-

dlimited noisy sequence can be derived as follows

µimodel(e
jω) =

2∑
k=1

Ghh

(1− pke−jω)
. (4.29)

pk = rke
jθk

The spectrum µiY (ejω) of the ramp cepstrum of the ORSSACF of the observed noisy

band limited signal yi(n) is used in conjunction with the proposed model µimodel(e
jω) to

form an objective function for the �rst formant zone based on the square of absolute

di�erence of these spectra, namely

emin(rj, θj) =

min

rl < ri < rh

θl < θi < θh

ωhc∑
ω=ωlc

(
|µimodel(ejω)| − |µiY (ejω)|

)
(4.30)

Minimization of the objective function is carried out within a restricted frequency

range ωlc to ωhc which depends on the range of the �rst formant zone. One may utilize

the −3dB points on the lower and higher sides of the peak in the spectrum of the model

to extract ωlc and ωhc. Within that speci�ed range ωlc ≤ ω ≤ ωhc, the optimum value

of the two variables ri and θi is obtained at the minimum square absolute di�erence.

Based on the fundamental knowledge of traditional range of formants, one may restrict

the search range for the two variables i.e., rl ≤ r ≤ rh and θl ≤ θ ≤ θh or adopt a coarse

and �ne search approach [36]. Formant frequencies are estimated from the pole angle θj

that produces the best match between the spectra using (4.30).

Starting from the �rst band to �nd the �rst formant F1, (4.30) is used in second and

third band to �nd out the formants correspoding to those bands, namely F2 and F3.

One major advantage of the proposed model �tting approach over the conventional

peak picking method lies in the fact that an entire formant band is taken into consider-
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ation instead of relying only on the magnitude of the peaks, which are extremely noise

sensitive. As a result the formant frequency that is chosen as the desired estimate should

provide the best match between the spectra within a formant band. This spectral match-

ing is very suitable especially when the level of noise is very severe and the formants are

very closely spaced.

4.1.6 Formant Based Vowel Recognition

After estimating formants in this manner, in the proposed scheme they are employed

in vowel recognition as features along with the commonly used mel frequency cepstral

coe�cients (MFCC) coe�cients. Linear discriminant analysis (LDA) based classi�er is

used to accomplish this task. For our proposed scheme, a frame by frame classi�cation

method is used, which o�ers vowel recognition results for each voiced frame independently.

The classi�er classi�es the data into di�erent groups generally, depending on the

signi�cant characteristics of the group members. The quality of a classi�er depends on its

ability to provide the compactness among the member within a cluster and the separation

between the members of di�erent clusters in terms of feature characteristics. The task

of recognizer is to identify the class label of a test sample utilizing the classi�ed data.

In a feature based scheme, classi�cation is performed utilizing the extracted features of

the data, instead of directly employing the data themselves. In the proposed method,

the LDA is used to classify the vowel among the di�erent classes (in our case, vowel)

available. In LDA, a linear projection is determined that maximizes a ratio between the

signal, represented by the projected inter-cluster distance and the noise, represented by

the projected intra-cluster variance. Here the objective function is based on determining

a projection direction w to maximize the Fisher's discriminant de�ned as

J(w) =
wTSbw

wTSww
(4.31)

where Sw and Sb are within- and between-class scatter matrices, respectively [37].
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4.2 Results and Simulation

In order to evaluate the recognition performance of the proposed methods, numerous

experiments have been conducted on the TIMIT acoustic-phonetic continuous speech

corpus, which has jointly been developed by Massachusetts Institute of Technology (MIT),

Stanford Research Institute (SRI) and Texas Instruments (TI) [38]. The TIMIT database

contains a large collection of sentences uttered by both male and female English speakers

using various dialects. A total of 6300 sentences, with 10 sentences spoken by each

of the speakers are present on the database. Voiced and unvoiced portions of speech

are clearly marked on accompanying phone �les. However, as TIMIT does not contain

reference values of formants, to compare estimated results, the most commonly used

formant database is chosen, where formant frequencies are estimated based on vocal

tract resonances (VTR) with manual correction [39]. The formant estimates reported

in [39] are taken as ground truth and the estimation performance of di�erent methods is

evaluated at di�erent levels of signal to noise ratios (SNR). This VTR subset of TIMIT

database contains 376 sentences across the training set, representing 173 speakers. These

sentences contain 18 voiced phonemes, out of which, the diphthongs have been ignored,

and 11 phonemes are considered. A total of 2726 utterances of phonemes are used from

the VTR subset, out of which 1583 are from male and 1143 are from female speakers,

have been analysed. In VTR database, formant estimates are reported for every 10 ms

interval. However, vowel duration is generally much larger than 10 ms. In the frame by

frame formant analysis, when the size of analysis frame is larger than 10 ms, the estimated

formants are then compared with the average VTR formant values obtained over the

di�erent 10 ms frames within the duration of that formant under investigation. For

the purpose of performance comparison, �rst the most widely used LPC based formant

estimation method [40] is chosen, where the order of the LPC is chosen as 12. Apart

from the LPC method, a state of the art adaptive �lter bank (AFB) method is also

chosen. In the AFB method, formant estimation is carried out in sample by sample

basis, and for the purpose of comparison, average estimated formant values over a period

is considered [23].
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Table 4.1: Performance comparison in terms of mean error(%) for synthetic speech

Vowels
5dB −5dB

Proposed LPC AFB Proposed LPC AFB

/a/

F1 4.04 20.24 46.90 9.93 20.46 49.77

F2 15.84 65.23 32.58 8.76 113.79 30.99

F3 7.33 17.80 8.45 8.90 34.02 9.84

/o/

F1 11.63 49.53 128.07 14.19 78.29 18.29

F2 4.85 138.88 20.42 19.14 133.29 46.61

F3 6.74 39.93 9.56 6.74 36.28 12.53

/u/

F1 10.59 72.96 109.00 17.16 98.29 12.98

F2 5.57 116.33 14.62 19.70 121.92 33.72

F3 4.44 52.31 11.40 4.78 40.60 13.74

In the proposed model �tting scheme, the range of the model parameters are set

according to the general behavior of the vocal tract. The possible range of the parameter

r is changed within the limit 0.8 to 0.99, which covers even a very rapidly decaying

impulse for the purpose of our simulation. The search range for θ is set according to the

determined formant band. Search resolutions for r and θ are chosen as4r = 0.01 and

4θ = 0.001π, respectively. In our experiments in order to obtain a noisy signal, noise

sequence of a particular SNR is added with the clean (noise-free) signal. Noisy signals

are generated according to 3.12, where the noise variance σv is appropriately determined

according to a speci�ed level of SNR de�ned as

SNR = 10log10

∑N−1
n=0 x(n)2∑N−1
n=0 v(n)2

(4.32)

At �rst results for three synthetic vowels /a/, /o/ and /u/ in the presence of white

Gaussian noise with SNR 5dB and −5dB are presented in Table 4.1 where the estimation

error, the mean average deviation between the estimated formant frequency fE and the

reference formant frequency fR is de�ned as

E = |fE − fR
fR

| × 100% (4.33)

It is observed that the proposed method o�ers far superior performance in the presence
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Table 4.2: Performance comparison in terms of mean error(%) for male speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 15.77 30.88 30.53 14.77 17.74 26.48

/aa/ F2 13.36 36.42 82.19 12.05 21.87 45.44

F3 17.38 15.47 43.35 13.17 17.07 39.80

F1 16.26 24.12 31.64 15.60 16.31 24.65

/ah/ F2 13.23 28.88 57.43 12.09 24.41 35.57

F3 14.39 13.09 39.21 10.82 11.61 37.72

F1 19.28 35.49 22.63 19.40 37.77 19.72

/ow/ F2 14.08 26.03 47.20 11.56 24.65 41.67

F3 15.60 14.20 36.68 12.08 14.00 37.74

F1 18.85 36.49 20.14 19.32 36.55 19.49

/uh/ F2 11.77 23.49 38.02 11.62 23.23 37.48

F3 11.11 13.89 37.24 10.81 13.86 37.33

F1 18.21 36.72 29.66 18.39 39.58 20.09

/uw/ F2 13.06 23.14 40.36 12.22 22.49 36.45

F3 12.54 14.53 39.48 11.04 14.50 38.25

of noise for the synthetic vowels.

Next the estimation errors obtained by the proposed method and that by the other

two methods are presented under the in�uence of white gaussian noise conditions for male

and female speakers in Tables 4.2, and 4.3 .

For Table 4.2and Table3.3 SNR levels 5dB and 0dB are considered. For each vowel,

the estimation errors for three di�erent formants, namely F1,F2 and F3 are listed. As

can be seen from the tables, the proposed method o�ers better performance than both

the12 order LPC and the AFB methods under presence of background noise. It can be

observed that the estimation error obtained by the proposed method in comparison to

that of the other methods is extremely lower in such severe noisy conditions.

In some cases it is found that the estimation accuracy decreases for the cases when

the two formants are very closely spaced, for example in case of vowel /ih/, though,

considering the level of noise, the estimation accuracy obtained by the proposed method

is quite acceptable. It is also observed that the estimation error relatively increases in

112



Table 4.3: Performance comparison in terms of mean error(%) for female speakers

Vowel -5 dB 5 dB

Proposed AFB LPC Proposed AFB LPC

F1 13.20 19.40 45.04 12.13 12.33 25.84

/aa/ F2 14.04 69.07 27.67 9.91 21.02 20.53

F3 11.07 30.96 12.77 9.87 20.79 11.95

F1 13.67 14.68 36.14 12.96 10.79 17.91

/ah/ F2 14.78 37.14 21.46 9.50 13.37 20.44

F3 10.92 23.14 15.75 8.61 19.79 12.44

F1 11.82 11.75 26.75 11.95 10.82 15.70

/ow/ F2 14.38 43.25 26.84 11.44 27.30 20.96

F3 10.24 18.63 15.23 9.25 17.84 10.00

F1 12.11 12.91 18.07 12.18 10.54 16.46

/uh/ F2 11.99 23.46 21.40 10.78 18.72 20.04

F3 8.35 18.93 10.40 7.86 18.40 9.54

F1 12.41 9.47 16.67 12.53 9.12 16.37

/uw/ F2 11.57 17.18 20.33 10.32 16.46 18.49

F3 8.40 18.12 9.82 8.56 18.19 9.42

case of high pitch female speakers. It is clearly observed that the estimation performance

for the third formant, which is by nature very di�cult to estimate because of low spectral

magnitude, is signi�cantly enhanced by the proposed method. Hence, overall it can be

said that, the proposed method increases formant estimation performance.

In order to present the overall formant estimation errors over a large range of SNRs

considered in the experimental setup, in Fig. 4.10 the overall estimation error for all

vowels are shown. In a simiar way, in order to present the overall formant estimation

errors over a large range of SNRs considered in the experimental setup, in Fig. 4.11

the overall estimation error for all vowels are shown. It is observed that the formant

estimation performance obtained by the three methods remains similar in case of high

level of SNR. However, with the decrease in SNR level, the estimation performance of

the other two methods deteriorates in comparison to that of the proposed method. The

performance of the proposed method remains quite consistent even in the low levels of

SNRs and level of performance degradation is not very signi�cant till −15 dB. However,
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Figure 4.10: Error comparison of all three formants for di�erent methods
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Figure 4.11: Error comparison of all three formants for di�erent methods for female
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beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

In the proposed method formant estimation is carried out frame by frame with a

frame length of 512 samples and 10 ms overlap between the successive frames. As a

result for a vowel sound of duration of about 80 ms, 5 frames are analyzed. It is to be

noted that, because of the inherent characteristics of the fast Fourier transform (FFT)

operation, there exists an inherent error caused by the minimum width of the FFT bin.

For instance, when a 512 point FFT is performed on a speech frame with sampling

frequency of 16 kHz, the resulting FFT has a resolution of 15.6 Hz.

Table 4.4: Recognition Accuracy

Feature Vector

SNR MFCC + Proposed Method MFCC + LPC-12

-10 dB 64 60.00

0 dB 85.33 84

5 dB 89.44 85.33

By incorporating the estimated formants in a feature vector along with traditional

MFCC, signi�cantly better vowel recognition accuracies are achieved compared to a fea-

ture vector consisting of MFCC and formants estimated by LPC, especially under the

in�uence of noise. By using these formants along with the traditional 12 MFCC coef-

�cients as a feature vector, vowel recognition was performed for the vowels /aa/, /ux/

and /ix/ from the TIMIT database. As formant ranges for male and female vowels vary

signi�cantly, they are considered as separate classes for this LDA based classi�cation op-

eration. There are 20 utterances for male and 20 utterances for female considered for each

vowel. Accuracies are calculated by leaving one sample out while training the classi�er

and then testing the left out sample. This check is performed for all the samples in the

database, and it is found that the proposed feature vector o�ers better performance in

noisy conditions. The recognition accuracies for di�erent vowels is presented in Table 4.4.

It can be concluded from the table that the proposed noise robust formant estimation

method, when used for vowel recognition, increases the recognition accuracy for vowel
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Figure 4.12: A spectrogram of the sentence �His head �opped back� with tracked formant
by the proposed method at 0 dB SNR

recognition systems under the in�uence of noise.

As seen from these analyses, the proposed method o�ers a better performance over

the LPC and AFB methods in noise free as well as in noisy conditions. In order to

demonstrate the e�ectiveness of our proposed method, a spectrogram of the sentence

�His head �opped back�, uttered by a male speaker taken from the TIMIT database is

shown in Fig. 4.12. The formant frequencies estimated at di�erent frames using the

proposed method uder SNR= 0 dB are shown over the spectrogram of clean speech. In

the tracking, only the estimated formants of the vowels are shown. It can be observed

from the �gure that the proposed method tracks the formant frequencies quite accurately

even in noisy speech.

4.3 Conclusion

In this chapter, in view of better exploiting the dominant peak strengthening e�ect of

autocorrelation spectrum, band pass �lters centered at di�erent formant peaks are used

to obtain band limited signals. Considering the human vocal tract as a cascade of these
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subsystems, unlike the previous chapter, impulse response corresonding to each subsys-

tem is considered in the model derivation. Repeated autocorrelation, which strengthens

the dominant poles, and exponentially increases the peak-valley ratio at formant frequen-

cies of the magnitude response, cancelling out the e�ects of noise, is then performed on

the signal corresponding to each subband. It is shown that better formant estimation

accuracy can be achieved with this algorithm especially under severe noisy conditions.

Comparisons between standard LPC based formant estimation techniques as well as re-

cent methods like AFB have been shown.
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Chapter 5

Conclusion

5.1 Contributions of the Thesis

� The main goal of this thesis work is to develop a noise robust formant frequency

estimation method that can o�er robust performance in the presence of background

noise. Instead of directly using the noisy observations, the autocorrelation function

of the noisy signal is utilized. In time domain autocorrelation reduces the e�ect

of noise by concentrating all the noise energy at the zeroth lag. Thus ACF on a

noisy signal gives the opportunity to estimate formants robustly than estiamting

formants from the nosiy speech.

� It is found that repeated autocorrelation can provide more noise immunity than

single autocorrelation. It is presented in a method for estimating formants at a

very low SNR. Due to its spectral strengthening e�ect the method utilizing repeated

autocorrelation can successfully estimate formants even in a severe noisy condition.

� One major contribution is to use cepstral domain analysis in correaltion and re-

peated correaltion domain. The use of cepstrum not only provides logarithmic

spectral smoothing , it also o�ers the advantage of homomorphic deconvolution to

overcome the e�ect of pitch variation. It is shown that within the pitch period

cepstral coe�cients of the speech signal are approximately equal to the cepstral

coe�cients of its system response.

118



� Conventional cepstrum decays rapidly with the increase in time index, which makes

it di�cult to use in estimating the system poles and eventually formants. Ramp

cepstrum is introduced to solve this problem and it is shown that ramp cepstrum

of the speech signal can be directly related to system poles. Thus ramp cepstrum

was successfully utilized in deriving a model for formant estimation.

� Use of banding on speech for formant estimation purpose was explored. It is shown

that band limiting the speech before performing repeated autocorrelation and cep-

stral analysis can further improve the estimation performance. Thus, a band lim-

iting approach is developed that can adaptively �lter the frequency zones where a

formant frequency is most likely to be present. Natural vowels as well as some nat-

urally spoken sentences in noisy environments are tested. The experimental results

show that the performance obtained by the proposed scheme is better in comparison

to some of the existing methods even at a very low level of signal-to-noise ratio.

� Instead of using conventional peak picking to �nd formants from the spectrum of

the autocorrelation function, a spectral model of the cepstrum of autocorrelated

speech signal for a single formant is developed and model �tting is employed to �nd

out model parameters which lead to the estimation of formants. The focus of the

proposed work is to formulate and explicate robust formant estimation methods in

order to achieve better formant estimation performance than the available methods

in the presence of noise. Mitigating the e�ect of fundamental frequency variation

on formant estimation is another objective of this work.

� The estimated formant frequencies are chosen as features along with conventional

features like MFCC for achieving better recognition accuracy even at a low SNR.

In conjunction to commonly used features for recognition such as MFCC, which are

badly corrupted by noise, relying on the performance of the proposed estimation

methods, the estimated formants, which are less e�ective by the noise, are selected

as features for recognition. All the methods presented in this thesis provide satis-

factory results in the case of noisy as well as noise free voiced speech. In comparison
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between the proposed methods it is seen that due to the advantageous properties

of cepstrum on repeated autocorrealtion of the banded speech signal, the method

utilizing repeated autocorrelation of band limited speech signals can give a better

estimate of formants.

5.2 Future Works

The objective of the scheme proposed in this thesis is to estimate formants even in the

presence of severe background noise. In the process of formant estimation no conventional

noise reduction method is used. Another potential approach is to use a noise reduction

block �rst and then apply the proposed method to estimate formants which could be

explored in future. Moreover, the proposed method can be investigated in the presence

of colored real life practical noises.

In the matching section single variable matching is performed for �nding the desired

solution from the objective function . Exploring nonlinear complex multivariable solution

techniques like the fuzzy logic, genetic algorithm, neural network etc. could be employed

for �nding the solution. This can be a potential future work of interest though these

methods might be computationally expensive and could give false solution in cases of

very low SNR and weak second and third formants.
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