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Abstract

Linewidth Enhancement Factor, also termed as a-factor, of compressively strained
(CS) InGaAsP /InP quantum wire (QWire) lasers is theoretically investigated and
fundamental trend in the behavior of a-factor is studied. The structure consists
of single or multiple layers of InGaAsP CS QWires and tensile-strained (TS) or
lattice-matched (LM) barriers grown on (001) InP substrate. The band structures

of the CS InGaAsP QWires are calculated using an 8 band k . p model including
elastic strain relaxation effects. Changes in the imaginary part of the refractive
index is easily found from the gain spectra and changes in the real part is evalu-

ated from the changes in imaginary part through Kramers-Kronig transformation.
Dependence of a-factor, which relates the real and imaginary parts of refractive
index due to a change in the injected carrier density, on device parameters such

as wire width, barrier strain and number of vertically stacked QWire layers, are
evaluated. It is found that a-factor decreases significantly with decreasing wire

width and exhibits less dependence on carrier density. Also, a-factor is the high-

est when the barriers are LM to the InP substrate and is drastically reduced
when the TS in the barriers is increased in a strain compensating (SC) scheme.
Moreover, QWire structures with multiple-layer exhibits lower value of a-factor

compared to the one with single-layer structure. It is found that improvements

in the a-factor relative to quantum well (QWell) laser for 0.15% TS barriers, is

not achieved unless wire width is reduced below 30 nm. However, among all the

structures, the maximum value' of the a-factor is the highest for the QWeli and
this maxima monotonically decreases with decreasing wire width.

x
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Chapter 1

Introd uction

Remarkable advances in semiconductor technology have made possible the fab-
rication of artificial nanostructures with dimensions comparable to inter-atomic
distances. The availability of this class of semiconductor structures creates new

avenues for the investigation of the physics of condensed matter under conditions
of greatly reduced dimensionality where 'quantum size effect' become apparent.
In the case of electrons, quantum size effects occur when the physical dimensions

are comparable to the characteristic lengths that determine electron behavior.
The great current interest in semiconductor nanostructure research is stimulated

by a continuous stream of discoveries and the potential to revolutionize the tech-
nology of solid state optoelectronics. By growth with molecular beam epitaxy
(MBE) technique and, more recently, by metal-organic-chemical-vapor deposi-
tion (MOCVD) technique, it is possible to obtain ultra-thin semiconductor layers
that are smooth on an atomic scale. New physics and novel devices are possi-

ble because of the excellent control of material compositions and doping. Single

heterojunctions and multiple heterostructures based on two different semiconduc-

tors are now routinely grown in many laboratories. Semiconductor lasers are one

of the most successful photonic devices benefited by quantum-size effects, since

their operational characteristics have been drastically improved by the introduc-

tion of quantum well (QWell) structures [1]. Recent efforts have concentrated
on reducing the dimensionality further to quantum wire (QWire) [2] and quan-

tum dot (QDot) [3] devices in which the carriers are restricted to one or zero

dimensions, respectively. Increased confinement of carriers means that QWire

and QDot semiconductor lasers are expected to possess improved performances,

such as, lower threshold current, higher differential gain and narrower linewidth,

1
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compared to their QWell and bulk counterparts.

In the III-V semiconductors, the material system commonly used to fabri-
cate semiconductor lasers, there is a serious asymmetry between the very light
conduction band mass and the heavy valence band mass. Ideally both masses
should be as light as possible. The density of states would then be very small and
the carrier density required for transparency would be minimized. Introduction
of strain in the active region of semiconductor lasers reduces the asymmetry of

electron and hole effective masses [4]' [5]and this concept has successfully been
applied to multi-quantum-well structures [6]. It is shown [7] that the growth of
strained QWell structures, where the QWell is under bi-axial compression, leads to

improved performance in III-V semiconductor lasers. These improvements were
predicted because the built-in axial strain in the QWelllayer splits the degeneracy

of the light-hole (LH) and heavy-hole (HH) states at the valence band maximum,
and can lead to the highest valence subband having a low effective mass in the
QWell plane. This reduces the number of carriers required to achieve population
inversion and hence may lead to a reduced current density and increased differ-
ential gain at threshold [8]. It is also suggested that the reduced valence band

mass may lead to the virtual elimination of the intrinsic loss mechanisms of in-

tervalence band absorption (IVBA) and Auger recombination [5]which, in some

cases, contribute to the nonequilibrium population of the split-off valence band
[9]. The crystalline structure of essentially all important semiconductors consists

of an FCC lattice with a two atom basis. This results in a diamond or zinc blend
crystal structure and has important consequences for the bandstructure of the

semiconductors. For the direct bandgap materials, the conduction band mini-

mum state has an s-type symmetry with a small p-type admixture away from the

zone edge. Due to the s-type nature of the conduction band edge, strain mainly
shifts the edge with only a small change in the conduction band curvature [10].

The valence band edge states of all semiconductors are essentially similar. At the
zone centre, one has a doubly degenerate state corresponding to the HH and LH

bands while the split-off (SO) state is present at an energy given by the spin-orbit

coupling. The character of the HH, LH and SO states is given in the total angular

momentum basis I j, m) by I i, :l:i), I i, :l:~)and I ~,:l:~),states, respectively.

•
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The angular dependence of these states is given by the p-type functions. In or-

der to study the effect of strain on electronic properties of semiconductors, it is

first essential to establish the strain tensor produced by epitaxy. Once the strain

tensor is known, one can apply the deformation potential theory [11] to calculate

the effects of strain on various eigenstates in the Brillouin zone.

As mentioned earlier, recent progress in epitaxial growth and processing tech-

niques is making it possible to realize quaternary QWire structures where carriers

are confined two-dimensionally. They attract much interest due to their novel

physical properties and consequent improvements of device performance. By us-

ing QWires, higher gain and lower threshold current is expected [12]. Considera-

tion of strain effects on band structures is important in these kinds of structures

when the wires are buried in larger band gap materials with different lattice con-

stants. These are referred to as strained wires. In strained wires, strain can also

exist in the surrounding matrices as well as in the wires, so it is not straightforward

to obtain strain components from lattice mismatch. Moreover, like improvements

that can be achieved by adopting strained QWells in laser diodes [4]' [7]' [10]'

[131-[19]' characteristic improvements may also be expected in strained QWires

when the valence band structure is modified by anisotropic strain [12]. Accord-

ingly, it is important to study the strain effect in wires. In contrast, the presence

of strain may lead to structural problems resulting in accelerated degradation of

the device [20]. Strain relaxation in laser structures, whereby material reverts

wholly or partially to its preferred lattice spacing, may lead to modifications of

the electronic band structures, possibly resulting in photon absorption [21] or to

enhanced migration of certain atoms to or from relaxed regions of the crystal

[22]. Both effects could possibly lead to faster degradation of the laser. In many

practical laser structures, the active region consists of a series of strained layers

forming a MQWell stack buried below the surface so that the effect of free sur-

faces on strain distributions is negligible to a good approximation [20]' [22].

The strained QWire is, thus, one of the greatest successes in recent semicon-

ductor band structure engineering technology. The semiconductor band struc-

ture can be controlled by making use of quantum confinement and strain, both
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of which can be effectively varied by artificial parameters such as well size and
composition. Strain-compensated (SC) MQWire lasers have successfully been
realized practically with a fabrication method which combines electron beam
lithography (EBL), CH./Hz reactive ion etching (RIE) and organometallic vapor-
phase-epitaxial (OMVPE) regrowth [23]. This method is very attractive for In-
GaAsP /InP lasers consisting of low dimensional systems, such as QWire and
QDot structures. Low-damage properties of the etched/regrown interface of In-
GaAsP /InP fine structure with a SC MQWeli initial wafer was experimentally
confirmed [23J.

Spectral linewidth enhancement factor, also called a-factor, is an important
parameter to characterize the dynamic performance of semiconductor lasers. Nar-
row spectral linewidth in semiconductor laser is desired for increasing the trans-

mission capacity in optical communication systems, as well as for resolving ac-
curacy in optical measurement system [24]. It may also be an important device

parameter in future applications of injection lasers that utilize the coherence of
the laser light, such as heterodyne detection of optical signals [25). The spec-
tral linewidth of the laser, which is enhanced due to the variation of the real
refractive index n' with carrier density, can be thought of due to fluctuations in

the phase of the optical field and these fluctuations arise from the spontaneous
emission events, which discontinuously alter the phase and intensity of the lasing

field [25]-[26].The spectral broadening is explained [271noting that the refractive

index in the active region is a weak function of the carrier concentration, with

the index increasing with decreasing carrier density [28)-[30]. Thus during the
emission of the pulse, the carrier density decreases causing an increase in the

index and a shift of the emission to longer wavelength [27].

1.1 Literature Review

A narrow spectrallinewidth in semiconductor lasers is desirable in order to meet

the requirements for ultra-fast communication systems using the optical fibre. A

great deal of work on the spectral linewidth in injection lasers has been reported

[24]-[27]. While significant efforts have been made to understand the effects of

spectral dependence on change of carrier density and to improve the a-factor for
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QWell lasers, very little work has been done for the QWire structures. In this

section, partial reviews of the works done on spectral linewidth are presented.

The a-factor couples the imaginary and real part of refractive index [25] and

the refractive index in the active layers of semiconductor laser is again carrier

density dependent [311. Henry et al. [32] determined the index change due to the

cause of changes in absorption edge of GaAs lasers. They converted the sponta-

neous emission spectrum to a gain spectrum from which changes in the imaginary

part of the refractive index was calculated. The real change in the refractive in-

dex was calculated through Kramers-Kronig transformation.

Henry et al. [25] first derived the detail theory for laser linewidth. His ex-

planation of the linewidth broadening in semiconductor lasers was based on the

observation that each spontaneous emission event not only brings an instanta-

neous change of optical intensity and phase, but also an additional phase shift

caused by the refractive index dependence on carrier density. The coupling of

phase and intensity leads then to occurrence of a in the phase rate equation and

the laser linewidth is broadened by a factor of (1 + (02).

Arakawa et al. [33] investigated theoretically the a-factor for both single-

and multiple-quantum well A1GaAs lasers showing the effects of the number and

the thickness of the QWell on the a-factor. Their results indicate that the laser

linewidth is significantly suppressed, by ~ 1/10, in a SQWell laser compared to

a conventional double heterostructure (DH) laser, although they did not include

strain in the structure. A possibility of a, the LEF, being reduced to zero and

even reaching a negative value has also been raised by them. This behavior of

QWell structures is due to a peak of differential gain at photon energies of 150

meV above the bulk bandgap. However the photon energies corresponding to the

maximum gain are in the range of 40-50 meV above the bandgap. Hence the

photon energies at which a becomes zero are much larger than the lasing pho-

ton energy, and in practice the value of a will stay positive. It was reported by

Osinski et al. [34] that, on average, the values of a are larger for InGaAsP /InP

than for A1GaAs DH lasers, with more reliable estimates of a ranging from 4.5
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to 7.

Mullane et at. [35] theretically investigated the means to minimize the 00-

factor in tensile-strained QWelllasers using a detailed microscopic model includ-
ing many-body effects, strain, and valence subband mixing. They analyzed the
effects of well width and strain on the a-factor. They observed that the a-factor
in highly tensile-strained devices displays reduced sensitivity to the device thresh-
old gain. It also offers improved performance at wider well widths contrasting to
unstrained and compressively strained structures.

Willatzen et at. [36]calculated the a-factor, for QWires and QDots including
the valence band mixing effects. They showed that the a-parameter is smaller
than 1 for the sub-two-dimensional structures and concluded that the inclusion
of HH-LH mixing in the valence band is extremely important for the QDot and
QWire problems.

Seo et al. [37] presented a theoretical analysis of the many body effects on

the a-factor of the InGaAS/lnP strained QWire lasers based on the semiconduc-

tor Bloch equations. They showed the a-factor increases with increasing carrier
density in free-carrier model but decreases or remain nearly constant in the mi-

croscopic model. The spin-orbit coupling effect on the a-factor of the system was
also investigated using the 6 x 6 Luttinger-Kohn Hamiltonian [38].

Oksanen et al. [39]calculated the a-factor for QDot and QWell structures in

the quasi-equilibrium distribution and parabolic band approximations and showed

that QDot offers lower value of a-factor compared to the QWell. They found that

the dominant contribution to the a-factor results from the QDot ground state
emission line itself.

Schneider et al. [40] reported the measurements of the a-factor in an elec-
trically pumped InGaAs QDot amplifier in the temperature range from 50K to

room temperature. They observed the a-factor to increase with increasing carrier

density and to decrease with increasing photon energy at all investigated temper-

\
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atures.

Many studies have so far been done relating the a-factor for semiconductor
lasers using QWell structures. It is generally believed that the value of a is
smaller in MQWelllaser than in bulk laser and it is even further reduced in lower

dimensional systems, QWires and QDots. However, not enough investigations
have been done on a-factor of QWires to determine its trend and behavior with
respect to the variations in the material and device parameters.

1.2 Objective of the Work

When the level of excitation of a semiconductor laser is raised from zero bias up
to threshold, the absorption at the laser line changes to gain with a peak value
just large enough to overcome the waveguide losses and at the same time real
and imaginary parts of the refractive index are also changed which alters the
a-factor. At the laser line, which is at the low energy side of the maximum index

changes, the changes in both the real and imaginary parts of the index have the

same sign, they are both negative. The change in the real index has a defocusing

effect, which must be taken into account in any detailed theory of gain guided

lasers [32). The gross broadening of the spectral lines of pulsating lasers has been

attributed to the change in refractive index with carrier density [41). Thus, spec-
trala-factor is an important parameter to characterize the dynamic performance
of semiconductor lasers.

In this research, the a-factor of InGaAsP /InP compressively strained (CS)
QWire lasers is calculated. The a-factor of strained QWelllasers is also calculated

and compared to that of QWire lasers to identify the improvement in dynamic

performance caused by the additional carrier-confinement in QWires. Effects

of non-parabolicity due to material properties, quantum-confinement and elastic
strain relaxation are incorporated in the calculation. Finally, we investigate the

effects of variation of device parameters, such as, QWire width, strain, multi-well

stack, etc. on the a-factor which allows optimizing device design to minimize the
a-factor.

,,
I
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1.3 Organization of the Thesis

Chapter 2 discusses the basic theory behind this work. In this chapter, theories to

model the strained QWire and QWell quaternary lasers are presented. Chapter 3

describes the calculation procedure. Chapter 4 deals with the calculated results

and discussions. In this chapter, various results obtained regarding the (X-factor

of the QWire and QWelllasers are reported and the comparison made to identify

the improvements in dynamic performance of QWire lasers due to the additional

carrier-confinement over QWell lasers. Also, at last, the effects of variation of

device parameters on the (X-factor are discussed. Concluding remarks of this

work along with suggestions for future work are presented in chapter 5.



(2.2)

Chapter 2

Theory

In this chapter, the basic theories behind modeling the QWire and QWeli qua-
ternary lasers are presented. Finally, the calculation method of spectral (l-factor
is discussed.

2.1 Multiband Hamiltonian

The multiband effective mass equation [42]is widely used to describe the band-
structures of QWells, QWires and QDots. It can be expressed as,

ir,,~ wv(r,t) = L; Hvv' (-i\7)wv' (r, t) + U(r,t)wv(r,t), (2.1)
ut ,

v

where v represents band index and Hv,v' (k) is defined as

1
r,,2k2 ,
--+Evo, v =1/

Hv,v,(k) = ~pO, .k ,
VV J V =j:. lJ.rno

Pvv' is called the momentum matrix element between bands v and v' and is
defined as

(2.3)

Here uv,o represents the zone center Bloch functions for the vth band. The relation

between the actual wavefunction and the multiband envelope functions follows
readily from,

wo(r, t) = L; uv,o(r, t)wv(r, t). (2.4)

Eq. (2.1) can be solved for the perfect spatially uniform semiconductor using a

variety of well known techniques, but in a QWeli or QWire the crystal composi-

tion and/or strain varies from region to region and approximations are needed in

9
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order to solve Eq. (2.1). Many such approximate methods are now well known

and are extensively used [43]. In our work, we apply an 8-band k . p method

[441. The choice of how many bands will be needed depends on the details of the

problem to be solved. For our work, we included eight basis functions in the set,

namely, the spin-up and spin-down sand p atomic orbital-like states. These are

arranged in the following order: IS T), IX T), IY T), IZ T), IS 1), IX 1), IY 1)
and IZ 1). As a result, the multiband effective mass equation is transformed into

eight coupled differential equations.

In the basis of the eight zone-centre Bloch functions described above, the

matrix H takes the form:

H = [_~. J.],
where G and r are both 4 x 4 matrices.

The matrices G(k) and r are defined as follows [44]:

where

(2.5)

(2.6)

[

. Ec
G = -iPkx

1 -iPk y
-iPkz

(2.7)

A'k2 Bkykz Bkxkz Bkxky

Bkykz L'k2 N'kxky N'kxkzx+
M(k; + k;)

G2 = Bkzkx N'kxky L'k2 N'kykzy+
M(k; + k;)

Bkxky N'kxkz N'kykz L'k2+z
M(k; + k;)

and

(2.8)

(2.9)
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o
o
o

The matrix r is:

r=_b.[~ ~
300

. 0 1 -z

(2.10)

All the parameters appearing in Eqs. (2.7)-(2.10) are real. The parameters
A', E, L', M and N' are known as Kane parameters and are defined in [441. The
parameter E, which is equal to zero for crystals with inversion symmetry, is set to
zero in our calculation as well. The parameter P, which is known as the optical

matrix element, is proportional to the momentum matrix element between the
conduction band and the valence band:

It
P = -i-(Slpili),

mo
(2.11)

where i = X, YorZ. The parameter P plays an important role in calculating the
optical transition strength. The quantity b. is the spin orbit splitting parameter,

while Ec and Ev' are the band edge energies in the absence of the spin-orbit cou-
pling.

For bulk structures, each component of k in Eq. (2.5) is a number, but for

low dimensional structures, kn along each confined direction n is replaced by the
differential operator -i/j / /jxn. Considering the components of the k vector in Eq.

(2.5) to be numbers and diagonalizing the matrix for a bulk crystal for k = 0,

one can obtain the dispersion relationships, namely, the k dependent eigenvalues

For a bulk crystal for k = 0, solving the dispersion relation to second order in
k allows one to obtain:

(2.12)
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where mhh(lh) (ijk) is the heavy (light) hole band edge effective mass in the (ijk)
crystallographic direction, me is the conduction band effective mass and mso is
the split-off band effective mass. The ''Ii are known as the Luttinger parameters
[44]. In terms of the "(;, the constants in the matrix are given by:

M (2.13)

where Eg = Ec - Ev is the band gap with Ev = Ev' +~. The mathematical
relations described in Eqs. (2.13)-(2.14) define all the 8 x 8 Hamiltonian param-

eters in terms of the experimental bandgap, effective masses and the spin-orbit
splitting.

2.2 Strain Analysis

Strained layer buried heterostructure lasers are becoming increasingly important
for optoelectronic applications, for example, in optical communication systems.
The strain is predicted to reduce loss mechanisms [4]and strained-layer lasers are

therefore expected to exhibit improved performances over their lattice-matched

(LM) counterparts. Structural problems associated with strain have motivated
the theoretical calculation of strain distribution in a variety of structures [20].

2.2.1 Strain in Semiconductor Devices

A crystal lattice which feels an external force will react by distorting in some

fashion. The strained state of the lattice is usually defined by a strain tensor. The

introduction of compressive strain (CS) into the crystal lattice of a semiconductor

could lead to enhanced performance in semiconductor lasers. Strain can play an
important role in both QWell and QWire devices, whether that strain has been

deliberately introduced to enhance the properties of the devices or whether strain

is present as an unavoidable consequence of the use of different materials. The
influence of a uniform strain field in QWell devices is by now well understood

but, because of the reduced symmetry, the strain field in QWire structure is
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nonuniform and can have a strong influence on the wire's electronic properties.

Moreover, the strain field in QWire structures extends into the matrix material,

providing additional complications. It is natural, therefore, to expect that strain

will prove an important factor in QWire devices and indeed a large proportion of

the QWire structures grown to date have employed lattice-mismatched materials.

2.2.2 Strain Effects on Electronic States

Most ofthe theoretical work assumes that materials are continuous, linear, isotropic

and obeys Hooke's Laws. Semiconductor materials are anisotropic but calcula-

tions have shown that anisotropy only modifies strain distributions by a small

amount [21J.

The k . p 8 x 8 bulk Hamiltonian described by Eqs. (2.9)-(2.14) acquires

extra terms when the crystal is strained. The strain interaction couples only

parallel spins and hence this interaction adds an additional term G'tea;n to original

Hamiltonian matrix H in Eq. (2.5). The additional matrix is:

ac[exx + eyy b' eyz- b'ezx- b' exy-
+ezz] iP L-j exjkj iPL-j eyjkj iPL-j ezjkj

b'eyz+ lexx + m(eyy nexy nexz
iP L-j exjkj +ezz)

Gstrain = b' ezx+
iP L-j eyjkj

b'exy+
iP L-j ezjkj

nexz neyz

neyz (2.14)

where e;j are the strain tensor components. The constants I, m and n are related

to the material deformation potentials by:

and

1
av = "3(1 + 2m),

1
bv = "3(1- m),

1
dv =-n

v'3

(2.15)

~.
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where ac is the conduction band hydrostatic deformation potential, av is the va-
lence band hydrostatic deformation potential, bv is the valence band shear defor-
mation potential associated with strain along the [001]crystallographic direction

and dv is the shear deformation potential for strain along the [1111 direction.

2.3 Electron-Photon Interactions

Optical gain in semiconductors is caused by photon-induced transitions of elec-
trons from the conduction band to the valence band. Thus in order to understand
optical gain, we need to characterize electron-photon interactions in the crystal.
To examine the interaction, we represent the photon classically by an electromag-
netic wave. The wave's interaction with the electron enters into the Schriidinger
equation through the vector potential A. This interaction with radiation is found
by replacing p in the single electron Hamiltonian by,

(2.16)

where e is the magnitude of the electron charge. In expanding the square, we

have neglected the squared vector potential term, since it does not affect our final
results (orthogonality of the wavefunctions ensures that the operator A 2 does not
perturb the system, assuming we can neglect the spatial variation of A within one

unit cell). Substituting Eq. (2.16) into the single electron Schriidinger equation,
we can write the new Hamiltonian as

H = Ho + [Hrad(r)e-iwt + h.c.], (2.17)

(2.18)

where h.c. stands for the Hermitian conjugate and it simply means that we take

the complex conjugate of all terms except the Hermitian operator p. The terms in

brackets can be viewed as a time-dependent perturbation to the original Hamil-

tonian Ho. The effect of this perturbation is to induce electronic transitions
between conduction and valence bands. The perturbation Hamiltonian Hrad is
given by,

He A e A (iW' iw') .rad = - .p = -- o. P e + e- .
.mo 2mo

The term eiwt induces upward transitions while the term e-iwt induces downward
transitions. In quantifying the gain, we need to know the number of transitions

c
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that will occur per second in the crystal in response to a given photon flux in

a given optical mode. This is accomplished by studying the time evolution of

a given electron wavefunction \li, initially in the conduction band state, ,po> as

it makes a transition to the valence band. Inserting the wavefunction into the

time-dependent single electron Schriidinger equation, it is possible to obtain an

approximate expression for the probability of finding the electron in a particular

state in the valence band as a function of increasing time. The time derivative

of this time-dependent probability then gives an approximate expression for the

transition rate from the conduction band state ,po> to a particular valence band

state ,ph' Thus, both the upward and downward rates can be calculated using

Fermi's golden rule [45]'

(2.19)

Here, Hrad(eh) is given by

(2.20)

where Mev is the transition matrix element. The delta function in Eq. (2.19)

indicates that the difference between the initial and final energy (Ee - Eh) of the

electron must be equal to the energy Ii.w of the photon that induced the transition.

2.4 Gain Spectrum

Optical transitions can only occur between occupied initial states and empty final

states with the same k. If the number of downward transitions per second exceeds

the number of upward transitions, there will be a net generation of photons, and

optical gain can be achieved. The material gain gaet is calculated as [45]'

(2.21)

where naet is the refractive index of the active region, Pev is the joint-density-

of-states, feUv) is the electron (hole) occupation probability, and Mev is the

transition matrix element for interband transitions as defined by Eq. (2.20).

It is convenient to calculate the modal gain, gmad in terms of gaet, the local

gain in the active layers. This is the gain that would occur in a uniform active
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(2.23)
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medium having the same optical properties as the QWells. We can relate go" to
gmod of a QWell by [44]'

gmod r
-- = act,
gact

where ract is known as the mode occupation factor of the active layers. For a
QWire laser, considering the fact that not all regions within the active layer plane
are active, gmod and go" are related by

gmod -r w
- act

gact Lp

.where Lp is the period of the QWire arrangement along the in-plane direction.

2.5 Linewidth Enhancement Factor

The carrier-induced coupling of the gain change to the refractive index change in
the active region of a semiconductor laser is described by the linewidth enhance-

ment factor (LEF) or a-factor. As such, it is a key parameter in many studies
of semiconductor laser and amplifier performance under both continuous-wave

(CW) operation and high-frequency modulation. Important characteristics de-

pendent on a-factor include the laser linewidth, modulation-induced wavelength

chirp, gain guiding and sensitivity to feedback. To explore the optimization con-

ditions, it is thus important to investigate the dependencies of a-factor on the
gain medium and structural properties. In addition, nonlinearities described by
a-factor generate filamentation, which limits the performance of high-power semi-
conductor lasers. Thus, low-a operation is always desirable in practical devices.

In semiconductor lasers, the lasing transitions occur between two energy bands

and this leads to asymmetry of the gain spectrum. When Hilbert-transformed,

this spectrum produces a dispersion curve of refractive index with zero shifted

from the gain peak frequency [34]. Since the gain varies with carrier density,

the refractive index around the lasing frequency will also depend on the carrier

density. It is well known that any change in the imaginary part of the suscep-

tibility (gain or loss) will be accompanied by a corresponding change in its real

part (refractive index) through the Kramers-Kronig relations [32]. The enhanced

linewidth is attributed to the variation of the real refractive index n' with carrier

density. Spontaneous emission induces phase and intensity changes in the laser
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field. The restoration of ~he laser to its steady state intensity results in changes in

the imaginary part of the refractive index 6.n". These changes are accompanied

by the changes in the real part of the refractive index 6.n', which cause additional

phase fluctuations and line broadening. a-factor, is expressed as [25]'

6.n'
a = 13.n". (2.24)



Chapter 3

Calculation Procedure

In this chapter, procedures for calculating the device parameters, gain and a-

factor are presented.

3.1 Device structure

Fig. (3.1) shows the schematic cross-sectional diagram of an InGaAsP vertically
stacked multiple QWire structure under our consideration. The coordinate axes

are also shown. The wire axes are along the crystallographic [HOI directions.
The crystal growth is along the [001]direction (z direction) for the structure. Ly
and Lz are the width and the height of the QWire, respectively.

3.2 Material Properties of InGaAsP Systems

The laser structures considered in this work are made of the quaternary material

system Inl-x Ga, Asy P1-y grown on an InP substrate. This is the current ma-
terial of choice for the fabrication of lasers for optical fibre communication, since

the 1.3-j.Lmand 1.55-j.Lmwavelength range set by the optical properties of the

silica fibres is easily accessed by this choice. This choice has obvious advantages,

such as, suitability in the range of bandgaps and ease of fabrication. Moreover,

it allows incorporation of a wide range of both compressive and tensile strain

into the active layer. A disadvantage in having to deal with a quaternary mixed

crystal system is that the material constants are not very well known; these are re-

quired for quantitative modeling of the design and engineering of working devices.

18
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InGaAsP

InP

z (001)

L
x y
(110)

Figure 3.1: Cross-sectional schematic diagram of a vertical stack of multiple
QWire structures.

In order to obtain various parameters for the Inl_xGa"AsyPl_Y material sys-

tem, a linear interpolation between parameters of relevant binary and ternary

semiconductors are used. The material parameters of the binary and ternary

semiconductors are listed in Table 3.1 [44].

The material constants of the quaternaries are, in general, a function of their

composition (x and y) and, in principle, should be measured for each composition.

Since, the quaternaries are aimed to lattice match the InP substrate, we regard the

lattice matched quaternary as if it were composed of the ternary (Ino.532Ga;,.468As)

and InP [44]. Thus:

where

z = y = x/0.468 ..

(3.1)

(3.2)

All the material constants for the quaternary are linearly interpolated between

these of InP and those of Ino.532Ga;,.468Asassuming Vegard's law [46]. Thus the

material constants for the quaternaries are obtained using the following equation,

AQ(x, y) = (1 - y)AInP + yAT + y(AGaAs _ AInAs)(x - 0.468y), (3.3)
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Table 3.1: Material Constants

Symbols
Eg(300K) eV
6.0 (eV)
m,(emu)

1'1
1'2
1'3

ag (eV)
ac (eV)
bv (eV)
dv (eV)
Ep (eV)

Cll (x 1011 dyn/ cm2)

Cl2(xlOll dyn/cm2)

a(3000K) A

GaAs
1.424
0.341
0.0665
6.790
1.924
2,782
-9.77
-7.1
-1.7
-4.55
28.8
11.81
5.38
5.6532

InAs
0.354
0.371
0.023
19.67
8.37
9.29
-6.0
-5.4
-1.8
-3.6
222
8.329
4.53
6.0583

InP
1.351
0.110
0.079
4.95
1.65
2.35
-6.35
-5.35
-2.0
-4.2
20.4
10.22
5.76
5.8587

Ino.532Ga".468As
0.75
0.356
0.041
11.01
4.18
4.84
-7.76
-6.2
-1. 75
-4.04
25.3
10.08
4.98
5.8687

where A is one of the mat.erial const.ants, Q st.ands for the quaternary, and T
stands for the latt.ice-mat.ched ternary. For the quaternary bandgap, however,
we use parabolic interpolation, to account for the bowing of the bandgap upto
second order [47]:

E~(x, y) E;nP + 0.672x - 1.091y + 0.758x2 + 0.101y2 + 0.111xy
0.580x2y - 0.159xy2 + 0.268x2y2. (3.4)

For the lattice constant, the following interpolation formula is used [46]:

aQ(x, y) = aInP + 0.189y - 0.418x + 0013xy. (3.5)

Lattice parameters and the bandgap energy for InGaAsP quaternary material

systems are related by t.he curves shown in Fig. 3.2 [46]. The misfit strain for
t.he quaternary is defined as

(3.6)

3.3 Analytical Expressions for Strain Distribu-
tion

Strained QWires use a material which has a different native lat.tice constant than
the surrounding barrier materia!. In t.hiscase, one or both of t.hematerials adjusts
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Figure 3.2: Lattice parameter vs bandgap energy for the binary and ternary
material system.

its lattice constants to match the other and an equilibrium situation is reached.

To obtain the strain tensor components eij (i, j = x, y, z), we follow an analyt-
ical approach [20). There are also other methods, such as finite-element method

(FEM), finite difference method (FDM), etc., available to calculate the strain
distributions. FEM calculations can be cumbersome, however, because it is nec-

essary to carefully divide the struCture into fine meshes so that consistent results
are obtained. The accuracy of the final results are also questionable in this

method, particularly, in regions where the strain is varying rapidly because of

not embedding the QWire in truly infinite matrix. Analytical expressions, on the

other hand, give a quick and accurate method of obtaining the strain fields and
allow an insight into the physics of the problem provided the materials can be
assumed to be continuous, linear and isotropic obeying Hooke's laws.

For the structure shown in Fig. 3.3, the initial strain in the x, y and z

directions is eo within the layer and zero outside. The dimension of the structure

c;;:.

\~,',-
...•...... ~-
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Figure 3.3: Cross-sectional schematic diagram of a buried strained layer. Impor-
tant dimension and the coordinate axes are indicated.

in x direction is assumed to be very large (ideally infinite) compared to Ly or Lz

so that a two-dimensional analysis with plane strain condition is appropriate. The

analysis starts with the solution for a finite circular inclusion in two dimensions

which forms a cylindrical inclusion when extended into the third dimension. The

cylindrical inclusion of radius r exerting a pressure P yields stress fields outside

the cylinder which are easily determined [20]. Dividing the stresses by 1rr2 give
the stress components per unit are'a of inclusion:

P 2 2
(Jcyl= y-z
YY 1r (y2 + Z2)2'

P Z2 _ y2acyl = _. _
zz 1r (y2 + z2)2'
cyl 2P yz

(j =- .
yz 1r (y2 + Z2)2

The technique is based on a 2-D Green's function for the stress field. The
stress fields for the nth strained layer illustrated in Fig. 3.3 are obtained by

integrating the stress field per unit area of inclusion for the cylindrical inclusion
over a rectangle of length Ly and height Lz> thus

(3.8)



n ( ) P [ -I (Iy - Y)(Iyy y,z = --:;tan lz _ z +

23

generating the results,

tan-1 (Iy + Y)
I, - z

+ tan-; (Iy - Y) + tan-I (Iy + Y)] ,
I,+ z Iz + z

n ( ) P [ -I (Iz - z)fJzz Y,z = -; tan Iy _ Y -I (I, - z)+ tan --
Iy + Y

+ tan-I (~) + tan-1 (~)]
Iy-Y Iy-Y'

(3.9)

fJ;z(Y, z)
P

= 21l'[ln1(ly+ y)2 + (I, - z)21 + In I(ly - y)2 + (lz + Z)2j

In I (Iy - y)2 + (Iz - z)21 - In I (Iy + y)2 + (I, + z )21].

where ly=Ly/2 and 1,=Lz/2. These are the stress fields associated with the nth
strained layer of dimension Ly x Lz buried in an infinite medium. The principle

of superposition is applied to calculate the stress field at a point due to multiple
strained layers.

The stress components given in Eq. (3.9) are used to determine the strain

components using Hooke's laws. Here, exx is equal to the misfit strain, eo, within

the strained layer, but exx is equal to zero outside this region. The Hooke's law

relations for plane strain for the nth strained layer, therefore, become [20]

e;y(y, z) ~[(1~ v2)fJ;y(Y, z) - v(1 + v)fJ~,(y, z)) - veo(y, z),

e~,(y,z) ~[(1- V2)fJ~,(y,z) - v(1 + v)fJ;y(Y,z)) - veo(y,z), (3.10)

n () 2(1 + v) n ( )
eyz y, z = E ayz y, z 1

where eo(y, z) is the misfit of the material at position (y, z), E is Young's modulus
and v is the Poisson's ratio.

Finally, an expression for the constant P/ll' in terms of the lattice mismatch,
eo defined in Eq. (3.6), is found [20]. Eq. (3.9) gives the in-plane stress at the

centre of a long thin layer (ly/I, -> (0) as 2P. The Hooke's 'law expression then
yields

P = eoE
2(1 - v) (3.11)
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3.4 Calculation of Electronic States

The heterostructure is composed of several regions, each of a definite composi-
tion and/or uniform state of strain. In such a situation, the parameters in the
Hamiltonian matrix defined in Eq. (2.5) are constants in each region but differ
from region to region. Also in such a situation, the question of how to match the
envelope functions in one region to those of the next region arises. The simple
prescription for automatically including the correct boundary conditions into the
formulation of the problem was studied from [44]. That prescription is as fol-

lows: In every terms of Eqs. (2.7) and (2.8) in which a material parameter and
a derivative both appear, one has to make the replacement

---> ~ [Q(r)~+ ~Q(r)J '
2 aXM ax"
1[0 a a a]---> - -Q(r)- + -Q(r)- ,
2 aXM axy axy ax"

(3.12)

where Q(r) is any real material parameter or strain tensor component.

The spatial dependence of the parameter Q(r) is expressed in terms of step
functions for the interfaces i.e., for an interface at x = xo, where material A is to
the left side of the interface and B is to the right side:

Q(x) = QA + (QA - QB)8(x - xo)

where 8(x) is the unit step function.

The 8 x 8 matrix obtained in this way has elements Hnn, (r, \7) and the eight
coupled differential equations are

8L Hnn,(r, \7)Fn,(r) = EFn(r).
n'=l

(3.13)

These equations are solved by applying the so-called eigenfunction expansion

method [44]. Thus, for the QWire structure, the above envelope fu~ction F, for
a particular wave vector kx along the QWire axis, is expressed in terms of a 2-D
Fourier series

00

Fn(r) =L Fn(l, m, kx)<Plmk. (x, y, z),
1m

(3.14)
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with the basis function </J given by

(3.15)

and for the QWell structure, it is expressed, similarly, in terms of a 1-D Fourier
series

00

Fn(r) =L Fn(m, k" ky)</Jmkxk,(X, y, z),
m

with the basis function </J given by

(3.16)

(3.17)</Jmkxk,(x, y, z) = (Lz)-~ exp [i21l"(mL) + ikxx + ikyy] .

In order to convert the differential Eq. (3.13) for a QWire into a set of algebraic
equations, we insert the expansion given in Eq. (3.16) into Eq. (3.13), multiply by
</Jimkx(x, y, z) and integrate over the region LyLz. The resultant matrix eigenvalue
equation has the form:

L Hnn,(z', m', i,m)Fn4, m') = EFn(i,m),
n'/'m'

where the matrix elements Hnn, (z', m', I,m) are given by:

(3.18)

(3.19)

All matrix elements can be evaluated analytically if each interface is perpendic-
ular to one or another coordinate axis.

Formally, for our QWire structure, Eq. (3.19) may be expressed as

Hnn'(l',m',i,m,kx) =1 1 dy dz </J7' ,(y,z)Hnn, (y,z,kx, aa, aa) </Jlm(Y,Z).
(Lv) (Lx) m y Z

(3.20)

For the QWell structure, similar explanation can be obtained. The matrix ele-
ments for the QWell structure is now given by

(3.21 )

When constructing the matrix H, there are two useful checks on the numerical
work. The first check is that the matrix H is Hermitian:

(3.22)
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The second check is that the matrix H expressed in a Kramers basis (a basis con-.
taining 2N functions arranged so that the (j +N)-th function is the time-reverse
conjugate of the j-th function) must also have the form of Eq. (2.5). In construct-
ing the Kramers basis for the matrix H, we note that the original 8-function basis

is a Kramers basis and that <P-I,-m(Y, z) is the time reverse conjugate of <P1,m(Y, z).

The integral in Eqs. (3.20) and (3.21) extend over all spatial regions. In each
region, the material parameters are constant. The integrands also contain delta

functions at each internal interface. The strength of these delta functions is gov-
erned by the discontinuity of the material parameters at the interface. There are
thus two types of terms contained in Eqs. (3.20) and (3.21): bulk terms (integrals

over the interior of the region), and the surface terms (the delta-function parts).
The contributions of each region and of each internal interface are additive. Our
program calculates the matrix elements region by region and interface by inter-
face and adds them together.

For the QWire structure, all the bulk contributions to the matrix elements
contain integrals of the form:

i(l-/;-+m L )e 11 z 1 (3.23)

while for the QWell structure, the integral takes the form:

JR, = ~ rRn, dz e -i(m' Z,) ei(mL',)
mm Lz JRLz '

(3.24)

where RL" RL, are the left side edges of the zone R along Y, z directions, re-
spectively and RRy' RR, are its right side along the same directions. Analytical
solutions for these integral are given as follows. For the QWire structure,

IR -['m'lm-
1 [L (i,-i R i'.=iR)-- -_Y- e L1I Ry _ e L1I LIJ

iLyLz I-I'

'1=( m=m', . ,

;1 # (,m # m',

(3.25)

\ <
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and for the QWell structure,
,

m=m

mfm'.
(3.26)

(3.29)

The spatial variables x, y and z are along the QWire coordinate system as shown
in Fig. (3.3). Since the element of the Hamiltonian are defined in terms of the
crystallographic coordinates while rP and the strain components are expressed in
terms of QWire coordinates, QWire coordinate system is rotated by an appropri-
ate transformation matrix to orient it along the crystallographic axes.

After completing the construction of the matrices given in Eqs. (3.20) for the

QWire, they are diagonalized to get the eigenenergies E. Solutions of Eq. (3.13)
also gives the Fourier coefficients Fn(l, m, kx). All the eigenvalues and eigenstates
within the defined range are stored and a new kx point is chosen and the whole

procedure is repeated to complete the computation of a set of dispersion curves
for the QWire.

3.5 Calculation of Transition Matrix Elements

For evaluating the transition rate between initial state 1jJi(r) and a final state
1jJf(r) of the unperturbed Hamiltonian, we need to calculate the term:

I (1jJf(r) 1Hrad I1jJi(r)) 12 = A5 c;ocr Mf,i. (3.27)

Here, Mf,i is known as the optical matrix element and it is given by [44]'

IMf,i12 = I(,pf(r)le . ~V'I,pi(r)W, (3.28)

where e is a unit vector in the direction of the electric field of the radiation. The

approach is general enough so that i and f may both be within the valence band

(intravalence band transition), conduction band (intraconduction band transi-

tion) or one may belong to the valence band and the other to the conduction
band (interband transition). Now, substituting

8

,pi,!(r) = L F~'!(r)Un(r)
n=l
8L L Fi,! (j, I, m)rPjlm(X, y, Z)Un(r),
n=ljlm



28

into Eq. (3.28), we have

8

L L L Fl'(j,I,m)F~,(/,(,m')
n,nl =1 jim / l'm'

J 4>jlm(X,y, z)U~(r)e

1'I:.\14>;'l'm'(x,y,z)Un,(r) dx dy dz drl2., (3.30)

If we make use of the fact that the envelopefunctions vary relatively slowlyover
regions the size of a unit cell, then the integral in Eq. (3.30) can be written as

J 4>jlm(X,y,z)U~(r) e .~\14>j'I'm'(X,y,z)Un,(r) dx dy dz dr

'" J 4>jlm(X,y,Z)4>;'I'm'(X,y, z) dx dy dz

r U~(r)e . 1'1:.\1 Un' (r)dr
JO(Xyz) 1,

+ J 4>jlm(X,y,z)e. ~\14>;'I'm'(X,y,z) dx dy dz

r U~(r)Un,(r)dr. (3.31)
lo(xyz)

The first integral over ll(xyz) in Eq. (3.31) is actually a sum of three integrals,
each being multiplied by a component of e. Each of the three is proportional to
the optical matrix P or else vanishes unless n, n' and the component of \1 are

related in a way so that both n and n' must refer to the same direction of spin,

n must be in the conduction band while n' must be in the valence band or vice

versa and finally the component of \1 must be the same as the label (x, y, z) of

the valence band state. The second integral over ll(xyz) is the overlap of two
Bloch waves. It vanishes unless n = n'.

3.6 Calculation of Reduced Density of States
and Quasi-Fermi Energies

Fermi's golden rule gives the transition rate for a single pair of conduction and

valence band states. We know that many k states exist in both conduction and
valence bands. To find the total transition rate, we must sum Eq. (2.19) over

all transition pairs that are allowed. In our work, we only consider undoped

material such that band-to-band transitions dominate, allowing us to assume
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strict k-selection rules. Thus, only vertical transitions in k space are allowed,
and we can simply sum over all N, electronic states in either bands. The total
transition rate per unit volume is then given (in units of s-lcm-3) by

(3.32)

where, by definition,

(
1 dN,

p k) = V dk ' (3.33)

and we have introduced the transition energy, E,h == E, - Eh, into the delta
function. Letting x = E,h - iu.v, the integral becomes

(3.34)

The term in brackets is defined as the combined or joint or reduced density of
states (RDOS).

Another important parameter is the carrier density required to achieve a given
quasi-Fermi level separation. The carrier density in a given band can be found

for a given quasi-Fermi level by integrating the density of states multiplied by

the occupation probability over the entire band. For nonparabolic bands, for

example, in the valence band of a QWell, where the subband structure is far from

parabolic, we find the carrier density by numerically integrating over k space,
because k-states are always uniformly in k space, independent of how complicated
the energy bands become. For this case, we have [45]'

p

N

2L fmo" pmD(k)[l - fv(k)]dk,

2L fmo" pmD(k)fc(k)dk, (3.35)

where m= 1,2 for QWell and QWire, respectively and kmax represents some

numerical limit beyond which the contribution to the integral can be neglected.

The sum is taken over all quantized subbands within the valence band (including
both HH and LH bands) and the conduction band, respectively. The occupation
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probabilities are given by

(3.36)

where Ejc and Ejv are the quasi-Fermi lavels and kB is the Boltzman constant.

We find Ejc and Ejv from the requirement that the average carrier density in
QWire have specified values Nand P.

3.7 Calculation of Gain Spectrum

To evaluate gac' in Eq. (2.21), we first compute the band structure associated
with the QWire. We calculate all conduction band and valence band dispersion

curves or minibands that are likely to be occupied with electrons or holes, re-
spectively. Only these minibands can contribute to emission and, hence, to gain.

We do this for a number of points (e.g., 81) in k space. Then, we calculate

the matrix elements of each polarization for all transitions between these states.

The Fermi levels are then set in an iterative procedure by varying them until
the specified carrier densities are reached. Once the Fermi levels are established,

gact(1u",) can be evaluated with Eq. (2.21). The most time-consuming step is to
solve the eigenvalue problem for all energy levels and wavefunctions. Once this is

done, it is relatively quick to compute the gain spectra for a set of carrier densities.

In deriving the expression for the material gain, we have assumed that an elec-

tron in a conduction band state would remain in that state forever if it weren't

for interactions with photons, i.e., the energy of the state is sharp. In reality,
interactions with phonons and other electrons from time to time scatter the elec-

tron into another conduction band state. Therefore, the lifetime of a given state

is not infinite. In fact, it is presently believed that, on average, approximately

every 0.1 ps an electron (or hole) is bumped into a new state [45]. If we assume

that the state decays exponentially with time, then the Fourier energy spectrum

necessary to construct the time-dependent state has a Lorentzian lineshape, and

hence the energy of each state (and each transition) is no longer sharp but has

/.
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an energy spread over a range of !::>.Eon each side of the expected energy of the

state (or transition). This means that an incoming photon with energy hw will

not only interact with transitions given by E,h = hw, but also with transitions

within an energy spread E,h "" hw :l: !::>.E.

To include the spectral broadening of each transition, we convolve the expres-

sion for material gain with some spectral lineshape function over all transition

energies E,h to obtain [45),

(3.37)

where

( _ 1 Ii/Tin (
L E,h) = -;(E'h -hw)2 + (Ii/Tin)2' 3.38)

where 9act(hw) is taken directly from Eq. (2.21). L(E'h) is a normalized Lorentzian

lineshape function and Tin is the intraband relaxation time, or simply the lifetime

of each state, and is about 0.1 ps [45] in bulk materia!. Gact(hw) is now spectrally

smoothed gain.

3.8 Calculation of Linewidth Enhancement Fac-
tor

The complex refractive index in the vicinity of the absorption edge can be written

as

n = no + f1n' + itln" , (3.39)

(3.40)

where !::>.n'+ i!::>.n"is the part of the refractive index that changes with injected

carrier density. The complex wave vector k = ko + !::>.k'+ i!::>.k"is related to the

refractive index by [32),

(ko + !::>.k'+ i!::>.k")2= (~:) (no + !::>.n'+ i!::>.n'Y

Therefore, the change in wave vector with changes in injected carrier density is

found by equating terms in Eq. (3.40) and neglecting terms of second order,

(3.41 )
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To a good approximation, no is real and constant and ko = w / Crto. Writing
w/c = 2n:E, where E is the photon energy in cm-1, and using the relation between
the imaginary part of k and gain

9 = -2k".

We have, from Egs. (3.41) and (3.42)

6n" = _ 6g .
4n:E

(3.42)

(3.43)

The real and imaginary parts of the dielectric constant are related by the Kramers-
Kronig (KK) dispersion relations which is as shown below:

h(x) = ~ roo x' ~2(x')dx' ,
1r 10 x 2 - x2

(3.44)

where f1(x) and h(x) are real and imaginary parts of some complex function
f (x), respectively. Changes in the dielectric constant are also related by the KK
relations. In the approximation that no is constant, 6n' and 6n" are related by
the KK relations, we have [32]'

2 00 E' 6n" (E')dE'6n'(E) = -p r -~~_
n: io E'2 - E2

= __1 P roo 6g(E')dE'
2n:2 io E'2 - E2 ' (3.45)

where P indicates taking the principal value of the integral. This integral is
difficult to compute numerically because of the singularity at E = E'. This

singularity can be avoided by using a transformation suggested by Henry et al.
[32]. We subtract and add 6g(E) to the integrand. Then,

6n' (E) = __l_p roo , 1 (!:l9(E'! - !:l9(E)) dE' _ !:lg(E) p roo ,dE' .
2n:2 io E + E E - E 2n:2 io E 2 - E2

(3.46)

It is easily demonstrated that the second integral is zero. The integrand of the

first integral is no longer singular. As E' --> E, the integrand approaches the

finite limit (2E)-ld6g(E)/dE. Once the change in the real and imaginary parts

of the refractive index is known, spectral LEF (a-factor) can be computed from
Eg. (2.24) [25].

(.. '~.,.
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Chapter 4

Results and Discussions

The results of the numerical calculations for the QWire devices are presented
in this chapter. Effects of non-parabolicity due to material properties, quantum-
confinement and elastic strain relaxation are incorporated in the calculation. The

detail of the device structures are given in Fig. (3.1). The initial wafer consists of

multiple layers of Inl_xGaxAsYP1_ybiaxially CS quantum-well layers (A9 = 1.5Sj.!

m), and TS or LM barriers grown on a (001) InP substrate. In all our analyses, the

thickness of the well in the crystal growth direction Lx = 7 nm, and the thickness
of the barriers LB = 12 nm. The lattice-misfit strain in QWire region is 1.07%

compressive. The a-factor of QWire and QWell lasers are calculated and com-
pared to identify the improvement caused by the additional carrier-confinement

in QWires. Finally, effects of variation of device parameters, i.e., QWire width,

strain, multi-well stack, etc. on the a-factor are investigated which allows opti-
mizing device design to minimize the a-factor.

4.1 Dispersion relationships for QWires

The dispersion relationships of the lowest two conduction and the highest three
valence band sub-levels in lO-nm and 20-nm-wide QWires are presented in Fig.

4.1(a-c) and (d-f), respectively, while the dispersion relationships of the highest

three valence band sub-levels in 30-nm and 50-nm-wide QWires are depicted in

Fig. 4.2(a-c) and (d-f), respectively. The calculation procedures for the disper-

sion relationships of the QWires are presented in Section 3.4. LM, 0.15% TS and
0.6% TS barriers are considered.

33
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Table 4.1: Comparison of key dispersion relationship parameters for 10-, 20-, and
30-nm wide QWires as shown in Figs. 4.1 and 4.2

LM Barriers 0.15% TS Barriers 0.6% TS Barriers

10 om 20 om 30 om 10 om 20 om 30 nm 10 om 20 om 30 om
Q~ire QWire QWire QWire QWire QWire QWire QWire QWire

mhdmo 0.2708 0.1854 0.1604 0.2060 0.1564 0.1392 0.1247 0.1053 0.0982

~Eh12(meV) 28.49 26.54 14.40 28.99 25.27 13.90 30.73 21.97 12.41

Eo (meV) 865.53 820.36 807.97 862.89 817.79 805.39 851.70 806.56 794.34

It is found that for LM barriers, the nonparabolicity of the highest hole sub-
band is strong near the. zone centre due to band mixing. We also note that
the band mixing in the excited hole subbands is stronger in the 10-nm QWire.

Table 4.1 lists the values of the zone-centre effective mass of the highest hole sub-

band mhl, zone-centre separation between the highest two hole subbands /::,.Eh12,
and the fundamental electron-hole transition energy Eo for the three QWires ex-

tracted from Figs. 4.1 and 4.2. For all the QWires, as expected, mhl decreases
with suppression of strain relaxation. For the 20- and 30-nm QWires, strain
relaxation increases /::"Eh12 whereas the opposite is true for the 10-nm QWire.

The separation between the highest two valence subbands at the zone-centre
decreases rapidly with increasing wire width for both the LM and TS barriers.

These results demonstrate the complex interactions between strain relaxation and
quantum confinement effects.

4.2 Gain Characteristics

In quantifying the gain, we need to know the number of transitions that will

occur per second in the device in response to a given flux of photons in a given

optical mode. Calculated transition matrix elements for ground state transitions

Mn for transverse electric (TE) polarization with the electric field along the wire

axis (TEll) in a 20-nm wide QWire for LM and two types of TS barriers as well

as for different number of quantum well layers are presented in Fig. 4.3(a) and

(b), respectively. The procedures for calculating the transition matrix elements

are described in Section 3.5. Results indicate that with an increase in the barrier
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Figure 4.1: Dispersion relationships for the two lowest conduction and the three
highest hole subbands in (a-c) lO-nm and (d-f) 20-nm wide QWires calculated
for three different types of barriers.
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Figure 4.2: Dispersion relationships for the three highest hole subbands in (a-
c) 30-nm and (d-f) 50-nm wide QWires calculated for three different types of
barriers.
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TS, transition strength is increased for the 1-1 transition. This is due to the fact
that TS barriers suppress elastic strain relaxation which in turn makes the high-
est valence band level more HH like. It is seen in Fig. 4.3(b) that multiple-layer
QWire shows less transition strength compared to the single-layer QWire due to
more pronounced strain relaxation in multiple-layer QWires.

Fig. 4.4 presents the material gain spectra in a 20-nm and a 3D-nm wide
QWire as a function of the photon energy for LM and two types of TS barriers.
The changes in the absorption characteristics of the material band edge from
high absorption to high gain as a function of carrier density are clearly seen in
the figure. The peaks in the gain/absorption spectra arise from the various sub-
band transitions that maintain the k-selection rules. In all the cases, the peak

gain is dominated by the 1-1 transitions for small carrier densities. However, for
very high carrier densities, in wider wires, contributions to the gain from the 2-2

transitions become significant as is depicted from Fig. 4.4(d-f). It is also clear

from the figures that QWire structures with highly se barriers exhibit higher
peak gain for a particular carrier density due to their relatively higher transition
strength as is shown in Fig. 4.3(a).

Fig. 4.5 shows the peak material gain G as a function of the injected carrier

density for lO-nm, 20-nm, 30-nm and 50-nm wide QWires. Both TS and LM

barriers are considered. For all the QWires, G is the highest for the structures

with 0.60% TS barriers and decreases with decreasing TS in barriers. These re-

sults can also be explained in terms of the strain relaxation dependence of the
transition matrix elements as presented in Fig. 4.3(a). We also observe that when

se barriers are used, the transparency carrier density is reduced for all the wire

widths. This is due to the fact that when strain relaxation is suppressed by se
barriers, effective mass of the highest hole subband is reduced (Table 4.1). This

reduces the band edge hole density of states which, in turn, reduces the trans-

parency carrier density. A .feature worth noting is that for LM barriers, below

transparency carrier density, the gain (actually absorption) shows some ripple.

It will be shown later that this ripple has important consequences on the a-factor.



0.&

38

14
20-nm wide QWire

12
- - - - l-well structure
- - - 3.well structure

10 -- Sowellstructure

>&
.!.
0

E
.- 6
,."
N

4

2

(b)

.\..\.~
.\.~
'\
,"- ..•.~

20.nm wide QWire

.. - - LM barriers
- - - 0.15% TS barriers
-- 0.60% TS barriers

(a)

2

4

o
0.0

14

12

10

o
0.2 0.4 0.6 0.& 0.0 0.2 0.4 0.6

. 1
Wave vector k (nm' ) Wave vector k (nm.1)

Figure 4.3: Transition matrix elements Mll as functions of wave vector k in a 20-
nm-wide QWire for three types of barriers (a) and for different number of QWire
layers in the active region with 0.15% TS barriers (b). Only TEll polarization are
considered.

Fig. 4.6 shows the peak material gain G as a function of the injected carrier

density n for different wire widths. It is evident that the transparency c.arrier

density is reduced with the increase of the wire width. As the wire width is in-
creased, the active region of the wire becomes more well-like and hence the band

edge density of states becomes lower which reduces the transparency carrier den-

sity. Moreover, at higher carrier densities, G and differential gain (G') is higher

for the lO-nm wide QWire compared to other structures. As the wire width is
increased, peak gain is decreased and gain saturation is increased. This can be

described in the following manner. As the wire width is increased, the number

of bound levels is increased and the separation of these levels are decreased. As

a result, occupation of excited levels become significant. Since these carriers do

not contribute to gain, peak gain is reduced. Moreover, at higher carrier densi-

ties, peak gain may switch from the fundamental transition to the first excited
transition.

Fig. 4.7 shows G as a function of the injected carrier density in lO-nm, 20-
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nm and 50-nm QWires for different number of vertically stacked QWire layers
in the active region of the QWire structures. It is observed that G is lower
for the multi-layer QWires compared to its single-layer counterpart for all the
wire widths. This is due to the relatively lower transition strengths of M11 as
described in Fig. 4.3(b). However,the modal gain for the multi-layer QWires is
larger compared to the single-layer QWires. Again, multi-layer QWires exhibit
higher transparency carrier density for all the wire widths. This is due to the
lowervalues of the peak gain.

4.3 Refractive Index Change

Fig. 4.8 presents carrier induced refractive index changes in 10-nm and 20-nm

wide QWires. The procedures for calculating these quantities are described in
Section 3.8. Both the real and imaginary refractive index changes for LM and
two types of TS barriers are shown in the figure. It is clear that QWires with
highly TS barriers show the lowest changes in both the real and imaginary part

of the refractive indices as functions of carrier density. The opposite is true

for QWires with LM barriers. Moreover, before the threshold carrier density is
reached, QWires with LMbarriers showa peak followedby a dip in the imaginary

refractive index of both the structures. This is a direct co!,sequenceof the ripple

present in the peak gain vs carrier density curves (Figs. 4.5 and 4.6) for LM

barriers. The waveguide loss used to calculate the threshold gain is given in

Table 4.2 with aa,=100 cm-', apa.,=5 cm-1 and the period of the wires is 100

nm. The mirror reflectivity loss was taken into account assuming r, = rz = 0.3

and cavity length of 1000I'm. The values are taken from [48].Here,

4.4 Linewidth Enhancement Factor

a-factor relates the changes in the real and imaginary parts of the refractive in-

dex due to the changes in the injected carrier density. In lasers, the Iinewidth is
enhanced by this factor.

Fig. 4.9 presents a-factor as a function of the photon energy for different

carrier densities for 20-nm and 50-nmwideQWires with 0.15%TS barriers. The
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arrows in the figures show the energy position where lasing would occur for the
structures. The 20-nm wide QWire exhibits lower a-factor compared to the 50-
nm wide QWire, as is expected. Moreover, the a-factor is more weakly dependent
on the carrier densities in narrower QWires.

4.4.1 Variation of Barrier Strain

Fig. 4.10 presents a-factor at lasing frequencies as a function of the injected
carrier density for different QWire structures with various barrier conditions. It

is found that a-factor is the highest when the barriers are LM to the InP substrate
and is drastically reduced when the TS in the barriers is increased in an se scheme
for all the structures. It is known that elastic strain relaxation in QWires depends
on the barrier strain. se barriers significantly reduce strain relaxation. Peak gain
in TE mode for our cavity configuration is found to decrease with increasing strain

relaxation (Fig. 4.5). Therefore, by using TS barriers, peak gain and differential

gain are improved (Fig.4.5), which consequently reduces a-factor. Moreover,

with LM barriers, for a particular QWire structure, say, for example 10-nm wide

QWire (Fig. 4.1O(a)), a-factor shows strong carrier density dependence until
transparency carrier density is achieved. This is due to the manner the changes
in the imaginary part of the refractive index expresses with increasing carrier

densities before the transparency level is reached as is evident from Fig. 4.8(b).

The same explanation holds for other structures. QWire structures with wider
wire width shows larger values of a-factor compared to QWires with narrower
wire width, also evident from Fig. 4.10.

4.4.2 Variation of number of QWire layers in the active
region

Fig. 4.11 presents a-factor as a function of the injected carrier density in different

QWire structures with 0.15% TS barriers for various number of QWelis in the

active region. It is found that a-factor is larger in case of single-layer QWires for
all the structures and subsequently is reduced with the introduction of the multi-

layer stacks in active region of the QWires. Modal gain in case of the QWires

with 5-layer structures is about 5-times larger than the single-layer structures,

which increases the changes in the imaginary part of the refractive index, thereby

\
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(a) 20-nm wide QWire
0.15% TS barriers

(b) 50-nm wide QWire
0.15% TS barriers
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Figure 4.9: a-factor as a function of photon energy for single-layer QWire struc-
ture with wire widths of 20-nm (a), and 50-nm (b). The arrows point at the
photon energy at which lasing would occur.
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Table 4.2: Wave guide loss of single-layer QWires and QWeli for 0.15% TS barriers
with mode occupation factor, fad of l%/well.

Wire width
(nm)
10
20
30
50

QWeli

Waveguide loss
(cm-I)
5.095
5.190
5.285
5.475
5.950

reducing the a-factor. However, as the number of quantum wells in the active .re-

gion is increased, threshold carrier density is increased as is evident from Fig. 4.7.

4.4.3 Variation of Wire width

Fig. 4.12 presents the a-factor as a function of the injected carrier density in
QWire structures for different barrier strain with increasing wire width. It is

found that a-factor decreases significantly with decreasing wire width and ex-

hibits less dependence on carrier density. This is due to the fact that peak gain

increases and gain saturation decreases with decreasing wire width as is shown

in Fig. 4.6. It is clear that 10-nm wide QWire exhibits the lowest a-factor for all

the barrier conditions and it is increased with increasing wire width. Moreover,
QWires with TS barriers shows further reduction in the a-factor, for peak gain
is increased significantly in case of TS barriers in se scheme.

Fig. 4.13(a) presents the material gain spectra as a function of the photon

energy while Fig. 4.13(b) presents the peak material gain as a function of the

injected carrier density in a QWelilaser, both for 0.15% TS barriers. It is to be

noted from the figures that QWelilasers exhibit lower material gain for a partic-

ular carrier density compared to the QWire lasers as presented in Figs. 4.4 and
4.6, respectively. This is due to the increased dimensionality in the QWelilasers

compared to the QWire lasers. It is also noted from Fig. 4.13(a) that the gain
broadening in QWeli structure is more than the QWires, also clear from Fig. 4.4.

Table 4.3 presents the lasing wavelength, threshold carrier density and a-factor

at threshold carrier density for different wire widths and also for QWeli structure
with 0.15% TS barriers and with single-layer stack.
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Figure 4.10: a-factor as a function of the injected carrier density at gain peak
position of single-layer QWire structure with LM and two types of TS barriers
for wire widths of (a) lO-nm, (b) 20-nm, (c) 30-nm and (d) 50-nm.
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Figure 4.11: a-factor as a function of the injected carrier density at gain peak
position of QWire structures with different number of QWire layers with 0.15%
TS barriers for wire widths of (a) lO-nm, (b) 20-nm, (c) 30-nm and (d) 50-nm.
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Table 4.3: Lasing wavelength, threshold carrier density and a-factor for different
QWires and QWell structure with 0.15% TS barriers and with single-layer stack.

Wire width
(nm)
10
20
30
50

QWell

Lasing wavelength
(pm)
1.46
1.52
1.54
1.56
1.58

Threshold carrier density
(1018 cm-3)

4.61
3.18
2.81
2.36
2.67

a-factor
at threshold
0.13866
0.47432
2.1795
2.2022
1.0603

Finally, a-factor for a QWell structure is presented in Fig. 4.14 in order to

make the comparison with that of the QWire structures, for LM and two types of

TS barriers. All the a-factors are evaluated at the respective lasing frequencies,

or at the gain peak frequencies. Among all the structures with both LM and TS

barriers, the maximum value of the a-factor is the highest for the QWell, and this

maxima monotonically decreases with decreasing wire width. This observation is

in agreement with the theoretical predictions, as is clear from Table 4.3. Lasing

wavelength increases with increasing wire widths and the QWell structure shows

the maximum value, as expected. With the increase of the wire width, threshold

carrier densities are decreased. The reason behind this has already been dis-

cussed. However, the QWell structure shows a significant value of the threshold

carrier density for the same loss condition. This is because the peak gain of the

QWell structure is much less than the QWires. a-factor at threshold increases

with the increase of the wire widths, as expected. It is found for the structure

with 0.15% TS barriers that in spite of the reduction of the maximum value of

the a-factor with decreasing wire width, improvement relative to QWelllasers is

not achieved for the threshold a-factor unless the wire width is reduced below 30

nm.

" .
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Chapter 5

Conclusions

A numerical method to analyze the dynamic performances of QWire lasers has
been studied. Results show that a-factor depends on the device parameters, such

as, wire width, barrier strain, number of vertical layers etc., in a complicated way

owing to the complex interactions between 20 quantum confinement and elastic
strain relaxation effects. Therefore, to optimize the device structures for reduced

a-factor, it is necessary to investigate in detail the dependence of a-factor on

these parameters including non-parabolicity, elastic strain relaxation and other
important effects.

5.1 Summary

a-factor, which describes the carrier induced coupling of the gain change to the

refractive index change in the active region, is one of the most important pa-

rameters to characterize the dynamic performance of semiconductor lasers. Im-
proved performance of semiconductor lasers can be obtained by incorporating
low-dimensional structures in the active regions. The QWire structure under the

consideration of this work consists of multiple layers of InGaAsP CS QWires and

TS or LM barriers grown on (001) InP substrate. Effects of non-parabolicity due

to material properties, quantum-confinement and elastic strain relaxation are in-

corporated in the calculations. The band structures of the CS InGaAsP QWires

are first calculated using an 8 band k . p model including elastic strain relaxation
effects. Optical transitions between electronic states are evaluated using Fermi's

golden rule. Changes in imaginary part of the refractive index is easily found

from the gain spectra and changes in real part of the refractive index is evaluated

54
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from the changes in imaginary part through Kramers-Kronig transformation. All
the calculations are for TE gain which is dominant in CS structures. For QWires,
the electric field of the radiation is assumed to b~ along the wire axis and the laser
cavity is considered to be perpendicular to the wire axis. Dependence of a-factor,
which enhances the linewidth of a laser, on device parameters such as wire width,
barrier strain and number of vertically stacked QWire layers, are evaluated and

fundamental trend in the behavior of the a-factor is investigated. It is found
that a-factor decreases significantly with decreasing wire width and exhibits less
dependence on carrier density. Also, a-factor is the highest when the barriers
are LM to the InP substrate and is drastically reduced when the TS in the bar-
riers is increased in a strain compensating (SC) scheme. It is known that elastic

strain relaxation in QWires depends on the barrier strain. SC barriers strongly
suppress strain relaxation. Peak gain in TE mode for the cavity configuration is
found tq increase with suppressing strain relaxation. Therefore, by using TS bar-

riers, peak gain and differential gain are improved, which consequently reduces

a-factor. Moreover, QWire structures with multiple-layer exhibits lower value of

a-factor compared to the one with single-layer structure. This is because modal

gain in case of multiple-layer structure is greater than the single-layer structure
due to its higher mode occupation factor. Finally, a-factor for a QWell laser is

calculated and compared to the QWires in order to identify the improvements

due to the reduced dimensionality in the QWires. It is found that improvements

in the a-factor relating to QWelllaser is not achieved unless wire width is reduced

below 30 nm. However, among all the structures, the maximum value of the a-

factor is the highest for the QWell and this maxima monotonically decreases with
decreasing wire width.

5.2 Suggestions for Future Works

Semiconductor lasers are key devices in order to realize ultra-fast communications
using optical fibres. The dynamic performances of QWire laser structures are ana-

lyzed by varying its various device parameters, such as, wire width, barrier strain,

number of quantum well layers in the active region. The barrier strain has been

analyzed assuming isotropic strain relaxation. For more accuracy, anisotropic

strain relaxation can be analyzed. a-factor has been determined for each de-
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at their individual lasing frequencies, which ranges from 1.46 pm-1.56 pm. How-

ever, the device structures can be modified so that each device lases at 1.55 pm,

the wavelength of the most interest. This will make the comparison of the ",-factor

more meaningful. In this analysis, only the first order relationship between the

carrier density and the real and the imaginary parts of the refractive index has

been considered. Higher order relationships should lead to new effects and might

modify the ",-factor. Therefore, further work is necessary to calculate ",-factor in-

cluding higher order effects. Finally, QWires only with rectangular cross-sections

fabricated by EBL and two step MOCVD growth have been considered in this

work. The model may be extended to consider other types of QWire structures

as well, such as crescent shaped V-groove QWires on GaAs substrate.

o
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