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ABSTRACT 
 
A submodule  of a right -module  is called a nilpotent submodule of  if  is a right 
nilpotent ideal of  and  is a nil submodule of  if  is a right nil ideal of . By definition, a 
nilpotent submodule is a nil submodule. It is seen that  is a fully invariant nilpotent submodule 
of  if and only if  is a two-sided nilpotent ideal of . Modifying the structure of nil and 
nilpotent right ideals over associative arbitrary rings, present study develops some properties of 
nil and nilpotent submodules over associative endomorphism rings. Some characterizations of nil 
and nilpotent submodules over associative endomorphism rings are also investigated in the 
present study. 
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CHAPTER I 

INTRODUCTION 
The word algebra derives from the word al-jabr which appears in the little of a book written in 
the 9th Century by the Persian mathematician Mohammed Al-Khowarizmi. This book, in a Latin 
translation, had great influence in Europe. Its concerns with problems equivalent to those of 
solving polynomial equations, especially those of degree 2, led to the word algebra eventually 
becoming synonymous with the science of equations. This state of affairs persisted into the 9th 
Century, Serret, in 1894, observing that, “Algebra is, properly speaking, the analysis of 
equations”. 
 
Background and present state of the problem 
 
Ring theory is an important part of algebra. It has been widely used in Electrical and Computer 
Engineering [1]. Historically, some of the major discoveries in ring theory have helped shape the 
course of development of modern abstract algebra. Modern ring theory begins when Wedderburn 
in 1907 proved his celebrated classification theorem for finite dimensional semi-simple algebras 
over fields. Twenty years later, E. Noether and E. Artin introduced the ascending chain condition 
and descending chain condition as substitutes for finite dimensionality. 
 
We know that Module theory appeared as a generalization of theory of vector spaces over a field. 
Every field is a ring and every ring may be considered as a module. Köthe [2] first introduced 
and investigated the notion of nil ideals in commutative ring theory. Amitsur [3] investigated 
radicals of polynomial rings. There were some historical notes on nil ideals and nil radicals due 
to Amitsur [4]. Radicals of graded rings were introduced and investigated by Jespers et al. [5]. 
There is another notion of radicals in nil and Jacobson radicals in graded rings due to 
Smoktunowicz [6]. Puczylowski ([7],[8]) investigated some results concerning radicals of 
associative rings related to Köthe’s nil ideal problems. Chebotar et al. [9] and Klein [10] 
investigated some results concerning nil ideals of associative rings which do not necessarily have 
identities. Sanh et al. [11] introduced the notion of fully invariant submodules and characterized 
their properties.  
 
In the light of the above literature, it is pointed out that many authors have published their works 
on nil ideals and nil radicals over commutative and associative rings. Also it was found that 
Andrunakievich’s Chain is equivalent to Köthe’s problem. 
 
In this thesis, Chapter I deals with the early brief history of nil and nilpotent rings and modules. 
All essential basic definitions, examples and their properties are given in Chapter II. In Chapter 
III, we described some properties of nil and nilpotent ideals in associative arbitrary rings. Some 
properties of nil and nilpotent ideals and modules are investigated in associative arbitrary rings in  
Chapter IV. 



CHAPTER II 

BASIC KNOWLEDGE 
 
 
Overview 
 
Throughout this thesis, all rings are associative with identity and all modules are unitary right R-
modules. We denote by R an arbitrary ring and by mod-R, the category of all right R-modules. 
The notation RM  indicates the right R-module M which when 1 R is assumed to be unital (i.e. 
to have the property that  for any Mm ). The set ),( NMHom  denotes the set of right 
R-module homomorphism between two right R-modules M and N and if further emphasis is 
needed that the notation ),( NMHomR  is used. The kernel of any ),( NMHomf R  is denoted 
by )ker( f and the image of f by ).Im( f In particular, )(MEndR denotes the ring of 
endomorphism of a right R-module M. 
 
A submodule X of M is indicated by writing XM. Also, I RM means that  is a right ideal of R 
and I  RR  that  is a left ideal. The notation IR is reserved for two-sided ideal. 
 
2.1 Preliminaries   
 
Before dealing with deeper results on the structure of rings with the help of module theory, we 
provide first some essential elementary definitions, examples and properties. 
 
 
2.1.1 Definition  
  
Let R be a nonempty set and let  and   denote two binary operations on  which we refer to as 
addition and multiplication, respectively. Then   is called a ring if the following 
conditions hold: 
 
(i) ,R  is an abelian group. 
(ii) multiplication is associative, that is, . 
(iii) multiplication is distributive over addition, that is, 
                       (left distributive law) 
              and    (right distributive law) , Rcba ,, . 
 
Example 
 
(i) The set of all integers  is a ring under addition and multiplication. Similarly, the sets  
of rational numbers, real numbers and complex numbers, respectively are rings under usual 
addition and multiplication. 
 
 
 



(ii) The set R of all matrices of the form , where  are real numbers, with matrix 
addition and multiplication, is a ring.  
 

(iii) If  then the system  is not a ring, where 
0c
ba

R , 

because RBA,  such that 
01

11

c
ba

A and 
02

22

c
ba

B  imply 
2121

212121

bcac
bacbaa

AB . 

Here AB is not a matrix of the form 
0c
ba

 and therefore, RAB . 

 
2.1.2 Definition 
 
Let the set R contains only the zero element, that is, },0{R then   is called a zero ring. 
 
Example 
The system   is a zero ring, where . 
 
2.1.3 Definition 
 
A ring R is called a ring with unity if there exists an element  such that 

,,.11. Raaaa  1 is called the multiplicative identity or unity. 
 
Example 
 
(i) The sets and  are all rings with unity. 
 
 
(ii) Let },4,2,0,2,4,{ E be a set of even integers. Then E is a ring without unity. 
 
 
2.1.4 Definition 
 
A ring R is called a ring with zero divisor if there exist two elements  in R such that 

0ab where 0a and . 
 
Example 
(i) The ring  is a ring with zero divisors.  

                    For, let, where 0a and , 

                    here   , where 0A and . 
 
 



(ii) In the ring of residue classes modulo six  
                                            . 
Here  but  and  .  
 
 
2.1.5 Definition 
 
A ring  is called a ring without zero divisor if the product of two nonzero elements of  is not 
zero, that is, if then  or , for Rba, . 
 
Example:  
 
All the sets and  are rings without zero divisors. 
 
 
2.1.6 Definition 
 
Let R be a ring. Then a nonempty subset S of R is said to be a subring, if under the addition and 
multiplication operations in R, S itself forms a ring. 
 
Example 
 
(i) The set of even integers },4,2,0,2,4,{ E  is a subring of the ring of integers 

. 
 
(ii)  is a subring of  and  is subring of . 
 
 
 
2.1.7 Definition 
 
A nonempty subset S of a ring R is called a left ideal of  if 
                            (i) S is a subring of R, 
                           (ii)  for all  and  . 
 
 
2.1.8 Definition 
 
A nonempty subset S of a ring R is called a right ideal of R if 
                           (i) S is a subring of R, 
                           (ii)  for all  and  . 
 
 
 
 
 
 



2.1.9 Definition 
 
A nonempty subset S of a ring R is called an ideal (two-sided ideal) of R if 
                           (i) S is a subring of R, 
                           (ii)  and  for all  and  . 
 
 
Example  
 
(i) The subring },4,2,0,2,4,{ E  of even integers is an ideal of the ring of integers 

. 
 
 
(ii) Let  is a ring.  Then  is a left ideal, but 

 is not a left ideal of .  
 
 
2.1.10 Definition 
 
A ring R is called a simple ring if it has no proper ideal. 
 
 
Example 
 
Each of the rings   is a simple ring. 
 
 
2.1.11 Definition 
 
An ideal S of a ring R is called the principal ideal of  if the ideal S is generated by a single 
element  of S and we write  or . 
 
Example 
 
In the ring , the ideal  is a 
principal ideal. 
 
 
 
 
2.1.12 Definition 
 
A nonempty ideal  of a ring R, where ,RI  is called a maximal ideal of R, if there exist no  
proper ideal of R containing , that is,  will be maximal ideal if it is impossible to find another 
ideal which lies between  and the whole ring R. 



 
Example 
 
Consider the ring  of integers. 
Choose  and  . 
Here  is not a maximal ideal as there exists an ideal   lying between  and  . 
 
But if we choose , then  is a maximal ideal, because the 
only ideal containing  is  itself. 
 
 
2.1.13 Definition 
 
An ideal  of a ring R is called a prime ideal of R if Iab  implies Ia  or Ib . 
 
Example 
 
In the ring , the ideal  is 
not a prime ideal since I6.530  but neither 6 nor 5 belongs to . 
 
But   is a prime ideal, since I5I5.210  but I2 . 
 
Again a prime ideal in a ring R is any proper ideal P of R such that, whenever I and J are ideals 
of R with PIJ , then either PI  or .PJ  An ideal I of a ring R is called strongly prime if 
for any x, y  R with x y  I, then either x  I or y  I. A prime ring is a ring in which 0 is a 
prime ideal or a  ring R is called a prime ring if there are no nonzero two-sided ideals I and J of R 
such that IJ = 0. 
 
 
2.1.14 Proposition [12] 
 
For a proper ideal P in a ring R, the following conditions are equivalent: 
 
(a) P is a prime ideal.  
(b) If I and J are any ideals of R properly containing P, then I J  P. 
(c) R / P is a prime ring. 
(d) If I and J are any right ideals of R such that I J  P, then either I  P or J  P. 
(e) If I and J are any left ideals of R such that I J  P, then either I  P or J  P. 
(f) If x, y  R with x R y  P, then either x  P or y  P. 
(g) For any x  R and any ideal I of R such that x I  P, then either x R  P or I  P. 
   
 
By induction, we know that if P is a prime ideal in a ring R and  are right ideals of 

such that ,  then some . A maximal ideal in a ring is meant a maximal 
proper ideal, i.e., an ideal which is maximal in the collection of proper ideals. 
 
 



2.1.15 Theorem 
 
Let R be a commutative ring. Then the following conditions are equivalent: 
(a) A maximal ideal is prime. 
(b) An ideal P is prime if and only if R / P is an integral domain. 
(c) An ideal M is maximal if and only if R/M is a field. 
 
2.1.16 Definition 
 
A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any 
other prime ideals. For instance, if R is a prime ring, then 0 is the unique minimal prime ideal of 
R. 
 
Examples 
 
(i) In a commutative artinian ring, every maximal ideal is a minimal prime ideal. 
 
(ii) In an integral domain, the only minimal prime ideal is the zero ideal. 
 
 
2.1.17 Definition 
 
A semiprime ideal in a ring R is any ideal of R which is an intersection of prime ideals. A 
semiprime ring is any ring in which 0 is a semiprime ideal. Note that an ideal P in a ring R is 
semiprime if and only if R/P is a semiprime ring. The intersection of any finite list                      

 of prime ideals, where are distinct prime integers, is the ideal  
. Hence the nonzero semiprime ideals of  consist of the ideals   where  is any 

square-free positive integer including  . 
 
 
2.1.18 Proposition [12]  
 
If R is a commutative ring, then 
(a) The intersection of all prime ideals of R is precisely the set of nilpotent element of R. 
(b) For every ideal I of R, the intersection r  R such that r n  I for some positive integer . 
(c) The ring R is semiprime if and only if it contains no nonzero nilpotent elements. 
 
 
2.1.19 Corollary [12] 
 
For an ideal I in a ring R, the following conditions are equivalent: 
 
(a) I is a semiprime ideal. 
(b) If J is any ideal of R such that  , then J  I. 
(c) If J is any right ideal of R such that , then J  I. 
(d) If J is any left ideal of R such that , then J  I. 
  



 
Note 
 
R is a prime ring if and only if 0 is a prime ideal. R is a semiprime ring if and only if 0 is a  
semiprime ideal. 
 
 
2.2 Properties of Ring 
 
2.2.1. Definition 
 
An element  of a ring  is called nilpotent if 0nx  for some positive integer . 
 
The element 0 (zero) of a ring is trivially nilpotent. 
 
Example 
 
The nilpotent elements of the ring  of integers modulo 8 are  , 
since . 
 
 
2.2.2 Definition 
 
An ideal  in a ring  is said to be nilpotent if for some positive integer , )0(nI . 
Again, an ideal  is called left -nilpotent if for any sequence  of elements of , there 
exists  such that . 
 
Example 
 
We have , then the ideal   in   is nilpotent, since 

)0(3I . 
 
2.2.3 Definition 
 
An ideal  in a ring  is called a nil ideal if each element in   is nilpotent, that is, for each Ia  
there is some positive integer  such that 0na . 
 
Example  
 
The ideal    is a nil ideal, since every element in  is nilpotent:  

. 
 
 
Remarks 
 



Every nilpotent ideal is a nil ideal, since if  is a nilpotent ideal, then there exists a positive 
integer  such that . So for each  implies that . Hence  is a 
nil ideal. But the converse is not true. 
  
The notion of a nil ideal has a connection with that of a nilpotent ideal and in some classes of 
rings, the two notions coincide. If an ideal is nilpotent, it is of course nil. There are two main 
barriers for nil ideals to be nilpotent. 

1. There need not be an upper bound on the exponent required to annihilate the elements. 
Arbitrarily high exponents may be required.  

2. The product of n nilpotent elements may be nonzero for arbitrarily high n.  

Both of these barriers must be avoided for a nil ideal to qualify as nilpotent. 

 
2.2.4 Definition 
 
A ring  is called an integral domain if it is a commutative ring with unity and without zero 
divisors. 
 
Example 
 
 (i) The rings  are integral domains. 
 
 
(ii) The ring of even integers is not an integral domain since it does not contain the unit element. 
 
 
2.2.5 Definition 
 
A ring  is called a field if it is a commutative ring with unity and every nonzero element in 

has a multiplicative inverse. 
 
Example 
 
(i)The sets are fields with respect to addition and multiplication. 
 
(ii) The set  of all integers is not a field, because all nonzero elements have not multiplicative 
inverses except 1and -1. 
 
 
2.2.6 Definition 
 
A nonempty set is called a vector space over a field , if for any Fba,  and Vwv, , the 
following conditions are satisfied: 
 
 

http://en.wikipedia.org/wiki/Nilpotent_ideal


(1)  is an abelian additive group. 
(2) VavVvFa , , that is, V is closed under scalar multiplication.  
(3) the following four laws of scalar multiplication are satisfied: 
     (i) awavwva )(  
    (ii) bvavvba )(  
    (iii) vabbva )()(  
    (iv) vv1 , where 1 is the unity of . 
 
The elements of   are called vectors and the elements of  are called scalars. A vector space  
over a field  is denoted by )(FV . 
  
 
Example 
 

 and , where  and  are the fields of real and complex numbers, respectively, 
are vector spaces with respect to usual addition and multiplication. 
But  is not a vector space, because if   and   then  . 
For example, if 3a  and ,35 i then  . 
 
2.3 Module and different kind of submodules  
 
2.3.1 Definition 
 
Let  be a ring and  be an additive abelian group. Then  is called a right -module if the 
mapping  satisfies the following conditions: 
 
 (i)   
 (ii)  
 (iii)  and  
 
Similarly, we can define left -module by operating to the left side of . 
 
 
2.3.2 Definition 
 
If  is a left -module and also a right -module then  is called an -module or simply a 
module over . 
 
Example 
 
(i) Every ring  is an -module over itself. 
(ii) Every additive group is a module over the ring of integers. 
(iii) Let  be a ring and  a left ideal of . Then   is an -module. 
(iv) The polynomial ring  over a ring  is an -module. 
 
 



2.3.3 Definition 
 
Let  and   be two -modules. If , then  is called an -submodule of  or simply, a 
submodule of . 
 
If  is a submodule of an -module , then  and we have . 
 
Example 
 
Let  and  , then A 
is a submodule of E over  . 
 
 
2.3.4 Definition 
 
Let  be a ring and  be a left ideal of . Let  be the set of all cosets of  
in . Then  is an -module with the compositions, defined by 
 
                                        and  
                                        . 
 
This module  is known as quotient module or factor module of by , which is usually written 
as  or . 
 
 
2.3.5 Definition 
 
A submodule A of a right R-module M is called essential or large in M if for any nonzero 

submodule U of M, A U 0 . If A is essential in M , we denote A M* .  

 

A right ideal I of a ring R is called essential if it is essential in . 

 

For any right R-module M, we always have M *  M. Any finite intersection of essential 

submodules of M is again essential in M, but it is not true in general.  

 

Example 

Consider the ring  of integers. Every nonzero ideal of  is essential in , but the intersection of 

all ideals of   is 0 which is not essential in . 

 

 



2.3.6 Proposition 

In , every nonzero ideal is essential. 

Proof: 

Let  be a nonzero ideal . Then there exists  such that .  For any nonzero ideal 

 , we can find an  such that  .Thus  , 

 so  and so I  J  0. Therefore, I * . 

 

2.3.7 Proposition 

Let M  be a right R-module. Then for any A M,  A * M  if and only if  

such that . 

 

Proof: 

Assume that .* MA  Choose . Then 0mR  and so .0mRA  Then there exists 

.0 mRAx  This means that Ax0  and there exists Rr  such that .mrx  

 Therefore, .0 Amrx  

 

Conversely, let U  be a nonzero submodule of .M  Choose .0 Um  By hypothesis, there 

exists Rr  with 0mr  and .Amr  But then since ,Umr  we have 0mr  and 

.UAmr  Hence .* MA  

 

2.3.8 Proposition 

For any M  Mod- , let A  B M. If  A * M, then (i) A * B, and (ii) B * M. 

 

Proof: 

(i) Let BU  be such that .0U  Then U  is a submodule of ,M  since 

.0,* AUMA Hence A * B. 

 

(ii) Let MU   be such that .0U   Then ,0 UBUA  because 0UA and so 

 B * M. 

 



2.3.9 Proposition 

Let A and B be essential submodules in .RM  Then A  B * M and A  B *  M. 

 

Proof: 

Let MU  be such that .0U  Then .0)()( BAUBAU  

Hence A  B *  M. We have A A  B M  and  A *  M  implying that A  B * M . 

 

Note 

Every nonzero submodule of M is essential in M, i.e., a nonzero submodule A of M is called 

essential in M if A has nonzero intersection with any nonzero submodule of M. 

 
 
2.3.10 Definition 
 
An -module  is said to be a cyclic module generated by an element , if each element 

 is expressible as  for some . The element  in this case is called the 
generator of  and we write . 
 
Example 
 
Let  be a unital -module and for a fixed element , let . Then  is a 
cyclic submodule of  generated by . 
 
 
Remark  
 
For a ring  , the ring of integers, a cyclic -module is nothing more than a cyclic group. 
 
 
2.3.11 Theorem 
 
Any unital, irreducible -module is cyclic. 
 
 
Proof: 
 
Let  be a unital, irreducible -module. Then the only submodules of  are  and . 
 
If  , it is  clearly cyclic. 
 
So, let  , choose   such that . 



 
Let  , then  is submodule of . 
 
Also , since . 
 
So . Thus  is a nonzero submodule of . Therefore, , since the only nonzero 
submodule of  is . It is also clear that  is a cyclic module generated by . Hence  is 
cyclic. Thus the theorem is proved. 
 
 
2.3.12 Definition 
 
If and  are two submodules of an -module , then their linear sum, denoted by  

, is defined as  . 
 
 
2.3.13 Theorem 
 
If  and  are two submodules of an -module , then  is also a submodule of . 
 
 
Proof: 
 
Let  and  be any two elements of . Then  and 

 and we have  
 
               . 
 
Since and  are additive subgroups of , implies  and 
  implies . 
 
Therefore,  . 
So,  is an additive subgroup of . 
 
Now let  and , then 

. Since  is a submodule of , for  we have                       
. 

Similarly, . 
 
Thus  .  
 
So,   implies . 
 
Hence  is  a submodule of . 
 
 
 



2.3.14 Definition 
 
Let  be an -module. Then  is said to satisfy the descending chain condition (DCC) on 
submodules if whenever  for submodules  of , then there exists an 
integer  such that  for all . 
 
 
2.3.15 Definition 
 
Let  be an -module. Then  is said to satisfy the ascending chain condition (ACC) on 
submodules if whenever  for submodules  of , then there exists an 
integer  such that  for all . 
 
 
2.3.16 Definition  
 
The ring R is semisimple if R is semisimple as a right R-module. A right ideal of R which is 
simple as an R-module is called a minimal right ideal. A semisimple ring is thus a direct sum of 
minimal right ideals, and every simple module is isomorphic to a minimal right ideal of R. 
 
 
Note 
 
The prime radical of  is the intersection of all prime submodules of  and is denoted by . 
The prime radical of a ring  is the intersection of all prime ideals of  and is denoted by . 
 
2.3.17 Lemma [13] 
 
 For a ring R with identity, the following conditions are equivalent: 
 
(b) 0 is the only nilpotent ideal in R;  
(a) R is a semiprime ring (i.e., P(R) =0); 
(c) For ideals I, J in R with I J = 0 implies . 
 
Note 
 
In noetherian rings, all nil one-sided ideals are nilpotent. If  is a nonzero ring, it has no prime 
ideal and so, P(R) = R. If R is nonzero, then it has at least one maximal ideal. A ring is 
semiprime if and only if P(R) = 0. In any case,  is the smallest semiprime ideal of , and 
because P(R) is semiprime, it contains all nilpotent one-sided ideals of R. 
 
 
2.3.18 Corollary [14] 
 
(a) Every one-sided or two-sided nilpotent ideal is a nil ideal. 
(b) The sum of two nilpotent right, left or two-sided ideals is again nilpotent. 
(c) If R R  is noetherian, then every two-sided nil ideal is nilpotent. 



 
 
2.3.19 Proposition [15]  
 
The following properties of a module  are equivalent: 
 
(a)  is semisimple. 
(b)  is a direct sum of simple modules. 
(c) Every submodule of  is a direct summand. 
 
2.3.20 Proposition [15] 
 
For a ring , the following are equivalent: 
 
(a)  is a semisimple ring and has no two-sided ideal except  and . 
(b) R is a semisimple ring, there is only one isomorphism class of simple modules. 
 
2.3.21 Definition 
 
Let X be a subset of a right R-module M. The right annihilator of X is the set              
                               r R (X) = {r  R: x r = 0 for all x  X}, which is a right ideal of R.  
If X is a submodule of M, then r R (X) is a two-sided ideal of R. If M = R, then the right 
annihilator of X  is  r R (X)  = { r  R : x r = 0 for all x  X } as well as a left annihilator of  is 
                                l R (X) = { r  R :  r x = 0 for all x  X }. 
 
A right annihilator is a right ideal of R which is of the form r R (X) (or simply r(X)) for some  
and a left annihilator is a left ideal of the form l R (X). An element  of a ring  is called right 
regular if R ( ) = 0, left regular if R (c) = 0, and regular if R ( ) = R (c) = 0.  
 
Example  
 
Every nonzero element of an integral domain is regular. 
 
If  is a right -module and ,Mm  then it is an annihilator if  RR RmrRrmr }0:{)(  
and . 
 
 
2.3.22 Definition 
 
A ring R is a prime ring if for any two elements ,   for all  in R implies 

 or . 
 
Examples 
 
(i) Any integral domain. 



(ii) Any primitive ring. 
(iii) A matrix ring over an integral domain. In particular, the ring of 2 x 2 integer matrices is a 
prime ring. 
 
2.3.23 Definition 
 
A submodule  of a right -module  is called a simple submodule (or minimal submodule) if 

 is a simple module. 
 
2.3.24 Definition 
 
A submodule X is called a maximal submodule of  if MX  and for any submodule  

 of  ,  if YX  then XY or .MY  
 
2.3.25 Theorem 
 
The following statements hold: 
(a) Every finitely generated right -module contains at least one maximal submodule. Therefore,    
every ring with identity contains at least one maximal right ideal. 
(b) For any submodule  of ,  is maximal if and only if  is simple. 
(c)  is simple if and only if for any  

 
2.4 Noetherian and artinian modules  
 
2.4.1 Definition  
 
A ring which satisfies the descending chain condition (DCC) for left (resp. right) ideals is called 
a left (resp. right) artinian ring. 
 
A ring which is both left artinian and right artinian is called an artinian ring. 
 
Example 
 
 (i) Every finite ring is artinian. 
(ii) Every divisor ring  is right artinian as its only right ideals are  and  itself. Because of 
similar reason,  is also left artinian. 
  
2.4.2 Definition 
 
A ring which satisfies the ascending chain condition (ACC) for left (resp. right) ideals is called a 
left (resp. right) noetherian ring. 
 
A ring which is both left noetherian and right noetherian is called a noetherian ring. 
 
Example 
 
(i) Every finite ring is both left and right noetherian. 



(ii) Every principal ideal ring is a noetherian ring. 
(iii) The set  of all integers is a noetherian ring because it is a principal ideal domain (PID) and  
       every PID is a  noetherian ring.         
 (iv) For a divisor ring , the only right ideals of  are  and  itself. So,  is right     
       noetherian. For similar reasons,  is also left noetherian. 
 
 
2.4.3 Definition 
 
A module  is called artinian if DCC (or minimum condition) holds for . 
 
Example 
 
 (i) A module which has only finitely many submodules is artinian. In particular, finite abelian 
groups are artinian as modules over . 
 
(ii) Infinite cyclic groups are not artinian. For instance,  has a non stationary descending chain 
of subgroups, namely,   .       
 
 
2.4.4 Noetherian module 
 
 A module  is called noetherian if ACC (or maximum condition) holds for . 
 
Example 
 
(i) A module which has only finitely many submodules is artinian. In particular, finite abelian 
groups are artinian as modules over . 
(ii) Unlike the artinian case, infinite cyclic groups are noetherian, because every subgroup of a 
cyclic group is cyclic. 
 
2.4.5 Definition  
 
A module M of which the submodule is a prime submodule is called a prime module. It is 
proved that M  is a prime module if and only if Ann (N) =Ann( M), for all nonzero submodules N 
of M.  It is proved that an artinian faithful multiplication R-module is a prime module if and only 
if R is a Dedekind domain. 
 
2.4.6 Proposition  
 
An artinian -module  is a prime module if and only if R/Ann (M) is a field. 
 
Proof:   
 
Let  is a non trivial submodule of  Suppose that N0 is a minimal element of . 
Obviously N0 is a nonzero simple module. Hence there exists an element Ma0  such that  



N0 = Ra )(/ aAnnR  and Ann(a) is a maximal ideal of R. Since M is a prime module, Ann (a) = 
Ann (M). Consequently,  Ann(M) is a maximal ideal of R. Conversely,  note that in a vector space 
every proper submodule (subspace) is a prime submodule. Now since  is a prime submodule of 
M as an R /Ann (M)-module, obviously it is a prime submodule of M as an R-module. 
 
2.4.7 Proposition [12] 
 
For a ring R, the following conditions are equivalent: 
(a) R is right artinian and J(R) = 0. 
(b) R is left artinian and J(R) = 0. 
(c) R is semisimple. 
 
 
2.4.8 Definition  
 
A right R-module M is called artinian if every nonempty family of submodules has a minimal 
element by inclusion. 
 
A right R- module is called right artinian if RR  is artinian as a right R-module. 
 
2.4.9 Corollary [12] 
 
For a right artinian ring R, the Jacobson radical equals the prime radical. 
 
2.4.10 Corollary [12] 
 
For a ring R, the following conditions are equivalent: 
(a) R is right artinian and semiprime. 
(b) R is left artinian and semiprime. 
(c) R is semisimple. 
 
2.4.11 Corollary [12] 
 
For a ring R, the following conditions are equivalent: 
(a) R is prime and right artinian. 
(b) R is prime and left artinian. 
(c) R is simple and right artinian. 
(d) R is simple and left artinian. 
(e) R is simple and semiprime. 
(f) R  M n (D) for some positive integer  and some division ring D. 
 
2.4.12 Proposition [12] 
  
If R is a nonzero right or left artinian ring, then all prime ideals in R are maximal. 
 
 
 



2.4.13 Theorem [16]  
 
Let M be a right R-module and let X be its submodule. Then the following statements are 
equivalent: 
 
(a) M is noetherian; 
(b) X and M / X are noetherian; 
(c) Any ascending chain ......21 nMMM of submodules of  is stationary; 
(d) Every submodule of M is finitely generated; 
(e) For every nonempty family {M i : i  I } of submodules  of , there exists a finite 
subfamily {M i  : i  I 0 } where I 0   I  with I 0  finite such that 

Ii
iM  = .

0Ii
iM  

 
Theorem 2.4.14 [17]  
 
Let M be a right R-module and let X be its submodule. Then the following statements are 
equivalent: 
 
(a)  is artinian; 
(b) X and M / X are artinian; 
(c) Any descending chain ......21 nMMM  of  submodules of  is stationary; 
(d) Every factor module of  is finitely cogenerated; 
(e) For every nonempty family {M i : i  I }of submodules  of  , there exists a finite 
subfamily {M i  : i  I 0 } where I 0   I  with I 0  finite such that 

Ii
iM  = 

0

.
Ii

iM
 

 
2.5 Prime submodules and semiprime submodules  
 
Sanh et al. [11] introduced the notion of prime and semiprime submodules of a given right       -
module over .  
 
Let  be a right -module and  its endomorphism ring. Ahmed et al. [19] 
investigated some results on prime submodules and semiprime submodules. 
 
 
2.5.1 Proposition [19] 
 
Let  be a right -module which is a self-generator. Then we have the followings: 
(1) If  is a minimal prime submodule of , then  is a minimal prime ideal of . 
(2) If  is a minimal prime ideal of , then  is a minimal prime submodule of  and 

.PIX  
 
 
 
 



2.5.2 Theorem [19] 
 
Let  be a right -module which is a self-generator. Let  be a fully invariant submodule of . 
Then the following conditions are equivalent: 
 
(1)  is a semiprime submodule of ; 
(2)If  is any ideal of  such that  , then ; 
(3) If  is any ideal of   such that ,  then ; 

(4) If  is any right ideal of  such that , then ; 
(5) If  is any left ideal of  such that , then . 
 
 
Now we have more properties about prime and semiprime submodules. 
 
2.5.3 Proposition [17] 
 
Let   be a quasi-projective, finitely generated right -module which is a self-generator. If  is 
a noetherian module, then there exists only finitely many minimal prime submodules. 
 
Proof: 
 
If  is a noetherian module, then  is a right noetherian ring. Indeed, suppose that we have an 
ascending chain of right ideal of , say  . Then we have   is an 
ascending chain of submodules of . Since  is a noetherian module, there is an integer  such 
that , for all .  

Then we have   Hom Hom .  
Thus the chain is stationary and so  is a right noetherian ring. Thus  

 are the only minimal prime submodules of . 
 
 
2.5.4 Lemma [17] 
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator and , a 
minimal submodule of . Then I X  is a minimal right ideal of . 
 
Proof:  
 
Let  be a right ideal of  such that . Then  is a nonzero submodule of  and 

. Thus  and it follows that  
 
 
 
 



2.5.5 Proposition [17] 
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. Let  
be a minimal submodule of . Then either  or  for some idempotent . 
 
Proof: 
 
Since  is a minimal submodule of  is a minimal right ideal of . Suppose that  . 
Then there is  such that . Since  is a right ideal of and g I X   I X , we 
have  Then there exists  such that  Then set   
is a right ideal of  and  is properly contained in  since . By the minimality of  we 

must have . We have X  and  so . Since   
and , we have  
 
 
2.5.6 Corollary [17] 
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator and let 

be a minimal submodule of  If is a semiprime module, then  for some 
idempotent . 
 
 
2.5.7 Proposition [17] 
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. 
The  where  is a singular ideal of  and  is a singular submodule of 

. 
 
Proof: 
 
Let ) and . We show that  Since , there exists an essential 
right ideal  of  such that . Then  Since is an essential right ideal of , 
we have  is an essential submodule of  and so  is an essential right ideal of . 
We have , proving that  
 
 
2.5.8 Corollary [17] 
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. If  is a 
nonsingular module, then  is a right nonsingular ring. 
 
 
 
 



2.5.9 Proposition [17] 
 
Let  be a right -module which is a self-generator. If  is a semiprime module with the ACC 
for -annihilators, then  has only a finite number of minimal prime submodules. If  
are minimal prime submodules of , then . Also, a prime submodule  of 

 is minimal if and only if  is an annihilator ideal of . 
 
Proof: 
 
Since  is a semiprime module,  is a semiprime ring. If satisfies the ACC for -annihilators, 
then  satisfies the ACC  for right annihilators. Then,  has only a finite number of minimal 
prime ideals. Therefore  has only a finite number of minimal prime submodules. If  
are minimal prime submodules of , then  are minimal prime ideals of . Thus 

, but  we have . 

Finally, a prime submodule  of  is minimal if and only if  is a minimal prime ideal of .  
 
2.5.10 Proposition [17] 
 
Let  be a quasi-projective right -module and , a fully invariant submodule of . Then the 
following are equivalent: 
 

(1)  is a semiprime submodule of . 
(2)  is a semiprime module. 

 
 
2.6 Homomorphism and endomorphism   
 
2.6.1 Definition 
 
Let  and  be two -modules. Then a mapping  is called a homomorphism ( -
homomorphism or module homomorphism) if 

(i)  for any  
(ii)  

If  is one-one and onto, it is called an isomorphism of  into .  
 
Remark  
 
If   is a homomorphism, then  
 

(i) . 
(ii) . 
(iii) . 
(iv) If  is a divisor ring, then an -module homomorphism is called a linear transformation.  



Example 
 
Let  be an -module. Then the mapping  of  onto  is clearly an -homomorphism 
of  onto . 
 
2.6.2 Definition  
 
A homomorphism  of -modules  and  is called  
 

(i) a monomorphism if  is injective. 
(ii) an epimorphism if   is surjective. 
(iii)an isomorphism if  is bijective. 
(iv) an endomorphism if . 
(v) an automorphism if  and  is an isomorphism. 

 
2.6.3 Definition  
 
Let , then the kernel of  is denoted by  and is defined by 
                             where 0 is the additive identity of . 
 
2.6.4 Theorem [14]  
 
The kernel of a module homomorphism is a submodule. 
 
Proof: 
  
If  is a homomorphism of an -module  into an -module , then the kernel of  is  

 where 0 is the additive identity of . 
Since , it follows that .  So . 
Let . Then  and  
                               .  
Thus  implies . 
 
Also, if  and , then . 
So,  and  implies . 
 
Hence,  is a submodule of . 
 
2.6.5 Definition 
 
Let  be a homomorphism of an -module  into an -module , then the image of  is 
denoted by  and is defined by  . 
 
2.6.6 Theorem [14] 



 
The image of a homomorphism is a submodule. 
 
Proof: 
 
If  is a homomorphism of an -module  into an -module , then the image of   is 
  . 
 
We have to prove that  is a submodule of . 
 
Let  be any two elements of , where . 
 
Now , since . 
 
Therefore,  is an additive subgroup of . 
 
 
Again, let  and , then , since . 
 
Hence  is a submodule of . 
 
 
 2.6.7 Theorem [14] 
 
Let  be a module homomorphism. Then  is an injective (or, monomorphism) if and only if 

. 
 
Proof:  
 
Let  be a homomorphism of an -module  into and -module  and let . We 
have to show that  is injective. 
 
Now, if , then  implies  

                                                                                
                                                                                
                                                                                
                                                                                

This shows that  is injective.  
 
Conversely, let  be injective. Then  
Since  is one-one, we have . 
Hence,  . Thus the theorem is proved. 
 
2.6.8 Proposition [17] 
 
Let M and N be left -modules and let NMf :  be an -homomorphism. Then the following 
statements are equivalent: 



 
(a) f is an epimorphism onto N; 
(b) Im (f) = N; 
 
2.6.9 Proposition [17] 
 
Let M and N be left R-modules and let NMf :  be an -homomorphism. Then the following 
statements are equivalent: 
 
(a) f is a monomorphism ; 
(b) Ker f = 0; 
 
2.6.10 Definition  
 
Let M be a right R-module. A homomorphism MMf :  is called an endomorphism. The 
abelian group Hom ),( MMR  becomes a ring if we use the composition of maps as 
multiplication. This ring is called the endomorphism ring of M, and we denoted by )(MEndR  
 
2.6.11 Proposition [17] 
 
Let R and S be a rings and M an abelian group. If M is a left R-module via )(: MEndRf l and 
a right S-module via )(: MEndSg then the following are equivalent : 
(a) SR M ; 
(b) f:  R )( SMEnd is a ring homomorphism; 
(c) g:  S  )( MEnd R is a ring homomorphism. 
 
2.6.12 Definition  
 
Let M be a right R-module and )( RMEndS . Suppose that X is a fully invariant submodule of 
M. Then the set })(:{ XMfSfI X is a two-sided ideals of S. By the definition, the class 
of all fully invariant submodules of M is nonempty and closed under intersections and sums. 
Indeed, if X and Y are fully invariant submodules of M, then for every f  S, we have f(X + Y) = 
f(X) + f(Y)  X + Y and f(X Y)  f(X)  f(Y)  X Y. In general, if {X i  : I  I} where I is 
an index set, is a family of fully invariant submodules of M, then 

Ii
iX  and 

Ii
iX are fully 

invariant submodules of M. 
 
 
 
 
2.6.13 Proposition [17]  
 
If R is a ring and  and  denote respectively the left and right multiplication, then 
              : R  End( RM ) and  : R  End  are ring isomorphisms. 



 
2.6.14 Definition  
 
Let M be a right R-module and X, a proper fully invariant submodule of M. Then X is called a 
prime submodule of M if for any ideal I of S and any fully invariant submodule U of M, if  
I(U)  X then either I(M)  X or U  X. A fully invariant submodule X of M is called strongly 
prime if for any f  S and any m  M,  f(m)  X implies f(M)  X or  m  X. 
 
2.6.15 Theorem ([11], [18])  
 
Let M  be a right R-module and P be a proper fully invariant submodule of M. Then the 
following conditions are equivalent: 
 
(a) P is a prime submodule of M; 
(b) For any right ideal I of S and any submodule U of M, if I(U)  P, then either  
      I(M)  P or U  P; 
(c) For any   S and any fully invariant submodule U of M, if (U)  P, then  
      either   (M)  P or U  P; 
(d) For any left ideal I of S and any subset A of M, if IS(A)  P, then either I(M)  P or A  P; 
(e) For any   S and any m  M, if (S(m))  P, then either (M)  P or m  P. 
Moreover, if M is quasi-projective, then the above conditions are equivalent to: 
(f) M / P is a prime module. 
 
In addition, if M is quasi-projective and a self-generator, then the above conditions are equivalent 
to: 
 
(g) If I is an ideal of S and U, a fully invariant submodule of M such that I(M) and U properly 
contain , then I(U)  P. 
 
2.6.16 Theorem [14] 
 
A homomorphic image of a right noetherian ring is a noetherian ring. 
 
Proof: 
Let  be a homomorphic  image of a right noetherian ring . Then  for some ideal of 

. So it is sufficient to prove that   is right noetherian. 
Let  be an ascending chain of right ideals of . Now each  is of the form 

, where  is a right ideal of  containing . Also . So the above 
ascending chain gives the rise to the ascending chain  of right ideals of . 
But as  is  right noetherian, there exists a positive integer  such that . This 
implies that . 
Hence  is right noetherian. 
 
2.6.17 Theorem [14] 
 
If  is a left noetherian ring, then any homomorphic image of  is a left noetherian ring. 
 



Proof: 
 
Let  is a left noetherian ring and  be an epimorphism of rings. 
Let  be an ascending chain of . Let  for all . Then  is a 
left ideal of  for all  and . 
Since  is left noetherian, there exists positive integer  such that . 
Let . Since  is onto, there exists  such that . Then  
and so . Therefore,  , proving that  is left noetherian. 
 
2.7 Injective and Projective modules  
 
2.7.1 Definition 
 
A sequence is a function whose domain is the set of positive integers, that is, a sequence in a set 
is a function  where  is the set of natural numbers and is written as  or 

, where . 
 
2.7.2 Definition   
 
Let  be a ring. A sequence (finite or infinite)  of -modules 
and -module homomorphisms is called an exact sequence if  for all . 
 
In particular, a pair of module homomorphisms , is said to be exact at B provided 

. 

An exact sequence of special form  is called a short exact sequence. 
Here the exactness means that α is injective, β is surjective and . 
 
Example  
 
(i) If  is a submodule of , then the sequence  is exact, where  is the 
inclusion map and  is the canonical epimorphism. 

(ii) Let  be -modules, then  is a short exact sequence. 
Now let   be modules with homomorphisms , ,  and 

. This is given in the following diagram 
   
 
 
 
 
 
 
 
 
We say this diagram is commutative if . 
 

g' 

f’ 
C D 

g 

B 
f 

A 



2.7.3 Lemma (The short five lemma) [17] 
 
Let  be a ring and   
 
 
 
 
 
 
 
 
 
 
a commutative diagram of -module homomorphisms such that each row is a short exact 
sequence. Then  
 
(i) If  monomorphisms then β is a monomorphism. 
(ii) If  epimorphisms then β is an epimorphism. 
(iii) If  isomorphisms then β is an isomorphism. 
 
2.7.4 Definition  
 
Two short exact sequences are said to be isomorphic if there is a commutative diagram of 
module homomorphisms 
 
 
 
 
 
 
 
 
 
such that and  are isomorphisms. It is easy to verify the the diagram  
 
 
 
 
 
 
 
 
 
 
is also commutative. In fact, isomorphism of  short exact sequences is an equivalence relation. 
 
2.7.5 Definition 

β  α 

f g 

C B A O O 

f’ g’ 

C’ B’ A’ O O 

g  f 

  

C B A O O 

  

C’ B’ A’ O O 

   

  

C B A O O 

  

C’ B’ A’ O O 



 
A module  over  a ring  is said to be projective if given any diagram of -module 
homomorphisms 
 
 
 
 
 
 
 
 
with bottom row exact (that is an epimorphism), there exists an  -module homomorphism 

 such that the diagram  
 
 
 
 
 
 
 
 
 
is commutative (that is, ). 
 
Example 
 
If the ring  has an identity and  is unitary, then  is projective if and only if for every pair of 
unitary modules  and diagram of -module homomorphisms  
 
 
 
 
 
 
 
 
with  an epimorphism, there exists a homomorphism  with . 
 
2.7.6 Theorem [17] 
Every free module  over a ring  with identity is projective. 
 
Proof:  
Consider a diagram of homomorphisms of unitary -modules: 
 
 
 
 

g 

f 

A O B 

P 

h 

g 

f 

A O B 

P 

g 

f 

A O B 

P 

g 

f 

A O B 

F 



 
 
 
 
with  an epimorphism and  a free -module on the set . For each 

. Since  is an epimorphism, there exists  with . Since  
is free, the map  given by   induces an -module homomorphism  such 
that  for all . Consequently,  for all  so that 

 which implies . 
 
Therefore,  is projective. Thus the theorem is proved. 
 
2.7.7 Theorem [17] 
Let  be a ring. The following conditions on an -module  are equivalent. 

(i)  is projective 

(ii) Every short exact sequence  is split exact (hence ); 
(iii)Here is a free module  and an -module  such that  

 
2.7.8 Definition 
 
A module  over a ring  is said to be injective if given any diagram of -module 
homomorphisms  
 
 
 
 
 
 
 
 
with top row exact (that is,  a monomorphism), then there exists an -module homomorphism  

 that the diagram   
 
 
 
 
 
 
 
 
is commutative (that is, ). 
 
2.7.9 Theorem [17] 
 
Let  be a ring with identity, then the following conditions are equivalent: 
 

g 

f 

J 

B A O 

h 

g 

f 

J 

B A O 



(i)  is semisimple. 
(ii) Every -module is projective. 
(iii)Every -module is injective. 

 
2.7.10 Proposition [17] 
 
The following properties of a module  are equivalent: 
 
    (i)         is projective. 
    (ii)        is a direct summand of a free module. 
    (iii)      Every exact sequence  splits.  
 
 
2.7.11 Definition  
 
An element R  is called right regular (resp. left regular) if for any ,  
(resp.  If , then  is called a regular element. For example, 
every non-zero element of an integral domain is  regular and if F is a field, then any element of 
the set is regular if and only if its determinant values is zero. Elements which are regular 
on one side need not be regular. 
 
 
2.7.12 Proposition [17] 
 
The following properties of a ring  are equivalent: 
 

(i)   is regular. 
(ii)  Every principal right ideal of  is generated by an idempotent element. 
(iii)  Every finitely generated right ideal of  is generated by an idempotent element. 
(iv)  Every left -module is flat. 

 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER III 

NIL AND NILPOTENT RINGS 
 
Overview 
 
In this chapter, a ring will be defined as an algebraic structure with a commutative addition, and 
a multiplication which may or may not be commutative. This distinction yields two quite 
different theories: the theory of commutative and noncommutative rings. This chapter is mainly 
concerned with commutative rings.  
 
It is Dedekind who extracted the important properties of “ideal numbers”, defined an “ideal” by 
its modern properties: namely that of being a subgroup which is closed under multiplication by 
any ring element. He further introduced prime ideals as a generalization of prime numbers. Note 
that today we still use the terminology “Dedekind rings” to describe rings which have in  
particular a good behavior with respect to factorization of prime ideals.  
 
3.1 Definition  
 
Let  be a ring with DCC on right ideals. Let  be the collection of all nilpotent right ideals of 

. Then  is called the radical of . 
 
3.2 Theorem [18] 
 
Let  be a ring with DCC on right ideals and let  be the radical of . Then  is nilpotent. 
 
Proof:  
 
Clearly,  is a right ideal, so  is a descending sequence of right ideals. By the 
DCC, there exists an integer such that  . Thus  .  
 
If   , the proof is finished. 
 
Otherwise, there exists right ideals  such that  . BY the minimum condition (equivalent 
to the DCC), there exists a right ideal  minimal with respect to the property . 
 
Since , there exists an element   such that . But then 

, so by minimality of , . 
 
Thus there exists an element  such that . Now , so y also is contained in the 
sum of finitely many nilpotent right ideals. Therefore,  is nilpotent, that is,  for some 
integer . But then  implies , for all , where as , a 
contradiction. 
This contradiction shows that  and  is nilpotent. 
 



3.3 Corollary [14] 

(1) Every one-sided or two-sided nilpotent ideal is a nil ideal. 

(2) The sum of two nilpotent right, left or two-sided ideals is again nilpotent. 

(3) If R R is noetherian, then every two-sided nil ideal is nilpotent. 

Proof: 

(1) By definition, it follows the result. 

(2) Let ,RRA RRB and .0,0 nm BA   

We assert that .0)( nmBA  Let nmiBbAa ii ,,3,2,1,,   then by binomial theorem 

nm

i
ii ba

1

)( is a sum of products of m + n factors of which either at least m factors are from A or 

at least n factors are from B. Since A and B are right ideals, the assertion follows. 
(3) Let N be a two-sided nil ideal of R. Since RR  is Noetherian, among the nilpotent right ideals 

contained in N, there is a maximal one. Let A be one such and suppose we have .0nA  By (2), 

A is indeed the largest nilpotent right ideal contained in N. Since for Rx , xA is also a nilpotent 

right ideal contained in N, A is in fact a two-sided ideal. If for an element Nb  we have 

,)( AbR K
 then it follows that ,0)( KnbR  thus AbR . 

 
The following corollary is an extension of the above corollary over associative arbitrary rings. 
 
3.4 Corollary 

Let R be a right noetherian ring. Then each nil one-sided ideal of R is nilpotent. 

Proof: 

Let S be the sum of all the nilpotent right ideals of R. Then S is an ideal. Since R is right 
noetherian, S is the sum of a finite number of nilpotent right ideals and hence S is nilpotent. It 
follows that the quotient ring SR /  has no nonzero nilpotent right ideals. Let I be a nil one-sided 
ideal of R. Then the image of I in SR /  is zero. Hence .SI   
 
3.5 Proposition [14] 
 
Let  be a ring with DCC on right ideals. Let  be the radical of . Then 
 
(1).  is a nilpotent ideal. 
(2).  is the sum of all nilpotent left ideals 
(3).  is the unique ideal of  maximal with respect to being nilpotent. 
 
 



 
3.6 Theorem [18] 
 
Let  be a ring with DCC on right ideals. Then the radical of  is zero. 
 
Proof: 
 
Let  be a nilpotent right ideal of  and  Then  is a right ideal in . 
 
Since  and  are nilpotent, there exist integers  such that  
    , that is,  where  . 
  
 
Now let . Then , where the product 

 of these  elements of  is zero, that is,   and so . 
 
Since  is nilpotent  and so  equals zero in . 
 
Thus  has radical zero. 
 
Hence the theorem is proved. 
 
3.7 Proposition [14] 
 
Let  be a semisimple ring. Then 
(1).  has minimal right ideals 
(2). No minimal right ideal is nilpotent 
(3). If  is a minimal right ideal of , there exists an idempotent element  
such that . 
 
3.8 Proposition [15] 
 
If  is a semisimple ring then it has no two-sided ideals except zero and . 
 
The following proposition is an extension of the above proposition over associative arbitrary 
rings. 
 
3.9 Proposition  

Let R be a semiprime ring with the ACC for right annihilators. Then R has no nonzero nil one-
sided ideals. 
 
Proof:  

Let I be a nonzero one-sided ideal of R and let Ia0 with )(arR as large as possible. Since R 
is semiprime, there is an element Rx such that .0axa  Thus axa  is a nonzero element of I 
such that ).()( axarar RR  So ).()( axarar RR We have ,0ax  i.e., ).(arx R Thus 



).(axarx R So, .0)( 2ax  Hence )(arxax R implying that .0)( 3ax  Therefore, ax  and 
hence, also xa  is not nilpotent and Iax  or .Ixa  
 
3.10 Definition  
 
The nil radical of a ring  is defined to be the radical ideal with respect to the property that “a 
two-sided ideal is nil” and is denoted by . That is,  is the largest two-sided ideal of  
such that every element of  is nilpotent. 
 
Note 
 
Recall that the prime radical of  is the intersection of all prime submodules of  and is 
denoted by . The prime radical of a ring  is the intersection of all prime ideals of  and is 
denoted by . 
 
3.11 Theorem [18] 
 
Let  be a simple ring with DCC on right ideals. Then , the radical of , is zero. 
 
Proof:  
 
Since  is an ideal of , then  or . Since  is nilpotent,  implies  for 
some, contradicting that  for  implies , since  is an ideal. 
Thus . 
  
3.12 Theorem [18]  
 
For any ring , the nil radical  exists and it is characterized by 

 the principal two-sided ideal  is a nil ideal . 
 
Proof:  
 
First we have to prove that   as above is a two-sided ideal and second that it is the 
largest for that property. 
 
(1) Since . If  and  , then  and , and so, both  
and  are nil ideal; hence  . Thus we have only to prove the following: 
(2)  is an additive subgroup of . 
 
To see this, for , we have to show that  is a nil ideal. Since , 
every element  can be written as  for some  and . Since  

 and  are nil ideals, both  and  are nilpotent, say  and  for some  
Now look at , where  is a sum of monomials in  and  in 
each of which  is a factor, that is, , and so,  is nilpotent and hence  is 
nilpotent, that is,  is a nil ideal, as required.  
 



Finally, let   be any two-sided nil ideal of   . Then trivially, , and hence,  is 
a nil ideal, that is, , as required. 
 
 
3.13 Definition  
 
The Jacobson radical of a ring  with identity is defined as the radical ideal of  with respect to 
the property that “a two-sided ideal  is such that  is a unit in  for all ” and it is 
denoted by . In other words,  is the largest two-sided ideal of  such that  is  a 
unit all . 
 
3.14 Proposition [14] 
 
For any ring ,  and equality need not hold. 
 
Proof:  
Let . Since  is a nil ideal,  is nilpotent, say   for some . Now we 
have  implies that  is a unit in  and so 

, as required. 
 
3.15 Proposition [18] 
 
The Jacobson radical of an artinian ring is the intersection of some finitely maximal left (resp. 
right) ideals. 
 
Proof: 
 
Let  be an artinian ring. Let  be the set of all maximal left ideals of . Let  be the family of 
all left ideals of  each of which is an intersection of finitely many maximal left ideals of . 
Obviously, this family is nonempty, since . Since  is artinian,  has a minimal member, 
say . We have  where . On the other hand, if , then 

 being a member of  must be equal to  by the minimality of  which means that 
. Thus we get that  and hence , as required. 

 
3.16 Theorem [18] 
 
The Jacobson radical of an artinian ring  is nilpotent. In fact,  is the largest nilpotent (left 
or right or two-sided) ideal of  and consequently . 
 
Proof:  
 
Since  is artinian, the descending chain of ideals       

 
is stationary where . Say,  for some . Write . Now we 
have  and .   
 



Assume, if possible, that . Consider the family  of all left ideals of  such that 
. Since , and so, . Note that . Since  is artinian,  

has a minimal member, say , that is,  is a left ideal of  such that  and  is minimal 
for this property. On the other hand, since , we find  and  such that  
which implies that , that is,  . But , and so,  by minimality of 

. Thus  is a principal left ideal of . 
 
Finally, we have  and  and  which 
gives that . Now we know that  a contradiction to the assumption that 

. Hence . 
 
3.17 Theorem [18] 
 
In a right artinian ring every nil right ideal is nilpotent. 
 
Proof: 
 
Let  be a nil right ideal of a right artinian ring . For the descending chain of right ideal 

 there exists a positive integer  such that . In particular, 
. We claim that , if not then . 

 
Let  is a right ideal of R such that  
 
Here  is nonempty as . Since  is right artinian,  has a minimal element. Let  be the 
minimal element of  .Then => there exists  such that . But , 
as  is a right ideal of . Let . 
 
Again,  as  is a right ideal of . This violates the 
minimality of  . Hence . 
 
Since , there exists  such that  . But as  is a nil right ideal and  ,  is 
nilpotent. So there exists a positive integer  such that . 
 
Then , which is a contradiction to the 
choice of k. 
 
Hence . Consequently,  is a nilpotent right ideal. Thus the theorem is proved. 
 
 
3.18 Lemma [12] 

 

Let R be a commutative ring. Then the right singular ideal Z(R) of R is zero if and only if R is 

semiprime. 

 
 



Proof:  
 
Suppose that R is a semiprime ring. Let )(RZz . We show that z = 0. Set I = zR ).(zrR We 
have zR . )(zrR  = 0. In fact, for any t  R and any 1t )(zrR , we have 1t z = 0. So, z t 1t = t 1t z = 

0.t 0, showing that for any t  R, zR. )(zrR  = 0. We have II 2  = zR )(zrR  = 0. So 2I = 0. 
Since R is a semiprime ring, 0 is a semiprime ideal. It follows that I = 0. But )(zrR  is an essential 
right ideal of R. This implies that zR = 0. Thus . 
Conversely, suppose that Z(R) = 0. Let a be an element of R such that 2a = 0. We show that       
a = 0 from which it follows that R has no nonzero nilpotent element. Let 0  x  R. Then we 
need to consider two cases: (i) ax = 0 )(arx R ; (ii) ax 0  a(ax) = 2a x = 0  ax 

)(arR . Hence x R )(arR   0. Therefore, )(arR  is an essential right ideal of R. This implies 
that  a  Z(R). Thus . This completes the proof. 
 

3.19 Theorem [12] 

Let R be a ring with the ACC for right annihilators. Then the right singular ideal Z(R) of R is 
nilpotent. 
 
Proof:  
We write Z rather than Z(R) for the right singular ideal of R. Since ,32 ZZZ  we have 

.)()()( 32 ZrZrZr RRR  So, there exists a positive integer n such that ).()( 1n
R

n
R ZrZr  

Suppose that  .01nZ  We obtain a contradiction. There is an element Za such that .0aZ n  
Choose such an element a with )(arR large enough. Take any ,Zb then )(brR is an essential 
right ideal of R whence .0)( aRbrR  Thus there exists an element Rr  such that 0ar  and 

).(brar R  We have Zba and ).()( barar RR  But 0ar  and .0bar  Therefore, )(arR is 
strictly contained in ).(barR  It follows from the choice of a that .0baZ n  But b is an arbitrary 
element of Z. Hence 01aZ n

,and so, .0aZ n This completes the proof of the theorem.  
 
3.20 Theorem [18] 
 
Let  and  be two ideals of a ring  and let . Then  
is an ideal of . 
 
The following theorem is an extension of the above theorem over associative arbitrary rings. 
 
3.21 Theorem 
 
If  is a ring and  are two nil right ideals of , then the sum  is a nil right ideal. 
 
Proof:  
 
Let    and  be such that  
 
         where  



 
and  where . 
 
Let  and  be positive numbers such that  
 

 and  , hence  and . 
 
Since  we have  implies where . 
Also,  we have  implies where . 
 
Take for example . 
 
Also let  such that  and  such that . 
So, as , we get , where . 
 
Similarly, as , we get , where . 
 
Now . Then 
 

 
 

                
 

 
 

 
 

 
If we take  and , then we get 

. 
 
So if  and   
 
Then there exists  and  such that 
 

 
 
Then for any  there exists  such that . 
 
Thus the theorem is proved. 
 
 
 
 
 
 
 
 



CHAPTER IV 

NIL AND NILPOTENT MODULES 
 
Overview 
 
In this chapter, we study the mathematical objects called modules. The use of modules was 
pioneered by one of the most prominent mathematicians of the first part of this century, Emmy 
Noether, who led the way in demonstrating the power and elegance of this structure. We shall 
see that the vector spaces are just special types of modules which arise when the underlying ring 
is a field. If  is a ring, the definition of an -module  is closely analogous to the definition of 
a group action where  plays the role of the group and  the role of the set. The additional 
axioms for a module require that itself have more structure (namely that  is an abelian 
group). Modules are the “representation objects” for rings, that is, they are, by definition, 
algebraic objects on which rings act. As the theory develops, it will become apparent how the 
structure of the ring  is reflected by the structure of its modules and vice versa.  
 
 
4.1 Theorem [18] 
 
The followings are equivalent for an -module .  
 
(1) Descending chain condition (DCC) holds for submodules of  , that is, any descending chain 

   of submodules of   is stationary in the sense that  
for some r ( We write this as  ). 
 
(2) Minimum condition for submodules holds for  , in the sense that any nonempty family of 
submodules of   has a minimal element. 
 
Proof: 
 
(1)=>(2): Let   be a nonempty family of submodule of  . Pick any index  
and look at . If is minimal in  we are through. Otherwise, there is an   such that 

, . If this  is minimal in , we are through again. Proceeding in this 
way, if we do not find a minimal element at any finite stage, we would end up with a non-
stationary descending chain of submodules of , namely , 
contradicting (1). 
 
(2)=>(1): Let  be a descending chain of submodules of . Consider 
the nonempty family  of submodules of . This must have a minimal element, 
say , for some . Now we have  which implies by minimality of  that 

 . 
 
 
 



4.2 Theorem [18] 
 
Submodules and quotient modules of artinian modules are artinian. 
 
Proof:   
 
Let  be artinian and  a submodule of . Any family of submodules of  is also one in  and 
hence the result follows. On the other hand, any descending chain of submodules of  
corresponds to one in  (wherein each member contains ) and hence the result. 
 
4.3 Theorem [18] 
 
If a module  is such that it has a submodule  with both  and  are artinians, then  is 
artinian. 
 
Proof: 
 
Let  be a descending chain of . Intersecting with  gives the 
descending chain in  , namely,  which must be 
stationary, say  for some . On the other hand, we have the 
descending chain in , namely,  
which must be also stationary, say  for some . Now we 
prove the following: 
 
Claim: . 
 
This is an immediate consequence of the four facts, namely, 
 
(1) ; 
(2) ; 
(3) and 
(4)  . 
Putting together we get that 

, 
which implies the claim and hence the result. 
 
 
4.4 Theorem [18] 
 
Let  be an artinian ring with unity. Then we have the followings: 
 
(1) Every nonzero divisor in  is a unit. In particular, an artinian integral domain is a divisor 
ring. 
(2) If  is commutative, every prime ideal is maximal. (In particular, a commutative artinian 
integral domain is a field). 
 
 



Proof:  
 
(1) Let  be not a zero divisor. Note then that  is not a zero divisor for any . Since  
is artinian, the descending chain of principal left ideals, namely,  
must be stationary, say  for some . Since  ,  
we can write  for some . This gives  and hence  (on 
cancelling  which is not a zero divisor). Now we have  and hence 

 implying  (on cancelling ). Thus we get that . 
 
(2) If  is commutative artinian and  is a prime ideal in , then  is an artinian integral 
domain and hence every nonzero element (being not a zero divisor) is a unit, that is,  is a 
field, that is,  is a maximal ideal, as required. 
 
4.5 Theorem [18] 
 
The followings are equivalent for an -module .  
 
(1) Ascending chain condition (ACC) holds for submodules of  , that is, any ascending chain 

   of submodules of  is stationary in the sense that  
for some r (We write this as  ). 
(2) Maximum condition holds for  in the sense that any nonempty family of submodules of   
has a maximal element. 
(3) Finiteness condition holds for  in the sense that every submodule of  is finitely generated. 
 
Proof:  
 
(1)=>(2): Let   be a nonempty family of submodule of  . Pick any index  
and look at . If is maximal in , we are through. Otherwise, there is an   such that 

, . If this  is maximal in , we are through again. Proceeding in this 
way, if we do not find a maximal element at any finite stage, we would end up with a non-
stationary ascending chain of submodules of , namely , 
contradicting (1). 
 
(2)=>(3): Let  be a submodule of . Consider the family  of all finitely generated 
submodules of . This family is nonempty since the submodule (0) is a member. This family has 
a maximal member, say . If , pick an .  
Now  is a finitely generated submodule of  and hence . 
But then this contradicts the maximality of in , since  and so  is 
finitely generated. 
 
(3)=>(1): Let  be a ascending chain of submodules of . Consider 
the submodule  of  which must be finitely generated, say . It 
follows that  for some . Now we have  and 
so . 
 
 



4.6 Theorem [14] 
 
Submodules and quotient modules of noetherian module are noetherian. 
 
Proof:  
 
Let  be a noetherian and  be a submodule of . Any family of submodules of  is also one 
in  and hence the result follows. On the other hand, any ascending chain of submodules of 

 corresponds to one in  (wherein each member contains ) and hence the result. 
 
4.7 Theorem [14] 
 
If a module  is such that it has a submodule  with both  and  are noetherians, then  is 
noetherian. 
 
Proof: 
Let    be a ascending chain of . Intersection with  gives the 
ascending chain in , namely, which must be 
stationary, say  for some . On the other hand, we have the ascending 
chain in  , namely,  which must be 
also stationary, say  for some . Now we prove the 
following: 
 
Claim: . 
 
This is an immediate consequence of the four facts, namely, 
 
(1) ; 
(2) ; 
(3) and 
(4)  . 
Putting together we get that 

, 
which implies the claim and hence the result. 
 
4.8 Theorem [18] 
 
Let  be a ring, . Then a minimum right ideal  is either nilpotent or an irreducible -
module. 
 
Proof: 
 
Here , so either  and  is nilpotent or . Since  implies  is an 
irreducible -module. 
 
 
 



4.9 Theorem [18] 
 
Let  be an -module, where  is a semisimple. Then  is the sum of irreducible submodules. 
 
Proof:  
 
We know that , where each  is idempotent and  is a minimal right ideal. 
Let , then . 
 
Suppose . Then  and  as -module. Since  is irreducible, so is 

. Thus  and  is clearly a sum of irreducible submodules. 
 
Hence the theorem is proved. 
 
The following theorem is an extension of the above theorem for modules over associative 
endomorphism rings. 
 
4.10 Theorem 
 
Let  be a ring with identity and with DCC on right ideals. Let  be the radical of  and let  
be an -module. Then   if and only if  is the sum of irreducible submodules. 
 
Proof: 
 
Let  is the sum of irreducible submodules, then any  is in , where  are 
irreducible. 
 
Now   or, . If , then  implies , a contradiction. 
Thus , where  and so . 
Conversely, suppose that . Then we can consider  as -module, by putting 
  for all . Now  is semisimple and so,  is the sum of irreducible  

-modules. Now let  be an irreducible module, then since  is an -
module, where . Moreover,  has no non zero proper -submodules, since this 
would induce proper non zero -submodules. Thus  is an irreducible -module . 
 
4.11 Theorem [14] 
 
Let  be a commutative local ring whose maximal ideal is nilpotent. Then  is artinian if and 
only if it is noetherian.  
 
Proof:  
 
Let  be the maximal ideal of  with . Let  be the residue field of . It is 
obvious that  is artinian (resp. noetherian) if and only if  is so. Now  is artinian (resp. 
noetherian) if and only if both  and  are so, etc. Secondly, since  annihilates          

, it is a vector space over the field  and the -module structure is the same as the 



vector space structure. But then we know  is artinian (resp. noetherian) if and only if 
 is finite dimensional over . 

 
Suppose  is artinian (resp. noetherian). Then   is artinian (resp. noetherian) and hence 
finite dimensional over , for all . Consequently, each is noetherian (resp. 
artinian). Now  and  are both noetherian (resp. artinian) implies 
that  is noetherian (resp. artinian), etc. Proceeding thus we get that  is noetherian (resp. 
artinian). 
 
4.12 Definition 
 
By a composition series of a nonzero module , we mean a finite descending chain of 
submodules of  starting with  and ending with , say 

 
such that the successive quotients  are simple . The integer  is called the length 
of the series. 
 
4.13 Corollaries [14] 
 
(i)  is artinian Rad  is the largest nilpotent right, left or two-sided ideal of . 
(ii)  is commutative and artinian Rad  is the set of all nilpotent elements of . 
(iii)  is artinian  for every right -module  (resp. for every left -module ) we have 
     (resp.  ). 
 
Proof: 
 
(i)  is nilpotent and every nilpotent ideal is contained in it. 
(ii)  Since   is nilpotent, every one of its elements is nilpotent. Let . Then it 
follows that since  is commutative, . 
Thus  is nilpotent, and consequently, . 
(iii) We have  [resp.  ]. 
Since  is nilpotent, there is an  with . 
Now let for , 

. 
Then by substituting the equality for  times into  it follows that on the right 
side of the equality we have . 
Thus  holds. This equally holds for left -module. 
 
4.14 Theorem [14] 
 
Let  be semisimple and let  be nilpotent. Then the following are equivalent for 
a right -module . 
(i)  is artinian. 
(ii)  is noetherian. 
(iii) has finite length. 
 



4.15 Theorem [14] 
 
A module is of finite length if and only if it is both artinian and noetherian. 
 
Proof:  
 
Let  be a module of finite length. If  , then the result is obvious. Suppose  and 
has a composition series, say . 
Now proceed by induction on . If , then  is simple and hence trivially  is both 
artinian and noetherian. Assume that  and the induction hypothesis that any module 
having some composition series of length at most   is both artinian and noetherian. Now 
look at  which has the composition series, namely, , of length . 
Hence  is both artinian and noetherian. On the other hand, the quotient module , being 
simple, is also both artinian and noetherian and it follows that  is both artinian and noetherian, 
as required. 
 
Conversely, suppose  is both artinian and noetherian, we may assume that . Since  is 
noetherian, it has a maximal submodule, say . If , then  is simple and hence it is a 
module of finite length. Otherwise , also being noetherian, has a maximal submodule, say . 
If , we have a composition series for  , namely, . 
Proceeding thus, at any finite stage , if , we get a maximal submodule  of  
and so on, yielding an infinitely descending chain of submodules of , namely, 

, contradicting that  is artinian. Hence  for 
some . 
 
 
4.16 Theorem [14] 
 
Let   and  be two rings with DCC (ACC) on right ideals. Then  also has DCC (ACC) 
on right ideals.  
 
Proof: 
 
Let us prove the theorem for DCC only. 
Let    be a descending chain of right ideals in .  
Let . 
Then each  is a right ideal in  and also  
Therefore, by the DCC in , there exists an integer  such that . 
Now for , let . 
Then  is a right ideal in  and also  
By the DCC in , there exists an integer  such that . 
We claim that  . To show this, let .  
Since , there exists . 
Therefore , where . 
Thus . So, . 
Since ,  

. 



This shows that . 
By hypothesis, . 
Therefore  and so  satisfies the DCC on right ideals. 
Hence the theorem is proved for DCC. 
Similarly, we can prove the theorem for ACC. 
 
4.17 Theorem [18] 
 
Let  be an -module. Then  has a composition series if and only if  satisfies both the ACC 
and DCC on submodules. 
 
Proof:  
 
Suppose that  has a composition series of length . If either the ACC or DCC fails, we can get 
a normal series of length . Any refinement of this normal series clearly has length 

, so in particular, refining this normal series to a composition series leads to a 
composition series of length , contracting the existence of a composition series of 
length . Thus both the ACC and DCC must hold. 
 
Conversely, suppose the ACC and DCC, and hence the maximum and minimum conditions hold. 
If  is the collection of all proper submodules of  has a maximal element, say, . 
Similarly, if , there exists a proper submodule of , say, , maximal with respect to 
being a proper submodule. Continuing in this way, we get , and 
clearly  is a composition series for . 
Thus the theorem is proved. 
 
4.18 Proposition [12] 
 
Let  be a noetherian ring and  be the prime radical of . Then  is a nilpotent ideal of  
containing all nilpotent right or left ideals of .  
 
4.19 Definition 
 
Let  be a right -module and an endomorphism ring. Then  is a nil 
submodule of  if  is a right nil ideal of S.  
 
From the definition, we see that  is a fully invariant nil submodule of  if and only if  is a 
two-sided nil ideal of . 
 
Note 
 
If  is a nil submodule of , then for  any   is invertible in . 
 
4.20 Definition 
 
Let   be a right -module and  a submodule of . We say that  is a nilpotent submodule of 

 if  is a right nilpotent ideal of . By definition, a nilpotent submodule is a nil submodule. 



 
From the definition, we see that  is a fully invariant nilpotent submodule of  if and only if  
is a two-sided nilpotent ideal of . 
 
The following proposition is an extension of the above proposition for modules over associative 
endomorphism ring . 
 
4.21 Proposition  
 
Let  be a right -module which is a self-generator. Let  be a semiprime submodule of . 
Then contains all nilpotent submodules of . 
 
Proof: 
 
Let  be a nilpotent submodules of . Then  is a right nilpotent ideal of S, so  for some 
positive integer , and so . Since  is a semiprime submodule of , then 

, so . 
 
 
4.22 Proposition [14] 
 
Let  be a minimal left ideal in a ring . Then either  or , for some idempotent 

, that is,  is either nilpotent or generated by a idempotent. 
 
The following proposition is an extension of the above proposition for modules over associative 
endomorphism rings. 
 
4.23 Proposition  
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. Let  
be a simple submodule of . Then either  or  for some idempotent . 
 
Proof: 
 
Since  is a simple submodule of ,  is a minimal right ideal of . Suppose that . Then 
there is a  such that . Since  is a right ideal of  and , we have 

 by the minimality of . Hence there exists  such that . The set         
 is a right ideal of  and  is properly contained in  since . By 

the minimality of , we must have . It follows that  and , 
and hence . Note that  and , and from this we have . 
 
 
 
 
 
 
 



4.24 Proposition [15]  
 
If a ring   satisfies ACC on two-sided ideals, then the prime radical   is a nilpotent ideal. 
 
The following proposition is an extension of the above proposition for modules over associative 
endomorphism rings. 
 
4.25 Proposition  
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. If  
satisfies the ACC on fully invariant submodules, then  is nilpotent. 
 
Proof: 
 
If  satisfies the ACC on fully invariant submodules, then satisfies the ACC on two-sided 
ideals. Indeed,  is an ascending chain of two-sided ideals of S, then 

 is an ascending chain of fully invariant submodules of . Since  has the 
ACC on fully invariant submodules, there exists a positive integer  such that  
for all . Thus  for all , showing that  satisfies the ACC on two-sided ideals. 
Therefore  is nilpotent.  Since  , we have ) is nilpotent. 
 
 
4.26 Theorem [12] 
 
Let  be a noetherian ring and  be the prime radical of . Then  is a maximal nilpotent ideal 
of . 
 
The following theorems are the extension of the above theorem for modules over associative 
endomorphism rings. 
 
4.27 Theorem  
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator. Then 

is a semiprime module if and only if  contains no nonzero nilpotent submodules. 
 
Proof: 
 
By hypothesis,  is a semiprime submodule of . If  is a nilpotent submodule of , then 

 for some positive integer , and hence . 
 
Note that , we can see that . 
 
Conversely, suppose that contains no nonzero nilpotent submodules. Let  be an ideal of 

such that . Then we can write  and hence  . It follows that  is 
a nilpotent submodule of  and we get . Thus  is a semiprime submodule of  and 
thus  is a semiprime module. 
 



4.28 Theorem  
 
Let  be a quasi-projective, finitely generated right -module which is a self-generator and 

 be the prime radical of . If  is a noetherian module, then  is the largest nilpotent 
submodule of . 
 
Proof: 
 
Let  be the family of all minimal submodules of . Then we can we write . 
But  contains all nilpotent submodules of . Again . Note that 
from our assumption we can see that  is a right noetherian ring. Then there exist only finitely 
many minimal prime ideals of  and there is a finite product of them which is , says              

. Since  is contained in each , we have . Thus 
 is nilpotent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 
 
 

CONCLUSION 
 
 
In this work, we developed the structure of nil and nilpotent submodules over associative 
endomorphism rings by modifying the structure of nil and nilpotent ideals over associative 
arbitrary rings. As generalizations of nil and nilpotent rings and modules over associative 
arbitrary rings, some characterizations of nil and nilpotent submodules over associative 
endomorphism rings are investigated in the present study.  
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