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Abstract

In this thesis a new technique is proposed to enhance speech degraded by noise.

Speech enhancement is usually done mainly in two techniques, spectral sub-

traction and Wiener filtering. Both of the techniques use an attenuation filter

without any concern of the polarity of noise with respect to clean speech. As

a result conventional enhancement algorithm introduce additional distortion.

In this work, a small perturbation is applied in DCT domain, effect of which is

compared with the noisy observation in time domain to estimate the noise distri-

bution in the same domain. A threshold level has been used for the application of

perturbation. The noise so determined is used to enhance the signal. Computer

generated White Gaussian Noise is used for simulation. The performance of the

proposed technique is compared with three different methods proposed earlier.

This promising new techniques shows better performance in terms of intelligi-

bility for low signal-to-noise ratios when compared with the existing methods.

Subjective tests also indicate better enhancement quality.
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Chapter 1

Introduction

Speech enhancement is attracting a lot of researchers for long period of time.

Still it is recognized as key topic in speech processing. In this chapter a brief

introduction into the area of speech enhancement is presented, along with the

objective and the way this thesis is poised.

1.1 Speech Enhancement: Background

\7Vhen two persons communicate with each other in a quiet environment the

information interchange between them is easy and accurate. But in a noisy

environment listeners ability to understand the speech lessens. In many speech

communication system background interference reduces the quality and intelligi-

bility of the speech. Besides, originating from a noisy environment noise may be

added while speech signal is being digitized or transmitted or received. Both dig-

ital and analog channels are possible, and communication can be either between

people or with a machine. Speech enhancement assays to improve the perfor-

mance of voice communication systems when the speech signal is corrupted by

noise. The improvement is in the sense of minimizing the effects of noise while

improving the quality and intelligibility of speech, particular to these systems.

Examples of some important applications of speech enhancement are:

Telephone systems: In the telecommunication systems, the original speech is

often corrupted by the ambient noise, e.g. in the cellular radio telephone systems,

the original speech is corrupted by noise generated by the car engine [1, 2]'

traffic. and wind as well as from competing voice (babble noise). Noise can

also be introduced from the transmission channel [3]. The signals delivered by

cellular systems may therefore be noisy with vitiated quality and intelligibility.

1
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If the cellular system encodes the signal prior to its transmission, then further

degradation in its performance results, since speech coders (vocoders) rely on

some model for the clean signal and normally that model does not fit for the noisy

signal. Recently, in the field of speech coding, considerable progress has been

achieved in reducing the bit-rate while maintaining a high level of speech quality.

Although vocoders, such as lTD G.729 and Mixed Excited Linear Prediction

(MELP), give high quality for clean speech, it is significantly worse for coded

noisy speech. Solution to circumvent this issue is to add a speech enhancement

pre- processor that attenuates noise in the corrupted speech prior to encoding.

Similarly, if the cellular system is equipped with a speech recognition system,

which is used for automatic dialing, then the recognition accuracy of such system

deteriorates in the presence of noise, since the noisy input is unlikely to obey the

statistical model for the clean signal used by the recognizer. Similar problems

are encountered with pay phones located in noisy environments, such as airports,

railway or bus station etc.; in hearing aids for people with hearing deficiency; in

teleconferencing, where noise sources in one location may broadcast to all other
locations.

A ir to ground communication and vice-versa: In the air to ground commu-

nication systems, the cockpit noise corrupts the speech of the crew members.

In such case, however, the messages of low quality and intelligibility delivered

to the air traffic controllers may result disastrous effects. But communication

from ground to air is rather simpler, since the noise is added to the speech at

the channel and at the receiving end, respectively, rather than that at the source

location. Hence, the clean signal can be immunized prior to being affected by

the noise [4J.

The aforementioned discussion corroborates that speech enhancement has

three major goals: 1) improvement of perceptual aspects (e.g. qua.lity, intelligi-

bility) of a given sample function of degraded speech signal; 2) to increase the

robustness of speech coders in presence of input noise; 3) to increase robustness

of speech recognition systems in presence of input noise.

The qua.lity of speech signal is a subjective measure, which reflects on the

way the speech is perceived by a listener. It can be expressed in terms of how

pleasant the signal sounds or how much easy a listener can understand the mes-

sage lying in a sample speech. Intelligibility, on the other hand, is an objective

measure of the amount of information which can be extracted by listeners from

the given signal, whether the signal is clean or noisy. A given signal may be of

•
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the high quality and low intelligibility, and vice versa. Hence, the two measures

are independent of each other. Both the quality and the intelligibility of a set

of given signals are evaluated based on tests performed on human listeners for

particular set of test condition (1. specific type of noise; 2. specific SNR; 3. noise

estimate updates and 4. algorithm parameter settings), since there is no stan-

dard for quality assessment of different speech enhancement algorithm. Hansen

et al proposed [5] a set of ingredients and a combination of objective measures

and subjective testing rules to assess quality. However, researchers in the speech

coding and recognition communities have standard criteria for algorithm perfor-

mance companson.

1.2 Scope

The speech enhancement problem consists of a family of subproblems charac-

terized by the type of noise source, the way the noise interacts with the clean

signal, the number of voice channels, or microphone outputs, available for en-

hancement, and the nature of speech communication systems. The noise, or

the interfering signals, rnay, for example be due to competitive speakers (babble

noise), background sounds (music, fans, machines, door slamming, wind, traffic

etc.), room reverberation or random channel noise. The noise may accompany.

the original signal at the source location, over communication channels, or at the

receiving end. It may affect the original signal in an additive or convolutional

manner. Furthermore, the noise may be statistically dependent or independent

(correlation between speech and noise) of the clean signal. The number of voice

channels available for enhancements is an important factor in designing speech

enhancement systems, In general, the larger the number of microphones, the

easier the task of speech enhancement becomes. The communication system for

which speech enhancement is designed can simply be a recording which has to be

displayed to audience, a man-machine communication system (speech recognizer,

speaker identifier), a digital communication system, etc.

Speech enhancement based on spectral decomposition and filtration [6, 7, 8,

9, la, 11, 12, 13, 14, 15] remains a common and effective approach for enhancing

speech degraded by acoustic additive noise when only the noisy speech is avail-

able. The relative lack of importance of phase for speech quality [16] has given

rise to a family of speech enhancement algorithms based on spectral magnitude

estimation. This general class is based on variations of optimum filters and en-
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compasses such methods as spectral subtraction, Wiener filtering and various

maximum likelihood (ML) estimation schemes. A common set of requirements

in this class include: 1) An appropriate suppression rule based on an optimality

criteria [9, 10] and which is usually a function of the SNR and other speech and

noise statistics; 2) An estimation of the speech and noise power density spectrum

(PDS), or their respective auto correlation; 3) A quantification of the probability

of speech presence to further attenuate non-speech bands [11]; 4) A method for

reducing residual noise by appropriately smoothing the estimated quantities [9]

and/or exploiting the psychoacoustic properties of human hearing [17].

The choice of suppression rules is governed by many factors, such as compu-

tational efficiency, optimality criteria, and the exploiting of human hearing prop-

erties. In the reported literature, the range includes heuristic rules (e.g., [10]) as

well as formally derived ones. The ML estimation approaches in [9, 12] attempt

to exploit the statistical properties of the discrete Fourier transform (DFT) of

the noisy speech. These methods assume a statistical model for the DFT coeffi-

cients of noisy speech and derive optimum estimators of the magnitude spectrum

based on that model.

An important contribution in this area is the smoothing approach proposed

m [9] whereby the variation in SNR between successive frames is reduced by

averaging the locally computed SNR. (SNRpo,t) with the SNR estimated in the

previous frame after the filtering operation (SNR.est). The method results in a

significant reduction of the 'musical noise' artifacts, as shown in [18].

Another speech enhancement approach is the signal subspace (SS) method

[19, 20]. The key idea is to decompose the vector space of the noisy signal into a

signal-plus-noise subspace and a noise subspace under the assumption that the

additive noise is white. The enhancement is performed by removing the noise

subspace and estimating the clean speech from the remaining signal plus noise
subspace. \.,

Considerable interest has been shown in recent years regarding wavelet as

a new transform technique for both speech and image processing applications.

Donoho introduced [21] wavelet thresholding (shrinking) as a powerful tool in

denoising signals degraded by additive white noise. Although the application

of wavelet shrinking for speech enhancement has been reported in several works

(for example [22, 23]), there are many problems yet to be resolved for a success-

ful application of the method to speech signals degraded by various noise types.

Hidden Markov Model (HMM) based speech enhancement approaches [24, 25, 26]

;-,id
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and also combination of both \iVavelet and HMM based enhancement tech-

niques [27] have drawn much attention in recent years.

Methods for speech enhancement have also been developed based on extrac-

tion of parameters from noisy speech, and then synthesizing speech from these

parameters [28]. All-pole modeling of degraded speech is one such method [29].

In all-pole modeling, if wrong peaks are extracted, then these peaks may get

enhanced. Temporal sequence of these peaks also produces discontinuities in the

contours of the spectral peaks when compared with the smooth contours in nat-

ural speech. Methods for speech enhancement have also been suggested based

on the periodicity due to pitch [30]. Noise samples in successive glottal cycles are

uncorrelated. On the other hand, the characteristics of the vocal tract system

are highly correlated due to slow movement of the articular. These methods

for enhancement of speech depend critically on the estimation of pitch from the

noisy speech signal.

Many speech enhance'ment algorithms use DFT as the transform domain for

removing noise embedded in the noisy speech signal [1]- [30]. Wavelet transform

is also used as the transform domain as mentioned earlier. Recently, discrete

cosine transform (DCT) has been widely used as the analysis tool in the field of

speech enhancement [31, 32, 33, 34, 35]' which is well accepted now in speech

processing because its coefficients are real and the noise components can add or

subtract with the actual signal coefficients and for its higher energy compaction.

1.3 Objective of the Work

The objective of this research is to introduce a new technique in speech en-

hancement which capitalizes on perturbing a signal in a transform domain and

observing the corresponding change in time domain to reach a conclusion about

the actual polarity as well as the distribution of noise in a noisy speech signal.

Conventional speech enhancement techniques estimate a noise bias and subtract

that noise bias from the corresponding noisy signal spectrum (known as spectral

subtraction, e.g. [6, 8]) or multiplies the noisy signal by a gain factor to have an

estimate of clean speech (known as Wiener filter, e.g. [7,9]). In most of the cases

relative polarity of lloise with respect to clean signal has always been ignored

because of the assumed lack of importance of phase in speech enhancement [16].

DCT is chosen as the transform domain for this work. A perturbation in

the form of small change of estimated noise level is applied in DCT domain.
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The corresponding changes in time domain of the perturbed signal is used to

identify the noise distribution in time domain. A filtration is applied based on

the obtained noise distribution. A good SNR as well as good quality is observed

for the processed speech.

1.4 Thesis Layout

This thesis consists of five chapters. Chapter 1 gives a brief description of ne-

cessity of speech enhancement techniques, names of existing methods and the

main objectives of this research work.

In chapter 2, a brief review of existing various speech enhancement tech-

niques such as spectral subtraction rules, Wiener filtering and Wavelet based

enhancement techniques are presented.

In chapter 3, the drawback of the conventional speech enhancement tech-

niques is discussed. To improve their performances, a new technique is proposed

using perturbation technique.

The simulation results for proposed algorithm is presented in chapter 4. The

proposed algorithm is compared with the results proposed by Hasan et al. [35]

and by Ephraim et al. [36]. Both subjective and objective evaluations are also

reported along with necessary measurements in this chapter.

In chapter 5, the thesis is concluded by presenting an overall discussion on

this research and pointing out some drawbacks of the proposed algorithm along

with some suggestion for future work.



Chapter 2

Overview of Speech

Enhancement Techniques

2.1 Introduction

There are a number of ways in which speech enhancement systems can be clas-

sified. A broad grouping is concerned with the manner in which the speech is

modelled. Some methods are based on stochastic process models of speech which

rely on a mathematical criterion while others are based on perceptual aspects of

speech that attempts to improve aspects important to human perception.

Enhancement algorithms can also be classified depending on whether a single-

channel or dual-channel (multichannel) approach is used. In dual-channel system

one channel (consist of a microphone or a set of microphones, known as primary

channel) is used to receive noisy speech (clean, speech plus noise) and another

channel (a microphone or a set known as secondary channel) is used to contain,

a sample of noise correlated to the noise in primary channel. For single-channel

systems only one microphone is available, so noise sample is extracted during

the period of silence.

Beyond the classification based on specific aspects of speech, there are four

broad classes of enhancement that differ substantially in the general approaches.

Success of the classes depends on their own set of assumptions, also have specific

advantages and limitations.

First type concentrates on short-term spectral amplitude (STSA) where an

estimation of noise bias is subtracted from noisy signal in power spectral,

fourier domain or in autocorrelation domain. The estimated noise bias is

7

•



8

calculated from non-speech pause intervals for a single-channel system or

from a reference microphone for multi-channel system.

Second type is based on speech modeling using iterative methods, also widely

known as Wiener Filtering. These systems focus on estimating model

parameters that characterize the speech. signal, followed by resynthesis

of the noise-free signal based noncausal This techniques requires a.priori

knowledge of noise and speech.

Third type is based on adaptive noise canceling (ANC) that is formulated

using a dual-channel time or frequency domain environment based on the

least mean square (LMS) algorithm.

Fourth type is based on the periodicity of voiced speech. These methods

employ fundamental frequency tracking using either single channel ANC

or adaptive comb filtering of the harmonic magnitude spectrum.

Below the above mentioned techniques will be discussed very briefly.

2.2 Short Term Spectral Amplitude

Techniques

This type of speech enhancement techniques based on processing in short-term

spectral domain. It is one of the earliest and perhaps the easiest to implement.

In this family of methods an estimate of the spectral amplitude associated with

the original signal is obtained without considering the phase of original signal.

This is because spectral amplitude rather than the phase is important for speech

quality and. intelligibility. A variety of speech enhancement techniques capitalize

on this aspect of speech perception by focusing on enhancing only the spectral

amplitude. The techniques to be discussed can be broadly classified into two

groups. First, the enhancement procedure is performed over frames by obtain-

ing the short-term magnitude and phase of the noisy spectrum, subtracting an

estimated noise magnitude spectrum from the noisy speech magnitude spectrum,

and inverse transforming this spectral amplitude using the phase of the original

degraded speech [6, 8, 37]. Second, the degraded speech is first used to obtain

a filter (Wiener filter) which is then applied to the degraded speech. Since these

procedures lead to zero-phase filters, here again only the spectral amplitude is
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enhanced, with the phase of the filter being the same to that of the degraded

speech [29].

2.2.1 Spectral Subtraction

The spectral subtraction method was first proposed by Boll [6]. An estimate

of STSA is obtained by subtracting the estimate of the noise spectrum from

the noisy speech spectrum. Information about the noise spectrum is obtained

during non-speech activity. After finding the spectral estimator, spectral error

is computed and some additional modifications are made for reducing it.

In spectral subtraction analysis some important assumptions are made:

1. The background noise is added acoustically or computationally to the

speech.

2. The background noise environment remains locally stationary to the degree

that spectral magnitude expected value prior to speech activity equals its

expected value during speech activity.

3. Significant noise reduction is possible by removing the effect of noise from

magnitude spectrum.

Let 8(17,), d(n) and x(n) be representing clean speech, noise and noisy speech,

respectively. The noise d(n) is assumed to be uncorrelated, i.e. the autocorrela-

tion function of d( 17,) be:

(2.1)

Where Do is some constant, 5(77)is the impulse sample at 77and 77is the

autocorrelation lag. Realizations 8(17,), d(n) and x(n) are related by:

x(n) = 8(17,) + d(n)

As d(n) is an uncorrelated process, it follows:

Where r(.) denotes the PDS. PDS of any signal, say y(n) is defined as:

1 00 .

fy(w) = N L ry(77)e-Jwry
1/=-00

•

(2.2)

(2.3)

(2.4)
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Where r y ('I)) is the auto-correlation function.

If an estimate of fd(w), say fd(w) is obtained then it is possible to estimate

the PDS of uncorrupted speech as:

or, equivalently,

IS(wW = IX(wW -ID(w)12

Here IS(w)l, IX(w)1 and ID(w)1 are the magnitude spectrum of estimated

clean signal, noisy signal and estimated noise respectively.

At a given frequency, the estimated amplitude of the signal is the combined

amplitudes of the pure signal and noise, minus the estimated noise amplitude.

The phase of the enhanced signal is assumed to be the same as that of the noisy

signal. Then estimated enhanced signal S(w) be

S(w) = IS(w)lei~x(w)
,

= [IX(wW -ID(WW]" ei~x(w)
(25)

Where q,x (w) is the phase function. This modification of the frequency do-

main information can be placed within the overlap and add framework to regen-

erate a time signal with better signal-to-noise ratio. In other words, the estimate
of enhanced signal can be written as the sum of the signal and the non-stationary

component of noise.

Therefore the spectral error is:

E(W) = S(w) - S(w) (2.6)

This is the formulation behind spectral subtraction method. The block dia-

gram of spectral subtraction algorithm is given in Fig. 2.1.

In addition to the formulation given above Boll proposed a number of simple

modifications to reduce the effects of spectral error of the estimated signal [6].
These are:

1. Magnitude averaging: Since the spectral error equals the difference be-

tween the noise spectrum and its expected value, averaging local spectral

magnitudes can reduce the error. Hence the sample mean of the noise mag-

nitude spectrum will converge to its mean as longer averages are taken. The

magnitude-averaged spectrum is found using the sample mean



Noisy Speech
Frame
x(n)

Processed Speech
Frame
t(n)

st DFT

st lOFT

Phase Information
Subtraction of

Ariw)

11

Figure 2.1: Block diagram of Spectral Subtraction Algorithm

IX(w)1 =
1 HI

2I + 1 L IXI(w)1
l=i-j

Where XI is the time-windowed transform of the frame centered in 2J + 1

frames. Then the resultant estimator for Eq. (2.5) will be

S(w) = [IX(w)I-ID(w)l]ejfxlW) (2.7)

The obvious problem with this modification is that the speeeh is non-

stationary, and therefore only limited time averaging is allowed. The major

disadvantage of averaging is the risk of some temporal smearing of short

transitory sounds.

2. Half wave rectification: For each frequency value where noisy speech mag-

nitude spectrum is less than average noise spectrum, the output is set

to zero. Half-wave rectification is generally employed in spectral subtrac-

tion methods to avoid the impossible case of negative energy values. The

advantage of this procedure is that noise floor is reduced by the average

magnitude of the noise spectrum and low variance coherent noise tones are

eliminated. However we can sometimes observe the incorrect removal of

speech information which can be counted as a disadvantage of half-wave

rectifying.

3. Residual noise reduction: After half-wave rectification speech & noise lying (J:

above the expected value of noise magnitude spectrum remains. During

non-speech activity this noise residual will exhibit itself with magnitude

.•. "... ;.••••
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between zero and a maximum value measured during non-speech activity.

Since the noise residual has audible effects in the time domain (it will sound

like the sum of tone generators with random frequencies), it should be

reduced by replacing its current value with its minimum value chosen from

adjacent analysis frames. There are three reasons for using this procedure:

• If the amplitude of spectral subtraction estimator lies below maximum

noise residual and fluctuates then the spectrum at that frequency is

most probably due to noise .

• If the amplitude of spectral subtraction estimator lies below maximum

noise residual but has a constant value then the spectrum at that

frequency is most probably low energy speech .

• If the amplitude of spectral subtraction estimator lies above maximum

noise, there is speech present at that frequency.

Numerous researchers proposed various modification over the above men-

tioned methodology. Some of such modifications can be found in [8] by Berouti

et al (1979), [37] by McAulay and Malpass (1979).

2.2.2 Wiener Filtering

In Wiener filtering method a frequency weighting for an optimum filter is first

estimated from the noisy speech signal x(n). This filter (say h(n)) is linear and

noncausal and is then applied to the noisy speech to obtain an estimate of s(n),
say s(n). The optimality of the filter is in MMSE sense, that is the impulse

response h( n) be such that

(2.8)

is minimized. Using the orthogonality principle the Wiener filter in the frequency

domain is found to be

H(w) = [ fs(w) ]
fs(w) + fd(w)

where fs(w) and fd(w) are the PDS of clean speech 8(n) and noise d(n) respec-

tively.

In practice this filter cannot be obtained, since speech signal s(n) is only

short-term stationary and also spectrum of s(n) (PDS) is not known. One way



13

to overcome this to use an approximate filter with frequency response

(2.9)

where hats indicates that those quantities are estimated. In Eq.( 2.9) fd(w) can

either be found from an assumed known statistics of noise or may be calculated

from the pause intervals as noise can be assumed to be stationary. But f.,(w)
is not so easy to obtain. One approach to estimate the speech spectrum is to

use an iterative procedure in which an ith estimate of fs (w) is used to obtain

an i+1st filter estimate. Some methods for modeling speech in this iterative

framework are all pole modeling, the estimate maximum (EM) theory, etc.

Once the filter response H(w) is found, the estimated spectrum of the speech

signal will be

S(w) = H(w)X(w) (210)

It should be noted that H( w) is a zero phase filter, that phase of original degraded

speech L'X(w) is combined with S(w) to reconstruct the estimated speech signal

s(n).

2.3 Adaptive Noise Canceling

Adaptive Noise Canceling refers to a class of adaptive signal processing algo-

rithms that is based on the availability of a primary input source and a secondary

reference source. The primary input source is assumed to speech plus additive

noise as given by the relation in Eq. 2.2. The ANC filter acts on the reference

channel and makes an estimation of the noise, which is then subtracted from the

primary channel as shown in Fig. 2.2. The overall output of the canceler is used

to control any adjustments made to the coefficients of the adaptive filter. The

criterion for adjustment of these coefficients is generally to minimize the mean

square energy.

2.4 Fundamental Frequency Tracking

This type of speech enhancement techniques depend on the tracking of funda-

mental frequency contour. This techniques depends on the underwritten fact

that voiced speech is periodic, for which the frequency spectrum will be a line.

I,
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Figure 2.2: Flow diagram of ANC

Any spectral components between these lines represent noise that can be re-

duced. Some approaches for this fundamental frequency tracking are single

channel ANC, Comb filtering etc.

2.5 Other Techniques

As an alternative to these traditional techniques and to conventional frequency

domain speech processing theory, interest has emerged into studying speech as

a nonlinear, dynamical system [38], [39]. Nonlinear time series methods perform

analysis and processing in a reconstructed phase space, a time-domain vector

space whose dimensions are time-lagged versions of the original time series [40].

The reconstructed phase space is therefore simply a plot of the time-lagged signal

vectors, a parametric graph of the time series in which geometric structures of

the underlying signal, called attractors or trajectories, appear. Reconstructed

phase spaces have been shown to be topologically equivalent to the original

system, if the embedding dimension is large enough [41]. This implies that the

full dynamics of the system are accessible in this space, and for that reason, a

phase space reconstruction potentially contains more information than a spectral

representation [40]' [42].



Chapter 3

Speech Enhancement using

Perturbation

3.1 Introduction

Conventional speech enhancement algorithms ,such those described in previous

chapter can be broadly subdivided into two types. One is spectral subtraction

and the other is Wiener Filtering. Both of them use an attenuation filter based

on the assumed additive nature of the noise, that is interference between the

speech signal and noise is constructive. As both noise and speech are stochastic

process, there is an equal likelihood that noise is added to or subtracted from the

clean speech signal. If both speech and noise are in same phase in FT domain

(same sign for DCT, i.e. signal and noise both are either positive or negative),

the magnitude of the noisy signal increases, magnitude decreases otherwise. It

is observed that, for speech degraded with White Gaussian Noise (WGN), the

number of constructive interference is much more than 50%. In fact, in pause

periods this figure is almost 100% because of absence of any speech compo-

nent. Perhaps this is the main reason behind the wide success of the two above

mentioned filtration techniques.

As the interference between speech and noise may be destructive as well, an

attenuating filtration on this noisy component will just lead to further distortion.

Knowledge of the polarity of noise (i.e. whether constructive or destructive)

would give rise to a new filtration technique where spectral subtraction methods

would take the polarity of the noise coefficient into consideration. In this thesis

it has been shown that the polarity of the noise coefficients can be identified to

a great extent from noisy signal only.

15

,
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LY. Soon and S.N. Koh investigated the polarity of noise when only the

noisy signal is present [32]. They have considered the short-term stationary na-

ture of speech and assumed that the clean speech coefficient remains reasonably

unchanged. If speech is assumed to be stationary over some neighboring frames

(say M frames, where M is odd), it can be assumed that the clean speech coeffi-

cient will be constant. If the magnitude of the coefficient in the current frame is

lower than the mean of the magnitude of neighboring frames, it will be assumed

that the interference of the noise is destructive and vice-versa. Though they

have claimed the superiority of their algorithm over minimum mean square er-

ror (MMSE) filter by [9], they have not published the accuracy of their polarity

estimation algorithm in that paper. However, the sign estimation part of their

algorithm was reproduced and compared with actual sign. It was found that

accuracy never exceeded 60%.

In this thesis a new technique is proposed for speech enhancement. A small

perturbation is applied proportional to noise strength present in the noisy signal

in DCT domain and its effect is observed in time domain to have an estimation

of noise polarity and distribution as well. This estimated noise is then used

to enhance the signal. Below, the step by step procedure of this technique is

described:

3.2 Amount of Perturbation in Frequency

Domain

Let x f(n) be a frame of noisy signal observation and Xf(k) be its DCT. Similarly

s(n) and v(n) be the signal and noise of that noisy frame, whereas S(k) and V(k)

be their DCT respectively, such that:

:r;f(n) = s(n) + v(n)

Xf(k) = S(k) + V(k)

(3.1)

(32)

To determine the amount of perturbation first an approximation of pure

signal content and also the content of noise in the noisy signal (X f (k)) are

needed to be determined. To do this the average trend-line of the absolute value

of Xf(k) is determined by averaging Xf(k) using small sub-bands. To reduce

the abrupt changes in average values, these sub-bands are overlapped. A smooth

"~'

",

:.
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trend-line is obtained by fitting these average values using spline technique, let

Xj(k) be the trend-line of IXj(k)l.

As clean speech is band limited, it is likely that clean speech will not occupy

the whole spectrum, rather a part of it (Fig. 3.1), whereas it is a well known fact

that the frequency spectrum of white noise is random. If an average trend-line

is determined, it will be almost flat (Fig. 3.2). This situation concludes that a

sub-band with lowest energy in the average trend-line of noisy spectrum (Xj(k))

will indicate the noise strength in that frame of noisy signal.

a. 3 different frames of clean speech b. Absolule OCTand ils Irendline of frames in (a)
4

Relatively ",ery
Cl) 0.5 ~3 . .Iar.ge.components' .
"il ,
.c 0 'E 2 .
'" '"m m

Tre,n~,li':l~~. 5. :;;1

100 200 300 400 500 100 200 300 400 500
Sample no Sample no

0.1 Relatively very1 large ~ompori:en-ts'~ ~ 0.8 ." 0il ,
.c 'E 0.6
'" '"m 0.1 ~ 0.4:;;

0.2

100 200 300 400 500 100 200 300 400 500
Sample no Sample no

Relatively very0.6 . l~rgeco~po'nents\~
"..eO.4
c
'"m:;;0.2

100 200 300 400 500 100 200 300 400 500
Sample no Sample no

Figure 3.1: Three sample frames of clean speech and its DCT

Based on the above conclusion a floor is determined to have an approxima-

tion of average noise strength, by taking the average power of the lowest energy

sub-band in DCT domain. Let it be V(k), as also shown in Fig. 3.3. Then ap-

proximation of clean speech strength S(k) (Fig. 3.3) can be found by subtracting

noise content (V(k)) from Xj(k) while taking zero ('0') for negative values, i.e.:

S(k) = max{ X j(k) - V(k), o} (3.3) •

The strength of clean speech and that of noise so determined is then uti-

lized to determine the amount of perturbation to be given in DCT domain.

. ~
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Figure 3.2: A frame of white gaussian noise and its DCT

As the perturbation is targeted to reduce the noise only keeping signal content

intact, the amount of perturbation applied, is proportional to the estimated

average strength of noise present in noisy signal, i.e. ratio between V(k) and

[S(k) + V(k)]. But for some abnormally high components (e.g., components

around frequency index 50 in Fig. 3.3) S(k) is much smaller compared to actual

signal present in Xj(k). For those cases the ratio S(k~lkJ(k) will result an over
perturbation of the noise, leading to an over estimation of noise in time domain.

Hence a threshold is used while applying perturbation. If the magnitude of noisy

signal components X j (k) is greater than or equal to the twice as that of average

noise strength V(k), then perturbation is proportional to the ratio between V(k)
and IXj(k)l. So the perturbed signal would be:
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Figure 3.3: Sample trend-lines of a frame

{
V(k) }Xp(k) = Xf(k) x 1 - p x I I

Xf(k)

= X (k) x {1_ x V(k) }
f P V(k) + S(k) Otherwise

(3.4)

Where p is the amount of perturbation, which is a very small number.

3.3 Estimation of Noise

The perturbed signal in time domain can be found using inverse DCT (IDCT)

over Xp(k)(Eq. 3.4), Jet it be xp(n). As the perturbation is given to reduce

the effect of noise it is likely that the difference between xf(n) and xp(n) (i.e.

{xf(n) - xp(n)}) will be dominated by the noise, which can be taken as an

unsealed estimation of noise, though this will contain a rather small part of

clean signal. Let this unsealed estimation of noise be v:(n) which can be given
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as:

v:(n) = p x v(n) + q x s(n)

= p{ v(n) + ~ x s(n)}

= p{ v(n) + (3 x s(n)}

(3.5)

As already mentioned p is the amount of perturbation and q is the residual signal

present in the difference signal, which is very small according to our assumption.

And (3 is the ratio between q and p. Then error function (let ~) between actual
noise and its estimation is given by:

~= v(n) - ov:(n)

= v(n) - op{ v(n) + ;3s(n)}
(3.6)

Where 0 is a scaling factor such to minimize the sum of square of error

function ~, i.e. 2.: 1~'2 Now to minimize 2.: 1~12we have

dD~12 = 0
do

d~ L {v(n) - ov:(n)}2 = 0

:0 [L {v2(n) - 20 x v(n) x v:(n) + v:2(n)}] = 0

-2 L v(n) x ve(n) + 20L v:2(n) = 0

Then 0 will be

As s(n) and v(n) are uncorrelated.

1
p

2.: v(n)v:(n)
0= 2.: v?(n)

2.:P x v(n){ v(n) + (3s(n)}
2.:p2{ v(n) + (3s(n)} 2

p[2.:v2(n) + (32.:v(n) x s(n)]
p2[2.:v2(n) + 2;32.:v(n) x s(n) + (322.:s2(n)J

1 2.: v2(n) [ " ]
p 2.: v2(n) + (32 2.: s2(n) '.' LJ v(n) x s(n) = 0
1 1

p 2.: s2(n)
1 + (32 2.: v2(n)

1

2.: s2(n)
1+(32NxP(v)
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p
1

L: s2(n)
1+(32NxP(v)
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(3.7)

Where N is the frame size and P( v) is the average nOIse power of that

particular frame. Then the estimated noise will be

And enhanced signal will be:

(3.9)

3.4 Estimation of Noise Power (P(v))

This is the most critical part in this algorithm. Because, the performance of the

algorithm depends on the accuracy of the estimation of the noise power of the

frame. In this work two methods have been employed for this purpose. Both

methods have their own advantages and disadvantages.

In the fix-st method we have used a global noise power, which is calculated

globally from pause interval. A number of algorithms is present to determine

the pause interval [43]' [45]' [46]. This method gives better result in term of
performance and quality, particularly for stationary noise.

In the second method the noise power level is estimated taking into account

that the speech component is not dominant at the finest level. It is known that

the kurtosis for WGN is 3 [47]. On the other hand, the distribution of signal co-

efficients remaining at the finest level is sharply peaked, i.e., leptokurtically dis-

tributed with kurtosis much larger than 3. Thus at the finest region the kurtosis

gradually decreases with increasing noise to a given speech and asymptotically

reaches 3 when noise is much greater than signal. Therefore, kurtosis can be

used to identify the frequency band dominated by noise, i.e., noise distribution

in a particular frame. The noisy signal frame is subdivided into sub-frames and

kurtosis of those sub-frames are analyzed for the identification of noise. If the

value of kurtosis is less than or equal to 3 then it is assumed that, that sub-frame
is a noise dominated one.

- t',
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3.5 Conclusion

Speech enhancement using a new perturbation technique has been presented

in this chapter. Main focus of this chapter is to develop a mathematical base

to apply the perturbation techniques to enhance the quality of speech. The

performance of the algorithm, i.e. quality and intelligibility of the enhanced

speech will be discussed in the next chapter.



Chapter 4

Simulation Results

4.1 Data Used for Simulation

The proposed enhancement algorithm is tested for a data set consisting of 40

different utterances from the TIMIT speech database. Half of the utterances

are from male speakers and half are from female speakers. 8 kHz is chosen as

the sampling rate for speech signals, because of its wide use in communication

channels. Also 16 bits are used to encode each of the speech samples.

The noise type for simulation is chosen to be computer generated WGN.

WGN is chosen for its wide use in studying the performance of enhancement

systems and also it is a good model for wide-band noise sources which are often

encountered in practice, e.g., thermal noise in communication systems. Each

speech signal is degraded by WGN with overall SNR in the range from -5 to 30
dB.

Individual and aggregated results are presented here. The simulation results

are compared with three existing methods. First two are the modified power

spectral estimator and the modified parametric spectral subtraction method pro-

posed by Hasan et al. in [35]' which is referred as MPE and PARA, respectively,

in this thesis.These two techniques are quite recent and show very good enhance-

ment result. Third one is the minimum mean square error (MMSE) log-spectral

amplitude estimator proposed by Ephraim et al. in [36]' which is referred as

MMSE-LSAE in this thesis. This is one of the fundamental works in speech en-

hancement. The proposed two techniques as mentioned in section 3.4 is referred

as 'Pertl' for first method and 'Pert2' for second method.

23
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4.2 Simulation Parameters

The frame size far the simulatian is chasen to' be 32mS, equivalent 256 samples

with an averlap af 128 samples. For determining average trend-line and alsO'

far finding naise flaar a sub-band af 32 samples is used with an aver lap af 16

samples. NO'windaw functian has been used. The perturbatian factar p is taken

as 001(1 %).

As shawn in Eq. 3.7 (presented belaw far canvenience) that, to' determine

1
Q=-

p
1

L s2(n)
1+{32NxP(v)

Q, a canst ant {3 is used, which is to' be determined empirically. In fact, the

assumptian that speech and naise are uncorrelated (i.e. L v(n) x s(n) = 0) is

nat entirely true for such a small time frame af 32mS. This led to' a conclusian

that {3should nat be canstant, rather be dependant on SNR. In the simulatian

it is faund that {3not anly depends an averall SNR, but alsO' an specific frame-

based SNR. For a particular aver all SNR, SNR far different speech frames may

be different. For example SNR in pause period is very law, while SNR in speech

daminant region is very high.

In simulatian a set af {3value is chasen empirically. As mentianed in sec-

tian 3.3, that {3 indicates the residual signal (Eq. 3.5) present in unscaled es-

timatian of naise. Far high SNR.s the naise is very small campared to' signal,

as a result any perturbatian applied will cantain a higher proportian af signal,

i.e. such a perturbatian will affect the signal mare than it daes in case af law

SNRs. Sa far high SNRs the residual signal will be mare pronaunced, indicating

that {3shauld be made higher for high SNRs. AlsO'carrect identification af naise

polarity influences the chaice af {3. If there is no residual signal present (i.e.

(3 = 0), then Q wauld be ~ (equal to 100 far aur case). But the fact that palarity

identificatian is better far law SNRs, rather than that af high SNRs (will be

shawn in next sectian 4.3), lead to' a decision that {3shauld be higher far higher

SNR, such that the value af Q is lawered to' minimize the distartian introduced

by wrong polarity identificatian.

The table for {3 is given in Table 4.1. A set af values is chasen an overall

input SNR, and from that set an individual value is chasen far an individual

frame- based SNR. Far example, far an estimated averall SNR af 5dB and a

frame-based SNR of 10dB, value in 5dB calumn and lOdB raw is used (0.04 in
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this case). The table is given for an overall SNR range of -5dB to 30dB, because

noise with SNR below -5dB is practically unrealistic and that with over 30dB

is practically treated as noise free.

Table 4.1: (3 values chosen for various SNR
Frame Overall SNR

SNR -5 0 5 10 15 20 25 30
-30 0.0770 0.0770 0.0770 0.0770 0.0770 0.0770 0.0770 0.0770
-25 0.0742 0.0742 0.0742 00742 0.0742 0.0742 0.0742 00742
-20 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 00714
-15 00686 0.0686 0.0686 0.0686 0.0686 0.0686 0.0686 0.0686
-10 0.0658 0.0658 0.0658 0.0658 0.0658 0.0658 0.0658 0.0658
-5 0.0630 0.0630 0.0630 0.0630 00630 00630 0.0630 0.0630

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 00010 0.0100 00400 0.1000 0.1000 0.2000 0.2500 03000

10 0.0010 0.0100 0.0400 0.1000 0.1000 0.2000 0.2500 0.4400
15 0.0010 0.0100 0.0400 0.1000 0.1000 0.2000 0.2500 0.5800
20 0.0010 0.0100 0.0400 0.1000 0.1000 0.2000 0.2500 0.7200
25 0.0010 0.0100 0.0400 0.1000 0.1000 0.2000 0.2500 0.8600
30 0.0010 0.0100 0.0400 0.1000 0.1000 0.2000 0.2500 10000

Although the value of a is kept constant for a frame (as per Eq. 3.7), it is

observed that, using a as a vector (say a') determined by the following Eq. 4.1
produce better results in simulation.

a'(n) = '1
p (4.1)

Here r is a multiplying factor that lies within unity. This factor is introduced

to incorporate the dependency of a on overall SNR.

To determine the characteristic of the factor r in Eq. 4.1, simulation is done

(averaged result for both male and female voice with 20 different utterances from

20 individual runs) sweeping r from 0.7 to 15 with an increment of 0.05. The

overall SNR improvement is observed and result is given in Fig. 4.1 The locus of

peaks for different input SNRs is also plotted. The two locus (male and female)

is averaged and best fitted for 1st order using least square technique that gives

a characteristic equation for r, which is given in Eq. 4.2:

• •



26

35
Variation of SNR improvements for different Gamma (y)
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Figure 4.1: Characteristics of the factor Gamma h)

,= -0.01 x SN R;nput + 1.1125 (4.2)

4.3 Identification of Noise Polarity

As mentioned in section 3.1, most of the researchers have ignored the nOIse

polarity with respect to clean signal. 1. Soon et al. investigated the the polarity

of noise in [32]. However he did not mention any numerical values of correct

identification. The part of the algorithm that identifies polarity is implemented

and its result is presented in Table 4.2, referred as SOON in column 2 and 5,

along with results of noise polarity identification for the proposed two methods.

The result presented in Table 4.2 is the average result of 20 individual runs of

20 different utterances, both for male and female.

If the difference of magnitude of noisy signal and perturbed signal is positive

then the noise is additive and vice-versa. To calculate the percentage of correct
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Table 4.2: Noise polarity identification
Input % Identified correctly for % Identified correctly for
SNR Male Speaker Female Speaker

SOON [32] Pertl Pert2 SOON [32] PertI Pert2
~5 53.393 89.645 89.645 53.019 89148 89148
0 55.038 87.884 87884 55.022 87.077 87.077
5 56.184 86.101 86.100 56.880 85.052 85.051
10 56.605 83.775 83.770 58.235 82.499 82.495
15 56.351 81.335 81.329 58.817 79.519 79.510
20 55605 78.291 78.282 58.512 75.984 75.935
25 54.657 74.644 74.632 57360 72.243 72196
30 53.872 70.827 70.724 55.810 68.354 68.211

identification, the calculated polarity is compared with that of actual polarity,

that is the. difference of magnitude of noisy signal and clean signal, being ad-

ditive if the difference is positive, and subtractive otherwise. The results are

presented graphically in Fig. 4.2. From results it is evident that correct polarity

identification by Soon is around 50%, which is mediocre. Whereas in proposed

method this rate is rather high, being around 90% for lower SNRs. In high SNR

the signal amplitude is affected even for a small perturbation as the magnitude

of noise is very low compared to that of signal, that results lower percentage

of correct identification. Still the value is around 70%. Also it is evident that

the identification rate is higher for male speaker. This is because the female

voice is more extended in frequency spectrum than that of male, for which, the

perturbation, which is targeted for noise only, affects signal magnitude also.

4.4 Performance Test

The assessment of the proposed method is based on objective and subjective

quality tests. For objective tests classical overall SNR, Average Segmental SNR

and Itakura-Saito (IS) distortion measure are used [5]. For subjective tests

speech spectrograms and informal listening are used.

Enhancement results of a male utterance and that of a female utterance is

shown in Fig. 4.3 and Fig. 4.4 respectively. The denoised signal enhanced by

MPE, PARA and MMSE-LSAE, along with that with the proposed methods

• ••
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Noise Polarity Identification for Male Speaker
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Figure 4.2: Polarity identification for different methods

(Pertl and Pert2) are presented in these figures. In both cases clean signal and

noisy signal are presented for comparison. It is clear from the figures that the

proposed methods enhance better in pause periods. This is because in frames

locating around pause interval, the SNR is very low, and the proposed algo-

rithm identifies noise better for such low SNRs, which is already mentioned in

section 4.3.
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Enhancement results in Time Domain (Male Speaker)
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Figure 4,3: Enhancement results for male utterance "Would you please confirm

the government policy regarding waste removal": (a) clean; (b) noisy (corrupted

by lOdB WGN); enhanced using (c) MPE; (d) PARA; (e) MMSE-LSAE; (f)

proposed Pertl and (g) Proposed Pert2,
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Enhancement results in Time Domain (Female Speaker)
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Figure 4,4: Enhancement results for female utterance "She had your dark suit
in greasy wash water all year": (a) clean; (b) noisy (corrupted by 10dB WGN);
enhanced using (c) MPE; (d) PARA; (e) MMSE-LSAE; (f) proposed Pertl and
(g) Proposed Pert2,
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4.5 Objective Tests

4.5.1 Overall SNR

The SNR is the most widely used measure for assessing enhancement algorithms

for broadband noise distortions. The SNR of enhanced signal s(n) (in dB) is
defined as:

"N-l 2( )
SNR = 10 x log L..m~O S n10~::Ol [s(n) _ s(n)]2

(4.3)

The average results of 20 independent runs correspond to 20 different utter-

ances, both for male and female speakers, are given in Table 4.3. In the 3rd,

4th and 5th columns, SNR of the improved speech is given for methods MPE,

PARA and MMSE- LSAE respectively. Results that of the proposed two methods

as described in section 3.4 is given in columns 6 and 7.

The resulting plot of Improved SNR vs. input SNR is given in Fig. 4.5 for

male speaker and in Fig. 4.6 for female speaker. It is evident that for male

speaker the proposed method 'Pertl' show better result for low and moderate

SNRs. For higher SNRs (more than 20dB) MPE method is proved to be better.

For high SNR magnitude of noise is negligible with respect to that of signal.

Which implies that any perturbation on noise will affect signal more, which is

undesirable. So estimation of noise is more erroneous for high SNRs. Also notice

that improvement result for male speaker is better than the female ones. This

is due to the fact that female voice is more extended in frequency domain than

male voice as they contain more high frequency element. So noise at the finest

level interact more with speech for female voice, which in turn affect the signal

components while applying perturbation. Resulting a lower polarity identifica-

tion and lower improvement. The proposed 'Pert2' results decline of overall SNR

for high input SNRs. As mentioned in section 3.4 the noise power level is esti-

mated using kurtosis with a threshold value 3.0. In fact kurtosis of some speech

sub-band is below 3.0, which result over estimation of noise, adding additional
distortion to the enhanced signal.

4.5.2 Average Segmental SNR

The overall SNR represents an average error over time and frequency for a pro-

cessed signal. Since the correlation of SNR with subjective quality is so poor,
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Table 4.3: Overall SNR improvement for various noise levels, obtained using

MPE, PARA, MMSE-LSAE and proposed two methods
Input Improved SNR for Methods

Speaker SNR [dB] MPE PARA MMSE Prop. Method

LSAE Pertl Pert2
-5 2.36 209 2.44 4.13 4.14

0 6.54 6.26 5.86 7.10 7.10
5 10.41 10.12 9.11 10.67 10.43

Male 10 14.45 14.01 12.63 14.96 14.28
15 18.57 17.86 16.57 18.75 17.43
20 22.79 21.56 20.78 22.76 2092
25 27.16 25.30 25.18 26.85 23.44

30 31.70 28.88 29.53 31.32 25.75
-5 3.67 3.33 4.36 4.46 4.47
0 7.57 7.25 7.47 7.53 7.53
5 11.28 10.94 10.57 10.98 1087

Female 10 1497 14.49 13.77 14.86 14.45
15 18.76 18.09 17.18 18.50 17.57
20 22.71 21.70 20.88 22.32 20.74
25 26.85 25.19 24.92 26.34 23.35
30 31.23 28.66 29.24 30.75 25.77
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Figure 4.5: Overall SNR for male utterance: Result is averaged using results of

20 utterances
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Overall SNR for Female Speaker
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it is of little interest as a general objective measure of speech quality [48]. In-

stead, the frame-based segmental SNR is chosen, which is a reasonable measure'

of speech quality. It is known as segm.ental SNR (SN Rseg) , and is formulated

by averaging frame level SNR estimates as follows:

M-I ["mj 2()]SNR - ~ "10 I L.m~mj-N+I S n
seg ~ M LJ X oglo mj _ _ 2

j~O Ln~mj-N+I [s(n) s(n)J
(4.4 )

Where mo, ml, .... ,mM-I are the end times for the M frames, each of which

is of length N. Frames with very high SNRs (above 30 ~ 35 dB) do not reflect

large perceptual differences. Likewise, during periods of silence, SNR values can

become very negative since signal energies are small. These frames do not truly

reflect the perceptual contributions of the signal. Therefore, thresholds are often

set both for higher and lower SNR to provide a bound on frame based SNRs.

Here lower threshold is set to -lOdE, and that of higher is 35dB as in [5].

As in the case of overall SNR, the average results of 20 independent runs

correspond to 20 different utterances, both for male and female speakers, are

given in Table 4.4. Improvement results for MPE, PARA and MMSE-LSAE

are given in column 3, 4 and 5. Results that of the proposed two methods as

described in section 3.4 is given in columns 6 and 7.

The plot of Improved Segmental SNR against each input SNR, for male

speaker, is given in Fig. 4.7 and that of female is given in Fig. 4.8. It is evident

that proposed method 'Pertl' show better result than previous methods for

almost all input SNRs. The proposed 'Pert2' results decline of overall SNR

for high input SNRs. The same reasoning is applicable for improvement as

mentioned in previous sub-section (4.5.1).

4.5.3 Itakura-Saito Distortion Measure

For an original clean frame of speech with linear prediction (LP) coefficient vec-

tor, a:~,and processed speech coefficient vector, a:d, the Itakura-Saito distortion

measure is given by,

dIS(a:d,a:~)= [CT~][~d~~~~] +IOg(CT~) ~ 1 (4.5)
CTd a~ .~a.~ CT~

Where CTJ and CT~ represent the all-pole gains for the processed and clean

speech frame respectively and R~is the auto-correlation lags for clean speech.
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Table 4.4: Segmental SNR improvement for various noise levels, obtained using

MPE, PARA, MMSE-LSAE and proposed two methods
Input Degraded Improved SN Rseg for Methods

Speaker SNR [dB] SNRseg MPE PARA MMSE Prop. Method

LSAE Pert! Pert2
-5 -6.52 -4.24 -4.36 -4.02 -2.97 -2.97
0 -4.67 -1.97 -2.13 -1.96 -1.20 -1.20

5 -2.30 0.44 0.24 0.12 0.96 0.85
Male 10 0.55 3.09 2.78 2.43 3.63 3.36

15 3.76 5.95 5.45 5.31 630 579
20 7.18 9.24 8.39 873 9.31 7.70
25 10.79 13.06 11.80 12.40 12.74 11.62
30 14.55 17.06 15.42 15.91 16.43 14.70
-5 -6.43 -3.57 -3.74 -2.85 -2.54 -2.53
0 -4.67 -1.19 -1.39 -0.59 -0.53 -053
5 -2.27 1.45 1.19 1.78 1.79 1.75

Female 10 0.74 4.28 3.91 4.26 4.55 4.39
15 4.26 7.31 6.82 6.90 7.35 703
20 8.16 10.56 9.83 9.85 10.34 9.83
25 12.30 1415 12.98 13.23 13.74 12.70
30 16.43 17.98 16.38 16.85 17.48 15.68

.,.

•
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Figure 4.7: Average Segmental SNR improvement for male utterance: result is

averaged using results of 20 utterances



38

20
Average Segmental SNR for Female Speaker

10

, .' Degraded
-0- MPE
,g, PARA

... '. MMSE-LSAE
15 '* Pert1

-I:r Pert2

",
, ,e' '" , ...."""

o

-5

-10-5 o 5 10 15
Input SNR

20 25 30

Figure 4.8: Average Segmental SNR improvement for female utterance: result

is averaged using results of 20 utterances
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There are several ways to obtain overall quality scores. For most measures,

finding a mean across a large test set is reasonable. If users want a general

measure of performance the median of the resulting frame-level scores is more

useful (a mean quality measure is typically biased by a few frames in the tails

of the quality measure distribution). Another way to get a reasonable overall

measure is to find the mean using the first 95% of the frames. This allows for

the removal of a fixed number of frames which may have unrealistically high

distortion levels. Results are presented in Table 4.5, plot of which is given in

Fig. 4.9 for male speaker and Fig. 4.10 for female speaker. Proposed method

'Pert2' result a very high amount of distortion, none of the methods 'PertI' and

'Pert2' show any better result than that of MPE. For clean speech, energies

of unvoiced segments are comparable to those of noise. Applying perturbation

to those segments, it results an over-estimation of noise. Consequently those

unvoiced segments reduced in magnitude, resulting abnormally high distortion
at some points.

4.5.4 Spectrogram

Spectrogram is a time-dependent Fourier transform for a sequence. The time-

dependent Fourier transform is the discrete-time Fourier transform for a se-

quence, computed using a sliding window. The spectrogram of a sequence is

the magnitude of the time-dependent Fourier transform versus time. In a spec-

trogram a reddish hue indicates high signal strength, where blue indicates low

signal strength. Spectrogram of the clean, noisy (degraded by 10dB noise) and

enhanced speech signals are presented in Fig. 4.11 for male speakers and in

Fig. 4.12 for female speakers. It is clearly visible for noisy signal (Fig. 4.11(b)

and 4.12(b)) that, the reddish yellow marks are evenly spread all over the spec-

trum indicating wide-band vVGN. For enhanced these marks are mostly removed.

While doing so most enhancement methods crops some part of the actual sig-

nal. Fig. 4.11(f), 4.11(g), 4.12(f), 4.12(g) shows that proposed methods removes

the background noise significantly while retaining signal details more than other
methods.
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Table 4.5: Average Itakura-Saito Distortion Measure for various noise levels,

obtained using MPE, PARA, MMSE-LSAE and proposed two methods
Input Degraded Improved IS Measure for Methods

Speaker SNR [dB] IS MPE PARA MMSE Prop. Method

LSAE Pert1 Pert2
-5 5.78 4.21 4.33 4.19 550 5.47
0 503 3.38 3.48 3.70 5.48 5.47
5 4.22 2.69 2.77 328 4.39 4.64

Male 10 3.45 2.12 2.17 2.76 2.37 2.73
15 2.76 164 169 2.16 178 2.03
20 2.17 125 128 162 130 1.48
25 167 0.90 0.94 129 099 1.17
30 125 0.62 0.65 128 0.74 0.89
-5 4.69 3.06 3.16 3.33 5.15 5.11
0 4.00 2.34 2.41 3.02 5.37 5.31
5 3.24 1.75 1.78 2.71 4.53 4.86

Female 10 2.49 131 130 2.43 231 2.64
15 182 0.97 0.94 2.13 159 188
20 128 069 0.65 1.71 0.99 132
25 0.85 0.46 0.44 122 0.63 101
30 054 0.28 0.27 0.81 0.40 0.78

"
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Average Itakura-Saito Distortion Measure for Male Speaker
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Figure 4.9: Itakura-Saito distortion measure for male utterance: result is aver-

aged using results of 20 utterances
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Figure 4,10: Itakura-Saito distortion measure for female utterance: result is

averaged using results of 20 utterances



43

4000 -c _-~!Gl 2000, <U i';' -'4_

-w.!!.Q. 2000 ,
'~

o
~ 4000
c ( ""
Ql -rt 2000 ~ -'
::l ~( '"go Q.
f
IL

••S; 2000
Q.

0,5

~.- ;.::

1,5 2
Time (sec)

Figure 4.11: Spectrogram for 'a male utterance "Would you please confirm the
government policy regarding waste removal": (a) clean; (b) noisy (corrupted
by lOdB WGN); enhanced using (c) MPE; (d) PARA; (e) MMSE-LSAE; (f)
Proposed Pertl and (g) Proposed Pert2
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greasy wash water all year": (a) clean; (b) noisy (corrupted by lOdB WGN):
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4.6 Subjective Test

Considering noise reduction, it is a general notion to think of improving a signal-

to-noise ratio (SNR). This may not be the most appropriate performance cri-

terion for speech enhancement. All listeners have an intuitive understanding

of speech quality, intelligibility and listener fatigue. However, these areas are

not easy to quantify. For subjective quality testing informal listening has been

used involving 5 listeners. They voted proposed methods to be better than the

MPE for most of the utterances especially for male speakers. For some female

utterances listeners could not differentiate between MPE and proposed methods.

4.7 Conclusion

In this chapter various results have been reported. The results for objective and

subjective tests of the proposed method are shown along with the results of the

three methods reported earlier [35, 36]. Simulation results indicates that the

perturbation technique may be a promising one as a new technique for speech
enhancement.



Chapter 5

Conclusion

5.1 Summary

A new technique for speech enhancement in DCT domain has been proposed.

The major focus of this research was to exploit perturbation as a new technique

for speech enhancement. A small perturbation is applied in DCT domain. The

amount of perturbation is chosen to be proportional to the average magnitude

of noise with respect to estimated clean and noise signal content in DCT do-

main. For this average trend-line both for noise and signal is first determined.

The trend-line for noise is chosen to be constant for a particular time frame

and that is the average minima in the DCT domain. And signal trend-line is

then obtained by subtracting this noise trend-line from noisy trend-line, forcing

negative values to zero. The result of application of perturbation is then com-

pared in time domain with respect to actual noisy signal, to give an estimation

of noise distribution. The noise thus estimated is multiplied by a constant (a)

such to minimize the error between actual and estimated signal, to subtract it

from noisy signal in time domain to have enhanced speech signal.

The result shown in chapter 4 indicates the proposed technique performs bet-

ter for male speaker, rather than female speakers. Overall SNR, Sygmental SNR

for proposed 1st method (Pertl) is better that MPE, PARA and MMSE-LSAE

for most SNRs. But Pert2 did not perform good for high SNRs. Also Itakura-

Saito distortion measure for proposed algorithms (both Pertl and Pert2) is not '('j

better than MPE. But Pert2 will work better for changing noise condition as

noise is estimated from the noisy signal of that particular frame. Another thing

is that proposed methods is less expensive in terms of processing time, which

suggest that the proposed method can be used for real time speech processing

46
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applications.

5.2 Limitations and Suggestion for Future

Work

For high SNR the magnitude of noise is negligible with respect to that of signal,

that results unintentional change in speech while applying perturbation on noise.

Consequently improvement is not that good for high SNRs. Also the proposed

method does not produce better results for female voice. So a better perturbation

criteria needs to be investigated for high input SNRs as well as for female voices.

The perturbation technique ensures better intelligibility, which is evident

from objective tests, also the quality of enhanced speech as estimated from sub-

jective test give better enhancement quality. But still there are some musical

noise present in enhanced speech. Masking properties of human auditory sys-

tem [17] may be combined with the proposed methods to improve the perfor-
mance.

The value {3(Eq. 3.7) is chosen empirically, which may be investigated further

to obtain an optimized value to give better performance in terms of intelligibility

and quality. Also research is needed to include various real and colored noise.
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