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ABSTRACT 
 

Speckle noise is an inherent phenomenon in medical ultrasound images. Since it degrades an 
ultrasound image quality and reduces its diagnostic value, reduction of speckle noise is a very 
important p re-processing s tep in ultrasound image pr ocessing. F or t his pur pose, t he 
knowledge o f t he st atistics o f speckle noise is necessary; e specially in the multi-resolution 
transform domain due to their sparse and ef ficient representation of images and henceforth 
their widespread application in developing efficient speckle reduction methods. In this thesis, 
the statistics of log-transformed speckle noise in various multi-resolution transform domains 
is i nvestigated. The r eason f or c onsidering t he l og-transformed n oise i s t he p revalence o f 
homomorphic ap proaches for speckle r eduction i n the l iterature w here the m ultiplicative 
speckle noise is converted to an additive one by log-transformation and subsequently reduced 
by a pplying a dditive no ise reduction t echniques.  In this t hesis, a  Bessel K -Form ( BKF) 
probability density function (pdf) is proposed as a highly suitable prior for modeling the log-
transformed speckle noise i n t he w ell-known discrete w avelet transform (D WT), c urvelet 
transform, dua l-tree c omplex w avelet t ransform ( DT-CWT) a nd contourlet t ransform 
domains.  The m otivations for us ing t he B KF pdf a re the he avy-tailed n ature o f t he l og-
transformed speckle noise, and the effectiveness of the BKF pdf in capturing the statistics of 
heavy-tailed , reported in several research works in the literature. Maximum likelihood- based 
methods are presented for estimating the parameters of the BKF pdf. The appropriateness of 
the BKF pdf in modeling the speckle noise is extensively explored for the case o f simulated 
noise o f d ifferent l evels as w ell a s r eal m edical u ltrasound i mages in various t ransform 
domains that include the DWT, curvelet transform, DT-CWT and contourlet transform. It is 
shown that, in general the BKF can model the statistics of the various transform coefficients 
corresponding t o l og-transformed s peckle be tter t han t he t raditional Gaussian an d n ormal 
inverse Gaussian (NIG) pdfs. It is expected that the findings of this thesis would encourage 
researchers i n d eveloping e ffective a nd i mproved m ulti-resolution t ransform-based 
algorithms for reducing the speckle noise from medical ultrasound images. 
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Chapter 1 
 
Importance of Ultrasound Systems 
 
1.1 Medical Ultrasound System 

 
Medical ul trasound i s a  highly popu lar c oherent i maging modality f or di agnostic p urposes 
due to its non-invasiveness, use of safe non-ionizing sound waves, low cost and portability. 
Ultrasound is a n o scillating sound pressure w ave w ith a frequency greater than t he uppe r 
limit o f the human hearing r ange. U ltrasound i s t hus not  s eparated f rom 'normal' ( audible) 
sound based on di fferences in physical properties, only the fact that humans cannot hear i t. 
Although t his l imit va ries f rom pe rson t o p erson, i t i s a pproximately 20 kilohertz (20,000 
hertz) in healthy, young adults. Ultrasound devices operate with frequencies from 20 kHz up 
to several gigahertz.  For diagnostic ultrasound, the frequencies used are typically between 2 
and 18  MHz [1]. Figure 1. 1 shows approximate f requency r anges c orresponding t o 
ultrasound, with rough guide of some applications. 
 
Ultrasound is used in many different fields. Ultrasonic devices are used to detect objects and 
measure distances. Ultrasonic imaging (sonography) is used in both veterinary medicine and 
human medicine. In the nondestructive testing of products and structures, ultrasound is used 
to detect invisible flaws. Industrially, ultrasound is used for cleaning and for mixing, and to 
accelerate c hemical p rocesses. O rganisms su ch as bats and porpoises use ul trasound f or 
locating prey and obstacles. 
 

 
 

Figure 1.1: Ultrasound frequency ranges. 

Ultrasonics is t he a pplication of  ul trasound. U ltrasound c an be  us ed f or medical i maging. 
Diagnostic s onography (ultrasonography) i s a n ultrasound-based di agnostic imaging 
technique u sed f or vi sualizing s ubcutaneous b ody s tructures i ncluding tendons, muscles, 
joints, vessels and internal organs for possible pathology or lesions. Obstetric sonography is 
commonly used during pregnancy and is widely recognized by the public. Figure 1.2 shows 
ultrasound image of a fetus in the womb, viewed at 12 w eeks of pregnancy (bidimensional-
scan) [2]. 
 
Sonography ( ultrasonography) i s w idely us ed i n medicine. I t i s pos sible t o pe rform bot h 
diagnosis and t herapeutic pr ocedures, us ing ul trasound t o guide interventional p rocedures 
(for in stance biopsies or dr ainage of  f luid c ollections). Sonographers are m edical 
professionals who pe rform s cans w hich a re then t ypically i nterpreted by r adiologists, 
physicians who specialize in the application and interpretation of a wide variety of medical  
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https://en.wikipedia.org/wiki/Medical_imaging
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imaging modalities, o r by c ardiologists in t he c ase of  c ardiac ul trasonography 
(echocardiography). Sonographers typically use a hand-held probe (called a t ransducer) that 
is pl aced di rectly on a nd moved ov er t he pa tient. I ncreasingly, c linicians ( physicians a nd 
other healthcare professionals who provide direct patient care) are using ultrasound in their 
office a nd h ospital p ractices, f or efficient, lo w-cost, dyn amic di agnostic imaging t hat 
facilitates treatment planning while avoiding any ionizing radiation exposure. 
 

 
 

Figure 1.2: Ultrasound image of a fetus in the womb. 

Sonography i s e ffective for imaging soft t issues of  the body. S uperficial s tructures such as 
muscles, tendons, testes, breast, kidneys, thyroid a nd pa rathyroid gl ands, a nd t he neonatal 
brain are imaged at a h igher frequency (7–18 MHz), which provides better axial and lateral 
resolution. Deeper st ructures such as l iver an d k idney ar e imaged at  a l ower f requency 1 –
6 MHz w ith lo wer a xial a nd la teral re solution b ut g reater p enetration. Figure 1. 3 shows 
examples of ultrasound images where left one is healthy neonatal brain (sagittal view) and the 
right one is healthy neonatal brain (coronal View) [2]. 
 
 

 

Figure 1.3: Examples of ultrasound images. 
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1.2 Speckle Noise In Ultrasound 
 
Speckle noise is an inherent property of coherent imaging, and it generally tends to reduce the 
image resolution and contrast, thereby reducing the diagnostic value of the imaging modality 
like medical ul trasound, synthetic aperture radar (SAR) and opt ical coherence. The speckle 
effect i s a r esult o f t he i nterference o f many waves, h aving d ifferent p hases, w hich a dd 
together to give a resultant wave who's amplitude, and therefore intensity, varies randomly. If 
each wave is modeled by a vector, then it can be seen in Figure 1.5 that if a number of vectors 
with r andom a ngles a re a dded t ogether, t he l ength of  t he resulting ve ctor c an be  anything 
from z ero t o t he s um o f t he i ndividual ve ctor lengths s uch a  2 -dimensional r andom w alk, 
sometimes k nown as a  drunkard’s w alk [3]. In Figure 1. 4 left o ne illustrates that through 
superposition, each scatterer in a p opulation of diffuse scat terers contributes an echo signal 
that adds one step in a random walk that constitutes the resulting received complex echo ϒ  
and the right one depicts a contour plot of the pdf of a 2-D complex Gaussian centered at the 
origin. T he values of  the m agnitude of  ϒ for many s uch scatterer popu lations f ollow t he 
Rayleigh pdf. 
 

 
 

Figure 1.4: Diffuse scatterer's random walk and contour plot 

Diederik S . Wiersma [4] shows a  high de nsity of  s cattering pa rticles f orms a n opa que 
material. Dust particles are one example of scattering materials. It is observed that when light 
diffused by shining a laser pointer on a sugar cube, the beam is scattered many times by the 
sugar particles and, eventually, emerges from the sugar cube in all directions. This diffusive 
light is not equally distributed in space, but a careful analysis reveals a grainy pattern known 
as laser sp eckle. Figure 1. 5 shows example o f a sp eckle p attern where the in tensity 
distribution pa ttern ge nerated by t he di ffusion o f l ight f rom a  s trongly scattering m aterial. 
The he ight of t he pe aks r epresents the i ntensity of  t he l ight. O ne c an s ee t hat, de spite the 
random scattering, interference effects lead to very intense peaks as well as to points of zero 
intensity. 
 
Speckle noi se reduces t he c ontrast and r esolution i n ultrasound images an d o bscures t he 
diagnostically i mportant de tails.  T hus, t he r eduction of sp eckle n oise f rom medical 
ultrasound images is very important especially as a pre-processing step for image processing   
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tasks su ch as c ompression a nd s egmentation. The know ledge a bout t he s tatistics of  t he 
speckle noise is important to develop effective methods for speckle reduction. A number of 
statistical m odels h ave appeared in t he l iterature f or m odeling t he sp eckle t hat i nclude t he 
Rayleigh, Rician, Nakagami, K-Homodyne, Gamma, Weibull, normal, log-normal and Rician 
inverse Gaussian distributions. Given the stochastic nature of speckle noise, we must describe 
this noise pattern statistically to draw general conclusions about imaging systems.  
 

 
 

Figure 1.5: Example of a speckle pattern 

To de scribe ul trasound speckle, the s tatistics f rom the li terature o f la ser o ptics [3] can b e 
used. Each of the diffuse scatterers in the isochronous volume contributes a component to the 
echo signal in a sum known as a random walk in the complex plane which is already shown 
schematically in Figure 1.4. If each step in this walk i s considered an independent random 
variable, o ver m any su ch w alks w e can  ap ply t he C entral L imit T heorem to  th eir s um. 
Therefore, in fully developed speckle, this complex radio-frequency echo signal from diffuse 
scatterers alone has a zero mean, two-dimensional Gaussian probability density function (pdf) 
in t he c omplex pl ane. Envelope de tection removes t he pha se c omponent, c reating a s ignal 
with a Rayleigh amplitude pdf: 
 
                                              𝑃𝑃𝐴𝐴(𝑘𝑘) = 𝑘𝑘

𝜎𝜎2  𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑘𝑘2

2𝜎𝜎2�   ;   𝑘𝑘 ≥ 0                                         (1.1) 
 
Speckle brightness is greater if there are fewer, longer steps in the random walk than if there 
are many shorter steps. This could be accomplished by improving the spatial resolution of the 
system. O n t he ot her h and, i f t he scatterer de nsity is doub led, a  √2 increase i n b rightness 
results. When a  coherent c omponent i s i ntroduced t o t he speckle noise, i t a dds a  constant 
strong phasor to the diffuse scatterers echoes and shifts the mean of the complex echo signal 
away from the origin in the complex plane. Upon detection, this has the effect of changing 
the Rayleigh pdf into a Rician pdf. The Rician pdf is defined by the following equation:  
                                                    
                                         𝑃𝑃𝐴𝐴(𝑘𝑘) = 𝑘𝑘

𝜎𝜎2  𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑘𝑘2+𝑠𝑠2

2𝜎𝜎2 �  𝐼𝐼0  𝑘𝑘𝑠𝑠
𝜎𝜎2   ;   𝑘𝑘 ≥ 0                                 (1.2) 
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Figure 1.6: The Rayleigh pdf and a family of Rician pdfs. 

 
These pdfs are nonz ero f or  𝑘𝑘 ≥ 0 only. T he pa rameter 𝑠𝑠 is t he echo s trength of t he br ight 
scatterer, while 𝜎𝜎 is the standard deviation of the complex Gaussian described above, i.e. both 
the real part and the imaginary part have variances of 𝜎𝜎. 𝐼𝐼0 is the incomplete Bessel function 
of zero order. The Rician pdf is parameterized by the variable  𝑘𝑘, which is defined as 𝑠𝑠/𝜎𝜎 [3]. 
The Rician pdf reduces to the Rayleigh pdf for the special case 𝑠𝑠 = 0. Figure 1.6 depicts a  
family o f R ician pdfs f or v arious v alues o f  𝑘𝑘, i ncluding t he R ayleigh pdf. Later w e w ill 
discuss on the modeling of  speckle in ultrasound imaging with noisy environment. 
 

1.3 Literature Review 
 
Various de speckling methods a re pr oposed i n l iterature, a mong which hom omorphic 
approaches in multi-resolution transform domains are most popular [5]-[16]. In this approach, 
the ultrasound image is considered as the product of the noise-free reflectivity and speckle; 
the i mage i s s ubsequently s ubjected t o l og-transformation to  c onvert th e m ultiplicative 
speckle noise t o a n a dditive one . The l og-transformed i mage i s f iltered us ing a n additive 
noise r eduction m ethod. The c orresponding c oefficients ar e d enoised, i nverse t ransformed 
and subsequently subjected to an exponential operation, yielding the despeckled image. To 
develop a n e ffective de noising m ethod, i t i s ve ry i mportant t o know  t he s tatistics of  t he 
speckle in transform domain. A number of statistical models have appeared in the literature 
for modeling t he s peckle t hat i nclude t he Rayleigh, Rician, N akagami, K -Homodyne, 
Gamma, Weibull, nor mal, l og-normal an d R ician inverse G aussian d istributions [5]-[8]. 
Appropriate modeling of the log-transformed speckle noise especially in the time-frequency 
transform d omain ( such as t he w avelet t ransform, c urvelet transform, dual-tree co mplex 
wavelet transform and contourlet transform) is very important for effective speckle reduction 
considering t he c onsiderable su ccess o f t ransform-based methods f or a dditive noi se 
reduction. The most widely used model is the Gaussian probability density function (pdf) for 
it i s m athematically t ractable an d can cap ture t he n oise s tatistics w hen t he noise s tandard 
deviation is low [9]-[14]. However, unlike Gaussian, the statistics of speckle noise coefficien- 
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-ts is actually heavy-tailed and can be described more accurately by a double-exponential pdf, 
commonly known a s F isher-Tippet pdf [15], [16]. Figure 1. 7 represents histogram of  l og-
transformed speckle noise at noise standard deviation 0.3. 
 

 
Figure 1.7: Heavy tailed nature of log-transformed speckle noise. 

The di sadvantage of  us ing t his pdf is its  mathematical in tractability a nd c omplicated 
parameter estimation that complicates the development of an  effective denoising processor. 
In f act, in  [15], t he a uthors e stimate t he noi se out liers r esponsible f or i ts he avy-tailed 
character, subsequently s ubtract i t from t he ul trasound image t o Gaussianize the noise a nd 
consider the resulting no ise as G aussian. In [17], the wavelet coefficients corresponding to 
log-transformed speckle is modeled with a bimodal Rayleigh pdf. However, i t is unrealistic 
since the noise is unimodal. A normal inverse Gaussian (NIG) pdf is used in [18]. The NIG 
distribution can model data satisfying the following relationship between skewness (γ�3) and 
kurtosis (γ�4) [19]:  γ4 ≥ 4γ3

2/3 . For data w hich do  not  s atisfy t he a bove relationship, t he 
cumulant b ased es timators yield complex p arameters. T his can  b e used as an  i nternal 
validation test of  the estimators; i.e. if  the complex parameters are estimated from a  (la rge 
enough) da taset, the d ata ar e c ertainly not  N IG-distributed. A g eneralized N akagami pdf 
adopted in [20] to model the speckle wavelet coefficients. Recently, the BKF pdf introduced 
by Srivastava [21] has attracted the attention of researchers for its ability to effectively model 
the he avy-tailed s tatistics o f im age d ata [22]. I n th is th esis, t he BKF  pdf is pr oposed a s a 
highly s uitable m odel f or c apturing t he s tatistics of  t he l og-transformed sp eckle i n multi-
resolution transform domains such as discrete wavelet transform (DWT), curvelet transform, 
dual-tree co mplex w avelet transform ( DT-CWT) and contourlet t ransform domains. A  
maximum l ikelihood ( ML)-based estimation technique i s i ntroduced f or obt aining t he 
parameters of the BKF pdf. The suitability of  the pdf in modeling the DWT, curvelet, DT-
CWT and contourlet coefficients i s st udied f or d ifferent Noise S tandard D eviations an d 
compared with those of Gaussian and NIG pdfs using simulated noise and speckle extracted 
from ul trasound images. Our motivations f or using different multi-resolution t ransform 
domains are- DWT can gi ve a  good t ime-frequency r epresentation of  t he non -stationary 
signal as shown in the next chapter in Figure 2.3, the DWT also has the ability to represent 
most of the signal energy on a relatively small number of coefficients, leaving the majority of 
the w avelet co efficients w ith v alues close t o zero [11]. On t he ot her ha nd the c urvelet 
transform [23]-[27] has t he ability t o d escribe t he sp arseness an d d irectionalities o f i mage 
signals s ignificantly b etter th an th e w avelet transform. The DT -CWT [28]-[30] provides a  
high de gree of  di rectionality, r edundancy a nd ne arly s hift invariability a s c ompared t o t he 
traditional d iscrete w avelet t ransform (D WT). The c ontourlet t ransform de picts a d iscrete 
extension of the curvelet transform that aims to capture curves instead of points, and provides  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
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for directionality and anisotropy [43]-[47]. Also, to the best of the authors’ research reports 
on t he m odeling of  the s peckle i n multi-resolution transform do main a re ve ry l imited a nd 
sometimes unrealistic (e. g. [17]). Thus, it is  important to investigate the speckle statistics in 
multi-resolution transform domain using suitable priors to facilitate development of effective 
methods for despeckling. 

 

1.4 Objective 
 
Recently, t he B essel K -Form pr obability de nsity f unction ( pdf) h as em erged as a highly 
suitable prior for modeling non-Gaussian statistics. Interestingly, it includes the Gaussian and 
double e xponential a s s pecial c ases. I n r ecent times, t he m ethods ba sed upon di rectional 
transforms (e.g. DWT, curvelet t ransform, contourlet t ransform and DT-CWT) have shown 
significant success in denoising [13], [25], [28], [43]. Given these perspectives, the objectives 
of this thesis are: 
 

a) To develop a maximum a likelihood (MLE) method for estimating the parameters of 
the BKF pdf. 

b) To study the ef fectiveness o f the BKF prior in modeling the st atistics of speckle in 
discrete wavelet transform (DWT), curvelet transform, contourlet transform and dual-
tree complex wavelet transform (DT-CWT) domains using the developed method for 
parameter estimation for different noise standard deviations and orientations. 

c) To examine the suitability of the BKF pdf for modeling the speckle noise in the case 
of ultrasound images.    
  

The outcomes of this research include the development of an efficient method for obtaining 
the p arameters o f t he B KF pdf, e stablish it s s uitability f or u se a s a  p rior to  d escribe the 
statistics o f sp eckle i n v arious t ransform d omains an d t hus, f acilitate t he researchers in 
developing highly effective methods for speckle reduction from medical ultrasound images. 
In addition, it might be further be useful in other image processing tasks such as segmentation 
and characterization. 
 

1.5 Layout of the Thesis 
 
The pur pose of  t his d ocument i s t o pr esent t he ul trasound r esearcher to d ivest th eir 
knowledge on t he m odeling of  t he s peckle in transform do main such as  discrete w avelet 
transform (DWT), curvelet t ransform, dual-tree complex wavelet t ransform (DT-CWT) and 
contourlet t ransform in a realistic m anner. the f irst ch apter sh owed the b asic co ncepts o f 
medical ul trasound i maging, ge neration of  s peckle, i mportance t o k now t he s tatistics of  
speckle, literature review and our motivation. In the second chapter we will discuss speckle 
noise m odeling i n t he w avelet & cu rvelet domains which i ncludes introduction, r eview o f 
BKF pdf, st atistics of speckle, BKF parameter est imation method, experimental results and 
simulations, concluding remarks. In chapter three and four will be analyzed the same in the 
dual-tree c omplex w avelet transform (DT-CWT) and contourlet t ransform domains 
respectively. Finally some concluding remarks are provided in chapter five. 



 

Chapter 2 
 
Speckle Noise M odeling i n t he Wavelet a nd Curvelet 
Domains 
 
2.1 Introduction 

     
In the preceding chapter we have out lined the importance of modeling the speckle noise in 
multi-resolution t ransform domain. As explained be fore, for developing effective statistical 
methods for speckle reduction, it is very important to have the knowledge of the statistics of 
the log-transformed speckle noise. Recent investigations show that the reduction of speckle 
noise is most effectively done in multi-resolution transform domains, such as the discrete 
wavelet transform (DWT), curvelet transform and using statistical methods. In this chapter 
we pr actically c onsider the m odeling pe rformance of  l og t ransformed s peckle no ise i n t he 
discrete wavelet transform (DWT) and curvelet transform domains. 
 
The ch apter i s o rganized as f ollows. S ection 2 .2 i ntroduces t he Bessel K -Form ( BKF) 
probability density function (pdf), i t's properties to model the heavy tailed nature of the log 
transformed sp eckle n oise, t he m oment b ased B KF pdf parameter e stimation m ethod, it' s 
limitation and a  n ew Maximum L ikelihood E stimation (MLE)-based BKF pdf parameter 
estimation method. Section 2.3 reviews a brief introduction of the discrete wavelet transform 
decomposition. Section 2.4 provides the curvelet transform. Section 2.5 depicts a vast study 
on the statistics of speckle noise with noise modeling performances in both simulated noise 
and r eal ul trasound speckle noi se and c ompare them w ith other st ate o f t he ar ts with 
simulation results, and the summary is in Section 2.6.    
 

2.2 The BKF pdf 
 

The BKF pdf is expressed as [21] 

                   𝑓𝑓𝑒𝑒(𝑒𝑒;𝑒𝑒, 𝑐𝑐) =
1

√𝜋𝜋 Г(𝑒𝑒)
 �
𝑐𝑐
2
�
− 𝑒𝑒2 − 14   �

𝑒𝑒
2
�
𝑒𝑒− 12  𝐾𝐾𝑒𝑒− 12

��
2
𝑐𝑐

|𝑒𝑒|�                       (2.1) 

where 𝐾𝐾𝑒𝑒− 12  
  denotes he modified Bessel function of the second kind of order  𝑒𝑒 − 1

2
 , given 

by [32]  

𝐾𝐾𝑒𝑒− 12
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                                                                                                                                                                 (2.2) 
where p and𝑐𝑐 c are scale an d sh ape p arameters, r espectively, an d Γ represents t he g amma 
function. 
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The BKF pdf is unimodal, symmetric around the mode, the mode necessarily not being zero. 
Its peakedness increases as t he value o f p is increased. For p = 1, i t s imply reduces to the 
double exponential pdf.  If p > 1, we get closer to the Gaussian case especially when p ≫ 1. If  
p < 1, it becomes more sharply peaked and the tails become heavier. In general, the BKF pdf 
can be considered as t he p-th convolution power of the double exponential [22]. Figure 2.1 
shows plots of  a  BKF pdf for di fferent values of p and c. The cumulants of  a  BKF pdf are 
given by           
                                

                                                          𝐾𝐾2𝑖𝑖 = 𝑒𝑒 �𝑐𝑐
2
�
𝑖𝑖 (2𝑖𝑖)!

𝑖𝑖
,   𝑖𝑖 ≥ 1                                                         (2.3)                           

 
the odd cumulants of BKF pdf are zero and the even ones nonzero. Assuming that the mean is 
zero, the first four cumulants are given by [22]  
 
                                                            𝐾𝐾1 = 0 , 𝐾𝐾3 = 0                                                       (2.4) 
                                                  𝐾𝐾2 = 𝑚𝑚2 ,  𝐾𝐾4 = 𝑚𝑚4 − 3𝑚𝑚2

2                                            (2.5) 
 
Here, 𝑚𝑚2 and 𝑚𝑚4  are t he 2 nd and 4 th order moments o f t he pdf. F rom ( 2.4) a nd ( 2.5), t he 
variance and kurtosis of a BKF random variable 𝑋𝑋 are determined as 
 

                                     𝑉𝑉𝑎𝑎𝑎𝑎(𝑋𝑋) = 𝐾𝐾2 = 𝑒𝑒𝑐𝑐,   𝐾𝐾𝐾𝐾𝑎𝑎𝑧𝑧(𝑋𝑋) =
𝐾𝐾4

𝐾𝐾2
2 + 3 =

3
𝑒𝑒

+ 3                               (2.6) 

        
using (2.5) and (2.6), the parameters 𝑒𝑒 and 𝑐𝑐 are estimated as  
                                           

                                               �̂�𝑒 =
3

𝐾𝐾𝐾𝐾𝑎𝑎𝑧𝑧(𝑒𝑒) − 3
 , �̂�𝑐 =

𝑉𝑉𝑎𝑎𝑎𝑎(𝑒𝑒)
�̂�𝑒

                                              (2.7) 

 

                           
Figure 2.1: Plots of a BKF pdf for different values of 'p' and 'c’ 
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Notice that for pure Gaussian pdf, since the value of kurtosis is 3, p→∞ approaches infinity 
whereas c→0. T he moment-based est imators o f t he p arameters 𝑒𝑒 and 𝑐𝑐, gi ven by ( 2.7) a re 
biased especially for a small-sized data set. In this chapter, a Maximum Likelihood Estimation 
(MLE)-based method fo r e stimating th e p arameters o f a  B KF pdf is pr oposed. Let th e 
observations c orresponding t o a  B KF r andom va riable 𝑋𝑋  represented b y xi where 
i=1,2.3,……n. The Maximum Likelihood Estimation (MLE) of 𝑋𝑋 is 
 

𝐿𝐿(𝑒𝑒|𝑒𝑒, 𝑐𝑐) = ��𝑓𝑓𝑒𝑒𝑖𝑖(𝑒𝑒𝑖𝑖|𝑒𝑒, 𝑐𝑐)�
𝑛𝑛

𝑖𝑖=1

 

 

=> 𝐿𝐿(𝑒𝑒|𝑒𝑒, 𝑐𝑐) = ��
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           (2.8) 

 
 
The Maximum Log Likelihood  function for 𝑋𝑋 is given by 
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Taking derivatives on both sides of (2.9) with respect to c yields 
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using the relation [33] 
 
 
                                               𝐾𝐾𝐾𝐾𝒱𝒱′ (𝐾𝐾) = −𝒱𝒱𝐾𝐾𝒱𝒱(𝐾𝐾) − 𝐾𝐾𝐾𝐾𝒱𝒱−1(𝐾𝐾)                                                (2.11) 
 
 
one can write 
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Thus, using Eq. (2.12) and (2.10) can be written as 
 
 
𝜕𝜕
𝜕𝜕𝑐𝑐

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} =
𝑛𝑛
𝑐𝑐 �
−  
𝑒𝑒
2

 – 
1
4�

+ �

⎩
⎪
⎨

⎪
⎧

1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�

 ∙
𝜕𝜕

𝜕𝜕 ��2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�
�𝐾𝐾𝑒𝑒−1

2
��

2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�� ∙
𝜕𝜕
𝜕𝜕𝑐𝑐 �

�2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�

⎭
⎪
⎬

⎪
⎫𝑛𝑛

𝑖𝑖=1
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=>
𝜕𝜕
𝜕𝜕𝑐𝑐

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)}

=
𝑛𝑛
𝑐𝑐 �
−  
𝑒𝑒
2

 – 
1
4�

+ �

⎝

⎜
⎛ 1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�

 
𝑛𝑛

𝑖𝑖=1

∙
− �𝑒𝑒 − 1

2
�𝐾𝐾𝑒𝑒−1

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |� − ��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�𝐾𝐾𝑒𝑒−3

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�

��2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�

∙ ��−
1
2�

∙ 𝑐𝑐− 32 ∙ √2 ∙ |𝑒𝑒𝑖𝑖 |�

⎠

⎟
⎞

 

 
𝜕𝜕
𝜕𝜕𝑐𝑐

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} =
𝑛𝑛
𝑐𝑐 �
−  
𝑒𝑒
2

 – 
1
4�

+ �

⎝

⎜
⎛ 1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�

 
𝑛𝑛

𝑖𝑖=1

∙
− �𝑒𝑒 − 1

2
�𝐾𝐾𝑒𝑒−1

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |� − ��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�𝐾𝐾𝑒𝑒−3

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�

��2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�
∙ �−

|𝑒𝑒𝑖𝑖|

√2 𝑐𝑐
3
2

�

⎠

⎟
⎞

 

                                                                                                                                            
                                          (2.13)      
 
 
Taking derivatives on both sides of (2.9) with respect to p yields 
 
 

𝜕𝜕
𝜕𝜕𝑒𝑒

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} =
𝜕𝜕
𝜕𝜕𝑒𝑒

�𝑛𝑛 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �
1
√𝜋𝜋

�� +
𝜕𝜕
𝜕𝜕𝑒𝑒

�𝑛𝑛 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �
1

Г(𝑒𝑒)�� +
𝜕𝜕
𝜕𝜕𝑒𝑒

�𝑛𝑛 �−  
𝑒𝑒
2

 −  
1
4�
𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �

𝑐𝑐
2
��

+
𝜕𝜕
𝜕𝜕𝑒𝑒

��𝑒𝑒 −
1
2�
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒

𝑛𝑛

𝑖𝑖=1

�
𝑒𝑒𝑖𝑖
2
�� +

𝜕𝜕
𝜕𝜕𝑒𝑒�

�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �𝐾𝐾𝑒𝑒−1
2
��

2
𝑐𝑐

|𝑒𝑒𝑖𝑖 |��
𝑛𝑛

𝑖𝑖=1

� 
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𝜕𝜕
𝜕𝜕𝑒𝑒

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} = −𝑛𝑛ѱ(𝑒𝑒) −
3𝑛𝑛
4
𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �

𝑐𝑐
2
� +

1
2
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒

𝑛𝑛

𝑖𝑖=1

�
𝑒𝑒𝑖𝑖
2
�

+
𝜕𝜕
𝜕𝜕𝑒𝑒�

�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �𝐾𝐾𝑒𝑒−1
2
��

2
𝑐𝑐

|𝑒𝑒𝑖𝑖 |��
𝑛𝑛

𝑖𝑖=1

�                                                             (2.14) 

 
 
where the digamma function 𝝍𝝍 is defined as [32] 

                                                             𝜓𝜓(𝑧𝑧) =
𝜕𝜕
𝜕𝜕𝑧𝑧
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒�Г(𝑧𝑧)��                                                    (2.15) 

 
using the following relation  
 

                                         �
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐾𝐾𝜕𝜕(𝑧𝑧)�
𝜕𝜕=𝑛𝑛

=
𝑛𝑛! �1

2
𝑧𝑧�

−𝑛𝑛

2
�

�1
2
𝑧𝑧�

𝑘𝑘
𝐾𝐾𝑘𝑘(𝑧𝑧)

(𝑛𝑛 − 𝑘𝑘)𝑘𝑘!

𝑛𝑛−1

𝑘𝑘=0

                                 (2.16) 

 
 
one can write [32] 

 

�
𝜕𝜕

𝜕𝜕 �𝑒𝑒 − 1
2
�
�𝐾𝐾𝑒𝑒−1

2
��

2
𝑐𝑐

|𝑒𝑒|���

𝑒𝑒−1
2=𝑛𝑛

=
𝑛𝑛! �1

2
��2

𝑐𝑐
|𝑒𝑒|��

−𝑛𝑛

2
�

�1
2
��2

𝑐𝑐
|𝑒𝑒|��

𝑘𝑘

𝐾𝐾𝑘𝑘 ��
2
𝑐𝑐

|𝑒𝑒|�

(𝑛𝑛 − 𝑘𝑘)𝑘𝑘!

𝑛𝑛−1

𝑘𝑘=0

 

                                                                                                                                                              (2.17) 
 
 
Thus, (2.14) is written as 
 
 
𝜕𝜕
𝜕𝜕𝑒𝑒

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} = −𝑛𝑛𝜓𝜓(𝑒𝑒) −
3𝑛𝑛
4
𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �

𝑐𝑐
2
� +

1
2
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒

𝑛𝑛

𝑖𝑖=1

�
𝑒𝑒𝑖𝑖
2
�

+ �

⎩
⎪
⎨

⎪
⎧

1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�

 ∙ �
𝜕𝜕

𝜕𝜕 �𝑒𝑒 − 1
2
�
�𝐾𝐾𝑒𝑒−1

2
��

2
𝑐𝑐

|𝑒𝑒𝑖𝑖|���

𝑒𝑒−1
2=𝑛𝑛

𝑛𝑛

𝑖𝑖=1

∙
𝜕𝜕
𝜕𝜕𝑒𝑒 �

𝑒𝑒 −
1
2��

                                                                                                        (2.18) 
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𝜕𝜕
𝜕𝜕𝑒𝑒

{𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒(𝐿𝐿)} = −𝑛𝑛𝜓𝜓(𝑒𝑒) −
3𝑛𝑛
4
𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �

𝑐𝑐
2
� +

1
2
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒

𝑛𝑛

𝑖𝑖=1

�
𝑒𝑒𝑖𝑖
2
�

+ �

⎩
⎪
⎨

⎪
⎧

1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�

 
𝑛𝑛

𝑖𝑖=1

∙

⎝

⎜
⎛
𝑛𝑛! �1

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |��

−𝑛𝑛

2
 �

�1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|��

𝑘𝑘

𝐾𝐾𝑘𝑘 ��
2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�

(𝑛𝑛 − 𝑘𝑘)𝑘𝑘!

𝑛𝑛−1

𝑘𝑘=0

⎠

⎟
⎞

𝑒𝑒−1
2=𝑛𝑛

∙ �
1
2�

⎭
⎪
⎬

⎪
⎫

 

                                                                                                                                                              (2.19) 
 
The Maximum L ikelihood E stimations (MLE) of p and c are obtained by r earranging 
equations (2.13) and (2.19) as 

𝑛𝑛
𝑐𝑐 �
−  
𝑒𝑒
2

 – 
1
4�

+ �

⎝

⎜
⎛ 1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�

 
𝑛𝑛

𝑖𝑖=1

∙
− �𝑒𝑒 − 1

2
�𝐾𝐾𝑒𝑒−1

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |� − ��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�𝐾𝐾𝑒𝑒−3

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖 |�

��2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�
∙ �−

|𝑒𝑒𝑖𝑖 |
√2 𝑐𝑐3/2

�

⎠

⎟
⎞

= 0 

                                  
                        (2.20) 
 

−𝑛𝑛ѱ(𝑒𝑒) −
3𝑛𝑛
4
𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 �

𝑐𝑐
2
� +

1
2
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒

𝑛𝑛

𝑖𝑖=1

�
𝑒𝑒𝑖𝑖
2
�

+ �

⎩
⎪
⎨

⎪
⎧

1

𝐾𝐾𝑒𝑒−1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|�

 
𝑛𝑛

𝑖𝑖=1

∙

⎝

⎜
⎛
𝑛𝑛! �1

2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|��

−𝑛𝑛

2
 �

�1
2
��2

𝑐𝑐
|𝑒𝑒𝑖𝑖|��

𝑘𝑘

𝐾𝐾𝑘𝑘 ��
2
𝑐𝑐

|𝑒𝑒𝑖𝑖|�

(𝑛𝑛 − 𝑘𝑘)𝑘𝑘!

𝑛𝑛−1

𝑘𝑘=0

⎠

⎟
⎞

𝑒𝑒−1
2=𝑛𝑛

∙ �
1
2�

⎭
⎪
⎬

⎪
⎫

= 0 

         
        (2.21) 
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for solving numerically by Secant method [32] equations (2.20) and (2.21) can be defined as  

 
                                                                 𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘) = 0                                                            (2.22) 
                                
                                                                 𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘) = 0                                                            (2.23) 
                                
Where, 𝑭𝑭𝟏𝟏 and 𝑭𝑭𝟐𝟐 are the left hand side of (2.20), (2.21) and 𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌 are estimated at the k-th 
iteration. T he in itial v alues  𝒑𝒑�𝒌𝒌 and 𝒄𝒄�𝒌𝒌 are es timated f rom t he m oment-based est imator o f 
(2.7). The value of p and c at a given iteration are obtained as [32] 

                                            ��̂�𝑐𝑘𝑘+1 = �̂�𝑐𝑘𝑘 −
𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘)(�̂�𝑐𝑘𝑘−1 − �̂�𝑐𝑘𝑘)

𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘−1) − 𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘)�                           (2.24) 

 

                                           ��̂�𝑒𝑘𝑘+1 = �̂�𝑒𝑘𝑘 −
𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘+1)(�̂�𝑒𝑘𝑘−1 − �̂�𝑒𝑘𝑘)

𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘−1, �̂�𝑐𝑘𝑘+1) − 𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘+1)�                   (2.25) 

 
The value of c obtained from (2.24) is used as the initial value in (2.25), whereas the value 
of p found i n (2.25) is u sed as t he i nitial v alue o f p in s olving (2.24) in s ubsequent 
iterations. This iterative process will be continued until the following condition is satisfied: 
 
                                             |(�̂�𝑒𝑘𝑘+1 − �̂�𝑒𝑘𝑘) + (�̂�𝑐𝑘𝑘+1 − �̂�𝑐𝑘𝑘)| ≤1x10-8                                       (2.26) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

   
  
                          No                                            
                                            
 

 Yes 
 

 
 

Figure 2.2: Flow chart for numerical solution of the MLEs of BKF pdf. 

Noisy Image Data,  𝒙𝒙�𝒊𝒊 ; [ 𝒊𝒊 = length of 𝒙𝒙� ] 

Initial  𝒑𝒑�𝒌𝒌−𝟏𝟏 = 𝟑𝟑
𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲(𝒙𝒙�𝒊𝒊)−𝟑𝟑

 

Initial  𝒄𝒄�𝒌𝒌−𝟏𝟏 = 𝑽𝑽𝑽𝑽𝑲𝑲(𝒙𝒙�𝒊𝒊)
𝒑𝒑�𝒌𝒌−𝟏𝟏

 
Initial  𝒌𝒌 = 𝟏𝟏 

𝒄𝒄�𝒌𝒌+𝟏𝟏 = 𝒄𝒄�𝒌𝒌 −
𝑭𝑭𝟏𝟏(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌)(𝒄𝒄�𝒌𝒌−𝟏𝟏 − 𝒄𝒄�𝒌𝒌)

𝑭𝑭𝟏𝟏(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌−𝟏𝟏) − 𝑭𝑭𝟏𝟏(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌) 

𝒑𝒑�𝒌𝒌+𝟏𝟏 = 𝒑𝒑�𝒌𝒌 −
𝑭𝑭𝟐𝟐(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌+𝟏𝟏)(𝒑𝒑�𝒌𝒌−𝟏𝟏 − 𝒑𝒑�𝒌𝒌)

𝑭𝑭𝟐𝟐(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌−𝟏𝟏, 𝒄𝒄�𝒌𝒌+𝟏𝟏) − 𝑭𝑭𝟐𝟐(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌+𝟏𝟏) 

𝒌𝒌 = 𝒌𝒌 + 𝟏𝟏 

 

|(𝒑𝒑�𝒌𝒌+𝟏𝟏 − 𝒑𝒑�𝒌𝒌) + (𝒄𝒄�𝒌𝒌+𝟏𝟏 − 𝒄𝒄�𝒌𝒌)| ≤ 1x10-8 

𝒑𝒑� = 𝒑𝒑�𝒌𝒌+𝟏𝟏 
𝒄𝒄� = 𝒄𝒄�𝒌𝒌+𝟏𝟏 
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A summary of the parameter estimation method is given below: 
 
1) Find the initial value for p and c. 
2) Estimate 𝑐𝑐 using (2.24) and the initial values,  �̂�𝑒𝑘𝑘  and �̂�𝑐𝑘𝑘 . 
3) Estimate p employing (2.25) where the value of c found in Step 2 is used for initial value 

of c. 
4) Check whether (2.26) is satisfied. If so, stop the iteration. Otherwise, go to Step 2 where 

use the value of p found in Step 3 as the initial value of p.  
 
 

2.3 The Discrete Wavelet Transform (DWT) 

2.3.1 Wavelet Transform 
 
Over t he y ears the significance i n time do main m odeling of  r andom medical si gnals was 
increasing continuously. Fourier transform (FT) was a fundamental approach that can provide 
useful i nformation w hen i t i s a pplied unde r t he a ssumption of  s tationary, l inear p rocesses. 
However, i n many bi omedical a pplications th e a ssumption o f s tationarity f ails to b e tru e. 
Thus, the strong non-stationarity of several medical signals requires a proper non-stationary 
approach in their analysis. FT only gives what frequency components exist in the signal. So 
time-frequency r epresentation of  t he s ignal i s ne eded. W avelet t ransform can  g ive a g ood 
time-frequency r epresentation of  t he non -stationary s ignal. Figure 2. 3 represents Time-
Frequency representation of non-stationary signals. 
 
As st ated b efore medical ultrasound images a nd ot her c oherent i maging modalities (i.e. 
synthetic aperture radar) are often corrupted by speckle noise in a multiplicative manner, a 
variety of  t echniques has be en de veloped t o de -speckle i mages. The ea rliest methods were 
general spatial filters working directly on the intensity image using local statistics. Examples 
of such filters are the Lee filter [34], the Sigma filter [35], the Kuan filter [36] and the Wiener 
filter [37]. Since s peckle is  m ultiplicative in  nature, a  c ommon p rocedure i s t o a pply 
denoising techniques to the wavelet coefficients of logarithmically transformed images. The 
logarithmic tra nsform is  a pplied to  make t he s peckle c ontribution a dditive, ye t s tatistically 
independent of the radar cross-section (RCS). We referred this as homomorphic filtering in 
section 2.1. Many researchers report that homomorphic wavelet filtering yields better speckle 
reduction performance t han t raditional sp atial sp eckle f ilters. So homomorphic w avelet 
filtering yields better speckle reduction performance than traditional spatial speckle filters. 
 
Since the last decade, speckle filtering based on the discrete wavelet transform (DWT) [11]-
[18] has be come qui te popul ar. B eing a  s parse t ransform, the DWT has the a bility to  
represent most of the signal energy on a relatively small number of coefficients, leaving the 
majority of the wavelet coefficients with values close to zero. Because the DWT is a linear, 
orthogonal t ransform, a dditive w hite Gaussian noise w ill s till b e ad ditive w hite G aussian 
noise in the wavelet domain. This makes the DWT a suitable tool for removing white additive 
noise. 
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Figure 2.3: Time-Frequency representation of non-stationary signals. 

 

2.3.2 Implementation of Discrete Wavelet Transform (DWT) 
 

The discrete wavelet transform (DWT) [38] of a 2D signal is implemented by filtering with a 
pair of qua drature m irror filters a long t he rows a nd c olumns, a lternatively f ollowed by 
downsampling by a  factor of two in each direction. This filtering operation decomposes the 
input image i nto f our sub-bands ( LL, L H, H L, a nd HH). Figure 2. 4 illustrates the 
implementation of DWT. The LL s ub-band contains the low frequency components in both 
directions, whereas L H, HL, a nd H H s ub-bands c ontain t he de tail components i n vertical, 
horizontal and diagonal directions respectively. The above filtering operation is repeated on 
the LL s ub-band, s plitting i t i nto f our s maller s ub-bands i n the sam e way. T he r esult i s a 
multi-resolution p yramid structure c ontaining information a bout t he image a t e ach scale. 
Figure 2.5 depicts that pyramidal Image Structure. Figure 2.6 shows the original Lena image, 
Figure 2. 7 shows t he w avelet r epresentation o f t he cl assical Lena image, de composed on 
1(one) resolution levels, Figure 2. 8 shows the wavelet representation of the classical Lena 
image, d ecomposed on 2( two) resolution l evels and Figure 2. 9 shows the w avelet 
representation of the classical Lena image, decomposed on 3( three) resolution levels. From 
the figures it can be seen that the DWT yields fairly decorrelated coefficients.  
 

 

  



 

2.3.2  Implementation of Discrete Wavelet Transform (DWT)                                               18 
 

 

 
 
 
 
 

 
 

 
 

Figure 2.4: Implementation of DWT 
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Figure 2.5: Pyramidal Image Structure 

 
 
 
 

 
 
 

Figure 2.6: Original Lena Image. 
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Figure 2.7: Wavelet decomposition of the Lena image on 1(one) resolution level. 

 

 
 

Figure 2. 8: Wavelet decomposition of the Lena image on 2(two) resolution levels. 
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Figure 2.9: Wavelet decomposition of the Lena image on 3(three) resolution levels. 

An important observation is that the positions of large wavelet coefficients designate image 
edges, i .e., the D WT h as a n edge de tection property. A fter t he w avelet r epresentation i s 
completed it can be shown [38] that the original image can also be reconstructed by means of 
a pyramidal algorithm. Figure 2.10 depicts the DWT Reconstruction. 
 

 
Figure 2.10: DWT Reconstruction 

However, one major shortcoming of the DWT is i ts sensitivity to the translation due to the 
downsampling operation. T his m eans th at a  small s hift in  an i mage can  cause a m ajor 
variation in the distribution of energy of the wavelet coefficients at different levels and mild  
ringing artifacts around the edges. Despite the fact that wavelets have had a wide impact in  
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image processing, they fail to efficiently represent objects with edges for the simple reason 
that the wavelet t ransform does not take advantage of  the geometry of  the underlying edge 
curve. The limitation h ere i s that wavelets a re n on g eometrical a nd do not  e xploit the 
regularity of t he e dge c urve. T o obt ain ne arly opt imal a pproximation r ates, improved 
multiscale representations and basis functions with a very different geometry is required. In 
this respect, we consider the curvelet transform which provides multiscale representations in 
many di rections and positions. Hence, i s much more efficient in capturing the geometry of  
image signals. I t may be noted the curvelet transform has already been used by researchers 
for image processing tasks including image despeckling [23]-[27]. 
 

2.4 The Curvelet Transform 

2.4.1 Curvelet Transform  
 
A special member of this emerging family of multiscale geometric transforms is the curvelet 
transform [23] which was developed in the last few years in an attempt to overcome inherent 
limitations of tra ditional m ultiscale re presentations such as wavelets. Conceptually, the 
curvelet transform is a multiscale pyramid with many directions and positions at each length 
scale, an d needle-shaped el ements at  f ine sca les. T his p yramid i s n onstandard, h owever. 
Indeed, curvelets have useful geometric f eatures t hat se t t hem apart f rom wavelets and the 
likes. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−𝑗𝑗  , 
each element has an envelope which is aligned along a “ridge” of length 2−𝑗𝑗 /2 and width 2−𝑗𝑗 .  
Figure 2.11 represents curvelet tiling of space and frequency. The figure on the left represents 
the induced t iling of t he f requency pl ane. I n F ourier space, curvelets a re su pported n ear a 
“parabolic” wedge, and the shaded area represents such a g eneric wedge. The figure on t he 
right sch ematically r epresents the s patial C artesian g rid associated w ith a g iven s cale an d 
orientation. 
 

2.4.2 Implementation of Curvelet Transform  
 

 
 

Figure 2.11: Curvelet tiling of space and frequency. 
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E. J. Candѐs [27] developed two new fast discrete curvelet transforms (FDCTs) which are 
simpler, faster, and less redundant than existing proposals: 
 
• Curvelets via USFFT, and 

 
• Curvelets via Wrapping. 
 
In our thesis work curvelets via wrapping is used because the FDCT via wrapping, first and 
unlike e arlier d iscrete tr ansforms, th is implementation i s a numerical isometry; s econd, its  
effective computational complexity is 6 t o 10 times that of an FFT operating on an array of 
the s ame s ize, m aking it i deal f or deployment i n large sca le sci entific applications. Figure 
2.12 shows Time-frequency tiling in the curvelet domain. In the Fourier space, the curvelets 
are supported around parabolic wedges (represented by the shaded area). The spatial cartesian 
grid associated with a scale and orientation is shown on t he r ight where j denotes the scale 
where as  Figure 2. 13 shows t he curvelet de composition of t he Lena image on 3( three) 
different scales in a p articular orientation. In the first row left to right- original Lena image 
and curvelet subband coefficient at scale-2, in the second row left to right- curvelet subband 
coefficients at scale-3 and scale-4 respectively. 
 

 
 

Figure 2.12: Time-frequency tiling in the curvelet domain. 

 
The architecture of the FDCT via wrapping is as follows [27]: 
 
1) Apply the 2D FFT and obtain Fourier samples  𝑓𝑓[𝑛𝑛1,𝑛𝑛2],−𝑛𝑛/2 ≤ 𝑛𝑛1,  𝑛𝑛2 < 𝑛𝑛/2 
2) For each scale 𝑗𝑗 and angle 𝑙𝑙, form the product  𝑈𝑈�𝑗𝑗 ,𝑙𝑙[𝑛𝑛1,𝑛𝑛2] 𝑓𝑓[𝑛𝑛1,𝑛𝑛2]  
3) Wrap this product around the origin and obtain  𝑓𝑓𝑗𝑗 ,𝑙𝑙[𝑛𝑛1,𝑛𝑛2] = 𝑊𝑊(𝑈𝑈�𝑗𝑗 ,𝑙𝑙𝑓𝑓)[𝑛𝑛1,𝑛𝑛2]  

where the range for 𝑛𝑛1 and 𝑛𝑛2 is now 0≤ 𝑛𝑛1 < 𝐿𝐿1,𝑗𝑗    and 0≤ 𝑛𝑛2 < 𝐿𝐿2,𝑗𝑗  
(𝑓𝑓𝑙𝑙𝑎𝑎 𝜃𝜃 𝑖𝑖𝑛𝑛 𝑧𝑧ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒 𝑙𝑙𝑓𝑓 −  𝜋𝜋/4,𝜋𝜋/4) 
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4) Apply the inverse 2D FFT to each 𝑓𝑓𝑗𝑗 ,𝑙𝑙  hence collecting the discrete coefficients 𝑐𝑐𝐷𝐷(𝑗𝑗, 𝑙𝑙, 𝑘𝑘). 
 

 

 

 
Figure 2.13: Curvelet decomposition of the Lena image. 

 

2.5 Statistics of The Speckle Noise 
 

Let f denote a noisy image. The noise free image pixel, represented by g, is corrupted by the 
multiplicative speckle noise 𝜂𝜂 and an additive noise (such as thermal noise) 𝜂𝜂𝑎𝑎 . Thus, one can 
write [12] 

 
                                                   𝑓𝑓(𝑙𝑙,𝑘𝑘) = 𝑎𝑎(𝑙𝑙, 𝑘𝑘)𝜂𝜂(𝑙𝑙,𝑘𝑘) + 𝜂𝜂𝑎𝑎(𝑙𝑙,𝑘𝑘)                                            (2.27) 
                    
Here, 𝑘𝑘, 𝑙𝑙 are v ariables o f t he sp atial l ocations (𝑙𝑙, 𝑘𝑘) Є 𝑍𝑍2  where 𝑍𝑍 is a se t o f i ntegers. The 
speckle noise can be simulated by l ow-pass filtering a complex Gaussian random field, and 
then t aking the m agnitude of  t he f iltered out put. T he f iltering i s c arried out  us ing a  3x3  
window, since such a short-term correlation is sufficient to account for real speckle noise [6]. 
Since the effect of  𝜂𝜂𝑎𝑎(𝑙𝑙 ,𝑘𝑘)  is very small compared to 𝜂𝜂𝑙𝑙 ,𝑘𝑘  , (2.27) is written as [12] 
                              
                                                           𝑓𝑓(𝑙𝑙, 𝑘𝑘) = 𝑎𝑎(𝑙𝑙,𝑘𝑘)𝜂𝜂(𝑙𝑙,𝑘𝑘)                                                        (2.28) 
 



 

Applying log-transformation on both sides of (2.28), we obtain 
                       
                                                    𝑑𝑑(𝑚𝑚,𝑛𝑛) = 𝑆𝑆(𝑚𝑚,𝑛𝑛) + 𝛾𝛾𝑎𝑎(𝑚𝑚,𝑛𝑛)                                                 (2.29) 

                                       
where d=log(f), S=l og(g) and 𝛾𝛾𝑎𝑎 =log(𝜂𝜂 ). A s t he l og-transformed i mage i s su bjected t o 
wavelet transform, one gets 
             
                                                                       𝑦𝑦 = 𝜀𝜀 + 𝑒𝑒                                                                    (2.30)      
                               
where y, 𝜀𝜀 and x respectively,𝜀𝜀 represent the coefficients corresponding to d, S and 𝛾𝛾𝑎𝑎  . In this 
section, we propose to use the BKF pdf for modeling the wavelet and curvelet coefficients of 
the l og-transformed n oise. T he r easons f or u sing t he B KF ar e as f ollows. F irst, it i s an 
excellent model for capturing the statistics of heavy-tailed data [21], [22]. Second, it includes 
several distributions as its sp ecial c ases t hat i nclude t he G aussian an d d ouble-exponential 
pdfs. Furthermore, we consider the modeling of  the speckle noise in the curvelet t ransform 
domain. F or t he pu rpose of  m odeling, t he B KF pa rameters, p and c, are e stimated u sing 
(2.24) and (2.25) from t he w avelet an d cu rvelet co efficients o f t he l og-transformed 
simulated s peckle noise. The l og-transformed noi se is d ecomposed i n t he w avelet dom ain 
using t he ʻDaubechies’ w avelet o f o rder 8 . Wavelet s ubbands w ith di agonal, ve rtical a nd 
horizontal o rientations a re de noted by H H, L H a nd HL, r espectively. The fast d iscrete 
curvelet t ransform ( FDCTs) vi a w rapping [23], [24] and [27] is e mployed t o ob tain the 
curvelet s ubbands  with many d ifferent o rientations as s hown by  space-frequency t iling in 
Figure 2. 11. F or sp ace l imitation, w e p rovide r esults f or t he su bbands at  a p articular 
orientation. In both cases, the decomposition level is set to 3. Experiments are also conducted 
using real ultrasound images t o v alidate the B KF pdf for s peckle noi se m odeling. F or t his 
purpose, u ltrasound images of ne onatal br ain shown i n Figure 2. 14 obtained f rom [41] ar e 
used. First, th e ultrasound image i s de noised u sing t he w ell-known H omomorphic Wiener 
filter [9], [12]. T he r esulting image i s c onsidered a pproximately noi se-free ve rsion of  t he 
ultrasound image. By dividing t he noi sy ul trasound image w ith t he de noised one  t he 
underlying speckle n oise can be  obt ained. S ubsequently, the modeling pe rformance of  t his 
noise by various pdfs is carried as in the case of simulated noise. 
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TABLE 2.1 
Values of the KS statistics in wavelet domain 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The modeling performance of the BKF pdf is compared with that of the Gaussian and normal 
inverse Gaussian (NIG) pdfs. The pdf of a zer o-mean Gaussian distributed random variable, 
x, is given by  

                                         𝑃𝑃𝑒𝑒(𝑒𝑒) =
1

𝜎𝜎𝑒𝑒√2𝜋𝜋
 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑒𝑒2

2𝜎𝜎𝑒𝑒2
�   ;   −∞ < 𝑒𝑒 < ∞                            (2.31)  

 
where 𝜎𝜎𝑒𝑒  is t he s tandard deviation of  s ignal 𝑒𝑒, w hich d etermines t he sp read o f t he d ensity 
function.  
 

 
Noise 

Standard 
Deviation 

 

Wavelet 
Sub bands 

Values of the  Kolmogorov-Smirnov 
(KS) Statistics 

( dks) 
BKF Gaussian NIG 

 
 
 
 

0.3 
 
 
 
 

HH1 0.0074 0.0126 0.0862 
LH1 0.0056 0.0076 0.0213 
HL1 0.0069 0.0100 0.0195 
HH2 0.0095 0.0169 0.0097 
LH2 0.0135 0.0241 0.0173 
HL2 0.0128 0.0200 0.0180 
HH3 0.0118 0.0206 0.0128 
LH3 0.0298 0.0349 0.0316 
HL3 0.0180 0.0268 0.0184 

 
 
 
 

0.5 

HH1 0.0075 0.0110 0.0194 
LH1 0.0049 0.0063 0.0052 
HL1 0.0074 0.0091 0.0087 
HH2 0.0096 0.0151 0.0104 
LH2 0.0143 0.0225 0.0187 
HL2 0.0109 0.0149 0.0123 
HH3 0.0080 0.0218 0.0121 
LH3 0.0298 0.0357 0.0306 
HL3 0.0182 0.0267 0.0190 

 
 
 
 

1.0 

HH1 0.0075 0.0165 0.0084 
LH1 0.0047 0.0072 0.0057 
HL1 0.0068 0.0093 0.0075 
HH2 0.0105 0.0137 0.0107 
LH2 0.0066 0.0091 0.0067 
HL2 0.0089 0.0156 0.0143 
HH3 0.0112 0.0185 0.0114 
LH3 0.0259 0.0409 0.0347 
HL3 0.0195 0.0288 0.0214 
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The value of 𝜎𝜎𝑒𝑒  is estimated as  
           

                                                           𝜎𝜎𝑒𝑒 = �1
𝑁𝑁
�(𝑒𝑒𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

                                                                (2.32)  

 
The NIG pdf is expressed as [19] 
 

                                                   𝑓𝑓𝑒𝑒(𝑒𝑒;𝜃𝜃) =
𝛼𝛼𝛼𝛼
𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒{𝑒𝑒(𝑒𝑒)}
𝑞𝑞(𝑒𝑒)

𝐾𝐾1[𝛼𝛼𝑞𝑞(𝑒𝑒)]                                        (2.33) 

 
 
where,  𝑒𝑒(𝑒𝑒) = 𝛼𝛼�(𝛼𝛼2 − 𝛽𝛽2) + 𝛽𝛽(𝑒𝑒 − 𝜇𝜇) and 𝑞𝑞(𝑒𝑒) = �(𝑒𝑒 − 𝜇𝜇)2 + 𝛼𝛼2.                 
 
 
The parameters of the NIG pdf are obtained as [32] 
 
         

                                                    �̂�𝛼 = �к�(2)𝜉𝜉(1 − 𝜌𝜌2)      ;   (𝛼𝛼 > 0)                                           (2.34) 

                                       
 

                                                   𝛼𝛼� =
𝜉𝜉

�̂�𝛼(1 − 𝜌𝜌2)
                                                                              (2.35) 

                                                                                
 
                                                   �̂�𝛽 = 𝛼𝛼�𝜌𝜌     ;  (0 ≤ |𝛽𝛽| < 𝛼𝛼)                                                          (2.36) 
                                                     
 
                                                   �̂�𝜇 = к�(1) − 𝜌𝜌�к�(2)𝜉𝜉     ;  (−∞ < 𝜇𝜇 < ∞)                                 (2.37) 
          
 
where к�(1), к�(2), к�(3), к�(4)  are the f irst f our cu mulants f rom sam ple d ata, the sk ewness 
γ�3 = к�(3)/�к�(2)�3/2

, nor malized kur tosis  γ�4 = к�(4)/�к�(2)�2
 and a uxiliary va riables 𝜉𝜉 =

3 �γ�4 −
4
3
γ�3

2�
−1

 , 𝜌𝜌 = γ�3
3
�𝜉𝜉 . Figure 2.14 de picts ul trasound Images of  Neonatal B rain: (a) 

Healthy Neonatal Brain (Sagittal V iew), (b ) D enoised im age o f (a ), ( c) Healthy Neonatal 
Brain (Coronal View), (d)  Denoised image of (c). The denoising operation is carried out by 
the Homomorphic Wiener filter using a 5x5 window. 
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TABLE 2.2 
Values of the KS statistics in curvelet domain 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.14: Ultrasound Images of Neonatal Brain. 

 
Noise 

Standard 
Deviation 

 

Curvelet 
Sub bands 
for a given 
orientation 

and 
different 

scales 

Values of the Kolmogorov-
Smirnov (KS) Statistics 

( dks) 

BKF Gaussian NIG 

 
0.3 

Scale-2 0.0161 0.0184 0.0491 
Scale-3 0.0200 0.0230 0.0439 
Scale-4 0.0067 0.0090 0.1078 

 
0.5 

Scale-2 0.0151 0.0155 0.0259 
Scale-3 0.0099 0.0114 0.0134 
Scale-4 0.0066 0.0081 0.0309 

 
1.0 

Scale-2 0.0177 0.0199 0.0182 
Scale-3 0.0127 0.0133 0.0133 
Scale-4 0.0069 0.0071 0.0073 
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The modeling performance of the BKF pdf is compared with that of Gaussian and NIG pdfs 
using t he well-known Kolmogorov-Smirnov (KS) s tatistics and variance st abilized pp-plot. 
The KS statistics and the KL divergence are given by  
                        
                                                     𝑑𝑑𝐾𝐾𝑆𝑆 = max

𝑒𝑒∈𝑅𝑅
 |𝐹𝐹𝑒𝑒(𝑒𝑒) − 𝐹𝐹𝑎𝑎(𝑒𝑒)|                                                    (2.38) 

                                         

                                          𝐾𝐾𝐿𝐿�𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒 ,𝑃𝑃� = �𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒 (𝑒𝑒) log2
𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒 (𝑒𝑒)
𝑃𝑃(𝑒𝑒)

𝑑𝑑𝑒𝑒                                    (2.39) 

                 
Here, dks, Fa(x), P(x) and Fe(x) denote the KS statistics, cumulative density function (cdf) of 
the modeling pdf, the empirical pdf and the empirical cdf, respectively [39], [40]. The pp-plot 
is obtained by plotting Fa(x)t against Fe(x)t where a linear plot means excellent fitting [12]:              
                         

                                                      𝐹𝐹𝑎𝑎(𝑒𝑒)𝑧𝑧 =
2
𝜋𝜋

 𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠𝑖𝑖𝑛𝑛 ��𝐹𝐹𝑎𝑎(𝑒𝑒) �                                                (2.40) 
                                                                                  

                                                      𝐹𝐹𝑒𝑒(𝑒𝑒)𝑧𝑧 =
2
𝜋𝜋

 𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠𝑖𝑖𝑛𝑛 ��𝐹𝐹𝑒𝑒(𝑒𝑒) �                                                (2.41) 
                         
The va lues of  the Kolmogorov-Smirnov (KS) statistics at various noise s tandard deviations 
calculated in wavelet and curvelet domains for simulated noise are provided in Tables 2.1, 
2.2 respectively and for real ultrasound speckle noise are provided in Tables 2.3, 2.4, 2.5 and 
2.6. Tables 2.3 and 2.4 depicts th e values o f t he K S st atistics calculated i n t he wavelet 
domain f or real u ltrasound speckle noi se obt ained f rom r eal ul trasound images o f Figure 
2.14(a) and (c) respectively on the other hand Tables 2.5 and 2.6 depicts the values of the KS 
statistics calculated i n t he cu rvelet domain for real u ltrasound s peckle noise obt ained f rom 
real u ltrasound i mages of Figure 2. 14(a) and ( c) r espectively. In t hose Tables w avelet 
subbands with diagonal, vertical and horizontal orientations are denoted by HH, LH and HL, 
respectively and the subscripts (1, 2, 3) represent the corresponding decomposition level. It is 
seen that the BKF pdf, in general, gives lower values as compared to those of the other pdfs, 
indicating a close match with the empirical pdf. It is also observed that with the increasing of 
noise standard deviation the values of the KS statistics of BKF pdf still lower than other pdfs. 
From t he p-p pl ots shown in Figures 2.15-2.17 are for si mulated speckle a t noise s tandard 
deviation 0.3 for wavelet sub-bands HL1 , LH2 , HL3 respectively; Figures 2.18-2.20 are for 
simulated sp eckle a t n oise st andard d eviation 0.5 f or w avelet su b-bands HH1 , LH2 , HH3 
respectively; Figures 2.21-2.23 are for simulated speckle at noise standard deviation 1.0 f or 
wavelet sub-bands HL1 , LH2 , HL3 respectively; Figures 2.24, 2.25 are for simulated speckle 
at noise standard deviation 0.3 for wrapping based curvelet coefficient at scale-3, angle-8 and 
at noi se s tandard de viation 0.5 f or w rapping b ased c urvelet c oefficient at  sca le-4, a ngle-8 
respectively; Figures 2.26-2.28 are f or r eal u ltrasound sp eckle n oise obtained from r eal 
ultrasound image of neonatal brain in Figure 2.14(a), (b) for wavelet sub-band HL1 , HH2 , 
LH3 respectively; Figures 2.29, 2.30 are for real ultrasound speckle noise obtained from real 
ultrasound image of neonatal brain in Figure 2.14(a), (b) for curvelet sub-band at orientation 
of angle-8, frequency scale-4 and angle-8, frequency scale-3 respectively; Figures 2.31, 2.32 
are for real ultrasound speckle noise obtained from real ultrasound image of neonatal brain in 
Figure 2.14(c), (d) for wavelet Sub-bands HL2 , HL3 respectively and Figures 2.33-2.35 are 
for real ultrasound  speckle noise obtained from real ultrasound image of neonatal brain in   
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Figure 2.14(c), (d) for curvelet sub-band at orientation of angle-8, frequency scale-4; angle-8, 
frequency scale-3 and angle-8,  frequency scale-2 respectively, it is seen that the Gaussian pdf 
provides a poor match with t he underlying empirical one; on the other hand, t he BKF and 
NIG pdfs shows a good match. Overall, the BKF pdf gives a better performance in modeling 
the e mpirical pdf as co mpared t o t he G aussian an d N IG pdfs for bot h s imulated and r eal 
ultrasound speckle. Therefore Bessel K -Form (B KF) pdf has b een established as a  hi ghly 
suitable model for describing the s tatistics of log-transformed speckle noise in wavelet and 
curvelet t ransform do mains. Moreover, for simulated sp eckle n oise, with t he increasing of  
noise s tandard de viation, t he no ise modeling pe rformance of  B KF pdf as a h ighly suitable 
model for describing the statistics of log-transformed speckle noise compare to Gaussian and 
NIG pdfs has no effect. 
 

TABLE 2.3 
Values of the KS statistics in wavelet domain  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2.4 
 Values of the KS statistics in wavelet domain  

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Wavelet 
Sub bands 

Mean CDF Difference Using   
Kolmogorov-Smirnov (KS) 

Statistics ( dks) 

BKF Gaussian NIG 
HH1 0.0733 0.2290 0.0735 
LH1 0.0712 0.1955 0.0751 
HL1 0.1081 0.1658 0.1293 
HH2 0.0980 0.1459 0.0998 
LH2 0.0550 0.1210 0.0767 
HL2 0.0621 0.1285 0.0919 
HH3 0.0715 0.1316 0.0920 
LH3 0.0579 0.0814 0.0670 
HL3 0.0566 0.0901 0.0729 

Wavelet 
Sub bands 

Mean CDF Difference Using   
Kolmogorov-Smirnov (KS) 

Statistics ( dks) 

BKF Gaussian NIG 
HH1 0.1108 0.2430 0.1135 
LH1 0.1480 0.2303 0.0702 
HL1 0.1295 0.1740 0.1428 
HH2 0.1172 0.1645 0.1181 
LH2 0.0563 0.1473 0.0706 
HL2 0.0729 0.1476 0.1035 
HH3 0.0775 0.1495 0.1232 
LH3 0.0826 0.1308 0.1032 
HL3 0.1003 0.1140 0.0967 
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TABLE 2.5 
Values of the KS statistics in curvelet domain  

 
 
 

 
 
 
 
 
 

 
 

TABLE 2.6 
Values of the KS statistics in curvelet domain  

 
 

 
 
 
 
 
 
 
 

 
Figure 2.15: PP-plots for the Wavelet Sub-band HL1 

Curvelet 
Sub bands 
for a given 
orientation 

and different 
scales 

Mean CDF Difference Using   
Kolmogorov-Smirnov (KS) 

Statistics ( dks) 

BKF Gaussian NIG 

Scale-2 0.0160 0.0486 0.0396 
Scale-3 0.0162 0.1099 0.0224 
Scale-4 0.0169 0.1324 0.0353 

Curvelet 
Sub bands 
for a given 
orientation 

and different 
scales 

Mean CDF Difference Using   
Kolmogorov-Smirnov (KS) 

Statistics ( dks) 

BKF Gaussian NIG 

Scale-2 0.0489 0.0608 0.0665 
Scale-3 0.0094 0.0973 0.0214 
Scale-4 0.0146 0.1481 0.0224 
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Figure 2.16: PP-plots for the Wavelet Sub-band LH2 

 
 

 
Figure 2.17: PP-plots for the Wavelet Sub-band HL3 
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Figure 2.18: PP-plots for the Wavelet Sub-band HH1 

 
 

 
Figure 2.19: PP-plots for the Wavelet Sub-band LH2 
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Figure 2.20: PP-plots for the Wavelet Sub-band HH3 

 

 
Figure 2.21: PP-plots for the Wavelet Sub-band HL1 

 
 



 

2.5  Statistics of The Speckle Noise                                                                                         35 
 

 
Figure 2.22: PP-plots for the Wavelet Sub-band LH2 

 
 

 
Figure 2.23: PP-plots for the Wavelet Sub-band HL3 

 



 

2.5  Statistics of The Speckle Noise                                                                                         36 
 

 
Figure 2.24: PP-plots for the Curvelet Sub-band at Scale-3 Angle-8 

 
 

 
Figure 2.25: PP-plots for the Curvelet Sub-band at Scale-4 Angle-8 
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Figure 2.26: PP-plots for the Wavelet Sub-band HL1 

 

 

Figure 2.27: PP-plots for the Wavelet Sub-band HH2 
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Figure 2.28: PP-plots for the Wavelet Sub-band LH3 

 

Figure 2.29: PP-plots for the Curvelet Sub band at Angle-8 Frequency Scale-4 
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Figure 2.30: PP-plots for the Curvelet Sub-band at Angle-8 Frequency Scale-3 

 
 

Figure 2.31: PP-plots for the Wavelet Sub-band HL2 
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Figure 2.32: PP-plots for the Wavelet Sub-band HL3 

 

Figure 2.33: PP-plots for the Curvelet Sub band at Angle-8 & Frequency Scale-4 
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Figure 2.34: PP-plots for the Curvelet Sub band at Angle-8 & Frequency Scale-3 

 

Figure 2.35: PP-plots for the Curvelet Sub band at Angle-8 & Frequency Scale-2 
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2.6 Summary  
 

In this chapter, the Bessel K-Form (BKF) pdf has been proposed as a highly suitable model 
for d escribing t he st atistics o f l og-transformed sp eckle n oise i n w avelet an d cu rvelet 
transform domains. A ML-based method has been presented to obtain the parameters of the 
BKF pdf. The MLE equations have been solved using the Secant method [28]. For the case of 
simulated noise, it has been demonstrated that the BKF pdf is highly suitable for modeling the 
log-transformed sp eckle i n both discrete w avelet t ransform ( DWT) an d curvelet tra nsform 
domains, better than the NIG and Gaussian pdfs. The suitability of the BKF pdf has also been 
illustrated for the case of real ultrasound images. It has been shown that the BKF can model 
the coefficients corresponding to log-transformed speckle noise better than the Gaussian and 
normal inverse Gaussian pdfs. The findings of this study may help researchers in developing 
effective statistical methods for reducing speckle noise from medical ultrasound images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 3 
 
Speckle Noise M odeling i n the Dual-Tree Complex 
Wavelet Domain 
 
3.1 Introduction 

     
In the preceding chapter we have investigated the modeling performance of the speckle noise 
in m ulti-resolution t ransform do main l ike discrete w avelet t ransform ( DWT) an d curvelet 
transform domains. Recent investigations show that the reduction of speckle noise is most 
effectively done in multi-resolution dual-tree complex wavelet transform (DT-CWT) domain. 
In this chapter we practically examine the modeling performance of log transformed speckle 
noise in the dual-tree complex wavelet transform (DT-CWT) domain because the DT-CWT 
provides a high de gree of  di rectionality, r edundancy a nd ne arly shift i nvariability a s 
compared t o t he t raditional d iscrete w avelet t ransform ( DWT) [30]. Thus, t he de noising 
methods us ing t he D T-CWT s moothens t he no ise b etter w hile do not  showing t he G ibbs 
phenomenon ( producing unpl easant a rtifacts s uch r ings a round t he e dges) a s c ompared t o 
those using the WT [13], [20], [28]. To the best of the authors’ knowledge realistic statistical 
modeling of the speckle noise in DT-CWT domain is not yet reported in the literature, which 
is i mportant f or de veloping e ffective s tatistical m ethods f or s peckle r eduction us ing DT-
CWT. A lthough t he M axwell pdf is used i n [13], it is  n ot re alistic s ince th e n oise is  n ot 
bimodal. A  Maximum L ikelihood (ML)-based method i s i ntroduced f or obt aining t he B KF 
parameters from t he D T-CWT co efficients o f l og t ransformed sp eckle n oise. U sing t he 
estimated p arameters, the co efficients a re m odeled w ith t he B KF pdf. t he m odeling 
performance of the BKF pdf is compared with that of the well-known NIG and Gaussian pdfs 
using simulated noise and speckle extracted from ultrasound images. 
 
The chapter is organized as follows. Section 3.2 presents a Maximum Likelihood Estimation 
(MLE)-based BKF pdf parameter estimation method. Section 3.3 depicts a brief introduction 
of the dual-tree complex wavelet transform (DT-CWT) decomposition. Section 3.4 describes 
a v ast ex amination on t he noise m odeling p erformances i n both s imulated no ise and r eal 
ultrasound speckle n oise an d co mpare t hem w ith o ther s tate of th e arts w ith s imulation 
results, and the summary is in Section 3.5.    
 

3.2 Parameter Estimation of BKF pdf 
 

From t he pr evious c hapter, the two Maximum Likelihood E stimations (MLEs) of BKF pdf 
parameters  p and c are  
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for solving numerically by Newton-Raphson method [33] equations (3.1) and (3.2) can be 
defined as  
 
                                                                   𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘) = 0                                                             (3.3) 
                                
                                                                   𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘) = 0                                                             (3.4) 
 
Where, 𝐹𝐹1 and 𝐹𝐹2 are t he left h and si de of (3.1), (3.2) and �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘  are estimated at  t he k-th 
iteration. The initial values  �̂�𝑒𝑘𝑘  and �̂�𝑐𝑘𝑘  are estimated from the moment-based estimator 
 

                                               �̂�𝑒 =
3

𝐾𝐾𝐾𝐾𝑎𝑎𝑧𝑧(𝑒𝑒) − 3
 , �̂�𝑐 =

𝑉𝑉𝑎𝑎𝑎𝑎(𝑒𝑒)
�̂�𝑒

                                              (3.5) 

 
The value of p and c at a given iteration are obtained as [33] 
 

                                                         ��̂�𝑐𝑘𝑘+1 = �̂�𝑐𝑘𝑘 −
𝐹𝐹1(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘)
𝐹𝐹1
′(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘)�                                                  (3.6) 
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                                                        ��̂�𝑒𝑘𝑘+1 = �̂�𝑒𝑘𝑘 −
𝐹𝐹2(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘+1)
𝐹𝐹2
′(𝑒𝑒�𝑖𝑖 ; �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘+1)�                                              (3.7) 

 
The value of c obtained from (3.6) is used as the initial value in (3.7), whereas the value of p 
found in (3.7) is used as the initial value of p in solving (3.6) in subsequent iterations. This 
iterative process will be continued until the following condition is satisfied: 
 
                                             |(�̂�𝑒𝑘𝑘+1 − �̂�𝑒𝑘𝑘) + (�̂�𝑐𝑘𝑘+1 − �̂�𝑐𝑘𝑘)| ≤1x10-8                                         (3.8) 
 
A summary of the parameter estimation method is given below: 
 
1) Find the initial value for p and c. 
2) Estimate 𝑐𝑐 using (3.6) and the initial values,  �̂�𝑒0 and �̂�𝑐0. 
3) Estimate p employing (3.7) where the value of c found in Step 2 is used for initial value 

of c. 
4) Check whether (3.8) is satisfied. If so, stop the iteration. Otherwise, go to Step 2 w here 

use the value of p found in Step 3 as the initial value of p.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

   
 
                                                                      
                 No                           
 

 
 

Yes 
 
 
 
 

Figure 3.1: Flow chart for numerical solution of the MLEs of BKF pdf. 

 

Noisy Image Data,  𝒙𝒙�𝒊𝒊 ; [ 𝒊𝒊 = length of 𝒙𝒙� ] 

Initial  𝒑𝒑�𝒌𝒌 = 𝟑𝟑
𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲(𝒙𝒙�𝒊𝒊)−𝟑𝟑

 

Initial  𝒄𝒄�𝒌𝒌 = 𝑽𝑽𝑽𝑽𝑲𝑲(𝒙𝒙�𝒊𝒊)
𝒑𝒑�𝒌𝒌

 
Initial  𝒌𝒌 = 𝟎𝟎 

𝒄𝒄�𝒌𝒌+𝟏𝟏 = 𝒄𝒄�𝒌𝒌 −
𝑭𝑭𝟏𝟏(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌)
𝑭𝑭𝟏𝟏′ (𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌) 

𝒑𝒑�𝒌𝒌+𝟏𝟏 = 𝒑𝒑�𝒌𝒌 −
𝑭𝑭𝟐𝟐(𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌+𝟏𝟏)
𝑭𝑭𝟐𝟐′ (𝒙𝒙�𝒊𝒊;𝒑𝒑�𝒌𝒌, 𝒄𝒄�𝒌𝒌+𝟏𝟏) 

𝒌𝒌 = 𝒌𝒌 + 𝟏𝟏 

 

|(𝒑𝒑�𝒌𝒌+𝟏𝟏 − 𝒑𝒑�𝒌𝒌) + (𝒄𝒄�𝒌𝒌+𝟏𝟏 − 𝒄𝒄�𝒌𝒌)| ≤ 1x10-8 

𝒑𝒑� = 𝒑𝒑�𝒌𝒌+𝟏𝟏 
𝒄𝒄� = 𝒄𝒄�𝒌𝒌+𝟏𝟏 
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3.3 The Dual-Tree Complex Wavelet Transform (DT-CWT) 

3.3.1 Dual-Tree Complex Wavelet 
 
In this section, a b rief description of the DT-CWT is provided. The DT-CWT employs two 
real DWTs; the first DWT gives the real part of the transform while the second DWT gives 
the imaginary part [30]. The analysis and synthesis filter banks (FBs) used to implement the 
DT-CWT and its inverse are shown in  Figure 3.2 and Figure 3.3. A 2-D DWT provides three 
band p ass s ub i mages at  e ach level, co rresponding t o l ow-high, hi gh-high a nd hi gh-low 
filtering. Figure 3. 2 shows the Q -shift ve rsion of t he D T C WT, gi ving r eal a nd imaginary 
parts of complex coefficients from tree a and tree b respectively. Figures in brackets indicate 
the de lay f or each f ilter, w here q = 1

4
 sample p eriod w here as Figure 3. 3 shows basic 

configuration of the dual tree if either wavelet or scaling-function coefficients from just level 
m are retained (M = 2𝑚𝑚 ). 

 
 

Figure 3.2: The Q-shift version of the DT-CWT. 

 

 
Figure 3.3: Basic configuration of the dual tree. 
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On t he c ontrary, t he 2 -D DT -CWT pr oduces s ix ba nd pass s ub images of  c omplex 
coefficients at each level with orientations at angles of ±150, ±450, ±750 as seen from their 
Gabor l ike impulse r esponses. Figure 3. 4 illustrates Impulse r esponses o f 2 -D dua l- tree 
complex wavelet filters (top two), and of 2-D real wavelet filters (lower one), all illustrated at 
level 4  o f t he tra nsforms. The c omplex w avelets p rovide 6  d irectionally s elective f ilters, 
while real wavelets provide 3 filters, only two of which have a dominant direction. The DWT 
suffers from two major disadvantages: 
 

1) Lack of shift invariance leading to Gibb’s like phenomena. 
 

2) Poor directional selectivity. 
 

 

 
 

 
Figure 3.4: Impulse responses of 2-D DT-CWT and DWT. 

 
The unde cimated D WT pr ovides s hift i nvariance but  s uffers f rom i ncreased c omputation 
requirements and high redundancy in the output information, making subsequent processing 
expensive. On the other hand, the DT-CWT provides [18], [21], [22], [30]: 
 

1) approximate shift invariance (Figure 3.5) 
 

2) good directional selectivity in 2 dimensions (Figure 3.4) 
 

3) phase information 
 

4) perfect reconstruction using short linear phase filters 
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5) limited redundancy, independent of the number of scales, 2 : 1 for 1D (2m : 1 for mD) 
 

6) efficient o rder-N c omputation—only tw ice th e simple D WT f or 1 D (2 m tim es for 
mD)  

 
In our subsequent discussions, we will use Ra,b and Ia,b to denote the real and imaginary parts 
of t he co mplex co efficients at  l evel 'a' with o rientation 'b'. For e xample R 1,-15 denotes D T-
CWT r eal p art o f t he c omplex co efficient at  l evel '1' with o rientation '-150 ', where I 1,-15 
represents DT-CWT imaginary part of the complex coefficient at level '1' with orientation '-
150 '. Figure 3.5 depicts wavelet and scaling function components for shift invariant analysis 
and f iltering o f s ignals at levels 1  t o 4  o f an  i mage o f a l ight circular d isc o n a  d ark 
background, using the 2-D DT-CWT (upper row) and 2-D DWT (lower row). Only half of  
each wavelet image is shown in order to save space. 
 

 
 

Figure 3.5: Approximate shift invariant analysis between 2-D DT-CWT and DWT. 

 

3.3.2 Implementation of Dual-Tree Complex Wavelet Transform 
 

The DT-CWT employs two real DWTs; the first DWT gives the real part of the transform 
while the second DWT gives the imaginary part are illustrated in Figure 3.2 and Figure 3.3. 
The two real wavelet t ransforms use two different sets of f ilters, The two sets of f ilters are 
jointly de signed s o that th e o verall t ransform is  a pproximately analytic. L et ℎ0(𝑛𝑛),  ℎ1(𝑛𝑛) 
denotes the low-pass/high-pass filter pair for the upper FB, and let 𝑎𝑎0(𝑛𝑛),  𝑎𝑎1(𝑛𝑛) denotes the 
low-pass/high-pass filter pair for the lower FB. The two real wavelets associated with each of   
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the two real wavelet transforms are denoted as ѱℎ(𝑧𝑧) and ѱ𝑎𝑎(𝑧𝑧). In Figure 3.2, all the filters 
beyond level 1 a re even length, but they are no longer strictly linear phase. Instead they are 
designed to have a group delay of approximately 1

4
 sample (+q). The required delay difference 

of 1
2
 sample (2q) is then achieved by using the time reverse of the tree a filters in tree b so that 

the delay then becomes 3q (assuming that all length-2n filters have coefficients from 𝑧𝑧𝑛𝑛−1 to 
𝑧𝑧−𝑛𝑛 ). Furthermore, because the filter coefficients are no longer symmetric, it is now possible 
to design the perfect-reconstruction filter sets to be orthonormal (like Daubechies filters), so 
that the reconstruction filters are just the time reverse of the equivalent analysis filters in both 
trees. Hence all filters beyond level 1 are derived from the same orthonormal prototype set. 
In order to examine the shift invariant properties of the dual tree in either the odd/even or Q-
shift forms, consider what happens when we choose to retain the coefficients of just one type 
(wavelet or  s caling f unction) f rom j ust one  l evel of  t he dua l t ree. For example w e m ight 
choose t o r etain onl y t he l evel-3 wavelet coefficients 𝑒𝑒001𝑎𝑎  and 𝑒𝑒001𝑏𝑏 , a nd s et a ll others t o 
zero. Figure 3.3 shows the simplified analysis and reconstruction parts of the dual tree when 
coefficients of  j ust one  t ype a nd l evel ar e r etained. All d own-sampling a nd up -sampling 
operations are m oved t o t he out puts of  t he analysis f ilter ba nks a nd t he i nputs of  t he 
reconstruction filter b anks r espectively, an d t he casca ded f ilter t ransfer f unctions ar e 
combined. M = 2𝑚𝑚  is t he t otal dow n/up-sampling f actor. F or ex ample i f 𝑒𝑒001𝑎𝑎  and 𝑒𝑒001𝑏𝑏  
from Figure 3.2 are the only retained coefficients, then the sub-sampling factor M = 8, a nd 
𝐴𝐴(𝑧𝑧) = 𝐻𝐻0𝑎𝑎(𝑧𝑧)𝐻𝐻00𝑎𝑎(𝑧𝑧2)𝐻𝐻001𝑎𝑎(𝑧𝑧4) , t he t ransfer f unction f rom x to 𝑒𝑒001𝑎𝑎 . T he t ransfer 
function B(z) (f rom x to 𝑒𝑒001𝑏𝑏 ) is  o btained s imilarly u sing 𝐻𝐻…𝑏𝑏(𝑧𝑧) ; as ar e t he i nverse 
functions 𝐶𝐶(𝑧𝑧)and 𝐷𝐷(𝑧𝑧) from 𝐺𝐺…𝑎𝑎(𝑧𝑧) and 𝐺𝐺…𝑏𝑏(𝑧𝑧) respectively [31]. Figure 3.6 shows the 2-D 
DT-CWT representation o f t he cl assical Lena image, one l evel decomposed w ith six 
directionally selective dual-tree complex wavelet filters in a specific orientation. 
 

3.4 Statistics of The Speckle Noise 
 
In t his sec tion t he st atistics o f t he sp eckle n oise w ill b e investigated. We will r epeat t he 
description of multiplicative speckle noise (given in section 2.5) and its homomorphic form 
to some extent to make this section self contained. Generally, the speckle noise is described 
as a  m ultiplicative ph enomenon. Let f denote a noi sy i mage. The noise f ree image p ixel, 
represented by g, is c orrupted by t he multiplicative speckle n oise 𝜂𝜂 and a n a dditive noi se 
(such as thermal noise) 𝜂𝜂𝑎𝑎 . Thus, one can write [12] 
  
                                                    𝑓𝑓(𝑙𝑙,𝑘𝑘) = 𝑎𝑎(𝑙𝑙,𝑘𝑘)𝜂𝜂(𝑙𝑙, 𝑘𝑘) + 𝜂𝜂𝑎𝑎(𝑙𝑙,𝑘𝑘)                                              (3.9) 
 
Here, 𝑘𝑘, 𝑙𝑙 are v ariables o f t he sp atial l ocations (𝑙𝑙, 𝑘𝑘) Є 𝑍𝑍2  where 𝑍𝑍 is a se t o f i ntegers. The 
speckle noise can be simulated by l ow-pass filtering a complex Gaussian random field, and 
then t aking the m agnitude of  the f iltered out put. T he f iltering i s c arried out  us ing a  3x3  
window, since such a short-term correlation is sufficient to account for real speckle noise [6]. 
Since the effect of  𝜂𝜂𝑎𝑎(𝑙𝑙 ,𝑘𝑘)  is very small compared to 𝜂𝜂𝑙𝑙 ,𝑘𝑘  , (3.9) is written as [12] 
                              
                                                           𝑓𝑓(𝑙𝑙,𝑘𝑘) = 𝑎𝑎(𝑙𝑙, 𝑘𝑘)𝜂𝜂(𝑙𝑙, 𝑘𝑘)                                                        (3.10) 
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(a) 

 

 
(b) 

 
Figure 3.6: DT-CWT decomposition of the Lena image. 

 
Applying log-transformation on both sides of (3.10), we obtain 
                       
                                                     𝑑𝑑(𝑚𝑚,𝑛𝑛) = 𝑆𝑆(𝑚𝑚,𝑛𝑛) + 𝛾𝛾𝑎𝑎(𝑚𝑚,𝑛𝑛)                                                (3.11) 

                                       
where d=log(f), S=l og(g) and 𝛾𝛾𝑎𝑎 =log(𝜂𝜂 ). A s t he l og-transformed i mage i s su bjected t o 
wavelet transform, one gets 
         
                                                                       𝑦𝑦 = 𝜀𝜀 + 𝑒𝑒                                                                    (3.12)      
                               
where y, 𝜀𝜀 and x respectively,𝜀𝜀 represent t he coefficients corresponding to d, S  and 𝛾𝛾𝑎𝑎  . For 
the pur pose of  modeling, t he B KF pa rameters, p and c, are estimated u sing the p roposed 
MLE-based method from t he DT-CWT c oefficients of  t he l og-transformed noi se. The l og-
transformed noise is decomposed in the DT-CWT domain using the Farras wavelet [30] with 
many different orientations. The modeling performance of the BKF pdf is compared with that  
of the Gaussian and normal inverse Gaussian (NIG) pdfs as the same procedure as described  
in section 2.5. Figure 3.6 depicts DT-CWT decomposition of the Lena image where  Figure  
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3.6(a) depicts Lena image for transformation and Figure 3.6(b) depicts the real and imaginary 
part o f th e transformation w ith 2-D dua l-tree co mplex w avelet si x directionally s elective 
filters where as Figure 3. 7 represents u ltrasound Images o f N eonatal B rain where Figure 
3.7(a) represents Healthy Neonatal Brain (Sagittal V iew) a nd Figure 3. 7(b) re presents 
Healthy Neonatal Brain (Coronal View). 
 
 

 
 

Figure 3.7: Ultrasound Images of Neonatal Brain. 

The values of the Kolmogorov-Smirnov (KS) statistics for simulated noise calculated in DT-
CWT domain are provided in Table 3.1 and for real u ltrasound speckle obtained f rom real 
ultrasound images of Figure 3.7(a) and (b) are provided in Table 3.2 and 3.3 respectively. In 
Tables 3.1-3.3, R, I  r epresent t he r eal an d i maginary part of t he DT-CWT s ub-bands 
respectively a nd t he subscripts a , b r epresent t he c orresponding l evels ( 1…3) a nd i mpulse 
response’s angles (-150, -450, -750, 750, 450 and 150) respectively. Analyzing those Tables it is 
seen that the BKF pdf, in general, gives lower values as compared to those of the other pdfs, 
indicating a close match with the empirical pdf. From the p-p plots shown in Figures 3.8-3.16 
are for simulated speckle at noise standard deviation 0.3 for DT-CWT Real Part Coefficients 
at O rientation o f Decomposition Level-1(one) and I mpulse R esponse’s Angle ( -750), DT -
CWT Real P art C oefficients a t O rientation o f Decomposition Level-1(one) a nd I mpulse 
Response’s Angle ( 450), DT-CWT I maginary P art Coefficients a t O rientation o f 
Decomposition L evel-1(one) a nd I mpulse R esponse’s A ngle (-450), DT-CWT R eal P art 
Coefficients at Orientation of Decomposition Level-2(two) and Impulse Response’s Angle (-
750), DT-CWT I maginary P art C oefficients at  O rientation o f Decomposition L evel-2(two) 
and Impulse Response’s Angle (-450), DT-CWT Imaginary Part Coefficients at Orientation of 
Decomposition L evel-2(two) a nd I mpulse R esponse’s A ngle ( -750), DT-CWT R eal P art 
Coefficients at Orientation of Decomposition Level-3(three) and Impulse Response’s Angle 
(-150), DT-CWT Real Part Coefficients at Orientation of Decomposition Level-3(three) and 
Impulse Response’s Angle (450) and DT-CWT Imaginary Part Coefficients at Orientation of 
Decomposition Level-3(three) a nd I mpulse R esponse’s Angle ( 150) respectively. Figures 
3.17-3.19 are f or r eal ultrasound speckle n oise obtained from r eal ultrasound i mage of 
neonatal brain in Figure 3.7 (a) for DT-CWT Real Part Coefficients at Orientation of Decom- 



 

3.4  Statistics of The Speckle Noise                                                                                         52 
 
 
-position Level-1(one) a nd Impulse R esponse’s Angle ( -150),  DT-CWT I maginary P art 
Coefficients at Orientation of Decomposition Level-1(one) and Impulse Response’s Angle (-
150) and DT-CWT Imaginary Part Coefficients at Orientation of Decomposition Level-1(one) 
and Impulse Response’s Angle (450) respectively where as Figures 3.20 and 3.21 are for real 
ultrasound speckle noise obtained from real ultrasound image of neonatal brain in Figure 3.7 
(b) for DT-CWT Real Part Coefficients at Orientation o f Decomposition Level-2(two) a nd 
Impulse R esponse’s Angle ( -450) a nd DT-CWT R eal P art C oefficients a t O rientation o f 
Decomposition Level-3(three) and Impulse Response’s Angle (450) respectively. Analyzing 
those p-p p lots it is se en t hat t he B KF pdf gives a b etter performance i n m odeling t he 
empirical pdf as c ompared t o t he Gaussian a nd NIG pdfs for bo th s imulated a nd real 
ultrasound speckle. therefore Bessel K -Form (B KF) pdf has b een established as a hi ghly 
suitable m odel f or d escribing the s tatistics o f l og-transformed sp eckle n oise i n DT-CWT 
domain. 
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TABLE 3.1 
 Values of the KS statistics in DT-CWT domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dual Tree 
Complex 
Wavelet 

Sub bands  
(Ra,b, Ia,b)  

Values of the Kolmogorov-
Smirnov (KS) Statistics 
( dKS) for Noise Standard 

Deviation 0.3 

BKF Gaussian NIG 

D
T-

C
W

T 
 L

ev
el

 - 
1 

R1,-15 0.0125 0.0131 0.0961 
R1,-45 0.0046 0.0109 0.2126 
R1,-75 0.0100 0.0110 0.1043 
R1,75 0.0064 0.0088 0.0981 
R1,45 0.0045 0.0095 0.2202 
R1,15 0.0100 0.0110 0.0966 
I1,-15 0.0085 0.0081 0.1724 
I1,-45 0.0047 0.0063 0.2693 
I1,-75 0.0055 0.0062 0.1625 
I1,75 0.0037 0.0063 0.1669 
I1,45 0.0048 0.0072 0.2608 
I1,15 0.0046 0.0047 0.1672 

D
T-

C
W

T 
 L

ev
el

 - 
2 

R2,-15 0.0105 0.0115 0.0362 
R2,-45 0.0141 0.0121 0.0772 
R2,-75 0.0076 0.0085 0.0422 
R2,75 0.0079 0.0078 0.0419 
R2,45 0.0134 0.0129 0.0843 
R2,15 0.0134 0.0108 0.0477 
I2,-15 0.0077 0.0111 0.0332 
I2,-45 0.0101 0.0073 0.0772 
I2,-75 0.0093 0.0113 0.0389 
I2,75 0.0099 0.0099 0.0407 
I2,45 0.0073 0.0080 0.0757 
I2,15 0.0095 0.0107 0.0376 

D
T-

C
W

T 
 L

ev
el

 - 
3 

R3,-15 0.0227 0.0288 0.0311 
R3,-45 0.0144 0.0164 0.0283 
R3,-75 0.0200 0.0262 0.0252 
R3,75 0.0301 0.0371 0.0301 
R3,45 0.0175 0.0254 0.0325 
R3,15 0.0160 0.0193 0.0297 
I3,-15 0.0396 0.0389 0.0468 
I3,-45 0.0215 0.0297 0.0296 
I3,-75 0.0254 0.0252 0.0402 
I3,75 0.0273 0.0274 0.0350 
I3,45 0.0315 0.0318 0.0424 
I3,15 0.0171 0.0185 0.0254 
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TABLE 3.2 
Values of the KS statistics in DT-CWT domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dual Tree 
Complex 
Wavelet 

Sub bands  
(Ra,b, Ia,b)  

Values of the Kolmogorov-
Smirnov (KS) Statistics 

( dKS) 

BKF Gaussian NIG 

D
T-

C
W

T 
 L

ev
el

 - 
1 

R1,-15 0.0826 0.1698 0.1363 
R1,-45 0.0905 0.2074 0.1054 
R1,-75 0.1120 0.2164 0.0578 
R1,75 0.1621 0.2165 0.0671 
R1,45 0.1246 0.2283 0.0721 
R1,15 0.0799 0.1710 0.1372 
I1,-15 0.0864 0.1461 0.1107 
I1,-45 0.0880 0.1786 0.1336 
I1,-75 0.0809 0.1854 0.0952 
I1,75 0.0874 0.1722 0.1256 
I1,45 0.0893 0.1967 0.0909 
I1,15 0.0836 0.1447 0.1117 

D
T-

C
W

T 
 L

ev
el

 - 
2 

R2,-15 0.0717 0.1281 0.0961 
R2,-45 0.0728 0.1479 0.0759 
R2,-75 0.0513 0.1454 0.0540 
R2,75 0.0556 0.1419 0.0580 
R2,45 0.0731 0.1672 0.0748 
R2,15 0.0669 0.1259 0.0924 
I2,-15 0.0577 0.1112 0.0755 
I2,-45 0.0762 0.1575 0.0792 
I2,-75 0.0459 0.1335 0.0482 
I2,75 0.0491 0.1410 0.0508 
I2,45 0.0759 0.1759 0.0773 
I2,15 0.0578 0.1157 0.0824 

D
T-

C
W

T 
 L

ev
el

 - 
3 

R3,-15 0.0590 0.0860 0.0655 
R3,-45 0.0557 0.1174 0.0650 
R3,-75 0.0516 0.0977 0.0504 
R3,75 0.0544 0.0944 0.0495 
R3,45 0.0584 0.1049 0.0751 
R3,15 0.0557 0.0919 0.0643 
I3,-15 0.0820 0.1096 0.0877 
I3,-45 0.0394 0.1066 0.0671 
I3,-75 0.0484 0.1024 0.0410 
I3,75 0.0551 0.0946 0.0537 
I3,45 0.0496 0.1309 0.0644 
I3,15 0.0752 0.1215 0.0934 
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TABLE 3.3 
Values of the KS statistics in DT-CWT domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dual Tree 
Complex 
Wavelet 

Sub bands  
(Ra,b, Ia,b)  

Values of the Kolmogorov-
Smirnov (KS) Statistics 

( dKS) 

BKF Gaussian NIG 

D
TC

W
T 

 L
ev

el
 - 

1 

R1,-15 0.0788 0.1585 0.1210 
R1,-45 0.1087 0.2016 0.1234 
R1,-75 0.0486 0.1816 0.1005 
R1,75 0.0717 0.1819 0.0969 
R1,45 0.1204 0.2082 0.1238 
R1,15 0.0795 0.1603 0.1269 
I1,-15 0.0652 0.1316 0.1009 
I1,-45 0.1188 0.1817 0.1366 
I1,-75 0.0624 0.1546 0.1303 
I1,75 0.1248 0.1536 0.1368 
I1,45 0.1274 0.1789 0.1433 
I1,15 0.0619 0.1315 0.0971 

D
TC

W
T 

 L
ev

el
 - 

2 

R2,-15 0.0761 0.1051 0.0778 
R2,-45 0.0537 0.1426 0.0592 
R2,-75 0.0479 0.1175 0.0539 
R2,75 0.0456 0.1174 0.0539 
R2,45 0.0477 0.1402 0.0483 
R2,15 0.0801 0.1091 0.0810 
I2,-15 0.0560 0.1059 0.0727 
I2,-45 0.0511 0.1420 0.0598 
I2,-75 0.0354 0.1143 0.0443 
I2,75 0.0361 0.1193 0.0466 
I2,45 0.0511 0.1514 0.0606 
I2,15 0.0484 0.1076 0.0721 

D
TC

W
T 

 L
ev

el
 - 

3 

R3,-15 0.0477 0.0841 0.0548 
R3,-45 0.0514 0.1017 0.0482 
R3,-75 0.0289 0.0766 0.0271 
R3,75 0.0432 0.0922 0.0519 
R3,45 0.0434 0.1120 0.0483 
R3,15 0.0511 0.0840 0.0530 
I3,-15 0.0381 0.0938 0.0465 
I3,-45 0.0446 0.1054 0.0598 
I3,-75 0.0655 0.0697 0.0342 
I3,75 0.0426 0.0727 0.0474 
I3,45 0.0452 0.1263 0.0556 
I3,15 0.0439 0.0898 0.0601 
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Figure 3.8: PP-plots for the DT-CWT Sub-band R1, -75
o 

 
 

  
Figure 3.9: PP-plots for the DT-CWT Sub-band  R1, 45

o 
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Figure 3.10: PP-plots for the DT-CWT Sub-band  I1, - 45

o 

 
 

 
Figure 3.11: PP-plots for the DT-CWT Sub-band  R2, -75

o 
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Figure 3.12: PP-plots for the DT-CWT Sub-band  I2, - 45

o 

 
 

 

Figure 3.13: PP-plots for the DT-CWT Sub-band  I2, -75
o 
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Figure 3.14: PP-plots for the DT-CWT Sub-band  R3, -15

o 

 
 

 

Figure 3.15: PP-plots for the DT-CWT Sub-band  R3, 45
o 
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Figure 3.16: PP-plots for the DT-CWT Sub-band  I3, 15

o 

 
 

 
Figure 3.17: PP-plots for the DT-CWT Sub-band  R1, -15

o 
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Figure 3.18: PP-plots for the DT-CWT Sub-band  I1, -15

o 

 

 
Figure 3.19: PP-plots for the DT-CWT Sub-band  I1, 45

o 
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Figure 3.20: PP-plots for the DT-CWT Sub-band  R2, - 45

o 

 
Figure 3.21: PP-plots for the DT-CWT Sub-band  R3, 45

o 
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3.5 Summary 
 
In this chapter, the Bessel K-Form (BKF) pdf has been proposed as a highly suitable model 
for d escribing t he st atistics o f l og-transformed sp eckle n oise i n 2 -D dua l-tree c omplex 
wavelet t ransform domain. A Maximum Likelihood (ML)-based Estimator (MLE) has been 
developed for this purpose. The MLE equations have been solved using the Newton-Raphson 
method [32]. For the case of simulated noise, i t has been demonstrated that the BKF pdf is 
highly suitable for modeling the log-transformed speckle in DT-CWT domain, better than the 
NIG and Gaussian pdfs. The suitability of the BKF pdf has also been illustrated for the case 
of r eal ul trasound images. T he f indings of  t his s tudy m ay he lp r esearchers i n de veloping 
effective st atistical m ethods f or r educing s peckle noi se f rom medical ul trasound images. 
There is some limitation regarding the parameter estimation process since it does not have a 
closed-form e xpression, ne cessary t o r educe c omplexity. A lso, a n e xtensive s tudy using a  
large set of real ultrasound images is required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 4 
 
Speckle Noise Modeling in the Contourlet Transform 
Domain 
 
4.1 Introduction 
 
In the preceding chapters we have explored the modeling performance of the speckle noise in 
multi-resolution transform domain that included discrete wavelet transform (DWT), Curvelet 
transform a nd dual-tree c omplex w avelet tra nsform (D T-CWT) domains. The tra ditionally 
used discrete wavelet transform (DWT) can give a good time-frequency representation of the 
non-stationary s ignal, but  i t ha s limited di rectional i nformations, onl y a long ho rizontal, 
vertical, a nd di agonal di rections. Curvelet t ransform h as h igher directionalities w hich 
overcome the l imitation of DWT but in a given orientation i t's frequency scales are limited 
for decomposition. The DT-CWT provides a better degree of directionality, redundancy and 
nearly s hift invariability a s c ompared to  th e t raditional d iscrete w avelet tra nsform (D WT) 
[30]. The 2-D DT-CWT produces six band pass sub images of complex coefficients at each 
level with orientations at angles of ±150, ±450, ±750. Incidentally, edges can be seen easily, 
but di rectional i nformation a bout t he e dge is not know n. B ecause of  t his, it t akes m ore 
coefficients to do a proper reconstruction of the edges. However, DT-CWT is not capable of 
providing: 1 ) basis e lements, de fined in a  va riety of  di rections and 2)  anisotropy, which i s 
having basis elements defined in various aspect ratios and shapes. The contourlet transform 
[43]-[47] gives more di rectional information, which i s not  f ixed and rather increases a long 
with the increase of the pyramidal decomposition levels. Also it provides a better description 
of arbitrary shapes and contours as compared to the curvelet transform. In other words, it is a 
better descriptor of directionality and anisotropy. Figure 4.1 shows wavelet versus contourlet 
for capturing curves, illustrating the successive refinement by the two systems near a smooth 
contour, which is shown as a thick curve separating two smooth regions.  

 

 
 

Figure 4.1: Wavelet versus Contourlet Transform. 



 

4.2  Parameter Estimation of BKF pdf                                                                                     65 
 
 
The main differences between other multi-resolution transform domains (such as the discrete 
wavelet transform (DWT), curvelet transform and dual-tree complex wavelet transform (DT-
CWT) ) and the contourlet transform is that the previous methods do not allow for a different 
number of directions at each scale while achieving nearly critical sampling. In addition, the 
contourlet transform employs iterated filter banks, which makes it computationally efficient, 
and th ere is a  p recise connection w ith c ontinuous-domain e xpansions. In t his ch apter w e 
practically inspect the modeling pe rformance of  l og t ransformed s peckle noi se i n t he 
contourlet transform domain. To t he be st of  t he a uthors’ knowledge re alistic s tatistical 
modeling of  t he s peckle noi se i n contourlet transform domain i s not  ye t r eported i n t he 
literature, which is  i mportant f or d eveloping e ffective s tatistical methods for s peckle 
reduction u sing contourlet transform. A Maximum L ikelihood (ML)-based m ethod i s 
represented for obtaining the BKF parameters f rom the contourlet transform coefficients of 
log transformed speckle noise. Using the estimated parameters, the coefficients are modeled 
with the BKF pdf. t he modeling pe rformance of the BKF pdf is compared with that o f the 
well-known N IG a nd Gaussian pdfs us ing s imulated noi se an d sp eckle ex tracted f rom 
ultrasound images. 
 
The chapter is organized as follows. Section 4.2 presents a Maximum Likelihood Estimation 
(MLE)-based BKF pdf parameter estimation method. Section 4.3 depicts a brief introduction 
of the contourlet transform decomposition. Section 4 .4 describes a  vast examination on t he 
noise modeling performances in both simulated noise and real ultrasound speckle noise and 
compare th em w ith o ther s tate o f th e a rts w ith s imulation re sults, a nd th e summary i s i n 
Section 4.5.    
 

4.2 Parameter Estimation of BKF pdf 
 

From the previous chapters, the two Maximum Likelihood Estimations (MLEs) of BKF pdf 
parameters  p and c are  
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where 𝜓𝜓 denotes the digamma function, given by [32] 
 
                                                        𝜓𝜓(𝑧𝑧) = 𝜕𝜕

𝜕𝜕𝑧𝑧
�𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒�Г(𝑧𝑧)��                                                         (4.3)                                

 
The s olutions t o ( 4.1) and ( 4.2) a re f ound nu merically u sing t he Aitken's ∆2  process o f 
acceleration m ethod [42] which a ccelerates the co nvergence o f t he f irst-order it erative 
method. For this purpose, define: 
 
                                                                      𝐹𝐹1(𝑒𝑒; �̂�𝑒, �̂�𝑐) = 0                                                        (4.4) 
 
                                                                      𝐹𝐹2(𝑒𝑒; �̂�𝑒, �̂�𝑐) = 0                                                       (4.5) 
 
where, 𝐹𝐹1 and 𝐹𝐹2 represent the left hand side of (4.1), (4.2) and �̂�𝑒𝑘𝑘 , �̂�𝑐𝑘𝑘  are estimated at the k-
th iteration. The initial values  �̂�𝑒𝑘𝑘  and �̂�𝑐𝑘𝑘  are estimated from the moment-based estimator 
 

                                               �̂�𝑒 =
3

𝐾𝐾𝐾𝐾𝑎𝑎𝑧𝑧(𝑒𝑒) − 3
 , �̂�𝑐 =

𝑉𝑉𝑎𝑎𝑎𝑎(𝑒𝑒)
�̂�𝑒

                                              (4.6) 

 
The value of  �̂�𝑒 and �̂�𝑐 at a given iteration are obtained as [42]  
 

                                               ��̂�𝑐𝑘𝑘+2 = �̂�𝑐𝑘𝑘+1 −
(�̂�𝑐𝑘𝑘+1 − �̂�𝑐𝑘𝑘)2

�̂�𝑐𝑘𝑘+1 − 2�̂�𝑐𝑘𝑘 + �̂�𝑐𝑘𝑘−1
�                                              (4.7) 

 

                                              ��̂�𝑒𝑘𝑘+2 = �̂�𝑒𝑘𝑘+1 −
(�̂�𝑒𝑘𝑘+1 − �̂�𝑒𝑘𝑘)2

�̂�𝑒𝑘𝑘+1 − 2�̂�𝑒𝑘𝑘 + �̂�𝑒𝑘𝑘−1
�                                             (4.8) 

  
The values  �̂�𝑒 and �̂�𝑐 are es timated at  the k-th i teration of  (4.7) and (4.8). The in itial values,  
�̂�𝑒𝑘𝑘−1 and �̂�𝑐𝑘𝑘−1 are estimated from the moment-based estimator of (4.6). In solving (4.7) by  
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subsequent i terations, �̂�𝑐𝑘𝑘 = 𝐹𝐹1(𝑒𝑒; �̂�𝑒𝑘𝑘−1, �̂�𝑐𝑘𝑘−1)  and �̂�𝑐𝑘𝑘+1 = 𝐹𝐹1(𝑒𝑒; �̂�𝑒𝑘𝑘−1, �̂�𝑐𝑘𝑘) . A fter, In s olving 
(4.8) by s ubsequent iterations �̂�𝑒𝑘𝑘 = 𝐹𝐹1(𝑒𝑒; �̂�𝑒𝑘𝑘−1, �̂�𝑐) and �̂�𝑒𝑘𝑘+1 = 𝐹𝐹1(𝑒𝑒; �̂�𝑒𝑘𝑘 , �̂�𝑐), w here �̂�𝑐 is fo und 
from solving (4.7). This i terative process will be continued unt il the following condition is 
satisfied: 
                                          |(�̂�𝑒𝑘𝑘+2 − �̂�𝑒𝑘𝑘+1) + (�̂�𝑐𝑘𝑘+2 − �̂�𝑐𝑘𝑘+1)| ≤1x10-8                                     (4.9) 
 
A summary of the parameter estimation method is given below: 
 

1) Find the initial values �̂�𝑐𝑘𝑘−1 and �̂�𝑒𝑘𝑘−1. 
2) Estimate �̂�𝑐 using (4.7) and the initial value �̂�𝑐𝑘𝑘−1 and �̂�𝑒𝑘𝑘−1. 
3) Estimate �̂�𝑒 employing (4.8) with the initial values �̂�𝑒𝑘𝑘−1 and estimated �̂�𝑐 from step 2. 
4) Check w hether ( 4.9) is  satisfied. If  so, s top the ite ration. O therwise, a gain s tart th e 

parameter estimation method f rom Step 2 w here use the value of  �̂�𝑐𝑘𝑘−1 = �̂�𝑐 found in 
Step 2 and �̂�𝑒𝑘𝑘−1 = �̂�𝑒 found in step 3 as the initial values. 
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Figure 4.2: Flow chart for numerical solution of the MLEs of BKF pdf. 

 

Noisy Image Data,  𝒙𝒙�𝒊𝒊 ; [ 𝒊𝒊 = length of 𝒙𝒙� ] 

𝒌𝒌 = 𝟏𝟏 

Initial  𝒑𝒑�𝒌𝒌−𝟏𝟏 = 𝟑𝟑
𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲(𝒙𝒙�𝒊𝒊)−𝟑𝟑

 

Initial  𝒄𝒄�𝒌𝒌−𝟏𝟏 = 𝑽𝑽𝑽𝑽𝑲𝑲(𝒙𝒙�𝒊𝒊)
𝒑𝒑�𝒌𝒌−𝟏𝟏

 

𝒄𝒄�k+2 = 𝒄𝒄�𝒌𝒌+𝟏𝟏 −
(𝒄𝒄�𝒌𝒌+𝟏𝟏 − 𝒄𝒄�𝒌𝒌)𝟐𝟐

𝒄𝒄�𝒌𝒌+𝟏𝟏 − 𝟐𝟐𝒄𝒄�𝒌𝒌 + 𝒄𝒄�𝒌𝒌−𝟏𝟏
 

𝒑𝒑�k+2 = 𝒑𝒑�𝒌𝒌+𝟏𝟏 −
(𝒑𝒑�𝒌𝒌+𝟏𝟏 − 𝒑𝒑�𝒌𝒌)𝟐𝟐

𝒑𝒑�𝒌𝒌+𝟏𝟏 − 𝟐𝟐𝒑𝒑�𝒌𝒌 + 𝒑𝒑�𝒌𝒌−𝟏𝟏
 

𝒉𝒉𝒉𝒉𝑲𝑲𝒉𝒉, 𝒄𝒄�𝒌𝒌 = 𝑭𝑭𝟏𝟏(𝒙𝒙;𝒑𝒑�𝒌𝒌−𝟏𝟏, 𝒄𝒄�𝒌𝒌−𝟏𝟏) 
 

           𝒄𝒄�𝒌𝒌+𝟏𝟏 = 𝑭𝑭𝟏𝟏(𝒙𝒙;𝒑𝒑�𝒌𝒌−𝟏𝟏, 𝒄𝒄�𝒌𝒌) 
     𝒑𝒑�𝒌𝒌 = 𝑭𝑭𝟏𝟏(𝒙𝒙;𝒑𝒑�𝒌𝒌−𝟏𝟏, 𝒄𝒄�) 
     𝒑𝒑�𝒌𝒌+𝟏𝟏 = 𝑭𝑭𝟏𝟏(𝒙𝒙;𝒑𝒑�𝒌𝒌, 𝒄𝒄�) 

 
 

|(𝒑𝒑�𝒌𝒌+𝟐𝟐 − 𝒑𝒑�𝒌𝒌+𝟏𝟏) + (𝒄𝒄�𝒌𝒌+𝟐𝟐 − 𝒄𝒄�𝒌𝒌+𝟏𝟏)| ≤ 1x10-8 

𝒑𝒑� = 𝒑𝒑�𝒌𝒌+𝟐𝟐 
𝒄𝒄� = 𝒄𝒄�𝒌𝒌+𝟐𝟐 
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4.3 The Contourlet Transform 
 
The contourlet transform is implemented by using a filter bank that decouples the multiscale 
and the directional decompositions proposed by Do and Vetterli in [43]. Figure 4.3 describes 
the c ontourlet f ilter ba nk: f irst, a  multiscale de composition i nto oc tave ba nds by t he 
Laplacian pyramid is computed, and then a directional filter bank is applied to each bandpass 
channel [43]. The decoupling operation includes a multiscale decomposition by a  Laplacian 
pyramid and a subsequent directional decomposition employing a directional filter bank. As 
seen i n Figure 4. 1, t he c ontourlet transform i s c onstructed by gr ouping of  ne arby w avelet 
coefficients, si nce t hey ar e locally co rrelated d ue t o the sm oothness o f t he c ontours. 
Therefore, a  sparse expansion i s obtained for natural i mages by f irst applying a m ultiscale 
transform, followed by a  local di rectional t ransform to ga ther the nearby basis functions a t 
the same scale into linear structures.  
 

 
Figure 4.3: A conceptual set up of a contourlet filter bank. 

Thus i t constitutes  a w avelet-like transform for edge detection and then a l ocal directional 
transform fo r contour s egment detection by a double f ilter bank structure [43]. In o ther 
words, t he Laplacian pyr amid [46] is us ed t o c apture t he poi nt di scontinuities, a nd t hen 
followed by a  di rectional f ilter bank [47] to l ink point discontinuities into l inear s tructures. 
Figure 4.3 shows the block diagram of the contourlet transform decomposition of an image. 
 
The overall result is an image expansion using basic elements that are like contour segments, 
and h ence t he n ame contourlets. Contourlets h ave e longated s upports a t va rious s cales, 
directions, and aspect ratios that allows them to efficiently approximate a smooth contour at 
multiple re solutions. Thus i t h as been em ployed b y r esearchers i n a v ariety of i mage 
processing t asks such as i mage de noising, enhancement, b iometrics and m edical i mage 
processing [44], [45]. In the frequency domain, the contourlet transform provides a multiscale 
and directional decomposition. Figure 4.4 illustrates an example of the contourlet transform 
on t he Lena image. F or c lear v isualization, th e Lena image i s onl y de composed i nto t wo 
pyramidal levels, which is then decomposed into four and eight directional subbands. Small 
coefficients are shown in black while large coefficients are shown in white in this Figure, wh- 



 

4.4 Statistics of The Speckle Noise                                                                                          69 
 
 
-ere it can be seen that only contourlets that match with both location and direction of image 
contours produce significant coefficients. Moreover, each directional sub-band is represented 
by a  redundant f rame with many directions. The coefficients of the contourlet t ransform of 
the Lena image is obtained by using the contourlet t ransform toolbox available on the web 
site of [48]. Hence, the contourlet detector captures edges rather well, and does better than 
other multi-resolution transform domains. 
 
 

 
 

Figure 4.4: Examples of the contourlet transform on the Lena image. 

 

4.4 Statistics of The Speckle Noise 
 

In t his sec tion t he st atistics o f t he sp eckle n oise w ill b e investigated. We will r epeat t he 
description of multiplicative speckle noise (given in section 3.4) and its homomorphic form 
to some extent to make this section self contained. Generally, the speckle noise is described 
as a  m ultiplicative ph enomenon. Let f denote a noi sy i mage. The noise f ree image p ixel, 
represented by g, is c orrupted by t he multiplicative speckle n oise 𝜂𝜂 and a n a dditive noi se 
(such as thermal noise) 𝜂𝜂𝑎𝑎 . Thus, one can write [12] 
  
                                                  𝑓𝑓(𝑙𝑙,𝑘𝑘) = 𝑎𝑎(𝑙𝑙,𝑘𝑘)𝜂𝜂(𝑙𝑙,𝑘𝑘) + 𝜂𝜂𝑎𝑎(𝑙𝑙, 𝑘𝑘)                                             (4.10)      
               
Here, 𝑘𝑘, 𝑙𝑙 are v ariables o f t he sp atial l ocations (𝑙𝑙, 𝑘𝑘) Є 𝑍𝑍2  where 𝑍𝑍 is a se t o f i ntegers. The 
speckle noise can be simulated by l ow-pass filtering a complex Gaussian random field, and 
then t aking the m agnitude of  t he f iltered out put. T he f iltering i s c arried out  us ing a  3x3  
window, since such a short-term correlation is sufficient to account for real speckle noise [6]. 
Since the effect of  𝜂𝜂𝑎𝑎(𝑙𝑙 ,𝑘𝑘)  is very small compared to 𝜂𝜂𝑙𝑙 ,𝑘𝑘  , (4.10) is written as [12] 
                              
                                                           𝑓𝑓(𝑙𝑙,𝑘𝑘) = 𝑎𝑎(𝑙𝑙, 𝑘𝑘)𝜂𝜂(𝑙𝑙, 𝑘𝑘)                                                        (4.11) 
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Applying log-transformation on both sides of (4.11), we obtain 
                       
                                                     𝑑𝑑(𝑚𝑚,𝑛𝑛) = 𝑆𝑆(𝑚𝑚,𝑛𝑛) + 𝛾𝛾𝑎𝑎(𝑚𝑚,𝑛𝑛)                                                (4.12) 
 
where d=log(f), S=l og(g) and 𝛾𝛾𝑎𝑎 =log(𝜂𝜂 ). A s t he l og-transformed i mage i s su bjected t o 
wavelet transform, one gets 
                                                                       𝑦𝑦 = 𝜀𝜀 + 𝑒𝑒                                                                    (4.13) 
 
where y, 𝜀𝜀 and x respectively,𝜀𝜀 represent the coefficients corresponding to d, S and 𝛾𝛾𝑎𝑎  .  
 
For the purpose of modeling, the BKF parameters, p and c, are estimated using the proposed 
MLE-based method from the contourlet transform coefficients of the log-transformed noise. 
The l og-transformed n oise i s de composed i n t he c ontourlet t ransform do main using t he 
contourlet toolbox [48] with many different or ientations. The modeling performance of  the 
BKF pdf is compared with that of the Gaussian and normal inverse Gaussian (NIG) pdfs as 
the same procedure as described in section 2.5.  
 
The va lues of  the Kolmogorov-Smirnov (KS) s tatistics for simulated noise at various noise 
standard deviations calculated in the contourlet transform domain are provided in Tables 4.1-
4.4 and for real ultrasound speckle obtained from real ultrasound images of Figure 3.7(a) are 
provided in Table 4.5 and 4.6. In Tables 4.1-4.6, P, D represent the pyramidal and directional 
sub bands of the contourlet transform decomposition respectively and the subscripts represent 
the corresponding decomposition levels (1,2,…). Analyzing those Tables i t is  seen that the 
BKF pdf, in general, gives lower values as compared to those of the other pdfs, indicating a 
close m atch w ith th e e mpirical pdf. F rom t he p-p pl ots shown in Figures 4.5-4.8 are f or 
simulated s peckle a t no ise s tandard de viation 0 .3 f or Contourlet T ransform Coefficients a t 
Orientation o f Pyramidal Decomposition Level-3(three) a nd D irectional Decomposition 
Level-4(four), Contourlet Transform Coefficients at Orientation of Pyramidal Decomposition 
Level-4(four) a nd D irectional Decomposition Level-2(two), C ontourlet T ransform 
Coefficients a t O rientation o f P yramidal Decomposition Level-4(four) a nd D irectional 
Decomposition Level-8(eight) a nd Contourlet Transform Coefficients a t O rientation o f 
Pyramidal Decomposition Level-5(five) a nd D irectional Decomposition Level-6(six) 
respectively. Figures 4.9-4.11 are f or s imulated speckle a t noise s tandard de viation 0.5 f or 
Contourlet Transform Coefficients at Orientation of Pyramidal Decomposition Level-5(five) 
and D irectional Decomposition Level-14(fourteen), C ontourlet T ransform C oefficients a t 
Orientation of Pyramidal Decomposition Level-6(six) and Directional Decomposition Level-
16(sixteen) a nd Contourlet T ransform C oefficients a t O rientation o f P yramidal 
Decomposition Level-6(six) a nd D irectional Decomposition Level-32(thirty tw o) 
respectively. Figures 4.12-4.15 are f or r eal u ltrasound sp eckle n oise o btained f rom r eal 
ultrasound image of neonatal brain in Figure 3.7(a) for Contourlet Transform Coefficients at 
Orientation o f Pyramidal Decomposition Level-3(three) a nd D irectional Decomposition 
Level-2(two), Contourlet Transform Coefficients at Orientation of Pyramidal Decomposition 
Level-3(three) an d D irectional Decomposition Level-4(four), C ontourlet T ransform 
Coefficients a t O rientation o f P yramidal Decomposition Level-4(four) a nd D irectional 
Decomposition Level-3(three) a nd Contourlet Transform Coefficients a t O rientation o f 
Pyramidal Decomposition Level-4(four) a nd D irectional Decomposition Level-7(seven) 
respectively where as Figures 4.16-4.19 are for real ultrasound speckle noise obtained from  
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real u ltrasound i mage of  ne onatal br ain i n Figure 3. 7(b) f or C ontourlet T ransform 
Coefficients a t O rientation o f P yramidal Decomposition Level-5(five) a nd D irectional 
Decomposition Level-8(eight), C ontourlet T ransform Coefficients at O rientation of 
Pyramidal Decomposition Level-5(five) a nd D irectional Decomposition Level-16(sixteen), 
Contourlet Transform Coefficients a t Orientation o f Pyramidal Decomposition Level-6(six) 
and Directional Decomposition Level-13(thirteen) and Contourlet Transform Coefficients at 
Orientation of Pyramidal Decomposition Level-6(six) and Directional Decomposition Level-
29(twenty nine) respectively. Analyzing those p-p plots it is seen  that the BKF pdf gives a 
better performance in modeling the empirical pdf as compared to the Gaussian and NIG pdfs 
for both simulated and real ultrasound speckle. therefore Bessel K-Form (BKF) pdf has been 
established as a highly suitable model for describing the statistics of log-transformed speckle 
noise in contourlet transform domain. 
 

TABLE 4.1 
Values of the KS statistics in contourlet transform domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics (dKS) for 
Noise Standard Deviation 0.3 

BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

 
– 

3 
(P

3) D1 0.0413 0.0417 0.0441 
D2 0.0528 0.0593 0.0659 
D3 0.0551 0.0517 0.0474 
D4 0.0401 0.0559 0.0404 

Py
ra

m
id

al
  L

ev
el

 –
 4

 
(P

4) 

D1 0.0735 0.0866 0.0753 
D2 0.0408 0.0467 0.0425 
D3 0.0281 0.0369 0.0320 
D4 0.0185 0.0196 0.0199 
D5 0.0314 0.0334 0.0321 
D6 0.0243 0.0270 0.0309 
D7 0.0420 0.0454 0.0461 
D8 0.0221 0.0311 0.0271 

Py
ra

m
id

al
  L

ev
el

 –
 5

  
(P

5) 

D1 0.0148 0.0231 0.0186 
D2 0.0344 0.0353 0.0348 
D3 0.0332 0.0340 0.0337 
D4 0.0151 0.0177 0.0175 
D5 0.0142 0.0158 0.0159 
D6 0.0190 0.0241 0.0200 
D7 0.0275 0.0289 0.0344 
D8 0.0234 0.0267 0.0402 
D9 0.0152 0.0153 0.0190 
D10 0.0182 0.0187 0.0190 
D11 0.0157 0.0166 0.0220 
D12 0.0186 0.0264 0.0197 
D13 0.0277 0.0312 0.0297 
D14 0.0201 0.0209 0.0227 
D15 0.0217 0.0281 0.0214 
D16 0.0310 0.0314 0.0326 
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TABLE 4.2 

 Values of the KS statistics in contourlet transform domain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics (dKS) for 
Noise  Standard Deviation  0.3 
BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

 –
 6

  
(P

6) 

D1 0.0129 0.0148 0.0474 
D2 0.0144 0.0175 0.0411 
D3 0.0117 0.0133 0.0518 
D4 0.0179 0.0197 0.0451 
D5 0.0214 0.0223 0.0413 
D6 0.0130 0.0137 0.0350 
D7 0.0257 0.0320 0.0473 
D8 0.0101 0.0113 0.0152 
D9 0.0246 0.0249 0.0470 
D10 0.0175 0.0182 0.0382 
D11 0.0116 0.0118 0.0435 
D12 0.0229 0.0246 0.0454 
D13 0.0267 0.0290 0.0403 
D14 0.0122 0.0138 0.0375 
D15 0.0178 0.0195 0.0443 
D16 0.0126 0.0172 0.0344 
D17 0.0120 0.0122 0.0331 
D18 0.0286 0.0309 0.0476 
D19 0.0275 0.0283 0.0348 
D20 0.0131 0.0139 0.0267 
D21 0.0107 0.0116 0.0353 
D22 0.0125 0.0127 0.0433 
D23 0.0119 0.0136 0.0351 
D24 0.0110 0.0121 0.0463 
D25 0.0115 0.0117 0.0168 
D26 0.0132 0.0136 0.0262 
D27 0.0121 0.0134 0.0254 
D28 0.0102 0.0108 0.0367 
D29 0.0108 0.0126 0.0445 
D30 0.0159 0.0184 0.0434 
D31 0.0188 0.0200 0.0379 
D32 0.0145 0.0154 0.0272 
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TABLE 4.3 
 Values of the KS statistics in contourlet transform domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics (dKS) for 
Noise  Standard Deviation  0.5 
BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

 
– 

3 
(P

3) D1 0.0413 0.0421 0.0443 
D2 0.0422 0.0426 0.0425 
D3 0.0317 0.0411 0.0330 
D4 0.0310 0.0339 0.0322 

Py
ra

m
id

al
  L

ev
el

 –
 4

 
(P

4) 

D1 0.0887 0.0896 0.0892 
D2 0.0493 0.0500 0.0496 
D3 0.0406 0.0417 0.0420 
D4 0.0328 0.0330 0.0324 
D5 0.0313 0.0315 0.0319 
D6 0.0227 0.0278 0.0236 
D7 0.0296 0.0311 0.0319 
D8 0.0337 0.0344 0.0345 

Py
ra

m
id

al
  L

ev
el

 –
 5

  
(P

5) 

D1 0.0225 0.0240 0.0232 
D2 0.0340 0.0360 0.0371 
D3 0.0129 0.0132 0.0170 
D4 0.0236 0.0247 0.0252 
D5 0.0407 0.0417 0.0418 
D6 0.0132 0.0141 0.0144 
D7 0.0141 0.0244 0.0154 
D8 0.0212 0.0290 0.0224 
D9 0.0090 0.0094 0.0107 
D10 0.0173 0.0208 0.0188 
D11 0.0122 0.0156 0.0128 
D12 0.0170 0.0233 0.0200 
D13 0.0145 0.0177 0.0147 
D14 0.0318 0.0325 0.0338 
D15 0.0308 0.0318 0.0311 
D16 0.0305 0.0305 0.0307 
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TABLE 4.4 
Values of the KS statistics in contourlet transform domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics (dKS) for 
Noise  Standard Deviation  0.5 
BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

 –
 6

  
(P

6) 

D1 0.0300 0.0305 0.0345 
D2 0.0322 0.0362 0.0382 
D3 0.0124 0.0131 0.0161 
D4 0.0190 0.0216 0.0228 
D5 0.0188 0.0207 0.0288 
D6 0.0201 0.0208 0.0218 
D7 0.0187 0.0213 0.0119 
D8 0.0179 0.0198 0.0222 
D9 0.0181 0.0196 0.0319 
D10 0.0168 0.0270 0.0177 
D11 0.0119 0.0168 0.0125 
D12 0.0166 0.0214 0.0180 
D13 0.0264 0.0347 0.0289 
D14 0.0137 0.0285 0.0143 
D15 0.0140 0.0227 0.0154 
D16 0.0193 0.0262 0.0210 
D17 0.0249 0.0314 0.0266 
D18 0.0214 0.0251 0.0221 
D19 0.0116 0.0151 0.0120 
D20 0.0244 0.0294 0.0267 
D21 0.0201 0.0210 0.0206 
D22 0.0184 0.0232 0.0205 
D23 0.0178 0.0217 0.0207 
D24 0.0220 0.0337 0.0222 
D25 0.0249 0.0382 0.0277 
D26 0.0159 0.0253 0.0197 
D27 0.0185 0.0293 0.0208 
D28 0.0155 0.0199 0.0171 
D29 0.0183 0.0228 0.0215 
D30 0.0199 0.0224 0.0218 
D31 0.0161 0.0312 0.0198 
D32 0.0183 0.0275 0.0208 
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TABLE 4.5 
Values of the KS statistics in contourlet transform domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics 

( dKS) 

BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

  
3 

(P
3) 

D1 0.0831 0.0821 0.0810 
D2 0.0582 0.0687 0.0584 
D3 0.0917 0.0919 0.0940 
D4 0.0910 0.1032 0.0989 

Py
ra

m
id

al
  L

ev
el

 –
 4

 
(P

4) 

D1 0.0707 0.0863 0.0470 
D2 0.0393 0.0569 0.0393 
D3 0.0506 0.0855 0.0550 
D4 0.0621 0.0731 0.0440 
D5 0.0403 0.0659 0.0524 
D6 0.0406 0.0723 0.0465 
D7 0.0256 0.0477 0.0313 
D8 0.0587 0.0844 0.0666 

Py
ra

m
id

al
  L

ev
el

 –
 5

  
(P

5) 

D1 0.0505 0.1016 0.0550 
D2 0.0210 0.0996 0.0237 
D3 0.0379 0.1287 0.0500 
D4 0.0296 0.1060 0.0516 
D5 0.0267 0.1029 0.0180 
D6 0.0200 0.1086 0.0300 
D7 0.0141 0.0862 0.0154 
D8 0.0162 0.0983 0.0164 
D9 0.0250 0.1409 0.0259 
D10 0.0243 0.0688 0.0238 
D11 0.0422 0.0853 0.0573 
D12 0.0470 0.1216 0.0761 
D13 0.0345 0.1094 0.0632 
D14 0.0438 0.0778 0.0502 
D15 0.0618 0.0981 0.0730 
D16 0.0325 0.0489 0.0328 
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TABLE 4.6 

Values of the KS statistics in contourlet transform domain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contourlet 
Sub bands  

P=Pyramidal 
D=Directional  

Values of the Kolmogorov-
Smirnov (KS) Statistics 

( dKS) 

BKF Gaussian NIG 

Py
ra

m
id

al
  L

ev
el

 –
 6

  
(P

6) 

D1 0.0390 0.1010 0.1704 
D2 0.0522 0.1172 0.1311 
D3 0.0384 0.1122 0.1249 
D4 0.0490 0.1231 0.0825 
D5 0.0348 0.1101 0.1147 
D6 0.0251 0.0897 0.1280 
D7 0.1872 0.1264 0.0851 
D8 0.0278 0.1337 0.0180 
D9 0.0511 0.1196 0.1319 
D10 0.0388 0.1270 0.0777 
D11 0.0329 0.1068 0.1125 
D12 0.0386 0.1114 0.1020 
D13 0.0264 0.1047 0.1589 
D14 0.0477 0.1285 0.1143 
D15 0.0610 0.1227 0.1454 
D16 0.0550 0.1262 0.1910 
D17 0.1279 0.1414 0.0566 
D18 0.4714 0.1251 0.0721 
D19 0.0176 0.0951 0.0320 
D20 0.0244 0.0694 0.0267 
D21 0.0411 0.0810 0.0406 
D22 0.0374 0.0932 0.0505 
D23 0.0378 0.1117 0.0607 
D24 0.0320 0.1337 0.0722 
D25 0.0499 0.1382 0.0877 
D26 0.0359 0.1053 0.0597 
D27 0.0375 0.0793 0.0408 
D28 0.0455 0.0699 0.0471 
D29 0.0283 0.0728 0.0295 
D30 0.0399 0.0624 0.0218 
D31 0.0241 0.0612 0.0198 
D32 0.0473 0.0975 0.0608 



 

4.4  Statistics of The Speckle Noise                                                                                         77 

 
Figure 4.5: PP-plots for the Contourlet Sub-band P3D4 

 
 

 
Figure 4.6: PP-plots for the Contourlet Sub-band P4D2 
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Figure 4.7: PP-plots for the Contourlet Sub-band P4D8 

 

 

 
Figure 4.8: PP-plots for the Contourlet Sub-band P5D6 
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Figure 4.9: PP-plots for the Contourlet Sub-band P5D14 

 
 

 
Figure 4.10: PP-plots for the Contourlet Sub-band P6D16 
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Figure 4.11: PP-plots for the Contourlet Sub-band P6D32 

 

 
Figure 4.12: PP-plots for the Contourlet Sub-band P3D2 
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Figure 4.13: PP-plots for the Contourlet Sub-band P3D4 

 
Figure 4.14: PP-plots for the Contourlet Sub-band P4D3 
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Figure 4.15: PP-plots for the Contourlet Sub-band P4D7 

 
Figure 4.16: PP-plots for the Contourlet Sub-band P5D8 
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Figure 4.17: PP-plots for the Contourlet Sub-band P5D16 

 
Figure 4.18: PP-plots for the Contourlet Sub-band P6D13 
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Figure 4.19: PP-plots for the Contourlet Sub-band P6D29 

 

4.5 Summary 
 

In t his ch apter, the appropriateness of  t he B essel K -Form (B KF) pdf as a  hi ghly s uitable 
model for describing the s tatistics of log-transformed speckle noise in contourlet t ransform 
domain has been demonstrated. A  Maximum Likelihood (ML)-based Estimator (MLE) has 
been developed for this purpose. The MLE equations have been solved using the Aitken's ∆2 
process of acceleration method. For the case o f simulated noise, i t has been shown that the 
BKF pdf is highly suitable for modeling the log-transformed speckle in contourlet transform 
domain, better than the NIG and  the Gaussian pdfs. The suitability of the BKF pdf has also 
been i llustrated for the case of real ultrasound images. The findings of  this s tudy may help 
researchers i n d eveloping ef fective st atistical methods for r educing s peckle noi se f rom 
medical ul trasound images. T here are so me l imitations r egarding the parameter e stimation 
process since i t d oes n ot h ave a cl osed-form e xpression, ne cessary t o h ave r educed 
complexity. 

 
 
 



 

Chapter 5 
 
5.1 Conclusions 

 
Medical ul trasound i mages a re inherently c orrupted w ith s peckle noise in  a  m ultiplicative 
manner. The most popular approach of  despeckling i s homomorphic f iltering, in which the 
multiplicative s peckle noise c onverted t o a n a dditive o ne by l og-transformation. T he 
knowledge of  t he s tatistics of  t he l og-transformed sp eckle i s ne cessary f or de veloping 
effective methods for speckle reduction.  
 
In this thesis the Bessel K-Form (BKF) probability density function (pdf) has been proposed 
to model the log-transformed speckle in multi-resolution transform domains. The suitability 
of this prior in modeling has been extensively studied using simulated noise as well as real 
ultrasound images. Maximum likelihood based methods have been used to estimate the BKF 
parameters. In the following, a summary of this thesis and related contribution are outlined.  
 
In Chapter 1, the b asic co ncepts o f medical u ltrasound and sp eckle g eneration h ave b een 
described b riefly. T he i mportance of  speckle m odeling i n t ransform do main ha s be en 
discussed that include review of related research works available in the literature. Based on 
the discussion, the motivation for the present thesis has been described. 
 
In Chapter 2, the BKF pdf has been anticipated in modeling the speckle for di fferent noise 
levels i n t he discrete w avelet t ransform ( DWT) an d curvelet t ransform domains, m oreover 
the appropriateness of BKF model has been examined for the case of real ultrasound images. 
A maximum likelihood based method is developed for estimating the BKF parameters. Since, 
the BKF MLEs does not have a closed-form expression so numerical methods has been used 
for minimization. The minimization process using Secant method has been presented in this 
Chapter in step by s tep pr ocess. It h as b een shown t hat the B KF c an c apture t he noi se 
statistics better than the Gaussian and normal inverse Gaussian (NIG) pdfs.  
 
In Chapter 3, the BKF pdf has been studied in modeling the speckle for different noise levels 
in the dual-tree complex wavelet transform (DT-CWT) domain, also the fittingness of BKF 
model has been investigated for the case of real ultrasound images, because the traditionally 
used discrete wavelet transform (DWT) can give a good time-frequency representation of the 
non-stationary s ignal, but  i t ha s limited di rectional i nformations, onl y a long ho rizontal, 
vertical, a nd di agonal di rections. Curvelet t ransform h as h igher directionalities w hich 
overcome the limitation of DWT but in a g iven orientation i t's frequency scales are l imited 
for decomposition. The DT-CWT provides a higher degree of directionality, redundancy and 
nearly s hift invariability a s c ompared to  th e t raditional d iscrete w avelet tra nsform (D WT) 
domain. In this Chapter, Newton-Raphson method has been used for numerical minimization 
of t he BKF MLEs. Also t he s tep by s tep pr ocess for minimization ha s be en s hown. It has 
been exposed that t he B KF can  cap ture t he st atistics o f t he D T-CWT co efficients 
corresponding t o l og-transformed speckle b etter t han t he G aussian an d n ormal i nverse 
Gaussian pdfs. 
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In Chapter 4, the BKF pdf has been considered in modeling the speckle for d ifferent noise 
levels in the contourlet transform domain, in addition the suitability of BKF model has been 
examined for the case of real ultrasound images. The 2-D DT-CWT produces six band pass 
sub images of complex coefficients at each level with o rientations at  angles o f ±150, ±450, 
±750. Incidentally, edges can be seen easily, but directional information about the edge is not 
known. Because of this, it takes more coefficients to do a proper reconstruction of the edges. 
On the other hand the contourlet transform has the ability to describe the directionalities of 
image s ignals s ignificantly b etter than t he DWT, c urvelet t ransform a nd 2-D DT -CWT 
domains, it gives more directional information, which is not fixed and rather increases along 
with the increase of the pyramidal decomposition levels. Also it provides a better description 
of arbitrary shapes and contours. In other words, it is a better descriptor of directionality and 
anisotropy. In t his C hapter, Aitken's ∆2  process o f accel eration method has be en us ed f or 
numerical minimization of the BKF MLEs. Also the step by step process for minimization 
has been e xposed. It h as been revealed that t he B KF can  cap ture t he s tatistics o f t he 
contourlet t ransform coefficients c orresponding to l og-transformed s peckle be tter t han t he 
Gaussian and normal inverse Gaussian pdfs. 
 

5.2 Future Scopes 
 
The r esearch works in t he p resent thesis can b e ex tended in sev eral a spects. S pecifically, 
there are scopes for future research in the following topics: 
 

(1) To validate t he s uitability of  t he B KF pdf in modeling t he s peckle by an e xtensive 
study using a large set of real ultrasound images. 

(2) To in vestigate the s tatistics o f t he transform c oefficients c orresponding to non-log-
transformed speckle. This is  important f or developing non -homorphic m ethods f or 
speckle reduction. 

(3) To develop statistical procedures for despeckling ul trasound images where the BKF 
pdf will be  used f or de scribing the s tatistics of  s peckle. T his de velopment may b e 
carried out  for bot h hom omorphic &  non-homomorphic c ases a nd e mployed i n a  
variety of transform domains that include discrete wavelet transform (DWT), curvelet 
transform, dual-tree complex wavelet transform (DT-CWT) and contourlet transform 
domains. As for the statistical procedures, one may consider the maximum-likelihood, 
maximum a posteriori or minimum mean squared error-based approaches. 
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